JP6767011B2 - Nucleoside derivative with physiological activity such as anti-DNA virus activity - Google Patents

Nucleoside derivative with physiological activity such as anti-DNA virus activity Download PDF

Info

Publication number
JP6767011B2
JP6767011B2 JP2016181449A JP2016181449A JP6767011B2 JP 6767011 B2 JP6767011 B2 JP 6767011B2 JP 2016181449 A JP2016181449 A JP 2016181449A JP 2016181449 A JP2016181449 A JP 2016181449A JP 6767011 B2 JP6767011 B2 JP 6767011B2
Authority
JP
Japan
Prior art keywords
group
mmol
compound
added
stirred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016181449A
Other languages
Japanese (ja)
Other versions
JP2017057200A (en
Inventor
裕明 満屋
裕明 満屋
向後 悟
悟 向後
修平 井本
修平 井本
山田 浩平
浩平 山田
晃太 苫谷
晃太 苫谷
裕太郎 大野
裕太郎 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamasa Corp
Kumamoto University NUC
National Center for Global Health and Medicine
Original Assignee
Yamasa Corp
Kumamoto University NUC
National Center for Global Health and Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamasa Corp, Kumamoto University NUC, National Center for Global Health and Medicine filed Critical Yamasa Corp
Publication of JP2017057200A publication Critical patent/JP2017057200A/en
Application granted granted Critical
Publication of JP6767011B2 publication Critical patent/JP6767011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、抗DNAウィルス活性等の生理活性を有するヌクレオシド誘導体に関し、より詳しくは、少なくともB型肝炎ウィルスに対して抗ウィルス活性を有する、2’−デオキシプリンヌクレオシド誘導体、及び該誘導体を有効成分とする抗DNAウィルス剤に関する。 The present invention relates to a nucleoside derivative having physiological activity such as anti-DNA virus activity, and more specifically, a 2'-deoxypurine nucleoside derivative having antiviral activity against at least hepatitis B virus, and an active ingredient of the derivative. Regarding anti-DNA virus agents.

B型肝炎ウィルス(HBV)が感染すると、急性又は劇症的に肝炎が生じ、時に死に至ることがある。また、慢性的に肝炎を発症させ、肝硬変、そして肝細胞癌へと進行する場合もある。その感染者数は全世界で約4億人いると推定され、東南アジアを中心として罹患率は非常に高く、その有効な治療方法の開発が世界的に希求されている。 Infection with hepatitis B virus (HBV) causes acute or fulminant hepatitis, which can be fatal. In addition, hepatitis may develop chronically and progress to cirrhosis and hepatocellular carcinoma. The number of infected people is estimated to be about 400 million worldwide, and the prevalence is extremely high mainly in Southeast Asia, and the development of effective treatment methods is sought worldwide.

HBVは、不完全2本鎖DNAウィルスであり、その生活環においてRNAからDNAを合成する逆転写を行うことが知られている。一方、宿主となるヒトにおいては、逆転写は行われないので、この段階を阻害することにより、HBVの複製のみを阻止できることが可能となる。そして、このような観点からのHBV感染症の治療薬として、ヌクレオシド誘導体製剤が開発されている(特許文献1、2)。 HBV is an incomplete double-stranded DNA virus and is known to perform reverse transcription that synthesizes DNA from RNA in its life cycle. On the other hand, in humans as hosts, reverse transcription is not performed, and by inhibiting this stage, it is possible to prevent only HBV replication. Nucleoside derivative preparations have been developed as therapeutic agents for HBV infection from such a viewpoint (Patent Documents 1 and 2).

特開2004−244422号公報Japanese Unexamined Patent Publication No. 2004-244422 特開2008−273960号公報Japanese Unexamined Patent Publication No. 2008-273960

現状のヌクレオシド誘導体製剤において、その多くが宿主細胞、すなわち服用するヒトの細胞に対しても毒性を有しており、中長期の服用による副作用が問題となっている。また、服用期間にヌクレオシド誘導体への耐性株が生じることもある。そのため、HBV等のDNAウィルス感染症に対する有効な治療方法は確立されていないのが現状である。 Most of the current nucleoside derivative preparations are also toxic to host cells, that is, human cells to be taken, and side effects due to medium- to long-term administration have become a problem. In addition, resistant strains to nucleoside derivatives may develop during the period of administration. Therefore, at present, no effective treatment method for DNA virus infections such as HBV has been established.

本発明は、このような状況に鑑みてなされたものであり、その目的は、少なくともHBVに対して抗ウィルス活性を有し、宿主細胞に対する毒性が低いヌクレオシド誘導体を提供することにある。また、本発明は、既存のヌクレオシド誘導体(エンテカビル等)に対して耐性を示すHBVに対しても抗ウィルス活性を示すヌクレオシド誘導体を提供することをも目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a nucleoside derivative having at least antiviral activity against HBV and low toxicity to host cells. Another object of the present invention is to provide a nucleoside derivative that exhibits antiviral activity against HBV that is resistant to existing nucleoside derivatives (entecavir and the like).

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、2’−デオキシプリンヌクレオシドにおいて、プリン塩基の2位及び6位、並びにリボース糖の4位を、各々特定の官能基に置換したヌクレオシド誘導体が、HBVに対して優れた抗ウィルス活性を発揮することを見出した。特に、前記2’−デオキシプリンヌクレオシドにおいて、プリン塩基の6位を比較的嵩高い官能基(炭素数1以上のアルキル基によって置換されているアミノ基、置換基を有していてもよい炭素数2以上のアルコキシ基、又は炭素数1以上のアルキル基によって置換されているメルカプト基)で置換したヌクレオシド誘導体が、HBVに対しては抗ウィルス活性を示しつつも、概して、細胞毒性が低いことを明らかにした。また、前記2’−デオキシプリンヌクレオシドが、エンテカビル耐性HBVに対しても抗ウィルス活性を発揮しうることを見出し、本発明を完成するに至った。 As a result of intensive research to solve the above problems, the present inventors have set the 2nd and 6th positions of purine bases and the 4th position of ribose sugars as specific functional groups in 2'-deoxypurine nucleosides. It has been found that the substituted nucleoside derivative exhibits excellent antiviral activity against HBV. In particular, in the 2'-deoxypurine nucleoside, the 6-position of the purine base may have a relatively bulky functional group (amino group substituted with an alkyl group having 1 or more carbon atoms, or a substituent which may have a substituent). A nucleoside derivative substituted with 2 or more alkoxy groups or a mercapto group substituted with an alkyl group having 1 or more carbon atoms) shows antiviral activity against HBV, but generally has low cytotoxicity. Revealed. Further, they have found that the 2'-deoxypurine nucleoside can exert antiviral activity against entecavir-resistant HBV, and have completed the present invention.

すなわち、本発明は、少なくともB型肝炎ウィルスに対して抗ウィルス活性を有するヌクレオシド誘導体、及び該誘導体を有効成分とする抗ウィルス剤に関し、より詳しくは、以下を提供するものである。
<1> 下記一般式(1)で表されるヌクレオシド誘導体。
That is, the present invention provides at least a nucleoside derivative having antiviral activity against hepatitis B virus and an antiviral agent containing the derivative as an active ingredient, as follows.
<1> A nucleoside derivative represented by the following general formula (1).

[前記式中、Rは、ヒドロキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルコキシ基、又は置換基を有していてもよいメルカプト基を示す。Rは、水素原子、ハロゲン原子、又はアミノ基を示す。Rは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、シアノ基、又はアジド基を示す。但し、前記一般式(1)で表されるヌクレオシド誘導体であって、Rがアミノ基であり、Rがハロゲン原子または水素原子であり、かつRがシアノ基である場合、Rがヒドロキシ基であり、Rがアミノ基であり、かつRがアジド基である場合、Rがヒドロキシ基であり、Rがアミノ基であり、かつRがアジド基である場合、及びRがアミノ基であり、Rが水素原子であり、かつRがアジド基である場合を除く。]
<2> 前記式中、Rが、炭素数1以上のアルキル基によって置換されているアミノ基、置換基を有していてもよい炭素数2以上のアルコキシ基、又は炭素数1以上のアルキル基によって置換されているメルカプト基である、<1>に記載のヌクレオシド誘導体。
<3> Rが、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、シクロプロピルアミノ基、エトキシ基、アリルオキシ基、ベンジルオキシ基及びメチルメルカプト基からなる群から選択される一の官能基であり、かつRが、水素原子又はアミノ基である、<2>に記載のヌクレオシド誘導体。
<4> <1>〜<3>のうちのいずれか一に記載のヌクレオシド誘導体を有効成分とする、抗DNAウィルス剤。
<5> 抗B型肝炎ウィルス剤である、<4>に記載の抗ウィルス剤。
[In the above formula, R 1 represents a hydroxy group, an amino group which may have a substituent, an alkoxy group which may have a substituent, or a mercapto group which may have a substituent. .. R 2 represents a hydrogen atom, a halogen atom, or an amino group. R 3 represents an alkyl group which may have a substituent, an alkenyl group which may have a substituent, a cyano group, or an azide group. However, in the nucleoside derivative represented by the general formula (1), when R 1 is an amino group, R 2 is a halogen atom or a hydrogen atom, and R 3 is a cyano group, R 1 is When it is a hydroxy group, R 2 is an amino group and R 3 is an azide group, R 1 is a hydroxy group, R 2 is an amino group and R 3 is an azide group, and Except when R 1 is an amino group, R 2 is a hydrogen atom, and R 3 is an azide group. ]
<2> In the above formula, R 1 is an amino group substituted with an alkyl group having 1 or more carbon atoms, an alkoxy group having 2 or more carbon atoms which may have a substituent, or an alkyl having 1 or more carbon atoms. The nucleoside derivative according to <1>, which is a mercapto group substituted with a group.
<3> R 1 is one functional group selected from the group consisting of a methylamino group, a dimethylamino group, an ethylamino group, a cyclopropylamino group, an ethoxy group, an allyloxy group, a benzyloxy group and a methyl mercapto group. and R 2 is a hydrogen atom or an amino group, a nucleoside derivative according to <2>.
<4> An anti-DNA virus agent containing the nucleoside derivative according to any one of <1> to <3> as an active ingredient.
<5> The antiviral agent according to <4>, which is an anti-hepatitis B virus agent.

本発明によれば、少なくともHBVに対して抗ウィルス活性を有し、宿主細胞に対して毒性が低いヌクレオシド誘導体を提供することが可能となる。また、既存のヌクレオシド誘導体(エンテカビル等)に対して耐性を示すHBVに対しても抗ウィルス活性を発揮しうるヌクレオシド誘導体を提供することも可能となる。 According to the present invention, it is possible to provide a nucleoside derivative having antiviral activity against at least HBV and having low toxicity to host cells. It is also possible to provide a nucleoside derivative capable of exerting antiviral activity against HBV which is resistant to existing nucleoside derivatives (entecavir and the like).

(ヌクレオシド誘導体)
後述の実施例において示す通り、下記式で表されるヌクレオシド誘導体は、B型肝炎ウィルスに対して抗ウィルス活性を有することが明らかになった。したがって、本発明は、抗DNAウィルス活性を示すヌクレオシド誘導体に関し、より詳しくは、少なくともB型肝炎ウィルスに対して抗ウィルス活性を有する、下記一般式(1)で表されるヌクレオシド誘導体を提供するものである。
(Nucleoside derivative)
As shown in Examples described later, it was revealed that the nucleoside derivative represented by the following formula has antiviral activity against hepatitis B virus. Therefore, the present invention provides a nucleoside derivative exhibiting anti-DNA virus activity, and more specifically, providing a nucleoside derivative represented by the following general formula (1), which has antiviral activity against hepatitis B virus at least. Is.

[前記式中、Rは、ヒドロキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルコキシ基、又は置換基を有していてもよいメルカプト基を示す。Rは、水素原子、ハロゲン原子、又はアミノ基を示す。Rは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、シアノ基、又はアジド基を示す。但し、前記一般式(1)で表されるヌクレオシド誘導体であって、Rがアミノ基であり、Rがハロゲン原子又は水素原子であり、かつRがシアノ基である場合、Rがヒドロキシ基であり、Rがアミノ基であり、かつRがアジド基である場合、Rがヒドロキシ基であり、Rがアミノ基であり、かつRがアジド基である場合、及びRがアミノ基であり、Rが水素原子であり、かつRがアジド基である場合を除く。]。 [In the above formula, R 1 represents a hydroxy group, an amino group which may have a substituent, an alkoxy group which may have a substituent, or a mercapto group which may have a substituent. .. R 2 represents a hydrogen atom, a halogen atom, or an amino group. R 3 represents an alkyl group which may have a substituent, an alkenyl group which may have a substituent, a cyano group, or an azide group. However, in the nucleoside derivative represented by the general formula (1), when R 1 is an amino group, R 2 is a halogen atom or a hydrogen atom, and R 3 is a cyano group, R 1 is When it is a hydroxy group, R 2 is an amino group and R 3 is an azide group, R 1 is a hydroxy group, R 2 is an amino group and R 3 is an azide group, and Except when R 1 is an amino group, R 2 is a hydrogen atom, and R 3 is an azide group. ].

本発明のヌクレオシド誘導体は、少なくともB型肝炎ウィルス(HBV)に対して抗ウィルス活性を有する。本発明において「HBV」は、B型肝炎を発症させる能力を有するウィルスを意味する。HBVとしては、A(A2/Ae、A1/Aa)、B(Ba、B1/Bj)、C(Cs、Ce)、D〜H及びJの遺伝子型が知られているが、本発明のヌクレオシド誘導体は、少なくとも1つの遺伝子型のHBVに対して抗ウィルス活性を有するものであればよい。上記の遺伝子型のうちHBV/Ceは、既存のヌクレオシド誘導体製剤であるエンテカビルに対して耐性を示す遺伝子型であることが知られている。したがって、本発明のヌクレオシド誘導体は、好ましくは、HBV/Ceに対して抗ウィルス活性を有するヌクレオシド誘導体である。 The nucleoside derivative of the present invention has at least antiviral activity against hepatitis B virus (HBV). In the present invention, "HBV" means a virus having the ability to develop hepatitis B. As HBV, genotypes of A (A2 / Ae, A1 / Aa), B (Ba, B1 / Bj), C (Cs, Ce), D to H and J are known, and the nucleoside of the present invention is known. The derivative may have antiviral activity against at least one genotype of HBV. Among the above genotypes, HBV / Ce is known to be a genotype that exhibits resistance to the existing nucleoside derivative preparation, entecavir. Therefore, the nucleoside derivative of the present invention is preferably a nucleoside derivative having antiviral activity against HBV / Ce.

本発明において「抗ウィルス活性」とは、HBV等のウィルスが感染した細胞(宿主細胞)において、当該ウィルスを消滅させる又はその増殖を抑制する活性を意味し、例えば、宿主細胞におけるウィルス複製を抑制する活性が挙げられる。また、かかる抑制等の対象がゲノムとしてDNAを有するウィルス(DNAウィルス)である場合には、「抗DNAウィルス活性」と称する。さらに、かかる活性は、後述の実施例に示すように、宿主細胞におけるウィルスのコピー数等を指標として算出されるEC50値にて評価することができる。本発明のヌクレオシド誘導体は、抗ウイルス活性のEC50値が0.1μM以下であることが好ましく、0.05μM以下であることがより好ましく、0.01μM以下であることがさらに好ましく、0.005μM以下(例えば、0.004μM以下、0.003μM以下、0.002μM以下、0.001μM以下)であることがより好ましい。 In the present invention, "anti-virus activity" means an activity of eliminating or suppressing the growth of a virus-infected cell (host cell) such as HBV, and for example, suppressing virus replication in the host cell. Activity is mentioned. Further, when the target of such suppression or the like is a virus having DNA as a genome (DNA virus), it is referred to as "anti-DNA virus activity". Further, such activity can be evaluated by, as shown in the examples below, EC 50 values calculated copy number of the virus, etc. in the host cells as the indicator. The nucleoside derivative of the present invention preferably has an EC 50 value of antiviral activity of 0.1 μM or less, more preferably 0.05 μM or less, further preferably 0.01 μM or less, and 0.005 μM. More preferably, it is less than or equal to (for example, 0.004 μM or less, 0.003 μM or less, 0.002 μM or less, 0.001 μM or less).

また、本発明のヌクレオシド誘導体は、細胞毒性が低いことが好ましい。本発明において「細胞毒性」とは、細胞を殺傷する、その機能を阻害する、またはその増殖を抑制する活性を意味する。かかる活性は、後述の実施例に示すように、細胞の生存数等を指標として算出されるCC50値にて評価することができる。本発明のヌクレオシド誘導体は、CC50値が50μM以上であることが好ましく、100μM以上であることがより好ましく、200μM以上であることがさらに好ましい。 Further, the nucleoside derivative of the present invention preferably has low cytotoxicity. In the present invention, "cytotoxicity" means an activity of killing a cell, inhibiting its function, or suppressing its proliferation. Such activity can be evaluated by the CC50 value calculated using the number of surviving cells as an index, as shown in Examples described later. The nucleoside derivative of the present invention preferably has a CC50 value of 50 μM or more, more preferably 100 μM or more, and even more preferably 200 μM or more.

本発明のヌクレオシド誘導体に少なくともHBVに対する抗ウィルス活性を発揮させつつ、当該誘導体の細胞毒性を低下させることができるという観点から、各置換基は、以下に示す通り選択することが好ましい。 From the viewpoint that the nucleoside derivative of the present invention can exhibit at least antiviral activity against HBV and reduce the cytotoxicity of the derivative, it is preferable to select each substituent as shown below.

「置換基を有していてもよいアミノ基」における置換基としては、炭素数1以上のアルキル基が好ましく、炭素数1〜6の直鎖状、分岐状又は環状のアルキル基がより好ましく、炭素数1〜4の直鎖状、分岐状又は環状のアルキル基がさらに好ましく、メチル基、エチル基又はシクロプロピル基がより好ましい。「置換基を有していてもよいアミノ基」は、より具体的に、メチルアミノ基、ジメチルアミノ基、エチルアミノ基又はシクロプロピルアミノ基が好ましい。 As the substituent in the "amino group which may have a substituent", an alkyl group having 1 or more carbon atoms is preferable, and a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms is more preferable. A linear, branched or cyclic alkyl group having 1 to 4 carbon atoms is more preferable, and a methyl group, an ethyl group or a cyclopropyl group is more preferable. More specifically, the "amino group which may have a substituent" is preferably a methylamino group, a dimethylamino group, an ethylamino group or a cyclopropylamino group.

「置換基を有していてもよいアルコキシ基」におけるアルコキシ基としては、炭素数1以上のアルコキシ基が好ましく、炭素数1〜5のアルコキシ基(メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ)がより好ましい。「置換基を有していてもよいアルコキシ基」における置換基としては、炭素数2〜6の直鎖状、分岐状、又は環状のアルケニル基(エテニル基、プロパ−1−エニル基、ブタ−1−エニル基、ブタ−2−エニル基、ペンタ−2−エニル基、イソプロペニル基、3−メチルブタ−1−エニル基、シクロヘキサ−2−エニル基、シクロヘキサ−2,5−ジエニル基、ジシクロペンタエニル基、ジシクロペンタジエニル基等)、炭素数6〜10のアリール基(フェニル基、ナフチル基)が好ましい。「置換基を有していてもよいアルコキシ基」は、より具体的に、エトキシ基、アリルオキシ基又はベンジルオキシ基が好ましい。 As the alkoxy group in the "alkoxy group which may have a substituent", an alkoxy group having 1 or more carbon atoms is preferable, and an alkoxy group having 1 to 5 carbon atoms (methoxy, ethoxy, propoxy, butoxy, pentyloxy) is preferable. More preferred. As the substituent in the "alkoxy group which may have a substituent", a linear, branched or cyclic alkenyl group having 2 to 6 carbon atoms (ethenyl group, propa-1-enyl group, pig- 1-enyl group, but-2-enyl group, penta-2-enyl group, isopropenyl group, 3-methylbuta-1-enyl group, cyclohex-2-enyl group, cyclohexa-2,5-dienyl group, dicyclo Pentaenyl group, dicyclopentadienyl group, etc.) and aryl groups having 6 to 10 carbon atoms (phenyl group, naphthyl group) are preferable. More specifically, the "alkoxy group which may have a substituent" is preferably an ethoxy group, an allyloxy group or a benzyloxy group.

「置換基を有していてもよいメルカプト基」における置換基としては、炭素数1以上のアルキル基が好ましく、炭素数1〜6の直鎖状、分岐状又は環状のアルキル基がより好ましい。「置換基を有していてもよいメルカプト基」は、より具体的にメチルメルカプト基が好ましい。 As the substituent in the "mercapto group which may have a substituent", an alkyl group having 1 or more carbon atoms is preferable, and a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms is more preferable. More specifically, the "mercapto group which may have a substituent" is preferably a methyl mercapto group.

「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子を意味するが、フッ素原子、塩素原子又はヨウ素原子が好ましい。 The "halogen atom" means a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, and a fluorine atom, a chlorine atom, or an iodine atom is preferable.

「置換基を有していてもよいアルキル基」におけるアルキル基としては特に制限はないが、炭素数1〜6の直鎖状、分岐状又は環状のアルキル基が好ましく、メチル基又はエチル基がより好ましい。「置換基を有していてもよいアルキル基」における置換基としては特に制限はなく、例えば、ハロゲン原子、ヒドロキシ基、アルコキシ基、シアノ基、アミノ基が挙げられるが、ハロゲン原子が好ましく、フッ素原子がより好ましい。より具体的には、「置換基を有していてもよいアルキル基」は、モノフルオロメチル基が好ましい。 The alkyl group in the "alkyl group which may have a substituent" is not particularly limited, but a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms is preferable, and a methyl group or an ethyl group is preferable. More preferred. The substituent in the "alkyl group which may have a substituent" is not particularly limited, and examples thereof include a halogen atom, a hydroxy group, an alkoxy group, a cyano group, and an amino group. A halogen atom is preferable, and fluorine is preferable. Atoms are more preferred. More specifically, the "alkyl group which may have a substituent" is preferably a monofluoromethyl group.

「置換基を有していてもよいアルケニル基」におけるアルケニル基としては特に制限はないが、炭素数2以上の直鎖状、分岐状、又は環状のアルケニル基が好ましく、炭素数2〜6の直鎖状、分岐状、又は環状のアルケニル基がより好ましく、エテニル基がさらに好ましい。「置換基を有していてもよいアルケニル基」における置換基としては特に制限はなく、例えば、ハロゲン原子、ヒドロキシ基、アルコキシ基、シアノ基、アミノ基が挙げられる。 The alkenyl group in the "alkenyl group which may have a substituent" is not particularly limited, but a linear, branched or cyclic alkenyl group having 2 or more carbon atoms is preferable, and the alkenyl group has 2 to 6 carbon atoms. A linear, branched or cyclic alkenyl group is more preferred, and an ethenyl group is even more preferred. The substituent in the "alkenyl group which may have a substituent" is not particularly limited, and examples thereof include a halogen atom, a hydroxy group, an alkoxy group, a cyano group, and an amino group.

好適な官能基を有するヌクレオシド誘導体の例としては、Rが、炭素数1以上のアルキル基によって置換されているアミノ基、置換基を有していてもよい炭素数2以上のアルコキシ基、又は炭素数1以上のアルキル基によって置換されているメルカプト基である、前記一般式(1)で表されるヌクレオシド誘導体が挙げられる(なお、「置換基を有していてもよい炭素数2以上のアルコキシ基」とは、置換基を有していてもよいアルコキシ基中の炭素数が2以上であることを意味ずる)。 Examples of nucleoside derivatives with suitable functional groups, R 1 is an amino group, carbon atoms which may have a substituent two or more alkoxy groups substituted by the number 1 or more alkyl group having a carbon or Examples thereof include a nucleoside derivative represented by the general formula (1), which is a mercapto group substituted with an alkyl group having 1 or more carbon atoms (note that "a substituent may have a substituent having 2 or more carbon atoms". The "alkoxy group" means that the number of carbon atoms in the alkoxy group which may have a substituent is 2 or more).

また、好適な官能基の組み合わせを有するヌクレオシド誘導体の例としては、Rが、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、シクロプロピルアミノ基、エトキシ基、アリルオキシ基、ベンジルオキシ基及びメチルメルカプト基からなる群から選択される一の官能基であり、Rが、水素原子又はアミノ基であり、R3が、メチル基、モノフルオロメチル基、エテニル基、シアノ基及びアジド基からなる群から選択される一の官能基であり、かつRが水素原子である、前記一般式(1)で表されるヌクレオシド誘導体が挙げられる。 Further, as an example of a nucleoside derivative having a suitable combination of functional groups, R 1 is a methylamino group, a dimethylamino group, an ethylamino group, a cyclopropylamino group, an ethoxy group, an allyloxy group, a benzyloxy group and a methyl mercapto. A functional group selected from the group consisting of groups, R 2 is a hydrogen atom or an amino group, and R 3 is a group consisting of a methyl group, a monofluoromethyl group, an ethenyl group, a cyano group and an azide group. is one functional group selected from and R 4 is a hydrogen atom, a nucleoside derivative represented by the general formula (1).

より好適な官能基の組み合わせを有するヌクレオシド誘導体の例としては、Rがメチルアミノ基であり、Rがアミノ基であり、かつR3がエテニル基又はシアノ基である、前記一般式(1)で表されるヌクレオシド誘導体が挙げられる。 As an example of a nucleoside derivative having a more suitable combination of functional groups, R 1 is a methyl amino group, R 2 is an amino group, and R 3 is an ethenyl group or a cyano group. ), Examples of the nucleoside derivative.

本発明のヌクレオシド誘導体には、薬理学上許容される塩、水和物又は溶媒和物も含まれる。このような薬理学上許容される塩としては、特に制限はなく、ヌクレオシド誘導体の構造等に応じて適宜選択することができ、例えば、酸付加塩(塩酸塩、硫酸塩、臭化水素塩、硝酸塩、硫酸水素酸塩、リン酸塩、酢酸塩、乳酸塩、コハク酸塩、クエン酸塩、マレイン酸塩、ヒドロキシマレイン酸塩、酒石酸塩、フマル酸塩、メタンスルホン酸塩、p−トルエンスルホン酸塩、樟脳スルホン酸塩、スルファミン酸塩、マンデル酸塩、プロピオン酸塩、グリコール酸塩、ステアリン酸塩、リンゴ酸塩、アスコルビン酸塩、パモン酸塩、フェニル酢酸塩、グルタミン酸塩、安息香酸塩、サリチル酸塩、スルファニル酸塩、2−アセトキシ安息香酸塩、エタンジスルホン酸塩、シュウ酸塩、イセチオン酸塩、ギ酸塩、トリフルオロ酢酸塩、エチルコハク酸塩、ラクトビオン酸塩、グルコン酸塩、グルコヘプトン酸塩、2−ヒドロキシエタンスルホン酸塩、ベンゼンスルホン酸塩、ラウリル硫酸塩、アスパラギン酸塩、アジピン酸塩、ヨウ化水素酸塩、ニコチン酸塩、シュウ酸塩、ピクリン酸塩、チオシアン酸塩、ウンデカン酸塩等)、塩基付加塩(ナトリウム塩、カリウム塩、亜鉛塩、カルシウム塩、ビスマス塩、バリウム塩、マグネシウム塩、アルミニウム塩、銅塩、コバルト塩、ニッケル塩、カドミウム塩、アンモニウム塩、エチレンジアミン塩、N−ジベンジルエチレンジアミン塩)が挙げられる。また、水和物又は溶媒和物としては、特に制限はなく、例えば、ヌクレオシド誘導体又はその塩1分子に対し、0.1〜3分子の水又は溶媒が付加したものが挙げられる。 The nucleoside derivatives of the present invention also include pharmacologically acceptable salts, hydrates or solvates. Such a pharmacologically acceptable salt is not particularly limited and may be appropriately selected depending on the structure of the nucleoside derivative and the like. For example, an acid addition salt (hydrochloride, sulfate, hydrogen bromide, etc.) Nitrate, hydrosulfate, phosphate, acetate, lactate, succinate, citrate, maleate, hydroxymaleate, tartrate, fumarate, methanesulfonate, p-toluenesulfone Acids, cerebral sulfonates, sulfamates, mandelates, propionates, glycolates, stearate, malate, ascorbate, pamonate, phenylacetate, glutamate, benzoate , Salicylate, sulfanylate, 2-acetoxybenzoate, ethanedisulfonate, oxalate, isethionate, formate, trifluoroacetate, ethylsuccinate, lactobionate, gluconate, glucoheptonic acid Salt, 2-hydroxyethanesulfonate, benzenesulfonate, lauryl sulfate, asparagate, adipate, hydroiodide, nicotinate, oxalate, picrate, thiocyanate, undecane Acids, etc.), base addition salts (sodium salt, potassium salt, zinc salt, calcium salt, bismuth salt, barium salt, magnesium salt, aluminum salt, copper salt, cobalt salt, nickel salt, cadmium salt, ammonium salt, ethylenediamine salt) , N-dibenzylethylenediamine salt). The hydrate or solvate is not particularly limited, and examples thereof include those obtained by adding 0.1 to 3 molecules of water or a solvent to one molecule of a nucleoside derivative or a salt thereof.

本発明のヌクレオシド誘導体には、互変異性体、幾何異性体、不斉炭素に基づく光学異性体、立体異性体等の総ての異性体及び異性体混合物が含まれる。さらに、本発明のヌクレオシド誘導体が生体内で酸化、還元、加水分解、アミノ化、脱アミノ化、水酸化、リン酸化、脱水酸化、アルキル化、脱アルキル化、抱合等の代謝を受けてなお所望の活性を示す化合物をも包含し、また本発明は生体内で酸化、還元、加水分解等の代謝を受けて本発明のヌクレオシド誘導体を生成する化合物(所謂、プロドラッグの形態)をも包含する。さらに、本発明のヌクレオシド誘導体は、後述の通り、公知の製剤学的方法により製剤化することができる。 The nucleoside derivatives of the present invention include all isomers and isomer mixtures such as tautomers, geometric isomers, asymmetric carbon-based optical isomers, stereoisomers and the like. Furthermore, the nucleoside derivative of the present invention is still desired after undergoing metabolism such as oxidation, reduction, hydrolysis, amination, deamination, hydroxylation, phosphorylation, dehydration, alkylation, dealkylation, and conjugation in vivo. The present invention also includes compounds exhibiting the activity of the present invention, and the present invention also includes compounds (so-called prodrug forms) that undergo metabolism such as oxidation, reduction, and hydrolysis in vivo to produce the nucleoside derivative of the present invention. .. Furthermore, the nucleoside derivative of the present invention can be formulated by a known pharmaceutical method as described later.

また、本発明のヌクレオシド誘導体の合成は、たとえば、リボース糖(ヒドロキシ基がアセチル基、ベンジル基等によって置換されることにより保護されたD−リボフラノース)と、プリン塩基(アデニン)とを、シリル体経由で反応させ、さらにフェノキシチオカルボニル誘導体経由で還元してリボース糖の2位をデオキシ化し、また必要に応じ、公知の手法により、リボース糖及び/又はプリン塩基の目的の位置に置換基を導入することによって行うことができる。このような本発明のヌクレオシド誘導体の合成方法は後述の実施例において詳細に示されているので、当業者であれば、実施例の記載を参照しつつ、反応原料、反応試薬、反応条件(例えば、溶媒、反応温度、触媒、反応時間)等を適宜選択しつつ、必要に応じてこれらの方法に適宜、修飾ないし改変を加えることにより、本発明のヌクレオシド誘導体を合成することは可能である。また、このようにして合成されたヌクレオシド誘導体は、一般のヌクレオシド、ヌクレオチドの単離・精製に使用されている方法(逆相クロマトグラフィー、イオン交換クロマトグラフィー、吸着クロマトグラフィー、再結晶法)を適宜単独又は組み合わせて用いることにより、分離、精製することができる。 Further, in the synthesis of the nucleoside derivative of the present invention, for example, ribose sugar (D-ribofuranose protected by substituting a hydroxy group with an acetyl group, a benzyl group, etc.) and a purine base (adenine) are silylated. It is reacted via the body and further reduced via a phenoxythiocarbonyl derivative to deoxylate the 2-position of the ribose sugar, and if necessary, a substituent is added to the desired position of the ribose sugar and / or purine base by a known method. It can be done by introducing it. Such a method for synthesizing the nucleoside derivative of the present invention is shown in detail in Examples described later. Therefore, those skilled in the art can refer to the description of Examples and refer to the reaction raw materials, reaction reagents, and reaction conditions (for example). , Solvent, reaction temperature, catalyst, reaction time) and the like, and by appropriately modifying or modifying these methods as necessary, it is possible to synthesize the nucleoside derivative of the present invention. In addition, the nucleoside derivative synthesized in this manner can be appropriately subjected to methods (reverse phase chromatography, ion exchange chromatography, adsorption chromatography, recrystallization method) used for isolation and purification of general nucleosides and nucleotides. It can be separated and purified by using it alone or in combination.

(抗ウィルス剤、ウィルス感染症の予防方法、治療方法)
後述の実施例において示す通り、本発明のヌクレオシド誘導体は、少なくともB型肝炎ウィルスに対して抗ウィルス活性を有する。したがって、本発明のヌクレオシド誘導体を有効成分とする抗DNAウィルス剤を提供することができる。
(Antiviral agents, methods for preventing and treating viral infections)
As shown in Examples described later, the nucleoside derivative of the present invention has at least antiviral activity against hepatitis B virus. Therefore, it is possible to provide an anti-DNA virus agent containing the nucleoside derivative of the present invention as an active ingredient.

本発明の抗DNAウィルス剤並びに後述の予防方法、治療方法が対象とする感染症としては特に制限はなく、例えば、HBV感染症が挙げられ、より具体的には、B型肝炎(慢性肝炎、急性肝炎、劇症肝炎)、肝硬変、肝繊維化、肝細胞癌が挙げられる。 The infectious disease targeted by the anti-DNA virus agent of the present invention and the preventive method and the therapeutic method described later is not particularly limited, and examples thereof include HBV infection, and more specifically, hepatitis B (chronic hepatitis, Acute hepatitis, fulminant hepatitis), cirrhosis, liver fibrosis, hepatocellular carcinoma.

本発明の抗DNAウィルス剤は、公知の製剤学的方法により製剤化することができる。例えば、カプセル剤、錠剤、丸剤、液剤、散剤、顆粒剤、細粒剤、フィルムコーティング剤、ペレット剤、トローチ剤、舌下剤、咀嚼剤、バッカル剤、ペースト剤、シロップ剤、懸濁剤、エリキシル剤、乳剤、塗布剤、軟膏剤、硬膏剤、パップ剤、経皮吸収型製剤、ローション剤、吸引剤、エアゾール剤、注射剤、坐剤等として、経口的又は非経口的に使用することができる。 The anti-DNA virus agent of the present invention can be formulated by a known pharmaceutical method. For example, capsules, tablets, pills, liquids, powders, granules, fine granules, film coatings, pellets, lozenges, sublinguals, chews, buccal agents, pastes, syrups, suspensions, Orally or parenterally as an elixir, emulsion, coating, ointment, ointment, poultice, transdermal preparation, lotion, inhalant, aerosol, injection, suppository, etc. Can be done.

これら製剤化においては、薬理学上許容される担体又は媒体、具体的には、滅菌水や生理食塩水、植物油、溶剤、基剤、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、芳香剤、賦形剤、ベヒクル、防腐剤、結合剤、希釈剤、等張化剤、無痛化剤、増量剤、崩壊剤、緩衝剤、コーティング剤、滑沢剤、着色剤、甘味剤、粘稠剤、矯味矯臭剤、溶解補助剤、あるいはその他の添加剤等と適宜組み合わせることができる。より具体的には、担体として、乳糖、カオリン、ショ糖、結晶セルロース、コーンスターチ、タルク、寒天、ペクチン、ステアリン酸、ステアリン酸マグネシウム、レシチン、塩化ナトリウム等の固体状担体、グリセリン、落花生油、ポリビニルピロリドン、オリーブ油、エタノール、ベンジルアルコール、プロピレングリコール、水等の液状担体も挙げられる。 In these formulations, pharmacologically acceptable carriers or vehicles, specifically sterile water, physiological saline, vegetable oils, solvents, bases, emulsifiers, suspending agents, surfactants, stabilizers, flavoring agents. , Fragrances, Excipients, Vehicles, Preservatives, Binders, Diluents, Isotonic Agents, Painless Agents, Bulking Agents, Disintegrants, Buffers, Coatings, Lubricants, Colorants, Sweeteners It can be appropriately combined with a thickener, a flavoring agent, a solubilizing agent, or other additives. More specifically, as carriers, solid carriers such as lactose, kaolin, sucrose, crystalline cellulose, corn starch, talc, agar, pectin, stearic acid, magnesium stearate, lecithin, sodium chloride, glycerin, peanut oil, polyvinyl Liquid carriers such as pyrrolidone, olive oil, ethanol, benzyl alcohol, propylene glycol and water can also be mentioned.

また、本発明の抗ウィルス剤は、公知の他の抗ウィルス剤と併用してもよい。このような公知の抗ウィルス剤としては、対象疾患がHBV感染症である場合には、例えば、エンテカビル、3TC(ラミブジン)、アデフォビル等の公知のヌクレオシドアナログ製剤、インターフェロン(IFN)が挙げられる。また、このような薬剤を用いた抗ウイルス療法の他、免疫療法(副腎皮質ステロイドホルモン離脱療法、プロパゲルニウム製剤内服等)、肝庇護療法(グリチルリチン製剤の静注、胆汁酸製剤の内服等)との併用療法に、本発明の抗DNAウィルス剤を用いることもできる。 Moreover, the antiviral agent of the present invention may be used in combination with other known antiviral agents. Examples of such known antiviral agents include known nucleoside analog preparations such as entecavir, 3TC (lamivudine), and adefovir, and interferon (IFN) when the target disease is HBV infection. In addition to antiviral therapy using such drugs, immunotherapy (corticosteroid hormone withdrawal therapy, oral propagelnium preparation, etc.), liver protection therapy (intravenous injection of glycyrrhizin preparation, oral administration of bile acid preparation, etc.) The anti-DNA virus agent of the present invention can also be used for combination therapy with.

本発明の抗DNAウィルス剤の好ましい投与形態としては特に制限はなく、経口投与又は非経口投与、より具体的には、静脈内投与、動脈内投与、腹腔内投与、皮下投与、皮内投与、気道内投与、直腸投与及び筋肉内投与、輸液による投与が挙げられる。 The preferred administration form of the anti-DNA virus agent of the present invention is not particularly limited, and is oral administration or parenteral administration, more specifically, intravenous administration, intraarterial administration, intraperitoneal administration, subcutaneous administration, intradermal administration, Examples include intra-airway administration, rectal administration and intramuscular administration, and administration by infusion.

本発明の抗DNAウィルス剤は、主にヒトを対象として使用することができるが、実験用動物等のヒト以外の動物も対象とすることができる。 The anti-DNA virus agent of the present invention can be used mainly for humans, but can also be used for non-human animals such as laboratory animals.

本発明の抗DNAウィルス剤を投与する場合、その投与量は、対象の年齢、体重、症状、健康状態、重篤状態、薬物に対する忍容性、投与形態等に応じて、適宜選択される。1日当たりの本発明の抗DNAウィルス剤の投与量は、有効成分であるヌクレオシド誘導体の量として、通常0.00001〜1000mg/kg体重、好ましくは0.0001〜100mg/kg体重であり、1回又は複数回に分けて対象に投与される。 本発明の抗DNAウィルス剤の製品又はその説明書は、ウィルス感染症を治療又は予防するために用いられる旨の表示を付したものであり得る。ここで「製品又は説明書に表示を付した」とは、製品の本体、容器、包装等に表示を付したこと、又は製品の情報を開示する説明書、添付文書、宣伝物、その他の印刷物等に表示を付したことを意味する。また、ウィルス感染症を治療するために用いられる旨の表示においては、本発明のヌクレオシド誘導体を投与することにより、ウィルスの逆転写酵素反応を阻害し、当該ウィルスの複製を抑制できることも本発明の抗ウィルス剤の作用機序に関する情報として含むことができる。 When the anti-DNA virus agent of the present invention is administered, the dose thereof is appropriately selected according to the age, body weight, symptom, health condition, serious condition, tolerability of the drug, administration form, etc. of the subject. The daily dose of the anti-DNA virus agent of the present invention is usually 0.00001 to 1000 mg / kg body weight, preferably 0.0001 to 100 mg / kg body weight as the amount of the nucleoside derivative as an active ingredient, and once. Alternatively, it is administered to the subject in multiple doses. The product of the anti-DNA virus agent of the present invention or a description thereof may be labeled to be used for treating or preventing a viral infection. Here, "marked on a product or instruction manual" means that a label is attached to the main body, container, packaging, etc. of the product, or an instruction manual, package insert, promotional material, or other printed matter that discloses product information. It means that the display is attached to. In addition, in the indication that it is used for treating a viral infection, it is also possible to inhibit the reverse transcriptase reaction of the virus and suppress the replication of the virus by administering the nucleoside derivative of the present invention. It can be included as information on the mechanism of action of antiviral agents.

このように本発明は、本発明の抗DNAウィルス剤を対象に投与することによって、感染症を予防又は治療することができる。したがって、本発明は、本発明のヌクレオシド誘導体を投与することを特徴とする、DNAウィルス感染症を予防又は治療するための方法をも提供するものである。 As described above, the present invention can prevent or treat an infectious disease by administering the anti-DNA virus agent of the present invention to a subject. Therefore, the present invention also provides a method for preventing or treating a DNA virus infection, which comprises administering the nucleoside derivative of the present invention.

本発明のヌクレオシド誘導体を投与する対象としては特に制限はなく、例えば、HBV等のウィルス感染症患者、感染症が発症する前のウィルス保有者、感染する前の者が挙げられる。 The subject to which the nucleoside derivative of the present invention is administered is not particularly limited, and examples thereof include patients with a virus infection such as HBV, virus carriers before the onset of the infection, and those before the infection.

抗DNAウィルス活性を有するヌクレオシド誘導体を得るために、下記表1に示す組み合わせにて官能基を有する下記一般式(1)で表されるヌクレオシド誘導体を、以下に示す方法にて合成した。なお、表中の番号は、以下に示す化合物の番号を示す。 In order to obtain a nucleoside derivative having anti-DNA virus activity, a nucleoside derivative represented by the following general formula (1) having a functional group in the combination shown in Table 1 below was synthesized by the method shown below. The numbers in the table indicate the numbers of the compounds shown below.

さらに、このようにして合成された化合物が、所望の構造を有する化合物であることは、H核磁気共鳴(NMR)スペクトルを測定することにより確認した。それらの結果も併せて以下に示す。 Furthermore, the compounds were thus synthesized is a it is a compound having the desired structure was confirmed by measuring the 1 H nuclear magnetic resonance (NMR) spectra. The results are also shown below.

合成例1:2−アミノ−2’−デオキシ−4’−フルオロメチルアデノシンの合成
2−アミノ−2’−デオキシ−4’−フルオロメチルアデノシン(化合物5)を合成すべく、先ず、下記化合物2(2’−O−Acetyl−2−amino−3’,5’−di−O−benzyl−4’−fluoromethyladenosine)を、以下の通りにして合成した。
Synthesis Example 1: Synthesis of 2-amino-2'-deoxy-4'-fluoromethyladenosine In order to synthesize 2-amino-2'-deoxy-4'-fluoromethyladenosine (Compound 5), first, the following compound 2 (2'-O-Acetyl-2-amino-3', 5'-di-O-benzyl-4'-fluoromethyladenosine) was synthesized as follows.

すなわち、化合物1(Tetrahedron,Vol.53,No.39,pp.13315−13322(1997) 参照)(5.78g、12.9mmol)、2,6−ジアミノプリン(3.87g、25.8mmol)、ビス(トリメチルシリル)アセトアミド(37.8mL、0.155mol)に1,2−ジクロロエタン(104mL)を加え、1時間加熱還流した。反応液を0℃に冷却した後、トリフルオロメタンスルホン酸トリメチルシリル(4.66mL、25.8mmol)を加え、8時間加熱還流した。反応液を0℃に冷却後、飽和炭酸水素ナトリウム水溶液を加え撹拌し、生じた不溶物をセライト濾過により除去後、濾液有機層を硫酸マグネシウム上で乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)により精製し、化合物2を得た(5.15g、9.60mmol、74.4%)。
H−NMR(CDCN):δ7.65(1H,s,H−8),7.24−7.08(10H,m,aromatic),6.02(1H,d,H−1’),5.98(1H,t,H−2’),5.70(2H,br.s,NH),4.95(2H,br.s,NH),4.82(1H,d,H−3’),4.71(1H,dd,4’−CHF),4.61(1H,dd,4’−CHF),4.62(1H,d,Ph−CH),4.59(2H,d,Ph−CH),4.56(1H,d,Ph−CH),4.53(1H,d,Ph−CH),3.70(2H,m,H−5’),2.01(3H,s,Ac)。
That is, compound 1 (see Tetrahedron, Vol. 53, No. 39, pp. 13315-13322 (1997)) (5.78 g, 12.9 mmol), 2,6-diaminopurine (3.87 g, 25.8 mmol). , 1,2-Dichloroethane (104 mL) was added to bis (trimethylsilyl) acetamide (37.8 mL, 0.155 mol), and the mixture was heated under reflux for 1 hour. The reaction mixture was cooled to 0 ° C., trimethylsilyl trifluoromethanesulfonate (4.66 mL, 25.8 mmol) was added, and the mixture was heated under reflux for 8 hours. The reaction mixture was cooled to 0 ° C., a saturated aqueous sodium hydrogen carbonate solution was added and stirred, and the resulting insoluble matter was removed by filtration through Celite, and the filtrate organic layer was dried over magnesium sulfate and concentrated. The residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1) to give compound 2 (5.15 g, 9.60 mmol, 74.4%).
1 1 H-NMR (CD 3 CN): δ7.65 (1H, s, H-8), 7.24-7.08 (10H, m, aromatic), 6.02 (1H, d, H-1' ), 5.98 (1H, t, H-2'), 5.70 (2H, br.s, NH 2 ), 4.95 (2H, br.s, NH 2 ), 4.82 (1H, d, H-3'), 4.71 (1H, dd, 4'-CH a F), 4.61 (1H, dd, 4'-CH b F), 4.62 (1H, d, Ph- CH a ), 4.59 (2H, d, Ph-CH b ), 4.56 (1H, d, Ph-CH c ), 4.53 (1H, d, Ph-CH d ), 3.70 ( 2H, m, H-5'), 2.01 (3H, s, Ac).

次に、前記の通りにして得られた化合物2を用い、下記の通りに化合物3(2−Amino−3’,5’−di−O−benzyl−4’−fluoromethyladenosine)を合成した。 Next, using the compound 2 obtained as described above, compound 3 (2-Amino-3', 5'-di-O-benzyl-4'-fluoromethyladenenocine) was synthesized as follows.

すなわち、化合物2(5.15g、9.60mmol)をメタノール(100mL)に溶解し、1M 水酸化ナトリウム水溶液(20mL、20mmol)を加え、室温で2時間撹拌した。反応液を酢酸で中和した後、濃縮し、残渣を酢酸エチルに溶解、水洗した。有機層を硫酸マグネシウム上乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1〜10:1)により精製し、化合物3を得た(4.70g、9.50mmol、99.0%)。
H−NMR(DMSO−d):δ7.84(1H,s,H−8),7.38−7.28(10H,m,aromatic),6.72(2H,br.s,NH),5.86(1H,d,H−1’),5.81(2H,br.s,NH),5.74(1H,d,2’−OH),5.01(1H,dd,H−2’),4.89(1H,d,Ph−CH),4.68−4.53(5H,m,Ph−CH,4’−CHF),4.28(1H,d,H−3’),3.68(1H,dd,H−5’),3.64(1H,dd,H−5’)。
That is, compound 2 (5.15 g, 9.60 mmol) was dissolved in methanol (100 mL), a 1 M aqueous sodium hydroxide solution (20 mL, 20 mmol) was added, and the mixture was stirred at room temperature for 2 hours. The reaction mixture was neutralized with acetic acid, concentrated, and the residue was dissolved in ethyl acetate and washed with water. The organic layer was dried over magnesium sulfate and concentrated. The residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1-10: 1) to give compound 3 (4.70 g, 9.50 mmol, 99.0%).
1 1 H-NMR (DMSO-d 6 ): δ7.84 (1H, s, H-8), 7.38-7.28 (10H, m, aromatic), 6.72 (2H, br.s, NH) 2 ), 5.86 (1H, d, H-1'), 5.81 (2H, br.s, NH 2 ), 5.74 (1H, d, 2'-OH), 5.01 (1H) , Dd, H-2'), 4.89 (1H, d, Ph-CH a ), 4.68-4.53 (5H, m, Ph-CH, 4'-CH 2 F), 4.28 (1H, d, H-3 '), 3.68 (1H, dd, H-5' a), 3.64 (1H, dd, H-5 'b).

次に、前記の通りにして得られた化合物3を用い、下記の通りに化合物4(2−Amino−3’,5’−di−O−benzyl−2’−deoxy−4’−fluoromethyladenosine)を合成した。 Next, using the compound 3 obtained as described above, compound 4 (2-Amino-3', 5'-di-O-benzyl-2'-deoxy-4'-fluoromethyladenocine) was added as follows. Synthesized.

すなわち、化合物3(4.70g、9.50mmol)、4−ジメチルアミノピリジン(1.74g、14.2mmol)をアセトニトリル(38.0mL)に溶解し、0℃にてクロロチオノギ酸フェニル(1.54mL、11.4mmol)を加え、2時間撹拌した。メタノール(2mL)を加え撹拌した後、反応液を酢酸エチルで希釈、洗浄(飽和食塩水→0.1M塩酸→飽和食塩水→飽和炭酸水素ナトリウム水溶液)した。有機層を硫酸マグネシウム上で乾燥後、濃縮し、残渣をトルエンで共沸し、粗製のチオ炭酸エステルを得た。 That is, compound 3 (4.70 g, 9.50 mmol) and 4-dimethylaminopyridine (1.74 g, 14.2 mmol) were dissolved in acetonitrile (38.0 mL) and phenyl chlorothionostate (1.54 mL) at 0 ° C. 11.4 mmol) was added, and the mixture was stirred for 2 hours. After adding methanol (2 mL) and stirring, the reaction solution was diluted with ethyl acetate and washed (saturated saline solution → 0.1 M hydrochloric acid → saturated saline solution → saturated aqueous sodium hydrogen carbonate solution). The organic layer was dried over magnesium sulfate, concentrated, and the residue was azeotropically boiled with toluene to obtain a crude thiocarbonate ester.

粗製のチオ炭酸エステル、水素化トリブチルスズ(10.2mL、37.9mmol)をトルエン(95.0mL)に溶解後、85℃に加熱し、アゾビス(イソブチロニトリル)(20mg)を加え、2時間撹拌した。反応液を濃縮後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)により精製し、化合物4を得た(3.23g、6.75mmol、71.1%)。
H−NMR(DMSO−d):δ7.87(1H,s,H−8),7.37−7.26(10H,m,aromatic),6.71(2H,br.s,NH),6.23(1H,d,H−1’),5.80(2H,br.s,NH),4.70−4.50(7H,m,4’−CHF,Ph−CH&H−3’),3.64(2H,dd,H−5’),3.60(2H,dd,H−5’),2.91(1H,m,H−2’),2.59(1H,m,H−2’)。
Crude thiocarbonate ester, tributyltin hydride (10.2 mL, 37.9 mmol) is dissolved in toluene (95.0 mL), heated to 85 ° C., azobis (isobutyronitrile) (20 mg) is added, and 2 hours. Stirred. After concentrating the reaction solution, the residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1) to obtain Compound 4 (3.23 g, 6.75 mmol, 71.1%).
1 1 H-NMR (DMSO-d 6 ): δ7.87 (1H, s, H-8), 7.37-7.26 (10H, m, aromatic), 6.71 (2H, br.s, NH) 2 ), 6.23 (1H, d, H-1'), 5.80 (2H, br.s, NH 2 ), 4.70-4.50 (7H, m, 4'-CH 2 F, Ph-CH 2 & H-3 '), 3.64 (2H, dd, H-5' a), 3.60 (2H, dd, H-5 'b), 2.91 (1H, m, H- 2 'a), 2.59 (1H , m, H-2' b).

次に、前記の通りにして得られた化合物4を用い、下記の通りに化合物5(2−Amino−2’−deoxy−4’−fluoromethyladenosine)を合成した。 Next, using the compound 4 obtained as described above, compound 5 (2-Amino-2'-deoxy-4'-fluoromethyladenocine) was synthesized as follows.

すなわち、ナフタレン(9.08g、70.8mmol)を脱水テトラヒドロフラン(76.1mL)に溶解し、金属リチウム(369mg、53.2mmol)を加え、室温で3時間撹拌した。溶液を−78℃に冷却後、化合物4(2.12g、4.33mmol)の脱水テトラヒドロフラン溶液(35.6mL)を加え、−45℃で2時間撹拌した。メタノール(5mL)を加えた後、反応液を酢酸エチルで希釈し、脱イオン水で抽出した。水層を合わせ少量にまで濃縮した後、ODSカラムクロマトグラフィー(脱イオン水〜5%メタノール)により精製し、真空乾燥の後、化合物5を得た(0.90g、3.0mmol、68%)。
H−NMR(DMSO−d):δ7.91(1H,s,H−8),6.70(2H,br.s,NH),6.24(1H,dd,H−1’),5.72(2H,br.s,NH),5.36−5.35(2H,m,3’−OH&5’−OH),4.60(1H,dd,4’−CHF),4.50(1H,dd,4’−CHF),4.51(1H,m,H−3’),3.54(1H,br.s,H−5’),3.53(1H,br.s,H−5’),2.81(1H,m,H−2’),2.22(1H,m,H−2’)。
That is, naphthalene (9.08 g, 70.8 mmol) was dissolved in dehydrated tetrahydrofuran (76.1 mL), metallic lithium (369 mg, 53.2 mmol) was added, and the mixture was stirred at room temperature for 3 hours. After cooling the solution to −78 ° C., a dehydrated tetrahydrofuran solution (35.6 mL) of compound 4 (2.12 g, 4.33 mmol) was added, and the mixture was stirred at −45 ° C. for 2 hours. After adding methanol (5 mL), the reaction mixture was diluted with ethyl acetate and extracted with deionized water. The aqueous layers were combined and concentrated to a small amount, then purified by ODS column chromatography (deionized water to 5% methanol), vacuum dried to give compound 5 (0.90 g, 3.0 mmol, 68%). ..
1 1 H-NMR (DMSO-d 6 ): δ7.91 (1H, s, H-8), 6.70 (2H, br.s, NH 2 ), 6.24 (1H, dd, H-1' ), 5.72 (2H, br.s, NH 2 ), 5.36-5.35 (2H, m, 3'-OH &5'-OH), 4.60 (1H, dd, 4'-CH a F), 4.50 (1H, dd , 4'-CH b F), 4.51 (1H, m, H-3 '), 3.54 (1H, br.s, H-5' a), 3.53 (1H, br.s, H- 5 'b), 2.81 (1H, m, H-2' a), 2.22 (1H, m, H-2 'b).

合成例2:6、4’−フルオロメチル−2’−デオキシグアノシンの合成
合成例1にて得られた化合物5を用い、下記の通り6、4’−フルオロメチル−2’−デオキシグアノシン(化合物6)を合成した。
Synthesis Example 2: Synthesis of 4'-fluoromethyl-2'-deoxyguanosine Using the compound 5 obtained in Synthesis Example 1, 6, 4'-fluoromethyl-2'-deoxyguanosine (Compound) as described below. 6) was synthesized.

すなわち、化合物5(500mg、1.68mmol)を50mMトリス塩酸緩衝液(pH7.5)(45.0mL)に溶解し、子牛脾臓由来アデノシンデアミナーゼ(50uL、6.5units)を加え、40℃で2時間撹拌した。5℃で終夜静置し、析出した化合物5を濾取、乾燥した(409mg)。更に濾液を少量にまで濃縮後、ODSカラムクロマトグラフィー(ODS 50cc、0〜5% MeOH)により精製(44mg)した。先に得られたものと合わせ、化合物6を得た(453mg、1.51mmol、89.9%)。
H−NMR(DMSO−d):δ10.58(1H,br.s,NH),7.91(1H,s,H−8),6.42(2H,br.s,NH),6.19(1H,dd,H−1’),5.37(1H,3’−OH),5.09(1H,t,5’−OH),4.59(1H,dd,4’−CHF),4.49(1H,dd,4’−CHF),4.49(1H,m,H−3’),3.50(2H,m,H−5’),2.71(1H,m,H−2’),2.25(1H,m,H−2’)。
That is, compound 5 (500 mg, 1.68 mmol) was dissolved in 50 mM Tris-hydrochloric acid buffer (pH 7.5) (45.0 mL), calf spleen-derived adenosine deaminase (50 uL, 6.5 units) was added, and the temperature was 40 ° C. The mixture was stirred for 2 hours. The mixture was allowed to stand at 5 ° C. overnight, and the precipitated compound 5 was collected by filtration and dried (409 mg). Further, the filtrate was concentrated to a small amount and purified (44 mg) by ODS column chromatography (ODS 50 cc, 0 to 5% MeOH). Combined with those previously obtained, compound 6 was obtained (453 mg, 1.51 mmol, 89.9%).
1 1 H-NMR (DMSO-d 6 ): δ10.58 (1H, br.s, NH), 7.91 (1H, s, H-8), 6.42 (2H, br.s, NH 2 ) , 6.19 (1H, dd, H-1'), 5.37 (1H, 3'-OH), 5.09 (1H, t, 5'-OH), 4.59 (1H, dd, 4) '-CH a F), 4.49 (1H, dd, 4'-CH b F), 4.49 (1H, m, H-3'), 3.50 (2H, m, H-5') , 2.71 (1H, m, H -2 'a), 2.25 (1H, m, H-2' b).

合成例3:2−アミノ−2’−デオキシ−4’−フルオロメチル−N −メチルアデノシンの合成
2−アミノ−2’−デオキシ−4’−フルオロメチル−N−メチルアデノシン(化合物8)を合成すべく、先ず、下記化合物7(3’,5’−Di−O−Acetyl−4’−fluoromethyl−2’−deoxyguanosine)を、以下の通りにして合成した。
Synthesis Example 3: Synthesis of 2-amino-2'-deoxy-4'-fluoromethyl-N 6 -methyladenosine 2-amino-2'-deoxy-4'-fluoromethyl-N 6 -methyladenosine (Compound 8) First, the following compound 7 (3', 5'-Di-O-Acetyl-4'-fluoromethyl-2'-deoxyguanosine) was synthesized as follows.

すなわち、合成例2にて得られた化合物6(409mg、1.37mmol)をアセトニトリル(13.7mL)に懸濁し、無水酢酸(285uL、3.0mmol)、トリエチルアミン(629uL、4.51mmol)、4−ジメチルアミノピリジン10mg(82umol)を加え、室温で4時間撹拌した。反応液にメタノール(0.5mL)を加え撹拌の後、濃縮した。残渣に脱イオン水を加え、析出した化合物7を濾取、乾燥した(397mg)。更に濾液を少量にまで濃縮後、ODSカラムクロマトグラフィー(ODS 50cc、0〜20%〜30% MeOH)により精製(80mg)した。先に得られたものと合わせ、化合物7を得た(477mg、1.24mmol、90.5%)。
H−NMR(DMSO−d):δ10.60(1H,s,NH),7.89(1H,s,H−8),6.42(2H,br.s,NH),6.19(1H,t,H−1’),5.59(1H,dd,H−3’),4.59(1H,dd,4’−CHF),4.50(1H,dd,4’−CHF),4.26(1H,dd,H−5’),4.16(1H,dd,H−5’),3.02(1H,m,H−2’),2.48(1H,m,H−2’),2.07(3H,s,Ac),2.00(3H,s,Ac)。
That is, compound 6 (409 mg, 1.37 mmol) obtained in Synthesis Example 2 was suspended in acetonitrile (13.7 mL), acetic anhydride (285 uL, 3.0 mmol), triethylamine (629 uL, 4.51 mmol), 4 -Dimethylaminopyridine 10 mg (82 umol) was added, and the mixture was stirred at room temperature for 4 hours. Methanol (0.5 mL) was added to the reaction mixture, and the mixture was stirred and concentrated. Deionized water was added to the residue, and the precipitated compound 7 was collected by filtration and dried (397 mg). The filtrate was further concentrated to a small amount and then purified (80 mg) by ODS column chromatography (ODS 50 cc, 0 to 20% to 30% MeOH). Combined with those previously obtained, compound 7 was obtained (477 mg, 1.24 mmol, 90.5%).
1 1 H-NMR (DMSO-d 6 ): δ10.60 (1H, s, NH), 7.89 (1H, s, H-8), 6.42 (2H, br.s, NH 2 ), 6 .19 (1H, t, H-1'), 5.59 (1H, dd, H-3'), 4.59 (1H, dd, 4'-CH a F), 4.50 (1H, dd) , 4'-CH b F), 4.26 (1H, dd, H-5 'a), 4.16 (1H, dd, H-5' b), 3.02 (1H, m, H-2 'a), 2.48 (1H, m, H-2' b), 2.07 (3H, s, Ac), 2.00 (3H, s, Ac).

次に、前記の通りにして得られた化合物7を用い、下記の通りに化合物8(2−Amino−2’−deoxy−4’−fluoromethyl−N−methyladenosine)を合成した。 Next, using the compound 7 obtained as described above, compound 8 (2-Amino-2'-deoxy-4'-fluoromethyl-N 6- methyladenocine) was synthesized as follows.

すなわち、化合物7(0.26g、0.68mmol)をジクロロメタン(6.8mL)に懸濁し、塩化2,4,6−トリイソプロピルベンゼンスルホニル(618mg、2.04mmol)、トリエチルアミン(569uL、4.08mmol)、4−ジメチルアミノピリジン(70mg、0.57mmol)を加え、室温で25時間撹拌した。反応液を酢酸エチルで希釈し、飽和塩化ナトリウム水溶液で洗浄後、硫酸マグネシウム上で乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)により精製し、スルホニルエステルを得た(0.38g、0.58mmol、85%)。 That is, compound 7 (0.26 g, 0.68 mmol) was suspended in dichloromethane (6.8 mL), and 2,4,6-triisopropylbenzenesulfonyl chloride (618 mg, 2.04 mmol) and triethylamine (569 uL, 4.08 mmol). ), 4-Dimethylaminopyridine (70 mg, 0.57 mmol) was added, and the mixture was stirred at room temperature for 25 hours. The reaction mixture was diluted with ethyl acetate, washed with saturated aqueous sodium chloride solution, dried over magnesium sulfate, and concentrated. The residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1) to give a sulfonyl ester (0.38 g, 0.58 mmol, 85%).

得られたスルホニルエステル(0.38g、0.58mmol)を40%メチルアミンメタノール溶液(20mL)に溶解し、室温で17時間撹拌した。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=10:1)により精製後、残渣を脱イオン水に溶解した。凍結乾燥後、化合物8を得た(94mg、0.30mmol、52%)。
H−NMR(DMSO−d):δ7.87(1H,s,H−8),7.20(1H,s,NH),6.25(1H,dd,H−1’),5.76(2H,br.s,NH),5.37(1H,t,5’−OH),5.34(1H,d,3’−OH),4.60(1H,dd,4’−CHF),4.50(1H,dd,4’−CHF),4.50(1H,m,H−3’),3.53(1H,br.s,H−5’),3.52(1H,br.s,H−5’),2.88(3H,br.s,Me),2.80(1H,m,H−2’),2.22(1H,m,H−2’)。
The obtained sulfonyl ester (0.38 g, 0.58 mmol) was dissolved in a 40% methylamine methanol solution (20 mL), and the mixture was stirred at room temperature for 17 hours. The reaction mixture was concentrated, the residue was purified by silica gel column chromatography (chloroform: methanol = 10: 1), and the residue was dissolved in deionized water. After lyophilization, compound 8 was obtained (94 mg, 0.30 mmol, 52%).
1 1 H-NMR (DMSO-d 6 ): δ7.87 (1H, s, H-8), 7.20 (1H, s, NH), 6.25 (1H, dd, H-1'), 5 .76 (2H, br.s, NH 2 ), 5.37 (1H, t, 5'-OH), 5.34 (1H, d, 3'-OH), 4.60 (1H, dd, 4) '-CH a F), 4.50 (1H, dd, 4'-CH b F), 4.50 (1H, m, H-3'), 3.53 (1H, br.s, H-5) 'a), 3.52 (1H, br.s, H-5' b), 2.88 (3H, br.s, Me), 2.80 (1H, m, H-2 'a), 2 .22 (1H, m, H- 2 'b).

合成例4:2−アミノ−N −シクロプロピル−2’−デオキシ−4’−フルオロメチルアデノシンの合成
2−アミノ−N−シクロプロピル−2’−デオキシ−4’−フルオロメチルアデノシン(化合物9)を、以下の通りにして合成した。
Synthesis Example 4: Synthesis of 2-amino-N 6 -cyclopropyl-2'-deoxy-4'-fluoromethyladenosine 2-amino-N 6 -cyclopropyl-2'-deoxy-4'-fluoromethyladenosine (compound) 9) was synthesized as follows.

すなわち、合成例3にて得られた化合物7(150mg、0.391mmol)をジクロロメタン(3.9mL)に懸濁し、塩化2,4,6−トリイソプロピルベンゼンスルホニル(357mg、1.18mmol)、トリエチルアミン(329uL、2.36mmol)、4−ジメチルアミノピリジン(40mg、0.32mmol)を加え、室温で17時間撹拌した。反応液を酢酸エチルで希釈し、飽和塩化ナトリウム水溶液で洗浄後、硫酸マグネシウム上で乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)により精製し、スルホニルエステルを得た(240mg、0.369mmol、94.4%)。 That is, compound 7 (150 mg, 0.391 mmol) obtained in Synthesis Example 3 was suspended in dichloromethane (3.9 mL), and 2,4,6-triisopropylbenzenesulfonyl chloride (357 mg, 1.18 mmol) and triethylamine. (329 uL, 2.36 mmol) and 4-dimethylaminopyridine (40 mg, 0.32 mmol) were added, and the mixture was stirred at room temperature for 17 hours. The reaction mixture was diluted with ethyl acetate, washed with saturated aqueous sodium chloride solution, dried over magnesium sulfate, and concentrated. The residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1) to give a sulfonyl ester (240 mg, 0.369 mmol, 94.4%).

得られたスルホニルエステル(240mg、0.369mmol)をシクロプロピルアミン(1.5mL)、メタノール(2.2mL)に溶解し、室温で24時間撹拌した。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=20:1)により精製後、残渣を脱イオン水に溶解した。凍結乾燥後、化合物9を得た(115mg、0.340mmol、92.1%)。
H−NMR(DMSO−d):7.89(1H,s,H−8),7.33(1H,s,NH),6.25(1H,dd,H−1’),5.77(2H,br.s,NH),5.36−5.35(2H,m,5’−OH&3’−OH),4.59(1H,dd,4’−CHF),4.50(1H,dd,4’−CHF),4.50(1H,m,H−3’),3.53(1H,br.s,H−5’),3.52(1H,br.s,H−5’),3.02(1H,br.s,cyclopropyl),2.79(1H,m,H−2’),2.22(1H,m,H−2’),0.62(4H,m,cyclopropyl)。
The obtained sulfonyl ester (240 mg, 0.369 mmol) was dissolved in cyclopropylamine (1.5 mL) and methanol (2.2 mL), and the mixture was stirred at room temperature for 24 hours. The reaction mixture was concentrated, the residue was purified by silica gel column chromatography (chloroform: methanol = 20: 1), and the residue was dissolved in deionized water. After lyophilization, compound 9 was obtained (115 mg, 0.340 mmol, 92.1%).
1 1 H-NMR (DMSO-d 6 ): 7.89 (1H, s, H-8), 7.33 (1H, s, NH), 6.25 (1H, dd, H-1'), 5 .77 (2H, br.s, NH 2 ), 5.36-5.35 (2H, m, 5'-OH &3'-OH), 4.59 (1H, dd, 4'-CH a F), 4.50 (1H, dd, 4'- CH b F), 4.50 (1H, m, H-3 '), 3.53 (1H, br.s, H-5' a), 3.52 (1H, br.s, H-5 'b), 3.02 (1H, br.s, cyclopropyl), 2.79 (1H, m, H-2' a), 2.22 (1H, m, H-2 'b), 0.62 (4H, m, cyclopropyl).

合成例5:4’−フルオロメチル−2’−デオキシ−O −メチルグアノシンの合成
4’−フルオロメチル−2’−デオキシ−O−メチルグアノシン(化合物10)を、以下の通りにして合成した。
Synthesis Example 5: Synthesis of 4'-fluoromethyl-2'-deoxy-O 6 -methylguanosine 4'-fluoromethyl-2'-deoxy-O 6 -methylguanosine (Compound 10) is synthesized as follows. did.

すなわち、合成例3にて得られた化合物7(100mg、0.261mmol)をジクロロメタン(2.6mL)に懸濁し、塩化2,4,6−トリイソプロピルベンゼンスルホニル(238mg、0.786mmol)、トリエチルアミン(219uL、1.57mmol)、4−ジメチルアミノピリジン(27mg、0.22mmol)を加え、室温で24時間撹拌した。反応液を酢酸エチルで希釈し、飽和塩化ナトリウム水溶液で洗浄後、硫酸マグネシウム上で乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)により精製し、スルホニルエステルを得た(168mg、0.258mmol、98.9%)。 That is, compound 7 (100 mg, 0.261 mmol) obtained in Synthesis Example 3 was suspended in dichloromethane (2.6 mL), and 2,4,6-triisopropylbenzenesulfonyl chloride (238 mg, 0.786 mmol) and triethylamine. (219 uL, 1.57 mmol) and 4-dimethylaminopyridine (27 mg, 0.22 mmol) were added, and the mixture was stirred at room temperature for 24 hours. The reaction mixture was diluted with ethyl acetate, washed with saturated aqueous sodium chloride solution, dried over magnesium sulfate, and concentrated. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1: 1) to give a sulfonyl ester (168 mg, 0.258 mmol, 98.9%).

得られたスルホニルエステル(168mg、0.258mmol)を脱水ジオキサン(5.6mL)に溶解し、モレキュラーシーブス4A(282mg)、1,4−ジアザビシクロ[2.2.2]オクタン(58mg、0.52mmol)を加え、室温で30分間撹拌した。1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン(96uL、0.64mmol)、脱水メタノール(105uL、2.59mmol)を加え、室温で24時間撹拌した。不溶物をろ過により除去後、濾液を濃縮した。残渣をメタノール(10.0mL)に溶解し、28%アンモニア水(5.0mL)を加え、室温で24時間撹拌した。残渣をジオキサンと共沸後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=20:1)により精製した。凍結乾燥後、化合物10を得た(59mg、0.19mmol、74%)。
H−NMR(DMSO−d):8.05(1H,s,H−8),6.37(1H,s,NH),6.29(1H, dd, H−1’),5.36(1H,d,3’−OH),5.12(1H,t,5’−OH),4.59(1H,dd,4’−CHF),4.51(1H,m,H−3’),4.49(1H,dd,4’−CHF),3.96(3H,s,OMe),3.52(1H,br.s,H−5’),3.51(1H,br.s,H−5’),2.78(1H,m,H−2’),2.26(1H,m,H−2’)。
The resulting sulfonyl ester (168 mg, 0.258 mmol) was dissolved in dehydrated dioxane (5.6 mL), molecular sieves 4A (282 mg), 1,4-diazabicyclo [2.2.2] octane (58 mg, 0.52 mmol). ) Was added, and the mixture was stirred at room temperature for 30 minutes. 1,8-Diazabicyclo [5.4.0] undec-7-ene (96uL, 0.64 mmol) and dehydrated methanol (105 uL, 2.59 mmol) were added, and the mixture was stirred at room temperature for 24 hours. After removing the insoluble matter by filtration, the filtrate was concentrated. The residue was dissolved in methanol (10.0 mL), 28% aqueous ammonia (5.0 mL) was added, and the mixture was stirred at room temperature for 24 hours. The residue was azeotroped with dioxane, and the residue was purified by silica gel column chromatography (chloroform: methanol = 20: 1). After lyophilization, compound 10 was obtained (59 mg, 0.19 mmol, 74%).
1 1 H-NMR (DMSO-d 6 ): 8.05 (1H, s, H-8), 6.37 (1H, s, NH), 6.29 (1H, dd, H-1'), 5 .36 (1H, d, 3'-OH), 5.12 (1H, t, 5'-OH), 4.59 (1H, dd, 4'-CH a F), 4.51 (1H, m) , H-3 '), 4.49 (1H, dd, 4'-CH b F), 3.96 (3H, s, OMe), 3.52 (1H, br.s, H-5' a) , 3.51 (1H, br.s, H -5 'b), 2.78 (1H, m, H-2' a), 2.26 (1H, m, H-2 'b).

合成例6:2’−デオキシ−2−フルオロ−4’−フルオロメチルアデノシンの合成
2’−デオキシ−2−フルオロ−4’−フルオロメチルアデノシン(化合物12)を合成すべく、先ず、下記化合物11(3’,5’−Di−O−acetyl−2−amino−2’−deoxy−4’−fluoromethyladenosine)を、以下の通りにして合成した。
Synthesis Example 6: Synthesis of 2'-deoxy-2-fluoro-4'-fluoromethyladenosine In order to synthesize 2'-deoxy-2-fluoro-4'-fluoromethyladenosine (Compound 12), first, the following compound 11 (3', 5'-Di-O-acetyl-2-amino-2'-deoxy-4'-fluoromethyladenocine) was synthesized as follows.

すなわち、合成例1にて得られた化合物5(143mg、0.479mmol)を脱水アセトニトリル(2.4mL)に懸濁し、無水酢酸(136uL、1.44mmol)、トリエチルアミン(401uL、2.88mmol)、4−ジメチルアミノピリジン少量を加え、室温で25時間撹拌した。反応液を酢酸エチルで希釈し、水洗後、硫酸マグネシウム上で乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1〜25:1)により精製し、化合物11を得た(0.15g、0.39mmol、81%)。
H−NMR(CDCl):7.61(1H,s,H−8),6.27(1H,t,H−1’),5.81(1H,dd,H−3’),5.35(2H,br.s,NH),4.82(2H,br.s,NH),4.68(1H,dd,H−5’),4.64(1H,dd,4’−CHF),4.55(1H,dd,4’−CHF),4.32(1H,dd,H−5’),3.27(1H,m,H−2’),2.55(1H,m,H−2’),2.15(3H,s,Ac),2.07(3H,s,Ac)。
That is, compound 5 (143 mg, 0.479 mmol) obtained in Synthesis Example 1 was suspended in dehydrated acetonitrile (2.4 mL), acetic anhydride (136 uL, 1.44 mmol), triethylamine (401 uL, 2.88 mmol), and the like. A small amount of 4-dimethylaminopyridine was added, and the mixture was stirred at room temperature for 25 hours. The reaction mixture was diluted with ethyl acetate, washed with water, dried over magnesium sulfate, and concentrated. The residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1-25: 1) to give compound 11 (0.15 g, 0.39 mmol, 81%).
1 1 H-NMR (CDCl 3 ): 7.61 (1H, s, H-8), 6.27 (1H, t, H-1'), 5.81 (1H, dd, H-3'), 5.35 (2H, br.s, NH 2 ), 4.82 (2H, br.s, NH 2), 4.68 (1H, dd, H-5 'a), 4.64 (1H, dd , 4'-CH a F), 4.55 (1H, dd, 4'-CH b F), 4.32 (1H, dd, H-5 'b), 3.27 (1H, m, H- 2 'a), 2.55 (1H , m, H-2' b), 2.15 (3H, s, Ac), 2.07 (3H, s, Ac).

次に、前記の通りにして得られた化合物11を用い、下記の通りに、化合物12(2’−Deoxy−2−fluoro−4’−fluoromethyladenosine)を合成した。 Next, using the compound 11 obtained as described above, compound 12 (2'-Deoxy-2-fluoro-4'-fluoromethyladenosine) was synthesized as follows.

すなわち、化合物11(0.15g、0.39mmol)を脱水ピリジン(2mL)に溶解後、−30℃に冷却した。65%フッ化水素−ピリジン(2mL)、次いで脱水ピリジン(2mL)、亜硝酸tert−ブチル(0.23mL、1.9mmol)を加え、同温度で1時間撹拌した。65%フッ化水素−ピリジン(4mL)、亜硝酸tert−ブチル(0.46mL、3.9mmol)を追加後、更に2時間撹拌後、脱イオン水(20mL)を加えた。クロロホルムで2回抽出後、有機層を洗浄(飽和重曹水)、乾燥(無水硫酸マグネシウム)し、濃縮した。残渣をジオキサン(30mL)、28%アンモニア水(10mL)に溶解し、室温で15分間撹拌した。反応液を濃縮後、残渣をメタノール(30mL)、28%アンモニア水(10mL)に溶解し、室温で2時間撹拌した。残渣をODSカラムクロマトグラフィー(2〜4〜6〜8% メタノール)により精製し、得られた残渣を脱イオン水から結晶化して化合物12を得た(34mg、0.11mmol、28%)。
H−NMR(DMSO−d):8.31(1H,s,H−8),7.81(2H,br.s,NH),6.30(1H,dd,H−1’),5.43(1H,d,3’−OH),5.10(1H,t,5’−OH),4.62(1H,dd,CHF),4.56(1H,m,H−3’),4.56(1H,dd,CHF),3.54(2H,m,H−5’),2.87(1H,m,H−2’),2.32(1H,m,H−2’)。
That is, compound 11 (0.15 g, 0.39 mmol) was dissolved in dehydrated pyridine (2 mL) and then cooled to −30 ° C. 65% hydrogen fluoride-pyridine (2 mL), then dehydrated pyridine (2 mL) and tert-butyl nitrite (0.23 mL, 1.9 mmol) were added and stirred at the same temperature for 1 hour. After adding 65% hydrogen fluoride-pyridine (4 mL) and tert-butyl nitrite (0.46 mL, 3.9 mmol), the mixture was further stirred for 2 hours, and then deionized water (20 mL) was added. After extraction with chloroform twice, the organic layer was washed (saturated aqueous sodium hydrogen carbonate), dried (anhydrous magnesium sulfate), and concentrated. The residue was dissolved in dioxane (30 mL) and 28% aqueous ammonia (10 mL) and stirred at room temperature for 15 minutes. After concentrating the reaction solution, the residue was dissolved in methanol (30 mL) and 28% aqueous ammonia (10 mL), and the mixture was stirred at room temperature for 2 hours. The residue was purified by ODS column chromatography (2-4-6-8% methanol) and the resulting residue was crystallized from deionized water to give compound 12 (34 mg, 0.11 mmol, 28%).
1 1 H-NMR (DMSO-d 6 ): 8.31 (1H, s, H-8), 7.81 (2H, br. S, NH 2 ), 6.30 (1H, dd, H-1' ), 5.43 (1H, d, 3'-OH), 5.10 (1H, t, 5'-OH), 4.62 (1H, dd, CH a F), 4.56 (1H, m) , H-3 '), 4.56 (1H, dd, CH b F), 3.54 (2H, m, H-5'), 2.87 (1H, m, H-2 'a), 2 .32 (1H, m, H- 2 'b).

合成例7:2−クロロ−2’−デオキシ−4’−フルオロメチルアデノシンの合成
2−クロロ−2’−デオキシ−4’−フルオロメチルアデノシン(化合物13)を、以下の通りにして合成した。
Synthesis Example 7: Synthesis of 2-chloro-2'-deoxy-4'-fluoromethyladenosine 2-Chloro-2'-deoxy-4'-fluoromethyladenosine (Compound 13) was synthesized as follows.

すなわち、塩化アセチル(260uL、3.64mmol)を脱水ジクロロメタン(15.6mL)に溶解後、−5℃に冷却し、亜硝酸ベンジルトリエチルアンモニウム(774mg、3.25mmol)、次いで、合成例6にて得られた化合物11(0.25g、0.65mmol)の脱水ジクロロメタン溶液(6.5mL)を加え、同温度で3時間撹拌した。反応液に飽和重曹水を加え撹拌後、有機層を乾燥(無水硫酸マグネシウム)、濃縮した。残渣をメタノール(40mL)、ジオキサン(40mL)に溶解し、28%アンモニア水(30mL)を加え、室温で21時間撹拌した。反応液を濃縮後、残渣をODSカラムクロマトグラフィー(脱イオン水〜5〜10〜20%メタノール)により精製した。残渣を乾燥後、ジエチルエーテルに懸濁し、濾取、洗浄した。得られた固体を真空乾燥し、化合物13を得た(51mg、0.16mmol、25%)。
H−NMR(DMSO−d):8.34(1H,s,H−8),7.78(2H,br.s,NH),6.33(1H,dd,H−1’),5.42(1H,d,3’−OH),5.10(1H,t,5’−OH),4.62(1H,dd,CHF),4.57−4.49(2H,m,H−3’&CHF),3.55(1H,s,H−5’),3.54(1H,s,H−5’),2.85(1H,m,H−2’),2.34(1H,m,H−2’)。
That is, acetyl chloride (260 uL, 3.64 mmol) was dissolved in dehydrated dichloromethane (15.6 mL), cooled to −5 ° C., benzyltriethylammonium nitrite (774 mg, 3.25 mmol), and then in Synthesis Example 6. A dehydrated dichloromethane solution (6.5 mL) of the obtained compound 11 (0.25 g, 0.65 mmol) was added, and the mixture was stirred at the same temperature for 3 hours. Saturated aqueous sodium hydrogen carbonate was added to the reaction solution, and the mixture was stirred, and then the organic layer was dried (anhydrous magnesium sulfate) and concentrated. The residue was dissolved in methanol (40 mL) and dioxane (40 mL), 28% aqueous ammonia (30 mL) was added, and the mixture was stirred at room temperature for 21 hours. The reaction mixture was concentrated, and the residue was purified by ODS column chromatography (deionized water to 5 to 10 to 20% methanol). After drying, the residue was suspended in diethyl ether, collected by filtration, and washed. The obtained solid was vacuum dried to give compound 13 (51 mg, 0.16 mmol, 25%).
1 1 H-NMR (DMSO-d 6 ): 8.34 (1H, s, H-8), 7.78 (2H, br. S, NH 2 ), 6.33 (1H, dd, H-1' ), 5.42 (1H, d, 3'-OH), 5.10 (1H, t, 5'-OH), 4.62 (1H, dd, CH a F), 4.57-4.49 (2H, m, H-3 '& CH b F), 3.55 (1H, s, H-5' a), 3.54 (1H, s, H-5 'b), 2.85 (1H, m, H-2 'a) , 2.34 (1H, m, H-2' b).

合成例8:2−アミノ−2’−デオキシ−4’−メチルアデノシンの合成
2−アミノ−2’−デオキシ−4’−メチルアデノシン(化合物18)を合成すべく、先ず、下記化合物15(2’−O−Acetyl−2−amino−3’,5’−di−O−benzyl−4’−methyladenosine)を、以下の通りにして合成した。
Synthesis Example 8: Synthesis of 2-amino-2'-deoxy-4'-methyladenosine In order to synthesize 2-amino-2'-deoxy-4'-methyladenosine (compound 18), first, the following compound 15 (2) '-O-Acetyl-2-amino-3', 5'-di-O-benzyl-4'-methyladenosine) was synthesized as follows.

すなわち、化合物14(Biosci.Biotech.Biochem.57,1433(1993)参照)(5.01g、11.7mmol)、2,6−ジアミノプリン(3.51g、23.4mmol)、N,O−ビス(トリメチルシリル)アセトアミド(34.4mL、0.140mol)に脱水1,2−ジクロロエタン(94.4mL)を加え、85℃で1時間撹拌した。溶液を0℃に冷却後、トリフルオロメタンスルホン酸トリメチルシリル(4.23mL、23.4mmol)を加え、85℃で23時間撹拌した。反応液を0℃に冷却後、飽和重曹水を加え撹拌し、不溶の固体をセライトろ過により除去した。濾液有機層を乾燥(無水硫酸マグネシウム)、濃縮後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)により精製し、化合物15を得た(5.03g、9.70mmol、82.9%)。
H−NMR(CDCl):δ7.76(1H、s、H−8),7.35−7.29(10H,m,aromatic),6.10(1H,d,H−1’),5.83(1H,dd,H−2’),5.41(2H,br.s,NH),4.62(2H,br.s,NH),4.60(1H,d,PhCH),4.53(1H,d,H−3’),4.52(1H,d,PhCH),4.50(1H,d,PhCH),4.47(1H,d,PhCH),3.55(1H,d,H−5’),3.37(1H,d,H−5’),2.08(3H,s,Ac),1.34(3H,s,4’−Me)。
That is, compound 14 (see Bioscience. Biotech. Biochem. 57, 1433 (1993)) (5.01 g, 11.7 mmol), 2,6-diaminopurine (3.51 g, 23.4 mmol), N, O-bis. Dehydrated 1,2-dichloroethane (94.4 mL) was added to (trimethylsilyl) acetamide (34.4 mL, 0.140 mol), and the mixture was stirred at 85 ° C. for 1 hour. After cooling the solution to 0 ° C., trimethylsilyl trifluoromethanesulfonate (4.23 mL, 23.4 mmol) was added, and the mixture was stirred at 85 ° C. for 23 hours. The reaction mixture was cooled to 0 ° C., saturated aqueous sodium hydrogen carbonate was added, and the mixture was stirred, and insoluble solids were removed by filtration through Celite. The filtrate The organic layer was dried (anhydrous magnesium sulfate) and concentrated, and the residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1) to obtain Compound 15 (5.03 g, 9.70 mmol, 82.9). %).
1 1 H-NMR (CDCl 3 ): δ7.76 (1H, s, H-8), 7.35-7.29 (10H, m, aromatic), 6.10 (1H, d, H-1') , 5.83 (1H, dd, H-2'), 5.41 (2H, br.s, NH 2 ), 4.62 (2H, br. S, NH 2 ), 4.60 (1H, d) , PhCH a ), 4.53 (1H, d, H-3'), 4.52 (1H, d, PhCH b ), 4.50 (1H, d, PhCH c ), 4.47 (1H, d) , PhCH d), 3.55 (1H , d, H-5 'a), 3.37 (1H, d, H-5' b), 2.08 (3H, s, Ac), 1.34 ( 3H, s, 4'-Me).

次に、前記の通りにして得られた化合物15を用い、下記の通りに化合物16(2−Amino−3’,5’−di−O−benzyl−4’−methyladenosine)を合成した。 Next, using the compound 15 obtained as described above, compound 16 (2-Amino-3', 5'-di-O-benzyl-4'-methylaldehyde) was synthesized as follows.

すなわち、化合物15(5.03g、9.70mmol)をメタノール(48.5mL)に溶解し、2N 水酸化ナトリウム水溶液(9.70mL、19.4mmol)を加え、室温で1時間撹拌した。反応液を酢酸で中和後、濃縮し、残渣を酢酸エチルに溶解した。溶液を洗浄(飽和食塩水)、乾燥(無水硫酸マグネシウム)後、濃縮し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)により精製し、化合物16を得た(4.35g、9.13mmol、94.1%)。
H−NMR(CDCl):δ7.68(1H、s、H−8),7.35−7.24(10H,m,aromatic),5.91(1H,d,H−1’),5.83(2H,br.s,NH),4.96(2H,br.s,NH),4.79(1H,d,PhCH),4.74(1H,t,H−2’),4.66(1H,d,PhCH),4.52(1H,d,PhCH),4.47(1H,d,PhCH),4.23(1H,d,H−3’),3.50(1H,d,H−5’),3.37(1H,d,H−5’),2.51(1H,br.s,2’−OH),1.36(3H,s,4’−Me)。
That is, compound 15 (5.03 g, 9.70 mmol) was dissolved in methanol (48.5 mL), a 2N aqueous sodium hydroxide solution (9.70 mL, 19.4 mmol) was added, and the mixture was stirred at room temperature for 1 hour. The reaction mixture was neutralized with acetic acid, concentrated, and the residue was dissolved in ethyl acetate. The solution was washed (saturated saline), dried (anhydrous magnesium sulfate), concentrated, and the residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1) to obtain Compound 16 (4.35 g, 9). .13 mmol, 94.1%).
1 1 H-NMR (CDCl 3 ): δ7.68 (1H, s, H-8), 7.35-7.24 (10H, m, aromatic), 5.91 (1H, d, H-1') , 5.83 (2H, br.s, NH 2 ), 4.96 (2H, br.s, NH 2 ), 4.79 (1H, d, PhCH a ), 4.74 (1H, t, H) -2'), 4.66 (1H, d, PhCH b ), 4.52 (1H, d, PhCH c ), 4.47 (1H, d, PhCH d ), 4.23 (1H, d, H) -3 '), 3.50 (1H, d, H-5' a), 3.37 (1H, d, H-5 'b), 2.51 (1H, br.s, 2'-OH) , 1.36 (3H, s, 4'-Me).

次に、前記の通りにして得られた化合物16を用い、下記の通りに化合物17(2−Amino−3’,5’−di−O−benzyl−2’−deoxy−4’−methyladenosine)を合成した。 Next, using the compound 16 obtained as described above, compound 17 (2-Amino-3', 5'-di-O-benzyl-2'-deoxy-4'-methylaldehyde) was added as follows. Synthesized.

すなわち、化合物16(4.35g、9.13mmol)、4−ジメチルアミノピリジン(1.61g、13.2mmol)を脱水アセトニトリル(76.0mL)に溶解し、クロロチオノギ酸フェニル(1.48mL、11.0mmol)を加え、1時間撹拌した。メタノール(5mL)を加え撹拌した後、反応液を酢酸エチルで希釈、洗浄(飽和食塩水→0.1M 塩酸→飽和食塩水→飽和重曹水)した。有機層を乾燥(硫酸マグネシウム)、濃縮し、残渣をトルエンで共沸し、粗製のチオ炭酸エステルを得た。 That is, compound 16 (4.35 g, 9.13 mmol) and 4-dimethylaminopyridine (1.61 g, 13.2 mmol) were dissolved in dehydrated acetonitrile (76.0 mL) and phenyl chlorothionostate (1.48 mL, 11.2 mmol). 0 mmol) was added, and the mixture was stirred for 1 hour. After adding methanol (5 mL) and stirring, the reaction solution was diluted with ethyl acetate and washed (saturated brine-> 0.1 M brine-> saturated brine-> saturated brine). The organic layer was dried (magnesium sulfate) and concentrated, and the residue was azeotropically heated with toluene to obtain a crude thiocarbonate ester.

粗製のチオ炭酸エステル、水素化トリブチルスズ(9.82mL、36.5mmol)、アゾビス(イソブチロニトリル)(10mg)をトルエン(30.4mL)に溶解後、85℃で1時間撹拌した。反応液を濃縮後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)により精製し、化合物17を得た(2.71g、5.71mmol、62.5%)。
H−NMR(CDCl):δ7.84(1H、s、H−8),7.35−7.28(10H,m,aromatic),6.26(1H,t,H−1’),5.25(2H,br.s,NH),4.61(1H,d,PhCH),4.59(2H,br.s,NH),4.56(1H,d,PhCH),4.51(2H,d,PhCH&PhCH),4.39(1H,t,H−3’),3.57(1H,d,H−5’),3.45(1H,d,H−5’),2.71(1H,m,H−2’),2.57(1H,m,H−2’),1.32(3H,s,4’−Me)。
The crude thiocarbonate ester, tributyltin hydride (9.82 mL, 36.5 mmol) and azobis (isobutyronitrile) (10 mg) were dissolved in toluene (30.4 mL) and then stirred at 85 ° C. for 1 hour. After concentrating the reaction solution, the residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1) to obtain Compound 17 (2.71 g, 5.71 mmol, 62.5%).
1 1 H-NMR (CDCl 3 ): δ7.84 (1H, s, H-8), 7.35-7.28 (10H, m, aromatic), 6.26 (1H, t, H-1') , 5.25 (2H, br.s, NH 2 ), 4.61 (1H, d, PhCH a ), 4.59 (2H, br.s, NH 2 ), 4.56 (1H, d, PhCH) b), 4.51 (2H, d , PhCH c & PhCH d), 4.39 (1H, t, H-3 '), 3.57 (1H, d, H-5' a), 3.45 ( 1H, d, H-5 ' b), 2.71 (1H, m, H-2' a), 2.57 (1H, m, H-2 'b), 1.32 (3H, s, 4 '-Me).

次に、前記の通りにして得られた化合物17を用い、下記の通りに化合物18(2−Amino−2’−deoxy−4’−methyladenosine)を合成した。 Next, using the compound 17 obtained as described above, compound 18 (2-Amino-2'-deoxy-4'-methyladenocine) was synthesized as follows.

すなわち、ナフタレン(11.25g、87.8mmol)を脱水テトラヒドロフラン(94.3mL)に溶解し、金属リチウム(458mg、66.0mmol)を加え、室温で3時間撹拌した。溶液を−78℃に冷却後、化合物17(2.61g、5.50mmol)の脱水テトラヒドロフラン溶液(11.0mL)を加え、−45℃で3時間撹拌した。メタノール(1mL)を加え、1N 塩酸で反応液を中和後、ヘキサンを加え撹拌した。有機層より脱イオン水で抽出し、水層を合わせ少量にまで濃縮した。ODSカラムクロマトグラフィーにより(脱イオン水〜5%メタノール)により精製し、目的物を含むフラクションを濃縮した。析出した固体を濾取し、少々の脱イオン水で洗浄後、真空乾燥し、化合物18(640mg、2.28mmol、41.5%)を得た。濾液を濃縮後、残渣をメタノールに溶解、シリカゲルを加え濃縮した。シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=10:1)により精製し、化合物18を得た(210mg、0.749mmol、13.6%)。
H−NMR(DMSO−d):δ7.90(1H,s,H−8),6.70(2H,br.s,NH),6.13(1H,t,H−1’),5.69(2H,br.s,NH),5.36(1H,dd,5’−OH),5.12(1H,d,3’−OH),4.31(1H,q,H−3’),3.48(1H,m,H−5’),3.34(1H,dd,H−5’),2.71(1H,m,H−2’),2.21(1H,m,H−2’),1.09(3H,s,4’−Me)。
That is, naphthalene (11.25 g, 87.8 mmol) was dissolved in dehydrated tetrahydrofuran (94.3 mL), metallic lithium (458 mg, 66.0 mmol) was added, and the mixture was stirred at room temperature for 3 hours. After cooling the solution to −78 ° C., a dehydrated tetrahydrofuran solution (11.0 mL) of compound 17 (2.61 g, 5.50 mmol) was added, and the mixture was stirred at −45 ° C. for 3 hours. Methanol (1 mL) was added, the reaction solution was neutralized with 1N hydrochloric acid, hexane was added, and the mixture was stirred. The organic layer was extracted with deionized water, and the aqueous layers were combined and concentrated to a small amount. Purification was performed by ODS column chromatography (deionized water to 5% methanol), and the fraction containing the desired product was concentrated. The precipitated solid was collected by filtration, washed with a little deionized water, and vacuum dried to obtain Compound 18 (640 mg, 2.28 mmol, 41.5%). After concentrating the filtrate, the residue was dissolved in methanol, silica gel was added, and the mixture was concentrated. Purification by silica gel column chromatography (chloroform: methanol = 10: 1) gave compound 18 (210 mg, 0.749 mmol, 13.6%).
1 1 H-NMR (DMSO-d 6 ): δ7.90 (1H, s, H-8), 6.70 (2H, br.s, NH 2 ), 6.13 (1H, t, H-1' ), 5.69 (2H, br.s, NH 2 ), 5.36 (1H, dd, 5'-OH), 5.12 (1H, d, 3'-OH), 4.31 (1H, 1H, q, H-3 '), 3.48 (1H, m, H-5' a), 3.34 (1H, dd, H-5 'b), 2.71 (1H, m, H-2' a), 2.21 (1H, m , H-2 'b), 1.09 (3H, s, 4'-Me).

合成例9:2’−デオキシ−4’−メチルグアノシンの合成
2’−デオキシ−4’−メチルグアノシン(化合物19)を、以下の通りにして合成した。
Synthesis Example 9: Synthesis of 2'-deoxy-4'-methylguanosine 2'-deoxy-4'-methylguanosine (Compound 19) was synthesized as follows.

すなわち、化合物18(0.59g、2.1mmol)をトリス塩酸緩衝液(50mM、pH7.5、61.8mL)に溶解し、子牛脾臓由来アデノシンデアミナーゼ(14uL、16units)を加え、40℃で20時間撹拌した。析出した固体を濾取後、少量の脱イオン水で洗浄、真空乾燥し、化合物19を得た(452mg、1.61mmol、77%)。
H−NMR(DMSO−d):δ10.59(1H,br.s,NH),7.93(1H,s,H−8),6.43(2H,br.s,NH),6.08(1H,t,H−1’),5.16(1H,d,3’−OH),5.00(1H,t,5’−OH),4.31(1H,q,H−3’),3.44(1H,dd,H−5’),3.33(1H,dd,H−5’),2.61(1H,m,H−2’),2.25(1H,m,H−2’),1.09(3H,s,4’−Me)。
That is, compound 18 (0.59 g, 2.1 mmol) was dissolved in Tris-hydrochloric acid buffer (50 mM, pH 7.5, 61.8 mL), calf spleen-derived adenosine deaminase (14 uL, 16 units) was added, and the temperature was 40 ° C. The mixture was stirred for 20 hours. The precipitated solid was collected by filtration, washed with a small amount of deionized water and vacuum dried to give compound 19 (452 mg, 1.61 mmol, 77%).
1 1 H-NMR (DMSO-d 6 ): δ10.59 (1H, br.s, NH), 7.93 (1H, s, H-8), 6.43 (2H, br.s, NH 2 ) , 6.08 (1H, t, H-1'), 5.16 (1H, d, 3'-OH), 5.00 (1H, t, 5'-OH), 4.31 (1H, q) , H-3 '), 3.44 (1H, dd, H-5' a), 3.33 (1H, dd, H-5 'b), 2.61 (1H, m, H-2' a ), 2.25 (1H, m, H-2 'b), 1.09 (3H, s, 4'-Me).

合成例10:2−アミノ−2’−デオキシ−4’−メチル−N −メチルアデノシンの合成
2−アミノ−2’−デオキシ−4’−メチル−N−メチルアデノシン(化合物21)を合成すべく、先ず、下記化合物20(3’,5’−Di−O−Acetyl−2’−deoxy−4’−methylguanosine)を、以下の通りにして合成した。
Synthesis Example 10: 2-Amino-2'-deoxy-4'-methyl -N 6 - Synthesis of methyl adenosine 2-amino-2'-deoxy-4'-methyl -N 6 - Synthesis of methyl adenosine (Compound 21) To this end, first, the following compound 20 (3', 5'-Di-O-Acetyl-2'-deoxy-4'-methylguanocine) was synthesized as follows.

すなわち、合成例9にて得られた化合物19(452mg、1.61mmol)を脱水アセトニトリル(16.1mL)に懸濁し、無水酢酸(381uL、4.03mmol)、トリエチルアミン(843uL、6.05mmol)、4−ジメチルアミノピリジン(10mg、82umol)を加え、室温で24時間撹拌した。析出した固体を濾取後、少量のアセトニトリルで洗浄、真空乾燥し、化合物20(262mg、0.712mmol、44.2%)を得た。濾液を濃縮、真空乾燥後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=10:1)により精製し、化合物20を得た(211mg、0.578mmol、35.9%)。
H−NMR(DMSO−d):δ10.65(1H,br.s,NH),7.91(1H,s,H−8),6.48(2H,br.s,NH),6.13(1H,t,H−1’),5.42(1H,dd,H−3’),4.18(1H,dd,H−5’),4.05(1H,dd,H−5’),3.03(1H,m,H−2’),2.50(1H,m,H−2’),2.11(3H,s,Ac),2.02(3H,s,Ac),1.18(3H,s,4’−Me)。
That is, compound 19 (452 mg, 1.61 mmol) obtained in Synthesis Example 9 was suspended in dehydrated acetonitrile (16.1 mL), acetic anhydride (381 uL, 4.03 mmol), triethylamine (843 uL, 6.05 mmol), and the like. 4-Dimethylaminopyridine (10 mg, 82 umol) was added, and the mixture was stirred at room temperature for 24 hours. The precipitated solid was collected by filtration, washed with a small amount of acetonitrile and vacuum dried to give compound 20 (262 mg, 0.712 mmol, 44.2%). The filtrate was concentrated and dried in vacuum, and the residue was purified by silica gel column chromatography (chloroform: methanol = 10: 1) to obtain compound 20 (211 mg, 0.578 mmol, 35.9%).
1 1 H-NMR (DMSO-d 6 ): δ10.65 (1H, br.s, NH), 7.91 (1H, s, H-8), 6.48 (2H, br.s, NH 2 ) , 6.13 (1H, t, H -1 '), 5.42 (1H, dd, H-3'), 4.18 (1H, dd, H-5 'a), 4.05 (1H, dd, H-5 'b) , 3.03 (1H, m, H-2' a), 2.50 (1H, m, H-2 'b), 2.11 (3H, s, Ac), 2.02 (3H, s, Ac), 1.18 (3H, s, 4'-Me).

次に、前記の通りにして得られた化合物20を用い、下記の通りに化合物21(2−Amino−2’−deoxy−4’−methyl−N−methyladenosine)を合成した。 Next, using the compound 20 obtained as described above, compound 21 (2-Amino-2'-deoxy-4'-methyl-N 6- methyladenocine) was synthesized as follows.

すなわち、化合物20(473mg、1.29mmol)を脱水ジクロロメタン(12.9mL)に懸濁し、トリエチルアミン(1.08mL、7.75mmol)、4−ジメチルアミノピリジン(131mg、1.07mmol)、塩化2,4,6−トリイソプロピルベンゼンスルホニル(1.17g、3.86mmol)を加え、室温で17時間撹拌した。メタノール(1mL)を加えた後、反応液を洗浄(飽和重曹水)、乾燥した。溶液を濃縮後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)により精製した。得られた残渣を40% メチルアミンメタノール溶液(20.0mL)に溶解し、室温で16時間撹拌した。反応液を濃縮後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=20:1)により精製した。残渣を少量の脱イオン水に溶解後、凍結乾燥し、化合物21を得た(262mg、0.890mmol、74.2%)。
H−NMR (DMSO−d):δ7.90(1H,s,H−8),7.24(1H,br.s,NH),6.14(1H,dd,H−1’),5.79(2H,br.s,NH),5.34(1H,t,5’−OH),5.14(1H,d,3’−OH),4.31(1H,q,H−3’),3.47(1H,dd,H−5’),3.33(1H,dd,H−5’),2.87(3H,br.s,N−Me),2.70(1H,m,H−2’),2.21(1H,m,H−2’),1.09(3H,s,4’−Me)。
That is, compound 20 (473 mg, 1.29 mmol) was suspended in dehydrated dichloromethane (12.9 mL), triethylamine (1.08 mL, 7.75 mmol), 4-dimethylaminopyridine (131 mg, 1.07 mmol), 2, chloride 2. 4,6-Triisopropylbenzenesulfonyl (1.17 g, 3.86 mmol) was added, and the mixture was stirred at room temperature for 17 hours. After adding methanol (1 mL), the reaction solution was washed (saturated aqueous sodium hydrogen carbonate) and dried. After concentrating the solution, the residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1). The obtained residue was dissolved in a 40% methylamine methanol solution (20.0 mL) and stirred at room temperature for 16 hours. After concentrating the reaction solution, the residue was purified by silica gel column chromatography (chloroform: methanol = 20: 1). The residue was dissolved in a small amount of deionized water and then lyophilized to give compound 21 (262 mg, 0.890 mmol, 74.2%).
1 1 H-NMR (DMSO-d 6 ): δ7.90 (1H, s, H-8), 7.24 (1H, br.s, NH), 6.14 (1H, dd, H-1') , 5.79 (2H, br.s, NH 2 ), 5.34 (1H, t, 5'-OH), 5.14 (1H, d, 3'-OH), 4.31 (1H, q) , H-3 '), 3.47 (1H, dd, H-5' a), 3.33 (1H, dd, H-5 'b), 2.87 (3H, br.s, N 6 - Me), 2.70 (1H, m , H-2 'a), 2.21 (1H, m, H-2' b), 1.09 (3H, s, 4'-Me).

合成例11:2−アミノ−2’−デオキシ−4’−ビニルアデノシンの合成
2−アミノ−2’−デオキシ−4’−ビニルアデノシン(化合物24)を合成すべく、先ず、下記化合物23(2−Benzamido−N−benzoyl−3’,5’−di−O−tert−butyldimethylsilyl−2’−deoxy−4’−vinyladenosine)を以下の通りにして合成した。
Synthesis Example 11: Synthesis of 2-amino-2'-deoxy-4'-vinyl adenosine In order to synthesize 2-amino-2'-deoxy-4'-vinyl adenosine (compound 24), first, the following compound 23 (2) -Benzamido-N 6- benzoyl-3', 5'-di-O-tert-butyldimethylyl-2'-deoxy-4'-vinyladenocine) was synthesized as follows.

すなわち、化合物22(Nucleosides,Nucleotides&Nucleic Acids,Vol.23,No.4,pp.671−690,2004 参照)(0.42g、0.57mmol)を乾燥ジメチルスルホキシド(2.5mL)、乾燥トルエン(1.3mL)に溶解し、塩酸1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(328mg、1.71mmol)、乾燥ピリジン(104uL)、トリフルオロ酢酸(52uL)を加え、室温で2時間撹拌した。反応液を酢酸エチルで希釈後、洗浄(飽和食塩水)、乾燥(無水硫酸マグネシウム)、濃縮した。残渣をテトラヒドロフランと3回共沸後、真空乾燥し、粗アルデヒドを得た。 That is, compound 22 (see Nucleosides, Nucleotides & Nucleic Acids, Vol. 23, No. 4, pp. 671-690, 2004) (0.42 g, 0.57 mmol) was mixed with dry dimethyl sulfoxide (2.5 mL) and dry toluene (1). Dissolve in (3 mL), add 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (328 mg, 1.71 mmol), dry pyridine (104 uL), and trifluoroacetic acid (52 uL), and stir at room temperature for 2 hours. did. The reaction mixture was diluted with ethyl acetate, washed (saturated brine), dried (anhydrous magnesium sulfate), and concentrated. The residue was azeotroped with tetrahydrofuran 3 times and then vacuum dried to give a crude aldehyde.

臭化メチルトリフェニルホスホニウム(1.02g、2.86mmol)を乾燥テトラヒドロフラン(7.1mL)に懸濁し、−78℃に冷却した。n−ブチルリチウムヘキサン溶液(1.60M、1.79mL、2.86mmol)を加え、0℃で1時間撹拌後、前記粗アルデヒド乾燥テトラヒドロフラン溶液(5.9mL)を加え、室温で1時間撹拌した。飽和塩化アンモニウム水溶液を加え撹拌後、生成物を酢酸エチルにより抽出した。有機層を乾燥(無水硫酸マグネシウム)、濃縮後、残渣を少量のジクロロメタンに溶解し、シリカゲルを加え濃縮した。シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)により精製し、化合物23を得た(293mg、0.402mmol、71%)。
H−NMR(CDCl):δ9.29(1H,br.s,NH),9.24(1H,br.s,NH),8.44(1H,s,H−8),8.04−7.49(10H,m,aromatic),6.49(1H,t,H−1’),5.98(1H,dd,vinyl),5.57(1H,dd,vinyl),5.34(1H,dd,vinyl),4.90(1H,t,H−3’),3.72(1H,d,H−5’),3.68(1H,dd,H−5’),2.87(3H,br.s,N−Me),2.49(2H,m,H−2’),0.94(9H,s,tert−Bu−Si),0.91(9H,s,tert−Bu−Si),0.04,0.03(12H,s,Me−Si)。
Methyltriphenylphosphonium bromide (1.02 g, 2.86 mmol) was suspended in dry tetrahydrofuran (7.1 mL) and cooled to −78 ° C. An n-butyllithium hexane solution (1.60 M, 1.79 mL, 2.86 mmol) was added, and the mixture was stirred at 0 ° C. for 1 hour, the crude aldehyde-dried tetrahydrofuran solution (5.9 mL) was added, and the mixture was stirred at room temperature for 1 hour. .. A saturated aqueous solution of ammonium chloride was added and stirred, and the product was extracted with ethyl acetate. The organic layer was dried (anhydrous magnesium sulfate) and concentrated, and the residue was dissolved in a small amount of dichloromethane, silica gel was added and concentrated. Purification by silica gel column chromatography (hexane: ethyl acetate = 1: 1) gave compound 23 (293 mg, 0.402 mmol, 71%).
1 1 H-NMR (CDCl 3 ): δ9.29 (1H, br.s, NH), 9.24 (1H, br.s, NH), 8.44 (1H, s, H-8), 8. 04-7.49 (10H, m, aromatic), 6.49 (1H, t, H-1'), 5.98 (1H, dd, vinyl), 5.57 (1H, dd, vinyl), 5 .34 (1H, dd, vinyl) , 4.90 (1H, t, H-3 '), 3.72 (1H, d, H-5' a), 3.68 (1H, dd, H-5 ' b ), 2.87 (3H, br.s, N 6- Me), 2.49 (2H, m, H-2'), 0.94 (9H, s, tert-Bu-Si), 0 .91 (9H, s, tert-Bu-Si), 0.04, 0.03 (12H, s, Me-Si).

次に、前記の通りにして得られた化合物23を用い、下記の通りに化合物24(2−Amino−2’−deoxy−4’−vinyladenosine)を合成した。 Next, using the compound 23 obtained as described above, compound 24 (2-Amino-2'-deoxy-4'-vinyladenocine) was synthesized as follows.

すなわち、化合物23(293mg、0.402mmol)を乾燥テトラヒドロフラン(1.3mL)に溶解し、フッ化テトラブチルアンモニウムテトラヒドロフラン溶液(1.0M、2.01mL、2.01mmol)を加え、室温で1時間撹拌した。反応液を濃縮後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=20:1)により精製し、粗ジオール(293mg、0.402mmol、71%)を得た。
粗ジオールをメタノール(10mL)、40%メチルアミン水溶液(10mL)に溶解し、室温で48時間撹拌した。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=10:1〜5:1)により精製した。残渣を脱イオン水から再結晶化し、化合物24を得た(83mg、0.28mmol、70%)。
H−NMR(DMSO−d):δ7.94(1H,s,H−8),6.71(1H,br.s,NH),6.16(1H,t,H−1’),5.95(1H,dd,vinyl),5.69(2H,br.s,NH),5.49(1H,t,5’−OH),5.35(1H,dd,vinyl),5.19−5.16(2H,m,3’−OH&vinyl),5.18(1H,dd,vinyl),4.58(1H,q,H−3’),3.50(1H,dd,H−5’),3.41(1H,dd,H−5’),2.54(1H,m,H−2’),2.17(1H,m,H−2’)。
That is, compound 23 (293 mg, 0.402 mmol) was dissolved in dry tetrahydrofuran (1.3 mL), tetrabutylammonium fluoride tetrahydrofuran solution (1.0 M, 2.01 mL, 2.01 mmol) was added, and the mixture was added at room temperature for 1 hour. Stirred. After concentrating the reaction solution, the residue was purified by silica gel column chromatography (chloroform: methanol = 20: 1) to obtain a crude diol (293 mg, 0.402 mmol, 71%).
The crude diol was dissolved in methanol (10 mL) and a 40% aqueous methylamine solution (10 mL), and the mixture was stirred at room temperature for 48 hours. The reaction mixture was concentrated, and the residue was purified by silica gel column chromatography (chloroform: methanol = 10: 1 to 5: 1). The residue was recrystallized from deionized water to give compound 24 (83 mg, 0.28 mmol, 70%).
1 1 H-NMR (DMSO-d 6 ): δ7.94 (1H, s, H-8), 6.71 (1H, br.s, NH 2 ), 6.16 (1H, t, H-1' ), 5.95 (1H, dd, vinyl), 5.69 (2H, br.s, NH 2 ), 5.49 (1H, t, 5'-OH), 5.35 (1H, dd, vinyl) ), 5.19-5.16 (2H, m, 3'-OH & vinyl), 5.18 (1H, dd, vinyl), 4.58 (1H, q, H-3'), 3.50 (1H) , dd, H-5 'a ), 3.41 (1H, dd, H-5' b), 2.54 (1H, m, H-2 'a), 2.17 (1H, m, H- 2'b ).

合成例12:2’−デオキシ−4’−ビニルグアノシンの合成
2’−デオキシ−4’−ビニルグアノシン(化合物25)を、以下の通りにして合成した。
Synthesis Example 12: Synthesis of 2'-deoxy-4'-vinylguanosine 2'-deoxy-4'-vinylguanosine (Compound 25) was synthesized as follows.

すなわち、合成例11にて得られた化合物24(30mg、0.10mmol)をトリス塩酸緩衝液(50mM、pH7.5、2.8mL)に溶解し、子牛脾臓由来アデノシンデアミナーゼ(3uL、3.5units)を加え、40℃で5時間撹拌した。5℃で終夜静置後、析出した固体を濾取し、少量の脱イオン水で洗浄した。得られた固体を真空乾燥し、化合物25を得た(25mg、0.085mmol、83%)。
H−NMR(DMSO−d):δ10.60(1H,br.s,NH),7.98(1H,s,H−8),6.44(1H,br.s,NH),6.10(1H,dd,H−1’),5.95(1H,dd,vinyl),5.34(1H,dd,vinyl),5.24(1H,br.s,OH),5.19(1H,dd,vinyl),5.11(1H,br.s,OH&),4.57(1H,t,H−3’),3.50(1H,d,H−5’),3.40(1H,d,H−5’),2.44(1H,m,H−2’),2.19(1H,m,H−2’)。
That is, compound 24 (30 mg, 0.10 mmol) obtained in Synthesis Example 11 was dissolved in Tris-hydrochloric acid buffer (50 mM, pH 7.5, 2.8 mL), and calf spleen-derived adenosine deaminase (3 uL, 3. 5 units) was added, and the mixture was stirred at 40 ° C. for 5 hours. After allowing to stand at 5 ° C. overnight, the precipitated solid was collected by filtration and washed with a small amount of deionized water. The resulting solid was vacuum dried to give compound 25 (25 mg, 0.085 mmol, 83%).
1 1 H-NMR (DMSO-d 6 ): δ10.60 (1H, br.s, NH), 7.98 (1H, s, H-8), 6.44 (1H, br.s, NH 2 ) , 6.10 (1H, dd, H-1'), 5.95 (1H, dd, vinyl), 5.34 (1H, dd, vinyl), 5.24 (1H, br.s, OH), 5.19 (1H, dd, vinyl), 5.11 (1H, br.s, OH &), 4.57 (1H, t, H-3'), 3.50 (1H, d, H-5') a), 3.40 (1H, d , H-5 'b), 2.44 (1H, m, H-2' a), 2.19 (1H, m, H-2 'b).

合成例13:2−アミノ−2’−デオキシ−N −メチル−4’−ビニルアデノシンの合成
2−アミノ−2’−デオキシ−N−メチル−4’−ビニルアデノシン(化合物27)を、以下の通りにして合成した。
Synthesis Example 13: Synthesis of 2-amino-2'-deoxy-N 6 -methyl-4'-vinyl adenosine 2-amino-2'-deoxy-N 6 -methyl-4'-vinyl adenosine (Compound 27), It was synthesized as follows.

すなわち、合成例12にて得られた化合物25(102mg、0.348mmol)を脱水アセトニトリル(3.5mL)に懸濁し、無水酢酸(72uL、0.76mmol)、トリエチルアミン(159uL、1.14mmol)、4−ジメチルアミノピリジン(2mg、16umol)を加え、室温で18時間撹拌した。析出した固体を濾取後、少量のアセトニトリルで洗浄、真空乾燥し、化合物26を得た(93mg、0.25mmol、72%)。 That is, the compound 25 (102 mg, 0.348 mmol) obtained in Synthesis Example 12 was suspended in dehydrated acetonitrile (3.5 mL), acetic anhydride (72 uL, 0.76 mmol), triethylamine (159 uL, 1.14 mmol), and the like. 4-Dimethylaminopyridine (2 mg, 16 umol) was added, and the mixture was stirred at room temperature for 18 hours. The precipitated solid was collected by filtration, washed with a small amount of acetonitrile and vacuum dried to give compound 26 (93 mg, 0.25 mmol, 72%).

次に、前記反応式の通り、化合物26(93mg、0.25mmol)を脱水ジクロロメタン(2.5mL)に懸濁し、トリエチルアミン(209uL、1.50mmol)、4−ジメチルアミノピリジン(26mg、0.21mmol)、塩化2,4,6−トリイソプロピルベンゼンスルホニル(227mg、0.750mmol)を加え、室温で18時間撹拌した。反応液にメタノール(1mL)を加えた後、酢酸エチルで希釈、洗浄(飽和重曹水)した。有機層を乾燥(無水硫酸マグネシウム)、濃縮後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)により精製した。得られた残渣を40%メチルアミンメタノール溶液(10.0mL)に溶解し、室温で15時間撹拌した。反応液を濃縮後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=20:1〜10:1)により精製した。残渣を少量の脱イオン水に溶解後、凍結乾燥し、化合物27を得た(47mg、0.15mmol、60.0%)。
H−NMR(DMSO−d):δ7.94(1H,s,H−8),7.26(1H,br.s,NH),6.18(1H,t,H−1’),5.96(1H,dd,vinyl),5.82(2H,br.s,NH),5.48(1H,t,5’−OH),5.35(1H,dd,vinyl),5.22(1H,d,3’−OH),5.18(1H,dd,vinyl),4.58(1H,q,H−3’),3.50(1H,dd,H−5’),3.42(1H,dd,H−5’),2.87(3H,br.s,N−Me),2.53(1H,m,H−2’),2.18(1H,m,H−2’),1.09(3H,s,4’−Me)。
Next, as shown in the above reaction formula, compound 26 (93 mg, 0.25 mmol) was suspended in dehydrated dichloromethane (2.5 mL), and triethylamine (209 uL, 1.50 mmol) and 4-dimethylaminopyridine (26 mg, 0.21 mmol) were suspended. ), 2,4,6-Triisopropylbenzenesulfonyl chloride (227 mg, 0.750 mmol) was added, and the mixture was stirred at room temperature for 18 hours. Methanol (1 mL) was added to the reaction solution, diluted with ethyl acetate, and washed (saturated aqueous sodium hydrogen carbonate). The organic layer was dried (anhydrous magnesium sulfate), concentrated, and the residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1). The obtained residue was dissolved in a 40% methylamine methanol solution (10.0 mL) and stirred at room temperature for 15 hours. The reaction mixture was concentrated, and the residue was purified by silica gel column chromatography (chloroform: methanol = 20: 1 to 10: 1). The residue was dissolved in a small amount of deionized water and then lyophilized to give compound 27 (47 mg, 0.15 mmol, 60.0%).
1 1 H-NMR (DMSO-d 6 ): δ7.94 (1H, s, H-8), 7.26 (1H, br.s, NH), 6.18 (1H, t, H-1') , 5.96 (1H, dd, vinyl), 5.82 (2H, br.s, NH 2 ), 5.48 (1H, t, 5'-OH), 5.35 (1H, dd, vinyl) , 5.22 (1H, d, 3'-OH), 5.18 (1H, dd, vinyl), 4.58 (1H, q, H-3'), 3.50 (1H, dd, H- 5 'a), 3.42 (1H , dd, H-5' b), 2.87 (3H, br.s, N 6 -Me), 2.53 (1H, m, H-2 'a) , 2.18 (1H, m, H -2 'b), 1.09 (3H, s, 4'-Me).

合成例14:2’−デオキシ−2−フルオロ−4’−ビニルアデノシンの合成
2’−デオキシ−2−フルオロ−4’−ビニルアデノシン(化合物29)を合成すべく、先ず、下記化合物28(3’,5’−Di−O−acetyl−2−amino−2’−deoxy−4’−vinyladenosine)を、以下の通りにして合成した。
Synthesis Example 14: Synthesis of 2'-deoxy-2-fluoro-4'-vinyl adenosine In order to synthesize 2'-deoxy-2-fluoro-4'-vinyl adenosine (Compound 29), first, the following compound 28 (3) ', 5'-Di-O-acetyl-2-amino-2'-deoxy-4'-vinyladenosine) was synthesized as follows.

すなわち、合成例11にて得られた化合物24(100mg、0.342mmol)を脱水アセトニトリル(3.4mL)に懸濁し、無水酢酸(71uL、0.75mmol)、トリエチルアミン(157uL、1.13mmol)、4−ジメチルアミノピリジン(2mg、16umol)を加え、室温で18時間撹拌した。析出した固体を濾取後、少量のアセトニトリルで洗浄、真空乾燥し、化合物28を得た(115mg、0.306mmol、89.5%)。
H−NMR(CDCl):δ7.73(1H,s,H−8),6.28(1H,t,H−1’),5.85(1H,dd,vinyl),5.72(1H,t,H−3’),5.61(1H,dd,vinyl),5.37(1H,dd,vinyl),5.32(2H,br.s,NH),4.77(2H,br.s,NH),4.47(1H,d,H−5’),4.25(1H,d,H−5’),3.07(1H,m,H−2’),2.48(1H,m,H−2’),2.11(3H,s,Ac),2.08(3H,s,Ac)。
That is, compound 24 (100 mg, 0.342 mmol) obtained in Synthesis Example 11 was suspended in dehydrated acetonitrile (3.4 mL), acetic anhydride (71 uL, 0.75 mmol), triethylamine (157 uL, 1.13 mmol), and the like. 4-Dimethylaminopyridine (2 mg, 16 umol) was added, and the mixture was stirred at room temperature for 18 hours. The precipitated solid was collected by filtration, washed with a small amount of acetonitrile and vacuum dried to give compound 28 (115 mg, 0.306 mmol, 89.5%).
1 1 H-NMR (CDCl 3 ): δ7.73 (1H, s, H-8), 6.28 (1H, t, H-1'), 5.85 (1H, dd, vinyl), 5.72 (1H, t, H-3'), 5.61 (1H, dd, vinyl), 5.37 (1H, dd, vinyl), 5.32 (2H, br.s, NH 2 ), 4.77 (2H, br.s, NH 2) , 4.47 (1H, d, H-5 'a), 4.25 (1H, d, H-5' b), 3.07 (1H, m, H -2 'a), 2.48 (1H , m, H-2' b), 2.11 (3H, s, Ac), 2.08 (3H, s, Ac).

次に、前記の通りにして得られた化合物28を用い、化合物29(2’−Deoxy−2−fluoro−4’−vinyladenosine)を、下記の通りにして合成した。 Next, using the compound 28 obtained as described above, compound 29 (2'-Deoxy-2-fluoro-4'-vinyladenosine) was synthesized as follows.

すなわち、70%フッ化水素ピリジン(1.6mL)を−10℃に冷却し、脱水ピリジン(0.7mL)を添加した。ここに化合物28(115mg、0.306mmol)を溶解後、亜硝酸tert−ブチル(181uL、1.53mmol)を加え、3時間撹拌した。反応液に脱イオン水(10mL)を加えた後、酢酸エチルにより抽出し、有機層を3回洗浄(飽和重曹水)した。有機層を乾燥(無水硫酸マグネシウム)、濃縮後、残渣をジオキサン(9mL)、28%アンモニア水(3mL)に溶解し、室温で30分間撹拌した。反応液を濃縮後、残渣をメタノール(15mL)、28%アンモニア水(5mL)に溶解し、室温で2時間撹拌した。残渣をクロロホルム−メタノールに溶解し、シリカゲルを加え濃縮した。シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=10:1)により精製し、得られた残渣を脱イオン水から結晶化して化合物29を得た(54mg、0.18mmol、59%)。
H−NMR(DMSO−d):δ8.36(1H,s,H−8),7.83(2H,br.s,NH),6.22(1H,dd,H−1’),5.96(1H,dd,vinyl),5.38(1H,dd,vinyl),5.29(1H,d,3’−OH),5.21(1H,dd,vinyl),5.11(1H,t,5’−OH),4.64(1H,q,H−3’),3.50(1H,dd,H−5’),3.45(1H,dd,H−5’),2.58(1H,m,H−2’),2.25(1H,m,H−2’)。
That is, 70% hydrogen fluoride pyridine (1.6 mL) was cooled to −10 ° C., and dehydrated pyridine (0.7 mL) was added. Compound 28 (115 mg, 0.306 mmol) was dissolved therein, tert-butyl nitrite (181 uL, 1.53 mmol) was added, and the mixture was stirred for 3 hours. After adding deionized water (10 mL) to the reaction solution, the mixture was extracted with ethyl acetate, and the organic layer was washed 3 times (saturated sodium bicarbonate solution). The organic layer was dried (anhydrous magnesium sulfate) and concentrated, and the residue was dissolved in dioxane (9 mL) and 28% aqueous ammonia (3 mL), and the mixture was stirred at room temperature for 30 minutes. After concentrating the reaction solution, the residue was dissolved in methanol (15 mL) and 28% aqueous ammonia (5 mL), and the mixture was stirred at room temperature for 2 hours. The residue was dissolved in chloroform-methanol, silica gel was added, and the mixture was concentrated. Purification was performed by silica gel column chromatography (chloroform: methanol = 10: 1), and the obtained residue was crystallized from deionized water to obtain compound 29 (54 mg, 0.18 mmol, 59%).
1 1 H-NMR (DMSO-d 6 ): δ8.36 (1H, s, H-8), 7.83 (2H, br.s, NH 2 ), 6.22 (1H, dd, H-1' ), 5.96 (1H, dd, vinyl), 5.38 (1H, dd, vinyl), 5.29 (1H, d, 3'-OH), 5.21 (1H, dd, vinyl), 5 .11 (1H, t, 5'- OH), 4.64 (1H, q, H-3 '), 3.50 (1H, dd, H-5' a), 3.45 (1H, dd, H-5 'b), 2.58 (1H, m, H-2' a), 2.25 (1H, m, H-2 'b).

合成例15:2−アミノ−2’−デオキシ−4’−エチルアデノシンの合成
2−アミノ−2’−デオキシ−4’−エチルアデノシン(化合物30)を、以下の通りにして合成した。
Synthesis Example 15: Synthesis of 2-amino-2'-deoxy-4'-ethyladenosine 2-Amino-2'-deoxy-4'-ethyladenosine (Compound 30) was synthesized as follows.

すなわち、合成例11にて得られた化合物24(50mg、0.17mmol)をメタノール(3.4mL)に溶解し、5%パラジウム炭素(50mg)を加え、水素雰囲気下、15時間撹拌した。触媒をセライトろ過により除去した後、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=10:1〜5:1)により精製した。得られた残渣を脱イオン水から結晶化し、化合物30を得た(43mg、0.15mmol、88%)。
H−NMR(DMSO−d):δ7.93(1H,s,H−8),6.81(2H,br.s,NH),6.13(1H,dd,H−1’),5.79(2H,br.s,NH),5.27(1H,br.s,5’−OH),5.10(1H,d,3’−OH),4.36(1H,q,H−3’),3.48(1H,d,H−5’),3.41(1H,d,H−5’),2.75(1H,m,H−2’),2.18(1H,m,H−2’),1.63(1H,m,CH−CH),1.55(1H,m,CH−CH),0.87(3H,t,CH)。
That is, compound 24 (50 mg, 0.17 mmol) obtained in Synthesis Example 11 was dissolved in methanol (3.4 mL), 5% palladium carbon (50 mg) was added, and the mixture was stirred under a hydrogen atmosphere for 15 hours. After removing the catalyst by filtration through Celite, the filtrate was concentrated. The residue was purified by silica gel column chromatography (chloroform: methanol = 10: 1-5: 1). The resulting residue was crystallized from deionized water to give compound 30 (43 mg, 0.15 mmol, 88%).
1 1 H-NMR (DMSO-d 6 ): δ7.93 (1H, s, H-8), 6.81 (2H, br.s, NH 2 ), 6.13 (1H, dd, H-1' ), 5.79 (2H, br.s, NH 2 ), 5.27 (1H, br.s, 5'-OH), 5.10 (1H, d, 3'-OH), 4.36 ( 1H, q, H-3 ' ), 3.48 (1H, d, H-5' a), 3.41 (1H, d, H-5 'b), 2.75 (1H, m, H- 2 'a), 2.18 (1H , m, H-2' b), 1.63 (1H, m, CH 3 -CH a), 1.55 (1H, m, CH 3 -CH b), 0.87 (3H, t, CH 3 ).

合成例16:2−アミノ−2’−デオキシ−4’−エチルグアノシンの合成
2−アミノ−2’−デオキシ−4’−エチルグアノシン(化合物31)を、以下の通りにして合成した。
Synthesis Example 16: Synthesis of 2-amino-2'-deoxy-4'-ethylguanosine 2-Amino-2'-deoxy-4'-ethylguanosine (Compound 31) was synthesized as follows.

すなわち、合成例15にて得られた化合物30(25mg、85umol)をトリス塩酸緩衝液(50mM、pH7.5、6.4mL)に溶解し、子牛脾臓由来アデノシンデアミナーゼ(3uL、3.5units)を加え、40℃で3時間撹拌した。5℃で終夜静置後、析出した固体を濾取し、少量の脱イオン水で洗浄した。得られた固体を真空乾燥し、化合物31を得た(18mg、61umol、72%)。
H−NMR(DMSO−d):δ10.59(1H,br.s,NH),7.93(1H,s,H−8),6.44(2H,br.s,NH),6.08(1H,dd,H−1’),5.12(1H,d,3’−OH),4.91(1H,t,5’−OH),4.35(1H,q,H−3’),3.42(2H,m,H−5’),2.65(1H,m,H−2’),2.21(1H,m,H−2’),1.60(1H,m,CH−CH),1.55(1H,m,CH−CH),0.86(3H,t,CH)。
That is, the compound 30 (25 mg, 85 umol) obtained in Synthesis Example 15 was dissolved in Tris-hydrochloric acid buffer (50 mM, pH 7.5, 6.4 mL), and calf spleen-derived adenosine deaminase (3 uL, 3.5 units) was dissolved. Was added, and the mixture was stirred at 40 ° C. for 3 hours. After allowing to stand at 5 ° C. overnight, the precipitated solid was collected by filtration and washed with a small amount of deionized water. The obtained solid was vacuum dried to give compound 31 (18 mg, 61 umol, 72%).
1 1 H-NMR (DMSO-d 6 ): δ10.59 (1H, br.s, NH), 7.93 (1H, s, H-8), 6.44 (2H, br.s, NH 2 ) , 6.08 (1H, dd, H-1'), 5.12 (1H, d, 3'-OH), 4.91 (1H, t, 5'-OH), 4.35 (1H, q) , H-3 '), 3.42 (2H, m, H-5'), 2.65 (1H, m, H-2 'a), 2.21 (1H, m, H-2' b) , 1.60 (1H, m, CH 3- CH a ), 1.55 (1H, m, CH 3- CH b ), 0.86 (3H, t, CH 3 ).

合成例17:2−アミノ−4’−シアノ−2’−デオキシ−N −メチルアデノシンの合成
2−アミノ−4’−シアノ−2’−デオキシ−N−メチルアデノシン(化合物35)を合成すべく、先ず、下記化合物33(3’,5’−Di−O−tert−butyldimethylsilyl−4’−cyano−2’−deoxyguanosine)を、以下の通りにして合成した。
Synthesis Example 17: Synthesis of 2-amino-4'-cyano-2'-deoxy-N 6 -methyladenosine 2-Amino-4'-cyano-2'-deoxy-N 6 -methyladenosine (Compound 35) was synthesized. To this end, first, the following compound 33 (3', 5'-Di-O-tert-butyldimethylyl-4'-cyano-2'-deoxyguanosine) was synthesized as follows.

すなわち、化合物32(Nucleosides,Nucleotides&Nucleic Acids Vol.23,N0.4,pp.671−690,2004 参照)(355mg、1.21mmol)、イミダゾール(824mg、12.1mmol)をN,N−ジメチルホルムアミド(2.4mL)に溶解し、tert−ブチルクロロジメチルシラン(912mg、6.05mmol)を加え、60℃で7時間加熱撹拌した。反応液にメタノール(5mL)を加え撹拌し、析出した固体をろ取した。得られた固体を少量のメタノールで洗浄後、真空乾燥し、化合物33を得た(473mg、0.908mmol、収率75.0%)。
H−NMR(DMSO−d):δ10.69(1H,br.s,NH),7.99(1H,s,H−8),6.55(2H,br.s,NH),6.30(1H,dd,H−1’),4.68(1H,dd,H−3’),3.86(1H,d,H−5’a),3.79(1H,d,H−5’b),2.99(1H,m,H−2’a),2.41(1H,m,H−2’),0.92(9H,s,tert−Bu),0.87(9H,s,tert−Bu),0.17(3H,s,Me),0.16(3H,s,Me),0.06(3H,s,Me),0.05(3H,s,Me)。
That is, compound 32 (see Nucleosides, Nucleosides & Nucleic Acids Vol. 23, N0.4, pp. 671-690, 2004) (355 mg, 1.21 mmol), imidazole (824 mg, 12.1 mmol) in N, N-dimethylformamide (see). It was dissolved in 2.4 mL), tert-butylchlorodimethylsilane (912 mg, 6.05 mmol) was added, and the mixture was heated and stirred at 60 ° C. for 7 hours. Methanol (5 mL) was added to the reaction solution, the mixture was stirred, and the precipitated solid was collected by filtration. The obtained solid was washed with a small amount of methanol and dried under vacuum to obtain Compound 33 (473 mg, 0.908 mmol, yield 75.0%).
1 1 H-NMR (DMSO-d 6 ): δ10.69 (1H, br.s, NH), 7.99 (1H, s, H-8), 6.55 (2H, br.s, NH 2 ) , 6.30 (1H, dd, H-1'), 4.68 (1H, dd, H-3'), 3.86 (1H, d, H-5'a), 3.79 (1H, 1H, d, H-5'b), 2.99 (1H, m, H-2'a), 2.41 (1H, m, H-2 'b), 0.92 (9H, s, tert-Bu ), 0.87 (9H, s, tert-Bu), 0.17 (3H, s, Me), 0.16 (3H, s, Me), 0.06 (3H, s, Me), 0. 05 (3H, s, Me).

次に、前記の通りにして得られた化合物33を用い、化合物34(2−Amino−3’,5’−di−O−tert−butyldimethylsilyl−4’−cyano−2’−deoxy−N−methyladenosine)を、以下の通りにして合成した。 Next, using compound 33 obtained as described above, compound 34 (2-Amino-3', 5'-di-O-tert-butyldimethylyl-4'-cyano-2'-deoxy-N 6- Methyladenocine) was synthesized as follows.

すなわち、化合物33(300mg、0.576mmol)をジクロロメタン(2.9mL)に懸濁し、トリエチルアミン(482uL、3.46mmol)、4−ジメチルアミノピリジン(58mg、0.47mmol)、塩化2,4,6−トリイソプロピルベンゼンスルホニル(523mg、1.73mmol)を加え、室温で16時間撹拌した。反応液を飽和炭酸水素ナトリウム水溶液で洗浄し、有機層を無水硫酸マグネシウム上乾燥後、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1)により精製した。得られた残渣を40%メチルアミンメタノール溶液(20mL)に溶解し、室温で3時間撹拌した。反応液を濃縮後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)により精製し、化合物34を得た(253mg、0.474mmol、96.1%)。
H−NMR(CDCl):δ7.55(1H,s,H−8),6.32(1H,t,H−1’),5.59(1Hbr.s,6−NH),4.92(1H,t,H−3’),4.66(2H,br.s,2−NH),4.01(1H,d,H−5’),3.86(1H,d,H−5’),3.11−3.07(4H,m,N−Me&H−2’),2.48(1H,m,H−2’),0.96(9H,s,tert−Bu),0.89(9H,s,tert−Bu),0.19(3H,s,Me),0.17(3H,s,Me),0.08(3H,s,Me),0.04(3H,s,Me)。
That is, compound 33 (300 mg, 0.576 mmol) was suspended in dichloromethane (2.9 mL), triethylamine (482 uL, 3.46 mmol), 4-dimethylaminopyridine (58 mg, 0.47 mmol), 2,4,6 chloride. -Triisopropylbenzenesulfonyl (523 mg, 1.73 mmol) was added, and the mixture was stirred at room temperature for 16 hours. The reaction mixture was washed with saturated aqueous sodium hydrogen carbonate solution, and the organic layer was dried over anhydrous magnesium sulfate and concentrated. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 5: 1). The obtained residue was dissolved in a 40% methylamine methanol solution (20 mL) and stirred at room temperature for 3 hours. After concentrating the reaction solution, the residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1) to obtain Compound 34 (253 mg, 0.474 mmol, 96.1%).
1 1 H-NMR (CDCl 3 ): δ7.55 (1H, s, H-8), 6.32 (1H, t, H-1'), 5.59 (1Hbr.s, 6-NH), 4 .92 (1H, t, H- 3 '), 4.66 (2H, br.s, 2-NH 2), 4.01 (1H, d, H-5' a), 3.86 (1H, d, H-5 'b) , 3.11-3.07 (4H, m, N 6 -Me &H-2' a), 2.48 (1H, m, H-2 'b), 0.96 ( 9H, s, tert-Bu), 0.89 (9H, s, tert-Bu), 0.19 (3H, s, Me), 0.17 (3H, s, Me), 0.08 (3H, 3H, s, Me), 0.04 (3H, s, Me).

次に、前記の通りにして得られた化合物34を用い、化合物35(2−Amino−4’−cyano−2’−deoxy−N−methyladenosine)を、以下の通りにして合成した。 Next, using the compound 34 obtained as described above, compound 35 (2-Amino-4'-ciano-2'-deoxy-N 6- methyladenocine) was synthesized as follows.

すなわち、化合物34(253mg、0.474mmol)をテトラヒドロフラン(2.4mL)に溶解し、1M フッ化テトラブチルアンモニウムテトラヒドロフラン溶液(1.42mL、1.42mmol)を加え、室温で3時間撹拌した。反応液を濃縮後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=20:1〜10:1)により精製した。残渣を少量の脱イオン水に溶解後、予備凍結して凍結乾燥し、化合物35を得た(253mg、0.474mmol、96.1%)。
H−NMR(DMSO−d):δ7.91(1H,s,H−8),7.29(1H,br.s,6−NH),6.34(1H,t,H−1’),6.26(1H,d,3’−OH),5.93(2H,br.s,2−NH),5.85(1H,t,5’−OH),4.63(1H,q,H−3’),3.77(1H,dd,H−5’),3.65(1H,dd,H−5’),2.87(4H,m,N−Me&H−2’),2.37(1H,m,H−2’)。
That is, compound 34 (253 mg, 0.474 mmol) was dissolved in tetrahydrofuran (2.4 mL), a 1 M tetrabutylammonium fluoride tetrahydrofuran solution (1.42 mL, 1.42 mmol) was added, and the mixture was stirred at room temperature for 3 hours. The reaction mixture was concentrated, and the residue was purified by silica gel column chromatography (chloroform: methanol = 20: 1 to 10: 1). The residue was dissolved in a small amount of deionized water, pre-frozen and lyophilized to give compound 35 (253 mg, 0.474 mmol, 96.1%).
1 1 H-NMR (DMSO-d 6 ): δ7.91 (1H, s, H-8), 7.29 (1H, br.s, 6-NH), 6.34 (1H, t, H-1) '), 6.26 (1H, d, 3'-OH), 5.93 (2H, br.s, 2-NH 2 ), 5.85 (1H, t, 5'-OH), 4.63 (1H, q, H-3 '), 3.77 (1H, dd, H-5' a), 3.65 (1H, dd, H-5 'b), 2.87 (4H, m, N 6 -Me & H-2 'a ), 2.37 (1H, m, H-2' b).

合成例18:4’−アジド−2’−デオキシ−O −メチルグアノシンの合成
4’−アジド−2’−デオキシ−O−メチルグアノシン(化合物39)を合成すべく、先ず、下記化合物36(4’−Azido−N,O3’−dibenzoyl−5’−(3−chlorobenzoyl)−2’−deoxyguanosine)を、以下の通りにして合成した。
Synthesis Example 18: Synthesis of 4'-azido-2'-deoxy-O 6 -methylguanosine In order to synthesize 4'-azido-2'-deoxy-O 6 -methylguanosine (Compound 39), first, the following compound 36 (4'-Azido-N 2 , O 3'- dinitrogenzoil-5'-(3-chlorobenzoyl) -2'-deoxyguanosine) was synthesized as follows.

すなわち、先ず、化合物36をJ.Med.Chem.1992,35,1440−1451に記載の方法に従って合成した。そして、得られた化合物36(1.02g,1.63mmol)を、溶媒(ジクロロメタン:水=50mL:30mL)に溶かし、リン酸水素二カリウム(1.70g,9.76mmol)、テトラブチルアンモニウム硫酸水素塩(1.66g,4.89mmol)、m−クロロ安息香酸(762mg,4.87mmol)を加え撹拌を行った。0℃に冷却した後、m−クロロ過安息香酸(72%,2.50g,10.1mmol)を加え、室温にて終夜撹拌を継続した。反応後、10%二亜硫酸ナトリウム水溶液を加えてジクロロメタンで抽出し、有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄後、無水硫酸マグネシウムにて乾燥して減圧下溶媒を留去した。残渣をシリカゲルクロマトグラフィーにて精製し(ジクロロメタン:酢酸エチル=3:1〜1:3)、化合物37を得た(638mg,0.974mmol,60%)。
H NMR(CDCl,500MHz)δ12.08(brs,1H),9.62(s,1H),8.17−8.16(m,2H),8.04−8.02(m,2H),7.76(s,1H),7.73−7.70(m,2H),7.64−7.57(m,4H),7.48−7.43(m,3H),7.17(t,J=8.0Hz,1H),7.01(dd,J=9.2,7.5Hz,1H),6.37(dd,J=8.0,2.3Hz,1H),5.12(d,J=12.0Hz,1H),4.66(d,J=12.0Hz,1H),3.26(ddd,J=13.2,7.5,2.3Hz,1H),2.90−2.84(m,1H)。
That is, first, compound 36 was subjected to J. Med. Chem. It was synthesized according to the method described in 1992, 35, 1440-451. Then, the obtained compound 36 (1.02 g, 1.63 mmol) was dissolved in a solvent (dichloromethane: water = 50 mL: 30 mL), dipotassium hydrogen phosphate (1.70 g, 9.76 mmol), tetrabutylammonium sulfate. Hydrogen salt (1.66 g, 4.89 mmol) and m-chlorobenzoic acid (762 mg, 4.87 mmol) were added and stirred. After cooling to 0 ° C., m-chloroperbenzoic acid (72%, 2.50 g, 10.1 mmol) was added, and stirring was continued overnight at room temperature. After the reaction, a 10% aqueous sodium disulfide solution was added and extracted with dichloromethane. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel chromatography (dichloromethane: ethyl acetate = 3: 1-1: 3) to give compound 37 (638 mg, 0.974 mmol, 60%).
1 H NMR (CDCl 3, 500MHz ) δ12.08 (brs, 1H), 9.62 (s, 1H), 8.17-8.16 (m, 2H), 8.04-8.02 (m, 2H), 7.76 (s, 1H), 7.73-7.70 (m, 2H), 7.64-7.57 (m, 4H), 7.48-7.43 (m, 3H) , 7.17 (t, J = 8.0Hz, 1H), 7.01 (dd, J = 9.2,7.5Hz, 1H), 6.37 (dd, J = 8.0, 2.3Hz) , 1H), 5.12 (d, J = 12.0Hz, 1H), 4.66 (d, J = 12.0Hz, 1H), 3.26 (ddd, J = 13.2,7.5, 2.3Hz, 1H), 2.90-2.84 (m, 1H).

次に、前記の通りにして得られた化合物37を用い、下記化合物38(4’−Azido−N,O3’−dibenzoyl−5’−(3−chlorobenzoyl)−2’−deoxy−O−(2,4,6−triisopropylbenzenesulfonyl)guanosine)を合成した。 Next, using the compound 37 obtained as described above, the following compound 38 (4'-Azido-N 2 , O 3'- dinitrogenzoyl-5'-(3-chromobenzyl) -2'-deoxy-O 6 -(2,4,6-triisopropylbenzensulfonyl) guanosine) was synthesized.

すなわち、化合物37(612mg,0.934mmol)のジクロロメタン(15mL)溶液に、トリエチルアミン(781uL,5.60mmol)、塩化2,4,6−トリイソプロピルベンゼンスルホニル(848mg,2.80mmol)、4−ジメチルアミノピリジン(23mg,0.188mmol)を加え、室温で16時間撹拌を行った。反応液をジクロロメタンで希釈した後、飽和塩化アンモニウム水溶液、飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムにて乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトグラフィーにて精製し(ジクロロメタン:酢酸エチル=97:3〜95:5)、化合物38(421mg,0.456mmol,49%)を得た。
H NMR(CDCl,500MHz)δ8.59(bs,1H),8.12−8.10(m,2H),8.03(s,1H),7.89(t,J=1.7Hz,1H),7.79−7.74(m,3H),7.63−7.41(m,7H),7.23(s,2H),7.19(t,J=8.0Hz,1H),6.85(t,J=8.0Hz,1H),6.52(dd,J=8.0,3.4Hz,1H),5.05(d,J=12.0,1H),4.88(d,J=12.0,1H),4.28(sep,J=6.9Hz,2H),3.54−3.48(m,1H),2.96−2.87(m,2H),1.29(d,J=6.9,6H),1.28(d,J=6.9,6H),1.26(d,J=6.9,6H)。
That is, triethylamine (781uL, 5.60 mmol), 2,4,6-triisopropylbenzenesulfonyl chloride (848 mg, 2.80 mmol), 4-dimethyl in a solution of compound 37 (612 mg, 0.934 mmol) in dichloromethane (15 mL). Aminopyridine (23 mg, 0.188 mmol) was added, and the mixture was stirred at room temperature for 16 hours. The reaction mixture was diluted with dichloromethane and washed with saturated aqueous ammonium chloride solution and saturated brine. The organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel chromatography (dichloromethane: ethyl acetate = 97: 3 to 95: 5) to give compound 38 (421 mg, 0.456 mmol, 49%).
1 H NMR (CDCl 3 , 500 MHz) δ8.59 (bs, 1H), 8.12-8.10 (m, 2H), 8.03 (s, 1H), 7.89 (t, J = 1. 7Hz, 1H), 7.79-7.74 (m, 3H), 7.63-7.41 (m, 7H), 7.23 (s, 2H), 7.19 (t, J = 8. 0Hz, 1H), 6.85 (t, J = 8.0Hz, 1H), 6.52 (dd, J = 8.0, 3.4Hz, 1H), 5.05 (d, J = 12.0) , 1H), 4.88 (d, J = 12.0, 1H), 4.28 (sep, J = 6.9Hz, 2H), 3.54-3.48 (m, 1H), 2.96 -2.87 (m, 2H), 1.29 (d, J = 6.9, 6H), 1.28 (d, J = 6.9, 6H), 1.26 (d, J = 6. 9,6H).

次に、前記の通りにして得られた化合物38を用い、化合物39(4’−Azido−2’−deoxy−O−methylguanosine)を、以下の通りにして合成した。 Next, using the compound 38 obtained as described above, compound 39 (4'-Azido-2'-deoxy-O 6- methylguanocine) was synthesized as follows.

すなわち、化合物38(200mg,0.217mmol)のジオキサン(5mL)溶液に、1,4−ジアザビシクロ[2.2.2]オクタン(51.5mg,0.459mmol)、モレキュラーシーブス(3A)(250mg)を加え、室温で30分撹拌した。その後メタノール(99uL,2.30mmol)、ジアザビシクロウンデセン(85uL,0.569mmol)を加え、室温で14時間撹拌を行った。反応後、不溶物をろ別して減圧下溶媒を留去した。得られた残渣を5Mアンモニア―メタノール溶液(10mL)に溶かし、封管中55℃で一晩加熱撹拌した。その後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィーにて精製し(ジクロロメタン:メタノール=97:3〜9:1)、化合物39を得た(47.0mg,0.146mmol,67%)。
H NMR(DMSO−d6,500MHz)δ8.08(s,1H),6.54(brs,2H),6.38(dd,J=7.5,5.2Hz,1H),5.78(d,J=4.6,1H),5.48(dd,J=6.3,5.8Hz,1H),4.66(dt,J=6.3,5.2Hz,1H),3.96(s,3H),3.67(dd,J=12.0,6.3Hz,1H),3.57(dd,J=12.0,5.8Hz,1H)2.75−2.70(m,1H),2.47−2.41(m,1H)。
That is, in a solution of compound 38 (200 mg, 0.217 mmol) in dioxane (5 mL), 1,4-diazabicyclo [2.2.2] octane (51.5 mg, 0.459 mmol), molecular sieves (3A) (250 mg). Was added, and the mixture was stirred at room temperature for 30 minutes. Then, methanol (99 uL, 2.30 mmol) and diazabicycloundecene (85 uL, 0.569 mmol) were added, and the mixture was stirred at room temperature for 14 hours. After the reaction, the insoluble material was filtered off and the solvent was distilled off under reduced pressure. The obtained residue was dissolved in a 5M ammonia-methanol solution (10 mL), and the mixture was heated and stirred overnight at 55 ° C. in a sealed tube. Then, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (dichloromethane: methanol = 97: 3 to 9: 1) to obtain Compound 39 (47.0 mg, 0.146 mmol, 67%). ..
1 1 H NMR (DMSO-d 6,500 MHz) δ8.08 (s, 1H), 6.54 (brs, 2H), 6.38 (dd, J = 7.5, 5.2 Hz, 1H), 5.78 (D, J = 4.6,1H), 5.48 (dd, J = 6.3,5.8Hz, 1H), 4.66 (dt, J = 6.3,5.2Hz, 1H), 3.96 (s, 3H), 3.67 (dd, J = 12.0, 6.3Hz, 1H), 3.57 (dd, J = 12.0, 5.8Hz, 1H) 2.75- 2.70 (m, 1H), 2.47-2.41 (m, 1H).

合成例19:4’−アジド−2’−デオキシ−O −エチルグアノシンの合成
4’−アジド−2’−デオキシ−O−エチルグアノシン(化合物40)を、以下の通りにして合成した。
Synthesis Example 19: 4'-azido-2'-deoxy -O 6 - Synthesis of ethyl guanosine 4'-azido-2'-deoxy -O 6 - ethyl guanosine (compound 40) was synthesized as follows.

すなわち、合成例18にて得られた化合物38(200mg,0.217mmol)、1,4−ジアザビシクロ[2.2.2]オクタン(48.7mg,0.434mmol)、モレキュラーシーブス(3A)(250mg)を入れたナスフラスコにジオキサン(5mL)を加え、室温で30分撹拌した。その後エタノール(127uL,2.17mmol)、ジアザビシクロウンデセン(81uL,0.543mmol)を加え、室温で一晩撹拌を行った。反応後、不溶物をろ別して減圧下溶媒を留去した。得られた残渣を9Mアンモニア―メタノール溶液(10mL)に溶かし、封管中55℃で一晩加熱撹拌した。その後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィーにて精製し(ジクロロメタン:メタノール=98:2〜94:6)、化合物40を得た(47.1mg,0.140mmol,65%)。
H NMR(DMSO−d,500MHz)δ8.06(s,1H),6.48(brs,2H),6.38(dd,J=7.5,5.2Hz,1H),5.77(d,J=5.7Hz,1H),5.48(t,J=5.7Hz,1H),4.66(dd,J=10.9,5.7Hz,1H),4.45(q,J=6.9Hz,2H),3.67(dd,J=12.0,5.7Hz,1H),3.57(dd,J=12.0,5.7Hz,1H),2.74−2.68(m,1H),2.47−2.40(m,1H),1.35(t,J=6.9Hz,3H)。
That is, compound 38 (200 mg, 0.217 mmol) obtained in Synthesis Example 18, 1,4-diazabicyclo [2.2.2] octane (48.7 mg, 0.434 mmol), molecular sieves (3A) (250 mg). ) Was added to the eggplant flask (5 mL), and the mixture was stirred at room temperature for 30 minutes. Then, ethanol (127 uL, 2.17 mmol) and diazabicycloundecene (81 uL, 0.543 mmol) were added, and the mixture was stirred overnight at room temperature. After the reaction, the insoluble material was filtered off and the solvent was distilled off under reduced pressure. The obtained residue was dissolved in a 9M ammonia-methanol solution (10 mL) and heated and stirred overnight at 55 ° C. in a sealed tube. Then, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (dichloromethane: methanol = 98: 2-94: 6) to obtain Compound 40 (47.1 mg, 0.140 mmol, 65%). ..
1 H NMR (DMSO-d 6 , 500MHz) δ8.06 (s, 1H), 6.48 (brs, 2H), 6.38 (dd, J = 7.5,5.2Hz, 1H), 5. 77 (d, J = 5.7Hz, 1H), 5.48 (t, J = 5.7Hz, 1H), 4.66 (dd, J = 10.9, 5.7Hz, 1H), 4.45 (Q, J = 6.9Hz, 2H), 3.67 (dd, J = 12.0, 5.7Hz, 1H), 3.57 (dd, J = 12.0, 5.7Hz, 1H), 2.74-2.68 (m, 1H), 2.47-2.40 (m, 1H), 1.35 (t, J = 6.9Hz, 3H).

合成例20:O −アリル−4’−アジド−2’−デオキシグアノシンの合成
−アリル−4’−アジド−2’−デオキシグアノシン(化合物41)を、以下の通りに合成した。
Synthesis Example 20: Synthesis of O 6 -allyl-4'-azido-2'-deoxyguanosine O 6 -allyl-4'-azido-2'-deoxyguanosine (Compound 41) was synthesized as follows.

すなわち、合成例18にて得られた化合物38(202mg,0.219mmol)のジオキサン(5mL)溶液に、1,4−ジアザビシクロ[2.2.2]オクタン(49.2mg,0.438mmol)、モレキュラーシーブス(3A)(250mg)を加え、室温で30分撹拌した。その後アリルアルコール(149uL,2.19mmol)、ジアザビシクロウンデセン(82uL,0.548mmol)を加え、室温で2時間撹拌を行った。反応後、不溶物をろ別して減圧下溶媒を留去した。得られた残渣を7Mアンモニア―メタノール溶液(15mL)に溶かし、封管中60℃で一晩加熱撹拌した。その後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィーにて精製し(ヘキサン:酢酸エチル=1:9〜8:92)、化合物41を得た(41mg,0.118mmol,54%)。
H NMR(Methanol−d4,500MHz)δ8.05(s,1H),6.48(dd,J=7.5,5.2Hz,1H),6.18−6.08(m,1H),5.48−5.42(m,1H),5.29−5.24(m,1H),5.01−4.98(m,2H),4.81(t,J=6.9Hz,1H),3.83(d,J=12.0Hz,1H),3.71(d,J=12.0Hz,1H),2.91−2.84(m,1H),2.56−2.51(m,1H)。
That is, 1,4-diazabicyclo [2.2.2] octane (49.2 mg, 0.438 mmol), in a dioxane (5 mL) solution of compound 38 (202 mg, 0.219 mmol) obtained in Synthesis Example 18. Molecular Sieves (3A) (250 mg) was added and stirred at room temperature for 30 minutes. Then, allyl alcohol (149 uL, 2.19 mmol) and diazabicycloundecene (82 uL, 0.548 mmol) were added, and the mixture was stirred at room temperature for 2 hours. After the reaction, the insoluble material was filtered off and the solvent was distilled off under reduced pressure. The obtained residue was dissolved in a 7M ammonia-methanol solution (15 mL) and heated and stirred at 60 ° C. overnight in a sealed tube. Then, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (hexane: ethyl acetate = 1: 9 to 8:92) to obtain Compound 41 (41 mg, 0.118 mmol, 54%).
1 1 H NMR (Methanol-d 4,500 MHz) δ8.05 (s, 1H), 6.48 (dd, J = 7.5, 5.2 Hz, 1H), 6.18-6.08 (m, 1H) , 5.48-5.42 (m, 1H), 5.29-5.24 (m, 1H), 5.01-4.98 (m, 2H), 4.81 (t, J = 6. 9Hz, 1H), 3.83 (d, J = 12.0Hz, 1H), 3.71 (d, J = 12.0Hz, 1H), 2.91-2.84 (m, 1H), 2. 56-2.51 (m, 1H).

合成例21:4’−アジド−O −ベンジル−2’−デオキシグアノシンの合成
4’−アジド−O−ベンジル−2’−デオキシグアノシン(化合物42)を、以下の通りにして合成した。
Synthesis Example 21: Synthesis of 4'-azido-O 6 -benzyl-2'-deoxyguanosine 4'-Azide-O 6 -benzyl-2'-deoxyguanosine (Compound 42) was synthesized as follows.

すなわち、合成例18にて得られた化合物38(314mg,0.341mmol)のジオキサン(5mL)溶液に、1,4−ジアザビシクロ[2.2.2]オクタン(76.0mg,0.682mmol)、モレキュラーシーブス(3A)(250mg)を加え、室温で30分撹拌した。その後ベンジルアルコール(239mg,3.41mmol)、ジアザビシクロウンデセン(127uL,0.852mmol)を加え、室温で14時間撹拌を行った。反応後、不溶物をろ別して減圧下溶媒を留去した。得られた残渣を7Mアンモニア―メタノール溶液(15mL)に溶かし、封管中65℃で一晩加熱撹拌した。その後、減圧下溶媒を留去し、残渣をアミノシリカゲルクロマトグラフィーにて精製し(ジクロロメタン:メタノール=98:2〜95:5)、化合物42を得た(47mg,0.118mmol,35%)。
H NMR(Methanol−d,500MHz)δ;8.03(s,1H),7.50−7.49(m,2H),7.37−7.28(m,3H),6.47(dd,J=6.9,5.2Hz,1H),5.53(s,2H),4.81(t,J=6.9Hz,1H),3.82(d,J=12.0Hz,1H),3.70(d,J=12.0Hz,1H),2.87(ddd,J=12.0,6.9,5.2Hz,1H),2.56−2.50(m,1H)。
That is, 1,4-diazabicyclo [2.2.2] octane (76.0 mg, 0.682 mmol), in a dioxane (5 mL) solution of compound 38 (314 mg, 0.341 mmol) obtained in Synthesis Example 18. Molecular Sieves (3A) (250 mg) was added and stirred at room temperature for 30 minutes. Then, benzyl alcohol (239 mg, 3.41 mmol) and diazabicycloundecene (127 uL, 0.852 mmol) were added, and the mixture was stirred at room temperature for 14 hours. After the reaction, the insoluble material was filtered off and the solvent was distilled off under reduced pressure. The obtained residue was dissolved in a 7M ammonia-methanol solution (15 mL) and heated and stirred overnight at 65 ° C. in a sealed tube. Then, the solvent was distilled off under reduced pressure, and the residue was purified by amino silica gel chromatography (dichloromethane: methanol = 98: 2-95: 5) to obtain compound 42 (47 mg, 0.118 mmol, 35%).
1 1 H NMR (Methanol-d 4 , 500 MHz) δ; 8.03 (s, 1H), 7.50-7.49 (m, 2H), 7.37-7.28 (m, 3H), 6. 47 (dd, J = 6.9, 5.2Hz, 1H), 5.53 (s, 2H), 4.81 (t, J = 6.9Hz, 1H), 3.82 (d, J = 12) .0Hz, 1H), 3.70 (d, J = 12.0Hz, 1H), 2.87 (ddd, J = 12.0, 6.9, 5.2Hz, 1H), 2.56-2. 50 (m, 1H).

合成例22:2−アミノ−4’−アジド−2’−デオキシ−N −メチルアデノシンの合成
2−アミノ−4’−アジド−2’−デオキシ−N−メチルアデノシン(化合物43)を、以下の通りにして合成した。
Synthesis Example 22: Synthesis of 2-amino-4'-azido-2'-deoxy-N 6 -methyladenosine 2-amino-4'-azido-2'-deoxy-N 6 -methyladenosine (Compound 43), It was synthesized as follows.

すなわち、合成例18にて得られた化合物38(231mg,0.251mmol)を30%メチルアミン―エタノール溶液(10mL)に溶解させ、封管中55℃にて一晩加熱撹拌した。その後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィーにて精製し(ジクロロメタン:メタノール=98:2〜9:1)、化合物43を得た(21mg,0.0653mmol,26%)。
H NMR(Methanol−d4,500MHz)δ7.89(s,1H),6.44(t,J=6.3Hz,1H),4.75(dd,J=6.3,5.7Hz,1H),3.82(d,J=12.0Hz,1H),3.66(d,J=12.0Hz,1H),3.03(brs,3H),2.92−2.87(m,1H),2.53−2.48(m,1H)。
That is, the compound 38 (231 mg, 0.251 mmol) obtained in Synthesis Example 18 was dissolved in a 30% methylamine-ethanol solution (10 mL), and the mixture was heated and stirred overnight at 55 ° C. in a sealed tube. Then, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (dichloromethane: methanol = 98: 2-9: 1) to obtain Compound 43 (21 mg, 0.0653 mmol, 26%).
1 1 H NMR (Methanol-d 4,500 MHz) δ7.89 (s, 1H), 6.44 (t, J = 6.3 Hz, 1H), 4.75 (dd, J = 6.3, 5.7 Hz, 1H), 3.82 (d, J = 12.0Hz, 1H), 3.66 (d, J = 12.0Hz, 1H), 3.03 (brs, 3H), 2.92-2.87 ( m, 1H), 2.53-2.48 (m, 1H).

合成例23:2−アミノ−4’−アジド−2’−デオキシ−N −エチルアデノシンの合成
2−アミノ−4’−アジド−2’−デオキシ−N−エチルアデノシン(化合物44)を、以下の通りにして合成した。
Synthesis Example 23: 2-amino-4'-azido-2'-deoxy -N 6 - Synthesis of ethyl adenosine 2-amino-4'-azido-2'-deoxy -N 6 - ethyl adenosine (Compound 44), It was synthesized as follows.

すなわち、合成例18にて得られた化合物38(201mg,0.218mmol)を2M エチルアミン―メタノール溶液(15mL)に溶解させ、封管中70℃にて一晩加熱撹拌した。その後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィーにて精製し(ジクロロメタン:メタノール=98:2〜93:7)、化合物44(35mg,0.104mmol,48%)を得た。
1H NMR(Methanol−d4,500MHz)δ7.89(s,1H),6.44(t,J=6.3Hz,1H),4.78(dd,J=6.3,5.7Hz,1H),3.82(d,J=12.0Hz,1H),3.66(d,J=12.0Hz,1H),3.53(m,2H),2.89(ddd,J=13.2,6.3,6.3Hz,1H),2.54−2.48(m,1H),1.25(t,J=7.2Hz,3H)。
That is, the compound 38 (201 mg, 0.218 mmol) obtained in Synthesis Example 18 was dissolved in a 2M ethylamine-methanol solution (15 mL), and the mixture was heated and stirred at 70 ° C. overnight in a sealed tube. Then, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (dichloromethane: methanol = 98: 2-93: 7) to obtain Compound 44 (35 mg, 0.104 mmol, 48%).
1H NMR (Methanol-d4,500MHz) δ7.89 (s, 1H), 6.44 (t, J = 6.3Hz, 1H), 4.78 (dd, J = 6.3,5.7Hz, 1H) ), 3.82 (d, J = 12.0Hz, 1H), 3.66 (d, J = 12.0Hz, 1H), 3.53 (m, 2H), 2.89 (ddd, J = 13) .2,6.3,6.3Hz, 1H), 2.54-2.48 (m, 1H), 1.25 (t, J = 7.2Hz, 3H).

合成例24:2−アミノ−4’−アジド−2’−デオキシ−N −シクロプロピルアデノシンの合成
2−アミノ−4’−アジド−2’−デオキシ−N−シクロプロピルアデノシン(化合物45)を、以下の通りにして合成した。
Synthesis Example 24: Synthesis of 2-amino-4'-azido-2'-deoxy-N 6 -cyclopropyladenosine 2-amino-4'-azido-2'-deoxy-N 6 -cyclopropyladenosine (Compound 45) Was synthesized as follows.

すなわち、合成例18にて得られた化合物38(200mg,0.217mmol)、1,4−ジアザビシクロ[2.2.2]オクタン(48.7mg,0.434mmol)、モレキュラーシーブス(3A)(250mg)を入れたナスフラスコにジオキサン(5mL)を加え、室温で30分撹拌した。その後シクロプロピルアミン(151L,2.17mmol)、ジアザビシクロウンデセン(81uL,0.543mmol)を加え、室温で一晩撹拌を行った。反応後、不溶物をろ別して減圧下溶媒を留去した。得られた残渣を9Mアンモニア―メタノール溶液10mLに溶かし、封管中55℃で一晩加熱撹拌した。その後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィーにて精製し(ジクロロメタン:メタノール=99:1〜95:5)、化合物45を得た(45.1mg,0.130mmol,60%)。
H NMR(Methanol−d4,500MHz)δ7.90(s,1H),6.44(t,J=6.3Hz,1H),4.75(t,J=6.3Hz,1H),3.81(d,J=12.0Hz,1H),3.66(d,J=12.0Hz,1H),2.91−2.84(m,1H),2.90(brs,1H),2.54−2.47(m,1H),0.85−0.80(m,2H),0.62−0.57(m,2H)。
That is, compound 38 (200 mg, 0.217 mmol) obtained in Synthesis Example 18, 1,4-diazabicyclo [2.2.2] octane (48.7 mg, 0.434 mmol), molecular sieves (3A) (250 mg). ) Was added to the eggplant flask (5 mL), and the mixture was stirred at room temperature for 30 minutes. Then, cyclopropylamine (151 L, 2.17 mmol) and diazabicycloundecene (81 uL, 0.543 mmol) were added, and the mixture was stirred overnight at room temperature. After the reaction, the insoluble material was filtered off and the solvent was distilled off under reduced pressure. The obtained residue was dissolved in 10 mL of a 9 M ammonia-methanol solution, and the mixture was heated and stirred overnight at 55 ° C. in a sealed tube. Then, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (dichloromethane: methanol = 99: 1 to 95: 5) to obtain Compound 45 (45.1 mg, 0.130 mmol, 60%). ..
1 1 H NMR (Methanol-d 4,500 MHz) δ7.90 (s, 1H), 6.44 (t, J = 6.3Hz, 1H), 4.75 (t, J = 6.3Hz, 1H), 3 .81 (d, J = 12.0Hz, 1H), 3.66 (d, J = 12.0Hz, 1H), 2.91-2.84 (m, 1H), 2.90 (brs, 1H) , 2.54-2.47 (m, 1H), 0.85-0.80 (m, 2H), 0.62-0.57 (m, 2H).

合成例25:4’−アジド−2’−デオキシ−2−フルオロ−O −メチルイノシンの合成
4’−アジド−2’−デオキシ−2−フルオロ−O−メチルイノシン(化合物46)を、以下の通りにして合成した。
Synthesis Example 25: Synthesis of 4'-azido-2'-deoxy-2-fluoro-O 6 -methyl inosine 4'-azido-2'-deoxy-2-fluoro-O 6 -methyl inosine (Compound 46), It was synthesized as follows.

すなわち、合成例18にて得られた化合物38(88.0mg,0.273mmol)のピリジン(1mL)溶液を0℃で撹拌中、フッ化水素−ピリジン(1.8mL,64.3mmol)、亜硝酸tert−ブチル(82uL,0.692mmol)を加え、その後室温にて1時間撹拌した。その後、反応液を50%炭酸カリウム水溶液に加えてクエンチし、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、炭酸カリウムで乾燥して減圧下溶媒を留去した。残渣をシリカゲルクロマトグラフィーにて精製し(ジクロロメタン:メタノール=100:0〜96:4)、化合物46を得た(42.7mg,0.131mmol,48%)。
H NMR(DMSO−d,500MHz)δ8.55(d,J=0.6Hz,1H),6.49(ddd,J=7.6,4.0,0.6Hz,1H),5.80(dd,J=5.7,0.6Hz,1H),5.38(ddd,J=6.3,5.7,0.6Hz,1H),4.74(ddd,J=13.2,7.5,0.6Hz,1H),4.12(s,3H),3.69(ddd,J=12.0,5.7,0.6Hz,1H),3.60(ddd,J=12.0,5.7,0.6Hz,1H),2.84−2.78(m,1H),2.56−2.51(m,1H)。
That is, while stirring a pyridine (1 mL) solution of compound 38 (88.0 mg, 0.273 mmol) obtained in Synthesis Example 18 at 0 ° C., hydrogen fluoride-pyridine (1.8 mL, 64.3 mmol), nitrite. Tert-Butyl nitrate (82 uL, 0.692 mmol) was added, followed by stirring at room temperature for 1 hour. Then, the reaction solution was added to a 50% aqueous potassium carbonate solution, quenched, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over potassium carbonate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel chromatography (dichloromethane: methanol = 100: 0-96: 4) to give compound 46 (42.7 mg, 0.131 mmol, 48%).
1 H NMR (DMSO-d 6 , 500MHz) δ8.55 (d, J = 0.6Hz, 1H), 6.49 (ddd, J = 7.6,4.0,0.6Hz, 1H), 5 .80 (dd, J = 5.7, 0.6Hz, 1H), 5.38 (ddd, J = 6.3, 5.7, 0.6Hz, 1H), 4.74 (ddd, J = 13) .2,7.5,0.6Hz, 1H), 4.12 (s, 3H), 3.69 (ddd, J = 12.0, 5.7, 0.6Hz, 1H), 3.60 ( ddd, J = 12.0, 5.7, 0.6Hz, 1H), 2.84-2.78 (m, 1H), 2.56-2.51 (m, 1H).

合成例26:4’−アジド−2’−デオキシイノシンの合成
4’−アジド−2’−デオキシイノシン(化合物47)を、以下の通りにして合成した。
Synthesis Example 26: Synthesis of 4'-azido-2'-deoxyinosine 4'-azido-2'-deoxyinosine (Compound 47) was synthesized as follows.

すなわち、合成例18にて得られた化合物38(117mg、0.400mmol)を10mM トリス塩酸緩衝液(pH7.5)(30.0mL)に溶解し、子牛脾臓由来アデノシンデアミナーゼ(30uL、35units)を加え、37℃で2時間撹拌した。反応液を濃縮後、シリカゲルクロマトグラフィーにて精製し(ジクロロメタン:メタノール=9:1〜85:15)、化合物47を得た(94.0mg,0.321mmol,80%)。
H NMR(DMSO−d,500MHz)δ12.45(s,1H),8.31(s,1H),8.09(s,1H),6.48(dd,J=7.5,4.7Hz,1H),5.83(brs,1H),5.48(brs,1H),4.69(t,J=7.2Hz,1H),3.68(d,J=12.0Hz,1H),3.58(d,J=12.0Hz,1H),2.77(ddd,J=13.4,7.2,4.7Hz,1H),2.51−2.49(m,1H)。
That is, compound 38 (117 mg, 0.400 mmol) obtained in Synthesis Example 18 was dissolved in 10 mM Tris-hydrochloric acid buffer (pH 7.5) (30.0 mL), and calf spleen-derived adenosine deaminase (30 uL, 35 units) was dissolved. Was added, and the mixture was stirred at 37 ° C. for 2 hours. The reaction mixture was concentrated and purified by silica gel chromatography (dichloromethane: methanol = 9: 1 to 85:15) to give compound 47 (94.0 mg, 0.321 mmol, 80%).
1 H NMR (DMSO-d 6 , 500MHz) δ12.45 (s, 1H), 8.31 (s, 1H), 8.09 (s, 1H), 6.48 (dd, J = 7.5, 4.7Hz, 1H), 5.83 (brs, 1H), 5.48 (brs, 1H), 4.69 (t, J = 7.2Hz, 1H), 3.68 (d, J = 12. 0Hz, 1H), 3.58 (d, J = 12.0Hz, 1H), 2.77 (ddd, J = 13.4, 7.2, 4.7Hz, 1H), 2.51-2.49 (M, 1H).

合成例27:2−アミノ−4’−アジド−2’−デオキシアデノシンの合成
2−アミノ−4’−アジド−2’−デオキシアデノシン(化合物53)を合成すべく、先ず、下記化合物48(2−Amino−2’,5’−dideoxy−5’−iodoadenosine)を、以下の通りにして合成した。
Synthesis Example 27: Synthesis of 2-amino-4'-azido-2'-deoxyadenosine In order to synthesize 2-amino-4'-azido-2'-deoxyadenosine (Compound 53), first, the following compound 48 (2) -Amino-2', 5'-dideoxy-5'-iododenocine) was synthesized as follows.

2−Amino−2’−deoxyadenosine(10.0g,37.6mmol)とトリフェニルホスフィン(14.8g,56.3mmol)のピリジン(100mL)溶液にヨウ素(14.3g,56.3mmol)を加え、室温で撹拌を行った。4時間後、反応液に10%チオ硫酸ナトリウム水溶液を加えて減圧留去を行った後、残渣にジクロロメタン100mLと水100mLを加えて氷浴上にて撹拌を行った。その後、析出物をろ取して40℃にて真空乾燥を行い、化合物48を得た(11.7g,31.1mmol,83%)。
H NMR(DMSO−d,500MHz)δ7.94(s,1H),6.72(brs,2H),6.20(dd,J=8.0,6.3Hz,1H),5.82(brs,2H),5.50(d,J=4.0Hz,1H),4.37−4.33(m,1H),3.95−3.90(m,1H),3.53(dd,J=10.3,6.9Hz,1H),3.41(dd,J=10.3,6.6Hz,1H),2.88−2.80(m,1H),2.24−2.18(m,1H)。
Iodine (14.3 g, 56.3 mmol) was added to a pyridine (100 mL) solution of 2-Amino-2'-deoxydenocine (10.0 g, 37.6 mmol) and triphenylphosphine (14.8 g, 56.3 mmol). Stirring was performed at room temperature. After 4 hours, a 10% aqueous sodium thiosulfate solution was added to the reaction solution for distillation under reduced pressure, and then 100 mL of dichloromethane and 100 mL of water were added to the residue and the mixture was stirred on an ice bath. Then, the precipitate was collected by filtration and vacuum dried at 40 ° C. to obtain Compound 48 (11.7 g, 31.1 mmol, 83%).
1 1 H NMR (DMSO-d 6 , 500 MHz) δ7.94 (s, 1H), 6.72 (brs, 2H), 6.20 (dd, J = 8.0, 6.3 Hz, 1H), 5. 82 (brs, 2H), 5.50 (d, J = 4.0Hz, 1H), 4.37-4.33 (m, 1H), 3.95-3.90 (m, 1H), 3. 53 (dd, J = 10.3, 6.9Hz, 1H), 3.41 (dd, J = 10.3, 6.6Hz, 1H), 2.88-2.80 (m, 1H), 2 .24-2.18 (m, 1H).

次に、前記の通りにして得られた化合物48を用い、化合物49(2−Amino−9−(2,5−Dideoxy−β−D−glycero−pent−4−enoufranosyl)adenine)を、以下の通りにして合成した。 Next, using the compound 48 obtained as described above, compound 49 (2-Amino-9- (2,5-Dideoxy-β-D-glycero-pent-4-enoufranosyl) adenine) was added to the following. It was synthesized according to the street.

すなわち、化合物48(11.7g,31.1mmol)のアセトニトリル(100mL)溶液に、ジアザビシクロウンデセン(13.9mL,93.3mmol)を加えて80℃にて2時間加熱撹拌した。減圧下溶媒を留去した後、残渣をシリカゲルクロマトグラフィー(ジクロロメタン:メタノール=90:10〜85:15)にて精製した。その後氷浴上にてジクロロメタン20mLで撹拌洗浄し、40℃にて真空乾燥を行い、化合物49を得た(2.09g,8.42mmol,27%)。
H NMR(DMSO−d,500MHz)δ7.90(s,1H),6.74(brs,2H),6.40(t,J=6.3Hz,1H),5.85(brs,2H),5.57(d,J=5.2Hz,1H),4.93−4.89(m,1H),4.22(s,1H),4.12(s,1H),2.92−2.85(m,1H),2.35−2.28(m,1H)。
That is, diazabicycloundecene (13.9 mL, 93.3 mmol) was added to a solution of compound 48 (11.7 g, 31.1 mmol) in acetonitrile (100 mL), and the mixture was heated and stirred at 80 ° C. for 2 hours. After distilling off the solvent under reduced pressure, the residue was purified by silica gel chromatography (dichloromethane: methanol = 90: 10 to 85:15). Then, the mixture was stirred and washed with 20 mL of dichloromethane on an ice bath and vacuum dried at 40 ° C. to obtain Compound 49 (2.09 g, 8.42 mmol, 27%).
1 1 H NMR (DMSO-d 6 , 500 MHz) δ7.90 (s, 1H), 6.74 (brs, 2H), 6.40 (t, J = 6.3Hz, 1H), 5.85 (brs, bs, 2H), 5.57 (d, J = 5.2Hz, 1H), 4.93-4.89 (m, 1H), 4.22 (s, 1H), 4.12 (s, 1H), 2 .92-2.85 (m, 1H), 2.35-2.28 (m, 1H).

次に、前記の通りにして得られた化合物49を用い、化合物50(2−Amino−4’−azido−2’,5’−dideoxy−5’−iodoadenosine)を、以下の通りにして合成した。 Next, using the compound 49 obtained as described above, compound 50 (2-Amino-4'-azido-2', 5'-dideoxy-5'-iodoadenocine) was synthesized as follows. ..

すなわち、アジ化ナトリウム(2.74g,42.1mmol)と一塩化ヨウ素(3.42g,21.0mmol)のジメチルホルムアミド(8mL)溶液に、化合物49(2.09g,8.41mmol)のジメチルホルムアミド(16mL)溶液をゆっくりと加え、室温で1時間撹拌した。その後、氷浴上にて飽和重層水と10%チオ硫酸ナトリウム水溶液を加えた後ジクロロメタンで抽出し、飽和食塩水にて洗浄後、硫酸マグネシウムにて乾燥して減圧下溶媒を留去した。残渣をシリカゲルクロマトグラフィー(ジクロロメタン:メタノール=95:5〜90:10)にて精製し、化合物50を得た(2.23g,5.35mmol,64%)。
H NMR(DMSO−d,500MHz)δ7.97(s,1H),6.75(brs,2H),6.38(t,J=6.9Hz,1H),6.20(d,J=5.2Hz,1H),5.87(brs,2H),4.79−4.74(m,1H),3.76(d,J=10.9Hz,1H),3.61(d,J=10.9Hz,1H),3.04−2.97(m,1H),2.48−2.41(m,1H)。
That is, dimethylformamide of compound 49 (2.09 g, 8.41 mmol) in a solution of sodium azide (2.74 g, 42.1 mmol) and iodine monochloride (3.42 g, 21.0 mmol) in dimethylformamide (8 mL). The (16 mL) solution was added slowly and stirred at room temperature for 1 hour. Then, saturated layered water and a 10% aqueous sodium thiosulfate solution were added on an ice bath, extracted with dichloromethane, washed with saturated brine, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel chromatography (dichloromethane: methanol = 95: 5 to 90:10) to give compound 50 (2.23 g, 5.35 mmol, 64%).
1 H NMR (DMSO-d 6 , 500MHz) δ7.97 (s, 1H), 6.75 (brs, 2H), 6.38 (t, J = 6.9Hz, 1H), 6.20 (d, J = 5.2Hz, 1H), 5.87 (brs, 2H), 4.79-4.74 (m, 1H), 3.76 (d, J = 10.9Hz, 1H), 3.61 ( d, J = 10.9Hz, 1H), 3.04-2.97 (m, 1H), 2.48-2.41 (m, 1H).

次に、前記の通りにして得られた化合物50を用い、化合物51(2−Amino−4’−azido−3’−O−benzoyl−2’,5’−dideoxy−5’−iodoadenosine)を、以下の通りにして合成した。 Next, using the compound 50 obtained as described above, compound 51 (2-Amino-4'-azido-3'-O-benzoyl-2', 5'-dideoxy-5'-iododenocine) was added. It was synthesized as follows.

すなわち、化合物50(1.00g,2.40mmol)のピリジン(10mL)溶液に、無水安息香酸(794mg,3.51mmol)、N,N−ジメチルアミノピリジン(58.6mg,0.479mmol)を加えて室温で1時間撹拌した。さらにN,N−ジメチルアミノピリジン(58.6mg,0.479mmol)を加えて1時間撹拌後、飽和炭酸水素ナトリウム水溶液を加えてジクロロメタンで抽出した。有機層を飽和食塩水で洗浄、無水硫酸ナトリウムにて乾燥して減圧下溶媒を留去した。残渣をシリカゲルクロマトグラフィーにて精製し(ジクロロメタン:メタノール=99:1〜95:5)、化合物51を得た(722.6mg,1.39mmol,58%)。
H NMR(DMSO−d,500MHz)δ8.10−8.07(m,2H),8.02(s,1H),7.76−7.72(m,1H),7.63−7.59(m,2H),6.81(brs,2H),6.58(t,J=6.9Hz,1H),6.04(dd,J=6.3,4.0Hz,1H),5.91(brs,2H),3.99(d,J=11.5Hz,1H),3.78(d,J=11.5Hz,1H),3.48−3.41(m,1H),2.86−2.79(m,1H)。
That is, benzoic anhydride (794 mg, 3.51 mmol) and N, N-dimethylaminopyridine (58.6 mg, 0.479 mmol) were added to a pyridine (10 mL) solution of compound 50 (1.00 g, 2.40 mmol). Was stirred at room temperature for 1 hour. Further, N, N-dimethylaminopyridine (58.6 mg, 0.479 mmol) was added, the mixture was stirred for 1 hour, saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with dichloromethane. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel chromatography (dichloromethane: methanol = 99: 1-95: 5) to give compound 51 (722.6 mg, 1.39 mmol, 58%).
1 H NMR (DMSO-d 6 , 500MHz) δ8.10-8.07 (m, 2H), 8.02 (s, 1H), 7.76-7.72 (m, 1H), 7.63- 7.59 (m, 2H), 6.81 (brs, 2H), 6.58 (t, J = 6.9Hz, 1H), 6.04 (dd, J = 6.3, 4.0Hz, 1H) ), 5.91 (brs, 2H), 3.99 (d, J = 11.5Hz, 1H), 3.78 (d, J = 11.5Hz, 1H), 3.48-3.41 (m) , 1H), 2.86-2.79 (m, 1H).

次に、前記の通りにして得られた化合物51を用い、化合物52(N−acetyl−2−acetylamino−4’−azido−3’−O−benzoyl−2’,5’−dideoxy−5’−iodoadenosine)を、以下の通りにして合成した。 Next, using compound 51 obtained as described above, compound 52 (N 4- acetyl-2-acetyllamino-4'-azido-3'-O-benzoyl-2', 5'-dideoxy-5' -Iodoadenosine) was synthesized as follows.

すなわち、化合物51(230.0mg,0.441mmol)のピリジン(5mL)溶液に、無水酢酸(0.17mL,1.76mmol)、N,N−ジメチルアミノピリジン(58.6mg,0.479mmol)を加えて40℃にて一晩加熱撹拌した。飽和炭酸水素ナトリウム水溶液を加えた後、ジクロロメタンで抽出を行った。飽和食塩水にて洗浄後、無水硫酸マグネシウムで乾燥して減圧下溶媒を留去した。残渣をシリカゲルクロマトグラフィーにて精製し(ジクロロメタン:メタノール=97:3〜93:7)、化合物52を得た(134mg,0.221mmol,50%)。
H NMR(DMSO−d,500MHz)δ10.66(brs,1H),10.52(brs,1H),8.52(s,1H),8.12−8.08(m,2H),7.77−7.72(m,1H),7.64−7.59(m,2H),6.76(t,J=6.9Hz,1H),6.21(dd,J=6.3,4.6Hz,1H),4.17(d,J=11.5Hz,1H),3.85(d,J=11.5Hz,1H),3.67−3.60(m,1H),2.89−2.82(m,1H),2.31(s,3H),2.22(s,3H)。
That is, acetic anhydride (0.17 mL, 1.76 mmol) and N, N-dimethylaminopyridine (58.6 mg, 0.479 mmol) were added to a pyridine (5 mL) solution of compound 51 (230.0 mg, 0.441 mmol). In addition, the mixture was heated and stirred at 40 ° C. overnight. After adding a saturated aqueous sodium hydrogen carbonate solution, extraction was performed with dichloromethane. After washing with saturated brine, the mixture was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel chromatography (dichloromethane: methanol = 97: 3 to 93: 7) to give compound 52 (134 mg, 0.221 mmol, 50%).
1 1 H NMR (DMSO-d 6 , 500 MHz) δ10.66 (brs, 1H), 10.52 (brs, 1H), 8.52 (s, 1H), 8.12-8.08 (m, 2H) , 7.77-7.72 (m, 1H), 7.64-7.59 (m, 2H), 6.76 (t, J = 6.9Hz, 1H), 6.21 (dd, J = 6.3, 4.6Hz, 1H), 4.17 (d, J = 11.5Hz, 1H), 3.85 (d, J = 11.5Hz, 1H), 3.67-3.60 (m) , 1H), 2.89-2.82 (m, 1H), 2.31 (s, 3H), 2.22 (s, 3H).

次に、前記の通りにして得られた化合物52を用い、化合物53(2−Amino−4’−azido−2’−deoxyadenosine)を、以下の通りにして合成した。 Next, using the compound 52 obtained as described above, compound 53 (2-Amino-4'-azido-2'-deoxyadenosine) was synthesized as follows.

すなわち、化合物52(133.0mg,0.220mmol)を溶媒(ジクロロメタン:水=7mL:4mL)に溶かし、リン酸水素二カリウム(153.3mg,0.880mmol)、テトラブチルアンモニウム硫酸水素塩(164.3mg,0.484mmol)、m−クロロ安息香酸(75.8mg,0.484mmol)を加え撹拌を行った。0℃に冷却した後、m−クロロ過安息香酸(72%,158.2mg,0.660mmol)を加え、室温にて撹拌した。3時間後、各試薬を同量追加して終夜撹拌を継続した。反応後、10%二亜硫酸ナトリウム水溶液を加えてジクロロメタンで抽出し、有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄後、無水硫酸マグネシウムにて乾燥して減圧下溶媒を留去した。残渣をシリカゲルクロマトグラフィーにて精製した(ジクロロメタン:メタノール=100:0〜92:8)。得られた生成物を30%メチルアミン−エタノール溶液(10mL)に溶かし、封管中50℃で一晩加熱撹拌した。その後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィーにて精製し(ジクロロメタン:メタノール=91:9〜85:15)、化合物53を得た(17.6mg,0.0572mmol,2工程26%)。
H NMR(DMSO−d,500MHz)δ7.92(s,1H),6.77(brs,2H),6.34(dd,J=7.5,5.7Hz,1H),5.83(brs,2H),5.78(brs,1H),5.66(brs,1H),4.64(t,J=6.3Hz,1H),3.67(dd,J=12.0,4.0Hz,1H),3.54(dd,J=12.0,4.6Hz,1H),2.76−2.69(m,1H),2.44−2.37(m,1H)。
That is, compound 52 (133.0 mg, 0.220 mmol) was dissolved in a solvent (dichloromethane: water = 7 mL: 4 mL), dipotassium hydrogen phosphate (153.3 mg, 0.880 mmol), and tetrabutylammonium hydrogen sulfate (164). .3 mg, 0.484 mmol) and m-chlorobenzoic acid (75.8 mg, 0.484 mmol) were added and stirred. After cooling to 0 ° C., m-chloroperbenzoic acid (72%, 158.2 mg, 0.660 mmol) was added, and the mixture was stirred at room temperature. After 3 hours, the same amount of each reagent was added and stirring was continued overnight. After the reaction, a 10% aqueous sodium disulfide solution was added and extracted with dichloromethane. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel chromatography (dichloromethane: methanol = 100: 0-92: 8). The resulting product was dissolved in a 30% methylamine-ethanol solution (10 mL) and heated and stirred at 50 ° C. overnight in a sealed tube. Then, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (dichloromethane: methanol = 91: 9 to 85:15) to obtain compound 53 (17.6 mg, 0.0572 mmol, 2 steps 26). %).
1 1 H NMR (DMSO-d 6 , 500 MHz) δ7.92 (s, 1H), 6.77 (brs, 2H), 6.34 (dd, J = 7.5,5.7 Hz, 1H), 5. 83 (brs, 2H), 5.78 (brs, 1H), 5.66 (brs, 1H), 4.64 (t, J = 6.3Hz, 1H), 3.67 (dd, J = 12. 0,4.0Hz, 1H), 3.54 (dd, J = 12.0, 4.6Hz, 1H), 2.76-2.69 (m, 1H), 2.44-2.37 (m) , 1H).

合成例30:化合物80等の共通中間体の合成
後述の化合物80、82、84及び97を合成するに際し、これら化合物に共通する中間体(化合物78)を、以下に示す反応工程にて合成した。
Synthesis Example 30: Synthesis of common intermediates such as compound 80 When synthesizing compounds 80, 82, 84 and 97 described later, intermediates (compound 78) common to these compounds were synthesized by the reaction steps shown below. ..

先ず、化合物73(Nucleoside&Nucleotide,1985,4,641−649 参照)から、化合物74(9−(3−O−tert−ブチルジメチルシリル−2−O−デオキシ−β−D−リボフラノシル)−1−ヒドロ−2−イソブチリルアミノ−6H−プリン−6−オン)を合成した。すなわち、化合物73(8.33g,13mmol)をN,N−ジメチルホルムアミド(65mL)に溶解させた後、イミダゾール(2.83g,42mmol)とtert−ブチルジメチルシリルクロリド(5.89g,39mmol)を順次加え、室温で20時間攪拌した。反応終了後、飽和重曹水でクエンチを行った後、酢酸エチルによる抽出を行った。続いて硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製の3’水酸基保護体(13mmol)を得た。粗精製の3’水酸基保護体(13mmol)をクロロホルム(87mL)に溶解させた後、メタノール(37mL)に溶解させたp−トルエンスルホン酸一水和物(7.42g,39mmol)を−15℃で滴下し、同温で1.5時間攪拌した。反応終了後、反応液がオレンジから無色になるまで飽和重曹水を加え、クロロホルムによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n−ヘキサン=1/1→酢酸エチル→メタノール/クロロホルム=1/20)で精製を行い、化合物74を得た(5.44g,12mmol,2工程93%)。
H−NMR(CDCl,500MHz);δ12.08(1H,brs),8.36(1H,brs),7.73(1H,s),6.19(1H,dd,J=9.0,5.5Hz),5.21(1H,d,J=10.5Hz),4.61(1H,d,J=5.5Hz),4.12(1H,d,J=1.0Hz),3.94(1H,m),3.74(1H,m),2.79(1H,m),2.65(1H,m),2.23(1H,m),1.28(3H,d,J=3.0Hz),1.27(3H,d,J=3.0Hz),0.93(9H,s),0.118(3H,s),0.115(3H,s)。
First, from compound 73 (see Nucleoside & Nucleotide, 1985, 4, 641-649), compound 74 (9- (3-O-tert-butyldimethylsilyl-2-O-deoxy-β-D-ribofuranosyl) -1-hydro. -2-isobutyrylamino-6H-purine-6-one) was synthesized. That is, compound 73 (8.33 g, 13 mmol) was dissolved in N, N-dimethylformamide (65 mL), followed by imidazole (2.83 g, 42 mmol) and tert-butyldimethylsilyl chloride (5.89 g, 39 mmol). They were added sequentially and stirred at room temperature for 20 hours. After completion of the reaction, quenching was performed with saturated aqueous sodium hydrogen carbonate, and then extraction was performed with ethyl acetate. Subsequently, the organic layer was dried over magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crudely purified 3'hydroxyl protectant (13 mmol). A crudely purified 3'hydroxyl protectant (13 mmol) was dissolved in chloroform (87 mL), and then p-toluenesulfonic acid monohydrate (7.42 g, 39 mmol) dissolved in methanol (37 mL) was added at −15 ° C. And stirred at the same temperature for 1.5 hours. After completion of the reaction, saturated aqueous sodium hydrogen carbonate was added until the reaction solution turned orange to colorless, and extraction was performed with chloroform. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue is purified by silica gel column chromatography (ethyl acetate / n-hexane = 1/1 → ethyl acetate → methanol / chloroform = 1/20). This was carried out to obtain compound 74 (5.44 g, 12 mmol, 2 steps 93%).
1 H-NMR (CDCl 3 , 500 MHz); δ12.08 (1H, brs), 8.36 (1H, brs), 7.73 (1H, s), 6.19 (1H, dd, J = 9. 0,5.5Hz), 5.21 (1H, d, J = 10.5Hz), 4.61 (1H, d, J = 5.5Hz), 4.12 (1H, d, J = 1.0Hz) ), 3.94 (1H, m), 3.74 (1H, m), 2.79 (1H, m), 2.65 (1H, m), 2.23 (1H, m), 1.28 (3H, d, J = 3.0Hz), 1.27 (3H, d, J = 3.0Hz), 0.93 (9H, s), 0.118 (3H, s), 0.115 (3H) , S).

次に、このようにして得られた化合物74から、化合物75(9−(3−O−tert−ブチルジメチルシリル−2−O−デオキシ−4−C−ヒドロキシメチル−β−D−リボフラノシル)−1−ヒドロ−2−イソブチリルアミノ−6H−プリン−6−オン)を合成した。すなわち、化合物74(103mg,0.23mmol)をトルエン(0.23mL)とジメチルスルホキシド(0.23mL)に溶解させた後、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(132mg,0.69mmol)、ピリジン(36.9μL,0.46mmol)、トリフルオロ酢酸(18μL,0.23mmol)を順次加え、室温で14時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。続いて硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製のアルデヒドを得た。粗精製のアルデヒドをジオキサン(4.6mL)に溶解させた後、37%ホルムアルデヒド水溶液(100μL,1.0mmol)と1規定水酸化ナトリウム水溶液(275μL,0.28mmol)を順次加え、室温で20分攪拌した。次に1規定水酸化ナトリウム水溶液(275μL,0.28mmol)を追加し、室温で35分攪拌した後、0℃で水素化ホウ素ナトリウム(26.0mg,0.69mmol)を加え、室温で45分攪拌した。反応終了後、1規定塩酸でクエンチを行った後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(メタノール/クロロホルム=1/20)で精製を行い、化合物75を得た(38.9mg,0.081mmol,2工程35%)。
H−NMR(CDCl,500MHz);δ12.08(1H,brs),9.78(1H,brs),7.92(1H,s),6.27(1H,t,J=7.0Hz),4.83(1H,dd,J=7.0,4.0Hz),4.76(1H,brs),3.95(1H,d,J=12.0Hz),3.89(1H,d,J=11.0Hz),3.68−3.61(3H,m),2.85−2.77(2H,m),2.41(1H,m),1.25(3H,d,J=7.0Hz),1.22(3H,d,J=7.0Hz),0.90(9H,s),0.13(3H,s),0.12(3H,s)。
Next, from the compound 74 thus obtained, compound 75 (9- (3-O-tert-butyldimethylsilyl-2-O-deoxy-4-C-hydroxymethyl-β-D-ribofuranosyl)- 1-hydro-2-isobutyrylamino-6H-purine-6-one) was synthesized. That is, compound 74 (103 mg, 0.23 mmol) was dissolved in toluene (0.23 mL) and dimethyl sulfoxide (0.23 mL), followed by 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (132 mg). , 0.69 mmol), pyridine (36.9 μL, 0.46 mmol) and trifluoroacetic acid (18 μL, 0.23 mmol) were sequentially added, and the mixture was stirred at room temperature for 14 hours. After completion of the reaction, extraction with ethyl acetate was performed. Subsequently, the organic layer was dried over magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crude aldehyde. After dissolving the crude aldehyde in dioxane (4.6 mL), a 37% aqueous formaldehyde solution (100 μL, 1.0 mmol) and a 1N aqueous sodium hydroxide solution (275 μL, 0.28 mmol) are sequentially added, and the temperature is 20 minutes at room temperature. Stirred. Next, 1N aqueous sodium hydroxide solution (275 μL, 0.28 mmol) was added, and the mixture was stirred at room temperature for 35 minutes, sodium borohydride (26.0 mg, 0.69 mmol) was added at 0 ° C., and 45 minutes at room temperature. Stirred. After completion of the reaction, quenching was carried out with 1N hydrochloric acid, and then extraction with ethyl acetate was carried out. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (methanol / chloroform = 1/20) to obtain Compound 75 (38.9 mg, 0. 081 mmol, 2 steps 35%).
1 H-NMR (CDCl 3, 500MHz); δ12.08 (1H, brs), 9.78 (1H, brs), 7.92 (1H, s), 6.27 (1H, t, J = 7. 0Hz), 4.83 (1H, dd, J = 7.0, 4.0Hz), 4.76 (1H, brs), 3.95 (1H, d, J = 12.0Hz), 3.89 ( 1H, d, J = 11.0Hz), 3.68-3.61 (3H, m), 2.85-2.77 (2H, m), 2.41 (1H, m), 1.25 ( 3H, d, J = 7.0Hz), 1.22 (3H, d, J = 7.0Hz), 0.90 (9H, s), 0.13 (3H, s), 0.12 (3H, s).

次に、このようにして得られた化合物75から、化合物76(9−(3,5−ジ−O−tert−ブチルジメチルシリル−2−O−デオキシ−4−C−ヒドロキシメチル−β−D−リボフラノシル)−1−ヒドロ−2−イソブチリルアミノ−6H−プリン−6−オン)を合成した。すなわち、化合物75(726mg,1.5mmol)をピリジンで共沸させた後、N,N−ジメチルホルムアミド(15mL)に溶解させ、0℃でトリエチルアミン(421μL,3.0mmol)と4,4’−ジメトキシトリチルクロリド(767mg,2.3mmol)を順次加え、室温で20分、0℃で1時間攪拌した。反応終了後、メタノールでクエンチを行った後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n−ヘキサン=2/1→酢酸エチル)で精製を行い、粗精製の6’水酸基保護体(958mg,1.2mmol)を得た。6’水酸基保護体(958mg,1.2mmol)をN,N−ジメチルホルムアミド(6mL)に溶解させた後、イミダゾール(291mg,4.27mmol)とtert−ブチルジメチルシリルクロリド(552mg,3.7mmol)を順次加え、室温で25分攪拌した。反応終了後、飽和重曹水でクエンチを行った後、酢酸エチルによる抽出を行った。続いて硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製の5’水酸基保護体を得た。粗精製の5’水酸基保護体をクロロホルム(8mL)に溶解させた後、メタノール(4.5mL)に溶解させたp−トルエンスルホン酸一水和物(928mg,4.9mmol)を−15℃で滴下し、同温で1.5時間攪拌した。反応終了後、反応液がオレンジから無色になるまで飽和重曹水を加え、クロロホルムによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n−ヘキサン=2/1)で精製を行い、化合物76を得た(461mg,0.77mmol,3工程51%)。
H−NMR(CDCl,500MHz);δ12.03(1H,brs),8.68(1H,brs),7.94(1H,s),6.24(1H,t,J=6.0Hz),4.79(1H,dd,J=6.5,5.0Hz),3.83(1H,dd,J=12.0,4.5Hz),3.75(1H,d,J=10.5Hz),3.69−3.65(2H,m),2.68−2.58(3H,m),2.50−2.45(1H,m),1.27(3H,d,J=7.0Hz),1.24(3H,d,J=7.0Hz),0.92(9H,s),0.91(9H,s),0.14(3H,s),0.13(3H,s),0.08(3H,s),0.07(3H,s)。
Next, from the compound 75 thus obtained, compound 76 (9- (3,5-di-O-tert-butyldimethylsilyl-2-O-deoxy-4-C-hydroxymethyl-β-D) -Riboflanosyl) -1-hydro-2-isobutyrylamino-6H-purine-6-one) was synthesized. That is, compound 75 (726 mg, 1.5 mmol) was azeotropically boiled with pyridine, then dissolved in N, N-dimethylformamide (15 mL), and triethylamine (421 μL, 3.0 mmol) and 4,4′- at 0 ° C. Dimethoxytrityl chloride (767 mg, 2.3 mmol) was sequentially added, and the mixture was stirred at room temperature for 20 minutes and at 0 ° C. for 1 hour. After completion of the reaction, quenching was performed with methanol, and then extraction was performed with ethyl acetate. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 2/1 → ethyl acetate), and a crude 6'hydroxyl hydroxyl group was purified. A protected product (958 mg, 1.2 mmol) was obtained. After dissolving the 6'hydroxyl protector (958 mg, 1.2 mmol) in N, N-dimethylformamide (6 mL), imidazole (291 mg, 4.27 mmol) and tert-butyldimethylsilyl chloride (552 mg, 3.7 mmol) Was sequentially added, and the mixture was stirred at room temperature for 25 minutes. After completion of the reaction, quenching was performed with saturated aqueous sodium hydrogen carbonate, and then extraction was performed with ethyl acetate. Subsequently, the organic layer was dried over magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crudely purified 5'hydroxyl protectant. After dissolving the crude 5'hydroxyl protector in chloroform (8 mL), p-toluenesulfonic acid monohydrate (928 mg, 4.9 mmol) dissolved in methanol (4.5 mL) was added at -15 ° C. The mixture was added dropwise, and the mixture was stirred at the same temperature for 1.5 hours. After completion of the reaction, saturated aqueous sodium hydrogen carbonate was added until the reaction solution turned orange to colorless, and extraction was performed with chloroform. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 2/1) to obtain compound 76 (461 mg, 0). .77 mmol, 3 steps 51%).
1 H-NMR (CDCl 3 , 500 MHz); δ12.03 (1H, brs), 8.68 (1H, brs), 7.94 (1H, s), 6.24 (1H, t, J = 6. 0Hz), 4.79 (1H, dd, J = 6.5,5.0Hz), 3.83 (1H, dd, J = 12.0, 4.5Hz), 3.75 (1H, d, J) = 10.5Hz), 3.69-3.65 (2H, m), 2.68-2.58 (3H, m), 2.50-2.45 (1H, m), 1.27 (3H) , D, J = 7.0Hz), 1.24 (3H, d, J = 7.0Hz), 0.92 (9H, s), 0.91 (9H, s), 0.14 (3H, s) ), 0.13 (3H, s), 0.08 (3H, s), 0.07 (3H, s).

次に、このようにして得られた化合物76から、化合物77(9−(3,5−ジ−O−tert−ブチルジメチルシリル−4−C−シアノ−2−O−デオキシ−β−D−リボフラノシル)−1−ヒドロ−2−イソブチリルアミノ−6H−プリン−6−オン)を合成した。すなわち、化合物76(70.4mg,0.12mmol)をトルエン(0.12mL)とジメチルスルホキシド(0.12mL)に溶解させた後、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(67.9mg,0.35mmol)、ピリジン(19.0μL,0.24mmol)、トリフルオロ酢酸(9.0μL,0.12mmol)を順次加え、室温で14時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。続いて硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製のアルデヒドを得た。粗精製のアルデヒドをピリジン(1.2mL)に溶解させた後、塩酸ヒドロキシルアミン(12.3mg,0.18mmol)を加え、室温で35分攪拌した。反応終了後、酢酸エチルによる抽出を行った。続いて硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製のオキシムを得た。粗精製のオキシムをジクロロメタン(1.2mL)に溶解させた後、0℃でトリエチルアミン(33μL,0.24mmol)とメタンスルホニルクロリド(14μL,0.18mmol)を順次加え、同温で1時間攪拌した。反応終了後、飽和重曹水でクエンチを行った後、酢酸エチルによる抽出を行った。続いて硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n−ヘキサン=2/1)で精製を行い、化合物77を得た(61.1mg,0.10mmol,3工程88%)。
H−NMR(CDCl,500MHz);δ12.00(1H,brs),7.97(1H,brs),7.81(1H,s),6.36(1H,t,J=6.5Hz),4.82(1H,t,J=6.0Hz),3.91(2H,s),2.66−2.55(3H,m),1.31(6H,d,J=7.0Hz),0.97(9H,s),0.90(9H,s),0.19(3H,s),0.17(3H,s),0.11(3H,s),0.07(3H,s)。
Next, from the compound 76 thus obtained, compound 77 (9- (3,5-di-O-tert-butyldimethylsilyl-4-C-cyano-2-O-deoxy-β-D-) Ribofuranosyl) -1-hydro-2-isobutyrylamino-6H-purine-6-one) was synthesized. That is, compound 76 (70.4 mg, 0.12 mmol) was dissolved in toluene (0.12 mL) and dimethyl sulfoxide (0.12 mL), followed by 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride. (67.9 mg, 0.35 mmol), pyridine (19.0 μL, 0.24 mmol) and trifluoroacetic acid (9.0 μL, 0.12 mmol) were sequentially added, and the mixture was stirred at room temperature for 14 hours. After completion of the reaction, extraction with ethyl acetate was performed. Subsequently, the organic layer was dried over magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crude aldehyde. After dissolving the crude aldehyde in pyridine (1.2 mL), hydroxylamine hydrochloride (12.3 mg, 0.18 mmol) was added, and the mixture was stirred at room temperature for 35 minutes. After completion of the reaction, extraction with ethyl acetate was performed. Subsequently, the organic layer was dried over magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crude oxime. After dissolving the crude oxime in dichloromethane (1.2 mL), triethylamine (33 μL, 0.24 mmol) and methanesulfonyl chloride (14 μL, 0.18 mmol) were sequentially added at 0 ° C., and the mixture was stirred at the same temperature for 1 hour. .. After completion of the reaction, quenching was performed with saturated aqueous sodium hydrogen carbonate, and then extraction was performed with ethyl acetate. Subsequently, the organic layer was dried over magnesium sulfate and the solvent was distilled off under reduced pressure, and then the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 2/1) to obtain Compound 77 (61). .1 mg, 0.10 mmol, 3 steps 88%).
1 H-NMR (CDCl 3, 500MHz); δ12.00 (1H, brs), 7.97 (1H, brs), 7.81 (1H, s), 6.36 (1H, t, J = 6. 5Hz), 4.82 (1H, t, J = 6.0Hz), 3.91 (2H, s), 2.66-2.55 (3H, m), 1.31 (6H, d, J = 7.0Hz), 0.97 (9H, s), 0.90 (9H, s), 0.19 (3H, s), 0.17 (3H, s), 0.11 (3H, s), 0.07 (3H, s).

次に、このようにして得られた化合物77から、化合物80等の共通中間体(化合物78、9−(3,5−ジ−O−tert−ブチルジメチルシリル−4−C−シアノ−2−O−デオキシ−β−D−リボフラノシル)−2−イソブチリルアミノ−6−(2,4,6−トリイソプロピルベンゼンスルホニルオキシ)プリン)を合成した。すなわち、化合物77(46.1mg,0.078mmol)をジクロロメタン(1mL)に溶解させた後、トリエチルアミン(22μL,0.16mmol)、2,4,6−トリイソプロピルベンゼンスルホニルクロリド(47.3mg,0.16mmol),4−ジメチルアミノピリジン(0.95mg,7.8μmol)を順次加え、室温で1.5時間攪拌した。反応終了後、飽和重曹水でクエンチを行った後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n−ヘキサン=1/4)で精製を行い、化合物78を得た(58.5mg,0.068mmol,88%)。
H−NMR(CDCl,500MHz);δ7.99(1H,s),7.95(1H,brs),7.23(2H,s),6.38(1H,t,J=6.5Hz),5.18(1H,t,J=5.5Hz),4.25(2H,m),4.12(1H,d,J=11.5Hz),3.95(1H,d,J=11.0Hz),3.20(1H,m),2.94(1H,m),2.69(1H,brs),2.51(1H,m),1.30−1.26(18H,m),1.23(3H,d,J=2.0Hz),1.21(3H,d,J=1.5Hz),0.96(9H,s),0.88(9H,s),0.22(3H,s),0.14(3H,s),0.070(3H,s),0.065(3H,s)。
Next, from the compound 77 thus obtained, a common intermediate such as compound 80 (compound 78, 9- (3,5-di-O-tert-butyldimethylsilyl-4-C-cyano-2-) O-deoxy-β-D-ribofuranosyl) -2-isobutyrylamino-6- (2,4,6-triisopropylbenzenesulfonyloxy) purine) was synthesized. That is, after dissolving compound 77 (46.1 mg, 0.078 mmol) in dichloromethane (1 mL), triethylamine (22 μL, 0.16 mmol), 2,4,6-triisopropylbenzenesulfonyl chloride (47.3 mg, 0) .16 mmol) and 4-dimethylaminopyridine (0.95 mg, 7.8 μmol) were sequentially added, and the mixture was stirred at room temperature for 1.5 hours. After completion of the reaction, quenching was performed with saturated aqueous sodium hydrogen carbonate, and then extraction was performed with ethyl acetate. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 1/4) to obtain compound 78 (58.5 mg). , 0.068 mmol, 88%).
1 1 H-NMR (CDCl 3 , 500 MHz); δ7.99 (1H, s), 7.95 (1H, brs), 7.23 (2H, s), 6.38 (1H, t, J = 6. 5Hz), 5.18 (1H, t, J = 5.5Hz), 4.25 (2H, m), 4.12 (1H, d, J = 11.5Hz), 3.95 (1H, d, J = 11.0Hz), 3.20 (1H, m), 2.94 (1H, m), 2.69 (1H, brs), 2.51 (1H, m), 1.30-1.26 (18H, m), 1.23 (3H, d, J = 2.0Hz), 1.21 (3H, d, J = 1.5Hz), 0.96 (9H, s), 0.88 (9H) , S), 0.22 (3H, s), 0.14 (3H, s), 0.070 (3H, s), 0.065 (3H, s).

合成例31:2−アミノ−9−(4−C−シアノ−2−O−デオキシ−β−D−リボフラノシル)−6−ジメチルアミノプリンの合成
2−アミノ−9−(4−C−シアノ−2−O−デオキシ−β−D−リボフラノシル)−6−ジメチルアミノプリン(化合物80)の合成に際し、先ず、合成例30にて得られた化合物78を用い、化合物79(2−アミノ−9−(3,5−ジ−O−tert−ブチルジメチルシリル−4−C−シアノ−2−O−デオキシ−β−D−リボフラノシル)−6−ジメチルアミノプリン)を、以下の通りにして合成した。
Synthesis Example 31: Synthesis of 2-amino-9- (4-C-cyano-2-O-deoxy-β-D-ribofuranosyl) -6-dimethylaminopurine 2-amino-9- (4-C-cyano-) In the synthesis of 2-O-deoxy-β-D-ribofuranosyl) -6-dimethylaminopurine (Compound 80), first, the compound 78 obtained in Synthesis Example 30 was used, and the compound 79 (2-amino-9-) was used. (3,5-di-O-tert-butyldimethylsilyl-4-C-cyano-2-O-deoxy-β-D-ribofuranosyl) -6-dimethylaminopurine) was synthesized as follows.

すなわち、化合物78(33.0mg,0.039mmol)をテトラヒドロフラン(2mL)に溶解させた後、50%ジメチルアミン水溶液(1mL)を加え、50℃で1時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n−ヘキサン=1/2)で精製を行い、化合物79を得た(18.4mg,0.030mmol,77%)。
H−NMR(CDCl,500MHz);δ7.69(1H,s),7.63(1H,brs),6.36(1H,t,J=6.5Hz),5.03(1H,t,J=5.5Hz),4.04(1H,d,J=11.0Hz),3.93(1H,d,J=11.0Hz),3.47(6H,brs),3.11(2H,m),2.48(1H,m),1.26(6H,d,J=7.0Hz),0.97(9H,s),0.89(9H,s),0.21(3H,s),0.16(3H,s),0.083(3H,s),0.066(3H,s)。
That is, compound 78 (33.0 mg, 0.039 mmol) was dissolved in tetrahydrofuran (2 mL), a 50% aqueous dimethylamine solution (1 mL) was added, and the mixture was stirred at 50 ° C. for 1 hour. After completion of the reaction, extraction with ethyl acetate was performed. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 1/2) to obtain compound 79 (18.4 mg). , 0.030 mmol, 77%).
1 H-NMR (CDCl 3 , 500 MHz); δ7.69 (1H, s), 7.63 (1H, brs), 6.36 (1H, t, J = 6.5 Hz), 5.03 (1H, 1H, t, J = 5.5Hz), 4.04 (1H, d, J = 11.0Hz), 3.93 (1H, d, J = 11.0Hz), 3.47 (6H, brs), 3. 11 (2H, m), 2.48 (1H, m), 1.26 (6H, d, J = 7.0Hz), 0.97 (9H, s), 0.89 (9H, s), 0 .21 (3H, s), 0.16 (3H, s), 0.083 (3H, s), 0.066 (3H, s).

次に、このようにして得られた化合物79から、以下の通りにして、化合物80(2−アミノ−9−(4−C−シアノ−2−O−デオキシ−β−D−リボフラノシル)−6−ジメチルアミノプリン)を合成した。 Next, from the compound 79 thus obtained, compound 80 (2-amino-9- (4-C-cyano-2-O-deoxy-β-D-ribofuranosyl) -6) was prepared as follows. -Dimethylaminopurine) was synthesized.

すなわち、化合物79(18.4mg,0.030mmol)を2−プロパノール(0.5mL)に溶解させた後、ヨウ化アンモニウム(4.3mg,0.0298mmol)、ヒドラジン一水和物(0.5mL)を順次加え、70℃で14.5時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n−ヘキサン=1/1)で精製を行い、2位アミノ基脱保護体(0.030mmol)を得た。2位アミノ基脱保護体(0.030mmol)をテトラヒドロフラン(1mL)に溶解させた後、テトラブチルアンモニウムフルオリド(1.0Mテトラヒドロフラン溶液,0.1mL)を加え、室温で30分攪拌した。反応終了後、溶媒の減圧留去を行い、残渣をシリカゲルカラムクロマトグラフィー(メタノール/クロロホルム=1/20)で精製を行い、粗精製の化合物80を得た。粗精製の化合物80をシリカゲルカラムクロマトグラフィー(NHシリカ、酢酸エチル→メタノール/クロロホルム=1/10)で精製を行い、化合物80を得た(7.8mg,0.024mmol,2工程82%)。
H−NMR(CDOD,500MHz);δ7.82(1H,s),6.43(1H,t,J=7.0Hz),4.78(1H,dd,J=6.0,4.0Hz),3.96(1H,d,J=12.0Hz),3.88(1H,d,J=12.5Hz),3.40(6H,brs),2.95(1H,m),2.48(1H,m)。
That is, compound 79 (18.4 mg, 0.030 mmol) was dissolved in 2-propanol (0.5 mL), followed by ammonium iodide (4.3 mg, 0.0298 mmol) and hydrazine monohydrate (0.5 mL). ) Was added sequentially, and the mixture was stirred at 70 ° C. for 14.5 hours. After completion of the reaction, extraction with ethyl acetate was performed. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 1/1) to remove the 2-position amino group (0). .030 mmol) was obtained. After dissolving the 2-position amino group deprotected body (0.030 mmol) in tetrahydrofuran (1 mL), tetrabutylammonium fluoride (1.0 M tetrahydrofuran solution, 0.1 mL) was added, and the mixture was stirred at room temperature for 30 minutes. After completion of the reaction, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (methanol / chloroform = 1/20) to obtain a crudely purified compound 80. The crudely purified compound 80 was purified by silica gel column chromatography (NH silica, ethyl acetate → methanol / chloroform = 1/10) to obtain compound 80 (7.8 mg, 0.024 mmol, 2 steps 82%).
1 1 H-NMR (CD 3 OD, 500 MHz); δ7.82 (1H, s), 6.43 (1H, t, J = 7.0 Hz), 4.78 (1H, dd, J = 6.0, 4.0Hz), 3.96 (1H, d, J = 12.0Hz), 3.88 (1H, d, J = 12.5Hz), 3.40 (6H, brs), 2.95 (1H, 1H, m), 2.48 (1H, m).

合成例32:2−アミノ−9−(4−C−シアノ−2−O−デオキシ−β−D−リボフラノシル)−6−シクロプロピルアミノプリンの合成
2−アミノ−9−(4−C−シアノ−2−O−デオキシ−β−D−リボフラノシル)−6−シクロプロピルアミノプリン(化合物82)の合成に際し、先ず、合成例30にて得られた化合物78を用い、化合物81(2−アミノ−9−(3,5−ジ−O−tert−ブチルジメチルシリル−4−C−シアノ−2−O−デオキシ−β−D−リボフラノシル)−6−シクロプロピルアミノプリン)を、以下の通りにして合成した。
Synthesis Example 32: Synthesis of 2-amino-9- (4-C-cyano-2-O-deoxy-β-D-ribofuranosyl) -6-cyclopropylaminopurine 2-amino-9- (4-C-cyano) In the synthesis of -2-O-deoxy-β-D-ribofuranosyl) -6-cyclopropylaminopurine (Compound 82), first, the compound 78 obtained in Synthesis Example 30 was used, and the compound 81 (2-amino-) was used. 9- (3,5-di-O-tert-butyldimethylsilyl-4-C-cyano-2-O-deoxy-β-D-ribofuranosyl) -6-cyclopropylaminopurine) is as follows. Synthesized.

すなわち、化合物78(9.5mg,0.011mmol)をテトラヒドロフラン(2mL)に溶解させた後、シクロプロピルアミン(0.2mL)を加え、50℃で2時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製の6位シクロプロピルアミノ体を得た。粗精製の6位シクロプロピルアミノ体(0.011mmol)を2−プロパノール(0.5mL)に溶解させた後、ヨウ化アンモニウム(1.6mg,0.011mmol)、ヒドラジン一水和物(0.5mL)を順次加え、70℃で2.5時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n−ヘキサン=1/1)で精製を行い、化合物81を得た(5.4mg,0.0097mmol,2工程87%)。
H−NMR(CDCl,500MHz);δ7.56(1H,s),6.32(1H,t,J=6.5Hz),5.73(1H,brs),4.92(1H,t,J=6.0Hz),4.71(2H,brs),4.01(1H,d,J=11.0Hz),3.86(1H,d,J=11.0Hz),3.08(1H,m),2.97(1H,brs),2.48(1H,m),0.96(9H,s),0.89(9H,s),0.86(2H,m),0.61(2H,m),0.19(3H,s),0.17(3H,s),0.085(3H,s),0.043(3H,s)。
That is, compound 78 (9.5 mg, 0.011 mmol) was dissolved in tetrahydrofuran (2 mL), cyclopropylamine (0.2 mL) was added, and the mixture was stirred at 50 ° C. for 2 hours. After completion of the reaction, extraction with ethyl acetate was performed. The organic layer was dried over magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crudely purified 6-position cyclopropylamino compound. After dissolving the crudely purified 6-position cyclopropylamino compound (0.011 mmol) in 2-propanol (0.5 mL), ammonium iodide (1.6 mg, 0.011 mmol) and hydrazine monohydrate (0. 5 mL) was added sequentially, and the mixture was stirred at 70 ° C. for 2.5 hours. After completion of the reaction, extraction with ethyl acetate was performed. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 1/1) to obtain compound 81 (5.4 mg). , 0.0097 mmol, 2 steps 87%).
1 H-NMR (CDCl 3 , 500 MHz); δ7.56 (1H, s), 6.32 (1H, t, J = 6.5 Hz), 5.73 (1H, brs), 4.92 (1H, 1H, t, J = 6.0Hz), 4.71 (2H, brs), 4.01 (1H, d, J = 11.0Hz), 3.86 (1H, d, J = 11.0Hz), 3. 08 (1H, m), 2.97 (1H, brs), 2.48 (1H, m), 0.96 (9H, s), 0.89 (9H, s), 0.86 (2H, m) ), 0.61 (2H, m), 0.19 (3H, s), 0.17 (3H, s), 0.085 (3H, s), 0.043 (3H, s).

このようにして得られた化合物81から、化合物82(2−アミノ−9−(4−C−シアノ−2−O−デオキシ−β−D−リボフラノシル)−6−シクロプロピルアミノプリン)を、以下の通りにして合成した。 From the compound 81 thus obtained, compound 82 (2-amino-9- (4-C-cyano-2-O-deoxy-β-D-ribofuranosyl) -6-cyclopropylaminopurine) was added to the following. It was synthesized as follows.

すなわち、化合物81(12.9mg,0.023mmol)をテトラヒドロフラン(1mL)に溶解させた後、テトラブチルアンモニウムフルオリド(1.0Mテトラヒドロフラン溶液,0.1mL)を加え、室温で10分攪拌した。反応終了後、溶媒の減圧留去を行い、残渣をシリカゲルカラムクロマトグラフィー(メタノール/クロロホルム=1/20)で精製を行い、粗精製の化合物82を得た。粗精製の化合物82をシリカゲルカラムクロマトグラフィー(NHシリカ、酢酸エチル→メタノール/クロロホルム=1/10)で精製を行い、化合物82を得た(8.3mg,0.0230mmol,quant.)。
H−NMR(CDOD,500MHz);δ7.86(1H,s),6.42(1H,t,J=6.5Hz),4.80(1H,m),3.96(1H,d,J=12.0Hz),3.88(1H,d,J=12.5Hz),2.95(1H,m),2.90(1H,brs),2.49(1H,m),0.83(1H,d,J=5.0Hz),0.60(1H,s)。
That is, compound 81 (12.9 mg, 0.023 mmol) was dissolved in tetrahydrofuran (1 mL), tetrabutylammonium fluoride (1.0 M tetrahydrofuran solution, 0.1 mL) was added, and the mixture was stirred at room temperature for 10 minutes. After completion of the reaction, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (methanol / chloroform = 1/20) to obtain a crudely purified compound 82. The crudely purified compound 82 was purified by silica gel column chromatography (NH silica, ethyl acetate → methanol / chloroform = 1/10) to obtain compound 82 (8.3 mg, 0.0230 mmol, quant.).
1 1 H-NMR (CD 3 OD, 500 MHz); δ7.86 (1H, s), 6.42 (1H, t, J = 6.5 Hz), 4.80 (1H, m), 3.96 (1H) , D, J = 12.0Hz), 3.88 (1H, d, J = 12.5Hz), 2.95 (1H, m), 2.90 (1H, brs), 2.49 (1H, m) ), 0.83 (1H, d, J = 5.0Hz), 0.60 (1H, s).

合成例33:2−アミノ−9−(4−C−シアノ−2−O−デオキシ−β−D−リボフラノシル)−6−エチルアミノプリンの合成
2−アミノ−9−(4−C−シアノ−2−O−デオキシ−β−D−リボフラノシル)−6−エチルアミノプリン(化合物84)の合成に際し、先ず、合成例30にて得られた化合物78を用い、化合物83(2−アミノ−9−(3,5−ジ−O−tert−ブチルジメチルシリル−4−C−シアノ−2−O−デオキシ−β−D−リボフラノシル)−6−エチルアミノプリン)を、以下の通りにして合成した。
Synthesis Example 33: Synthesis of 2-amino-9- (4-C-cyano-2-O-deoxy-β-D-ribofuranosyl) -6-ethylaminopurine 2-amino-9- (4-C-cyano-) In the synthesis of 2-O-deoxy-β-D-ribofuranosyl) -6-ethylaminopurine (Compound 84), first, the compound 78 obtained in Synthesis Example 30 was used, and the compound 83 (2-amino-9-) was used. (3,5-di-O-tert-butyldimethylsilyl-4-C-cyano-2-O-deoxy-β-D-ribofuranosyl) -6-ethylaminopurine) was synthesized as follows.

すなわち、化合物78(29.9mg,0.035mmol)をテトラヒドロフラン(2mL)に溶解させた後、70%エチルアミン水溶液(0.5mL)を加え、50℃で1時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製の6位エチルアミノ体を得た。粗精製の6位エチルアミノ体(0.035mmol)を2−プロパノール(0.5mL)に溶解させた後、ヨウ化アンモニウム(5.1mg,0.035mmol)、ヒドラジン一水和物(0.5mL)を順次加え、70℃で17時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n−ヘキサン=1/1)で精製を行い、化合物83を得た(15.0mg,0.027mmol,2工程79%)。
H−NMR(CDCl,500MHz);δ7.56(1H,s),6.33(1H,t,J=6.5Hz),5.57(1H,brs),4.92(1H,t,J=6.0Hz),4.67(2H,brs),4.01(1H,d,J=11.0Hz),3.86(1H,d,J=11.0Hz),3.59(2H,brs),3.08(1H,m),2.47(1H,m),1.26(3H,t,J=7.5Hz),0.96(9H,s),0.89(9H,s),0.19(3H,s),0.17(3H,s),0.078(3H,s),0.047(3H,s)。
That is, compound 78 (29.9 mg, 0.035 mmol) was dissolved in tetrahydrofuran (2 mL), 70% aqueous ethylamine solution (0.5 mL) was added, and the mixture was stirred at 50 ° C. for 1 hour. After completion of the reaction, extraction with ethyl acetate was performed. The organic layer was dried over magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crudely purified 6-position ethylamino compound. After dissolving the crudely purified 6-position ethylamino compound (0.035 mmol) in 2-propanol (0.5 mL), ammonium iodide (5.1 mg, 0.035 mmol) and hydrazine monohydrate (0.5 mL) ) Was added sequentially, and the mixture was stirred at 70 ° C. for 17 hours. After completion of the reaction, extraction with ethyl acetate was performed. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 1/1) to obtain compound 83 (15.0 mg). , 0.027 mmol, 2 steps 79%).
1 H-NMR (CDCl 3, 500MHz); δ7.56 (1H, s), 6.33 (1H, t, J = 6.5Hz), 5.57 (1H, brs), 4.92 (1H, t, J = 6.0Hz), 4.67 (2H, brs), 4.01 (1H, d, J = 11.0Hz), 3.86 (1H, d, J = 11.0Hz), 3. 59 (2H, brs), 3.08 (1H, m), 2.47 (1H, m), 1.26 (3H, t, J = 7.5Hz), 0.96 (9H, s), 0 .89 (9H, s), 0.19 (3H, s), 0.17 (3H, s), 0.078 (3H, s), 0.047 (3H, s).

次に、このようにして得られた化合物83から、以下の通りにして、化合物84(2−アミノ−9−(4−C−シアノ−2−O−デオキシ−β−D−リボフラノシル)−6−エチルアミノプリン)を合成した。 Next, from the compound 83 thus obtained, compound 84 (2-amino-9- (4-C-cyano-2-O-deoxy-β-D-ribofuranosyl) -6) was prepared as follows. -Ethylaminopurine) was synthesized.

すなわち、化合物83(15.0mg,0.027mmol)をテトラヒドロフラン(1mL)に溶解させた後、テトラブチルアンモニウムフルオリド(1.0M テトラヒドロフラン溶液,0.1mL)を加え、室温で10分攪拌した。反応終了後、溶媒の減圧留去を行い、残渣をシリカゲルカラムクロマトグラフィー(メタノール/クロロホルム=1/20)で精製を行い、粗精製の化合物84を得た。粗精製の化合物84をシリカゲルカラムクロマトグラフィー(NHシリカ、酢酸エチル→メタノール/クロロホルム=1/10)で精製を行い、化合物84を得た(7.6mg,0.024mmol,87%)。
H−NMR(CDOD,500MHz);δ7.85(1H,s),6.42(1H,t,J=7.0Hz),4.80(1H,dd,J=6.5,4.5Hz),3.97(1H,d,J=12.0Hz),3.89(1H,d,J=12.0Hz),3.54(2H,brs),2.96(1H,m),2.49(1H,m),1.25(3H,t,J=7.0Hz)。
That is, compound 83 (15.0 mg, 0.027 mmol) was dissolved in tetrahydrofuran (1 mL), tetrabutylammonium fluoride (1.0 M tetrahydrofuran solution, 0.1 mL) was added, and the mixture was stirred at room temperature for 10 minutes. After completion of the reaction, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (methanol / chloroform = 1/20) to obtain a crudely purified compound 84. The crudely purified compound 84 was purified by silica gel column chromatography (NH silica, ethyl acetate → methanol / chloroform = 1/10) to obtain compound 84 (7.6 mg, 0.024 mmol, 87%).
1 1 H-NMR (CD 3 OD, 500 MHz); δ7.85 (1H, s), 6.42 (1H, t, J = 7.0 Hz), 4.80 (1H, dd, J = 6.5) 4.5Hz), 3.97 (1H, d, J = 12.0Hz), 3.89 (1H, d, J = 12.0Hz), 3.54 (2H, brs), 2.96 (1H, 1H, m), 2.49 (1H, m), 1.25 (3H, t, J = 7.0Hz).

合成例35:2−アミノ−9−(4−C−シアノ−2−O−デオキシ−β−D−リボフラノシル)−6−チオメトキシアミノプリンの合成
2−アミノ−9−(4−C−シアノ−2−O−デオキシ−β−D−リボフラノシル)−6−チオメトキシアミノプリン(化合物97)を、以下の通りにして合成した。
Synthesis Example 35: Synthesis of 2-amino-9- (4-C-cyano-2-O-deoxy-β-D-ribofuranosyl) -6-thiomethoxyaminopurine 2-amino-9- (4-C-cyano) -2-O-deoxy-β-D-ribofuranosyl) -6-thiomethoxyaminopurine (Compound 97) was synthesized as follows.

先ず、合成例30にて合成した化合物78から、化合物96(2−アミノ−9−(3,5−ジ−O−tert−ブチルジメチルシリル−4−C−シアノ−2−O−デオキシ−β−D−リボフラノシル)−6−チオメトキシプリン)を、合成した。すなわち、化合物78(72.8mg,0.085mmol)をテトラヒドロフラン(2mL)に溶解させた後、ナトリウムチオメトキシド(29.8mg,0.43mmol)を加え、室温で1時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製の6位チオメトキシ化体を得た。粗精製の6位チオメトキシ化体(<0.085mmol)を2−プロパノール(1mL)に溶解させた後、ヨウ化アンモニウム(12.3mg,0.085mmol)、ヒドラジン一水和物(1mL)を順次加え、室温で4時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n−ヘキサン=1/3)で精製を行い、化合物96を得た(21.3mg,2工程46%)。
H−NMR(CDCl,500MHz);δ7.74(1H,s),6.37(1H,t,J=6.5Hz),4.91(3H,m),3.98(1H,d,J=11.0Hz),3.87(1H,d,J=11.0Hz),3.03(1H,m),2.62(3H,s),2.51(1H,m),0.97(9H,s),0.88(9H,s),0.20(3H,s),0.17(3H,s),0.09(3H,s),0.04(3H,s)。
First, from compound 78 synthesized in Synthesis Example 30, compound 96 (2-amino-9- (3,5-di-O-tert-butyldimethylsilyl-4-C-cyano-2-O-deoxy-β) -D-ribofuranosyl) -6-thiomethoxypurine) was synthesized. That is, compound 78 (72.8 mg, 0.085 mmol) was dissolved in tetrahydrofuran (2 mL), sodium thiomethoxydo (29.8 mg, 0.43 mmol) was added, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, extraction with ethyl acetate was performed. The organic layer was dried over magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crudely purified 6-position thiomethoxyated product. After dissolving the crudely purified 6-position thiomethoxyylated product (<0.085 mmol) in 2-propanol (1 mL), ammonium iodide (12.3 mg, 0.085 mmol) and hydrazine monohydrate (1 mL) were sequentially added. In addition, it was stirred at room temperature for 4 hours. After completion of the reaction, extraction with ethyl acetate was performed. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 1/3) to obtain compound 96 (21.3 mg). , 2 steps 46%).
1 H-NMR (CDCl 3, 500MHz); δ7.74 (1H, s), 6.37 (1H, t, J = 6.5Hz), 4.91 (3H, m), 3.98 (1H, d, J = 11.0Hz), 3.87 (1H, d, J = 11.0Hz), 3.03 (1H, m), 2.62 (3H, s), 2.51 (1H, m) , 0.97 (9H, s), 0.88 (9H, s), 0.20 (3H, s), 0.17 (3H, s), 0.09 (3H, s), 0.04 ( 3H, s).

次に、このようにして得られた化合物96から、化合物97(2−アミノ−9−(4−C−シアノ−2−O−デオキシ−β−D−リボフラノシル)−6−チオメトキシアミノプリン)を、合成した。すなわち、化合物96(32.2mg,0.059mmol)をメタノール(1mL)に溶解させた後、酸性フッ化アンモニウム(33.4mg,0.59mmol)を加え、室温で30分攪拌した。続いて酸性フッ化アンモニウム(33.4mg,0.59mmol)を加え、室温で7時間攪拌した。さらに酸性フッ化アンモニウム(66.8mg,1.2mmol)を加え、15時間攪拌した後、酸性フッ化アンモニウム(66.8mg,1.2mmol)を加え、室温で96時間攪拌した。反応終了後、溶媒の減圧留去を行い、残渣をシリカゲルカラムクロマトグラフィー(メタノール/クロロホルム=1/10)で精製を行い、化合物97を得た(16.6mg,88%)。
H−NMR(CDOD,500MHz);δ7.99(1H,s),6.42(1H,t,J=6.5Hz),4.83(1H,t,J=6.0Hz),3.92(1H,d,J=12.5Hz),3.84(1H,d,J=12.0Hz),2.95(1H,m),2.55(3H,s),2.51(1H,m)。
Next, from the compound 96 thus obtained, compound 97 (2-amino-9- (4-C-cyano-2-O-deoxy-β-D-ribofuranosyl) -6-thiomethoxyaminopurine) Was synthesized. That is, compound 96 (32.2 mg, 0.059 mmol) was dissolved in methanol (1 mL), acidic ammonium fluoride (33.4 mg, 0.59 mmol) was added, and the mixture was stirred at room temperature for 30 minutes. Subsequently, acidic ammonium fluoride (33.4 mg, 0.59 mmol) was added, and the mixture was stirred at room temperature for 7 hours. Further, ammonium fluoride (66.8 mg, 1.2 mmol) was added, and the mixture was stirred for 15 hours, then ammonium fluoride (66.8 mg, 1.2 mmol) was added, and the mixture was stirred at room temperature for 96 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (methanol / chloroform = 1/10) to obtain Compound 97 (16.6 mg, 88%).
1 1 H-NMR (CD 3 OD, 500 MHz); δ7.99 (1H, s), 6.42 (1H, t, J = 6.5 Hz), 4.83 (1H, t, J = 6.0 Hz) , 3.92 (1H, d, J = 12.5Hz), 3.84 (1H, d, J = 12.0Hz), 2.95 (1H, m), 2.55 (3H, s), 2 .51 (1H, m).

上述の通りに合成して得られたヌクレオシド誘導体において、表1に記載の化合物5、18、30、24、12、29、25、31、19、10、8、27、35、21及び9に関し、以下に示す方法にて、抗ウィルス活性及び細胞毒性を評価した。 In the nucleoside derivatives obtained synthetically as described above, with respect to the compounds 5, 18, 30, 24, 12, 29, 25, 31, 19, 10, 8, 27, 35, 21 and 9 shown in Table 1. , Antiviral activity and cytotoxicity were evaluated by the methods shown below.

試験例1:抗HBV活性の評価
供試細胞として、ヒト肝ガン由来細胞株(HepG2細胞)にHBV遺伝子を導入することにより、持続的にHBVを産生するように調製された、HepG2 2.2.15細胞を用いた。なお、HepG2 2.2.15細胞は、10%胎児ウシ血清含有DMEMにおける継続培養にて維持した。また、当該細胞は、エピソームとして産生するHBV遺伝子を有するため、このエピソームHBVのDNAを定量し、上記ヌクレオシド誘導体の存在下における当該量の減少度によって抗HBV活性を評価とした。得られた結果を表2〜4に示す。
Test Example 1: Evaluation of anti-HBV activity HepG2 2.2 prepared to continuously produce HBV by introducing the HBV gene into a human liver cancer-derived cell line (HepG2 cell) as a test cell. .15 cells were used. HepG2 2.2.15 cells were maintained in continuous culture in DMEM containing 10% fetal bovine serum. Moreover, since the cell has an HBV gene produced as an episome, the DNA of the episome HBV was quantified, and the anti-HBV activity was evaluated by the degree of decrease in the amount in the presence of the nucleoside derivative. The results obtained are shown in Tables 2-4.

より具体的には、HepG2 2.2.15細胞を、12穴細胞培養皿の各ウェルに1.5×10cells/2mLの濃度になるよう播種した。細胞が80%コンフルエントに達した段階で、各ヌクレオシド誘導体を様々な濃度にて添加した。各ヌクレオシド誘導体を添加した培養液は4日毎に交換し、当該誘導体の存在下で12日間培養した。その後、各HepG2 2.2.15細胞から、QIAamp DNA Blood Mini Kit(QIAGEN社製)を用い、全細胞DNAを抽出し、200μLの1×TEバッファーに溶解した。次いで、このようにして抽出したDNAを鋳型として、リアルタイムPCRでHBV DNAを定量した。すなわち、HepG2 2.2.15細胞からの抽出DNAのうち2μLを2×SYBR PCR master mix(Applied Biosystems社製)を用いて増幅した。その増幅(PCR)反応には、HBVポリメラーゼ領域を検出する下記のプライマーセットを用いた:
5’−GCGAGGACTGGGGACCCTGTGACGAAC−3’(配列番号:1)、及び 5’−GTCCACCACGAGTCTAGACTCTGC−3’(配列番号:2)。
また、PCRの反応は、95℃で10分間、その後、95℃で15秒と60℃で1分間とを40サイクル行った。
More specifically, HepG2 2.2.15 cells were seeded into each well of a 12-well cell culture dish to a concentration of 1.5 × 10 5 cells / 2 mL. When the cells reached 80% confluence, each nucleoside derivative was added at various concentrations. The culture medium to which each nucleoside derivative was added was changed every 4 days, and the cells were cultured in the presence of the derivative for 12 days. Then, from each HepG2 2.2.15 cell, whole cell DNA was extracted using QIAamp DNA Blood Mini Kit (manufactured by QIAGEN) and dissolved in 200 μL of 1 × TE buffer. Then, using the DNA extracted in this way as a template, HBV DNA was quantified by real-time PCR. That is, 2 μL of the DNA extracted from HepG2 2.2.15 cells was amplified using 2 × SYBR PCR master mix (manufactured by Applied Biosystems). The following primer set for detecting the HBV polymerase region was used for the amplification (PCR) reaction:
5'-GCGAGGACTGGGACCCTGTGGACGAAC-3'(SEQ ID NO: 1), and 5'-GTCCACCACGAGTTACGACTGC-3'(SEQ ID NO: 2).
The PCR reaction was carried out at 95 ° C. for 10 minutes, followed by 40 cycles of 95 ° C. for 15 seconds and 60 ° C. for 1 minute.

このようなPCR反応によって得られたデータを、StepOneTM Software Version2.0(Applied Biosystems社製)で解析し、CT値を得た。次いで、既知濃度のHBVプラスミドを10倍ごとに希釈(20から2×10コピー)したものを用いて作成された検量線により、前記CT値を各ヌクレオシド誘導体存在下におけるHBVのコピー数(HBVのDNA量)へと変換した。そして、ヌクレオシド誘導体の非存在下にて培養した対照におけるそれと比較し、その減少度からEC50値を算出し、各ヌクレオシド誘導体の抗HBV活性を評価した。得られた結果を表2〜4に示す。 The data obtained by such a PCR reaction was analyzed with StepOneTM Software Version 2.0 (manufactured by Applied Biosystems) to obtain a CT value. Next, the CT value was determined by the number of copies of HBV (HBV) in the presence of each nucleoside derivative by a calibration curve prepared by diluting a known concentration of HBV plasmid every 10 times (20 to 2 × 108 copies). It was converted to the amount of DNA of. Then, compared to that in control cultured in the absence of nucleoside derivatives, calculated EC 50 values from the rate of decrease was evaluated anti-HBV activity of each nucleoside derivatives. The results obtained are shown in Tables 2-4.

試験例2:細胞毒性試験
上記ヌクレオシド誘導体に関し、HepG2細胞及びHepG2 2.2.15細胞に対する細胞毒性試験も行った。様々な濃度の各ヌクレオシド誘導体を添加した培地と共に、HepG2細胞に関しては2×10cells/100μLの濃度になるよう、またHepG2 2.2.15細胞に関しては1.5×10/100μLの濃度になるよう、各々播種した。このようにして様々な濃度の各ヌクレオシド誘導体の存在下で5日間、これら細胞を培養した後、各ウェルの生存細胞数をCell Counting Kit−8を使用して計測した。そして、得られた生存細胞数に基づき、各ヌクレオシド誘導体に関し、CC50を算出した。得られた結果を表2〜4に示す。
Test Example 2: Cytotoxicity test Regarding the above nucleoside derivative, a cytotoxicity test was also performed on HepG2 cells and HepG2 2.2.15 cells. With medium was added to each nucleoside derivatives of various concentrations, to a concentration of 2 × 10 3 cells / 100μL respect HepG2 cells, and the concentration of 1.5 × 10 4 / 100μL respect HepG2 2.2.15 cells Each was sown so as to be. After culturing these cells for 5 days in the presence of various concentrations of each nucleoside derivative in this way, the number of surviving cells in each well was measured using the Cell Counting Kit-8. Then, based on the obtained number of viable cells, CC 50 was calculated for each nucleoside derivative. The results obtained are shown in Tables 2-4.

また、上述の通りに合成して得られたヌクレオシド誘導体において、表1に記載の化合物13、53、47、6、39、46、80、82、84、43、44、45、42、40、41及び97に関しては、以下に示す方法にて、抗ウィルス活性及び細胞毒性を評価した。 Further, in the nucleoside derivatives obtained by synthesizing as described above, the compounds 13, 53, 47, 6, 39, 46, 80, 82, 84, 43, 44, 45, 42, 40, shown in Table 1 For 41 and 97, antiviral activity and cytotoxicity were evaluated by the methods shown below.

試験例3:抗HBV活性の評価
供試細胞として、前記HepG2 2.2.15細胞を親株とする、HepG2 2.2.15.7細胞を用いた。なお、HepG2 2.2.15細胞は、10%胎児ウシ血清、G418(500μg/ml)及び抗生剤(ペニシリンとカナマイシン)含有DMEMにおける継続培養にて維持した。また、HepG2 2.2.15.7細胞は、HepG2 2.2.15細胞同様、ゲノムに統合されたDNAだけでなくエピソームとして産生されるHBV遺伝子を保持するHBV持続産生細胞である。そこで、各ヌクレオシド誘導体と共培養し、培養上清に放出されるウイルスのDNAコピー数を定量し、その減少度を抗HBV活性の評価の指標とした。
Test Example 3: Evaluation of anti-HBV activity HepG2 2.2.1.7 cells having the above HepG2 2.2.15 cells as a parent strain were used as test cells. HepG2 2.2.15 cells were maintained in DMEM containing 10% fetal bovine serum, G418 (500 μg / ml) and antibiotics (penicillin and kanamycin). In addition, HepG2 2.2.1.7 cells, like HepG2 2.2.15 cells, are HBV continuous-producing cells that carry not only the DNA integrated into the genome but also the HBV gene produced as episomes. Therefore, the number of DNA copies of the virus released into the culture supernatant was quantified by co-culturing with each nucleoside derivative, and the degree of decrease was used as an index for evaluating the anti-HBV activity.

より具体的には、コラーゲンコートされた96穴細胞培養皿に細胞生存性90%以上のHepG2 2.2.15.7細胞を2×10cells/mlの濃度で播種し、細胞播種同日に、様々な濃度にて各ヌクレオシド誘導体を添加した。37℃、5%COの標準培養条件で3日培養した後、さらに各ヌクレオシド誘導体を含むfreshな培地に交換し、交換後3日目の培養上清からHBV DNAを回収した。そして、回収した培地から、上記同様にして、定量的PCRを行い検量線からウイルスコピー数を求め、ヌクレオシド誘導体ごとのEC50を算出した。得られた結果を表5〜7に示す。 More specifically, HepG2 2.2.1.5.7 cells having a cell viability of 90% or more were seeded in a collagen-coated 96-well cell culture dish at a concentration of 2 × 10 4 cells / ml, and on the same day of cell seeding. , Each nucleoside derivative was added at various concentrations. After culturing for 3 days under the standard culture conditions of 37 ° C. and 5% CO 2, the medium was replaced with a fresh medium containing each nucleoside derivative, and HBV DNA was recovered from the culture supernatant on the 3rd day after the replacement. Then, from the collected medium, quantitative PCR was performed in the same manner as described above, the virus copy number was determined from the calibration curve, and the EC 50 for each nucleoside derivative was calculated. The results obtained are shown in Tables 5-7.

試験例4:細胞毒性試験
上記ヌクレオシド誘導体に関し、HepG2細胞に対する細胞毒性試験も行った。段階希釈後の各濃度の各ヌクレオシド誘導体を添加した培地と共に、HepG2細胞を1×10cells/mlの濃度になるよう播種した。このようにして様々な濃度の各ヌクレオシド誘導体の存在下、37℃、5%COの標準培養条件で7日間、これら細胞を培養した後、各ウェルの生存細胞数をMTTアッセイで定量化した。そして、得られた生存細胞数に基づき、各ヌクレオシド誘導体に関し、CC50を算出した。得られた結果を表5〜7に示す。
Test Example 4: Cytotoxicity test A cytotoxicity test on HepG2 cells was also performed on the above nucleoside derivative. HepG2 cells were seeded to a concentration of 1 × 10 4 cells / ml with a medium supplemented with each concentration of each nucleoside derivative after serial dilution. In this way, after culturing these cells for 7 days under standard culture conditions of 37 ° C. and 5% CO 2 in the presence of various concentrations of each nucleoside derivative, the number of surviving cells in each well was quantified by MTT assay. .. Then, based on the obtained number of viable cells, CC 50 was calculated for each nucleoside derivative. The results obtained are shown in Tables 5-7.

また、化合物24、8、35及び21関しては、既存のヌクレオシド誘導体製剤であるエンテカビルに耐性を示すHBV株を対象とし、以下に示す方法にて、抗ウィルス活性を評価した。 Regarding compounds 24, 8, 35 and 21, HBV strains showing resistance to the existing nucleoside derivative preparation entecavir were targeted, and the antiviral activity was evaluated by the method shown below.

試験例5:抗HBV/Ce活性の評価
化合物24、8、35及び21に関し、ETV耐性株(遺伝子型:HBV/Ce、後述の表においては「HBV ETVr」と表記する)をトランスフェクトしたHuh−7細胞に各々添加した。そして、その72時間後に各細胞から常法に沿ってDNAを抽出し、HBV遺伝子に対するプローブを用いたサザンブロットにて分析し、ウイルスのDNAコピー数を定量し、上記同様にEC50値を算出した。得られた結果を表2及び4に示す。
Test Example 5: Evaluation of anti-HBV / Ce activity Huh transfected with an ETV resistant strain (genotype: HBV / Ce, referred to as "HBV ETVr" in the table below) with respect to compounds 24, 8, 35 and 21. -7 cells were each added. Then, 72 hours later, DNA was extracted from each cell according to a conventional method, analyzed by Southern blotting using a probe for the HBV gene, the number of DNA copies of the virus was quantified, and the EC 50 value was calculated in the same manner as above. did. The results obtained are shown in Tables 2 and 4.

なお、下記表2〜7において、抗ウィルス活性に関する項目にて「*(アスタリスク)」が付されている項目は、EC50値が0.1μM超であることを示し、細胞毒性に関する項目にて「*(アスタリスク)」が付されている項目は、CC50値が50μM未満であることを示し、「―」が付されている項目は、未試験であることを示す。 In the following Table 2-7, items that "* (asterisk)" is assigned with items related to antiviral activity, indicates that The EC 50 values are 0.1μM than at items related cytotoxicity Items marked with "* (asterisk)" indicate that the CC 50 value is less than 50 μM, and items marked with “-” indicate that the test has not been performed.

表2〜7に示した結果から明らかな通り、上述の通りに合成して試験したヌクレオシド誘導体は、いずれもHBVに対する優れた抗ウィルス活性を有することが明らかになった、さらに、これらヌクレオシド誘導体において、プリン塩基の6位を比較的嵩高い官能基(炭素数1以上のアルキル基によって置換されているアミノ基、置換基を有していてもよい炭素数2以上のアルコキシ基、又は炭素数1以上のアルキル基によって置換されているメルカプト基)で置換されている化合物は、HBVに対しては抗ウィルス活性を示しつつも、概して、細胞毒性は低いことも明らかになった(表4、6及び7 参照)。さらに、これらヌクレオシド誘導体等において、既存のヌクレオシド誘導体であるエンテカビルに対して耐性を示すHBVに対しても抗ウィルス活性を有することが明らかになった。 As is clear from the results shown in Tables 2 to 7, it was revealed that all the nucleoside derivatives synthesized and tested as described above have excellent antiviral activity against HBV, and further, in these nucleoside derivatives. , An amino group in which the 6-position of the purine base is substituted with a relatively bulky functional group (an alkyl group having 1 or more carbon atoms, an alkoxy group having 2 or more carbon atoms which may have a substituent, or 1 carbon number). It was also clarified that the compounds substituted with the above alkyl group-substituted mercapto group) showed antiviral activity against HBV, but generally had low cytotoxicity (Tables 4 and 6). And 7). Furthermore, it has been clarified that these nucleoside derivatives and the like also have antiviral activity against HBV which is resistant to the existing nucleoside derivative entecavir.

以上説明したように、本発明によれば、少なくともHBVに対して優れた抗ウィルス活性を有し、宿主細胞に対する毒性が低いヌクレオシド誘導体を提供することが可能となる。本発明のヌクレオシド誘導体は、さらに既存のヌクレオシド誘導体(エンテカビル等)に対して耐性を示すHBVに対する抗ウィルス活性をも発揮し得る。したがって、本発明は、DNAウィルス感染症の予防又は治療において極めて有用である。 As described above, according to the present invention, it is possible to provide a nucleoside derivative having at least excellent antiviral activity against HBV and low toxicity to host cells. The nucleoside derivative of the present invention can also exhibit antiviral activity against HBV which is resistant to existing nucleoside derivatives (entecavir and the like). Therefore, the present invention is extremely useful in the prevention or treatment of DNA virus infections.

配列番号:1及び2
<223> 人工的に合成されたプライマーの配列
SEQ ID NOs: 1 and 2
<223> Sequence of artificially synthesized primers

Claims (4)

下記一般式(1)で表されるヌクレオシド誘導体。
[前記式中、Rは、ヒドロキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルコキシ基、又は置換基を有していてもよいメルカプト基を示す。Rは、水素原子、ハロゲン原子、又はアミノ基を示す。Rは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、シアノ基、又はアジド基を示す。但し、前記一般式(1)で表されるヌクレオシド誘導体であって、Rがアミノ基であり、Rがハロゲン原子又は水素原子であり、かつRがシアノ基である場合、Rがヒドロキシ基であり、Rが水素原子であり、かつRがシアノ基である場合、Rがヒドロキシ基であり、Rがアミノ基であり、かつRがアジド基である場合、R がアミノ基であり、Rが水素原子であり、かつRがアジド基である場合、及びR がヒドロキシ基であり、R が水素原子であり、かつR がアジド基である場合を除く。]
A nucleoside derivative represented by the following general formula (1).
[In the above formula, R 1 represents a hydroxy group, an amino group which may have a substituent, an alkoxy group which may have a substituent, or a mercapto group which may have a substituent. .. R 2 represents a hydrogen atom, a halogen atom, or an amino group. R 3 represents an alkyl group which may have a substituent, an alkenyl group which may have a substituent, a cyano group, or an azide group. However, in the nucleoside derivative represented by the general formula (1), when R 1 is an amino group, R 2 is a halogen atom or a hydrogen atom, and R 3 is a cyano group, R 1 is a hydroxy group, R 2 is hydrogen atom, and when R 3 is cyano group, R 1 is hydroxy group, R 2 is an amino group, and when R 3 is azido radical, R When 1 is an amino group, R 2 is a hydrogen atom and R 3 is an azide group , and R 1 is a hydroxy group, R 2 is a hydrogen atom and R 3 is an azido group. Except for cases . ]
前記式中、Rが、炭素数1以上のアルキル基によって置換されているアミノ基、置換基を有していてもよい炭素数2以上のアルコキシ基、又は炭素数1以上のアルキル基によって置換されているメルカプト基である、請求項1に記載のヌクレオシド誘導体。 In the above formula, R 1 is substituted with an amino group substituted with an alkyl group having 1 or more carbon atoms, an alkoxy group having 2 or more carbon atoms which may have a substituent, or an alkyl group having 1 or more carbon atoms. The nucleoside derivative according to claim 1, which is a mercapto group. が、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、シクロプロピルアミノ基、エトキシ基、アリルオキシ基、ベンジルオキシ基及びメチルメルカプト基からなる群から選択される一の官能基であり、Rが、水素原子又はアミノ基であり、かつR3が、メチル基、モノフルオロメチル基、エテニル基、シアノ基及びアジド基からなる群から選択される一の官能基である、請求項2に記載のヌクレオシド誘導体。 R 1 is one functional group selected from the group consisting of a methylamino group, a dimethylamino group, an ethylamino group, a cyclopropylamino group, an ethoxy group, an allyloxy group, a benzyloxy group and a methyl mercapto group, and R 2 2. The functional group according to claim 2, wherein is a hydrogen atom or an amino group, and R 3 is a functional group selected from the group consisting of a methyl group, a monofluoromethyl group, an ethenyl group, a cyano group and an azide group. Nucleoside derivative of. 請求項1〜3のうちのいずれか一項に記載のヌクレオシド誘導体を有効成分とする、抗B型肝炎ウィルス剤。 An anti -hepatitis B virus agent containing the nucleoside derivative according to any one of claims 1 to 3 as an active ingredient.
JP2016181449A 2015-09-18 2016-09-16 Nucleoside derivative with physiological activity such as anti-DNA virus activity Active JP6767011B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015185821 2015-09-18
JP2015185821 2015-09-18

Publications (2)

Publication Number Publication Date
JP2017057200A JP2017057200A (en) 2017-03-23
JP6767011B2 true JP6767011B2 (en) 2020-10-14

Family

ID=58389709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016181449A Active JP6767011B2 (en) 2015-09-18 2016-09-16 Nucleoside derivative with physiological activity such as anti-DNA virus activity

Country Status (1)

Country Link
JP (1) JP6767011B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3035161A1 (en) 2016-08-26 2018-03-01 Toray Industries, Inc. Crystals of cyclic amine derivative and pharmaceutical use thereof
WO2018110643A1 (en) * 2016-12-14 2018-06-21 ヤマサ醤油株式会社 Nucleoside derivative exhibiting antiviral activity
CN115605493A (en) 2020-03-20 2023-01-13 吉利德科学公司(Us) Prodrugs of4'-C-substituted-2-halo-2' -deoxyadenosine nucleosides and methods of making and using the same
CN114908566B (en) * 2022-06-23 2024-01-30 浙江理工大学 Virus blocking fabric and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2003408A1 (en) * 1988-11-21 1990-05-21 Hans Maag Antiviral agents
GB0114286D0 (en) * 2001-06-12 2001-08-01 Hoffmann La Roche Nucleoside Derivatives
US20050026902A1 (en) * 2003-01-31 2005-02-03 Timothy Maziasz Methods and compositions for the treatment or prevention of human immunodeficiency virus and related conditions using cyclooxygenase-2 selective inhibitors and antiviral agents
WO2007106450A2 (en) * 2006-03-10 2007-09-20 University Of Georgia Research Foundation, Inc. Diketo acids with nucleobase scaffolds: anti-hiv replication inhibitors targeted at hiv integrase in combination therapy
AU2007275805A1 (en) * 2006-07-19 2008-01-24 University Of Georgia Research Foundation, Inc. Pyridinone diketo acids: Inhibitors of HIV replication in combination therapy
US20090318380A1 (en) * 2007-11-20 2009-12-24 Pharmasset, Inc. 2',4'-substituted nucleosides as antiviral agents
MX2012006485A (en) * 2009-12-07 2012-08-23 Univ Georgia Pyridinone hydroxycyclopentyl carboxamides: hiv integrase inhibitors with therapeutic applications.
US8575119B2 (en) * 2011-09-23 2013-11-05 Enanta Pharmaceuticals, Inc. 2′-chloroacetylenyl substituted nucleoside derivatives

Also Published As

Publication number Publication date
JP2017057200A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
KR890003426B1 (en) Nucleosides and the manufacturing process thereof
EP2940031B1 (en) Nucleoside phosphoramidate compounds for use in the treatment of hcv
AU2008326569B2 (en) 2&#39;,4&#39;-substituted nucleosides as antiviral agents
US7582748B2 (en) Methods of manufacture of 2′-deoxy-β-L-nucleosides
JP6767011B2 (en) Nucleoside derivative with physiological activity such as anti-DNA virus activity
CA2685748A1 (en) Azido purine nucleosides for treatment of viral infections
NL9300058A (en) 1,5-ANHYDROHEXITOL NUCLEOSIDE ANALOGA AND PHARMACEUTICAL USE THEREOF.
UA117375C2 (en) Hcv polymerase inhibitors
CN102421293A (en) Substituted nucleoside and nucleotide analogs
WO2003062255A2 (en) Sugar modified nucleosides as viral replication inhibitors
KR20160145542A (en) 4&#39;-difluoromethyl substituted nucleoside derivatives as inhibitors of influenza rna replication
WO2010068708A2 (en) 3&#39;-azido purine nucleotide prodrugs for treatment of viral infections
WO1991019713A1 (en) Pyrimidine nucleoside derivative
US7795236B2 (en) Purine nucleoside derivative modified in 8-position and medical use thereof
JPH0656877A (en) 2&#39;-deoxy-2&#39;,2&#39;-difluoro-(2,6,8-substituted)-purine nucleoside with antivirus activity and anticancer activity, and its intermediate
JP2021506846A (en) Cyclic Phosphate Compounds and Applications of Nucleoside, an Entecavir Prodrug Based on Liver Delivery
JP2017529375A (en) 4&#39;-vinyl substituted nucleoside derivatives as inhibitors of respiratory polynuclear virus RNA replication
KR20070073958A (en) Difluoronucleosides and process for preparation thereof
JP2010502748A (en) Azole nucleosides and use as RNA / DNA viral polymerase inhibitors
JP6983814B2 (en) Nucleoside derivative showing antiviral activity
JP7084591B2 (en) A nucleoside derivative or a salt thereof, and a pharmaceutical composition containing the same.
JP6912100B2 (en) Nucleoside derivative with physiological activity such as antiviral activity
JP7125714B2 (en) 2&#39;-Deoxy-7-deazapurine nucleoside derivatives with antiviral activity
Bhattacharya et al. Studies on the synthesis of furo [3, 2-d] pyrimidine C-nucleosides: new inosine analogues with antiprotozoan activity
NZ723551B2 (en) 4&#39;-difluoromethyl substituted nucleoside derivatives as inhibitors of influenza rna replication

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200910

R150 Certificate of patent or registration of utility model

Ref document number: 6767011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250