WO2018110643A1 - Nucleoside derivative exhibiting antiviral activity - Google Patents

Nucleoside derivative exhibiting antiviral activity Download PDF

Info

Publication number
WO2018110643A1
WO2018110643A1 PCT/JP2017/044885 JP2017044885W WO2018110643A1 WO 2018110643 A1 WO2018110643 A1 WO 2018110643A1 JP 2017044885 W JP2017044885 W JP 2017044885W WO 2018110643 A1 WO2018110643 A1 WO 2018110643A1
Authority
WO
WIPO (PCT)
Prior art keywords
mmol
compound
reaction
ethyl acetate
nucleoside derivative
Prior art date
Application number
PCT/JP2017/044885
Other languages
French (fr)
Japanese (ja)
Inventor
裕明 満屋
山田 浩平
裕太郎 大野
Original Assignee
ヤマサ醤油株式会社
国立研究開発法人国立国際医療研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマサ醤油株式会社, 国立研究開発法人国立国際医療研究センター filed Critical ヤマサ醤油株式会社
Priority to JP2018556739A priority Critical patent/JP6983814B2/en
Publication of WO2018110643A1 publication Critical patent/WO2018110643A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/173Purine radicals with 2-deoxyribosyl as the saccharide radical

Definitions

  • the present invention relates to a nucleoside derivative exhibiting antiviral activity, and more specifically, a 2′-deoxypurine nucleoside derivative having antiviral activity against at least hepatitis B virus, and an antiviral agent comprising the derivative as an active ingredient About.
  • hepatitis B virus HBV
  • hepatitis B virus When hepatitis B virus (HBV) is infected, hepatitis may occur acutely or fulminantly, sometimes leading to death. In addition, hepatitis may develop chronically and progress to cirrhosis and hepatocellular carcinoma.
  • the number of infected people is estimated to be about 400 million worldwide, and the incidence is extremely high mainly in Southeast Asia, and the development of effective treatment methods is demanded worldwide.
  • HBV is an incomplete double-stranded DNA virus, and is known to perform reverse transcription to synthesize DNA from RNA in its life cycle. On the other hand, since reverse transcription is not performed in the host human, it is possible to inhibit only HBV replication by inhibiting this step. Nucleoside derivative preparations have been developed as therapeutic agents for HBV infection from such a viewpoint (see, for example, Patent Documents 1 and 2 and Non-Patent Document 1).
  • nucleoside derivative preparations are toxic to host cells, ie, human cells to be taken, and side effects due to medium to long-term use are problematic.
  • resistant strains to nucleoside derivatives may occur during the period of administration. Therefore, the present condition is that the effective treatment method with respect to viral infections, such as HBV, is not established.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a nucleoside derivative having antiviral activity against at least HBV and low toxicity to host cells.
  • nucleoside derivative represented by the following structural formula has antiviral activity against at least HBV, and has particularly low toxicity to host cells. I found out.
  • R is an alkyl group which may have a substituent, an alkenyl group which may have a substituent, a cyano group, or an azide group.
  • the present inventors can obtain an excellent antiviral activity against HBV by setting the 2-position of the purine base as an amino group and the 6-position as a hydrogen atom. At the same time, it has been found that the toxicity to the host cell can be particularly reduced.
  • the present invention relates to a nucleoside derivative having at least antiviral activity against hepatitis B virus, and an antiviral agent comprising the derivative as an active ingredient, and more specifically provides the following.
  • R is an alkyl group which may have a substituent, an alkenyl group which may have a substituent, a cyano group, or an azide group.
  • ⁇ 2> The nucleoside derivative according to ⁇ 1>, wherein R is a monofluoromethyl group, an ethenyl group, a cyano group, or an azide group.
  • An antiviral agent comprising the nucleoside derivative according to ⁇ 1> or ⁇ 2> as an active ingredient.
  • the antiviral agent according to ⁇ 3> which is an anti-hepatitis B virus agent.
  • nucleoside derivative having antiviral activity against at least HBV and low toxicity to host cells.
  • nucleoside derivatives As shown in Examples described later, the nucleoside derivative represented by the following formula was found to have antiviral activity against hepatitis B virus and particularly low toxicity to host cells. Therefore, the present invention relates to a nucleoside derivative exhibiting antiviral activity, and more specifically, to provide a nucleoside derivative represented by the following general formula (1) having at least antiviral activity against hepatitis B virus. is there.
  • R is an alkyl group which may have a substituent, an alkenyl group which may have a substituent, a cyano group, or an azide group.
  • the nucleoside derivative of the present invention has antiviral activity against at least hepatitis B virus (HBV).
  • HBV hepatitis B virus
  • “HBV” means a virus having the ability to develop hepatitis B.
  • the genotypes of A (A2 / Ae, A1 / Aa), B (Ba, B1 / Bj), C (Cs, Ce), DH and J are known, and the nucleoside of the present invention is used.
  • the derivative only needs to have antiviral activity against at least one genotype of HBV.
  • HBV / Ce is known to be a genotype exhibiting resistance to entecavir, which is an existing nucleoside derivative preparation. Therefore, the nucleoside derivative of the present invention is preferably a nucleoside derivative having antiviral activity against HBV / Ce.
  • antiviral activity refers to the activity of extinguishing the virus or suppressing its growth in a cell (host cell) infected with a virus such as HBV, for example, suppressing virus replication in the host cell. Activity.
  • a virus such as HBV
  • anti-DNA virus activity when the target of such suppression is a virus having DNA as a genome (DNA virus), it is referred to as “anti-DNA virus activity”. Further, such activity can be evaluated by an EC 50 value calculated using the virus copy number in the host cell as an index, as shown in the Examples below.
  • the nucleoside derivative of the present invention preferably has an EC 50 value of antiviral activity of 0.1 ⁇ M or less, more preferably 0.05 ⁇ M or less, still more preferably 0.01 ⁇ M or less, and 0.005 ⁇ M. More preferably (for example, 0.004 ⁇ M or less, 0.003 ⁇ M or less, 0.002 ⁇ M or less, 0.001 ⁇ M or less).
  • the nucleoside derivative of the present invention preferably has low cytotoxicity.
  • cytotoxicity means an activity of killing a cell, inhibiting its function, or suppressing its growth. Such activity can be evaluated by the CC 50 value calculated using the number of viable cells as an index, as shown in the Examples described later.
  • the nucleoside derivative of the present invention preferably has a CC 50 value of 10 ⁇ M or more, more preferably 50 ⁇ M or more, still more preferably 100 ⁇ M or more, and particularly preferably 200 ⁇ M or more.
  • each substituent is preferably selected as shown below.
  • R is an alkyl group which may have a substituent, an alkenyl group which may have a substituent, a cyano group, or an azide group.
  • the alkyl group in the “optionally substituted alkyl group” is not particularly limited, but a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms is preferable, and a methyl group or an ethyl group is preferable. More preferred.
  • the substituent in the “alkyl group optionally having substituent (s)” is not particularly limited, and examples thereof include a halogen atom, a hydroxy group, an alkoxy group, a cyano group, and an amino group. Atoms are more preferred. More specifically, the “optionally substituted alkyl group” is preferably a monofluoromethyl group.
  • the alkenyl group in the “optionally substituted alkenyl group” is not particularly limited, but is preferably a linear, branched or cyclic alkenyl group having 2 or more carbon atoms, and having 2 to 6 carbon atoms.
  • a linear, branched, or cyclic alkenyl group is more preferable, and an ethenyl group is more preferable.
  • limiting in particular as a substituent in "The alkenyl group which may have a substituent” For example, a halogen atom, a hydroxy group, an alkoxy group, a cyano group, an amino group is mentioned.
  • the nucleoside derivatives of the present invention also include pharmacologically acceptable salts, hydrates or solvates.
  • a pharmacologically acceptable salt is not particularly limited and may be appropriately selected depending on the structure of the nucleoside derivative.
  • an acid addition salt (hydrochloride, sulfate, hydrobromide, Nitrate, hydrogen sulfate, phosphate, acetate, lactate, succinate, citrate, maleate, hydroxy maleate, tartrate, fumarate, methanesulfonate, p-toluenesulfone Acid salt, camphor sulfonate, sulfamate, mandelate, propionate, glycolate, stearate, malate, ascorbate, pamonate, phenylacetate, glutamate, benzoate , Salicylate, sulfanilate, 2-acetoxybenzoate, ethanedisulfonate, oxalate, isethionate, format
  • the nucleoside derivatives of the present invention include all isomers and isomer mixtures such as tautomers, geometric isomers, optical isomers based on asymmetric carbon, and stereoisomers. Furthermore, the nucleoside derivative of the present invention is still desirable after undergoing metabolism such as oxidation, reduction, hydrolysis, amination, deamination, hydroxylation, phosphorylation, dehydration oxidation, alkylation, dealkylation, and conjugation in vivo. In addition, the present invention also includes a compound (so-called prodrug form) that produces the nucleoside derivative of the present invention upon metabolism in vivo such as oxidation, reduction, or hydrolysis. . Furthermore, the nucleoside derivative of the present invention can be formulated by a known pharmaceutical method as described later.
  • the synthesis of the nucleoside derivative of the present invention can be achieved by, for example, combining a ribose sugar (D-ribofuranose protected by substitution of a hydroxy group with an acetyl group, a benzyl group, etc.) and a purine base (adenine, etc.) Reaction via a silyl compound, followed by reduction via a phenoxythiocarbonyl derivative to deoxylate the 2-position of the ribose sugar, and if necessary, a substituent at the desired position of the ribose sugar and / or purine base by known methods Can be done by introducing.
  • a ribose sugar D-ribofuranose protected by substitution of a hydroxy group with an acetyl group, a benzyl group, etc.
  • a purine base adenine, etc.
  • nucleoside derivative of the present invention can be synthesized by appropriately modifying or modifying these methods as necessary, while appropriately selecting the solvent, reaction temperature, catalyst, reaction time, etc.
  • nucleoside derivatives synthesized in this manner can be obtained by appropriately using methods (reverse phase chromatography, ion exchange chromatography, adsorption chromatography, recrystallization methods) used for isolation and purification of general nucleosides and nucleotides. It can be separated and purified by using alone or in combination.
  • the nucleoside derivative of the present invention has at least antiviral activity against hepatitis B virus. Therefore, an antiviral agent comprising the nucleoside derivative of the present invention as an active ingredient can be provided.
  • infectious disease targeted by the antiviral agent of the present invention and the preventive and therapeutic methods described below is not particularly limited, and examples thereof include HBV infection. More specifically, hepatitis B (chronic hepatitis, acute Hepatitis, fulminant hepatitis), cirrhosis associated with it, liver fibrosis, and hepatocellular carcinoma.
  • HBV infection More specifically, hepatitis B (chronic hepatitis, acute Hepatitis, fulminant hepatitis), cirrhosis associated with it, liver fibrosis, and hepatocellular carcinoma.
  • the antiviral agent of the present invention can be formulated by a known pharmaceutical method.
  • a known pharmaceutical method for example, capsule, tablet, pill, liquid, powder, granule, fine granule, film coating, pellet, troche, sublingual, chewing agent, buccal, paste, syrup, suspension, Use orally or parenterally as elixirs, emulsions, coatings, ointments, plasters, poultices, transdermal preparations, lotions, inhalants, aerosols, injections, suppositories, etc. Can do.
  • a pharmacologically acceptable carrier or medium specifically, sterile water or physiological saline, vegetable oil, solvent, base, emulsifier, suspension, surfactant, stabilizer, flavoring agent.
  • solid carriers such as lactose, kaolin, sucrose, crystalline cellulose, corn starch, talc, agar, pectin, stearic acid, magnesium stearate, lecithin, sodium chloride, glycerin, peanut oil, polyvinyl
  • liquid carriers such as pyrrolidone, olive oil, ethanol, benzyl alcohol, propylene glycol, and water.
  • the antiviral agent of the present invention may be used in combination with other known antiviral agents.
  • known antiviral agents include known nucleoside analog preparations such as entecavir, 3TC (lamivudine), and adefovir, and interferon (IFN) when the target disease is HBV infection.
  • immunotherapy corticosteroid hormone withdrawal therapy, propagenium preparation, etc.
  • liver protection therapy intravenous injection of glycyrrhizin preparation, oral bile acid preparation, etc.
  • the antiviral agent of the present invention can also be used in combination therapy.
  • the preferred dosage form of the antiviral agent of the present invention is not particularly limited, and oral administration or parenteral administration, more specifically, intravenous administration, intraarterial administration, intraperitoneal administration, subcutaneous administration, intradermal administration, airway Examples thereof include internal administration, rectal administration and intramuscular administration, and administration by infusion.
  • the antiviral agent of the present invention can be used mainly for human subjects, but can also be used for non-human animals such as laboratory animals.
  • the dosage is appropriately selected according to the age, weight, symptom, health condition, serious condition, tolerability of the drug, dosage form and the like of the subject.
  • the dose of the antiviral agent of the present invention per day is usually 0.00001 to 1000 mg / kg body weight, preferably 0.0001 to 100 mg / kg body weight as the amount of the nucleoside derivative which is an active ingredient, or once or It is administered to the subject in multiple doses.
  • the product of the antiviral agent of the present invention or the instructions thereof may have a label indicating that it is used for treating or preventing a viral infection.
  • labeled product or description means that the product body, container, packaging, etc.
  • the administration of the nucleoside derivative of the present invention can inhibit the reverse transcriptase reaction of the virus and suppress the replication of the virus. It can be included as information regarding the mechanism of action of the antiviral agent.
  • the present invention can prevent or treat infectious diseases by administering the antiviral agent of the present invention to a subject. Therefore, the present invention also provides a method for preventing or treating a viral infection characterized by administering the nucleoside derivative of the present invention.
  • the subject to which the nucleoside derivative of the present invention is administered is not particularly limited, and examples thereof include patients with viral infections such as HBV, virus holders before onset of infection, and those before infection.
  • nucleoside derivative having antiviral activity a nucleoside derivative represented by the following general formula (1) having a functional group in a combination shown in Table 1 below was synthesized by the method shown below.
  • surface shows the number of the compound shown below.
  • compound 2 (9- (3-O-tert-butyldimethylsilyl-2-O-deoxy- ⁇ -D-ribofuranosyl) -2-iso Butyrylamino-1H-purin-6-one) was synthesized. That is, after dissolving Compound 1 (8.33 g, 13 mmol) in N, N-dimethylformamide (65 mL), imidazole (2.83 g, 42 mmol) and tert-butyldimethylsilyl chloride (5.89 g, 39 mmol) were added. Sequentially added and stirred at room temperature for 20 hours.
  • compound 4 (9- (3,5-di-O-tert-butyldimethylsilyl-2-O-deoxy-4-C-hydroxymethyl- ⁇ -D -Ribofuranosyl) -2-isobutyrylamino-1H-purin-6-one) was synthesized. That is, Compound 3 (726 mg, 1.5 mmol) was azeotroped with pyridine and then dissolved in N, N-dimethylformamide (15 mL), and triethylamine (421 ⁇ L, 3.0 mmol) and 4,4′- were dissolved at 0 ° C.
  • compound 5 (9- (3,5-di-O-tert-butyldimethylsilyl-4-C-cyano-2-O-deoxy- ⁇ -D- Ribofuranosyl) -2-isobutyrylamino-1H-purin-6-one) was synthesized.
  • the organic layer was dried with magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crude aldehyde.
  • the crude aldehyde was dissolved in pyridine (1.2 mL), hydroxylamine hydrochloride (12.3 mg, 0.18 mmol) was added, and the mixture was stirred at room temperature for 35 minutes. After completion of the reaction, extraction with ethyl acetate was performed. Subsequently, the organic layer was dried with magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crude oxime.
  • compound 6 (9- (3,5-di-O-tert-butyldimethylsilyl-4-C-cyano-2-O-deoxy- ⁇ -D- Ribofuranosyl) -2-isobutyrylamino-6- (2,4,6-triisopropylbenzenesulfonyloxy) purine) was synthesized.
  • compound 5 (46.1 mg, 0.078 mmol) was dissolved in dichloromethane (1 mL), then triethylamine (22 ⁇ L, 0.16 mmol), 2,4,6-triisopropylbenzenesulfonyl chloride (47.3 mg, 0 .16 mmol), 4-dimethylaminopyridine (0.95 mg, 7.8 ⁇ mol) were sequentially added, and the mixture was stirred at room temperature for 1.5 hours. After completion of the reaction, the reaction mixture was quenched with saturated aqueous sodium hydrogen carbonate and extracted with ethyl acetate.
  • Methyltriphenylphosphonium bromide (79.0 mg, 0.221 mmol) was dissolved in tetrahydrofuran (2 mL), and then n-butyllithium (1.6 M in hexane, 0.13 mL, 0.214 mmol) was added at ⁇ 78 ° C. In addition, the mixture was stirred at 0 ° C. for 30 minutes. Subsequently, the crudely purified compound 24 ( ⁇ 0.0737 mmol) dissolved in tetrahydrofuran (4 mL) was dissolved in tetrahydrofuran (4 mL), followed by stirring at room temperature for 11 hours.
  • a mixture of compound 26 and compound 26 ′ (10.1 mg, 0.0200 mmol) was dissolved in chloroform (1 mL) and methanol (1 mL), and then acid ammonium fluoride (68.4 mg, 1.2 mmol) was added. Stirred under for 84 hours. Subsequently, acidic ammonium fluoride (68.4 mg, 1.2 mmol) was added, and the mixture was stirred at room temperature for 48 hours. Then, acidic ammonium fluoride (205 mg, 3.6 mmol) was added, and the mixture was stirred at room temperature for 216 hours.
  • compound 32 (5.15 g, 9.60 mmol) was dissolved in methanol (100 mL), 1M aqueous sodium hydroxide solution (20 mL, 20 mmol) was added, and the mixture was stirred at room temperature for 2 hours.
  • the reaction mixture was neutralized with acetic acid and concentrated, and the residue was dissolved in ethyl acetate and washed with water.
  • the organic layer was dried over magnesium sulfate and concentrated.
  • naphthalene (9.08 g, 70.8 mmol) was dissolved in dehydrated tetrahydrofuran (76.1 mL), metallic lithium (369 mg, 53.2 mmol) was added, and the mixture was stirred at room temperature for 3 hours.
  • the solution was cooled to ⁇ 78 ° C., a dehydrated tetrahydrofuran solution (35.6 mL) of compound 34 (2.12 g, 4.33 mmol) was added, and the mixture was stirred at ⁇ 45 ° C. for 2 hours.
  • methanol 5 mL
  • the reaction was diluted with ethyl acetate and extracted with deionized water.
  • Compound 35 (see Nucleosides, Nucleotides & Nucleic Acids, Vol. 23, No. 4, pp. 671-690, 2004) (0.42 g, 0.57 mmol) was dried dimethyl sulfoxide (2.5 mL), dry toluene (1 3 mL), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (328 mg, 1.71 mmol), dry pyridine (104 ⁇ L), trifluoroacetic acid (52 ⁇ L) were added, and the mixture was stirred at room temperature for 2 hours. did.
  • reaction mixture was diluted with ethyl acetate, washed (saturated brine), dried (anhydrous magnesium sulfate), and concentrated. The residue was azeotroped with tetrahydrofuran three times and then vacuum dried to obtain a crude aldehyde.
  • Methyltriphenylphosphonium bromide (1.02 g, 2.86 mmol) was suspended in dry tetrahydrofuran (7.1 mL) and cooled to -78 ° C.
  • n-Butyllithium hexane solution (1.60 M, 1.79 mL, 2.86 mmol) was added, and the mixture was stirred at 0 ° C. for 1 hour.
  • the crude aldehyde dry tetrahydrofuran solution (5.9 mL) was added, and the mixture was stirred at room temperature for 1 hour. .
  • Saturated aqueous ammonium chloride solution was added and stirred, and the product was extracted with ethyl acetate.
  • nucleoside derivatives obtained by synthesis as described above antiviral activity and cytotoxicity were evaluated by the following methods.
  • the compound P3 was evaluated in the form of a mixture with the compound P3 ′.
  • Test Example 1 Evaluation of anti-HBV activity (2-week evaluation system)
  • HepG2 2.2.15 cells prepared to continuously produce HBV by introducing the HBV gene into a human liver cancer-derived cell line (HepG2 cells) were used.
  • HepG2 2.2.15 cells were maintained by continuous culture in DMEM containing 10% fetal bovine serum.
  • the DNA of this episomal HBV was quantified and the anti-HBV activity was evaluated by the degree of decrease in the amount in the presence of the nucleoside derivative. The obtained results are shown in Tables 4 to 6.
  • HepG2 2.2.15 cells were seeded in each well of a 12-well cell culture dish to a concentration of 1.5 ⁇ 10 5 cells / 2 mL. When the cells reached 80% confluence, each nucleoside derivative was added at various concentrations. The culture solution to which each nucleoside derivative was added was changed every 4 days and cultured for 12 days in the presence of the derivative. Thereafter, total cell DNA was extracted from each HepG2 2.2.15 cell using QIAamp DNA Blood Mini Kit (manufactured by QIAGEN) and dissolved in 200 ⁇ L of 1 ⁇ TE buffer. Subsequently, HBV DNA was quantified by real-time PCR using the DNA thus extracted as a template.
  • QIAamp DNA Blood Mini Kit manufactured by QIAGEN
  • PCR reaction used the following primer set that detects the HBV polymerase region: 5′-GCGAGGACTGGGGGACCCTGTGACGAAC-3 ′ (SEQ ID NO: 1) and 5′-GTCCACCACGAGTTCTAGACTCTGC-3 ′ (SEQ ID NO: 2).
  • the PCR reaction was carried out at 95 ° C. for 10 minutes, followed by 40 cycles of 95 ° C. for 15 seconds and 60 ° C. for 1 minute.
  • CT value was calculated from the HBV copy number (HBV) in the presence of each nucleoside derivative by using a calibration curve prepared by diluting the HBV plasmid at a known concentration every 10 times (20 to 2 ⁇ 10 8 copies). The amount of DNA). Then, the EC 50 value was calculated from the degree of decrease compared with that in the control cultured in the absence of the nucleoside derivative, and the anti-HBV activity of each nucleoside derivative was evaluated. The obtained results are shown in Tables 4 to 6.
  • Test Example 2 Evaluation of anti-HBV activity (one week evaluation system) As test cells, HepG2 2.2.5.7 cells were used, which were the above HepG2 2.2.15 cells as a parent strain. HepG2 2.2.15 cells were maintained by continuous culture in DMEM containing 10% fetal bovine serum, G418 (500 ⁇ g / ml) and antibiotics (penicillin and kanamycin). Moreover, the HepG2 2.2.5.7 cell is an HBV continuous production cell that retains not only DNA integrated into the genome but also an HBV gene produced as an episome, like the HepG2 2.2.15 cell. Therefore, the nucleoside derivatives were co-cultured, the number of viral DNA copies released into the culture supernatant was quantified, and the degree of decrease was used as an index for evaluating anti-HBV activity.
  • a collagen-coated 96-well cell culture dish was seeded with HepG2 2.2.15.7 cells having a cell viability of 90% or more at a concentration of 2 ⁇ 10 4 cells / ml, and the same day of cell seeding.
  • Each nucleoside derivative was added at various concentrations. After culturing for 3 days under standard culture conditions of 37 ° C. and 5% CO 2 , the culture medium was further replaced with a fresh medium containing each nucleoside derivative, and HBV DNA was recovered from the culture supernatant on the 3rd day after the replacement. Then, quantitative PCR was performed from the collected medium in the same manner as described above, and the virus copy number was determined from the calibration curve, and the EC 50 for each nucleoside derivative was calculated. The obtained results are also shown in Tables 4 to 6.
  • 1W represents a one-week evaluation type result
  • 2W represents a two-week evaluation type result.
  • the difference between the two is not only the culture period, but also whether the DNA to be evaluated is total DNA including intracellular (2-week evaluation system) or only extracellular DNA (1-week evaluation system).
  • Test Example 3 Cytotoxicity test With respect to the nucleoside derivative, a cytotoxicity test against HepG2 cells was also conducted. HepG2 cells were seeded to a concentration of 1 ⁇ 10 4 cells / ml together with a medium supplemented with each concentration of each nucleoside derivative after serial dilution. Thus, after culturing these cells for 7 days at 37 ° C. and 5% CO 2 in the presence of various concentrations of each nucleoside derivative, the number of viable cells in each well was quantified by MTT assay. . Then, based on the obtained number of viable cells, CC 50 was calculated for each nucleoside derivative. The obtained results are also shown in Tables 4 to 6.
  • Tables 4 to 6 also show values obtained by dividing the CC 50 value by the EC 50 value as the selectivity index. The greater the selectivity index, the greater the toxicity / activity ratio, and the better the drug is.
  • the present invention it is possible to provide a nucleoside derivative that has at least excellent antiviral activity against HBV and has low toxicity to host cells. Therefore, the present invention is extremely useful in the prevention or treatment of viral infections.

Abstract

[Problem] To provide a nucleoside derivative having antiviral activity against at least HBV and also having low toxicity for host cells. [Solution] A nucleoside derivative represented by general formula (1). In formula (1), R is an optionally substituted alkyl group, an optionally substituted alkenyl group, a cyano group, or an azide group.

Description

抗ウイルス活性を示すヌクレオシド誘導体Nucleoside derivatives exhibiting antiviral activity
 本発明は、抗ウイルス活性を示すヌクレオシド誘導体に関し、より詳しくは、少なくともB型肝炎ウイルスに対して抗ウイルス活性を有する、2’-デオキシプリンヌクレオシド誘導体、及び該誘導体を有効成分とする抗ウイルス剤に関する。 The present invention relates to a nucleoside derivative exhibiting antiviral activity, and more specifically, a 2′-deoxypurine nucleoside derivative having antiviral activity against at least hepatitis B virus, and an antiviral agent comprising the derivative as an active ingredient About.
 B型肝炎ウイルス(HBV)が感染すると、急性又は劇症的に肝炎が生じ、時に死に至ることがある。また、慢性的に肝炎を発症させ、肝硬変、そして肝細胞癌へと進行する場合もある。その感染者数は全世界で約4億人いると推定され、東南アジアを中心として罹患率は非常に高く、その有効な治療方法の開発が世界的に希求されている。 When hepatitis B virus (HBV) is infected, hepatitis may occur acutely or fulminantly, sometimes leading to death. In addition, hepatitis may develop chronically and progress to cirrhosis and hepatocellular carcinoma. The number of infected people is estimated to be about 400 million worldwide, and the incidence is extremely high mainly in Southeast Asia, and the development of effective treatment methods is demanded worldwide.
 HBVは、不完全2本鎖DNAウイルスであり、その生活環においてRNAからDNAを合成する逆転写を行うことが知られている。一方、宿主となるヒトにおいては、逆転写は行われないので、この段階を阻害することにより、HBVの複製のみを阻止できることが可能となる。そして、このような観点からのHBV感染症の治療薬として、ヌクレオシド誘導体製剤が開発されている(例えば、特許文献1及び2、並びに非特許文献1参照)。 HBV is an incomplete double-stranded DNA virus, and is known to perform reverse transcription to synthesize DNA from RNA in its life cycle. On the other hand, since reverse transcription is not performed in the host human, it is possible to inhibit only HBV replication by inhibiting this step. Nucleoside derivative preparations have been developed as therapeutic agents for HBV infection from such a viewpoint (see, for example, Patent Documents 1 and 2 and Non-Patent Document 1).
特開2004-244422号公報JP 2004-244422 A 特開2008-273960号公報JP 2008-273960 A
 現状のヌクレオシド誘導体製剤において、その多くが宿主細胞、すなわち服用するヒトの細胞に対しても毒性を有しており、中長期の服用による副作用が問題となっている。また、服用期間にヌクレオシド誘導体への耐性株が生じることもある。そのため、HBV等のウイルス感染症に対する有効な治療方法は確立されていないのが現状である。 Many of the present nucleoside derivative preparations are toxic to host cells, ie, human cells to be taken, and side effects due to medium to long-term use are problematic. In addition, resistant strains to nucleoside derivatives may occur during the period of administration. Therefore, the present condition is that the effective treatment method with respect to viral infections, such as HBV, is not established.
 本発明は、このような状況に鑑みてなされたものであり、その目的は、少なくともHBVに対して抗ウイルス活性を有し、宿主細胞に対する毒性が低いヌクレオシド誘導体を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to provide a nucleoside derivative having antiviral activity against at least HBV and low toxicity to host cells.
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、以下の構造式により表されるヌクレオシド誘導体が、少なくともHBVに対して抗ウイルス活性を有すると共に、宿主細胞に対する毒性が特に低いことを見出した。 As a result of intensive studies to solve the above problems, the present inventors have found that a nucleoside derivative represented by the following structural formula has antiviral activity against at least HBV, and has particularly low toxicity to host cells. I found out.
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
 式(1)中、Rは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、シアノ基、又はアジド基である。 In formula (1), R is an alkyl group which may have a substituent, an alkenyl group which may have a substituent, a cyano group, or an azide group.
 即ち、本発明者らは、2’-デオキシアデノシンにおいて、プリン塩基の2位をアミノ基とすると共に、その6位を水素原子とすることにより、HBVに対して優れた抗ウイルス活性が得られると共に、宿主細胞に対する毒性を特に低くできることを見出した。 That is, in the 2′-deoxyadenosine, the present inventors can obtain an excellent antiviral activity against HBV by setting the 2-position of the purine base as an amino group and the 6-position as a hydrogen atom. At the same time, it has been found that the toxicity to the host cell can be particularly reduced.
 すなわち、本発明は、少なくともB型肝炎ウイルスに対して抗ウイルス活性を有するヌクレオシド誘導体、及び該誘導体を有効成分とする抗ウイルス剤に関し、より詳しくは、以下を提供するものである。 That is, the present invention relates to a nucleoside derivative having at least antiviral activity against hepatitis B virus, and an antiviral agent comprising the derivative as an active ingredient, and more specifically provides the following.
 <1> 下記一般式(1)で表されるヌクレオシド誘導体。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、Rは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、シアノ基、又はアジド基である。
<1> A nucleoside derivative represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
In formula (1), R is an alkyl group which may have a substituent, an alkenyl group which may have a substituent, a cyano group, or an azide group.
 <2>Rは、モノフルオロメチル基、エテニル基、シアノ基、又はアジド基である、<1>に記載のヌクレオシド誘導体。 <2> The nucleoside derivative according to <1>, wherein R is a monofluoromethyl group, an ethenyl group, a cyano group, or an azide group.
 <3><1>又は<2>に記載のヌクレオシド誘導体を有効成分とする抗ウイルス剤。 <3> An antiviral agent comprising the nucleoside derivative according to <1> or <2> as an active ingredient.
 <4> 抗B型肝炎ウイルス剤である、<3>に記載の抗ウイルス剤。 <4> The antiviral agent according to <3>, which is an anti-hepatitis B virus agent.
 本発明によれば、少なくともHBVに対して抗ウイルス活性を有し、宿主細胞に対して毒性が低いヌクレオシド誘導体を提供することが可能となる。 According to the present invention, it is possible to provide a nucleoside derivative having antiviral activity against at least HBV and low toxicity to host cells.
 (ヌクレオシド誘導体)
 後述の実施例において示す通り、下記式で表されるヌクレオシド誘導体は、B型肝炎ウイルスに対して抗ウイルス活性を有すると共に、宿主細胞に対する毒性が特に低いことが明らかになった。したがって、本発明は、抗ウイルス活性を示すヌクレオシド誘導体に関し、より詳しくは、少なくともB型肝炎ウイルスに対して抗ウイルス活性を有する、下記一般式(1)で表されるヌクレオシド誘導体を提供するものである。
(Nucleoside derivatives)
As shown in Examples described later, the nucleoside derivative represented by the following formula was found to have antiviral activity against hepatitis B virus and particularly low toxicity to host cells. Therefore, the present invention relates to a nucleoside derivative exhibiting antiviral activity, and more specifically, to provide a nucleoside derivative represented by the following general formula (1) having at least antiviral activity against hepatitis B virus. is there.
Figure JPOXMLDOC01-appb-C000004
 式(1)中、Rは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、シアノ基、又はアジド基である。
Figure JPOXMLDOC01-appb-C000004
In formula (1), R is an alkyl group which may have a substituent, an alkenyl group which may have a substituent, a cyano group, or an azide group.
 本発明のヌクレオシド誘導体は、少なくともB型肝炎ウイルス(HBV)に対して抗ウイルス活性を有する。本発明において「HBV」は、B型肝炎を発症させる能力を有するウイルスを意味する。HBVとしては、A(A2/Ae、A1/Aa)、B(Ba、B1/Bj)、C(Cs、Ce)、D~H及びJの遺伝子型が知られているが、本発明のヌクレオシド誘導体は、少なくとも1つの遺伝子型のHBVに対して抗ウイルス活性を有するものであればよい。上記の遺伝子型のうちHBV/Ceは、既存のヌクレオシド誘導体製剤であるエンテカビルに対して耐性を示す遺伝子型であることが知られている。したがって、本発明のヌクレオシド誘導体は、好ましくは、HBV/Ceに対して抗ウイルス活性を有するヌクレオシド誘導体である。 The nucleoside derivative of the present invention has antiviral activity against at least hepatitis B virus (HBV). In the present invention, “HBV” means a virus having the ability to develop hepatitis B. As HBV, the genotypes of A (A2 / Ae, A1 / Aa), B (Ba, B1 / Bj), C (Cs, Ce), DH and J are known, and the nucleoside of the present invention is used. The derivative only needs to have antiviral activity against at least one genotype of HBV. Among the above genotypes, HBV / Ce is known to be a genotype exhibiting resistance to entecavir, which is an existing nucleoside derivative preparation. Therefore, the nucleoside derivative of the present invention is preferably a nucleoside derivative having antiviral activity against HBV / Ce.
[規則91に基づく訂正 20.12.2017] 
 本発明において「抗ウイルス活性」とは、HBV等のウイルスが感染した細胞(宿主細胞)において、当該ウイルスを消滅させる又はその増殖を抑制する活性を意味し、例えば、宿主細胞におけるウイルス複製を抑制する活性が挙げられる。また、かかる抑制等の対象がゲノムとしてDNAを有するウイルス(DNAウイルス)である場合には、「抗DNAウイルス活性」と称する。さらに、かかる活性は、後述の実施例に示すように、宿主細胞におけるウイルスのコピー数等を指標として算出されるEC50値にて評価することができる。本発明のヌクレオシド誘導体は、抗ウイルス活性のEC50値が0.1μM以下であることが好ましく、0.05μM以下であることがより好ましく、0.01μM以下であることがさらに好ましく、0.005μM以下(例えば、0.004μM以下、0.003μM以下、0.002μM以下、0.001μM以下)であることがより好ましい。
[Correction based on Rule 91 20.12.2017]
In the present invention, the term “antiviral activity” refers to the activity of extinguishing the virus or suppressing its growth in a cell (host cell) infected with a virus such as HBV, for example, suppressing virus replication in the host cell. Activity. In addition, when the target of such suppression is a virus having DNA as a genome (DNA virus), it is referred to as “anti-DNA virus activity”. Further, such activity can be evaluated by an EC 50 value calculated using the virus copy number in the host cell as an index, as shown in the Examples below. The nucleoside derivative of the present invention preferably has an EC 50 value of antiviral activity of 0.1 μM or less, more preferably 0.05 μM or less, still more preferably 0.01 μM or less, and 0.005 μM. More preferably (for example, 0.004 μM or less, 0.003 μM or less, 0.002 μM or less, 0.001 μM or less).
 また、本発明のヌクレオシド誘導体は、細胞毒性が低いことが好ましい。本発明において「細胞毒性」とは、細胞を殺傷する、その機能を阻害する、またはその増殖を抑制する活性を意味する。かかる活性は、後述の実施例に示すように、細胞の生存数等を指標として算出されるCC50値にて評価することができる。本発明のヌクレオシド誘導体は、CC50値が10μM以上であることが好ましく、50μM以上であることがより好ましく、100μM以上であることが更に好ましく、200μM以上であることが特に好ましい。 Further, the nucleoside derivative of the present invention preferably has low cytotoxicity. In the present invention, “cytotoxicity” means an activity of killing a cell, inhibiting its function, or suppressing its growth. Such activity can be evaluated by the CC 50 value calculated using the number of viable cells as an index, as shown in the Examples described later. The nucleoside derivative of the present invention preferably has a CC 50 value of 10 μM or more, more preferably 50 μM or more, still more preferably 100 μM or more, and particularly preferably 200 μM or more.
 本発明のヌクレオシド誘導体に少なくともHBVに対する抗ウイルス活性を発揮させつつ、当該誘導体の細胞毒性を低下させることができるという観点から、各置換基は、以下に示す通り選択することが好ましい。 From the viewpoint that the nucleoside derivative of the present invention can exhibit at least antiviral activity against HBV and the cytotoxicity of the derivative can be reduced, each substituent is preferably selected as shown below.
 Rは、上述した通り、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、シアノ基、又はアジド基である。 As described above, R is an alkyl group which may have a substituent, an alkenyl group which may have a substituent, a cyano group, or an azide group.
 「置換基を有していてもよいアルキル基」におけるアルキル基としては特に制限はないが、炭素数1~6の直鎖状、分岐状又は環状のアルキル基が好ましく、メチル基又はエチル基がより好ましい。「置換基を有していてもよいアルキル基」における置換基としては特に制限はなく、例えば、ハロゲン原子、ヒドロキシ基、アルコキシ基、シアノ基、アミノ基が挙げられるが、ハロゲン原子が好ましく、フッ素原子がより好ましい。より具体的には、「置換基を有していてもよいアルキル基」は、モノフルオロメチル基が好ましい。 The alkyl group in the “optionally substituted alkyl group” is not particularly limited, but a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms is preferable, and a methyl group or an ethyl group is preferable. More preferred. The substituent in the “alkyl group optionally having substituent (s)” is not particularly limited, and examples thereof include a halogen atom, a hydroxy group, an alkoxy group, a cyano group, and an amino group. Atoms are more preferred. More specifically, the “optionally substituted alkyl group” is preferably a monofluoromethyl group.
 「置換基を有していてもよいアルケニル基」におけるアルケニル基としては特に制限はないが、炭素数2以上の直鎖状、分岐状、又は環状のアルケニル基が好ましく、炭素数2~6の直鎖状、分岐状、又は環状のアルケニル基がより好ましく、エテニル基がさらに好ましい。「置換基を有していてもよいアルケニル基」における置換基としては特に制限はなく、例えば、ハロゲン原子、ヒドロキシ基、アルコキシ基、シアノ基、アミノ基が挙げられる。 The alkenyl group in the “optionally substituted alkenyl group” is not particularly limited, but is preferably a linear, branched or cyclic alkenyl group having 2 or more carbon atoms, and having 2 to 6 carbon atoms. A linear, branched, or cyclic alkenyl group is more preferable, and an ethenyl group is more preferable. There is no restriction | limiting in particular as a substituent in "The alkenyl group which may have a substituent", For example, a halogen atom, a hydroxy group, an alkoxy group, a cyano group, an amino group is mentioned.
 本発明のヌクレオシド誘導体には、薬理学上許容される塩、水和物又は溶媒和物も含まれる。このような薬理学上許容される塩としては、特に制限はなく、ヌクレオシド誘導体の構造等に応じて適宜選択することができ、例えば、酸付加塩(塩酸塩、硫酸塩、臭化水素塩、硝酸塩、硫酸水素酸塩、リン酸塩、酢酸塩、乳酸塩、コハク酸塩、クエン酸塩、マレイン酸塩、ヒドロキシマレイン酸塩、酒石酸塩、フマル酸塩、メタンスルホン酸塩、p-トルエンスルホン酸塩、樟脳スルホン酸塩、スルファミン酸塩、マンデル酸塩、プロピオン酸塩、グリコール酸塩、ステアリン酸塩、リンゴ酸塩、アスコルビン酸塩、パモン酸塩、フェニル酢酸塩、グルタミン酸塩、安息香酸塩、サリチル酸塩、スルファニル酸塩、2-アセトキシ安息香酸塩、エタンジスルホン酸塩、シュウ酸塩、イセチオン酸塩、ギ酸塩、トリフルオロ酢酸塩、エチルコハク酸塩、ラクトビオン酸塩、グルコン酸塩、グルコヘプトン酸塩、2-ヒドロキシエタンスルホン酸塩、ベンゼンスルホン酸塩、ラウリル硫
酸塩、アスパラギン酸塩、アジピン酸塩、ヨウ化水素酸塩、ニコチン酸塩、シュウ酸塩、ピクリン酸塩、チオシアン酸塩、ウンデカン酸塩等)、塩基付加塩(ナトリウム塩、カリウム塩、亜鉛塩、カルシウム塩、ビスマス塩、バリウム塩、マグネシウム塩、アルミニウム塩、銅塩、コバルト塩、ニッケル塩、カドミウム塩、アンモニウム塩、エチレンジアミン塩、N-ジベンジルエチレンジアミン塩)が挙げられる。また、水和物又は溶媒和物としては、特に制限はなく、例えば、ヌクレオシド誘導体又はその塩1分子に対し、0.1~3分子の水又は溶媒が付加したものが挙げられる。
The nucleoside derivatives of the present invention also include pharmacologically acceptable salts, hydrates or solvates. Such a pharmacologically acceptable salt is not particularly limited and may be appropriately selected depending on the structure of the nucleoside derivative. For example, an acid addition salt (hydrochloride, sulfate, hydrobromide, Nitrate, hydrogen sulfate, phosphate, acetate, lactate, succinate, citrate, maleate, hydroxy maleate, tartrate, fumarate, methanesulfonate, p-toluenesulfone Acid salt, camphor sulfonate, sulfamate, mandelate, propionate, glycolate, stearate, malate, ascorbate, pamonate, phenylacetate, glutamate, benzoate , Salicylate, sulfanilate, 2-acetoxybenzoate, ethanedisulfonate, oxalate, isethionate, formate, trifluoroacetate, ethyl Succinate, lactobionate, gluconate, glucoheptonate, 2-hydroxyethanesulfonate, benzenesulfonate, lauryl sulfate, aspartate, adipate, hydroiodide, nicotinate Oxalate, picrate, thiocyanate, undecanoate, etc.), base addition salts (sodium salt, potassium salt, zinc salt, calcium salt, bismuth salt, barium salt, magnesium salt, aluminum salt, copper salt, Cobalt salt, nickel salt, cadmium salt, ammonium salt, ethylenediamine salt, N-dibenzylethylenediamine salt). Further, the hydrate or solvate is not particularly limited, and examples thereof include those obtained by adding 0.1 to 3 molecules of water or a solvent to one molecule of a nucleoside derivative or a salt thereof.
 本発明のヌクレオシド誘導体には、互変異性体、幾何異性体、不斉炭素に基づく光学異性体、立体異性体等の総ての異性体及び異性体混合物が含まれる。さらに、本発明のヌクレオシド誘導体が生体内で酸化、還元、加水分解、アミノ化、脱アミノ化、水酸化、リン酸化、脱水酸化、アルキル化、脱アルキル化、抱合等の代謝を受けてなお所望の活性を示す化合物をも包含し、また本発明は生体内で酸化、還元、加水分解等の代謝を受けて本発明のヌクレオシド誘導体を生成する化合物(所謂、プロドラッグの形態)をも包含する。さらに、本発明のヌクレオシド誘導体は、後述の通り、公知の製剤学的方法により製剤化することができる。 The nucleoside derivatives of the present invention include all isomers and isomer mixtures such as tautomers, geometric isomers, optical isomers based on asymmetric carbon, and stereoisomers. Furthermore, the nucleoside derivative of the present invention is still desirable after undergoing metabolism such as oxidation, reduction, hydrolysis, amination, deamination, hydroxylation, phosphorylation, dehydration oxidation, alkylation, dealkylation, and conjugation in vivo. In addition, the present invention also includes a compound (so-called prodrug form) that produces the nucleoside derivative of the present invention upon metabolism in vivo such as oxidation, reduction, or hydrolysis. . Furthermore, the nucleoside derivative of the present invention can be formulated by a known pharmaceutical method as described later.
 また、本発明のヌクレオシド誘導体の合成は、たとえば、リボース糖(ヒドロキシ基がアセチル基、ベンジル基等によって置換されることにより保護されたD-リボフラノース)と、プリン塩基(アデニン等)とを、シリル体経由で反応させ、さらにフェノキシチオカルボニル誘導体経由で還元してリボース糖の2位をデオキシ化し、また必要に応じ、公知の手法により、リボース糖及び/又はプリン塩基の目的の位置に置換基を導入することによって行うことができる。
 このような本発明のヌクレオシド誘導体の合成方法は後述の実施例において詳細に示されているので、当業者であれば、実施例の記載を参照しつつ、反応原料、反応試薬、反応条件(例えば、溶媒、反応温度、触媒、反応時間)等を適宜選択しつつ、必要に応じてこれらの方法に適宜、修飾ないし改変を加えることにより、本発明のヌクレオシド誘導体を合成することは可能である。また、このようにして合成されたヌクレオシド誘導体は、一般のヌクレオシド、ヌクレオチドの単離・精製に使用されている方法(逆相クロマトグラフィー、イオン交換クロマトグラフィー、吸着クロマトグラフィー、再結晶法)を適宜単独又は組み合わせて用いることにより、分離、精製することができる。
Further, the synthesis of the nucleoside derivative of the present invention can be achieved by, for example, combining a ribose sugar (D-ribofuranose protected by substitution of a hydroxy group with an acetyl group, a benzyl group, etc.) and a purine base (adenine, etc.) Reaction via a silyl compound, followed by reduction via a phenoxythiocarbonyl derivative to deoxylate the 2-position of the ribose sugar, and if necessary, a substituent at the desired position of the ribose sugar and / or purine base by known methods Can be done by introducing.
Since the method for synthesizing such a nucleoside derivative of the present invention is shown in detail in the examples described later, those skilled in the art will refer to the description of the examples, reaction raw materials, reaction reagents, reaction conditions (for example, The nucleoside derivative of the present invention can be synthesized by appropriately modifying or modifying these methods as necessary, while appropriately selecting the solvent, reaction temperature, catalyst, reaction time, etc. In addition, the nucleoside derivatives synthesized in this manner can be obtained by appropriately using methods (reverse phase chromatography, ion exchange chromatography, adsorption chromatography, recrystallization methods) used for isolation and purification of general nucleosides and nucleotides. It can be separated and purified by using alone or in combination.
 (抗ウイルス剤、ウイルス感染症の予防方法、治療方法)
 後述の実施例において示す通り、本発明のヌクレオシド誘導体は、少なくともB型肝炎ウイルスに対して抗ウイルス活性を有する。したがって、本発明のヌクレオシド誘導体を有効成分とする抗ウイルス剤を提供することができる。
(Antiviral agents, methods for preventing and treating viral infections)
As shown in the Examples described later, the nucleoside derivative of the present invention has at least antiviral activity against hepatitis B virus. Therefore, an antiviral agent comprising the nucleoside derivative of the present invention as an active ingredient can be provided.
 本発明の抗ウイルス剤並びに後述の予防方法、治療方法が対象とする感染症としては特に制限はなく、例えば、HBV感染症が挙げられ、より具体的には、B型肝炎(慢性肝炎、急性肝炎、劇症肝炎)、それに伴う肝硬変、肝繊維化、肝細胞癌が挙げられる。 The infectious disease targeted by the antiviral agent of the present invention and the preventive and therapeutic methods described below is not particularly limited, and examples thereof include HBV infection. More specifically, hepatitis B (chronic hepatitis, acute Hepatitis, fulminant hepatitis), cirrhosis associated with it, liver fibrosis, and hepatocellular carcinoma.
 本発明の抗ウイルス剤は、公知の製剤学的方法により製剤化することができる。例えば、カプセル剤、錠剤、丸剤、液剤、散剤、顆粒剤、細粒剤、フィルムコーティング剤、ペレット剤、トローチ剤、舌下剤、咀嚼剤、バッカル剤、ペースト剤、シロップ剤、懸濁剤、エリキシル剤、乳剤、塗布剤、軟膏剤、硬膏剤、パップ剤、経皮吸収型製剤、ローション剤、吸引剤、エアゾール剤、注射剤、坐剤等として、経口的又は非経口的に使用することができる。 The antiviral agent of the present invention can be formulated by a known pharmaceutical method. For example, capsule, tablet, pill, liquid, powder, granule, fine granule, film coating, pellet, troche, sublingual, chewing agent, buccal, paste, syrup, suspension, Use orally or parenterally as elixirs, emulsions, coatings, ointments, plasters, poultices, transdermal preparations, lotions, inhalants, aerosols, injections, suppositories, etc. Can do.
 これら製剤化においては、薬理学上許容される担体又は媒体、具体的には、滅菌水や生理食塩水、植物油、溶剤、基剤、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、芳香剤、賦形剤、ベヒクル、防腐剤、結合剤、希釈剤、等張化剤、無痛化剤、増量剤、崩壊剤、緩衝剤、コーティング剤、滑沢剤、着色剤、甘味剤、粘稠剤、矯味矯臭剤、溶解補助剤、あるいはその他の添加剤等と適宜組み合わせることができる。より具体的には、担体として、乳糖、カオリン、ショ糖、結晶セルロース、コーンスターチ、タルク、寒天、ペクチン、ステアリン酸、ステアリン酸マグネシウム、レシチン、塩化ナトリウム等の固体状担体、グリセリン、落花生油、ポリビニルピロリドン、オリーブ油、エタノール、ベンジルアルコール、プロピレングリコール、水等の液状担体も挙げられる。 In these preparations, a pharmacologically acceptable carrier or medium, specifically, sterile water or physiological saline, vegetable oil, solvent, base, emulsifier, suspension, surfactant, stabilizer, flavoring agent. , Fragrances, excipients, vehicles, preservatives, binders, diluents, tonicity agents, soothing agents, bulking agents, disintegrating agents, buffering agents, coating agents, lubricants, coloring agents, sweeteners, It can be appropriately combined with a thickener, a flavoring agent, a solubilizing agent, or other additives. More specifically, as a carrier, solid carriers such as lactose, kaolin, sucrose, crystalline cellulose, corn starch, talc, agar, pectin, stearic acid, magnesium stearate, lecithin, sodium chloride, glycerin, peanut oil, polyvinyl Examples include liquid carriers such as pyrrolidone, olive oil, ethanol, benzyl alcohol, propylene glycol, and water.
 また、本発明の抗ウイルス剤は、公知の他の抗ウイルス剤と併用してもよい。このような公知の抗ウイルス剤としては、対象疾患がHBV感染症である場合には、例えば、エンテカビル、3TC(ラミブジン)、アデフォビル等の公知のヌクレオシドアナログ製剤、インターフェロン(IFN)が挙げられる。また、このような薬剤を用いた抗ウイルス療法の他、免疫療法(副腎皮質ステロイドホルモン離脱療法、プロパゲルニウム製剤内服等)、肝庇護療法(グリチルリチン製剤の静注、胆汁酸製剤の内服等)との併用療法に、本発明の抗ウイルス剤を用いることもできる。 In addition, the antiviral agent of the present invention may be used in combination with other known antiviral agents. Examples of such known antiviral agents include known nucleoside analog preparations such as entecavir, 3TC (lamivudine), and adefovir, and interferon (IFN) when the target disease is HBV infection. In addition to antiviral therapy using such drugs, immunotherapy (corticosteroid hormone withdrawal therapy, propagenium preparation, etc.), liver protection therapy (intravenous injection of glycyrrhizin preparation, oral bile acid preparation, etc.) The antiviral agent of the present invention can also be used in combination therapy.
 本発明の抗ウイルス剤の好ましい投与形態としては特に制限はなく、経口投与又は非経口投与、より具体的には、静脈内投与、動脈内投与、腹腔内投与、皮下投与、皮内投与、気道内投与、直腸投与及び筋肉内投与、輸液による投与が挙げられる。 The preferred dosage form of the antiviral agent of the present invention is not particularly limited, and oral administration or parenteral administration, more specifically, intravenous administration, intraarterial administration, intraperitoneal administration, subcutaneous administration, intradermal administration, airway Examples thereof include internal administration, rectal administration and intramuscular administration, and administration by infusion.
 本発明の抗ウイルス剤は、主にヒトを対象として使用することができるが、実験用動物等のヒト以外の動物も対象とすることができる。 The antiviral agent of the present invention can be used mainly for human subjects, but can also be used for non-human animals such as laboratory animals.
 本発明の抗ウイルス剤を投与する場合、その投与量は、対象の年齢、体重、症状、健康状態、重篤状態、薬物に対する忍容性、投与形態等に応じて、適宜選択される。1日当たりの本発明の抗ウイルス剤の投与量は、有効成分であるヌクレオシド誘導体の量として、通常0.00001~1000mg/kg体重、好ましくは0.0001~100mg/kg体重であり、1回又は複数回に分けて対象に投与される。本発明の抗ウイルス剤の製品又はその説明書は、ウイルス感染症を治療又は予防するために用いられる旨の表示を付したものであり得る。ここで「製品又は説明書に表示を付した」とは、製品の本体、容器、包装等に表示を付したこと、又は製品の情報を開示する説明書、添付文書、宣伝物、その他の印刷物等に表示を付したことを意味する。また、ウイルス感染症を治療するために用いられる旨の表示においては、本発明のヌクレオシド誘導体を投与することにより、ウイルスの逆転写酵素反応を阻害し、当該ウイルスの複製を抑制できることも本発明の抗ウイルス剤の作用機序に関する情報として含むことができる。 When administering the antiviral agent of the present invention, the dosage is appropriately selected according to the age, weight, symptom, health condition, serious condition, tolerability of the drug, dosage form and the like of the subject. The dose of the antiviral agent of the present invention per day is usually 0.00001 to 1000 mg / kg body weight, preferably 0.0001 to 100 mg / kg body weight as the amount of the nucleoside derivative which is an active ingredient, or once or It is administered to the subject in multiple doses. The product of the antiviral agent of the present invention or the instructions thereof may have a label indicating that it is used for treating or preventing a viral infection. Here, “labeled product or description” means that the product body, container, packaging, etc. is labeled, or a description, attached document, promotional material, or other printed matter that discloses product information. It means that the display is attached to. In addition, in the indication that it is used to treat viral infections, the administration of the nucleoside derivative of the present invention can inhibit the reverse transcriptase reaction of the virus and suppress the replication of the virus. It can be included as information regarding the mechanism of action of the antiviral agent.
 このように本発明は、本発明の抗ウイルス剤を対象に投与することによって、感染症を予防又は治療することができる。したがって、本発明は、本発明のヌクレオシド誘導体を投与することを特徴とする、ウイルス感染症を予防又は治療するための方法をも提供するものである。 Thus, the present invention can prevent or treat infectious diseases by administering the antiviral agent of the present invention to a subject. Therefore, the present invention also provides a method for preventing or treating a viral infection characterized by administering the nucleoside derivative of the present invention.
 本発明のヌクレオシド誘導体を投与する対象としては特に制限はなく、例えば、HBV等のウイルス感染症患者、感染症が発症する前のウイルス保有者、感染する前の者が挙げられる。 The subject to which the nucleoside derivative of the present invention is administered is not particularly limited, and examples thereof include patients with viral infections such as HBV, virus holders before onset of infection, and those before infection.
 抗ウイルス活性を有するヌクレオシド誘導体を得るために、下記表1に示す組み合わせにて官能基を有する下記一般式(1)で表されるヌクレオシド誘導体を、以下に示す方法にて合成した。なお、表中の番号は、以下に示す化合物の番号を示す。 In order to obtain a nucleoside derivative having antiviral activity, a nucleoside derivative represented by the following general formula (1) having a functional group in a combination shown in Table 1 below was synthesized by the method shown below. In addition, the number in a table | surface shows the number of the compound shown below.
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 また、比較化合物として、以下の表2に示す化合物C1及びC2を合成した。また、参照化合物として、以下の表3に化合物R1乃至R4を合成した。 In addition, compounds C1 and C2 shown in Table 2 below were synthesized as comparative compounds. As reference compounds, compounds R1 to R4 were synthesized in Table 3 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 なお、このようにして合成された化合物が、所望の構造を有する化合物であることは、H核磁気共鳴(NMR)スペクトルを測定することにより確認した。それらの結果も併せて以下に示す。 In addition, it confirmed that the compound synthesize | combined in this way was a compound which has a desired structure by measuring a < 1 > H nuclear magnetic resonance (NMR) spectrum. The results are also shown below.
 合成例1:9-(3,5-ジ-O-tert-ブチルジメチルシリル-4-C-シアノ-2-O-デオキシ-β-D-リボフラノシル)-2-イソブチリルアミノ-6-(2,4,6-トリイソプロピルベンゼンスルホニルオキシ)プリン(化合物6)の合成
 化合物6を、以下に示す反応工程にて合成した。
Synthesis Example 1: 9- (3,5-di-O-tert-butyldimethylsilyl-4-C-cyano-2-O-deoxy-β-D-ribofuranosyl) -2-isobutyrylamino-6- ( Synthesis of 2,4,6-triisopropylbenzenesulfonyloxy) purine (Compound 6) Compound 6 was synthesized by the reaction steps shown below.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 先ず、化合物1(Nucleoside&Nucleotide,1985,4,641-649 参照)から、化合物2(9-(3-O-tert-ブチルジメチルシリル-2-O-デオキシ-β-D-リボフラノシル)-2-イソブチリルアミノ-1H-プリン-6-オン)を合成した。すなわち、化合物1(8.33g,13mmol)をN,N-ジメチルホルムアミド(65mL)に溶解させた後、イミダゾール(2.83g,42mmol)とtert-ブチルジメチルシリルクロリド(5.89g,39mmol)を順次加え、室温で20時間攪拌した。反応終了後、飽和重曹水でクエンチを行った後、酢酸エチルによる抽出を行った。続いて硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製の3’水酸基保護体(13mmol)を得た。粗精製の3’水酸基保護体(13mmol)をクロロホルム(87mL)に溶解させた後、メタノール(37mL)に溶解させたp-トルエンスルホン酸一水和物(7.42g,39mmol)を-15℃で滴下し、同温で1.5時間攪拌した。反応終了後、反応液がオレンジから無色になるまで飽和重曹水を加え、クロロホルムによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/1→酢酸エチル→メタノール/クロロホルム=1/20)で精製を行い、化合物2を得た(5.44g,12mmol,2工程93%)。 First, from compound 1 (see Nucleoside & Nucleotide, 1985, 4, 641-649), compound 2 (9- (3-O-tert-butyldimethylsilyl-2-O-deoxy-β-D-ribofuranosyl) -2-iso Butyrylamino-1H-purin-6-one) was synthesized. That is, after dissolving Compound 1 (8.33 g, 13 mmol) in N, N-dimethylformamide (65 mL), imidazole (2.83 g, 42 mmol) and tert-butyldimethylsilyl chloride (5.89 g, 39 mmol) were added. Sequentially added and stirred at room temperature for 20 hours. After completion of the reaction, the reaction mixture was quenched with saturated aqueous sodium hydrogen carbonate and extracted with ethyl acetate. Subsequently, the organic layer was dried with magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crudely purified 3 'hydroxyl group protector (13 mmol). The crude 3′-hydroxyl-protected product (13 mmol) was dissolved in chloroform (87 mL), and p-toluenesulfonic acid monohydrate (7.42 g, 39 mmol) dissolved in methanol (37 mL) was added at −15 ° C. And stirred at the same temperature for 1.5 hours. After completion of the reaction, saturated aqueous sodium hydrogen carbonate was added until the reaction solution became colorless from orange, and extraction with chloroform was performed. After drying the organic layer with magnesium sulfate and evaporating the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 1/1 → ethyl acetate → methanol / chloroform = 1/20). And compound 2 was obtained (5.44 g, 12 mmol, 2 steps 93%).
H-NMR(CDCl,500MHz);δ12.08(1H,brs),8.36(1H,brs),7.73(1H,s),6.19(1H,dd,J=9.0,5.5Hz),5.21(1H,d,J=10.5Hz),4.61(1H,d,J=5.5Hz),4.12(1H,d,J=1.0Hz),3.94(1H,m),3.74(1H,m),2.79(1H,m),2.65(1H,m),2.23(1H,m),1.28(3H,d,J=3.0Hz),1.27(3H,d,J=3.0Hz),0.93(9H,s),0.118(3H,s),0.115(3H,s)。 1 H-NMR (CDCl 3 , 500 MHz); δ 12.08 (1H, brs), 8.36 (1H, brs), 7.73 (1H, s), 6.19 (1H, dd, J = 9. 0, 5.5 Hz), 5.21 (1 H, d, J = 10.5 Hz), 4.61 (1 H, d, J = 5.5 Hz), 4.12 (1 H, d, J = 1.0 Hz) ), 3.94 (1H, m), 3.74 (1H, m), 2.79 (1H, m), 2.65 (1H, m), 2.23 (1H, m), 1.28 (3H, d, J = 3.0 Hz), 1.27 (3H, d, J = 3.0 Hz), 0.93 (9H, s), 0.118 (3H, s), 0.115 (3H , S).
 次に、このようにして得られた化合物2から、化合物3(9-(3-O-tert-ブチルジメチルシリル-2-O-デオキシ-4-C-ヒドロキシメチル-β-D-リボフラノシル)-2-イソブチリルアミノ-1H-プリン-6-オン)を合成した。すなわち、化合物2(103mg,0.23mmol)をトルエン(0.23mL)とジメチルスルホキシド(0.23mL)に溶解させた後、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(132mg,0.69mmol)、ピリジン(36.9μL,0.46mmol)、トリフルオロ酢酸(18μL,0.23mmol)を順次加え、室温で14時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。続いて硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製のアルデヒドを得た。粗精製のアルデヒドを1,4-ジオキサン(4.6mL)に溶解させた後、37%ホルムアルデヒド水溶液(100μL,1.0mmol)と1規定の水酸化ナトリウム水溶液(275μL,0.28mmol)を順次加え、室温で20分攪拌した。次に1規定の水酸化ナトリウム水溶液(275μL,0.28mmol)を追加し、室温で35分攪拌した後、0℃で水素化ホウ素ナトリウム(26.0mg,0.69mmol)を加え、室温で45分攪拌した。反応終了後、1規定塩酸でクエンチを行った後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(メタノール/クロロホルム=1/20)で精製を行い、化合物3を得た(38.9mg,0.081mmol,2工程35%)。 Next, from compound 2 thus obtained, compound 3 (9- (3-O-tert-butyldimethylsilyl-2-O-deoxy-4-C-hydroxymethyl-β-D-ribofuranosyl)- 2-isobutyrylamino-1H-purin-6-one) was synthesized. Specifically, Compound 2 (103 mg, 0.23 mmol) was dissolved in toluene (0.23 mL) and dimethyl sulfoxide (0.23 mL), and then 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (132 mg , 0.69 mmol), pyridine (36.9 μL, 0.46 mmol), and trifluoroacetic acid (18 μL, 0.23 mmol) were sequentially added, and the mixture was stirred at room temperature for 14 hours. After completion of the reaction, extraction with ethyl acetate was performed. Subsequently, the organic layer was dried with magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crude aldehyde. After dissolving the crude aldehyde in 1,4-dioxane (4.6 mL), a 37% formaldehyde aqueous solution (100 μL, 1.0 mmol) and a 1N aqueous sodium hydroxide solution (275 μL, 0.28 mmol) were sequentially added. And stirred at room temperature for 20 minutes. Next, 1N aqueous sodium hydroxide solution (275 μL, 0.28 mmol) was added, and the mixture was stirred at room temperature for 35 minutes, and then sodium borohydride (26.0 mg, 0.69 mmol) was added at 0 ° C. Stir for minutes. After completion of the reaction, the reaction mixture was quenched with 1N hydrochloric acid and extracted with ethyl acetate. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (methanol / chloroform = 1/20) to obtain Compound 3 (38.9 mg, 0.00). 081 mmol, 35% for 2 steps).
H-NMR(CDCl,500MHz);δ12.08(1H,brs),9.78(1H,brs),7.92(1H,s),6.27(1H,t,J=7.0Hz),4.83(1H,dd,J=7.0,4.0Hz),4.76(1H,brs),3.95(1H,d,J=12.0Hz),3.89(1H,d,J=11.0Hz),3.68-3.61(3H,m),2.85-2.77(2H,m),2.41(1H,m),1.25(3H,d,J=7.0Hz),1.22(3H,d,J=7.0Hz),0.90(9H,s),0.13(3H,s),0.12(3H,s)。 1 H-NMR (CDCl 3 , 500 MHz); δ 12.08 (1H, brs), 9.78 (1H, brs), 7.92 (1H, s), 6.27 (1H, t, J = 7. 0 Hz), 4.83 (1H, dd, J = 7.0, 4.0 Hz), 4.76 (1H, brs), 3.95 (1H, d, J = 12.0 Hz), 3.89 ( 1H, d, J = 11.0 Hz), 3.68-3.61 (3H, m), 2.85-2.77 (2H, m), 2.41 (1H, m), 1.25 ( 3H, d, J = 7.0 Hz), 1.22 (3H, d, J = 7.0 Hz), 0.90 (9H, s), 0.13 (3H, s), 0.12 (3H, s).
 次に、このようにして得られた化合物3から、化合物4(9-(3,5-ジ-O-tert-ブチルジメチルシリル-2-O-デオキシ-4-C-ヒドロキシメチル-β-D-リボフラノシル)-2-イソブチリルアミノ-1H-プリン-6-オン)を合成した。すなわち、化合物3(726mg,1.5mmol)をピリジンで共沸させた後、N,N-ジメチルホルムアミド(15mL)に溶解させ、0℃でトリエチルアミン(421μL,3.0mmol)と4,4’-ジメトキシトリチルクロリド(767mg,2.3mmol)を順次加え、室温で20分、0℃で1時間攪拌した。反応終了後、メタノールでクエンチを行った後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=2/1→酢酸エチル)で精製を行い、粗精製の6’水酸基保護体(958mg,1.2mmol)を得た。6’水酸基保護体(958mg,1.2mmol)をN,N-ジメチルホルムアミド(6mL)に溶解させた後、イミダゾール(291mg,4.27mmol)とtert-ブチルジメチルシリルクロリド(552mg,3.7mmol)を順次加え、室温で25分攪拌した。反応終了後、飽和重曹水でクエンチを行った後、酢酸エチルによる抽出を行った。続いて硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製の5’水酸基保護体を得た。粗精製の5’水酸基保護体をクロロホルム(8mL)に溶解させた後、メタノール(4.5mL)に溶解させたp-トルエンスルホン酸一水和物(928mg,4.9mmol)を-15℃で滴下し、同温で1.5時間攪拌した。反応終了後、反応液がオレンジから無色になるまで飽和重曹水を加え、クロロホルムによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=2/1)で精製を行い、化合物4を得た(461mg,0.77mmol,3工程51%)。 Next, from compound 3 thus obtained, compound 4 (9- (3,5-di-O-tert-butyldimethylsilyl-2-O-deoxy-4-C-hydroxymethyl-β-D -Ribofuranosyl) -2-isobutyrylamino-1H-purin-6-one) was synthesized. That is, Compound 3 (726 mg, 1.5 mmol) was azeotroped with pyridine and then dissolved in N, N-dimethylformamide (15 mL), and triethylamine (421 μL, 3.0 mmol) and 4,4′- were dissolved at 0 ° C. Dimethoxytrityl chloride (767 mg, 2.3 mmol) was sequentially added, and the mixture was stirred at room temperature for 20 minutes and at 0 ° C. for 1 hour. After completion of the reaction, the reaction was quenched with methanol and extracted with ethyl acetate. After drying the organic layer with magnesium sulfate and evaporating the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 2/1 → ethyl acetate) to obtain a crude 6 ′ hydroxyl group. The protector (958 mg, 1.2 mmol) was obtained. A 6′-hydroxyl-protected product (958 mg, 1.2 mmol) was dissolved in N, N-dimethylformamide (6 mL), and then imidazole (291 mg, 4.27 mmol) and tert-butyldimethylsilyl chloride (552 mg, 3.7 mmol). Were sequentially added and stirred at room temperature for 25 minutes. After completion of the reaction, the reaction mixture was quenched with saturated aqueous sodium hydrogen carbonate and extracted with ethyl acetate. Subsequently, the organic layer was dried with magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crude 5′-hydroxyl-protected body. The crude 5′-hydroxyl-protected product was dissolved in chloroform (8 mL), and p-toluenesulfonic acid monohydrate (928 mg, 4.9 mmol) dissolved in methanol (4.5 mL) was added at −15 ° C. The solution was added dropwise and stirred at the same temperature for 1.5 hours. After completion of the reaction, saturated aqueous sodium hydrogen carbonate was added until the reaction solution became colorless from orange, and extraction with chloroform was performed. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 2/1) to obtain Compound 4 (461 mg, 0 .77 mmol, 3 steps 51%).
H-NMR(CDCl,500MHz);δ12.03(1H,brs),8.68(1H,brs),7.94(1H,s),6.24(1H,t,J=6.0Hz),4.79(1H,dd,J=6.5,5.0Hz),3.83(1H,dd,J=12.0,4.5Hz),3.75(1H,d,J=10.5Hz),3.69-3.65(2H,m),2.68-2.58(3H,m),2.50-2.45(1H,m),1.27(3H,d,J=7.0Hz),1.24(3H,d,J=7.0Hz),0.92(9H,s),0.91(9H,s),0.14(3H,s),0.13(3H,s),0.08(3H,s),0.07(3H,s)。 1 H-NMR (CDCl 3 , 500 MHz); δ 12.03 (1H, brs), 8.68 (1H, brs), 7.94 (1H, s), 6.24 (1H, t, J = 6. 0 Hz), 4.79 (1H, dd, J = 6.5, 5.0 Hz), 3.83 (1H, dd, J = 12.0, 4.5 Hz), 3.75 (1H, d, J = 10.5 Hz), 3.69-3.65 (2H, m), 2.68-2.58 (3H, m), 2.50-2.45 (1H, m), 1.27 (3H , D, J = 7.0 Hz), 1.24 (3H, d, J = 7.0 Hz), 0.92 (9H, s), 0.91 (9H, s), 0.14 (3H, s) ), 0.13 (3H, s), 0.08 (3H, s), 0.07 (3H, s).
 次に、このようにして得られた化合物4から、化合物5(9-(3,5-ジ-O-tert-ブチルジメチルシリル-4-C-シアノ-2-O-デオキシ-β-D-リボフラノシル)-2-イソブチリルアミノ-1H-プリン-6-オン)を合成した。すなわち、化合物4(70.4mg,0.12mmol)をトルエン(0.12mL)とジメチルスルホキシド(0.12mL)に溶解させた後、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(67.9mg,0.35mmol)、ピリジン(19.0μL,0.24mmol)、トリフルオロ酢酸(9.0μL,0.12mmol)を順次加え、室温で14時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。続いて硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製のアルデヒドを得た。粗精製のアルデヒドをピリジン(1.2mL)に溶解させた後、塩酸ヒドロキシルアミン(12.3mg,0.18mmol)を加え、室温で35分攪拌した。反応終了後、酢酸エチルによる抽出を行った。続いて硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製のオキシムを得た。粗精製のオキシムをジクロロメタン(1.2mL)に溶解させた後、0℃でトリエチルアミン(33μL,0.24mmol)とメタンスルホニルクロリド(14μL,0.18mmol)を順次加え、同温で1時間攪拌した。反応終了後、飽和重曹水でクエンチを行った後、酢酸エチルによる抽出を行った。続いて硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=2/1)で精製を行い、化合物5を得た(61.1mg,0.10mmol,3工程88%)。 Next, from compound 4 thus obtained, compound 5 (9- (3,5-di-O-tert-butyldimethylsilyl-4-C-cyano-2-O-deoxy-β-D- Ribofuranosyl) -2-isobutyrylamino-1H-purin-6-one) was synthesized. That is, after dissolving Compound 4 (70.4 mg, 0.12 mmol) in toluene (0.12 mL) and dimethyl sulfoxide (0.12 mL), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (67.9 mg, 0.35 mmol), pyridine (19.0 μL, 0.24 mmol), and trifluoroacetic acid (9.0 μL, 0.12 mmol) were sequentially added, and the mixture was stirred at room temperature for 14 hours. After completion of the reaction, extraction with ethyl acetate was performed. Subsequently, the organic layer was dried with magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crude aldehyde. The crude aldehyde was dissolved in pyridine (1.2 mL), hydroxylamine hydrochloride (12.3 mg, 0.18 mmol) was added, and the mixture was stirred at room temperature for 35 minutes. After completion of the reaction, extraction with ethyl acetate was performed. Subsequently, the organic layer was dried with magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crude oxime. After dissolving the crude oxime in dichloromethane (1.2 mL), triethylamine (33 μL, 0.24 mmol) and methanesulfonyl chloride (14 μL, 0.18 mmol) were sequentially added at 0 ° C. and stirred at the same temperature for 1 hour. . After completion of the reaction, the reaction mixture was quenched with saturated aqueous sodium hydrogen carbonate and extracted with ethyl acetate. Subsequently, the organic layer was dried with magnesium sulfate and the solvent was distilled off under reduced pressure, and then the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 2/1) to obtain Compound 5 (61 .1 mg, 0.10 mmol, 3 steps 88%).
H-NMR(CDCl,500MHz);δ12.00(1H,brs),7.97(1H,brs),7.81(1H,s),6.36(1H,t,J=6.5Hz),4.82(1H,t,J=6.0Hz),3.91(2H,s),2.66-2.55(3H,m),1.31(6H,d,J=7.0Hz),0.97(9H,s),0.90(9H,s),0.19(3H,s),0.17(3H,s),0.11(3H,s),0.07(3H,s)。  1 H-NMR (CDCl 3 , 500 MHz); δ 12.00 (1H, brs), 7.97 (1H, brs), 7.81 (1H, s), 6.36 (1H, t, J = 6. 5 Hz), 4.82 (1H, t, J = 6.0 Hz), 3.91 (2H, s), 2.66-2.55 (3H, m), 1.31 (6H, d, J = 7.0 Hz), 0.97 (9H, s), 0.90 (9H, s), 0.19 (3H, s), 0.17 (3H, s), 0.11 (3H, s), 0.07 (3H, s).
 次に、このようにして得られた化合物5から、化合物6(9-(3,5-ジ-O-tert-ブチルジメチルシリル-4-C-シアノ-2-O-デオキシ-β-D-リボフラノシル)-2-イソブチリルアミノ-6-(2,4,6-トリイソプロピルベンゼンスルホニルオキシ)プリン)を合成した。すなわち、化合物5(46.1mg,0.078mmol)をジクロロメタン(1mL)に溶解させた後、トリエチルアミン(22μL,0.16mmol)、2,4,6-トリイソプロピルベンゼンスルホニルクロリド(47.3mg,0.16mmol),4-ジメチルアミノピリジン(0.95mg,7.8μmol)を順次加え、室温で1.5時間攪拌した。反応終了後、飽和重曹水でクエンチを行った後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/4)で精製を行い、化合物6を得た(58.5mg,0.068mmol,88%)。 Next, from compound 5 thus obtained, compound 6 (9- (3,5-di-O-tert-butyldimethylsilyl-4-C-cyano-2-O-deoxy-β-D- Ribofuranosyl) -2-isobutyrylamino-6- (2,4,6-triisopropylbenzenesulfonyloxy) purine) was synthesized. That is, compound 5 (46.1 mg, 0.078 mmol) was dissolved in dichloromethane (1 mL), then triethylamine (22 μL, 0.16 mmol), 2,4,6-triisopropylbenzenesulfonyl chloride (47.3 mg, 0 .16 mmol), 4-dimethylaminopyridine (0.95 mg, 7.8 μmol) were sequentially added, and the mixture was stirred at room temperature for 1.5 hours. After completion of the reaction, the reaction mixture was quenched with saturated aqueous sodium hydrogen carbonate and extracted with ethyl acetate. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 1/4) to obtain Compound 6 (58.5 mg). , 0.068 mmol, 88%).
H-NMR(CDCl,500MHz);δ7.99(1H,s),7.95(1H,brs),7.23(2H,s),6.38(1H,t,J=6.5Hz),5.18(1H,t,J=5.5Hz),4.25(2H,m),4.12(1H,d,J=11.5Hz),3.95(1H,d,J=11.0Hz),3.20(1H,m),2.94(1H,m),2.69(1H,brs),2.51(1H,m),1.30-1.26(18H,m),1.23(3H,d,J=2.0Hz),1.21(3H,d,J=1.5Hz),0.96(9H,s),0.88(9H,s),0.22(3H,s),0.14(3H,s),0.070(3H,s),0.065(3H,s)。 1 H-NMR (CDCl 3 , 500 MHz); δ 7.9 (1H, s), 7.95 (1H, brs), 7.23 (2H, s), 6.38 (1H, t, J = 6. 5 Hz), 5.18 (1 H, t, J = 5.5 Hz), 4.25 (2 H, m), 4.12 (1 H, d, J = 11.5 Hz), 3.95 (1 H, d, J = 11.0 Hz), 3.20 (1H, m), 2.94 (1H, m), 2.69 (1H, brs), 2.51 (1H, m), 1.30-1.26. (18H, m), 1.23 (3H, d, J = 2.0 Hz), 1.21 (3H, d, J = 1.5 Hz), 0.96 (9H, s), 0.88 (9H , S), 0.22 (3H, s), 0.14 (3H, s), 0.070 (3H, s), 0.065 (3H, s).
 合成例2:9-(3,5-ジ-O-tert-ブチルジメチルシリル-4-C-シアノ-2-O-デオキシ-β-D-リボフラノシル)-2-イソブチリルアミノプリン(化合物7)の合成
 化合物7を、以下に示す反応工程にて合成した。
Synthesis Example 2: 9- (3,5-di-O-tert-butyldimethylsilyl-4-C-cyano-2-O-deoxy-β-D-ribofuranosyl) -2-isobutyrylaminopurine (Compound 7 ) Was synthesized in the reaction steps shown below.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
化合物6(626mg,0.730mmol) をテトラヒドロフラン(3mL)に溶解させた後、ヒドラジン一水和物(0.2mL,4.12mmol)を加え、室温で1時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製の6位ヒドラジド化体を得た。
 粗精製の6位ヒドラジド化体(<0.730mmol)をテトラヒドロフラン(4mL)に溶解させた後、酸化銀(I)(508mg,2.19mmol)を加え、遮光下および加熱還流下で15時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/1)で精製を行い、化合物7(180mg,0.313mmol,2工程43%) を得た。
Compound 6 (626 mg, 0.730 mmol) was dissolved in tetrahydrofuran (3 mL), hydrazine monohydrate (0.2 mL, 4.12 mmol) was added, and the mixture was stirred at room temperature for 1 hr. After completion of the reaction, extraction with ethyl acetate was performed. The organic layer was dried with magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crude 6-position hydrazide.
The crude 6-position hydrazide (<0.730 mmol) was dissolved in tetrahydrofuran (4 mL), silver (I) oxide (508 mg, 2.19 mmol) was added, and the mixture was stirred for 15 hours under light shielding and heating under reflux. did. After completion of the reaction, extraction with ethyl acetate was performed. After drying the organic layer with magnesium sulfate and evaporating the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 1/1) to obtain compound 7 (180 mg, 0.313 mmol, 2 steps 43%).
H-NMR(CDCl,500MHz);δ8.91(1H,s),8.18(1H,brs),8.07(1H,s),6.43(1H,t,J=6.5 Hz),5.16(1H,t,J =6.0 Hz),4.12(1H,d,J=12Hz),3.96(1H,d,J=11Hz),3.23(1H,m),2.76(1H,brs),2.55(1H,m),1.23(6H,d,J=6.5Hz),0.97(9H,s),0.89(9H,s),0.23(3H,s),0.16(3H,s), 0.081(3H,s),0.067(3H,s)。 1 H-NMR (CDCl 3 , 500 MHz); δ 8.91 (1H, s), 8.18 (1H, brs), 8.07 (1H, s), 6.43 (1H, t, J = 6. 5 Hz), 5.16 (1 H, t, J = 6.0 Hz), 4.12 (1 H, d, J = 12 Hz), 3.96 (1 H, d, J = 11 Hz), 3.23 ( 1H, m), 2.76 (1H, brs), 2.55 (1H, m), 1.23 (6H, d, J = 6.5 Hz), 0.97 (9H, s), 0.89 (9H, s), 0.23 (3H, s), 0.16 (3H, s), 0.081 (3H, s), 0.067 (3H, s).
 合成例3:2-アミノ-9-(3,5-ジ-O-tert-ブチルジメチルシリル-4-C-シアノ-2-O-デオキシ-β-D-リボフラノシル)プリン(化合物8)の合成
 化合物8を、以下に示す反応工程にて合成した。
Synthesis Example 3: Synthesis of 2-amino-9- (3,5-di-O-tert-butyldimethylsilyl-4-C-cyano-2-O-deoxy-β-D-ribofuranosyl) purine (Compound 8) Compound 8 was synthesized by the reaction steps shown below.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 化合物7(180mg,0.313mmol)をイソプロピルアルコール(2.5mL)に溶解させた後、ヨウ化アンモニウム(45.3mg,0.313mmol)、ヒドラジン一水和物(2.5mL)を順次加え、室温で6.5時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製を行い、化合物8(120mg,0.238mmol,76%)を得た。 Compound 7 (180 mg, 0.313 mmol) was dissolved in isopropyl alcohol (2.5 mL), then ammonium iodide (45.3 mg, 0.313 mmol) and hydrazine monohydrate (2.5 mL) were sequentially added, Stir at room temperature for 6.5 hours. After completion of the reaction, extraction with ethyl acetate was performed. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate) to obtain Compound 8 (120 mg, 0.238 mmol, 76%).
H-NMR (CDCl,500MHz);δ8.70(1H,s),7.88(1H,s),6.40(1H,dd,J=5.5,1.5Hz),5.04(2H,brs),4.95(1H,t,J=6.0Hz),3.99(1H,d,J=11Hz),3.88(1H,d,J=11Hz),3.05(1H,m),2.56(1H,m),0.97(9H,s),0.87(9H,s),0.20(3H,s),0.18(3H,s),0.083(3H,s),0.023(3H,s)。 1 H-NMR (CDCl 3 , 500 MHz); δ 8.70 (1H, s), 7.88 (1H, s), 6.40 (1H, dd, J = 5.5, 1.5 Hz), 5. 04 (2H, brs), 4.95 (1H, t, J = 6.0 Hz), 3.99 (1H, d, J = 11 Hz), 3.88 (1H, d, J = 11 Hz), 3. 05 (1H, m), 2.56 (1H, m), 0.97 (9H, s), 0.87 (9H, s), 0.20 (3H, s), 0.18 (3H, s ), 0.083 (3H, s), 0.023 (3H, s).
 合成例4:2-アミノ-9-(4-C-シアノ-2-O-デオキシ-β-D-リボフラノシル)プリン(化合物P1)の合成
 化合物P1を、以下に示す反応工程にて合成した。
Synthesis Example 4: Synthesis of 2-amino-9- (4-C-cyano-2-O-deoxy-β-D-ribofuranosyl) purine (Compound P1) Compound P1 was synthesized by the reaction steps shown below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 化合物8(120mg,0.238mmol)をクロロホルム(2mL)とメタノール(4mL)に溶解させた後、酸性フッ化アンモニウム(815mg,14.3mmol)を加え、室温下で137.5時間攪拌した。反応終了後、溶媒の減圧留去を行い、残渣をシリカゲルカラムクロマトグラフィー(メタノール/クロロホルム=1/4)で精製を行い、粗精製の化合物P1を得た。粗精製の化合物P1に対し、シリカゲルカラムクロマトグラフィー(メタノール/クロロホルム=1/6)で精製を行い、化合物P1(57.5mg,0.208mmol,88%)を得た。 Compound 8 (120 mg, 0.238 mmol) was dissolved in chloroform (2 mL) and methanol (4 mL), then ammonium acid fluoride (815 mg, 14.3 mmol) was added, and the mixture was stirred at room temperature for 137.5 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (methanol / chloroform = 1/4) to obtain crude compound P1. The crude compound P1 was purified by silica gel column chromatography (methanol / chloroform = 1/6) to obtain compound P1 (57.5 mg, 0.208 mmol, 88%).
H-NMR(CDOD,500MHz);δ8.56(1H,s),8.21(1H,s),6.51(1H,t,J=6.5Hz),4.90(1H,m),3.94(1H,d,J=12Hz,3.87(1H,d,J=12Hz),3.02(1H,m),2.56(1H,m)。 1 H-NMR (CD 3 OD, 500 MHz); δ 8.56 (1H, s), 8.21 (1H, s), 6.51 (1H, t, J = 6.5 Hz), 4.90 (1H M), 3.94 (1H, d, J = 12 Hz, 3.87 (1H, d, J = 12 Hz), 3.02 (1H, m), 2.56 (1H, m).
 合成例5:2-アミノ-9-(2-O-アセチル-3,5-ジ-O-ベンジル-4-C-フルオロメチル-β-D-リボフラノシル)-6-クロロプリン(化合物10)の合成
 化合物9を、以下に示す反応工程にて合成した。
Synthesis Example 5: 2-amino-9- (2-O-acetyl-3,5-di-O-benzyl-4-C-fluoromethyl-β-D-ribofuranosyl) -6-chloropurine (Compound 10) Synthetic compound 9 was synthesized by the reaction steps shown below.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 化合物9(Tetrahedron,Vol.53,No.39,pp.13315-13322(1997)参照)(117mg,0.263mmol)と2-アミノ-6-クロロプリン(66.8mg,0.394mmol)をアセトニトリル(1.3mL)に溶解させた後、N,O-ビス(トリメチルシリル)アセトアミド(206μL,0.842 mmol)を加え、加熱還流下で1時間攪拌した。続いて反応溶液を室温に戻した後、トリフルオロメタンスルホン酸トリメチルシリル(64μL,0.342mmol)を加え、加熱還流下で5時間攪拌した。反応終了後、飽和重曹水によるクエンチを行った後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/2→1/1)で精製を行い、化合物10(122mg,0.220mmol,84%)を得た。 Compound 9 (see Tetrahedron, Vol. 53, No. 39, pp. 13315-13322 (1997)) (117 mg, 0.263 mmol) and 2-amino-6-chloropurine (66.8 mg, 0.394 mmol) in acetonitrile After being dissolved in (1.3 mL), N, O-bis (trimethylsilyl) acetamide (206 μL, 0.842 mmol) was added, and the mixture was stirred with heating under reflux for 1 hour. Subsequently, after returning the reaction solution to room temperature, trimethylsilyl trifluoromethanesulfonate (64 μL, 0.342 mmol) was added, and the mixture was stirred for 5 hours under heating to reflux. After completion of the reaction, the reaction mixture was quenched with saturated aqueous sodium hydrogen carbonate and extracted with ethyl acetate. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 1/2 → 1/1) to obtain compound 10 (122 mg, 0.220 mmol, 84%).
H-NMR(CDCl,500MHz);δ7.99(1H,s),7.38-7.29(10H,m),6.16(1H,d,J=5.5 Hz),5.91(1H,dd,J=5.5,5.5Hz),5.01(2H,brs),4.71-4.54(7H,m),3.72(1H,dd,J=10,2.0 Hz),3.66(1H,dd,J=10,2.0Hz),2.06(3H,s)。 1 H-NMR (CDCl 3 , 500 MHz); δ 7.9 (1H, s), 7.38-7.29 (10 H, m), 6.16 (1 H, d, J = 5.5 Hz), 5 .91 (1H, dd, J = 5.5, 5.5 Hz), 5.01 (2H, brs), 4.71-4.54 (7H, m), 3.72 (1H, dd, J = 10, 2.0 Hz), 3.66 (1H, dd, J = 10, 2.0 Hz), 2.06 (3H, s).
 合成例6:2-アミノ-9-(3,5-ジ-O-ベンジル-4-C-フルオロメチル-2-O-フェニルチオホルミル-β-D-リボフラノシル)-6-クロロプリン(化合物12)の合成
 化合物12を、以下に示す反応工程にて合成した。
Synthesis Example 6: 2-Amino-9- (3,5-di-O-benzyl-4-C-fluoromethyl-2-O-phenylthioformyl-β-D-ribofuranosyl) -6-chloropurine (Compound 12 ) Was synthesized in the reaction steps shown below.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
化合物10(122mg,0.220mmol)をメタノール(2mL)に溶解させた後、アンモニア水(0.5mL) を加え、室温で13時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製の化合物11を得た。
 粗精製の化合物11(<0.220mmol)をジオキサンによる共沸脱水を行った。次にアセトニトリル(3mL)に溶解させた後、4-ジメチルアミノピリジン(80.6mg,0.660mmol)、フェニルクロロチオノホルメート(45.6μM,0.330mmol)を順次加え、室温で2時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/2)で精製を行い、化合物12(110.6mg,0.170mmol,2工程77%)を得た。
Compound 10 (122 mg, 0.220 mmol) was dissolved in methanol (2 mL), aqueous ammonia (0.5 mL) was added, and the mixture was stirred at room temperature for 13 hr. After completion of the reaction, extraction with ethyl acetate was performed. The organic layer was dried with magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crudely purified compound 11.
Crude compound 11 (<0.220 mmol) was azeotropically dehydrated with dioxane. Next, after dissolving in acetonitrile (3 mL), 4-dimethylaminopyridine (80.6 mg, 0.660 mmol) and phenylchlorothionoformate (45.6 μM, 0.330 mmol) were sequentially added, and at room temperature for 2 hours. Stir. After completion of the reaction, extraction with ethyl acetate was performed. After the organic layer was dried over magnesium sulfate and the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 1/2) to obtain compound 12 (110.6 mg, 0. 170 mmol, 2 steps 77%).
H-NMR(CDCl,500MHz);δ8.00(1H,s),7.41-7.33(13H,m),6.97(2H,d,J=8.0Hz),6.41(1H,dd,J=6.3,5.5Hz),6.37(1H,d,J=6.5Hz),5.00(2H,brs),4.88(1H,d,J=5.0Hz),4.76-4.59(6H,m),3.77(1H,dd,J=10,2.0Hz),3.74(1H,dd,J=10,2.0Hz)。 1 H-NMR (CDCl 3 , 500 MHz); δ 8.00 (1H, s), 7.41-7.33 (13H, m), 6.97 (2H, d, J = 8.0 Hz), 6. 41 (1H, dd, J = 6.3, 5.5 Hz), 6.37 (1H, d, J = 6.5 Hz), 5.00 (2H, brs), 4.88 (1H, d, J = 5.0 Hz), 4.76-4.59 (6 H, m), 3.77 (1 H, dd, J = 10, 2.0 Hz), 3.74 (1 H, dd, J = 10, 2. 0 Hz).
 合成例7:2-アミノ-9-(3,5-ジ-O-ベンジル-2-O-デオキシ-4-C-フルオロメチル-β-D-リボフラノシル)-6-クロロプリン(化合物13)の合成
 化合物13を、以下に示す反応工程にて合成した。
Synthesis Example 7: 2-amino-9- (3,5-di-O-benzyl-2-O-deoxy-4-C-fluoromethyl-β-D-ribofuranosyl) -6-chloropurine (Compound 13) Synthetic compound 13 was synthesized in the reaction steps shown below.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
化合物12(110.6mg,0.170mmol)をトルエン(6mL)に溶解させた後、水素化トリブチルスズ(229μL,0.850mmol)とアゾビスイソブチロニトリル(7.0mg,0.0425mmol)を加え、80℃で1時間攪拌した。反応終了後、溶媒の減圧留去を行い、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/2→1/1)で精製を行い、化合物13(59.3mg,0.119mmol,70%)を得た。 Compound 12 (110.6 mg, 0.170 mmol) was dissolved in toluene (6 mL), then tributyltin hydride (229 μL, 0.850 mmol) and azobisisobutyronitrile (7.0 mg, 0.0425 mmol) were added. , And stirred at 80 ° C. for 1 hour. After completion of the reaction, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 1/2 → 1/1) to obtain compound 13 (59.3 mg, 0.119 mmol, 70%).
H-NMR(CDCl,500MHz);δ7.99(1H,s),7.39-7.25(10H,m),6.34(1H,dd,J=6.5,6.5Hz),5.02(2H,brs),4.67(2H,d,J=47.5 Hz),4.65(1H,d,J=12Hz),4.55-4.51(4H,m),3.63(1H,s),3.62(1H,s),2.78(1H,m),2.63(1H,m)。 1 H-NMR (CDCl 3 , 500 MHz); δ 7.9 (1H, s), 7.39-7.25 (10 H, m), 6.34 (1 H, dd, J = 6.5, 6.5 Hz) ), 5.02 (2H, brs), 4.67 (2H, d, J = 47.5 Hz), 4.65 (1H, d, J = 12 Hz), 4.55-4.51 (4H, m), 3.63 (1H, s), 3.62 (1H, s), 2.78 (1H, m), 2.63 (1H, m).
 合成例8:2-アミノ-9-(3,5-ジ-O-ベンジル-2-O-デオキシ-4-C-フルオロメチル-β-D-リボフラノシル)プリン(化合物14)の合成
 化合物14を、以下に示す反応工程にて合成した。
Synthesis Example 8 Synthesis of 2-amino-9- (3,5-di-O-benzyl-2-O-deoxy-4-C-fluoromethyl-β-D-ribofuranosyl) purine (Compound 14) These were synthesized by the reaction steps shown below.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
化合物13(59.3mg,0.119mmol)と10% パラジウム炭素(29.7mg,50wt%)にメタノール(3mL)を加えた後、トリエチルアミン(166μL,1.19mmol)を加え、室温、水素雰囲気下で19時間攪拌した。反応終了後、溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製を行い、化合物14(37.6mg,0.0811mmol,68%)を得た。 After adding methanol (3 mL) to compound 13 (59.3 mg, 0.119 mmol) and 10% palladium carbon (29.7 mg, 50 wt%), triethylamine (166 μL, 1.19 mmol) was added, and at room temperature under hydrogen atmosphere For 19 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate) to obtain Compound 14 (37.6 mg, 0.0811 mmol, 68%).
H-NMR(CDCl,500MHz);δ8.65(1H,s),7.94(1H,s),7.39-7.26(10H,m),6.39(1H,dd,J=6.5,6.5Hz),4.97(2H,brs),4.69(2H,d,J=47Hz),4.66(1H,d,J=12Hz),4.57-4.50(4H,m),3.65(1H,s),3.64(1H,s),2.81(1H,m),2.62(1H,m)。 1 H-NMR (CDCl 3 , 500 MHz); δ 8.65 (1H, s), 7.94 (1H, s), 7.39-7.26 (10H, m), 6.39 (1H, dd, J = 6.5, 6.5 Hz), 4.97 (2H, brs), 4.69 (2H, d, J = 47 Hz), 4.66 (1H, d, J = 12 Hz), 4.57− 4.50 (4H, m), 3.65 (1 H, s), 3.64 (1 H, s), 2.81 (1 H, m), 2.62 (1 H, m).
 合成例9:2-アミノ-9-(2-O-デオキシ-4-C-フルオロメチル-β-D-リボフラノシル)プリン(化合物P2)の合成
 化合物P2を、以下に示す反応工程にて合成した。
Synthesis Example 9 Synthesis of 2-amino-9- (2-O-deoxy-4-C-fluoromethyl-β-D-ribofuranosyl) purine (Compound P2) Compound P2 was synthesized by the following reaction steps. .
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 化合物14(18.0mg,0.0388mmol)をトルエンで共沸脱水した後、ジクロロメタン(1mL)に溶解させ、三塩化ホウ素(CHCl中1.0M,0.29mg,0.291mmol)を加え、-78℃で21時間攪拌した。反応終了後、1Mのトリエチルアミン‐二酸化炭素緩衝液(4.4mL)でクエンチを行った後、メタノールによる共沸を行った。その後、残渣をシリカゲルカラムクロマトグラフィー(メタノール/クロロホルム=1/5)と 分取薄層クロマトグラフィー(メタノール/クロロホルム=1/4)で精製を行い、化合物P2(6.7mg,0.0237mmol,61%)を得た。 Compound 14 (18.0 mg, 0.0388 mmol) was azeotropically dehydrated with toluene, then dissolved in dichloromethane (1 mL), and boron trichloride (1.0 M in CH 2 Cl 2 , 0.29 mg, 0.291 mmol) was added. The mixture was further stirred at −78 ° C. for 21 hours. After completion of the reaction, the reaction was quenched with 1M triethylamine-carbon dioxide buffer (4.4 mL) and then azeotroped with methanol. Thereafter, the residue was purified by silica gel column chromatography (methanol / chloroform = 1/5) and preparative thin layer chromatography (methanol / chloroform = 1/4) to obtain compound P2 (6.7 mg, 0.0237 mmol, 61 %).
H-NMR(CDOD,500MHz);δ8.56(1H,s),8.26(1H,s),6.42(1H,dd,J=6.5,6.5 Hz),4.73(1H,dd,J=6.5,4.0Hz),4.63(2H,dd,J=47.5,2.5Hz),3.76(2H,s),2.97(1H,m),2.48(1H,m)。 1 H-NMR (CD 3 OD, 500 MHz); δ 8.56 (1H, s), 8.26 (1H, s), 6.42 (1H, dd, J = 6.5, 6.5 Hz), 4.73 (1H, dd, J = 6.5, 4.0 Hz), 4.63 (2H, dd, J = 47.5, 2.5 Hz), 3.76 (2H, s), 2.97 (1H, m), 2.48 (1H, m).
 合成例10:9-(5-O-アセチル-3-O-tert-ブチルジメチルシリル-2-O-デオキシ-β-D-リボフラノシル)-2-イソブチリルアミノ-1H-プリン-6-オン(化合物15)の合成
 化合物15を、以下に示す反応工程にて合成した。
Synthesis Example 10: 9- (5-O-acetyl-3-O-tert-butyldimethylsilyl-2-O-deoxy-β-D-ribofuranosyl) -2-isobutyrylamino-1H-purin-6-one Synthesis of (Compound 15) Compound 15 was synthesized by the reaction steps shown below.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
化合物2(15.0mg,0.0332mmol)をジクロロメタン(1mL)に溶解させた後、トリエチルアミン(13.9μL,0.0996mmol)、4-ジメチルアミノピリジン(0.41mg,3.32μmol)、無水酢酸(4.71μL,0.0498mmol)を順次加え、室温で2時間攪拌した。反応終了後、飽和重曹水によるクエンチと酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=2/1→酢酸エチル)で精製を行い、化合物15(11.4mg,0.0231mmol,70%)を得た。 Compound 2 (15.0 mg, 0.0332 mmol) was dissolved in dichloromethane (1 mL), then triethylamine (13.9 μL, 0.0996 mmol), 4-dimethylaminopyridine (0.41 mg, 3.32 μmol), acetic anhydride (4.71 μL, 0.0498 mmol) was sequentially added, and the mixture was stirred at room temperature for 2 hours. After completion of the reaction, quenching with saturated aqueous sodium hydrogen carbonate and extraction with ethyl acetate were performed. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 2/1 → ethyl acetate) to obtain compound 15 (11.4 mg , 0.0231 mmol, 70%).
 H-NMR(CDCl,500MHz);δ8.57(1H,brs),8.02(1H,s),7.74(1H,s),6.23(1H,dd,J=7.5,6.0Hz),4.60(1H,dd,J=11.5,5.5Hz),4.48(1H,m),4.37(1H,dd,J=11.5,6.0Hz),2.76(1H,m),2.67(1H,m),2.33(1H,m),2.11(3H,s),1.30(3H,d,J=4.0Hz),1.28(3H,d,J=4.0Hz)0.93(9H,s),0.123(3H,s),0.120(3H,s)。 1 H-NMR (CDCl 3 , 500 MHz); δ 8.57 (1H, brs), 8.02 (1H, s), 7.74 (1H, s), 6.23 (1H, dd, J = 7. 5, 6.0 Hz), 4.60 (1 H, dd, J = 11.5, 5.5 Hz), 4.48 (1 H, m), 4.37 (1 H, dd, J = 11.5, 6) .0Hz), 2.76 (1H, m), 2.67 (1H, m), 2.33 (1H, m), 2.11 (3H, s), 1.30 (3H, d, J = 4.0 Hz), 1.28 (3H, d, J = 4.0 Hz) 0.93 (9 H, s), 0.123 (3 H, s), 0.120 (3 H, s).
 合成例11:9-(5-O-アセチル-3-O-tert-ブチルジメチルシリル-2-O-デオキシ-β-D-リボフラノシル)-2-イソブチリルアミノ-6-(2,4,6-トリイソプロピルベンゼンスルホニルオキシ)プリン(化合物16)の合成
 化合物16を、以下に示す反応工程にて合成した。
Synthesis Example 11 9- (5-O-acetyl-3-O-tert-butyldimethylsilyl-2-O-deoxy-β-D-ribofuranosyl) -2-isobutyrylamino-6- (2,4 Synthesis of 6-triisopropylbenzenesulfonyloxy) purine (Compound 16) Compound 16 was synthesized by the reaction steps shown below.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 化合物15(5.55g,11.2mmol)をジクロロメタン(56mL)に溶解させた後、トリエチルアミン(3.1 mL,22.4mmol)、4-ジメチルアミノピリジン(137mg,1.12mmol)、2,4,6-トリイソプロピルベンゼンスルホニルクロリド(6.78g,22.4mmol)を順次加え、室温で2時間攪拌した。反応終了後、飽和重曹水によるクエンチとクロロホルムによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/4)で精製を行い、化合物16(7.26g,9.55mmol,85%)を得た。 Compound 15 (5.55 g, 11.2 mmol) was dissolved in dichloromethane (56 mL), and then triethylamine (3.1 mL, 22.4 mmol), 4-dimethylaminopyridine (137 mg, 1.12 mmol), 2, 4 , 6-Triisopropylbenzenesulfonyl chloride (6.78 g, 22.4 mmol) was sequentially added, and the mixture was stirred at room temperature for 2 hours. After completion of the reaction, quenching with saturated aqueous sodium hydrogen carbonate and extraction with chloroform were performed. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 1/4) to obtain compound 16 (7.26 g, 9. 55 mmol, 85%).
 H-NMR(CDCl,500MHz);δ8.04(1H,s),7.85(1H,brs),7.23(2H,s),6.33(1H,t,J=6.5Hz),4.76(1H,dd,J=10.5,4.5Hz),4.39(1H,dd,J=12,4.5Hz),4.30-4.23(3H,m),4.13(1H,dd,J=9.5,4.5Hz),2.93(2H,m),2.86(1H,brs),2.44(1H,m),2.05(3H,s),1.30-1.26(18H,m),1.23(3H,d,J=3.0Hz),1.21(3H,d,J=3.5Hz)0.91(9H,s),0.13(3H,s),0.11(3H,s)。 1 H-NMR (CDCl 3 , 500 MHz); δ 8.04 (1H, s), 7.85 (1H, brs), 7.23 (2H, s), 6.33 (1H, t, J = 6. 5 Hz), 4.76 (1 H, dd, J = 10.5, 4.5 Hz), 4.39 (1 H, dd, J = 12, 4.5 Hz), 4.30-4.23 (3 H, m ), 4.13 (1H, dd, J = 9.5, 4.5 Hz), 2.93 (2H, m), 2.86 (1H, brs), 2.44 (1H, m), 2. 05 (3H, s), 1.30-1.26 (18H, m), 1.23 (3H, d, J = 3.0 Hz), 1.21 (3H, d, J = 3.5 Hz) 0 .91 (9H, s), 0.13 (3H, s), 0.11 (3H, s).
 合成例12:9-(3-O-tert-ブチルジメチルシリル-2-O-デオキシ-β-D-リボフラノシル)-2-イソブチリルアミノプリン(化合物18)の合成
 化合物18を、以下に示す反応工程にて合成した。
Synthesis Example 12 Synthesis of 9- (3-O-tert-butyldimethylsilyl-2-O-deoxy-β-D-ribofuranosyl) -2-isobutyrylaminopurine (Compound 18) Synthesized in the reaction step.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 化合物16(6.92g,9.10mmol)を1,4-ジオキサン(65mL)に溶解させた後、トリエチルアミン(7.6mL,54.6mmol),ギ酸(2.1mL,54.6mmol),1,3-ビス(ジフェニルホスフィノ)プロパン(413mg,1.00mmol),酢酸パラジウム(II)(204mg,0.91mmol)を順次加え、90℃で3.5時間攪拌した。反応終了後、溶媒の減圧留去を行い、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル、ショート)で精製を行い、粗精製の化合物17を得た。
 粗精製の化合物17(<9.10 mmol)をメタノール(46mL)に溶解させた後、アンモニア水(15mL)を加え、室温で12.5時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=2/1→酢酸エチル)で精製を行い、化合物18(1.82 g,4.18 mmol,2工程46%) を得た。
Compound 16 (6.92 g, 9.10 mmol) was dissolved in 1,4-dioxane (65 mL), triethylamine (7.6 mL, 54.6 mmol), formic acid (2.1 mL, 54.6 mmol), 1, 3-bis (diphenylphosphino) propane (413 mg, 1.00 mmol) and palladium (II) acetate (204 mg, 0.91 mmol) were sequentially added, and the mixture was stirred at 90 ° C. for 3.5 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate, short) to obtain roughly purified Compound 17.
Crude compound 17 (<9.10 mmol) was dissolved in methanol (46 mL), aqueous ammonia (15 mL) was added, and the mixture was stirred at room temperature for 12.5 hr. After completion of the reaction, extraction with ethyl acetate was performed. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 2/1 → ethyl acetate) to obtain compound 18 (1.82 g, 4.18 mmol, 46% for 2 steps).
H-NMR(CDCl,500MHz);δ8.96(1H,s),8.30(1H,brs),8.09(1H,s),6.31(1H,dd,J=8.0,6.0 Hz),4.88(1H,ddd,J=5.5,2.5,2.5 Hz),4.44(1H,m),4.09(1H,dd,J=4.5,2.0Hz),3.95(1H,m),3.82(1H,m),3.02(1H,m),2.79(1H,m),2.30(1H,m),1.30(3H,d,J=2.0Hz),1.28(3H,d,J=2.0Hz),0.927(9H,s),0.138(3H,s),0.121(3H,s)。 1 H-NMR (CDCl 3 , 500 MHz); δ 8.96 (1H, s), 8.30 (1H, brs), 8.09 (1H, s), 6.31 (1H, dd, J = 8. 0, 6.0 Hz), 4.88 (1H, ddd, J = 5.5, 2.5, 2.5 Hz), 4.44 (1H, m), 4.09 (1H, dd, J = 4.5, 2.0 Hz), 3.95 (1H, m), 3.82 (1 H, m), 3.02 (1 H, m), 2.79 (1 H, m), 2.30 ( 1H, m), 1.30 (3H, d, J = 2.0 Hz), 1.28 (3H, d, J = 2.0 Hz), 0.927 (9H, s), 0.138 (3H, s), 0.121 (3H, s).
 合成例13:9-(3-O-tert-ブチルジメチルシリル-2-O-デオキシ-4-C-ヒドロキシメチル-β-D-リボフラノシル)-2-イソブチリルアミノプリン(化合物20)の合成
 化合物20を、以下に示す反応工程にて合成した。
Synthesis Example 13 Synthesis of 9- (3-O-tert-butyldimethylsilyl-2-O-deoxy-4-C-hydroxymethyl-β-D-ribofuranosyl) -2-isobutyrylaminopurine (Compound 20) Compound 20 was synthesized by the reaction steps shown below.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
化合物18(26.8mg,0.0618mmol)をトルエン(0.5mL)とジメチルスルホキシド(0.5mL)に溶解させた後、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(35.5mg,0.185mmol),ピリジン(10μL,0.124mmol),トリフルオロ酢酸(4.7μL,0.0618mmol)を順次加え、室温で14時間攪拌した。その後、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(118mg,0.618mmol),ピリジン(30μL,0.371mmol),トリフルオロ酢酸(14μL,0.186mmol)を順次追加し、室温で2時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製の化合物19を得た。
粗精製の化合物19(<0.0618mmol)を1,4-ジオキサン(1mL)に溶解させた後、37% ホルムアルデヒド水溶液(27μL,0.272 mmol)、1規定の水酸化ナトリウム水溶液(155μL,0.155mmol)を順次加え、室温で1時間攪拌した。続いて0℃で水素化ホウ素ナトリウム(7.0mg,0.185mmol)を加え、同温で30分攪拌した。反応終了後、メタノールによるクエンチと酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー (酢酸エチル→メタノール/クロロホルム=1/10)で精製を行い、化合物20(18.3mg,0.0393mmol,2工程64%)を得た。
Compound 18 (26.8 mg, 0.0618 mmol) was dissolved in toluene (0.5 mL) and dimethyl sulfoxide (0.5 mL), and then 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (35 0.5 mg, 0.185 mmol), pyridine (10 μL, 0.124 mmol), and trifluoroacetic acid (4.7 μL, 0.0618 mmol) were sequentially added, and the mixture was stirred at room temperature for 14 hours. Then, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (118 mg, 0.618 mmol), pyridine (30 μL, 0.371 mmol), trifluoroacetic acid (14 μL, 0.186 mmol) were sequentially added, Stir at room temperature for 2 hours. After completion of the reaction, extraction with ethyl acetate was performed. The organic layer was dried with magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crudely purified compound 19.
Crude compound 19 (<0.0618 mmol) was dissolved in 1,4-dioxane (1 mL), then 37% aqueous formaldehyde solution (27 μL, 0.272 mmol), 1 N aqueous sodium hydroxide solution (155 μL, 0 mL). .155 mmol) was sequentially added, and the mixture was stirred at room temperature for 1 hour. Subsequently, sodium borohydride (7.0 mg, 0.185 mmol) was added at 0 ° C., and the mixture was stirred at the same temperature for 30 minutes. After completion of the reaction, quenching with methanol and extraction with ethyl acetate were performed. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate → methanol / chloroform = 1/10) to obtain compound 20 (18.3 mg, 0. 1). 0393 mmol, 64% for 2 steps).
H-NMR(CDCl,500MHz);δ8.94(1H,s),8.75(1H,brs),8.09(1H,s),6.38(1H,dd,J=6.5,6.5Hz),5.30(1H,dd,J=6.5,5.0Hz),4.28(1H,brs),3.90-3.63(5H,m),3.09(1H,m),2.94(1H,m),2.51(1H,m),1.29(3H,d,J=6.0Hz),1.28(3H,d,J=7.0 Hz),0.945(9H,s),0.215(3H,s),0.152(3H,s)。 1 H-NMR (CDCl 3 , 500 MHz); δ 8.94 (1H, s), 8.75 (1H, brs), 8.09 (1H, s), 6.38 (1H, dd, J = 6. 5, 6.5 Hz), 5.30 (1 H, dd, J = 6.5, 5.0 Hz), 4.28 (1 H, brs), 3.90-3.63 (5 H, m), 3. 09 (1H, m), 2.94 (1H, m), 2.51 (1H, m), 1.29 (3H, d, J = 6.0 Hz), 1.28 (3H, d, J = 7.0 Hz), 0.945 (9H, s), 0.215 (3H, s), 0.152 (3H, s).
 合成例13:9-(2-O-デオキシ-3,5-ジ-O-tert-ブチルジメチルシリル-4-C-ヒドロキシメチル-β-D-リボフラノシル)-2-イソブチリルアミノプリン(化合物23)の合成
 化合物23を、以下に示す反応工程にて合成した。
Synthesis Example 13 9- (2-O-deoxy-3,5-di-O-tert-butyldimethylsilyl-4-C-hydroxymethyl-β-D-ribofuranosyl) -2-isobutyrylaminopurine (compound 23) Synthesis compound 23 was synthesized by the following reaction steps.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 化合物20(103.4 mg,0.222mmol)をN,N-ジメチルホルムアミド(2.3mL)に溶解させた後、トリエチルアミン(62μL,0.444mmol),4,4’-ジメトキシトリチルクロリド(113mg,0.333mmol)を順次加え、0℃で1.5時間攪拌した。反応終了後、メタノールによるクエンチと、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製の化合物21を得た。
粗精製の化合物21(<0.222mmol)をN,N-ジメチルホルムアミド(2.2mL)に溶解した後、イミダゾール(52.9mg,0.777mmol),tert-ブチルジメチルシリルクロリド(100mg,0.666mmol)を順次加え、室温で16.5時間攪拌した。反応終了後、飽和重曹水でクエンチを行った後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製の化合物22を得た。
粗精製の化合物22(<0.222mmol)をクロロホルム(1.5mL)に溶解させた後、-15℃でメタノール(0.6mL)に溶解させたp-トルエンスルホン酸一水和物(127mg,0.666 mmol)を滴下し、同温で2時間攪拌した。反応終了後、1規定の水酸化ナトリウム水溶液によるクエンチを行った後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー (酢酸エチル/n-ヘキサン=2/1)で精製を行い、化合物23(19.8 mg,0.0341mmol,3工程15.4%) を得た。
Compound 20 (103.4 mg, 0.222 mmol) was dissolved in N, N-dimethylformamide (2.3 mL), and then triethylamine (62 μL, 0.444 mmol), 4,4′-dimethoxytrityl chloride (113 mg, 0.333 mmol) was sequentially added, and the mixture was stirred at 0 ° C. for 1.5 hours. After completion of the reaction, quenching with methanol and extraction with ethyl acetate were performed. The organic layer was dried with magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crudely purified compound 21.
Crude compound 21 (<0.222 mmol) was dissolved in N, N-dimethylformamide (2.2 mL), and then imidazole (52.9 mg, 0.777 mmol), tert-butyldimethylsilyl chloride (100 mg, 0.8 mL). 666 mmol) was sequentially added, and the mixture was stirred at room temperature for 16.5 hours. After completion of the reaction, the reaction mixture was quenched with saturated aqueous sodium hydrogen carbonate and extracted with ethyl acetate. The organic layer was dried with magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crudely purified compound 22.
Crude compound 22 (<0.222 mmol) was dissolved in chloroform (1.5 mL), and then p-toluenesulfonic acid monohydrate (127 mg, dissolved in methanol (0.6 mL) at −15 ° C. 0.666 mmol) was added dropwise and stirred at the same temperature for 2 hours. After completion of the reaction, the reaction mixture was quenched with 1N aqueous sodium hydroxide solution and extracted with ethyl acetate. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 2/1) to obtain compound 23 (19.8 mg, 0 0.0341 mmol, 3 steps 15.4%).
H-NMR(CDCl,500MHz);δ8.98(1H,s),8.83(1H, brs),8.27(1H,s),6.48(1H,dd,J=7.0,6.0Hz),4.97(1H,dd,J=6.5,5.5 Hz),3.87(1H,m),3.82(2H,s),3.73(1H,m),2.93(1H,m),2.78(1H,m),2.59(1H,m),1.29(3H,d,J=2.0Hz),1.28(3H,d,J=2.0Hz),0.939(9H,s),0.883(9H,s),0.165(3H,s),0.147(3H,s),0.043(6H,s)。 1 H-NMR (CDCl 3 , 500 MHz); δ 8.98 (1H, s), 8.83 (1H, brs), 8.27 (1H, s), 6.48 (1H, dd, J = 7. 0, 6.0 Hz), 4.97 (1 H, dd, J = 6.5, 5.5 Hz), 3.87 (1 H, m), 3.82 (2 H, s), 3.73 (1 H , M), 2.93 (1H, m), 2.78 (1H, m), 2.59 (1H, m), 1.29 (3H, d, J = 2.0 Hz), 1.28 ( 3H, d, J = 2.0 Hz), 0.939 (9H, s), 0.883 (9H, s), 0.165 (3H, s), 0.147 (3H, s), 0.043 (6H, s).
 合成例14:9-(2-O-デオキシ-3,5-ジ-O-tert-ブチルジメチルシリル-4-C-ビニル-β-D-リボフラノシル)-2-イソブチリルアミノプリン(化合物25)の合成
 化合物25を、以下に示す反応工程にて合成した。
Synthesis Example 14 9- (2-O-deoxy-3,5-di-O-tert-butyldimethylsilyl-4-C-vinyl-β-D-ribofuranosyl) -2-isobutyrylaminopurine (Compound 25 ) Was synthesized in the reaction steps shown below.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
化合物23(42.7mg,0.0737mmol)をトルエン(0.5mL)とジメチルスルホキシド(0.5mL)に溶解させた後、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(141.3mg,0.737mmol),ピリジン(36μL,0.442mmol),トリフルオロ酢酸(17μL,0.221mmol)を順次加え、室温で1時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行い、粗精製の化合物24を得た。
メチルトリフェニルホスホニウムブロミド(79.0 mg,0.221mmol)をテトラヒドロフラン(2mL)に溶解させた後、-78℃でn-ブチルリチウム(ヘキサン中1.6M,0.13mL,0.214mmol)を加え、0℃で30分攪拌した。続いて、テトラヒドロフラン(4mL)に溶解させた粗精製の化合物24(<0.0737mmol)をテトラヒドロフラン(4mL)に溶解させた後、室温で11時間攪拌した。続いて、別途調製した9.9当量のウィッティヒ(Wittig)試薬を0℃で加え、室温で3時間攪拌した。反応終了後、飽和塩化アンモニウム水溶液によるクエンチと酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/1)で精製を行い、化合物25(14.4mg,0.0250mmol,2工程34%)を化合物25’との混合物(25:25’=1:0.3)として得た。なお、化合物25と化合物25’の混合比はH-NMRスペクトルより決定した。
化合物25のLRMS(ESI); m/z 598.4114[M+Na]
Compound 23 (42.7 mg, 0.0737 mmol) was dissolved in toluene (0.5 mL) and dimethyl sulfoxide (0.5 mL), and then 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (141 .3 mg, 0.737 mmol), pyridine (36 μL, 0.442 mmol), and trifluoroacetic acid (17 μL, 0.221 mmol) were sequentially added, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, extraction with ethyl acetate was performed. The organic layer was dried with magnesium sulfate and the solvent was distilled off under reduced pressure to obtain a crudely purified compound 24.
Methyltriphenylphosphonium bromide (79.0 mg, 0.221 mmol) was dissolved in tetrahydrofuran (2 mL), and then n-butyllithium (1.6 M in hexane, 0.13 mL, 0.214 mmol) was added at −78 ° C. In addition, the mixture was stirred at 0 ° C. for 30 minutes. Subsequently, the crudely purified compound 24 (<0.0737 mmol) dissolved in tetrahydrofuran (4 mL) was dissolved in tetrahydrofuran (4 mL), followed by stirring at room temperature for 11 hours. Subsequently, a separately prepared 9.9 equivalent Wittig reagent was added at 0 ° C. and stirred at room temperature for 3 hours. After completion of the reaction, quenching with a saturated aqueous ammonium chloride solution and extraction with ethyl acetate were performed. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 1/1) to obtain compound 25 (14.4 mg, 0. 1). 0250 mmol, 34% for 2 steps) was obtained as a mixture with compound 25 ′ (25: 25 ′ = 1: 0.3). The mixing ratio of compound 25 and compound 25 ′ was determined from the 1 H-NMR spectrum.
LRMS of compound 25 (ESI <+> ); m / z 598.4114 [M + Na] < +>.
 合成例15:2-アミノ-9-(2-O-デオキシ-3,5-ジ-O-tert-ブチルジメチルシリル-4-C-ビニル-β-D-リボフラノシル)プリン(化合物26)の合成
 化合物26を、以下に示す反応工程にて合成した。
Synthesis Example 15 Synthesis of 2-amino-9- (2-O-deoxy-3,5-di-O-tert-butyldimethylsilyl-4-C-vinyl-β-D-ribofuranosyl) purine (Compound 26) Compound 26 was synthesized by the reaction step shown below.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 化合物25と化合物25’の混合物(18.1mg,0.0314mmol)をイソプロピルアルコール(1mL)に溶解させた後、ヨウ化アンモニウム(4.6mg,0.0314mmol)、ヒドラジン一水和物(1mL)を順次加え、室温で1.5時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/1)で精製を行い、化合物26(10.1mg,0.0200mmol,64%)を化合物26’との混合物(26:26’=1:0.3)として得た。なお、化合物26と化合物26’の混合比はH-NMRスペクトルより決定した。
化合物26のLRMS(ESI); m/z 528.3378[M+Na]
A mixture of compound 25 and compound 25 ′ (18.1 mg, 0.0314 mmol) was dissolved in isopropyl alcohol (1 mL), then ammonium iodide (4.6 mg, 0.0314 mmol), hydrazine monohydrate (1 mL). Were sequentially added and stirred at room temperature for 1.5 hours. After completion of the reaction, extraction with ethyl acetate was performed. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 1/1) to give compound 26 (10.1 mg, 0. 1). 0200 mmol, 64%) was obtained as a mixture with compound 26 ′ (26: 26 ′ = 1: 0.3). The mixing ratio of compound 26 and compound 26 ′ was determined from 1 H-NMR spectrum.
LRMS of compound 26 (ESI <+> ); m / z 528.3378 [M + Na] < +>.
 合成例16:2-アミノ-9-(2-O-デオキシ-4-C-ビニル-β-D-リボフラノシル)プリン(化合物P3)の合成
 化合物P3を、以下に示す反応工程にて合成した。
Synthesis Example 16 Synthesis of 2-amino-9- (2-O-deoxy-4-C-vinyl-β-D-ribofuranosyl) purine (Compound P3) Compound P3 was synthesized by the reaction steps shown below.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 化合物26と化合物26’の混合物(10.1mg,0.0200mmol)をクロロホルム(1mL)とメタノール(1mL)に溶解させた後、酸性フッ化アンモニウム(68.4mg,1.2mmol)を加え、室温下で84時間攪拌した。続いて、酸性フッ化アンモニウム(68.4mg,1.2mmol)を追加し、室温で48時間攪拌した。その後、酸性フッ化アンモニウム(205mg,3.6mmol)を追加し、室温で216時間攪拌した。反応終了後、溶媒の減圧留去を行い、残渣をシリカゲルカラムクロマトグラフィー(メタノール/クロロホルム=1/4)で精製を行い、化合物P3(4.4mg,0.0159mmol,79%)を、化合物P3’との混合物(P3:P3’=1:0.3)として得た。なお、化合物P3と化合物P3’との混合比は H-NMR スペクトルより決定した。 A mixture of compound 26 and compound 26 ′ (10.1 mg, 0.0200 mmol) was dissolved in chloroform (1 mL) and methanol (1 mL), and then acid ammonium fluoride (68.4 mg, 1.2 mmol) was added. Stirred under for 84 hours. Subsequently, acidic ammonium fluoride (68.4 mg, 1.2 mmol) was added, and the mixture was stirred at room temperature for 48 hours. Then, acidic ammonium fluoride (205 mg, 3.6 mmol) was added, and the mixture was stirred at room temperature for 216 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (methanol / chloroform = 1/4) to give compound P3 (4.4 mg, 0.0159 mmol, 79%) as compound P3. As a mixture (P3: P3 ′ = 1: 0.3). The mixing ratio of compound P3 and compound P3 ′ was determined from 1 H-NMR spectrum.
化合物P3のH-NMR(CDOD,500MHz);δ8.56(1H,s),8.36(1H,s),6.37(1H,dd,J=7.0,4.5Hz),6.00(1H,dd,J=17.5,11.0Hz),5.53(1H,dd,J=17.5,2.0Hz),5.32(1H,dd,J=11.0,2.0Hz),4.80(1H,t,J=6.5Hz),3.70(1H,d,J=12.0Hz),3.60(1H,d,J=12.0Hz),2.74(1H,m),2.41(1H,m);
化合物P3’のH-NMR(CDOD,500MHz);δ8.56(1H,s),8.30(1H,s),6.33(1H,t,J=7.0Hz),4.61(1H,dd,J=6.0,4.0Hz),3.71(2H,d,J=12.0Hz),3.63(1H,d,J=12.0Hz),2.93(1H,m),2.42(1H,m),1.77(1H,m),1.68(1H,m),0.992(3H,t,J=7.5Hz)。
1 H-NMR (CD 3 OD, 500 MHz) of Compound P3; δ 8.56 (1H, s), 8.36 (1H, s), 6.37 (1H, dd, J = 7.0, 4.5 Hz) ), 6.00 (1H, dd, J = 17.5, 11.0 Hz), 5.53 (1H, dd, J = 17.5, 2.0 Hz), 5.32 (1H, dd, J = 11.0, 2.0 Hz), 4.80 (1 H, t, J = 6.5 Hz), 3.70 (1 H, d, J = 12.0 Hz), 3.60 (1 H, d, J = 12) .0Hz), 2.74 (1H, m), 2.41 (1H, m);
1 H-NMR (CD 3 OD, 500 MHz) of Compound P3 ′; δ 8.56 (1H, s), 8.30 (1H, s), 6.33 (1H, t, J = 7.0 Hz), 4 .61 (1H, dd, J = 6.0, 4.0 Hz), 3.71 (2H, d, J = 12.0 Hz), 3.63 (1H, d, J = 12.0 Hz), 2. 93 (1H, m), 2.42 (1H, m), 1.77 (1H, m), 1.68 (1H, m), 0.992 (3H, t, J = 7.5 Hz).
 合成例17:9-(3-O-tert-ブチルジメチルシリル-2,5-ジ-O-デオキシ-5-O-ヨード-β-D-リボフラノシル)-2-イソブチリルアミノプリン(化合物27)の合成
 化合物27を、以下に示す反応工程にて合成した。
Synthesis Example 17: 9- (3-O-tert-butyldimethylsilyl-2,5-di-O-deoxy-5-O-iodo-β-D-ribofuranosyl) -2-isobutyrylaminopurine (Compound 27) ) Was synthesized in the reaction steps shown below.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 化合物18(323mg,0.742mmol)をピリジン(3.7mL)に溶解させた後、トリフェニルホスフィン(584mg,2.23mmol)とヨウ素(565mg,2.23mmol)を順次加え、室温で3時間攪拌した。その後、トリフェニルホスフィン(389mg,1.48mmol)とヨウ素(377mg,1.48mmol)を追加し、室温で16時間攪拌した。反応終了後、飽和チオ硫酸ナトリウム水溶液によるクエンチと酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、溶媒の減圧留去を行い、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=2/1)で精製を行い、化合物27(352mg,0.645mmol,87%)を得た。 Compound 18 (323 mg, 0.742 mmol) was dissolved in pyridine (3.7 mL), triphenylphosphine (584 mg, 2.23 mmol) and iodine (565 mg, 2.23 mmol) were sequentially added, and the mixture was stirred at room temperature for 3 hours. did. Thereafter, triphenylphosphine (389 mg, 1.48 mmol) and iodine (377 mg, 1.48 mmol) were added, and the mixture was stirred at room temperature for 16 hours. After completion of the reaction, quenching with a saturated aqueous sodium thiosulfate solution and extraction with ethyl acetate were performed. The organic layer was dried over magnesium sulfate and the solvent was distilled off under reduced pressure. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 2/1) to give a compound. 27 (352 mg, 0.645 mmol, 87%) was obtained.
 H-NMR(CDCl,500MHz);δ8.93(1H,s),8.35(1H,s),8.18(1H,s),6.38(1H,t,J=7.0 Hz),4.73(1H,m),4.06(1H,m),3.66(1H,dd,J=10.5,6.5 Hz),3.47(1H,dd,11,6.0Hz),3.21(1H,m),2.86(1H,brs),2.38(1H,m),1.30(3H,d,J=5.0Hz),1.29(3H,d,J=4.5 Hz),0.93(9H,s),0.18(3H,s),0.15(3H,s)。 1 H-NMR (CDCl 3 , 500 MHz); δ 8.93 (1H, s), 8.35 (1H, s), 8.18 (1H, s), 6.38 (1H, t, J = 7. 0 Hz), 4.73 (1 H, m), 4.06 (1 H, m), 3.66 (1 H, dd, J = 10.5, 6.5 Hz), 3.47 (1 H, dd, 11, 6.0 Hz), 3.21 (1 H, m), 2.86 (1 H, brs), 2.38 (1 H, m), 1.30 (3 H, d, J = 5.0 Hz), 1 .29 (3H, d, J = 4.5 Hz), 0.93 (9H, s), 0.18 (3H, s), 0.15 (3H, s).
 合成例18:9-(3-O-tert-ブチルジメチルシリル-2,5-ジ-O-デオキシ-β-D-エリトロ-ペント-4-エノフラノシル)-2-イソブチリルアミノプリン(化合物28)の合成
 化合物28を、以下に示す反応工程にて合成した。
Synthesis Example 18: 9- (3-O-tert-butyldimethylsilyl-2,5-di-O-deoxy-β-D-erythro-pent-4-enofuranosyl) -2-isobutyrylaminopurine (Compound 28 ) Was synthesized by the reaction steps shown below.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 化合物27(352mg,0.645mmol)をアセトニトリル(4mL)に溶解させた後、ジアザビシクロウンデセン(481μL,3.23mmol)を加え、80℃で1.5時間攪拌した。反応終了後、溶媒の減圧留去を行い、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=2/1)で精製を行い、化合物28(240mg,0.574mmol,89%)を得た。 Compound 27 (352 mg, 0.645 mmol) was dissolved in acetonitrile (4 mL), diazabicycloundecene (481 μL, 3.23 mmol) was added, and the mixture was stirred at 80 ° C. for 1.5 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 2/1) to obtain Compound 28 (240 mg, 0.574 mmol, 89%). .
H-NMR(CDCl,500MHz);δ8.95(1H,s),8.19(1H,s),8.06(1H,s),6.57(1H,t,J=6.0 Hz),5.12(1H,t,J=5.5Hz),4.51(1H,m),4.26(1H,m),3.05(1H,brs),2.95(1H,m),2.55 (1H,m),1.29(3H,d,J=3.0 Hz),1.28(3H,d,J=3.0 Hz),0.94(9H,s),0.18(3H,s),0.17(3H,s)。 1 H-NMR (CDCl 3 , 500 MHz); δ 8.95 (1H, s), 8.19 (1H, s), 8.06 (1H, s), 6.57 (1H, t, J = 6. 0 Hz), 5.12 (1H, t, J = 5.5 Hz), 4.51 (1H, m), 4.26 (1H, m), 3.05 (1H, brs), 2.95 ( 1H, m), 2.55 (1H, m), 1.29 (3H, d, J = 3.0 Hz), 1.28 (3H, d, J = 3.0 Hz), 0.94 ( 9H, s), 0.18 (3H, s), 0.17 (3H, s).
 合成例19:9-(4- C-アジド-3-O-tert-ブチルジメチルシリル-2,5-ジ-O-デオキシ-5-O-ヨード-β-D-リボフラノシル)-2-イソブチリルアミノプリン(化合物29)の合成
 化合物29を、以下に示す反応工程にて合成した。
Synthesis Example 19 9- (4-C-azido-3-O-tert-butyldimethylsilyl-2,5-di-O-deoxy-5-O-iodo-β-D-ribofuranosyl) -2-isobuty Synthesis of Rylaminopurine (Compound 29) Compound 29 was synthesized in the reaction steps shown below.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 アジ化ナトリウム(187mg,2.87mmol)と一塩化ヨウ素(ヘキサン中1.0M,1.44mL,1.44mmol)をN,N-ジメチルホルムアミド(1mL)に溶解させた後、N,N-ジメチルホルムアミド(3mL)に溶解させた化合物28(240mg,0.574mmol)を加え、室温で3.5時間攪拌した。反応終了後、飽和チオ硫酸ナトリウム水溶液によるクエンチと酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、溶媒の減圧留去を行い、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/1)で精製を行い、化合物29(206mg,0.351mmol,61%) を得た。 Sodium azide (187 mg, 2.87 mmol) and iodine monochloride (1.0 M in hexane, 1.44 mL, 1.44 mmol) were dissolved in N, N-dimethylformamide (1 mL) and then N, N-dimethyl. Compound 28 (240 mg, 0.574 mmol) dissolved in formamide (3 mL) was added, and the mixture was stirred at room temperature for 3.5 hours. After completion of the reaction, quenching with a saturated aqueous sodium thiosulfate solution and extraction with ethyl acetate were performed. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 1/1) to give a compound. 29 (206 mg, 0.351 mmol, 61%) was obtained.
H-NMR(CDCl,500MHz);δ8.94(1H,s),8.69(1H,s),8.08(1H,s),6.38(1H,dd,J=7.0,6.0Hz),5.39(1H,t,J=6.0Hz),4.00(1H,d,J=11.5Hz),3.73(1H,d,J=11.0Hz),3.34(1H,m),2.74(1H,brs),2.58(1H,m),1.30(3H,d,J=7.0Hz),1.28(3H,d,J=7.5Hz),0.97(9H,s),0.25(3H,s),0.18 (3H, s)。 1 H-NMR (CDCl 3 , 500 MHz); δ 8.94 (1H, s), 8.69 (1H, s), 8.08 (1H, s), 6.38 (1H, dd, J = 7. 0, 6.0 Hz), 5.39 (1 H, t, J = 6.0 Hz), 4.00 (1 H, d, J = 11.5 Hz), 3.73 (1 H, d, J = 11.0 Hz) ), 3.34 (1H, m), 2.74 (1H, brs), 2.58 (1H, m), 1.30 (3H, d, J = 7.0 Hz), 1.28 (3H, d, J = 7.5 Hz), 0.97 (9H, s), 0.25 (3H, s), 0.18 (3H, s).
 合成例20:2-アミノ-9-(4- C-アジド-3-O-tert-ブチルジメチルシリル-β-D-リボフラノシル)プリン(化合物31)の合成
 化合物31を、以下に示す反応工程にて合成した。
Synthesis Example 20 Synthesis of 2-amino-9- (4-C-azido-3-O-tert-butyldimethylsilyl-β-D-ribofuranosyl) purine (Compound 31) Compound 31 was subjected to the reaction steps shown below. And synthesized.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 化合物29(152mg,0.259mmol)をN,N-ジメチルホルムアミド(5mL)に溶解させた後、安息香酸ナトリウム(373mg,2.59mmol)と15-クラウン-5(514μL,2.59 mmol)を加え、90℃で24時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/1) で精製を行い、粗精製の化合物30を得た。
 粗精製の化合物30(<0.113 mmol)をイソプロピルアルコール(1.5mL)に溶解させた後、ヨウ化アンモニウム(16.4mg,0.113mmol)、ヒドラジン一水和物(1.5mL)を順次加え、室温で15時間攪拌した。反応終了後、酢酸エチルによる抽出を行った。硫酸マグネシウムによる有機層の乾燥と溶媒の減圧留去を行った後、残渣をシリカゲルカラムクロマトグラフィー(メタノール/クロロホルム=1/10)で精製を行い、化合物31(38.4mg,0.0945mmol,2工程37%)を得た。
Compound 29 (152 mg, 0.259 mmol) was dissolved in N, N-dimethylformamide (5 mL), and then sodium benzoate (373 mg, 2.59 mmol) and 15-crown-5 (514 μL, 2.59 mmol) were added. In addition, the mixture was stirred at 90 ° C. for 24 hours. After completion of the reaction, extraction with ethyl acetate was performed. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / n-hexane = 1/1) to obtain crude compound 30.
Crude compound 30 (<0.113 mmol) was dissolved in isopropyl alcohol (1.5 mL), and then ammonium iodide (16.4 mg, 0.113 mmol) and hydrazine monohydrate (1.5 mL) were added. Sequentially added and stirred at room temperature for 15 hours. After completion of the reaction, extraction with ethyl acetate was performed. After drying the organic layer with magnesium sulfate and distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (methanol / chloroform = 1/10) to obtain compound 31 (38.4 mg, 0.0945 mmol, 2 Step 37%) was obtained.
H-NMR(CDCl,500MHz);δ8.74(1H,s),7.83(1H,s),7.41(1H,s),6.41(1H,dd,J=9.0,5.5Hz),5.14(2H,brs),4.78(1H,dd,J=5.0,1.5 Hz),3.87(1H,d,J=12.5 Hz),3.53(1H,d,J=12.5 Hz),3.21(1H,m),2.38(1H,m),0.97(9H,s),0.21(3H,s),0.18(3H,s)。 1 H-NMR (CDCl 3 , 500 MHz); δ 8.74 (1H, s), 7.83 (1H, s), 7.41 (1H, s), 6.41 (1H, dd, J = 9. 0, 5.5 Hz), 5.14 (2H, brs), 4.78 (1H, dd, J = 5.0, 1.5 Hz), 3.87 (1H, d, J = 12.5 Hz) ), 3.53 (1H, d, J = 12.5 Hz), 3.21 (1H, m), 2.38 (1H, m), 0.97 (9H, s), 0.21 (3H) , S), 0.18 (3H, s).
 合成例21:2-アミノ-9-(4-C-アジド-2-デオキシ-β-D-リボフラノシル)プリン(化合物P4)の合成
 化合物P4を、以下に示す反応工程にて合成した。
Synthesis Example 21 Synthesis of 2-amino-9- (4-C-azido-2-deoxy-β-D-ribofuranosyl) purine (Compound P4) Compound P4 was synthesized by the reaction steps shown below.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 化合物31(38.4mg,0.0945mmol)をクロロホルム(2mL)とメタノール(2mL)に溶解させた後、酸性フッ化アンモニウム(323mg,5.67mmol)を加え、室温で41時間攪拌した。続いて、酸性フッ化アンモニウム(323mg,5.67mmol)を追加し、室温で72時間攪拌した。その後、50℃で42時間攪拌した。反応終了後、溶媒の減圧留去を行い、残渣をシリカゲルカラムクロマトグラフィー(メタノール/クロロホルム=1/6→1/4)で精製を行い、化合物P4(22.6mg,0.0773mmol,82%)を得た。 Compound 31 (38.4 mg, 0.0945 mmol) was dissolved in chloroform (2 mL) and methanol (2 mL), then ammonium acid fluoride (323 mg, 5.67 mmol) was added, and the mixture was stirred at room temperature for 41 hours. Subsequently, acidic ammonium fluoride (323 mg, 5.67 mmol) was added, and the mixture was stirred at room temperature for 72 hours. Then, it stirred at 50 degreeC for 42 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (methanol / chloroform = 1/6 → 1/4) to obtain compound P4 (22.6 mg, 0.0773 mmol, 82%). Got.
H-NMR(CDOD,500MHz);δ8.56(1H,s),8.26(1H,s),6.52(1H,dd,J=7.0,4.0Hz),4.88(1H,m),3.83(1H,d,J=12.0 Hz),3.75(1H,d,J=12.0Hz),2.90(1H,m),2.59(1H,m)。 1 H-NMR (CD 3 OD, 500 MHz); δ 8.56 (1H, s), 8.26 (1H, s), 6.52 (1H, dd, J = 7.0, 4.0 Hz), 4 .88 (1H, m), 3.83 (1H, d, J = 12.0 Hz), 3.75 (1H, d, J = 12.0 Hz), 2.90 (1H, m), 2. 59 (1H, m).
 合成例22:化合物C1及びC2の合成
 上述した非特許文献1の記載に基いて、以下の式で表される化合物C1及びC2を合成した。
Synthesis Example 22 Synthesis of Compounds C1 and C2 Based on the description of Non-Patent Document 1 described above, compounds C1 and C2 represented by the following formula were synthesized.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 合成例23:2-アミノ-2’-デオキシ-4’-フルオロメチルアデノシン(化合物R1)の合成
 2-アミノ-2’-デオキシ-4’-フルオロメチルアデノシン(化合物R1)を合成すべく、先ず、下記化合物32(2’-O-Acetyl-2-amino-3’,5’-di-O-benzyl-4’-fluoromethyladenosine)を、以下の通りにして合成した。
Synthesis Example 23 Synthesis of 2-amino-2′-deoxy-4′-fluoromethyladenosine (Compound R1) To synthesize 2-amino-2′-deoxy-4′-fluoromethyladenosine (Compound R1), first, The following compound 32 (2′-O-Acetyl-2-amino-3 ′, 5′-di-O-benzyl-4′-fluoromethyladenosine) was synthesized as follows.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 すなわち、化合物9(5.78g、12.9mmol)、2,6-ジアミノプリン(3.87g、25.8mmol)、N,O-ビス(トリメチルシリル)アセトアミド(37.8mL、0.155mol)に1,2-ジクロロエタン(104mL)を加え、1時間加熱還流した。反応液を0℃に冷却した後、トリフルオロメタンスルホン酸トリメチルシリル(4.66mL、25.8mmol)を加え、8時間加熱還流した。反応液を0℃に冷却後、飽和重曹水を加え撹拌し、生じた不溶物をセライト濾過により除去後、濾液有機層を硫酸マグネシウム上で乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)により精製し、化合物32を得た(5.15g、9.60mmol、74.4%)。 That is, 1 in Compound 9 (5.78 g, 12.9 mmol), 2,6-diaminopurine (3.87 g, 25.8 mmol), N, O-bis (trimethylsilyl) acetamide (37.8 mL, 0.155 mol). , 2-dichloroethane (104 mL) was added, and the mixture was heated to reflux for 1 hour. The reaction solution was cooled to 0 ° C., trimethylsilyl trifluoromethanesulfonate (4.66 mL, 25.8 mmol) was added, and the mixture was heated to reflux for 8 hours. The reaction solution was cooled to 0 ° C., saturated aqueous sodium hydrogen carbonate was added and stirred, the resulting insoluble material was removed by Celite filtration, and the filtrate organic layer was dried over magnesium sulfate and concentrated. The residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1) to obtain Compound 32 (5.15 g, 9.60 mmol, 74.4%).
H-NMR(CDCN):δ7.65(1H,s),7.24-7.08(10H,m),6.02(1H,d),5.98(1H,t),5.70(2H,br.s),4.95(2H,br.s),4.82(1H,d),4.71(1H,dd),4.61(1H,dd),4.62(1H,d),4.59(2H,d),4.56(1H,d),4.53(1H,d),3.70(2H,m),2.01(3H,s)。 1 H-NMR (CD 3 CN): δ 7.65 (1H, s), 7.24-7.08 (10H, m), 6.02 (1H, d), 5.98 (1H, t), 5.70 (2H, br.s), 4.95 (2H, br.s), 4.82 (1H, d), 4.71 (1H, dd), 4.61 (1H, dd), 4 .62 (1H, d), 4.59 (2H, d), 4.56 (1H, d), 4.53 (1H, d), 3.70 (2H, m), 2.01 (3H, s).
 次に、前記の通りにして得られた化合物32を用い、下記の通りに化合物33(2-Amino-3’,5’-di-O-benzyl-4’-fluoromethyladenosine)を合成した。 Next, using Compound 32 obtained as described above, Compound 33 (2-Amino-3 ', 5'-di-O-benzyl-4'-fluoromethyladenosine) was synthesized as follows.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 すなわち、化合物32(5.15g、9.60mmol)をメタノール(100mL)に溶解し、1M水酸化ナトリウム水溶液(20mL、20mmol)を加え、室温で2時間撹拌した。反応液を酢酸で中和した後、濃縮し、残渣を酢酸エチルに溶解、水洗した。有機層を硫酸マグネシウム上乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1~10:1)により精製し、化合物33を得た(4.70g、9.50mmol、99.0%)。 That is, compound 32 (5.15 g, 9.60 mmol) was dissolved in methanol (100 mL), 1M aqueous sodium hydroxide solution (20 mL, 20 mmol) was added, and the mixture was stirred at room temperature for 2 hours. The reaction mixture was neutralized with acetic acid and concentrated, and the residue was dissolved in ethyl acetate and washed with water. The organic layer was dried over magnesium sulfate and concentrated. The residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1 to 10: 1) to obtain Compound 33 (4.70 g, 9.50 mmol, 99.0%).
H-NMR(DMSO-d):δ7.84(1H,s),7.38-7.28(10H,m),6.72(2H,br.s),5.86(1H,d),5.81(2H,br.s),5.74(1H,d),5.01(1H,dd),4.89(1H,d),4.68-4.53(5H,m),4.28(1H,d),3.68(1H,dd),3.64(1H,dd)。 1 H-NMR (DMSO-d 6 ): δ 7.84 (1H, s), 7.38-7.28 (10H, m), 6.72 (2H, br. S), 5.86 (1H, d), 5.81 (2H, br.s), 5.74 (1H, d), 5.01 (1H, dd), 4.89 (1H, d), 4.68-4.53 (5H) M), 4.28 (1H, d), 3.68 (1H, dd), 3.64 (1H, dd).
 次に、前記の通りにして得られた化合物33を用い、下記の通りに化合物34(2-Amino-3’,5’-di-O-benzyl-2’-deoxy-4’-fluoromethyladenosine)を合成した。 Next, using Compound 33 obtained as described above, Compound 34 (2-Amino-3 ′, 5′-di-O-benzoyl-2′-deoxy-4′-fluoromethyladenosine) was obtained as described below. Synthesized.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 すなわち、化合物33(4.70g、9.50mmol)、4-ジメチルアミノピリジン(1.74g、14.2mmol)をアセトニトリル(38.0mL)に溶解し、0℃にてクロロチオノギ酸フェニル(1.54mL、11.4mmol)を加え、2時間撹拌した。メタノール(2mL)を加え撹拌した後、反応液を酢酸エチルで希釈、洗浄(飽和食塩水→0.1M塩酸→飽和食塩水→飽和炭酸水素ナトリウム水溶液)した。有機層を硫酸マグネシウム上で乾燥後、濃縮し、残渣をトルエンで共沸し、粗製のチオ炭酸エステルを得た。
 粗製のチオ炭酸エステル、水素化トリブチルスズ(10.2mL、37.9mmol)をトルエン(95.0mL)に溶解後、85℃に加熱し、アゾビスイソブチロニトリル(20mg)を加え、2時間撹拌した。反応液を濃縮後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)により精製し、化合物34を得た(3.23g、6.75mmol、71.1%)。
That is, Compound 33 (4.70 g, 9.50 mmol) and 4-dimethylaminopyridine (1.74 g, 14.2 mmol) were dissolved in acetonitrile (38.0 mL), and phenyl chlorothionoformate (1.54 mL) was added at 0 ° C. 11.4 mmol) was added and stirred for 2 hours. After adding methanol (2 mL) and stirring, the reaction mixture was diluted with ethyl acetate and washed (saturated brine → 0.1 M hydrochloric acid → saturated brine → saturated aqueous sodium bicarbonate solution). The organic layer was dried over magnesium sulfate and concentrated, and the residue was azeotroped with toluene to obtain a crude thiocarbonate.
Crude thiocarbonate, tributyltin hydride (10.2 mL, 37.9 mmol) was dissolved in toluene (95.0 mL), heated to 85 ° C., azobisisobutyronitrile (20 mg) was added, and the mixture was stirred for 2 hours. did. After the reaction solution was concentrated, the residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1) to obtain Compound 34 (3.23 g, 6.75 mmol, 71.1%).
H-NMR(DMSO-d):δ7.87(1H,s),7.37-7.26(10H,m),6.71(2H,br.s),6.23(1H,d),5.80(2H,br.s),4.70-4.50(7H,m),3.64(2H,dd),3.60(2H,dd),2.91(1H,m),2.59(1H,m)。 1 H-NMR (DMSO-d 6 ): δ 7.87 (1H, s), 7.37-7.26 (10H, m), 6.71 (2H, br. S), 6.23 (1H, d), 5.80 (2H, br.s), 4.70-4.50 (7H, m), 3.64 (2H, dd), 3.60 (2H, dd), 2.91 (1H) , M), 2.59 (1H, m).
 次に、前記の通りにして得られた化合物34を用い、下記の通りに化合物R1(2-Amino-2’-deoxy-4’-fluoromethyladenosine)を合成した。 Next, using Compound 34 obtained as described above, Compound R1 (2-Amino-2'-deoxy-4'-fluoromethyladenosine) was synthesized as follows.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 すなわち、ナフタレン(9.08g、70.8mmol)を脱水テトラヒドロフラン(76.1mL)に溶解し、金属リチウム(369mg、53.2mmol)を加え、室温で3時間撹拌した。溶液を-78℃に冷却後、化合物34(2.12g、4.33mmol)の脱水テトラヒドロフラン溶液(35.6mL)を加え、-45℃で2時間撹拌した。メタノール(5mL)を加えた後、反応液を酢酸エチルで希釈し、脱イオン水で抽出した。水層を合わせ少量にまで濃縮した後、ODSカラムクロマトグラフィー(脱イオン水~5%メタノール)により精製し、真空乾燥の後、化合物R1を得た(0.90g、3.0mmol、68%)。 That is, naphthalene (9.08 g, 70.8 mmol) was dissolved in dehydrated tetrahydrofuran (76.1 mL), metallic lithium (369 mg, 53.2 mmol) was added, and the mixture was stirred at room temperature for 3 hours. The solution was cooled to −78 ° C., a dehydrated tetrahydrofuran solution (35.6 mL) of compound 34 (2.12 g, 4.33 mmol) was added, and the mixture was stirred at −45 ° C. for 2 hours. After adding methanol (5 mL), the reaction was diluted with ethyl acetate and extracted with deionized water. The aqueous layers were combined and concentrated to a small volume, then purified by ODS column chromatography (deionized water to 5% methanol), and after vacuum drying, compound R1 was obtained (0.90 g, 3.0 mmol, 68%). .
H-NMR(DMSO-d):δ7.91(1H,s),6.70(2H,br.s),6.24(1H,dd),5.72(2H,br.s),5.36-5.35(2H,m),4.60(1H,dd),4.50(1H,dd),4.51(1H,m),3.54(1H,br.s),3.53(1H,br.s),2.81(1H,m),2.22(1H,m)。 1 H-NMR (DMSO-d 6 ): δ 7.91 (1H, s), 6.70 (2H, br. S), 6.24 (1H, dd), 5.72 (2H, br. S) , 5.36-5.35 (2H, m), 4.60 (1H, dd), 4.50 (1H, dd), 4.51 (1H, m), 3.54 (1H, br.s) ), 3.53 (1H, br.s), 2.81 (1H, m), 2.22 (1H, m).
 合成例24:6、4’-フルオロメチル-2’-デオキシグアノシン(化合物R2)の合成
 合成例23にて得られた化合物R1を用い、下記の通り6、4’-フルオロメチル-2’-デオキシグアノシン(化合物R2)を合成した。
Synthesis Example 24 Synthesis of 6,4′-fluoromethyl-2′-deoxyguanosine (Compound R2) Using compound R1 obtained in Synthesis Example 23, 6,4′-fluoromethyl-2′- Deoxyguanosine (Compound R2) was synthesized.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 すなわち、化合物R1(500mg、1.68mmol)を50mMトリス塩酸緩衝液(pH7.5)(45.0mL)に溶解し、子牛脾臓由来アデノシンデアミナーゼ(50uL、6.5units)を加え、40℃で2時間撹拌した。5℃で終夜静置し、析出した化合物R2を濾取、乾燥した(409mg)。更に濾液を少量にまで濃縮後、ODSカラムクロマトグラフィー(ODS 50cc、0~5% MeOH)により精製(44mg)した。先に得られたものと合わせ、化合物R2を得た(453mg、1.51mmol、89.9%)。 Specifically, Compound R1 (500 mg, 1.68 mmol) was dissolved in 50 mM Tris-HCl buffer (pH 7.5) (45.0 mL), calf spleen-derived adenosine deaminase (50 uL, 6.5 units) was added, and 40 ° C. Stir for 2 hours. The mixture was allowed to stand at 5 ° C. overnight, and the precipitated compound R2 was collected by filtration and dried (409 mg). The filtrate was further concentrated to a small amount and purified by ODS column chromatography (ODS 50 cc, 0 to 5% MeOH) (44 mg). Combined with the previously obtained compound R2 was obtained (453 mg, 1.51 mmol, 89.9%).
H-NMR(DMSO-d):δ10.58(1H,br.s),7.91(1H,s),6.42(2H,br.s),6.19(1H,dd),5.37(1H,m),5.09(1H,t),4.59(1H,dd),4.49(1H,dd),4.49(1H,m),3.50(2H,m),2.71(1H,m),2.25(1H,m)。 1 H-NMR (DMSO-d 6 ): δ 10.58 (1H, br.s), 7.91 (1H, s), 6.42 (2H, br. S), 6.19 (1H, dd) , 5.37 (1H, m), 5.09 (1H, t), 4.59 (1H, dd), 4.49 (1H, dd), 4.49 (1H, m), 3.50 ( 2H, m), 2.71 (1H, m), 2.25 (1H, m).
 合成例25:2-アミノ-2’-デオキシ-4’-ビニルアデノシン(化合物R3)の合成
 2-アミノ-2’-デオキシ-4’-ビニルアデノシン(化合物R3)を合成すべく、先ず、下記化合物36(2-Benzamido-N-benzoyl-3’,5’-di-O-tert-butyldimethylsilyl-2’-deoxy-4’-vinyladenosine)を以下の通りにして合成した。
Synthesis Example 25 Synthesis of 2-amino-2′-deoxy-4′-vinyladenosine (Compound R3) To synthesize 2-amino-2′-deoxy-4′-vinyladenosine (Compound R3), first, Compound 36 (2-Benzamido-N 6 -benzoyl-3 ′, 5′-di-O-tert-butyldimethylsilyl-2′-deoxy-4′-vinyladenosine) was synthesized as follows.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 すなわち、化合物35(Nucleosides,Nucleotides&Nucleic Acids,Vol.23,No.4,pp.671-690,2004 参照)(0.42g、0.57mmol)を乾燥ジメチルスルホキシド(2.5mL)、乾燥トルエン(1.3mL)に溶解し、塩酸1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(328mg、1.71mmol)、乾燥ピリジン(104μL)、トリフルオロ酢酸(52μL)を加え、室温で2時間撹拌した。反応液を酢酸エチルで希釈後、洗浄(飽和食塩水)、乾燥(無水硫酸マグネシウム)、濃縮した。残渣をテトラヒドロフランと3回共沸後、真空乾燥し、粗アルデヒドを得た。 That is, Compound 35 (see Nucleosides, Nucleotides & Nucleic Acids, Vol. 23, No. 4, pp. 671-690, 2004) (0.42 g, 0.57 mmol) was dried dimethyl sulfoxide (2.5 mL), dry toluene (1 3 mL), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (328 mg, 1.71 mmol), dry pyridine (104 μL), trifluoroacetic acid (52 μL) were added, and the mixture was stirred at room temperature for 2 hours. did. The reaction mixture was diluted with ethyl acetate, washed (saturated brine), dried (anhydrous magnesium sulfate), and concentrated. The residue was azeotroped with tetrahydrofuran three times and then vacuum dried to obtain a crude aldehyde.
 臭化メチルトリフェニルホスホニウム(1.02g、2.86mmol)を乾燥テトラヒドロフラン(7.1mL)に懸濁し、-78℃に冷却した。n-ブチルリチウムヘキサン溶液(1.60M、1.79mL、2.86mmol)を加え、0℃で1時間撹拌後、前記粗アルデヒド乾燥テトラヒドロフラン溶液(5.9mL)を加え、室温で1時間撹拌した。飽和塩化アンモニウム水溶液を加え撹拌後、生成物を酢酸エチルにより抽出した。有機層を乾燥(無水硫酸マグネシウム)、濃縮後、残渣を少量のジクロロメタンに溶解し、シリカゲルを加え濃縮した。シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)により精製し、化合物36を得た(293mg、0.402mmol、71%)。 Methyltriphenylphosphonium bromide (1.02 g, 2.86 mmol) was suspended in dry tetrahydrofuran (7.1 mL) and cooled to -78 ° C. n-Butyllithium hexane solution (1.60 M, 1.79 mL, 2.86 mmol) was added, and the mixture was stirred at 0 ° C. for 1 hour. The crude aldehyde dry tetrahydrofuran solution (5.9 mL) was added, and the mixture was stirred at room temperature for 1 hour. . Saturated aqueous ammonium chloride solution was added and stirred, and the product was extracted with ethyl acetate. The organic layer was dried (anhydrous magnesium sulfate) and concentrated. The residue was dissolved in a small amount of dichloromethane, and concentrated by adding silica gel. Purification by silica gel column chromatography (hexane: ethyl acetate = 1: 1) gave compound 36 (293 mg, 0.402 mmol, 71%).
H-NMR(CDCl):δ9.29(1H,br.s),9.24(1H,br.s),8.44(1H,s),8.04-7.49(10H,m),6.49(1H,t),5.98(1H,dd),5.57(1H,dd),5.34(1H,dd),4.90(1H,t),3.72(1H,d),3.68(1H,dd),2.87(3H,br.s),2.49(2H,m),0.94(9H,s),0.91(9H,s),0.04,0.03(12H,s)。 1 H-NMR (CDCl 3 ): δ 9.29 (1H, br.s), 9.24 (1H, br.s), 8.44 (1H, s), 8.04-7.49 (10H, m), 6.49 (1H, t), 5.98 (1H, dd), 5.57 (1H, dd), 5.34 (1H, dd), 4.90 (1H, t), 3. 72 (1H, d), 3.68 (1H, dd), 2.87 (3H, br.s), 2.49 (2H, m), 0.94 (9H, s), 0.91 (9H , S), 0.04, 0.03 (12H, s).
 次に、前記の通りにして得られた化合物36を用い、下記の通りに化合物R3(2-Amino-2’-deoxy-4’-vinyladenosine)を合成した。 Next, using Compound 36 obtained as described above, Compound R3 (2-Amino-2'-deoxy-4'-vinyladenosine) was synthesized as follows.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 すなわち、化合物36(293mg、0.402mmol)を乾燥テトラヒドロフラン(1.3mL)に溶解し、フッ化テトラブチルアンモニウムテトラヒドロフラン溶液(1.0M、2.01mL、2.01mmol)を加え、室温で1時間撹拌した。反応液を濃縮後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=20:1)により精製し、粗ジオール(293mg、0.402mmol、71%)を得た。粗ジオールをメタノール(10mL)、40%メチルアミン水溶液(10mL)に溶解し、室温で48時間撹拌した。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=10:1~5:1)により精製した。残渣を脱イオン水から再結晶化し、化合物R3を得た(83mg、0.28mmol、70%)。 That is, compound 36 (293 mg, 0.402 mmol) was dissolved in dry tetrahydrofuran (1.3 mL), tetrabutylammonium fluoride tetrahydrofuran solution (1.0 M, 2.01 mL, 2.01 mmol) was added, and the mixture was stirred at room temperature for 1 hour. Stir. After the reaction solution was concentrated, the residue was purified by silica gel column chromatography (chloroform: methanol = 20: 1) to obtain a crude diol (293 mg, 0.402 mmol, 71%). The crude diol was dissolved in methanol (10 mL) and 40% aqueous methylamine solution (10 mL) and stirred at room temperature for 48 hours. The reaction solution was concentrated, and the residue was purified by silica gel column chromatography (chloroform: methanol = 10: 1 to 5: 1). The residue was recrystallized from deionized water to give compound R3 (83 mg, 0.28 mmol, 70%).
H-NMR(DMSO-d):δ7.94(1H,s),6.71(1H,br.s),6.16(1H,t),5.95(1H,dd),5.69(2H,br.s),5.49(1H,t),5.35(1H,dd),5.19-5.16(2H,m),5.18(1H,dd),4.58(1H,q),3.50(1H,dd),3.41(1H,dd),2.54(1H,m),2.17(1H,m)。 1 H-NMR (DMSO-d 6 ): δ 7.94 (1H, s), 6.71 (1H, br. S), 6.16 (1H, t), 5.95 (1H, dd), 5 .69 (2H, br.s), 5.49 (1H, t), 5.35 (1H, dd), 5.19-5.16 (2H, m), 5.18 (1H, dd), 4.58 (1H, q), 3.50 (1H, dd), 3.41 (1H, dd), 2.54 (1H, m), 2.17 (1H, m).
 合成例26:2’-デオキシ-4’-ビニルグアノシン(化合物R4)の合成
 2’-デオキシ-4’-ビニルグアノシン(化合物R4)を、以下の通りにして合成した。
Synthesis Example 26 Synthesis of 2′-deoxy-4′-vinyl guanosine (Compound R4) 2′-Deoxy-4′-vinyl guanosine (Compound R4) was synthesized as follows.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 すなわち、合成例25にて得られた化合物R3(30mg、0.10mmol)をトリス塩酸緩衝液(50mM、pH7.5、2.8mL)に溶解し、子牛脾臓由来アデノシンデアミナーゼ(3μL、3.5units)を加え、40℃で5時間撹拌した。5℃で終夜静置後、析出した固体を濾取し、少量の脱イオン水で洗浄した。得られた固体を真空乾燥し、化合物25を得た(25mg、0.085mmol、83%)。 That is, Compound R3 (30 mg, 0.10 mmol) obtained in Synthesis Example 25 was dissolved in Tris-HCl buffer (50 mM, pH 7.5, 2.8 mL), and calf spleen-derived adenosine deaminase (3 μL, 3. 5 units) and stirred at 40 ° C. for 5 hours. After standing at 5 ° C. overnight, the precipitated solid was collected by filtration and washed with a small amount of deionized water. The resulting solid was vacuum dried to give compound 25 (25 mg, 0.085 mmol, 83%).
H-NMR(DMSO-d):δ10.60(1H,br.s),7.98(1H,s),6.44(1H,br.s),6.10(1H,dd),5.95(1H,dd),5.34(1H,dd),5.24(1H,br.s),5.19(1H,dd),5.11(1H,br.s),4.57(1H,t),3.50(1H,d),3.40(1H,d),2.44(1H,m),2.19(1H,m)。 1 H-NMR (DMSO-d 6 ): δ 10.60 (1H, br.s), 7.98 (1H, s), 6.44 (1H, br.s), 6.10 (1H, dd) , 5.95 (1H, dd), 5.34 (1H, dd), 5.24 (1H, br.s), 5.19 (1H, dd), 5.11 (1H, br.s), 4.57 (1H, t), 3.50 (1H, d), 3.40 (1H, d), 2.44 (1H, m), 2.19 (1H, m).
 上述の通りに合成して得られたヌクレオシド誘導体において、以下に示す方法にて、抗ウイルス活性及び細胞毒性を評価した。なお、化合物P3については、化合物P3’との混合物の形で評価に供した。 In the nucleoside derivatives obtained by synthesis as described above, antiviral activity and cytotoxicity were evaluated by the following methods. The compound P3 was evaluated in the form of a mixture with the compound P3 ′.
 試験例1:抗HBV活性の評価(2週間評価系)
 供試細胞として、ヒト肝ガン由来細胞株(HepG2細胞)にHBV遺伝子を導入することにより、持続的にHBVを産生するように調製された、HepG2 2.2.15細胞を用いた。なお、HepG2 2.2.15細胞は、10%胎児ウシ血清含有DMEMにおける継続培養にて維持した。また、当該細胞は、エピソームとして産生するHBV遺伝子を有するため、このエピソームHBVのDNAを定量し、上記ヌクレオシド誘導体の存在下における当該量の減少度によって抗HBV活性を評価とした。得られた結果を表4乃至6に示す。
Test Example 1: Evaluation of anti-HBV activity (2-week evaluation system)
As test cells, HepG2 2.2.15 cells prepared to continuously produce HBV by introducing the HBV gene into a human liver cancer-derived cell line (HepG2 cells) were used. In addition, HepG2 2.2.15 cells were maintained by continuous culture in DMEM containing 10% fetal bovine serum. Moreover, since the said cell has the HBV gene produced as an episome, the DNA of this episomal HBV was quantified and the anti-HBV activity was evaluated by the degree of decrease in the amount in the presence of the nucleoside derivative. The obtained results are shown in Tables 4 to 6.
 より具体的には、HepG2 2.2.15細胞を、12穴細胞培養皿の各ウェルに1.5×10cells/2mLの濃度になるよう播種した。細胞が80%コンフルエントに達した段階で、各ヌクレオシド誘導体を様々な濃度にて添加した。各ヌクレオシド誘導体を添加した培養液は4日毎に交換し、当該誘導体の存在下で12日間培養した。その後、各HepG2 2.2.15細胞から、QIAamp DNA Blood Mini Kit(QIAGEN社製)を用い、全細胞DNAを抽出し、200μLの1×TEバッファーに溶解した。次いで、このようにして抽出したDNAを鋳型として、リアルタイムPCRでHBV DNAを定量した。すなわち、HepG2 2.2.15細胞からの抽出DNAのうち2μLを2×SYBR PCR master mix(Applied Biosystems社製)を用いて増幅した。その増幅(PCR)反応には、HBVポリメラーゼ領域を検出する下記のプライマーセットを用いた:
5’-GCGAGGACTGGGGACCCTGTGACGAAC-3’(配列番号:1)、及び 5’-GTCCACCACGAGTCTAGACTCTGC-3’(配列番号:2)。
また、PCRの反応は、95℃で10分間、その後、95℃で15秒と60℃で1分間とを40サイクル行った。
More specifically, HepG2 2.2.15 cells were seeded in each well of a 12-well cell culture dish to a concentration of 1.5 × 10 5 cells / 2 mL. When the cells reached 80% confluence, each nucleoside derivative was added at various concentrations. The culture solution to which each nucleoside derivative was added was changed every 4 days and cultured for 12 days in the presence of the derivative. Thereafter, total cell DNA was extracted from each HepG2 2.2.15 cell using QIAamp DNA Blood Mini Kit (manufactured by QIAGEN) and dissolved in 200 μL of 1 × TE buffer. Subsequently, HBV DNA was quantified by real-time PCR using the DNA thus extracted as a template. That is, 2 μL of DNA extracted from HepG2 2.2.15 cells was amplified using 2 × SYBR PCR master mix (manufactured by Applied Biosystems). The amplification (PCR) reaction used the following primer set that detects the HBV polymerase region:
5′-GCGAGGACTGGGGGACCCTGTGACGAAC-3 ′ (SEQ ID NO: 1) and 5′-GTCCACCACGAGTTCTAGACTCTGC-3 ′ (SEQ ID NO: 2).
The PCR reaction was carried out at 95 ° C. for 10 minutes, followed by 40 cycles of 95 ° C. for 15 seconds and 60 ° C. for 1 minute.
 このようなPCR反応によって得られたデータを、StepOneTM Software Version2.0(Applied Biosystems社製)で解析し、CT値を得た。次いで、既知濃度のHBVプラスミドを10倍ごとに希釈(20から2×10コピー)したものを用いて作成された検量線により、前記CT値を各ヌクレオシド誘導体存在下におけるHBVのコピー数(HBVのDNA量)へと変換した。そして、ヌクレオシド誘導体の非存在下にて培養した対照におけるそれと比較し、その減少度からEC50値を算出し、各ヌクレオシド誘導体の抗HBV活性を評価した。得られた結果を表4乃至6に示す。 Data obtained by such a PCR reaction was analyzed with StepOne ™ Software Version 2.0 (Applied Biosystems) to obtain a CT value. Subsequently, the CT value was calculated from the HBV copy number (HBV) in the presence of each nucleoside derivative by using a calibration curve prepared by diluting the HBV plasmid at a known concentration every 10 times (20 to 2 × 10 8 copies). The amount of DNA). Then, the EC 50 value was calculated from the degree of decrease compared with that in the control cultured in the absence of the nucleoside derivative, and the anti-HBV activity of each nucleoside derivative was evaluated. The obtained results are shown in Tables 4 to 6.
 試験例2:抗HBV活性の評価(1週間評価系)
 供試細胞として、前記HepG2 2.2.15細胞を親株とする、HepG2 2.2.15.7細胞を用いた。なお、HepG2 2.2.15細胞は、10%胎児ウシ血清、G418(500μg/ml)及び抗生剤(ペニシリンとカナマイシン)含有DMEMにおける継続培養にて維持した。また、HepG2 2.2.15.7細胞は、HepG2 2.2.15細胞同様、ゲノムに統合されたDNAだけでなくエピソームとして産生されるHBV遺伝子を保持するHBV持続産生細胞である。そこで、各ヌクレオシド誘導体と共培養し、培養上清に放出されるウイルスのDNAコピー数を定量し、その減少度を抗HBV活性の評価の指標とした。
Test Example 2: Evaluation of anti-HBV activity (one week evaluation system)
As test cells, HepG2 2.2.5.7 cells were used, which were the above HepG2 2.2.15 cells as a parent strain. HepG2 2.2.15 cells were maintained by continuous culture in DMEM containing 10% fetal bovine serum, G418 (500 μg / ml) and antibiotics (penicillin and kanamycin). Moreover, the HepG2 2.2.5.7 cell is an HBV continuous production cell that retains not only DNA integrated into the genome but also an HBV gene produced as an episome, like the HepG2 2.2.15 cell. Therefore, the nucleoside derivatives were co-cultured, the number of viral DNA copies released into the culture supernatant was quantified, and the degree of decrease was used as an index for evaluating anti-HBV activity.
 より具体的には、コラーゲンコートされた96穴細胞培養皿に細胞生存性90%以上のHepG2 2.2.15.7細胞を2×10cells/mlの濃度で播種し、細胞播種同日に、様々な濃度にて各ヌクレオシド誘導体を添加した。37℃、5%COの標準培養条件で3日培養した後、さらに各ヌクレオシド誘導体を含むフレッシュな培地に交換し、交換後3日目の培養上清からHBV DNAを回収した。そして、回収した培地から、上記同様にして、定量的PCRを行い検量線からウイルスコピー数を求め、ヌクレオシド誘導体ごとのEC50を算出した。得られた結果を表4乃至6に併せて示す。 More specifically, a collagen-coated 96-well cell culture dish was seeded with HepG2 2.2.15.7 cells having a cell viability of 90% or more at a concentration of 2 × 10 4 cells / ml, and the same day of cell seeding. Each nucleoside derivative was added at various concentrations. After culturing for 3 days under standard culture conditions of 37 ° C. and 5% CO 2 , the culture medium was further replaced with a fresh medium containing each nucleoside derivative, and HBV DNA was recovered from the culture supernatant on the 3rd day after the replacement. Then, quantitative PCR was performed from the collected medium in the same manner as described above, and the virus copy number was determined from the calibration curve, and the EC 50 for each nucleoside derivative was calculated. The obtained results are also shown in Tables 4 to 6.
なお、表中、1Wは1週間評価形の結果を表し、2Wは2週間評価系の結果を表す。両者の違いは、培養期間だけでなく、評価するDNAが細胞内を含めた全DNA(2週間評価系)か細胞外のみのDNA(1週間評価系)かの違いもある。 In the table, 1W represents a one-week evaluation type result, and 2W represents a two-week evaluation type result. The difference between the two is not only the culture period, but also whether the DNA to be evaluated is total DNA including intracellular (2-week evaluation system) or only extracellular DNA (1-week evaluation system).
 試験例3:細胞毒性試験
 上記ヌクレオシド誘導体に関し、HepG2細胞に対する細胞毒性試験も行った。段階希釈後の各濃度の各ヌクレオシド誘導体を添加した培地と共に、HepG2細胞を1×10cells/mlの濃度になるよう播種した。このようにして様々な濃度の各ヌクレオシド誘導体の存在下、37℃、5%COの標準培養条件で7日間、これら細胞を培養した後、各ウェルの生存細胞数をMTTアッセイで定量化した。そして、得られた生存細胞数に基づき、各ヌクレオシド誘導体に関し、CC50を算出した。得られた結果を表4乃至6に併せて示す。
Test Example 3: Cytotoxicity test With respect to the nucleoside derivative, a cytotoxicity test against HepG2 cells was also conducted. HepG2 cells were seeded to a concentration of 1 × 10 4 cells / ml together with a medium supplemented with each concentration of each nucleoside derivative after serial dilution. Thus, after culturing these cells for 7 days at 37 ° C. and 5% CO 2 in the presence of various concentrations of each nucleoside derivative, the number of viable cells in each well was quantified by MTT assay. . Then, based on the obtained number of viable cells, CC 50 was calculated for each nucleoside derivative. The obtained results are also shown in Tables 4 to 6.
 なお、表4乃至6には、選択性指数として、CC50値をEC50値で除した値も示している。この選択性指数が大きいほど、毒性/活性比が大きく、薬剤として好適である。 Tables 4 to 6 also show values obtained by dividing the CC 50 value by the EC 50 value as the selectivity index. The greater the selectivity index, the greater the toxicity / activity ratio, and the better the drug is.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 表4乃至6に示した結果から明らかな通り、化合物P1乃至P4は、化合物C1及びC2並びにR1乃至R4と比較して、細胞毒性がより低いことが明らかとなった。また、化合物P1乃至P4は、HBVに対する優れた抗ウイルス活性を有することも明らかとなった。 As is clear from the results shown in Tables 4 to 6, it was revealed that the compounds P1 to P4 are less cytotoxic than the compounds C1 and C2 and R1 to R4. It was also revealed that the compounds P1 to P4 have excellent antiviral activity against HBV.
 以上説明したように、本発明によれば、少なくともHBVに対して優れた抗ウイルス活性を有し、宿主細胞に対する毒性が低いヌクレオシド誘導体を提供することが可能となる。したがって、本発明は、ウイルス感染症の予防又は治療において極めて有用である。 As described above, according to the present invention, it is possible to provide a nucleoside derivative that has at least excellent antiviral activity against HBV and has low toxicity to host cells. Therefore, the present invention is extremely useful in the prevention or treatment of viral infections.
 配列番号:1及び2
<223>人工的に合成されたプライマーの配列
SEQ ID NO: 1 and 2
<223> Artificially synthesized primer sequences

Claims (4)

  1.  下記一般式(1)で表されるヌクレオシド誘導体。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、Rは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、シアノ基、又はアジド基である。
    A nucleoside derivative represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    In formula (1), R is an alkyl group which may have a substituent, an alkenyl group which may have a substituent, a cyano group, or an azide group.
  2.  Rは、モノフルオロメチル基、エテニル基、シアノ基、又はアジド基である、請求項1に記載のヌクレオシド誘導体。 The nucleoside derivative according to claim 1, wherein R is a monofluoromethyl group, an ethenyl group, a cyano group, or an azide group.
  3.  請求項1又は2に記載のヌクレオシド誘導体を有効成分とする抗ウイルス剤。 An antiviral agent comprising the nucleoside derivative according to claim 1 or 2 as an active ingredient.
  4.  抗B型肝炎ウイルス剤である、請求項3に記載の抗ウイルス剤。

     
    The antiviral agent according to claim 3, which is an anti-hepatitis B virus agent.

PCT/JP2017/044885 2016-12-14 2017-12-14 Nucleoside derivative exhibiting antiviral activity WO2018110643A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018556739A JP6983814B2 (en) 2016-12-14 2017-12-14 Nucleoside derivative showing antiviral activity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016242503 2016-12-14
JP2016-242503 2016-12-14

Publications (1)

Publication Number Publication Date
WO2018110643A1 true WO2018110643A1 (en) 2018-06-21

Family

ID=62558758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044885 WO2018110643A1 (en) 2016-12-14 2017-12-14 Nucleoside derivative exhibiting antiviral activity

Country Status (2)

Country Link
JP (1) JP6983814B2 (en)
WO (1) WO2018110643A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258891A (en) * 1987-04-03 1988-10-26 ザ ウエルカム フアウンデーション リミテッド Therapeutic nucleotide compound
JPH03145497A (en) * 1989-09-11 1991-06-20 Wellcome Found Ltd:The Antiviral compound
JPH0656877A (en) * 1992-06-22 1994-03-01 Eli Lilly & Co 2'-deoxy-2',2'-difluoro-(2,6,8-substituted)-purine nucleoside with antivirus activity and anticancer activity, and its intermediate
WO2003068796A1 (en) * 2002-02-15 2003-08-21 Yamasa Corporation 4’-c-cyano-2’-deoxypurine nucleosides
JP2004520367A (en) * 2001-01-22 2004-07-08 メルク エンド カムパニー インコーポレーテッド Nucleoside derivatives as RNA-dependent RNA viral polymerase inhibitors
JP2005504087A (en) * 2001-09-28 2005-02-10 イデニクス(ケイマン)リミテツド Methods and compositions for the treatment of hepatitis C virus using 4 'modified nucleosides
JP2017057200A (en) * 2015-09-18 2017-03-23 ヤマサ醤油株式会社 Nucleoside derivative having physiological activity such as anti-DNA virus activity

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258891A (en) * 1987-04-03 1988-10-26 ザ ウエルカム フアウンデーション リミテッド Therapeutic nucleotide compound
JPH03145497A (en) * 1989-09-11 1991-06-20 Wellcome Found Ltd:The Antiviral compound
JPH0656877A (en) * 1992-06-22 1994-03-01 Eli Lilly & Co 2'-deoxy-2',2'-difluoro-(2,6,8-substituted)-purine nucleoside with antivirus activity and anticancer activity, and its intermediate
JP2004520367A (en) * 2001-01-22 2004-07-08 メルク エンド カムパニー インコーポレーテッド Nucleoside derivatives as RNA-dependent RNA viral polymerase inhibitors
JP2005504087A (en) * 2001-09-28 2005-02-10 イデニクス(ケイマン)リミテツド Methods and compositions for the treatment of hepatitis C virus using 4 'modified nucleosides
WO2003068796A1 (en) * 2002-02-15 2003-08-21 Yamasa Corporation 4’-c-cyano-2’-deoxypurine nucleosides
JP2017057200A (en) * 2015-09-18 2017-03-23 ヤマサ醤油株式会社 Nucleoside derivative having physiological activity such as anti-DNA virus activity

Also Published As

Publication number Publication date
JPWO2018110643A1 (en) 2019-12-12
JP6983814B2 (en) 2021-12-17

Similar Documents

Publication Publication Date Title
EP2940031B1 (en) Nucleoside phosphoramidate compounds for use in the treatment of hcv
US7582748B2 (en) Methods of manufacture of 2′-deoxy-β-L-nucleosides
CN108289931B (en) 4&#39; -substituted nucleoside reverse transcriptase inhibitors and preparation thereof
TWI461432B (en) Uracyl spirooxetane nucleosides
JPH0637394B2 (en) Tumor therapeutic agent
JPH0723394B2 (en) Novel adenosine derivative and pharmaceutical composition containing the compound as an active ingredient
JP6767011B2 (en) Nucleoside derivative with physiological activity such as anti-DNA virus activity
WO1991019713A1 (en) Pyrimidine nucleoside derivative
JP6153116B2 (en) Triazole-linked cyclic dinucleotide analogs
JP7305198B2 (en) Nucleoside Cyclic Phosphate Ester Compounds and Applications of Entecavir Prodrugs Based on Hepatic Delivery
JPH0656877A (en) 2&#39;-deoxy-2&#39;,2&#39;-difluoro-(2,6,8-substituted)-purine nucleoside with antivirus activity and anticancer activity, and its intermediate
JP2017529375A (en) 4&#39;-vinyl substituted nucleoside derivatives as inhibitors of respiratory polynuclear virus RNA replication
JP2001515900A (en) Antiviral drugs
JP6983814B2 (en) Nucleoside derivative showing antiviral activity
JP7084591B2 (en) A nucleoside derivative or a salt thereof, and a pharmaceutical composition containing the same.
JP6912100B2 (en) Nucleoside derivative with physiological activity such as antiviral activity
WO1992019638A1 (en) 1-β-D-ARABINOFURANOSYL-(E)-5-(2-HALOGENOVINYL)-URACIL DERIVATIVE
TW202039457A (en) Fluorine-containing substituted benzothiophene compound, and pharmaceutical composition and application thereof
JP7125714B2 (en) 2&#39;-Deoxy-7-deazapurine nucleoside derivatives with antiviral activity
CN108218937B (en) Optical isomer of nucleoside phosphoramidate compound and application thereof
WO2022043531A1 (en) 7&#39;-substituted 2&#39;-o-4&#39;-c-ethylene-bridged nucleic acid (ena) monomers and uses thereof
JP2020164521A (en) Antiviral drug
JPH08134093A (en) Carcinostatic agent
WO2010098365A1 (en) Nucleoside-type antibiotic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880377

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556739

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880377

Country of ref document: EP

Kind code of ref document: A1