JP6766004B2 - Electrocorrosion protection system and seawater desalination plant equipped with it - Google Patents

Electrocorrosion protection system and seawater desalination plant equipped with it Download PDF

Info

Publication number
JP6766004B2
JP6766004B2 JP2017076060A JP2017076060A JP6766004B2 JP 6766004 B2 JP6766004 B2 JP 6766004B2 JP 2017076060 A JP2017076060 A JP 2017076060A JP 2017076060 A JP2017076060 A JP 2017076060A JP 6766004 B2 JP6766004 B2 JP 6766004B2
Authority
JP
Japan
Prior art keywords
pipe
seawater
hypochlorous acid
concentrated water
meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017076060A
Other languages
Japanese (ja)
Other versions
JP2018178167A (en
Inventor
佑一 中野
佑一 中野
光太郎 北村
光太郎 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017076060A priority Critical patent/JP6766004B2/en
Priority to SG11201909044U priority patent/SG11201909044UA/en
Priority to PCT/JP2018/010312 priority patent/WO2018186147A1/en
Publication of JP2018178167A publication Critical patent/JP2018178167A/en
Priority to SA519410231A priority patent/SA519410231B1/en
Application granted granted Critical
Publication of JP6766004B2 publication Critical patent/JP6766004B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/06Energy recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、電気防食システム及びそれを備えたプラントに係り、特に外部電源方式の電気防食システム及びそれを備えたプラントに関する。 The present invention relates to an electrocorrosion protection system and a plant equipped with the same, and more particularly to an external power supply type electrocorrosion protection system and a plant equipped with the same.

海水等の電解液中に浸された金属表面の防食を行うものとして、特許文献1に記載される技術が知られている。特許文献1では、金属で形成された流体(海水)の流通経路部(配管、ポンプ)と、流通経路部に電気的に絶縁しつつ流通経路部を通流する流体に接触するアノードとの間に防食電圧を印加し、流通経路部に防食電流を流通させる電気防食方法であって、防食電流が所定の電流値若しくは電位以下となったときに防食電流が所定の電流値若しくは電位となるよう防食電圧を増加させる構成が記載されている。また、特許文献1には、防食電圧が上限電圧を超えた場合、アノードを接地又はアノードに防食電圧とは逆方向の電圧を印加する旨開示されている。 The technique described in Patent Document 1 is known as a technique for preventing corrosion of a metal surface immersed in an electrolytic solution such as seawater. In Patent Document 1, between the flow path portion (pipe, pump) of a fluid (seawater) formed of metal and the anode that contacts the fluid flowing through the flow path section while being electrically insulated from the flow path section. This is an electric anticorrosion method in which an anticorrosion voltage is applied to an anticorrosion voltage and an anticorrosion current is circulated through a distribution path so that the anticorrosion current becomes a predetermined current value or potential when the anticorrosion current falls below a predetermined current value or potential. A configuration that increases the anticorrosion voltage is described. Further, Patent Document 1 discloses that when the anticorrosion voltage exceeds the upper limit voltage, a voltage in the direction opposite to the anticorrosion voltage is applied to the anode or the anode.

特開2016−17189号公報Japanese Unexamined Patent Publication No. 2016-17189

しかしながら、特許文献1に記載される技術では、防食電圧を増加させることにより発生する次亜塩素酸については何ら考慮されていない。次亜塩素酸は、海水淡水化プラントを構成するRO膜ジュール内のRO膜(Reverse Osmosis Membrane:逆浸透膜)の劣化を生じさせる要因となる。 However, in the technique described in Patent Document 1, hypochlorous acid generated by increasing the anticorrosion voltage is not considered at all. Hypochlorite causes deterioration of the RO membrane (Reverse Osmosis Membrane: reverse osmosis membrane) in the RO membrane joule that constitutes a seawater desalination plant.

そこで、本発明は、所定値以上の防食電圧を印加した場合においても、次亜塩素酸を好適に除去し得る電気防食システム及びそれを備えた海水淡水化プラントを提供する。 Therefore, the present invention provides an electrocorrosion protection system capable of suitably removing hypochlorous acid even when an anticorrosion voltage of a predetermined value or more is applied, and a seawater desalination plant provided with the same.

上記課題を解決するため、本発明に係る電気防食システムは、少なくとも、電解液を通流する金属材料からなる配管に絶縁材を介して配される電極と、前記電極及び前記金属材料からなる配管との間に電圧を印加する防食電源と、少なくとも、前記金属材料からなる配管に設置され配管内を通流する電解液の流量を計測する流量計及び配管内を通流する電解液中の次亜塩素酸濃度を計測する残塩計と、を備え、前記流量計による電解液の流量の計測値及び前記残塩計による電解液中の次亜塩素酸濃度の計測値に基づき、配管内を通流する電解液に少なくとも次亜塩素酸除去剤を添加するよう制御する制御部を有することを特徴とする。
また、本発明に係る海水淡水化プラントは、前処理部により処理された海水を加圧する加圧ポンプと、前記加圧ポンプにより加圧された海水を導入し、高濃度の塩水である濃縮水とろ過水とに分離する逆浸透膜モジュールと、前記逆浸透膜モジュールより排出される濃縮水を導入し、前記加圧ポンプを駆動する動力の一部としてエネルギーを回収するエネルギー回収装置と、前記加圧ポンプと前記逆浸透膜モジュールとを接続し加圧された海水を通流する配管と、前記逆浸透膜モジュールと前記エネルギー回収装置とを接続し濃縮水が通流する配管と、前記加圧された海水を通流する配管及び/又は前記濃縮水が通流する配管に絶縁材を介して配される電極と、前記電極及び前記加圧された海水を通流する配管及び/又は前記濃縮水が通流する配管との間に電圧を印加する防食電源と、加圧された海水を通流する配管及び/又は前記濃縮水が通流する配管に設置され配管内を通流する加圧された海水及び/又は濃縮水の流量を計測する流量計と、加圧された海水及び/又は濃縮水中の次亜塩素酸濃度を計測する残塩計を有する電気防食システムと、を備え、前記電気防食システムは、前記流量計による電解液の流量の計測値及び前記残塩計による電解液中の次亜塩素酸濃度の計測値に基づき、配管内を通流する電解液に少なくとも次亜塩素酸除去剤を添加するよう制御する制御部を有することを特徴とする。
In order to solve the above problems, in the electrolytic corrosion protection system according to the present invention, at least an electrode arranged via an insulating material in a pipe made of a metal material through which an electrolytic solution flows, and a pipe made of the electrode and the metal material An anticorrosion power supply that applies a voltage between the two, and at least a flow meter that measures the flow rate of the electrolytic solution that is installed in the pipe made of the metal material and that flows through the pipe, and the following in the electrolytic solution that flows through the pipe. It is equipped with a residual salt meter that measures the chloric acid concentration, and the inside of the pipe is filled with the measured value of the flow rate of the electrolytic solution by the flow meter and the measured value of the hypochlorous acid concentration in the electrolytic solution by the residual salt meter. It is characterized by having a control unit that controls the addition of at least a hypochlorous acid removing agent to the flowing electrolytic solution.
Further, the seawater desalination plant according to the present invention introduces a pressurizing pump that pressurizes the seawater treated by the pretreatment section and seawater pressurized by the pressurizing pump, and is concentrated water that is a high-concentration salt water. An energy recovery device that introduces a reverse osmosis membrane module that separates the water from the reverse osmosis membrane module and the concentrated water discharged from the reverse osmosis membrane module and recovers energy as a part of the power for driving the pressurizing pump. A pipe connecting the pressurizing pump and the reverse osmosis membrane module to allow pressurized seawater to flow, a pipe connecting the reverse osmosis membrane module to the energy recovery device to allow concentrated water to flow, and the addition. An electrode arranged via an insulating material in a pipe through which the compressed seawater flows and / or a pipe through which the concentrated water flows, and a pipe through which the electrode and the pressurized seawater flow and / or the above. An anticorrosion power supply that applies a voltage between the pipe through which the concentrated water flows, a pipe through which pressurized seawater flows, and / or a pump installed in the pipe through which the concentrated water flows, and a pump that flows through the pipe. An anticorrosion system comprising a flow meter for measuring the flow rate of pressurized seawater and / or concentrated water and a residual salt meter for measuring the concentration of hypochlorite in pressurized seawater and / or concentrated water. The electrocorrosion protection system is based on the measured value of the flow rate of the electrolytic solution by the flow meter and the measured value of the hypochlorous acid concentration in the electrolytic solution by the residual salt meter, and at least the hypochlorite flowing in the pipe. It is characterized by having a control unit that controls the addition of a chloric acid remover.

本発明によれば、所定値以上の防食電圧を印加した場合においても、次亜塩素酸を好適に除去し得る電気防食システム及びそれを備えた海水淡水化プラントを提供することが可能となる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, it is possible to provide an electrocorrosion protection system capable of suitably removing hypochlorous acid even when an anticorrosion voltage of a predetermined value or more is applied, and a seawater desalination plant equipped with the same.
Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.

本発明の一実施形態に係る海水淡水化プラントの全体概略構成図である。It is an overall schematic block diagram of the seawater desalination plant which concerns on one Embodiment of this invention. 本発明の一実施例に係る実施例1の電気防食システムの模式図である。It is a schematic diagram of the anticorrosion system of Example 1 which concerns on one Example of this invention. 図2に示すアノード電極設置部分の縦断面図である。It is a vertical cross-sectional view of the anode electrode installation part shown in FIG. 図2に示す制御部の機能ブロック図である。It is a functional block diagram of the control unit shown in FIG. 本発明の他の実施例に係る実施例2の電気防食システムの模式図である。It is a schematic diagram of the anticorrosion system of Example 2 which concerns on another Example of this invention. 本発明の他の実施例に係る実施例3の電気防食システムの模式図である。It is a schematic diagram of the anticorrosion system of Example 3 which concerns on another Example of this invention.

本明明細書において、「電解液」とは、海水(Sea Water:SW)、汽水(Brackish Water:BW)、かん水、食塩水、塩水等を含む。ここでかん水とは、塩化ナトリウム等の塩分を含んだ水をいい、海水との境界に存在する汽水もかん水に含まれ、また、過去に海水が閉じ込められてできた化石水、岩塩地帯の塩分を含んだ水など陸水にもかん水が存在する。また、塩化ナトリウム濃度で区分すると0.05%未満が淡水、0.05%以上0.35%未満が汽水、0.35%以上0.5%未満が食塩水、0.5%以上が塩水と称される。なお、海水の塩化ナトリウム濃度は0.24%から2.96%程度であり、海域により濃度差がある。また、任意のイオン種を含む水溶液も本明細書における「電解液」に含まれる。 In the present specification, the "electrolyte solution" includes seawater (Sea Water: SW), brackish water (BW), brackish water, saline solution, salt water and the like. Here, brackish water refers to water containing salt such as sodium chloride, and brackish water existing at the boundary with seawater is also included in brackish water, and fossil water created by confining seawater in the past and salt in rock salt areas. There is also brackish water in land water such as water containing. In addition, when classified by sodium chloride concentration, less than 0.05% is fresh water, 0.05% or more and less than 0.35% is brackish water, 0.35% or more and less than 0.5% is salt water, and 0.5% or more is salt water. Is called. The concentration of sodium chloride in seawater is about 0.24% to 2.96%, and the concentration varies depending on the sea area. In addition, an aqueous solution containing an arbitrary ionic species is also included in the "electrolyte solution" in the present specification.

金属材料を海水中のような腐食が発生しやすい環境下で使用する機器、例えば海水淡水化プラント設備の配管材として使用する場合には、金属材料に腐食の発生を抑制する対策として、犠牲陽極方式や外部電源方式の電気防食法、表面被覆法、高耐食性材料法のいずれかを主として用いている。この中で、外部電源方式の電気防食法は、海水淡水化に使用するRO膜の劣化原因となる金属溶出が少ないという特徴がある。
電気防食法は、腐食作用における電子移動を制御する防食方法である。外部電源方式の電気防食法では、防食の対象となる機器の構造部材として用いられる金属材料に、電源を介して、電流を発生するための電極を接続する。このとき、電極は金属材料と共通の電解液に接触させ、電解液を介して回路が形成されるようにする。
電極は、電源によって防食対象の金属材料との間に電圧が印加される。この時、電極を貴な電位にしてアノード(陽極)とし、金属材料を卑な電位にしてカソード(陰極)とする場合をカソード防食法と称される。逆に、電極を卑な電位にしてカソードとし、金属材料を貴な電位にしてアノードとする場合をアノード防食法と称される。本発明では、カソード防食法とアノード防食法のどちらにも適用可能であるが、海水淡水化プラントに多く適用されるカソード防食法を用い、電解液として海水を、一例に以下説明する。
When using a metal material as a piping material for equipment used in an environment where corrosion is likely to occur, such as seawater, for example, seawater desalination plant equipment, a sacrificial anode is used as a measure to suppress the occurrence of corrosion on the metal material. It mainly uses one of the methods, the electrocorrosion protection method of the external power supply method, the surface coating method, and the highly corrosion resistant material method. Among these, the external power supply type electrocorrosion protection method is characterized in that the amount of metal elution that causes deterioration of the RO membrane used for seawater desalination is small.
The electrocorrosion protection method is a corrosion protection method that controls electron transfer in a corrosive action. In the external power supply type electrocorrosion protection method, an electrode for generating an electric current is connected to a metal material used as a structural member of a device to be protected against corrosion via a power supply. At this time, the electrodes are brought into contact with an electrolytic solution common to the metal material so that a circuit is formed through the electrolytic solution.
A voltage is applied to the electrode by a power source to and from the metal material to be protected against corrosion. At this time, the case where the electrode is set to a noble potential and used as an anode (anode) and the metal material is set to a low potential and used as a cathode (cathode) is called a cathode protection method. On the contrary, the case where the electrode is set to a low potential and used as a cathode and the metal material is set to a noble potential and used as an anode is called an anode corrosion protection method. Although the present invention can be applied to both the cathode anticorrosion method and the anode anticorrosion method, seawater will be described below as an example by using the cathode anticorrosion method which is often applied to seawater desalination plants.

電極は電源によって貴な電位に分極されることで電解液との界面で電気化学反応を起こし、電子を防食対象の金属材料側に移送する。その際、防食対象の金属材料は、電子供給を受けてアノード反応(腐食)が減少する卑な電位に分極される。
防食対象の金属材料は、例えば、炭素鋼、ダイス鋼、ニッケル鋳鉄、低合金鋼等の鉄鋼材料が挙げられる。また、オーステナイト系ステンレス鋼やフェライト系ステンレス鋼、二相系ステンレス鋼、マルテンサイト系ステンレス鋼、析出硬化系ステンレス鋼等のステンレスが挙げられる。さらに、青銅や黄銅等の銅合金、キュプロニッケルやモネル等のニッケル基合金が挙げられる。製法として、鋳造、圧延、鍛造、めっき、溶接肉盛、いわゆる3Dプリンタ技術が挙げられる。また、溶接部も防食対象となる。一方、電極の材料としては、例えば、酸化ルテニウム、酸化イリジウム、酸化ロジウム等の貴金属酸化物やそれらを複合したMMO(Mixed Metal Oxide)、酸化鉄や酸化チタン等の酸化物、白金やイリジウム等の貴金属、白金−チタン等の合金、高珪素鉄、タンタル、炭素などが挙げられる。
When the electrode is polarized to a noble potential by a power source, an electrochemical reaction occurs at the interface with the electrolytic solution, and electrons are transferred to the metal material side to be protected against corrosion. At that time, the metal material to be protected from corrosion is polarized to a low potential in which the anodic reaction (corrosion) is reduced by receiving an electron supply.
Examples of the metal material to be protected against corrosion include steel materials such as carbon steel, die steel, nickel cast iron, and low alloy steel. Examples thereof include stainless steels such as austenitic stainless steels, ferrite stainless steels, two-phase stainless steels, martensitic stainless steels, and precipitation hardening stainless steels. Further, copper alloys such as bronze and brass, and nickel-based alloys such as cupronickel and monel can be mentioned. Examples of the manufacturing method include casting, rolling, forging, plating, and welding overlay, so-called 3D printer technology. Welded parts are also subject to corrosion protection. On the other hand, as the material of the electrode, for example, noble metal oxides such as ruthenium oxide, iridium oxide and rhodium oxide, MMO (Mixed Metal Oxide) obtained by combining them, oxides such as iron oxide and titanium oxide, platinum and iridium and the like. Precious metals, alloys such as platinum-titanium, high silicon iron, tantalum, carbon and the like can be mentioned.

このような外部電源方式の防食システム及びこれを備えた海水淡水化プラントの例を、以下図面を用いて説明する。図1は、本発明の一実施形態に係る海水淡水化プラントの全体概略構成図である。図1において、実線矢印は水の流れを示し、点線矢印は信号線を示し、破線矢印は凝集剤或いは洗浄薬品等の流れを示している。
図1に示すように、海水淡水化プラント1は、被処理水である海水(原水)の取水から下流に向かい順に、取水された原水(電解液)を貯留する原水貯留槽3、MMF(Multi Media Filter)4、限外ろ過膜(UF膜:Ultrafiltration Membrane)5、中間槽10、加圧ポンプ11、内部にRO膜エレメントを収容する圧力容器からなるRO膜モジュール12、エネルギー回収装置(Energy Recovery Device:ERD)15、淡水貯留槽16及び濃縮水貯留槽17から構成されている。
原水貯留槽3には、取水される原水としての海水又はかん水(電解液)が貯留されている。高分子凝集剤又は無機系凝集剤を貯留する凝集剤槽6より凝集剤注入ポンプ7を介して適宜凝集剤が原水貯留槽3に注入される。そして、原水貯留槽3内において原水中に含まれる有機物等の不純物は注入された凝集剤に捕捉されフロックを形成する。フロックを含む原水は、ポンプによりMMF4及び限外ろ過膜5にてフロック及び原水中に含まれる不純物をその孔径サイズに応じて膜分離し、膜分離された後の原水(電解液:被処理水)は、一旦、中間槽10に蓄えられる。凝集剤注入から限外ろ過膜5による膜分離までが前処理部を構成する。なお、高分子凝集剤としては、例えば、ポリアクリルアミド系凝集剤が用いられ、無機系凝集剤としては、例えば塩化第二鉄が用いられる。
An example of such an external power supply type anticorrosion system and a seawater desalination plant equipped with the system will be described below with reference to the drawings. FIG. 1 is an overall schematic configuration diagram of a seawater desalination plant according to an embodiment of the present invention. In FIG. 1, a solid line arrow indicates a flow of water, a dotted line arrow indicates a signal line, and a broken line arrow indicates a flow of a coagulant, a cleaning chemical, or the like.
As shown in FIG. 1, in the seawater desalination plant 1, the raw water storage tank 3 and the MMF (Multi) for storing the taken raw water (electrolyte) in order from the intake of the seawater (raw water) to be treated to the downstream side. Media Filter) 4, ultrafiltration membrane (UF membrane: Ultrafiltration Membrane) 5, intermediate tank 10, pressurizing pump 11, RO membrane module 12 consisting of a pressure vessel accommodating RO membrane element inside, energy recovery device (Energy Recovery) It is composed of a device (ERD) 15, a freshwater storage tank 16, and a concentrated water storage tank 17.
In the raw water storage tank 3, seawater or brine (electrolyte solution) as raw water to be taken is stored. The flocculant is appropriately injected into the raw water storage tank 3 from the flocculant tank 6 for storing the polymer flocculant or the inorganic flocculant via the flocculant injection pump 7. Then, impurities such as organic substances contained in the raw water in the raw water storage tank 3 are captured by the injected flocculant to form flocs. For raw water containing flocs, impurities contained in flocs and raw water are membrane-separated by MMF4 and ultrafiltration membrane 5 by a pump according to the pore size, and the raw water after membrane separation (electrolyte solution: water to be treated). ) Is temporarily stored in the intermediate tank 10. The pretreatment section consists of the process from injection of the flocculant to membrane separation by the ultrafiltration membrane 5. As the polymer flocculant, for example, a polyacrylamide-based flocculant is used, and as the inorganic flocculant, for example, ferric chloride is used.

中間槽10に蓄えられた原水(電解液:被処理水)は加圧ポンプ11により供給水(電解液)18としてRO膜モジュール12へ供給される。RO膜モジュール12により供給水(電解液)18は高濃度の塩水である濃縮水14とろ過水(淡水)13に膜分離される。ろ過水13は、RO膜モジュール12の一端より淡水貯留槽16へ供給され、また、濃縮水14はエネルギー回収装置15を介して濃縮水貯留槽17へ供給される。エネルギー回収装置15にて回収されたエネルギーは、加圧ポンプ11を駆動する動力の一部として使用される。RO膜モジュール12内に収容されたRO膜エレメントは、洗浄薬品注入ポンプ9を介して洗浄薬品貯留槽8から供給される洗浄薬品により所望の時期に洗浄される。 The raw water (electrolyte solution: water to be treated) stored in the intermediate tank 10 is supplied to the RO membrane module 12 as supply water (electrolyte solution) 18 by the pressurizing pump 11. The supply water (electrolyte solution) 18 is membrane-separated by the RO membrane module 12 into concentrated water 14 which is high-concentration salt water and filtered water (fresh water) 13. The filtered water 13 is supplied to the fresh water storage tank 16 from one end of the RO membrane module 12, and the concentrated water 14 is supplied to the concentrated water storage tank 17 via the energy recovery device 15. The energy recovered by the energy recovery device 15 is used as a part of the power for driving the pressurizing pump 11. The RO membrane element housed in the RO membrane module 12 is cleaned at a desired time by the cleaning chemicals supplied from the cleaning chemical storage tank 8 via the cleaning chemical injection pump 9.

ここで、エネルギー回収装置15して、例えば、供給水18の一部とRO膜モジュール12より排出される高圧濃縮水をそれぞれ2本のシリンダに導入し、シリンダ内部のピストンを介して高圧濃縮水の圧力を海水に伝達するDWEER(Dual Work Exchanger Energy Recovery)、Turbochagerにより高圧濃縮水の圧力を加圧ポンプ11に伝達するもの、供給水18の一部を直接高圧濃縮水と接触させることで高圧濃縮水の圧力を海水側に伝達するPX(Pressure Exchanger)、又は、高圧濃縮水を、先端を絞ったノズルにより流速を上げ、直接ペルトン水車のバケットに当てることで、ペルトン水車を回転させ、水車軸と直結した供給水18へその動力を伝達するもの等が用いられる。 Here, the energy recovery device 15 introduces, for example, a part of the supply water 18 and the high-pressure concentrated water discharged from the RO membrane module 12 into two cylinders, respectively, and the high-pressure concentrated water is introduced through the piston inside the cylinders. DWEER (Dual Work Exchange Energy Recovery) that transfers the pressure of PX (Pressure Exchanger) that transmits the pressure of concentrated water to the seawater side or high-pressure concentrated water is increased in flow velocity by a nozzle with a squeezed tip and directly hits the bucket of the Pelton water wheel to rotate the Pelton water wheel and water. A device that transmits the power to the supply water 18 directly connected to the axle is used.

監視制御装置19は、RO膜モジュール12の状態を監視し、凝集剤注入ポンプ7、洗浄薬品注入ポンプ9、加圧ポンプ11を制御する。
なお、前処理部の構成は上述の構成に限られず、例えば、MMF4に代えて砂ろ過部を用いても良く、また、MMF4及び限外ろ過膜5のうちいずれか一方のみを有する構成としても良く、また、MF膜(Microfiltration Membrane)を用いても良い。
The monitoring control device 19 monitors the state of the RO membrane module 12 and controls the coagulant injection pump 7, the cleaning chemical injection pump 9, and the pressurizing pump 11.
The configuration of the pretreatment unit is not limited to the above configuration, and for example, a sand filtration unit may be used instead of the MMF4, or the configuration may include only one of the MMF4 and the ultrafiltration membrane 5. It is also good, and an MF membrane (Microfiltration Membrane) may be used.

加圧ポンプ11を含む取水ポンプ等の各種ポンプの内面は、海水(電解液)に接している。そのため、腐食が発生しやすい環境下にある。さらに、加圧ポンプ11から下流の高圧にさらされる配管部分は、金属配管が用いられており、例えば5MPa以上の内圧で海水(電解液)又は濃縮水が流動している。これらの金属配管では、塩濃度に依存する腐食現象が時間経過とともに発生し、特に、配管結合部であるフランジ部や、表面組織と表面粗さが不均一となる溶接部では高腐食速度である局部腐食が進展する場合がある。これらの腐食の発生を防止するために、図1に示すように、電気防食システム2が設けられている。なお、以下では、加圧ポンプ11によりRO膜モジュール12へ供給される供給水(電解液)18が通流する配管に電気防食システム2を設置する場合を一例に説明するが、これに限られるものでは無く、電気防食システム2を濃縮水14が通流する配管に設置する構成としても良く、また、電気防食システム2を供給水(電解液)18が通流する配管及び濃縮水14が通流する配管の双方に設置する構成としても良い。また、内面が海水(電解液)に接する各種ポンプ内に、電気防食システム2を設置しても良い。
以下、図面を用いて本発明の実施例について説明する。
The inner surface of various pumps such as an intake pump including the pressurizing pump 11 is in contact with seawater (electrolyte solution). Therefore, it is in an environment where corrosion is likely to occur. Further, a metal pipe is used for the pipe portion exposed to the high pressure downstream from the pressure pump 11, and seawater (electrolyte solution) or concentrated water flows at an internal pressure of, for example, 5 MPa or more. In these metal pipes, a corrosion phenomenon depending on the salt concentration occurs over time, and the corrosion rate is particularly high in the flange part which is the pipe joint part and the welded part where the surface structure and the surface roughness are non-uniform. Local corrosion may develop. In order to prevent the occurrence of these corrosions, an electrocorrosion protection system 2 is provided as shown in FIG. In the following, a case where the electric corrosion protection system 2 is installed in a pipe through which the supply water (electrolyte solution) 18 supplied to the RO membrane module 12 by the pressurizing pump 11 passes will be described as an example, but the present invention is limited to this. Instead, the electric corrosion protection system 2 may be installed in a pipe through which the concentrated water 14 passes, and the electric corrosion protection system 2 may be passed through the pipe through which the supply water (electrolyte) 18 passes and the concentrated water 14. It may be configured to be installed on both sides of the flowing pipe. Further, the anticorrosion system 2 may be installed in various pumps whose inner surface is in contact with seawater (electrolyte solution).
Hereinafter, examples of the present invention will be described with reference to the drawings.

図2は、本発明の一実施例に係る実施例1の電気防食システムの模式図である。電気防食システム2は、加圧ポンプ11とRO膜モジュール12とを接続する配管32に設置さされるアノード電極21、防食電源22、配管32であってRO膜モジュール12側のセンサ設置位置Aに取り付けられる流量計23、残塩計24、pH計25、及び電位計26を備える。配管32はケーブルにより防食電源22のマイナス端子に接続され、アノード電極21はケーブルにより防食電源22のプラス端子に接続されている。また、電気防食システム2は、次亜塩素酸除去剤を収容する次亜塩素酸除去剤貯留槽27、次亜塩素酸除去剤注入ポンプ29、中間槽10より加圧ポンプ11へと配管32内を通流する供給水(電解液)18が次亜塩素酸除去剤注入ポンプ29側へ逆流することを防止するための逆止弁31a、pH調整剤を収容するpH調整剤貯留槽28、pH調整剤注入ポンプ30、中間槽10より加圧ポンプ11へと配管32内を通流する供給水(電解液)18がpH調整剤注入ポンプ30側へ逆流することを防止するための逆止弁31b、及び制御部20を備える。なお、次亜塩素酸除去剤貯留槽27より次亜塩素酸除去剤注入ポンプ29及び逆止弁31aを介して、配管32内を通流する供給水(電解液)18に次亜塩素酸除去剤が注入される位置は、加圧ポンプ11よりも上流側である。同様にpH調整剤貯留槽28よりpH調整剤注入ポンプ30及び逆止弁31bを介して、配管32内を通流する供給水(電解液)18にpH調整剤が注入される位置は、加圧ポンプ11よりも上流側である。 FIG. 2 is a schematic view of an anticorrosion system of Example 1 according to an embodiment of the present invention. The electrocorrosion protection system 2 is attached to the sensor installation position A on the RO membrane module 12 side of the anode electrode 21, the corrosion protection power supply 22, and the pipe 32 installed in the pipe 32 connecting the pressurizing pump 11 and the RO membrane module 12. A flow meter 23, a residual salt meter 24, a pH meter 25, and an electrometer 26 are provided. The pipe 32 is connected to the negative terminal of the anticorrosion power supply 22 by a cable, and the anode electrode 21 is connected to the positive terminal of the anticorrosion power supply 22 by a cable. Further, the anticorrosion system 2 includes a hypochlorous acid remover storage tank 27 for accommodating the hypochlorite remover, a hypochlorite remover injection pump 29, and an intermediate tank 10 to the pressurizing pump 11 in the pipe 32. A check valve 31a for preventing the supplied water (electrolyte solution) 18 flowing back to flow back to the hypochlorite removing agent injection pump 29 side, a pH adjusting agent storage tank 28 for accommodating the pH adjusting agent, and pH. A check valve for preventing the supply water (electrolyte solution) 18 flowing through the pipe 32 from the adjusting agent injection pump 30 and the intermediate tank 10 to the pressurizing pump 11 to flow back to the pH adjusting agent injection pump 30 side. It includes 31b and a control unit 20. The hypochlorous acid is removed from the hypochlorous acid remover storage tank 27 to the supply water (electrolyte solution) 18 flowing through the pipe 32 via the hypochlorous acid remover injection pump 29 and the check valve 31a. The position where the agent is injected is on the upstream side of the pressurizing pump 11. Similarly, the position where the pH adjuster is injected from the pH adjuster storage tank 28 into the supply water (electrolyte solution) 18 flowing through the pipe 32 via the pH adjuster injection pump 30 and the check valve 31b is added. It is on the upstream side of the pressure pump 11.

詳細後述する制御部20は、流量計23、残塩計24、pH計25、及び電位計26による計測値に基づき、防食電源22へ所望の防食電流を通電可能な印加電圧を指令値として出力すると共に、次亜塩素酸除去剤注入ポンプ29へ次亜塩素酸除去剤の添加量を指令値として、また、pH調整剤注入ポンプ30へpH調整剤の添加量を指令値として出力する。 The control unit 20, which will be described in detail later, outputs an applied voltage capable of energizing a desired anticorrosion current to the anticorrosion power source 22 as a command value based on the measured values by the flow meter 23, the residual salt meter 24, the pH meter 25, and the electrometer 26. At the same time, the amount of the hypochlorous acid remover added to the hypochlorite remover injection pump 29 is output as a command value, and the amount of the pH adjuster added to the pH adjuster injection pump 30 is output as a command value.

上述のように、アノード電極21は防食電源22によって貴な電位に分極されることで、配管32内をRO膜モジュール12へと通流する供給水18(電解液)との界面で電気化学反応を起こし、電子を防食対象である配管32へ移送する。また、防食対象である配管32は、電子供給を受けてアノード反応(腐食)が減少する卑な電位に分極される。通常、防食電源22よりアノード電極21及び配管32へ印加される防食電圧は所定値で一定を維持する。しかし、配管32内を通流する被処理水である供給水18(電解液)の水質等の状態が急激に変化すると、防食電流が腐食電流を打ち消すに足る所定値以下に低下する場合がある。この場合、防食電圧を増加させる必要がある。また、配管32において、金属材料の活性溶解或いは微生物腐食が生じた場合、配管32の電位が電気防食開始直後における初期電位よりも上昇する。このとき、配管32の電位は腐食に対して不活性となる電位の範囲を超え活性領域に達していることから、防食電圧を増加させ配管32の電位を初期電位まで低下させる必要がある。 As described above, the anode electrode 21 is polarized to a noble potential by the anticorrosion power supply 22, and an electrochemical reaction occurs at the interface with the supply water 18 (electrolyte solution) flowing through the pipe 32 to the RO membrane module 12. Is raised, and electrons are transferred to the pipe 32, which is the object of corrosion protection. Further, the pipe 32, which is the object of corrosion protection, is polarized to a low potential in which the anode reaction (corrosion) is reduced by receiving the electron supply. Normally, the anticorrosion voltage applied from the anticorrosion power source 22 to the anode electrode 21 and the pipe 32 is kept constant at a predetermined value. However, if the water quality or the like of the supply water 18 (electrolyte solution), which is the water to be treated flowing through the pipe 32, changes suddenly, the anticorrosion current may drop to a predetermined value or less sufficient to cancel the corrosion current. .. In this case, it is necessary to increase the anticorrosion voltage. Further, when the metal material is actively dissolved or microbially corroded in the pipe 32, the potential of the pipe 32 rises from the initial potential immediately after the start of electrocorrosion protection. At this time, since the potential of the pipe 32 exceeds the range of the potential that is inactive against corrosion and reaches the active region, it is necessary to increase the anticorrosion voltage and lower the potential of the pipe 32 to the initial potential.

上述のように防食電圧を増加させる、すなわち、防食電源22より所定値以上の防食電圧が、アノード電極21及び配管32へ印加された場合、配管32内をRO膜モジュール12へと通流する被処理水である供給水18(電解液)は、塩化ナトリウム濃度が0.24%から2.96%程度の海水であることから、以下の式(1)及び式(2)の化学式に示す反応により次亜塩素酸(HClO)が発生する。
2Cl → Cl+2e ・・・式(1)
Cl+HO → HClO+HCl ・・・式(2)
上述のように、次亜塩素酸(HClO)は、RO膜モジュール12内のRO膜の劣化を促進させる性質を有する。
そこで、例えば、NaHSO(重亜硫酸ナトリウム:SBS)等の次亜塩素酸除去剤を、配管32内を通流する供給水18(電解液)に注入し、発生した次亜塩素酸(HClO)と化学反応させ次亜塩素酸(HClO)を除去する。
As described above, when the anticorrosion voltage is increased, that is, when an anticorrosion voltage of a predetermined value or more is applied to the anode electrode 21 and the pipe 32 from the anticorrosion power supply 22, the subject that flows through the pipe 32 to the RO membrane module 12. Since the supply water 18 (electrolyte solution), which is the treated water, is seawater having a sodium chloride concentration of about 0.24% to 2.96%, the reactions represented by the following formulas (1) and (2) are shown. Generates hypochlorous acid (HClO).
2Cl → Cl 2 + 2e ・ ・ ・ Equation (1)
Cl 2 + H 2 O → HClO + HCl ・ ・ ・ Equation (2)
As described above, hypochlorous acid (HClO) has a property of accelerating the deterioration of the RO membrane in the RO membrane module 12.
Therefore, for example, a hypochlorous acid remover such as NaHSO 3 (sodium bisulfite: SBS) is injected into the supply water 18 (electrolyte solution) flowing through the pipe 32, and the generated hypochlorous acid (HClO). To remove hypochlorous acid (HClO).

また、電気防食時においては、以下の式(3)に示す反応により水素(H)が発生する。
2HO+2e → H+2OH ・・・式(3)
そこで、例えば、NaOH(水酸化ナトリウム)或いはKOH(水酸化カリウム)等のpH調整剤を、配管32内を通流する供給水18(電解液)に注入し、中和することで発生した水素(H)を低減させる。
Further, during electrocorrosion protection, hydrogen (H 2 ) is generated by the reaction represented by the following formula (3).
2H 2 O + 2e → H 2 + 2OH ・ ・ ・ Equation (3)
Therefore, for example, hydrogen generated by injecting a pH adjuster such as NaOH (sodium hydroxide) or KOH (potassium hydroxide) into the supply water 18 (electrolytic solution) flowing through the pipe 32 to neutralize it. Reduce (H 2 ).

図3は、図2に示すアノード電極設置部分の縦断面図である。図3に示すように、アノード電極21は円環状をなし、同様に円環状をなす2つの絶縁材35a及び絶縁材35bに挟まれ、一方の配管32のフランジ34aと対向する他方の配管32のフランジ34bとの間に、ボルト36及びナット37により水密に締結されている。円環状のアノード電極21の内径、円環状の絶縁材35a及び絶縁材35bの内径、及び配管32の内径は同一であることが望ましい。また、これら円環状のアノード電極21の内周面、円環状の絶縁材35a及び絶縁材35bの内周面、及び配管32の内周面が連続するよう位置付けることにより、配管32内を白抜き矢印にて示す方向に通流する被処理水である供給水18(電解液)に対し、流路抵抗は生じない。 FIG. 3 is a vertical cross-sectional view of the anode electrode installation portion shown in FIG. As shown in FIG. 3, the anode electrode 21 has an annular shape, and is sandwiched between two insulating materials 35a and an insulating material 35b that also form an annular shape, and the flange 34a of one pipe 32 faces the other pipe 32. It is watertightly fastened to the flange 34b by bolts 36 and nuts 37. It is desirable that the inner diameter of the annular anode electrode 21, the inner diameter of the annular insulating material 35a and the insulating material 35b, and the inner diameter of the pipe 32 are the same. Further, by positioning the inner peripheral surface of the annular anode electrode 21, the inner peripheral surface of the annular insulating material 35a and the insulating material 35b, and the inner peripheral surface of the pipe 32 to be continuous, the inside of the pipe 32 is outlined. No flow path resistance is generated with respect to the supply water 18 (electrolyte solution) which is the water to be treated that flows in the direction indicated by the arrow.

また、一方の配管32と対向する他方の配管32とは、ボルト36、フランジ34a、及びフランジ34bにより導通状態にあることから、一方の配管32と対向する他方の配管32は同電位となる。なお、ボルト36が挿通される円環状のアノード電極21の貫通口の内径は、ボルト36の外径よりも大きく、アノード電極21とボルト36とは非接触状態となっている。絶縁材35a及び絶縁材35bとしては、例えば、絶縁性の弾性体であるゴム等が用いられる。 Further, since the other pipe 32 facing the one pipe 32 is in a conductive state by the bolt 36, the flange 34a, and the flange 34b, the other pipe 32 facing the one pipe 32 has the same potential. The inner diameter of the through hole of the annular anode electrode 21 through which the bolt 36 is inserted is larger than the outer diameter of the bolt 36, and the anode electrode 21 and the bolt 36 are in a non-contact state. As the insulating material 35a and the insulating material 35b, for example, rubber which is an insulating elastic body or the like is used.

図4は、図2に示す制御部20の機能ブロック図である。図2に示すように、電気防食システム2を構成する制御部20は、入力I/F41、計測値取得部42、記憶部43、次亜塩素酸除去剤添加量決定部44、pH調整剤添加量決定部45、防食電圧制御部46、出力I/F47を備え、これらは内部バス48を介して相互に接続されている。計測値取得部42、次亜塩素酸除去剤添加量決定部44、pH調整剤添加量決定部45、及び防食電圧制御部46は、例えば、図示しないROM、RAM、外部記憶装置等の記憶装置を備えると共に、ROMに格納された各種プログラムを読み出し実行し、実行結果である演算処理結果をRAM又は外部記憶装置に格納するCPU等のプロセッサにより構成される。 FIG. 4 is a functional block diagram of the control unit 20 shown in FIG. As shown in FIG. 2, the control unit 20 constituting the anticorrosion system 2 includes an input I / F 41, a measured value acquisition unit 42, a storage unit 43, a hypochlorous acid remover addition amount determination unit 44, and a pH adjuster addition. A quantity determination unit 45, an anticorrosion voltage control unit 46, and an output I / F 47 are provided, and these are connected to each other via an internal bus 48. The measurement value acquisition unit 42, the hypochlorite remover addition amount determination unit 44, the pH adjuster addition amount determination unit 45, and the anticorrosion voltage control unit 46 are, for example, storage devices such as a ROM, RAM, and an external storage device (not shown). It is composed of a processor such as a CPU that reads and executes various programs stored in the ROM and stores the arithmetic processing result, which is the execution result, in the RAM or an external storage device.

入力I/F41は、流量計23により配管32内をRO膜モジュール12へと通流する被処理水である供給水18(電解液)の流量の計測値、及び残塩計24により配管32内をRO膜モジュール12へと通流する被処理水である供給水18(電解液)中の次亜塩素酸濃度(mg/L)の計測値を、内部バス48を介して計測値取得部42へ転送する。また、入力I/F41は、pH計25より配管32内をRO膜モジュール12へと通流する被処理水である供給水18(電解液)のpHの計測値、及び電位計26より配管32の電位の計測値を、内部バス48を介して計測値取得部42へ転送する。 The input I / F 41 is the measured value of the flow rate of the supply water 18 (electrolyte solution) which is the water to be treated that flows through the pipe 32 to the RO membrane module 12 by the flow meter 23, and the inside of the pipe 32 by the residual salt meter 24. The measured value of the hypochlorous acid concentration (mg / L) in the supply water 18 (electrolytic solution), which is the water to be treated, which flows to the RO membrane module 12, is measured by the measurement value acquisition unit 42 via the internal bath 48. Transfer to. Further, the input I / F 41 is a measured value of the pH of the supply water 18 (electrolyte solution) which is the water to be treated that flows through the pipe 32 from the pH meter 25 to the RO membrane module 12, and the pipe 32 from the electrometer 26. The measured value of the potential of is transferred to the measured value acquisition unit 42 via the internal bus 48.

計測値取得部42は、転送された被処理水である供給水18(電解液)の流量の計測値、被処理水である供給水18(電解液)中の次亜塩素酸濃度(mg/L)の計測値、被処理水である供給水18(電解液)のpHの計測値、及び配管32の電位の計測値に対し、ノイズ除去或いは平滑化処理等を施し、内部バス48を介して記憶部43の所定の領域に格納すると共に、ノイズ除去或いは平滑化処理等が施された被処理水である供給水18(電解液)の流量の計測値及び供給水18(電解液)中の次亜塩素酸濃度(mg/L)の計測値を次亜塩素酸除去剤添加量決定部44へ、また、ノイズ除去或いは平滑化処理等が施されたpHの計測値をpH調整剤添加量決定部45へ、ノイズ除去或いは平滑化処理等が施された配管32の電位の計測値を防食電圧制御部46へ、それぞれ内部バス48を介して転送する。 The measurement value acquisition unit 42 measures the flow rate of the transferred water supply water 18 (electrolyte solution), and the hypochlorite concentration (mg / mg /) in the supply water 18 (electrolyte solution) which is the water to be treated. The measured value of L), the measured value of the pH of the supply water 18 (electrolyte solution) which is the water to be treated, and the measured value of the potential of the pipe 32 are subjected to noise removal or smoothing treatment, etc., via the internal bath 48. The measured value of the flow rate of the supply water 18 (electrolyte solution), which is the water to be treated, which is stored in a predetermined area of the storage unit 43 and has been subjected to noise removal or smoothing treatment, and in the supply water 18 (electrolyte solution). The measured value of the hypochlorous acid concentration (mg / L) was added to the hypochlorite removing agent addition amount determining unit 44, and the measured value of the pH after noise removal or smoothing treatment was added to the pH adjusting agent. The measured value of the potential of the pipe 32 that has been subjected to noise removal or smoothing treatment is transferred to the amount determination unit 45 to the anticorrosion voltage control unit 46 via the internal bus 48, respectively.

次亜塩素酸除去剤添加量決定部44は、計測値取得部42より転送された或いは記憶部43に格納される、被処理水である供給水18(電解液)の流量の計測値と次亜塩素酸濃度(mg/L)の計測値との積により、被処理水である供給水18(電解液)の次亜塩素酸の含有量を求める。そして、次亜塩素酸除去剤添加量決定部44は、求めた次亜塩素酸の含有量と等量若しくは次亜塩素酸の含有量±数%の範囲内(所定の裕度内)の次亜塩素酸除去剤の添加量を決定し、内部バス48及び出力I/F47を介して次亜塩素酸除去剤注入ポンプ29へ指令値として出力する。これにより、次亜塩素酸除去剤注入ポンプ29は、決定された添加量の次亜塩素酸除去剤を次亜塩素酸除去剤貯留槽27より汲み出し、逆止弁31aを介して加圧ポンプ11より上流側の配管32内を通流する被処理水である供給水18(電解液)へ注入することで、発生した次亜塩素酸を除去することが可能となり、RO膜モジュール12内のRO膜の劣化を防止できる。 The hypochlorous acid remover addition amount determination unit 44 determines the measured value of the flow rate of the supply water 18 (electrolyte solution), which is the water to be treated, transferred from the measurement value acquisition unit 42 or stored in the storage unit 43. The content of hypochlorous acid in the supply water 18 (electrolyte solution), which is the water to be treated, is determined by multiplying the measured value of the chlorite concentration (mg / L). Then, the hypochlorous acid remover addition amount determination unit 44 is next to the obtained hypochlorous acid content equal to or within the range of the hypochlorous acid content ± several% (within a predetermined margin). The amount of the hypochlorous acid remover added is determined and output as a command value to the hypochlorous acid remover injection pump 29 via the internal bath 48 and the output I / F47. As a result, the hypochlorous acid remover injection pump 29 pumps the determined amount of the hypochlorous acid remover from the hypochlorous acid remover storage tank 27, and pressurizes the pump 11 via the check valve 31a. By injecting into the supply water 18 (electrolytic solution), which is the water to be treated that flows through the pipe 32 on the upstream side, the generated hypochlorous acid can be removed, and the RO in the RO membrane module 12 can be removed. Deterioration of the film can be prevented.

pH調整剤添加量決定部45は、計測値取得部42より転送された或いは記憶部43に格納される、被処理水である供給水18(電解液)のpHの計測値に基づき、中和するためのpH調整剤の添加量を決定する。換言すれば、例えば、pH調整剤添加量決定部45は、被処理水である供給水18(電解液)のpHの計測値が中性(pH=7)となるpH調整剤の添加量を決定する。そして、pH調整剤添加量決定部45は、決定したpH調整剤の添加量をpH調整剤注入ポンプ30へ、内部バス48及び出力I/F47を介して指令値として出力する。 The pH adjuster addition amount determining unit 45 neutralizes based on the measured value of the pH of the supply water 18 (electrolytic solution) which is the water to be treated, which is transferred from the measured value acquisition unit 42 or stored in the storage unit 43. Determine the amount of pH adjuster added. In other words, for example, the pH adjuster addition amount determining unit 45 determines the amount of the pH adjuster added so that the measured value of the pH of the supply water 18 (electrolyte solution), which is the water to be treated, is neutral (pH = 7). decide. Then, the pH adjuster addition amount determining unit 45 outputs the determined pH adjuster addition amount to the pH adjuster injection pump 30 as a command value via the internal bus 48 and the output I / F 47.

防食電圧制御部46は、計測値取得部42より転送された或いは記憶部43に格納される、配管32の電位の計測値に基づき防食電圧としてアノード電極21及び配管32間への印加電圧を、内部バス48及び出力I/F47を介して防食電源22へ指令値として出力する。上述のように、例えば、配管32の電位が電気防食開始直後における初期電位よりも上昇した場合、配管32の電位は腐食に対して不活性となる電位の範囲を超え活性領域に達していることから、防食電圧を増加させ配管32の電位を初期電位まで低下させ得る印加電圧を指令値として防食電源22へ出力する。 The anticorrosion voltage control unit 46 applies a voltage applied between the anode electrode 21 and the pipe 32 as an anticorrosion voltage based on the measured value of the potential of the pipe 32 transferred from the measured value acquisition unit 42 or stored in the storage unit 43. It is output as a command value to the anticorrosion power supply 22 via the internal bus 48 and the output I / F47. As described above, for example, when the potential of the pipe 32 rises above the initial potential immediately after the start of electrocorrosion protection, the potential of the pipe 32 exceeds the range of the potential that is inactive against corrosion and reaches the active region. Therefore, the applied voltage that can increase the anticorrosion voltage and lower the potential of the pipe 32 to the initial potential is output to the anticorrosion power supply 22 as a command value.

なお、本実施例では、電気防食システム2が、pH調整剤貯留槽28、pH調整剤注入ポンプ30、及び逆止弁31bを備え、電気防食システム2を構成する制御部20がpH調整剤添加量決定部45を有する構成を説明したが、必ずしもこれに限られず、これらの構成を有さずとも良い。 In this embodiment, the electrocorrosion system 2 includes a pH adjuster storage tank 28, a pH adjuster injection pump 30, and a check valve 31b, and a control unit 20 constituting the electrocorrosion system 2 adds a pH adjuster. Although the configuration having the quantity determining unit 45 has been described, the present invention is not necessarily limited to this, and it is not necessary to have these configurations.

以上の通り本実施例によれば、所定値以上の防食電圧を印加した場合においても、次亜塩素酸を好適に除去し得る電気防食システム及びそれを備えた海水淡水化プラントを提供することが可能となる。
また、防食電圧の増加により発生する次亜塩素酸を除去できることから、RO膜の劣化を防止でき、RO膜モジュールの寿命延長が可能となり、海水淡水化プラントの運転コストを低減できる。
また、防食対象である金属材料よりなる配管或いはポンプの接液部の電位を一定に維持することが可能となり、仮に、接液部の表面状態が変化(例えば、金属材料の活性溶解等)した場合であっても良好に防食を行うことが可能となる。
As described above, according to the present embodiment, it is possible to provide an electrocorrosion protection system capable of suitably removing hypochlorous acid even when an anticorrosion voltage equal to or higher than a predetermined value is applied, and a seawater desalination plant equipped with the same. It will be possible.
Further, since hypochlorous acid generated by an increase in the anticorrosion voltage can be removed, deterioration of the RO membrane can be prevented, the life of the RO membrane module can be extended, and the operating cost of the seawater desalination plant can be reduced.
In addition, the potential of the wetted portion of the pipe or pump made of the metal material to be protected against corrosion can be maintained constant, and the surface state of the wetted portion is tentatively changed (for example, active dissolution of the metal material). Even in such a case, it is possible to perform good corrosion protection.

図5は、本発明の他の実施例に係る実施例2の電気防食システムの模式図である。本実施例では、中間槽10より加圧ポンプ11へと被処理水である供給水18(電解液)が通流する配管であって、次亜塩素酸除去剤の注入位置及びpH調整剤の注入位置よりも下流側にラインミキサーを有する点が実施例1と異なる。実施例1と同様の構成要素に同一符号を付している。 FIG. 5 is a schematic view of the anticorrosion system of Example 2 according to another embodiment of the present invention. In this embodiment, the pipe is a pipe through which the supply water 18 (electrolytic solution), which is the water to be treated, flows from the intermediate tank 10 to the pressurizing pump 11, and the injection position of the hypochlorous acid remover and the pH adjuster. It differs from Example 1 in that the line mixer is provided on the downstream side of the injection position. The same components as those in the first embodiment are designated by the same reference numerals.

図5に示すように、本実施例の電気防食システム2は、中間槽10より加圧ポンプ11へと被処理水である供給水18(電解液)が通流する配管32にラインミキサー33を備える。ラインミキサー33は、次亜塩素酸除去剤貯留槽27より次亜塩素酸除去剤注入ポンプ29及び逆止弁31aを介して配管32内を通流する供給水(電解液)18に次亜塩素酸除去剤が注入される位置、及び、pH調整剤貯留槽28よりpH調整剤注入ポンプ30及び逆止弁31bを介して配管32内を通流する供給水(電解液)18にpH調整剤が注入される位置よりも下流側であって、加圧ポンプ11よりも上流側に配される。 As shown in FIG. 5, in the anticorrosion system 2 of this embodiment, the line mixer 33 is connected to the pipe 32 through which the supply water 18 (electrolyte solution) to be treated flows from the intermediate tank 10 to the pressurizing pump 11. Be prepared. The line mixer 33 uses hypochlorite in the supply water (electrolyte solution) 18 that flows from the hypochlorite remover storage tank 27 into the pipe 32 via the hypochlorite remover injection pump 29 and the check valve 31a. The position where the acid remover is injected, and the pH adjuster 18 from the pH adjuster storage tank 28 to the supply water (electrolyte) 18 that flows through the pipe 32 via the pH adjuster injection pump 30 and the check valve 31b. Is arranged on the downstream side of the injection position and on the upstream side of the pressurizing pump 11.

ラインミキサー33として、例えば、回転部材を備え、外部のモータにより回転部材を回転駆動することにより、次亜塩素酸除去剤及びpH調整剤が注入された供給水(電解液)18にせん断力を与えることで、次亜塩素酸除去剤及びpH調整剤を混合する。また、ラインミキサー33として、所謂スタティックミキサーを用いても良い。スタティックミキサーは、流入部から流出部にわたり対向する第1の螺旋状固定翼と第2の螺旋状固定翼を備え、次亜塩素酸除去剤及びpH調整剤が注入された供給水(電解液)18の流れは、対向する第1の螺旋状固定翼と第2の螺旋状固定翼により、それぞれ逆向きの旋回流となり、これら旋回流が干渉することにより次亜塩素酸除去剤及びpH調整剤が注入された供給水(電解液)18にせん断力を与え、次亜塩素酸除去剤及びpH調整剤を混合する。
なお、電気防食システム2を構成する制御部20については、上述の実施例1と同様であるため、説明を省略する。
本実施例では、電気防食システム2が、pH調整剤貯留槽28、pH調整剤注入ポンプ30、及び逆止弁31bを備え、電気防食システム2を構成する制御部20がpH調整剤添加量決定部45を有する構成を説明したが、必ずしもこれに限られず、これらの構成を有さずとも良い。
As the line mixer 33, for example, a rotating member is provided, and the rotating member is rotationally driven by an external motor to apply a shearing force to the supply water (electrolyte solution) 18 into which the hypochlorous acid removing agent and the pH adjusting agent are injected. By giving, the hypochlorous acid remover and the pH adjuster are mixed. Further, a so-called static mixer may be used as the line mixer 33. The static mixer is provided with a first spiral fixed wing and a second spiral fixed wing facing each other from the inflow portion to the outflow portion, and is a supply water (electrolyte solution) in which a hypochlorous acid remover and a pH adjuster are injected. The flow of 18 becomes a swirling flow in opposite directions by the first spiral fixed wing and the second spiral fixed wing that face each other, and the hypochlorous acid remover and the pH adjuster interfere with each other. A shearing force is applied to the supplied water (electrolyte solution) 18 in which the hypochlorous acid is injected, and the hypochlorous acid remover and the pH adjuster are mixed.
Since the control unit 20 constituting the anticorrosion system 2 is the same as that of the first embodiment, the description thereof will be omitted.
In this embodiment, the electrocorrosion system 2 includes a pH adjuster storage tank 28, a pH adjuster injection pump 30, and a check valve 31b, and the control unit 20 constituting the electrocorrosion system 2 determines the amount of the pH adjuster added. Although the configuration having the unit 45 has been described, the present invention is not limited to this, and it is not necessary to have these configurations.

以上の通り本実施例によれば、ラインミキサーにより被処理水である電解液中に注入された次亜塩素酸除去剤を混合でき、実施例1に比較し、より効果的に被処理水中の次亜塩素酸を除去することが可能となる。 As described above, according to this example, the hypochlorous acid remover injected into the electrolytic solution which is the water to be treated can be mixed by the line mixer, and the hypochlorous acid remover can be mixed more effectively in the water to be treated as compared with Example 1. It becomes possible to remove hypochlorous acid.

図6は、本発明の他の実施例に係る実施例3の電気防食システムの模式図である。本実施例では、加圧ポンプ11よりRO膜モジュール12へと被処理水である供給水(電解液)18が通流する配管32であって、RO膜モジュール12側のセンサ設置位置Aに取り付けられる流量計23、残塩計24、pH計25、及び電位計26からなる第1のセンサ群と。アノード電極21の近傍であってその下流側のセンサ設置位置Bに取り付けられる流量計23、残塩計24、pH計25、及び電位計26からなる第2のセンサ群を備える点が実施例1と異なる。また、次亜塩素酸除去剤が注入される位置及びpH調整剤が注入される位置が実施例1と異なり、次亜塩素酸除去剤の注入位置及びpH調整剤の注入位置よりも下流であってRO膜モジュール12側にラインミキサー33を有する点が実施例1と異なる。実施例1同様の構成要素に同一符号を付している。 FIG. 6 is a schematic view of the anticorrosion system of Example 3 according to another embodiment of the present invention. In this embodiment, the pipe 32 through which the supply water (electrolyte solution) 18 to be treated flows from the pressurizing pump 11 to the RO membrane module 12, and is attached to the sensor installation position A on the RO membrane module 12 side. With the first sensor group including the flow meter 23, the residual salt meter 24, the pH meter 25, and the electrometer 26. Example 1 is provided with a second sensor group including a flow meter 23, a residual salt meter 24, a pH meter 25, and an electrometer 26, which are attached to the sensor installation position B on the downstream side of the anode electrode 21. Different from. Further, the position where the hypochlorous acid remover is injected and the position where the pH adjuster is injected are different from those in Example 1, and are downstream from the injection position of the hypochlorous acid remover and the injection position of the pH adjuster. The difference from the first embodiment is that the line mixer 33 is provided on the RO membrane module 12 side. The same reference numerals are given to the same components as in the first embodiment.

図6に示すように、本実施例の電気防食システム2は、加圧ポンプ11とRO膜モジュール12を接続する配管32であって、アノード電極21の近傍であってその下流側のセンサ設置位置Bに取り付けられる流量計23、残塩計24、pH計25、及び電位計26からなる第2のセンサ群からの計測値を制御部20が取り込む。具体的には、第2のセンサ群を構成する流量計23によりアノード電極21を通流直後の被処理水である供給水18(電解液)の流量の計測値及び残塩計24により被処理水である供給水18(電解液)中の次亜塩素酸濃度(mg/L)の計測値を、計測値取得部42が入力I/F41を介して取り込み、ノイズ除去或いは平滑化処理等を施し、内部バス48を介して記憶部43の所定の領域に格納すると共に次亜塩素酸除去剤添加量決定部44へ転送する。次亜塩素酸除去剤添加量決定部44は、計測値取得部42より転送された或いは記憶部43に格納される、被処理水である供給水18(電解液)の流量の計測値と次亜塩素酸濃度(mg/L)の計測値との積により、被処理水である供給水18(電解液)の次亜塩素酸の含有量を求める。そして、次亜塩素酸除去剤添加量決定部44は、求めた次亜塩素酸の含有量と等量若しくは次亜塩素酸の含有量±数%の範囲内の次亜塩素酸除去剤の添加量を決定し、内部バス48及び出力I/F47を介して次亜塩素酸除去剤注入ポンプ29へ指令値として出力する。 As shown in FIG. 6, the anticorrosion system 2 of this embodiment is a pipe 32 connecting the pressurizing pump 11 and the RO membrane module 12, and is a sensor installation position in the vicinity of the anode electrode 21 and on the downstream side thereof. The control unit 20 takes in the measured values from the second sensor group including the flow meter 23, the residual salt meter 24, the pH meter 25, and the electrometer 26 attached to B. Specifically, the flow meter 23 constituting the second sensor group measures the flow rate of the supply water 18 (electrolyte solution) which is the water to be treated immediately after the anode electrode 21 flows, and the residual salt meter 24 treats the water. The measurement value acquisition unit 42 takes in the measured value of the hypochlorous acid concentration (mg / L) in the supply water 18 (electrolyte solution) which is water via the input I / F 41, and performs noise removal or smoothing treatment. It is applied, stored in a predetermined area of the storage unit 43 via the internal bath 48, and transferred to the hypochlorous acid removing agent addition amount determining unit 44. The hypochlorous acid remover addition amount determination unit 44 determines the measured value of the flow rate of the supply water 18 (electrolyte solution), which is the water to be treated, transferred from the measurement value acquisition unit 42 or stored in the storage unit 43. The content of hypochlorous acid in the supply water 18 (electrolyte solution), which is the water to be treated, is determined by multiplying the measured value of the chlorite concentration (mg / L). Then, the hypochlorous acid remover addition amount determination unit 44 adds the hypochlorous acid remover within the range of the obtained hypochlorous acid content equal to or the hypochlorous acid content ± several%. The amount is determined and output as a command value to the hypochlorous acid remover injection pump 29 via the internal bus 48 and the output I / F 47.

また、第2のセンサ群を構成するpH計25よりアノード電極21を通流直後の被処理水である供給水18(電解液)のpHの計測値を、計測値取得部42が入力I/F41を介して取り込み、ノイズ除去或いは平滑化処理等を施し、内部バス48を介して記憶部43の所定の領域に格納すると共にpH調整剤添加量決定部45へ転送する。pH調整剤添加量決定部45は、計測値取得部42より転送された或いは記憶部43に格納される、被処理水である供給水18(電解液)のpHの計測値に基づき、中和するためのpH調整剤の添加量を決定する。換言すれば、例えば、pH調整剤添加量決定部45は、被処理水である供給水18(電解液)のpHの計測値が中性(pH=7)となるpH調整剤の添加量を決定する。そして、pH調整剤添加量決定部45は、決定したpH調整剤の添加量をpH調整剤注入ポンプ30へ、内部バス48及び出力I/F47を介して指令値として出力する。 Further, the measured value acquisition unit 42 inputs the measured value of the pH of the supply water 18 (electrolyte solution) which is the water to be treated immediately after the anode electrode 21 is passed from the pH meter 25 constituting the second sensor group. It is taken in via F41, subjected to noise removal or smoothing treatment, stored in a predetermined region of the storage unit 43 via the internal bath 48, and transferred to the pH adjuster addition amount determining unit 45. The pH adjuster addition amount determining unit 45 neutralizes based on the measured value of the pH of the supply water 18 (electrolytic solution) which is the water to be treated, which is transferred from the measured value acquisition unit 42 or stored in the storage unit 43. Determine the amount of pH adjuster added. In other words, for example, the pH adjuster addition amount determining unit 45 determines the amount of the pH adjuster added so that the measured value of the pH of the supply water 18 (electrolyte solution), which is the water to be treated, is neutral (pH = 7). decide. Then, the pH adjuster addition amount determining unit 45 outputs the determined pH adjuster addition amount to the pH adjuster injection pump 30 as a command value via the internal bus 48 and the output I / F 47.

第2のセンサ群を構成する電位計26より配管32の電位の計測値を、計測値取得部42が入力I/F41を介して取り込み、ノイズ除去或いは平滑化処理等を施し、内部バス48を介して記憶部43の所定の領域に格納すると共に防食電圧制御部46へ転送する。防食電圧制御部46は、計測値取得部42より転送された或いは記憶部43に格納される、配管32の電位の計測値に基づき防食電圧としてアノード電極21及び配管32間への印加電圧を、内部バス48及び出力I/F47を介して防食電源22へ指令値として出力する。 The measured value of the potential of the pipe 32 is taken in from the electrometer 26 constituting the second sensor group via the input I / F 41, noise is removed or smoothed, and the internal bus 48 is introduced. It is stored in a predetermined area of the storage unit 43 and transferred to the anticorrosion voltage control unit 46. The anticorrosion voltage control unit 46 applies a voltage applied between the anode electrode 21 and the pipe 32 as an anticorrosion voltage based on the measured value of the potential of the pipe 32 transferred from the measured value acquisition unit 42 or stored in the storage unit 43. It is output as a command value to the anticorrosion power supply 22 via the internal bus 48 and the output I / F47.

次亜塩素酸除去剤及びpH調整剤が注入された被処理水である供給水18(電解液)は、ラインミキサー33へ流入し、上述の実施例2で示したように、ラインミキサー33を通流する際に、次亜塩素酸除去剤及びpH調整剤が注入された被処理水である供給水(電解液)18にせん断力が与えられ、次亜塩素酸除去剤及びpH調整剤が混合される。次亜塩素酸除去剤及びpH調整剤が混合された被処理水である供給水(電解液)18は、RO膜モジュール12側のセンサ設置位置Aに取り付けられる流量計23、残塩計24、pH計25、及び電位計26からなる第1のセンサ群からの計測値を制御部20が取り込む。具体的には、第1のセンサ群を構成する流量計23によりラインミキサー33にて次亜塩素酸除去剤及びpH調整剤が混合された被処理水である供給水(電解液)18の流量の計測値及び残塩計24により被処理水である供給水18(電解液)中の次亜塩素酸濃度(mg/L)の計測値を、計測値取得部42が入力I/F41を介して取り込み、ノイズ除去或いは平滑化処理等を施し、内部バス48を介して記憶部43の所定の領域に格納すると共に次亜塩素酸除去剤添加量決定部44へ転送する。次亜塩素酸除去剤添加量決定部44は、計測値取得部42より転送された或いは記憶部43に格納される、被処理水である供給水18(電解液)の流量の計測値と次亜塩素酸濃度(mg/L)の計測値との積により、被処理水である供給水18(電解液)の次亜塩素酸の含有量を求める。そして、次亜塩素酸除去剤添加量決定部44は、求めた次亜塩素酸の含有量と等量若しくは次亜塩素酸の含有量±数%の範囲内の次亜塩素酸除去剤の添加量を決定し、内部バス48及び出力I/F47を介して次亜塩素酸除去剤注入ポンプ29へ指令値として出力する。すなわち、次亜塩素酸除去剤注入に関しフィードバック制御が実行される。 The supply water 18 (electrolytic solution), which is the water to be treated into which the hypochlorous acid remover and the pH adjuster are injected, flows into the line mixer 33, and as shown in Example 2 above, the line mixer 33 is operated. A shearing force is applied to the supply water (electrolyte solution) 18 which is the water to be treated into which the hypochlorous acid remover and the pH adjuster are injected during the flow, and the hypochlorous acid remover and the pH adjuster are released. Be mixed. The supply water (electrolyte solution) 18, which is the water to be treated in which the hypochlorous acid remover and the pH adjuster are mixed, is a flow meter 23, a residual salt meter 24, which are attached to the sensor installation position A on the RO membrane module 12 side. The control unit 20 takes in the measured values from the first sensor group including the pH meter 25 and the electrometer 26. Specifically, the flow rate of the supply water (electrolyte solution) 18 which is the water to be treated in which the hypochlorous acid remover and the pH adjuster are mixed by the line mixer 33 by the flow meter 23 constituting the first sensor group. The measured value of the hypochlorous acid concentration (mg / L) in the supply water 18 (electrolytic solution), which is the water to be treated, is input by the measured value acquisition unit 42 via the input I / F 41. It is taken in, noise-removed or smoothed, stored in a predetermined area of the storage unit 43 via the internal bus 48, and transferred to the hypochlorous acid remover addition amount determining unit 44. The hypochlorous acid remover addition amount determination unit 44 determines the measured value of the flow rate of the supply water 18 (electrolyte solution), which is the water to be treated, transferred from the measurement value acquisition unit 42 or stored in the storage unit 43. The content of hypochlorous acid in the supply water 18 (electrolyte solution), which is the water to be treated, is determined by multiplying the measured value of the chlorite concentration (mg / L). Then, the hypochlorous acid remover addition amount determination unit 44 adds the hypochlorous acid remover within the range of the obtained hypochlorous acid content equal to or the hypochlorous acid content ± several%. The amount is determined and output as a command value to the hypochlorous acid remover injection pump 29 via the internal bus 48 and the output I / F 47. That is, feedback control is performed with respect to the injection of the hypochlorous acid remover.

また、第1のセンサ群を構成するpH計25よりラインミキサー33にて次亜塩素酸除去剤及びpH調整剤が混合された被処理水である供給水(電解液)18のpHの計測値を、計測値取得部42が入力I/F41を介して取り込み、ノイズ除去或いは平滑化処理等を施し、内部バス48を介して記憶部43の所定の領域に格納すると共にpH調整剤添加量決定部45へ転送する。pH調整剤添加量決定部45は、計測値取得部42より転送された或いは記憶部43に格納される、被処理水である供給水18(電解液)のpHの計測値に基づき、中和するためのpH調整剤の添加量を決定する。換言すれば、例えば、pH調整剤添加量決定部45は、被処理水である供給水18(電解液)のpHの計測値が中性(pH=7)となるpH調整剤の添加量を決定する。そして、pH調整剤添加量決定部45は、決定したpH調整剤の添加量をpH調整剤注入ポンプ30へ、内部バス48及び出力I/F47を介して指令値として出力する。すなわち、pH調整剤注入に関しフィードバック制御が実行される。 Further, the measured value of the pH of the supply water (electrolyte solution) 18 which is the water to be treated in which the hypochlorous acid remover and the pH adjuster are mixed by the line mixer 33 from the pH meter 25 constituting the first sensor group. Is taken in by the measured value acquisition unit 42 via the input I / F 41, subjected to noise removal or smoothing processing, etc., stored in a predetermined region of the storage unit 43 via the internal bus 48, and the amount of the pH adjuster added is determined. Transfer to unit 45. The pH adjuster addition amount determining unit 45 neutralizes based on the measured value of the pH of the supply water 18 (electrolytic solution) which is the water to be treated, which is transferred from the measured value acquisition unit 42 or stored in the storage unit 43. Determine the amount of pH adjuster added. In other words, for example, the pH adjuster addition amount determining unit 45 determines the amount of the pH adjuster added so that the measured value of the pH of the supply water 18 (electrolyte solution), which is the water to be treated, is neutral (pH = 7). decide. Then, the pH adjuster addition amount determining unit 45 outputs the determined pH adjuster addition amount to the pH adjuster injection pump 30 as a command value via the internal bus 48 and the output I / F 47. That is, feedback control is performed with respect to the injection of the pH regulator.

第1のセンサ群を構成する電位計26より配管32の電位の計測値を、計測値取得部42が入力I/F41を介して取り込み、ノイズ除去或いは平滑化処理等を施し、内部バス48を介して記憶部43の所定の領域に格納すると共に防食電圧制御部46へ転送する。防食電圧制御部46は、計測値取得部42より転送された或いは記憶部43に格納される、配管32の電位の計測値に基づき防食電圧としてアノード電極21及び配管32間への印加電圧を、内部バス48及び出力I/F47を介して防食電源22へ指令値として出力する。
本実施例の電気防食システム2では、第2のセンサ群を構成する流量計23、残塩計24、pH計25、及び電位計26により、アノード電極21通流直後の被処理水である供給水(電解液)18をモニタリングし、次亜塩素酸除去剤及びpH調整剤の注入制御並びに防食電圧の制御を実行する。その上で更に、第2のセンサ群を構成する流量計23、残塩計24、pH計25、及び電位計26により、次亜塩素酸除去剤及びpH調整剤が混合された被処理水である供給水(電解液)18をモニタリングしフィードバック制御を実行する。
The measured value of the potential of the pipe 32 is taken in from the electrometer 26 constituting the first sensor group via the input I / F 41, noise is removed or smoothed, and the internal bus 48 is introduced. It is stored in a predetermined area of the storage unit 43 and transferred to the anticorrosion voltage control unit 46. The anticorrosion voltage control unit 46 applies a voltage applied between the anode electrode 21 and the pipe 32 as an anticorrosion voltage based on the measured value of the potential of the pipe 32 transferred from the measured value acquisition unit 42 or stored in the storage unit 43. It is output as a command value to the anticorrosion power supply 22 via the internal bus 48 and the output I / F47.
In the anticorrosion system 2 of the present embodiment, the water flow meter 23, the residual salt meter 24, the pH meter 25, and the electrometer 26 constituting the second sensor group supply water to be treated immediately after the anode electrode 21 flows. The water (electrolyte solution) 18 is monitored, and the injection control of the hypochlorite remover and the pH adjuster and the control of the anticorrosion voltage are executed. On top of that, the water to be treated mixed with the hypochlorous acid remover and the pH adjuster by the flow meter 23, the residual salt meter 24, the pH meter 25, and the electrometer 26 constituting the second sensor group. A certain supply water (electrolyte solution) 18 is monitored and feedback control is executed.

なお、本実施例では、電気防食システム2が、pH調整剤貯留槽28、pH調整剤注入ポンプ30、及び逆止弁31bを備え、電気防食システム2を構成する制御部20がpH調整剤添加量決定部45を有する構成を説明したが、必ずしもこれに限られず、これらの構成を有さずとも良い。また、必ずしもラインミキサー33を設けずとも良い。 In this embodiment, the electrocorrosion system 2 includes a pH adjuster storage tank 28, a pH adjuster injection pump 30, and a check valve 31b, and a control unit 20 constituting the electrocorrosion system 2 adds a pH adjuster. Although the configuration having the quantity determining unit 45 has been described, the present invention is not necessarily limited to this, and it is not necessary to have these configurations. Further, the line mixer 33 does not necessarily have to be provided.

以上の通り本実施例によれば、実施例1の効果に加え、全体制御の観点から、RO膜モジュールに流入する被処理水(電解液)及びアノード電極通流直後の被処理水(電解液)をモニタリングしフィードバック制御することにより、次亜塩素酸除去剤の添加量及び防食電圧をより高精度に制御することが可能となる。 As described above, according to the present embodiment, in addition to the effect of the first embodiment, the water to be treated (electrolyte solution) flowing into the RO membrane module and the water to be treated (electrolyte solution) immediately after the anode electrode flows from the viewpoint of overall control. ) Is monitored and feedback control is performed, so that the amount of the hypochlorous acid removing agent added and the anticorrosion voltage can be controlled with higher accuracy.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 The present invention is not limited to the above-mentioned examples, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations.

1・・・海水淡水化プラント
2・・・電気防食システム
3・・・原水貯留槽
4・・・MMF
5・・・限外ろ過膜
6・・・凝集剤槽
7・・・凝集剤注入ポンプ
8・・・洗浄薬品貯留槽
9・・・洗浄薬品注入ポンプ
10・・・中間槽
11・・・加圧ポンプ
12・・・RO膜モジュール
13・・・ろ過水(淡水)
14・・・濃縮水
15・・・エネルギー回収装置
16・・・淡水貯留槽
17・・・濃縮水貯留槽
18・・・供給水
19・・・監視制御装置
20・・・制御部
21・・・アノード電極
22・・・防食電源
23・・・流量計
24・・・残塩計
25・・・pH計
26・・・電位計
27・・・次亜塩素酸除去剤貯留槽
28・・・pH調整剤貯留槽
29・・・次亜塩素酸除去剤注入ポンプ
30・・・pH調整剤注入ポンプ
31a,31b・・・逆止弁
32・・・配管
33・・・ラインミキサー
34a,34b・・・フランジ
35a,35b・・・絶縁材
36・・・ボルト
37・・・ナット
41・・・入力I/F
42・・・計測値取得部
43・・・記憶部
44・・・次亜塩素酸除去剤添加量決定部
45・・・pH調整剤添加量決定部
46・・・防食電圧制御部
47・・・出力I/F
48・・・内部バス
1 ... Seawater desalination plant 2 ... Electrocorrosion protection system 3 ... Raw water storage tank 4 ... MMF
5 ... Ultrafiltration membrane 6 ... Coagulant tank 7 ... Coagulant injection pump 8 ... Cleaning chemical storage tank 9 ... Cleaning chemical injection pump 10 ... Intermediate tank 11 ... Addition Pressure pump 12 ... RO membrane module 13 ... Filtered water (fresh water)
14 ... Concentrated water 15 ... Energy recovery device 16 ... Fresh water storage tank 17 ... Concentrated water storage tank 18 ... Supply water 19 ... Monitoring control device 20 ... Control unit 21 ...・ Anode electrode 22 ・ ・ ・ Anticorrosion power supply 23 ・ ・ ・ Flow meter 24 ・ ・ ・ Residual salt meter 25 ・ ・ ・ pH meter 26 ・ ・ ・ Potential meter 27 ・ ・ ・ Hypochlorite remover storage tank 28 ・ ・ ・pH adjuster storage tank 29 ... Hypochlorite remover injection pump 30 ... pH adjuster injection pump 31a, 31b ... Check valve 32 ... Piping 33 ... Line mixer 34a, 34b ... .. Flange 35a, 35b ... Insulation material 36 ... Bolt 37 ... Nut 41 ... Input I / F
42 ... Measurement value acquisition unit 43 ... Storage unit 44 ... Hypochlorous acid remover addition amount determination unit 45 ... pH adjuster addition amount determination unit 46 ... Corrosion protection voltage control unit 47 ...・ Output I / F
48 ... Internal bus

Claims (16)

少なくとも、電解液を通流する金属材料からなる配管に絶縁材を介して配される電極と、
前記電極及び前記金属材料からなる配管との間に電圧を印加する防食電源と、
少なくとも、前記金属材料からなる配管に設置され配管内を通流する電解液の流量を計測する流量計及び配管内を通流する電解液中の次亜塩素酸濃度を計測する残塩計と、を備え、
前記流量計による電解液の流量の計測値及び前記残塩計による電解液中の次亜塩素酸濃度の計測値に基づき、配管内を通流する電解液に少なくとも還元作用を有する次亜塩素酸除去剤を添加するよう制御する制御部を有することを特徴とする電気防食システム。
At least, electrodes arranged via an insulating material in a pipe made of a metal material through which an electrolytic solution flows,
An anticorrosion power source that applies a voltage between the electrode and a pipe made of the metal material,
At least, a flow meter installed in the pipe made of the metal material and measuring the flow rate of the electrolytic solution flowing through the pipe, and a residual salt meter measuring the concentration of hypochlorous acid in the electrolytic solution flowing through the pipe. With
Hypochlorous acid having at least a reducing action on the electrolytic solution flowing in the pipe based on the measured value of the flow rate of the electrolytic solution by the flow meter and the measured value of the hypochlorous acid concentration in the electrolytic solution by the residual salt meter. An electrocorrosion protection system characterized by having a control unit that controls the addition of a remover.
請求項1に記載の電気防食システムにおいて、
前記金属材料からなる配管に設置され配管内を通流する電解液のpHを計測するpH計を有し、
前記制御部は、前記pH計の計測値に基づき、配管内を通流する電解液にpH調整剤を添加するよう制御することを特徴とする電気防食システム。
In the anticorrosion system according to claim 1,
It has a pH meter that measures the pH of the electrolytic solution that is installed in the pipe made of the metal material and flows through the pipe.
The control unit is an anticorrosion system characterized in that it controls to add a pH adjuster to an electrolytic solution flowing through a pipe based on a measured value of the pH meter.
請求項2に記載の電気防食システムにおいて、
前記次亜塩素酸除去剤を収容する次亜塩素酸除去剤貯留槽と、
次亜塩素酸除去剤注入ポンプと、
第1の逆止弁と、
pH調整剤を収容するpH調整剤貯留槽と、
pH調整剤注入ポンプと、
第2の逆止弁と、を備え、
制御部からの指令に基づき、前記次亜塩素酸除去剤注入ポンプにより前記第1の逆止弁を介して配管内を通流する電解液に前記次亜塩素酸除去剤を注入すると共に、前記pH調整剤注入ポンプにより前記第2の逆止弁を介して配管内を通流する電解液にpH調整剤を注入することを特徴とする電気防食システム。
In the anticorrosion system according to claim 2.
And hypochlorous acid removal agent reservoir for containing the hypochlorite removers,
Hypochlorous acid remover injection pump and
The first check valve and
A pH adjuster storage tank that houses the pH adjuster,
With a pH regulator injection pump,
With a second check valve,
Based on the command from the control unit, the injecting the hypochlorous acid removal agent to the electrolytic solution flowing through the pipe via the first check valve by the hypochlorous acid removing agent infusion pump, the An electrocorrosion protection system characterized in that a pH adjuster is injected into an electrolytic solution flowing through a pipe via the second check valve by a pH adjuster injection pump.
請求項3に記載の電気防食システムにおいて、
前記制御部は、
前記流量計による電解液の流量の計測値と前記残塩計による電解液中の次亜塩素酸濃度の計測値との積により電解液中の次亜塩素酸含有量を求め、求めた次亜塩素酸含有量と等量若しくは所定の裕度内の前記次亜塩素酸除去剤の添加量を決定し、指令値として前記次亜塩素酸除去剤注入ポンプへ出力する次亜塩素酸除去剤添加量決定部を有することを特徴とする電気防食システム。
In the anticorrosion system according to claim 3.
The control unit
The hypochlorous acid content in the electrolytic solution was obtained from the product of the measured value of the flow rate of the electrolytic solution by the flow meter and the measured value of the hypochlorous acid concentration in the electrolytic solution by the residual salt meter, and the obtained hypochlorous acid was obtained. determining the amount of the hypochlorous acid removing agent in chlorate content in equivalent amounts or predetermined tolerance, adding hypochlorous acid removal agent to be output to the hypochlorous acid removing agent infusion pump as a command value An electrocorrosion protection system characterized by having a quantity determining unit.
請求項4に記載の電気防食システムにおいて、
前記制御部は、
前記pH計による電解液のpH計測値が中性となるpH調整剤の添加量を決定し、指令値として前記pH調整剤注入ポンプへ出力するpH調整剤添加量決定部を有することを特徴とする電気防食システム。
In the anticorrosion system according to claim 4.
The control unit
It is characterized by having a pH adjuster addition amount determining unit that determines the addition amount of the pH adjuster at which the pH measurement value of the electrolytic solution by the pH meter becomes neutral and outputs it as a command value to the pH adjuster injection pump. Electro-corrosion system.
請求項5に記載の電気防食システムにおいて、
電解液が通流する前記金属材料からなる配管の電位を計測する電位計を備え、
前記制御部は、
前記電位計による前記金属材料からなる配管の電位の計測値に基づき、前記金属材料からなる配管の電位が所定の電位となるよう、前記電極及び前記金属材料からなる配管との間に印加する電圧を指令値として前記防食電源へ出力する防食電圧制御部を有することを特徴とする電気防食システム。
In the anticorrosion system according to claim 5.
Equipped with an electrometer that measures the potential of a pipe made of the metal material through which the electrolytic solution flows.
The control unit
Based on the measured value of the potential of the pipe made of the metal material by the electrometer, the voltage applied between the electrode and the pipe made of the metal material so that the potential of the pipe made of the metal material becomes a predetermined potential. An electric anticorrosion system characterized by having an anticorrosion voltage control unit that outputs the command value to the anticorrosion power source.
請求項6に記載の電気防食システムにおいて、
配管内を通流する電解液に前記次亜塩素酸除去剤を注入する位置及び配管内を通流する電解液にpH調整剤を注入する位置よりも下流側に配されるラインミキサーを備え、
前記ラインミキサーは、前記次亜塩素酸除去剤及びpH調整剤が注入された電解液にせん断力を与え混合することを特徴とする電気防食システム。
In the anticorrosion system according to claim 6.
Comprising a line mixer disposed in a downstream side of a position to inject the pH adjusting agent positions and the pipe to inject the hypochlorite removal agent in the electrolyte solution flowing through the pipe in the electrolyte solution flowing through,
Said line mixer, cathodic protection system, wherein the hypochlorous acid removing agent and pH adjusting agent are mixed giving shearing force to the injected electrolyte.
請求項6に記載の電気防食システムにおいて、
前記電極よりも下流側であって、且つ、配管内を通流する電解液に前記次亜塩素酸除去剤を注入する位置及び配管内を通流する電解液にpH調整剤を注入する位置よりも下流側に配される、前記流量計、前記残塩計、前記pH計、及び前記電位計からなる第1のセンサ群と、
配管内を通流する電解液に前記次亜塩素酸除去剤を注入する位置及び配管内を通流する電解液にpH調整剤を注入する位置よりも上流側であって、かつ、前記電極の近傍下流側に配される、前記流量計、前記残塩計、前記pH計、及び前記電位計からなる第2のセンサ群と、を備え、
前記制御部は、前記第2のセンサ群からの計測値に基づき、少なくとも配管内を通流する電解液に前記次亜塩素酸除去剤及びpH調整剤を注入し、更に、前記第1のセンサ群からの計測値に基づき、前記次亜塩素酸除去剤注入ポンプと前記pH調整剤注入ポンプ及び前記防食電源をフィードバック制御することを特徴とする電気防食システム。
In the anticorrosion system according to claim 6.
A downstream side of the electrode, and, from the position of injecting a pH adjusting agent positions and the pipe to inject the hypochlorite removing agent in the electrolyte solution flowing in the pipe in the electrolyte flowing through A first sensor group including the flow meter, the residual salt meter, the pH meter, and the electrometer, which are arranged on the downstream side.
A upstream side of a position to inject the pH adjusting agent positions and the pipe to inject the hypochlorite removal agent in the electrolyte solution flowing through the pipe in the electrolyte solution flowing through, and the electrode A second sensor group including the flow meter, the residual salt meter, the pH meter, and the electrometer, which are arranged on the downstream side in the vicinity, is provided.
Wherein the control unit, based on said measurements from the second sensor group, injected with the hypochlorous acid removal and pH adjusting agents to the electrolytic solution flowing through the at least the pipe, further, the first sensor An electrocorrosion protection system comprising feedback control of the hypochlorous acid removing agent injection pump, the pH adjusting agent injection pump, and the anticorrosion power source based on the measured values from the group.
前処理部により処理された海水を加圧する加圧ポンプと、
前記加圧ポンプにより加圧された海水を導入し、高濃度の塩水である濃縮水とろ過水と
に分離する逆浸透膜モジュールと、
前記逆浸透膜モジュールより排出される濃縮水を導入し、前記加圧ポンプを駆動する動力の一部としてエネルギーを回収するエネルギー回収装置と、
前記加圧ポンプと前記逆浸透膜モジュールとを接続し加圧された海水を通流する配管と、
前記逆浸透膜モジュールと前記エネルギー回収装置とを接続し濃縮水が通流する配管と、
前記加圧された海水を通流する配管及び/又は前記濃縮水が通流する配管に絶縁材を介して配される電極と、前記電極及び前記加圧された海水を通流する配管及び/又は前記濃縮水が通流する配管との間に電圧を印加する防食電源と、加圧された海水を通流する配管及び/又は前記濃縮水が通流する配管に設置され配管内を通流する加圧された海水及び/又は濃縮水の流量を計測する流量計と、加圧された海水及び/又は濃縮水中の次亜塩素酸濃度を計測する残塩計を有する電気防食システムと、を備え、
前記電気防食システムは、前記流量計による加圧された海水及び/又は濃縮水の流量の計測値及び前記残塩計による加圧された海水及び/又は濃縮水中の次亜塩素酸濃度の計測値に基づき、配管内を通流する加圧された海水及び/又は濃縮水に少なくとも還元作用を有する次亜塩素酸除去剤を添加するよう制御する制御部を有することを特徴とする海水淡水化プラント。
A pressurizing pump that pressurizes the seawater treated by the pretreatment section,
A reverse osmosis membrane module that introduces seawater pressurized by the pressurizing pump and separates it into concentrated water and filtered water, which are high-concentration salt water.
An energy recovery device that introduces concentrated water discharged from the reverse osmosis membrane module and recovers energy as part of the power for driving the pressurizing pump.
A pipe that connects the pressurizing pump and the reverse osmosis membrane module and allows pressurized seawater to flow through,
A pipe that connects the reverse osmosis membrane module and the energy recovery device and allows concentrated water to flow through,
An electrode arranged via an insulating material in a pipe through which the pressurized seawater flows and / or a pipe through which the concentrated water flows, a pipe through which the electrode and the pressurized seawater flow, and / Alternatively, it is installed in an anticorrosion power source that applies a voltage between the pipe through which the concentrated water flows, a pipe through which pressurized seawater flows, and / or a pipe through which the concentrated water flows, and flows through the pipe. An anticorrosion system having a flow meter for measuring the flow rate of pressurized seawater and / or concentrated water and a residual salt meter for measuring the concentration of hypochlorite in the pressurized seawater and / or concentrated water. Prepare,
The electrocorrosion system has a measured value of the flow rate of pressurized seawater and / or concentrated water by the flow meter and a measured value of hypochlorous acid concentration in the pressurized seawater and / or concentrated water by the residual salt meter. A seawater desalination plant characterized in that it has a control unit that controls the addition of a hypochlorous acid remover having at least a reducing action to the pressurized seawater and / or concentrated water flowing through the pipe. ..
請求項9に記載の海水淡水化プラントにおいて、
前記加圧された海水を通流する配管及び/又は前記濃縮水が通流する配管に設置され配管内を通流する加圧された海水及び/又は濃縮水のpHを計測するpH計を有し、
前記制御は、前記pH計の計測値に基づき、配管内を通流する加圧された海水及び/又は濃縮水にpH調整剤を添加するよう制御することを特徴とする海水淡水化プラント。
In the seawater desalination plant according to claim 9.
It has a pH meter that is installed in the pipe through which the pressurized seawater flows and / or in the pipe through which the concentrated water flows and measures the pH of the pressurized seawater and / or the concentrated water that flows through the pipe. And
The control is a seawater desalination plant characterized in that a pH adjuster is added to pressurized seawater and / or concentrated water flowing through a pipe based on a measured value of the pH meter.
請求項10に記載の海水淡水化プラントにおいて、
前記次亜塩素酸除去剤を収容する次亜塩素酸除去剤貯留槽と、
次亜塩素酸除去剤注入ポンプと、
第1の逆止弁と、
pH調整剤を収容するpH調整剤貯留槽と、
pH調整剤注入ポンプと、
第2の逆止弁と、を備え、
制御部からの指令に基づき、前記次亜塩素酸除去剤注入ポンプにより前記第1の逆止弁を介して配管内を通流する加圧された海水及び/又は濃縮水に前記次亜塩素酸除去剤を注入すると共に、前記pH調整剤注入ポンプにより前記第2の逆止弁を介して配管内を通流する加圧された海水及び/又は濃縮水にpH調整剤を注入することを特徴とする海水淡水化プラント。
In the seawater desalination plant according to claim 10.
And hypochlorous acid removal agent reservoir for containing the hypochlorite removers,
Hypochlorous acid remover injection pump and
The first check valve and
A pH adjuster storage tank that houses the pH adjuster,
With a pH regulator injection pump,
With a second check valve,
Based on the command from the control unit, the hypochlorite said to hypochlorous acid removing agent seawater pressurized flowing through the pipe via the first check valve by means of an infusion pump and / or concentrated water Along with injecting the removing agent, the pH adjusting agent is injected into the pressurized seawater and / or concentrated water flowing through the pipe through the second check valve by the pH adjusting agent injection pump. Seawater desalination plant.
請求項11に記載の海水淡水化プラントにおいて、
前記制御部は、
前記流量計による加圧された海水及び/又は濃縮水の流量の計測値と前記残塩計による加圧された海水及び/又は濃縮水中の次亜塩素酸濃度の計測値との積により加圧された海水及び/又は濃縮水中の次亜塩素酸含有量を求め、求めた次亜塩素酸含有量と等量若しくは所定の裕度内の前記次亜塩素酸除去剤の添加量を決定し、指令値として前記次亜塩素酸除去剤注入ポンプへ出力する次亜塩素酸除去剤添加量決定部を有することを特徴とする海水淡水化プラント。
In the seawater desalination plant according to claim 11.
The control unit
Pressurized by the product of the measured value of the flow rate of pressurized seawater and / or concentrated water by the flow meter and the measured value of the hypochlorous acid concentration in the pressurized seawater and / or concentrated water by the residual salt meter. seawater and / or determine the hypochlorite content of the concentrate water to determine the amount of the hypochlorous acid removing agent in the obtained hypochlorite content an equivalent amount or a predetermined tolerance, A seawater desalination plant characterized by having a hypochlorous acid remover addition amount determining unit that outputs to the hypochlorous acid remover injection pump as a command value.
請求項12に記載の海水淡水化プラントにおいて、
前記制御部は、
前記pH計による加圧された海水及び/又は濃縮水のpH計測値が中性となるpH調整剤の添加量を決定し、指令値として前記pH調整剤注入ポンプへ出力するpH調整剤添加量決定部を有することを特徴とする海水淡水化プラント。
In the seawater desalination plant according to claim 12,
The control unit
The amount of pH adjuster added is determined by the pH measurement value of the pressurized seawater and / or concentrated water by the pH meter, and is output to the pH adjuster injection pump as a command value. A seawater desalination plant characterized by having a determination unit.
請求項13に記載の海水淡水化プラントにおいて、
加圧された海水及び/又は濃縮水が通流する配管の電位を計測する電位計を備え、
前記制御部は、
前記電位計による前記加圧された海水及び/又は濃縮水が通流する配管の電位の計測値に基づき、前記加圧された海水及び/又は濃縮水が通流する配管の電位が所定の電位となるよう、前記電極及び前記加圧された海水及び/又は濃縮水が通流する配管との間に印加する電圧を指令値として前記防食電源へ出力する防食電圧制御部を有することを特徴とする海水淡水化プラント。
In the seawater desalination plant according to claim 13.
Equipped with an electrometer to measure the potential of the pipe through which pressurized seawater and / or concentrated water flows.
The control unit
Based on the measured value of the potential of the pipe through which the pressurized seawater and / or concentrated water flows by the potential meter, the potential of the pipe through which the pressurized seawater and / or concentrated water flows is a predetermined potential. It is characterized by having an anticorrosion voltage control unit that outputs a voltage applied between the electrode and the pipe through which the pressurized seawater and / or concentrated water flows as a command value to the anticorrosion power source. Seawater desalination plant.
請求項14に記載の海水淡水化プラントにおいて、
配管内を通流する加圧された海水及び/又は濃縮水に前記次亜塩素酸除去剤を注入する位置及び配管内を通流する加圧された海水及び/又は濃縮水にpH調整剤を注入する位置よりも下流側に配されるラインミキサーを備え、
前記ラインミキサーは、前記次亜塩素酸除去剤及びpH調整剤が注入された加圧された海水及び/又は濃縮水にせん断力を与え混合することを特徴とする海水淡水化プラント。
In the seawater desalination plant according to claim 14.
A pH adjusting agent to the position and the seawater in the pipe pressurized flowing and / or concentrated water injecting the hypochlorite removing agent in seawater and / or concentrated water pressurized flowing through the pipe Equipped with a line mixer located downstream from the injection position
It said line mixer, seawater desalination plants, which comprises mixing giving shearing force to the hypochlorous acid removal agent and pH seawater modifier is pressurized is injected and / or concentrated water.
請求項14に記載の海水淡水化プラントにおいて、
前記電極よりも下流側であって、且つ、配管内を通流する加圧された海水及び/又は濃縮水に前記次亜塩素酸除去剤を注入する位置及び配管内を通流する加圧された海水及び/又は濃縮水にpH調整剤を注入する位置よりも下流側に配される、前記流量計、前記残塩計、前記pH計、及び前記電位計からなる第1のセンサ群と、
配管内を通流する加圧された海水及び/又は濃縮水に前記次亜塩素酸除去剤を注入する位置及び配管内を通流する加圧された海水及び/又は濃縮水にpH調整剤を注入する位置よりも上流側であって、かつ、前記電極の近傍下流側に配される、前記流量計、前記残塩計、前記pH計、及び前記電位計からなる第2のセンサ群と、を備え、
前記制御部は、前記第2のセンサ群からの計測値に基づき、少なくとも配管内を通流する加圧された海水及び/又は濃縮水に前記次亜塩素酸除去剤及びpH調整剤を注入し、更に、前記第1のセンサ群からの計測値に基づき、前記次亜塩素酸除去剤注入ポンプと前記pH調整剤注入ポンプ及び前記防食電源をフィードバック制御することを特徴とする海水淡水化プラント。
In the seawater desalination plant according to claim 14.
A downstream side of the electrode, and pressurized flows through the location and the pipe for injecting the hypochlorous acid removal agent in the pipe to the pressurized seawater and / or concentrated water flowing A first sensor group consisting of the flow meter, the residual salt meter, the pH meter, and the electrometer, which are arranged downstream from the position where the pH adjuster is injected into the seawater and / or the concentrated water.
A pH adjusting agent to the position and the seawater in the pipe pressurized flowing and / or concentrated water injecting the hypochlorite removing agent in seawater and / or concentrated water pressurized flowing through the pipe A second sensor group consisting of the flow meter, the residual salt meter, the pH meter, and the electrometer, which is located on the upstream side of the injection position and on the downstream side in the vicinity of the electrode. With
Wherein the control unit, based on said measurements from the second sensor group, injected with the hypochlorous acid removal and pH adjusting agents to at least the seawater in the pipe pressurized flowing and / or concentrated water Further, a seawater desalination plant characterized in that the hypochlorous acid removing agent injection pump, the pH adjusting agent injection pump and the anticorrosion power source are feedback-controlled based on the measured values from the first sensor group.
JP2017076060A 2017-04-06 2017-04-06 Electrocorrosion protection system and seawater desalination plant equipped with it Active JP6766004B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017076060A JP6766004B2 (en) 2017-04-06 2017-04-06 Electrocorrosion protection system and seawater desalination plant equipped with it
SG11201909044U SG11201909044UA (en) 2017-04-06 2018-03-15 Electric anticorrosion system and seawater desalination plant provided with same
PCT/JP2018/010312 WO2018186147A1 (en) 2017-04-06 2018-03-15 Electric anticorrosion system and seawater desalination plant provided with same
SA519410231A SA519410231B1 (en) 2017-04-06 2019-10-02 Electric anticorrosion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017076060A JP6766004B2 (en) 2017-04-06 2017-04-06 Electrocorrosion protection system and seawater desalination plant equipped with it

Publications (2)

Publication Number Publication Date
JP2018178167A JP2018178167A (en) 2018-11-15
JP6766004B2 true JP6766004B2 (en) 2020-10-07

Family

ID=63713212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017076060A Active JP6766004B2 (en) 2017-04-06 2017-04-06 Electrocorrosion protection system and seawater desalination plant equipped with it

Country Status (4)

Country Link
JP (1) JP6766004B2 (en)
SA (1) SA519410231B1 (en)
SG (1) SG11201909044UA (en)
WO (1) WO2018186147A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306390A (en) * 1997-05-02 1998-11-17 Nippon Boshoku Kogyo Kk Method for electrolytically preventing seawater contamination as well as electric corrosion and device therefor
WO2015083580A1 (en) * 2013-12-04 2015-06-11 株式会社日立製作所 Electric anticorrosion system
JP6250492B2 (en) * 2014-07-24 2017-12-20 株式会社日立製作所 Injection water production system
JP2019116650A (en) * 2017-12-26 2019-07-18 株式会社日立製作所 Electric corrosion prevention system and electrolyte desalination plant

Also Published As

Publication number Publication date
SA519410231B1 (en) 2023-10-11
SG11201909044UA (en) 2019-11-28
JP2018178167A (en) 2018-11-15
WO2018186147A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
WO2017006837A1 (en) Electrolysis device and apparatus for producing electrolyzed ozonated water
JP6250492B2 (en) Injection water production system
JP2014000563A (en) Ammonia treatment system
KR20140129291A (en) Device for producing water for preparing dialysate
JP5877125B2 (en) Corrosion suppression device, seawater desalination device and pump device provided with the same
Salman et al. Removal of chromium ions from a real wastewater of leather industry using electrocoagulation and reverse osmosis processes
US8511370B2 (en) Heat exchanger including selectively activated cathodic protection useful in sulfide contaminated environments
CN105263867A (en) Method for treating wastewater and device for carrying out said method
JP6778591B2 (en) Ultrapure water production method and ultrapure water production system
JP4641003B2 (en) Electrolyzed water generation method and electrolyzed water generator
JP6766004B2 (en) Electrocorrosion protection system and seawater desalination plant equipped with it
JP5188717B2 (en) Electrolytic hypochlorite water production equipment
JP2008178845A5 (en)
KR20160103119A (en) Seawater electrolysis system and electrolytic solution infusion method
JP2005052787A (en) Electrolytic water for cleaning, and preparation method and preparation apparatus therefor
US3458413A (en) Method of inhibiting fouling of sea water conduits and the like by marine organisms
JP6927452B1 (en) Water treatment method and water treatment equipment
JP6585976B2 (en) Electrocorrosion protection system and seawater desalination plant equipped with the same
JP5013062B2 (en) Supplying water for boiler feed water
JP2019116650A (en) Electric corrosion prevention system and electrolyte desalination plant
JP5822235B2 (en) Method for removing oxidized nitrogen
JP5908372B2 (en) Electrolysis electrode
JP6650586B2 (en) Electrolyzed water generator
JP3984436B2 (en) Method and apparatus for producing alkaline cleaning water
WO2021176774A1 (en) Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200916

R150 Certificate of patent or registration of utility model

Ref document number: 6766004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150