JP6765389B2 - Compound and organic electroluminescence devices - Google Patents

Compound and organic electroluminescence devices Download PDF

Info

Publication number
JP6765389B2
JP6765389B2 JP2017568412A JP2017568412A JP6765389B2 JP 6765389 B2 JP6765389 B2 JP 6765389B2 JP 2017568412 A JP2017568412 A JP 2017568412A JP 2017568412 A JP2017568412 A JP 2017568412A JP 6765389 B2 JP6765389 B2 JP 6765389B2
Authority
JP
Japan
Prior art keywords
group
compound
substituted
unsubstituted
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017568412A
Other languages
Japanese (ja)
Other versions
JP2018523638A (en
Inventor
洪涛 范
洪涛 范
向慧 張
向慧 張
爽 邵
爽 邵
雪艶 任
雪艶 任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Eternal Material Technology Co Ltd
Guan Eternal Material Technology Co Ltd
Original Assignee
Beijing Eternal Material Technology Co Ltd
Guan Eternal Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510472766.4A external-priority patent/CN106433614B/en
Priority claimed from CN201510472703.9A external-priority patent/CN106432242B/en
Application filed by Beijing Eternal Material Technology Co Ltd, Guan Eternal Material Technology Co Ltd filed Critical Beijing Eternal Material Technology Co Ltd
Publication of JP2018523638A publication Critical patent/JP2018523638A/en
Application granted granted Critical
Publication of JP6765389B2 publication Critical patent/JP6765389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom

Description

本発明は新規の化合物に関し、さらに、該化合物を用いた有機エレクトロルミネッセンス素子に関する。 The present invention relates to a novel compound and further to an organic electroluminescent device using the compound.

OLED技術は照明とディスプレイという2つの分野において押し広げられていることにつれて、その高効率の有機材料への研究がますます注目されている。高効率で長寿命の有機エレクトロルミネッセンス素子は、通常、素子構造と各種の有機材料とを最適化して組み合わせたものであるが、材料の作用がもっと著しく、材料はOLED技術の根本とも言える。OLED分野における有機材料は主に、正孔注入材料、正孔輸送材料、正孔阻止材料、電子注入材料、電子輸送材料、電子阻止材料、発光ホスト材料及び発光ゲスト(染料)などを含む。 As OLED technology is being expanded in the two fields of lighting and displays, research into its highly efficient organic materials is receiving increasing attention. A high-efficiency, long-life organic electroluminescence device is usually an optimized combination of a device structure and various organic materials, but the action of the material is more remarkable, and the material can be said to be the basis of OLED technology. Organic materials in the field of OLED mainly include hole injection materials, hole transport materials, hole blocking materials, electron injection materials, electron transport materials, electron blocking materials, light emitting host materials, light emitting guests (dye) and the like.

現在、有機エレクトロルミネッセンス素子に使用する正孔注入材料は、一般的にトリアリールアミン構造を有する下記に示す誘導体である(出光特許:CN1152607C;保土谷特許:EP0650955A1及びChemipro特許:JPH09301934など)。 Currently, hole injection materials used in organic electroluminescent devices are generally the following derivatives having a triarylamine structure (Idemitsu patent: CN1152607C; Hodoya patent: EP0650955A1 and Chemipro patent: JPH09301934, etc.).

Figure 0006765389
Figure 0006765389

正孔輸送材料は、材料分子構造中に一般的にトリアリールアミン、カルバゾール又はチオフェンなどの構造を有する。出光特許(公開番号:CN101506191A、公開日:2009.8.12)はチエニル基を有する材料を保護しているが、出光特許(公開番号:CN102334210A、公開日:2012.1.25;及びWO2010/114017A1、公開日:2010.10.7)はカルバゾールとジベンゾフラン構造を有する正孔輸送材料を保護している。一部の代表的な化合物は下記に示す。 The hole transport material generally has a structure such as triarylamine, carbazole or thiophene in the material molecular structure. The Idemitsu patent (publication number: CN101506191A, publication date: 2009.8.12) protects materials with thienyl groups, while the Idemitsu patent (publication number: CN102334210A, publication date: 2012.1.25; and WO2010 / 114017A1, Publication Date: 2010.100.7) protects hole-transporting materials with carbazole and dibenzofuran structures. Some representative compounds are shown below.

Figure 0006765389
Figure 0006765389

既知の正孔輸送材料及び正孔注入材料の性能は理想的ではなく、業界では、新規の正孔輸送材料及び正孔注入材料の開発は依然として求められている。 The performance of known hole-transporting and hole-injecting materials is not ideal, and the industry is still required to develop new hole-transporting and hole-injecting materials.

また、常用の発光ホスト材料CBP(特開2001−313178号公報)は良好な正孔輸送性を有するが、電子輸送性が劣るために、キャリア輸送がバランスしなくなる。TAZをホスト材料(特開2002−352957号公報)とする場合は逆に、良好な電子輸送性を有するが、正孔輸送性が劣るために、同様にバランス的なキャリア輸送を実現できない。良好な発光ホスト材料の開発も業界で解決する必要のある課題である。 Further, although the commonly used light emitting host material CBP (Japanese Patent Laid-Open No. 2001-313178) has good hole transportability, carrier transport becomes unbalanced due to poor electron transportability. When TAZ is used as a host material (Japanese Patent Laid-Open No. 2002-352957), on the contrary, it has good electron transportability, but it cannot realize balanced carrier transport as well because of poor hole transportability. The development of good luminescent host materials is also an issue that needs to be resolved in the industry.

Figure 0006765389
Figure 0006765389

上記課題を解決するために、本発明は、有機エレクトロルミネッセンス素子に用いる新規の化合物を提供する。該化合物は、新規のベンゾシクロオクタテトラエノジインドール構造を導入することで、良好なホスト材料特性及び正孔注入・輸送性を実現した。本発明による化合物は下記の一般式(I)で表される。 In order to solve the above problems, the present invention provides a novel compound used for an organic electroluminescence device. The compound realized good host material properties and hole injection / transportability by introducing a novel benzocyclooctatetraenodie indole structure. The compound according to the present invention is represented by the following general formula (I).

Figure 0006765389
Figure 0006765389

式中、環Aは

Figure 0006765389
環であり、破線はシクロオクタテトラエンとの継ぎ位置を表す。 In the formula, ring A
Figure 0006765389
It is a ring, and the broken line represents the joint position with cyclooctatetraene.

Arは、水素、C〜C30のアリールアミノ基又はヘテロアリールアミノ基、置換もしくは無置換のC〜C30のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基であることが好ましい。 Ar is selected from hydrogen, an arylamino group or heteroarylamino group C 6 -C 30, a substituted or unsubstituted C 6 -C 30 aryl group is a heteroaryl group of C 2 -C 30 substituted or unsubstituted Is preferable.

〜R12はそれぞれ独立に、水素、ハロゲン、置換もしくは無置換のC〜C30のアルキル基、置換もしくは無置換のC〜C30のアルケニル基、置換もしくは無置換のC〜C30のアルキニル基、置換もしくは無置換のC〜C30のシクロアルキル基、置換もしくは無置換のC〜C30のヘテロシクロアルキル基、置換もしくは無置換のC〜C30のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基であることが好ましく、あるいは、R〜R及び/又はR〜Rはそれぞれ環を形成することができる。 R 1 to R 12 are independently hydrogen, halogen, substituted or unsubstituted C 1 to C 30 alkyl groups, substituted or unsubstituted C 2 to C 30 alkenyl groups, substituted or unsubstituted C 2 to Alkynyl group of C 30 , substituted or unsubstituted C 3 to C 30 cycloalkyl group, substituted or unsubstituted C 2 to C 30 heterocycloalkyl group, substituted or unsubstituted C 6 to C 30 aryl group is preferably a heteroaryl group C 2 -C 30 substituted or unsubstituted, or, R 1 to R 4 and / or R 5 to R 8 may each form a ring.

本発明による化合物は正孔注入材料に用いられることができ、ITO陽極から正孔を有機材料に効果的に注入することができ、さらに正孔輸送材料に用いられることができ、発光層ホスト材料のHOMO準位とよりよく整合することができ、素子の動作電圧を効果的に低下させるとともに素子の発光効率を向上させることができる。また、本発明による化合物はさらに、発光層のホスト材料に用いられることができ、比較的にパランス的な電子・正孔輸送性を有し、隣接する電子・正孔輸送層材料と整合する準位を有し、十分なエネルギーを発光材料に移転して高い発光効率を実現でき、素子の点灯及び動作電圧を低下させ、素子の効率を向上させ、素子の寿命を延長させることができ、有機エレクトロルミネッセンス素子の製造において非常に重要な実際的意義を有する。 The compound according to the present invention can be used as a hole injection material, can effectively inject holes into an organic material from an ITO anode, can be further used as a hole transport material, and can be used as a light emitting layer host material. It is possible to better match the HOMO level of the element, effectively reduce the operating voltage of the element, and improve the light emission efficiency of the element. In addition, the compound according to the present invention can be further used as a host material for a light emitting layer, has a relatively balance-like electron / hole transport property, and is quasi-matched with an adjacent electron / hole transport layer material. High energy emission efficiency can be achieved by transferring sufficient energy to the light emitting material, the lighting and operating voltage of the element can be lowered, the efficiency of the element can be improved, the life of the element can be extended, and organic. It has very important practical significance in the manufacture of electroluminescence devices.

本発明において、C〜Cの表現は、この基の有する炭素数がa〜bであることを表す。特記しない限り、一般的には該炭素数が置換基の炭素数を含まない。 In the present invention, the expressions C a to C b indicate that the carbon number of this group is a to b . Unless otherwise specified, the carbon number generally does not include the carbon number of the substituent.

本発明において、化学元素に関する表現は、化学的性質が同じの同位体の概念を含み、例えば「水素」の表現は化学性質が同じの「重水素」、「三重水素」の概念をも含む。 In the present invention, the expressions relating to chemical elements include the concept of isotopes having the same chemical properties, and for example, the expression "hydrogen" also includes the concepts of "deuterium" and "tritium" having the same chemical properties.

本発明におけるヘテロ原子とは、一般的にB、N、O、S、P、P(=O)、Si及びSeからなる群より選ばれた原子又は原子団のことをいう。 The heteroatom in the present invention generally refers to an atom or atomic group selected from the group consisting of B, N, O, S, P, P (= O), Si and Se.

本発明による化合物は下記の一般式(I)で表される構造を有する。 The compound according to the present invention has a structure represented by the following general formula (I).

Figure 0006765389
Figure 0006765389

式中、環Aは

Figure 0006765389
であり、破線は継ぎ位置であり、
Arは、水素、C〜C30のアリールアミノ基又はヘテロアリールアミノ基、置換もしくは無置換のC〜C30のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基であってもよい。 In the formula, ring A
Figure 0006765389
And the dashed line is the joint position,
Ar is selected from hydrogen, a by C 6 -C 30 arylamino group or heteroarylamino group, a substituted or unsubstituted C 6 -C 30 aryl group, a substituted or unsubstituted C 2 -C 30 heteroaryl group You may.

〜R12はそれぞれ独立に、水素、ハロゲン、置換もしくは無置換のC〜C30のアルキル基、置換もしくは無置換のC〜C30のアルケニル基、置換もしくは無置換のC〜C30のアルキニル基、置換もしくは無置換のC〜C30のシクロアルキル基、置換もしくは無置換のC〜C30のヘテロシクロアルキル基、置換もしくは無置換のC〜C30のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基である。 R 1 to R 12 are independently hydrogen, halogen, substituted or unsubstituted C 1 to C 30 alkyl groups, substituted or unsubstituted C 2 to C 30 alkenyl groups, substituted or unsubstituted C 2 to Alkynyl group of C 30 , substituted or unsubstituted C 3 to C 30 cycloalkyl group, substituted or unsubstituted C 2 to C 30 heterocycloalkyl group, substituted or unsubstituted C 6 to C 30 aryl group a heteroaryl group C 2 -C 30 substituted or unsubstituted.

また、これらR〜R及び/又はR〜Rの間は互いに接続して環状構造を形成することができ、このような環構造は、脂肪族の単環または多環、芳香族の単環または縮合環であってもよく、これら環はいずれもヘテロ原子を含んでもよい。脂肪族単環の例として、例えば、R〜RまたはR〜Rのうち、任意の隣接する2つの基が接続して脂肪族の五員環、六員環を形成し、これら環の構成原子は炭素原子の他、ヘテロ原子であってもよく、これら環は置換基を有してもよく、環を構成する炭素原子はケトン基を形成しても良い。これら環の例としては、シクロペンタン環、シクロヘキサン環、ジシクロペンテン環、テトラヒドロピロール環、テトラヒドロフラン環、ピペリジン環、及び、シクロペンタン環とシクロヘキサン環における炭素原子がケトン基によって置換されたエステル環などが挙げられる。芳香族の単環または縮合環として、好ましくはC〜C30の単環または縮合環であり、例として、ベンゼン環、ナフタレン環などが挙げられる。ヘテロ原子を含む単環または多環として、好ましくは、ピロール環、ピリジン環、インドール環、N−フェニル置換インドール環である。上記脂肪族環と芳香族環、芳香族複素環とは組み合わせて、例えばベンゾピロール環、ベンゾフラン環、ベンゾチオフェン環、フルオレン環などの多環を形成してもよい。 Further, these R 1 to R 4 and / or R 5 to R 8 can be connected to each other to form a cyclic structure, and such a ring structure is an aliphatic monocyclic or polycyclic, aromatic. It may be a monocyclic ring or a fused ring of, and any of these rings may contain a hetero atom. As an example of an aliphatic monocyclic ring, for example, any two adjacent groups of R 1 to R 4 or R 5 to R 8 are connected to form an aliphatic five-membered ring or six-membered ring, and these are formed. The constituent atoms of the ring may be heteroatoms in addition to carbon atoms, these rings may have substituents, and the carbon atoms constituting the rings may form ketone groups. Examples of these rings include a cyclopentane ring, a cyclohexane ring, a dicyclopentene ring, a tetrahydropyrrole ring, a tetrahydrofuran ring, a piperidine ring, and an ester ring in which carbon atoms in the cyclopentane ring and the cyclohexane ring are substituted with a ketone group. Can be mentioned. The aromatic monocyclic ring or fused ring is preferably a monocyclic ring or fused ring of C 6 to C 30 , and examples thereof include a benzene ring and a naphthalene ring. The monocyclic or polycyclic ring containing a heteroatom is preferably a pyrrole ring, a pyridine ring, an indole ring, or an N-phenyl substituted indole ring. The above aliphatic ring may be combined with an aromatic ring or an aromatic heterocycle to form a polycycle such as a benzopyrrole ring, a benzofuran ring, a benzothiophene ring, or a fluorene ring.

上記の置換もしくは無置換のC〜C30のアルキル基としては、好ましくはC〜C10のアルキル基であり、より好ましくはC〜Cのアルキル基であり、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、n−ヘキシル基、n−オクチル基、イソブチル基、t−ブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。 The substituted or unsubstituted C 1 to C 30 alkyl groups described above are preferably C 1 to C 10 alkyl groups, more preferably C 1 to C 6 alkyl groups, for example, methyl groups. Examples thereof include ethyl group, n-propyl group, isopropyl group, n-butyl group, n-hexyl group, n-octyl group, isobutyl group, t-butyl group, cyclopentyl group and cyclohexyl group.

上記の置換もしくは無置換のC〜C30のアルケニル基としては、好ましくはC〜C10のアルケニル基であり、その例として、例えばビニール基、プロペニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、シクロヘキセニル基などが挙げられる。 The substituted or unsubstituted C 2 to C 30 alkenyl group described above is preferably a C 2 to C 10 alkenyl group, and examples thereof include a vinyl group, a propenyl group, a propenyl group, a butenyl group, and a pentenyl group. , Hexenyl group, heptenyl group, octenyl group, cyclohexenyl group and the like.

上記の置換もしくは無置換のC〜C30のアルキニル基としては、好ましくはC〜C10のアルキニル基であり、その例として、例えばエチニル基、1−プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、ヘプチニル基、オクチニル基、シクロヘキシルエチニル基などが挙げられる。 The substituted or unsubstituted C 2 to C 30 alkynyl group described above is preferably a C 2 to C 10 alkynyl group, and examples thereof include, for example, an ethynyl group, a 1-propynyl group, a butynyl group, and a pentynyl group. Examples thereof include a hexynyl group, a heptynyl group, an octynyl group and a cyclohexylethynyl group.

上記の置換もしくは無置換のC〜C30のシクロアルキル基としては、好ましくはC〜C10のシクロアルキル基であり、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。 The substituted or unsubstituted C 3 to C 30 cycloalkyl group described above is preferably a C 3 to C 10 cycloalkyl group, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group. ..

上記の置換もしくは無置換のC〜C30のヘテロシクロアルキル基としては、環骨格原子を3〜10有し、かつO、S及びNからなる群より選ばれたものを少なくとも1つ含むヘテロシクロアルキル基が好ましい。好ましい例として、テトラヒドロフラン、ピロリジンおよびテトラヒドロチオフェンなどが挙げられる。 The above-mentioned substituted or unsubstituted C 2 to C 30 heterocycloalkyl groups include hetero having 3 to 10 ring skeleton atoms and at least one selected from the group consisting of O, S and N. Cycloalkyl groups are preferred. Preferred examples include tetrahydrofuran, pyrrolidine, tetrahydrothiophene and the like.

上記の置換もしくは無置換のC〜C30のアリール基としては、骨格炭素原子を6〜20有するものが好ましい。前記アリール基は、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントリル基、フェナントリル基、インデニル基、フルオレニル基及びその誘導体、フルオランテニル基、トリフェニレン基、ピレニル基、ペリレニル基、クリセニル基およびナフタセニル基からなる群より選ばれた基であることが好ましい。前記ビフェニル基は、2−ビフェニル基、3−ビフェニル基および4−ビフェニル基より選ばれた基である。前記ターフェニル基は、p−ターフェニル−4−イル基、p−ターフェニル−3−イル基、p−ターフェニル−2−イル基、m−ターフェニル−4−イル基、m−ターフェニル−3−イル基及びm−ターフェニル−2−イル基を含む。前記ナフチル基は、1−ナフチル基及び2−ナフチル基からなる群より選ばれた基である。前記アントリル基は、1−アントリル基、2−アントリル基及び9−アントリル基からなる群より選ばれた基である。前記フルオレニル基は、1−フルオレニル基、2−フルオレニル基、3−フルオレニル基、4−フルオレニル基及び9−フルオレニル基からなる群より選ばれた基である。前記フルオレニル誘導体は、9,9’−ジメチルフルオレン、9,9’−スピロビフルオレンおよびベンゾフルオレンからなる群より選ばれた基である。前記ピレニル基は、1−ピレニル基、2−ピレニル基及び4−ピレニル基からなる群より選ばれた基である。前記ナフタセニル基は、1−ナフタセニル基、2−ナフタセニル基及び9−ナフタセニル基からなる群より選ばれた基である。 As the above-mentioned substituted or unsubstituted C 6 to C 30 aryl group, those having 6 to 20 skeletal carbon atoms are preferable. The aryl group includes a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an indenyl group, a fluorenyl group and a derivative thereof, a fluoranthenyl group, a triphenylene group, a pyrenyl group, a perylenel group, a chrysenyl group and It is preferably a group selected from the group consisting of naphthacenyl groups. The biphenyl group is a group selected from a 2-biphenyl group, a 3-biphenyl group and a 4-biphenyl group. The terphenyl group is p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl. Includes -3-yl group and m-terphenyl-2-yl group. The naphthyl group is a group selected from the group consisting of 1-naphthyl group and 2-naphthyl group. The anthryl group is a group selected from the group consisting of 1-anthril group, 2-anthril group and 9-anthril group. The fluorenyl group is a group selected from the group consisting of 1-fluorenyl group, 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group and 9-fluorenyl group. The fluorenyl derivative is a group selected from the group consisting of 9,9'-dimethylfluorene, 9,9'-spirobifluorene and benzofluorene. The pyrenyl group is a group selected from the group consisting of 1-pyrenyl group, 2-pyrenyl group and 4-pyrenyl group. The naphthalsenyl group is a group selected from the group consisting of 1-naphthacenyl group, 2-naphthacenyl group and 9-naphthacenyl group.

置換もしくは無置換のC〜C30のヘテロアリール基としては、骨格炭素原子を5〜20有するものが好ましい。前記ヘテロアリール基は、フラニル基、チエニル基、ピロリル基、ベンゾフラニル基、ベンゾチエニル基、イソベンゾフラニル基、インドリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基およびその誘導体またはベンゾm−ジオキソリル基であることが好ましく、中でも、前記カルバゾリル基誘導体は、9−フェニルカルバゾール、9−ナフチルカルバゾールベンゾカルバゾール、ジベンゾカルバゾール、またはインドロカルバゾールであることが好ましい。 The heteroaryl groups of C 2 -C 30 substituted or unsubstituted, preferably has a backbone carbon atoms from 5 to 20. The heteroaryl group includes a furanyl group, a thienyl group, a pyrrolyl group, a benzofuranyl group, a benzothienyl group, an isobenzofuranyl group, an indolyl group, a dibenzofuranyl group, a dibenzothienyl group, a carbazolyl group and a derivative thereof, or a benzom-dioxolyl. It is preferably a group, and among them, the carbazolyl group derivative is preferably 9-phenylcarbazole, 9-naphthylcarbazolebenzocarbazole, dibenzocarbazole, or indolocarbazole.

〜C30のアリールアミノ基またはヘテロアリールアミノ基としては、ジ(ヘテロ)アリールアミノ基、トリ(ヘテロ)アリールアミノ基が挙げられ、ここでいう「(ヘテロ)アリール基」の表現はアリール基及びヘテロアリール基の両者を含む。具体的な例として、ジフェニルアミノ基、フェニルナフチルアミノ基、4−トリフェニルアミノ基、3−トリフェニルアミノ基、4−[N−フェニル−N−(ジベンゾフラン−3−イル)]フェニルアミノ基、4−[N−フェニル−N−(ジベンゾチオフェン−3−イル)フェニルアミノ基からなる群より選ばれた基が挙げられる。 Examples of the arylamino group or heteroarylamino group of C 6 to C 30 include a di (hetero) arylamino group and a tri (hetero) arylamino group, and the expression "(hetero) aryl group" here is aryl. Includes both groups and heteroaryl groups. Specific examples include a diphenylamino group, a phenylnaphthylamino group, a 4-triphenylamino group, a 3-triphenylamino group, a 4- [N-phenyl-N- (dibenzofuran-3-yl)] phenylamino group, Examples thereof include groups selected from the group consisting of 4- [N-phenyl-N- (dibenzothiophen-3-yl) phenylamino groups.

本発明の1つの好ましい化合物は下記の一般式(II)で表される構造を有する。 One preferred compound of the present invention has a structure represented by the following general formula (II).

Figure 0006765389
Figure 0006765389

式中、Ar、Arは同一でも異なっていてもよく、それぞれ独立にC〜C10のアルキル基、C〜C30のアリールアミノ基またはヘテロアリールアミノ基、置換もしくは無置換のC〜C30のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基である。 In the formula, Ar 1 and Ar 2 may be the same or different, and are independently an alkyl group of C 1 to C 10 , an arylamino group of C 6 to C 30 , or a heteroarylamino group, and a substituted or unsubstituted C. 6 to C 30 aryl groups, substituted or unsubstituted C 2 to C 30 heteroaryl groups.

式中、R〜R12は同一でも異なっていてもよく、それぞれ独立に水素、ハロゲン、置換もしくは無置換のC〜C30のアルキル基、置換もしくは無置換のC〜C30のアルケニル基、置換もしくは無置換のC〜C30のアルキニル基、置換もしくは無置換のC〜C30のシクロアルキル基、置換もしくは無置換のC〜C30のヘテロシクロアルキル基、置換もしくは無置換のC〜C30のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基、C〜C30のアリールアミノ基またはヘテロアリールアミノ基であることが好ましく、あるいは、R〜Rの隣接する基は互いに接続して環状構造を形成することができ、このような環構造は、脂肪族の単環または多環、芳香族の単環または縮合環であってもよく、これら環にはヘテロ原子を含んでもよく、脂肪族単環の例として、例えば、R〜Rのうち、任意に隣接する2つの基が接続して脂肪族の五員環、六員環を形成し、これら環の構成原子は炭素原子の他、ヘテロ原子であってもよく、これら環は置換基を有してもよく、環を構成する炭素原子はケトン基を形成しても良い。これら環の例としては、シクロペンタン環、シクロヘキサン環、ジシクロペンテン環、テトラヒドロピロール環、テトラヒドロフラン環、ピペリジン環、及び、シクロペンタン環とシクロヘキサン環における炭素原子がケトン基によって置換されたエステル環などが挙げられる。芳香族の単環または縮合環として、好ましくはC〜C30の単環または縮合環であり、例として、ベンゼン環、ナフタレン環などが挙げられる。ヘテロ原子を含む単環または多環として、好ましくは、ピロール環、ピリジン環、インドール環、N−フェニル置換インドール環である。R〜R、あるいはR〜R12のうち、隣接する基が互いに接続して環状構造を形成でき、このような環構造の例は上記R〜Rの隣接する基で形成された環構造の例と同じであり、好ましい例も同じである。 In the formula, R 1 to R 12 may be the same or different, and independently hydrogen, halogen, substituted or unsubstituted C 1 to C 30 alkyl groups, substituted or unsubstituted C 2 to C 30 alkenyl. Group, substituted or unsubstituted C 2 to C 30 alkynyl group, substituted or unsubstituted C 3 to C 30 cycloalkyl group, substituted or unsubstituted C 2 to C 30 heterocycloalkyl group, substituted or unsubstituted It is preferably a substituted C 6 to C 30 aryl group, a substituted or unsubstituted C 2 to C 30 heteroaryl group, a C 6 to C 30 aryl amino group or a heteroaryl amino group, or R 1 Adjacent groups of ~ R 4 can be connected to each other to form a cyclic structure, such which the ring structure may be an aliphatic monocyclic or polycyclic, an aromatic monocyclic or fused ring. , These rings may contain heteroatoms, and as an example of an aliphatic monocycle, for example, two arbitrarily adjacent groups of R 1 to R 4 are connected to form an aliphatic five-membered ring or six-membered ring. Rings are formed, and the constituent atoms of these rings may be heteroatoms in addition to carbon atoms, these rings may have substituents, and the carbon atoms constituting the rings may form ketone groups. good. Examples of these rings include a cyclopentane ring, a cyclohexane ring, a dicyclopentene ring, a tetrahydropyrrole ring, a tetrahydrofuran ring, a piperidine ring, and an ester ring in which carbon atoms in the cyclopentane ring and the cyclohexane ring are substituted with a ketone group. Can be mentioned. The aromatic monocyclic ring or fused ring is preferably a monocyclic ring or fused ring of C 6 to C 30 , and examples thereof include a benzene ring and a naphthalene ring. The monocyclic or polycyclic ring containing a heteroatom is preferably a pyrrole ring, a pyridine ring, an indole ring, or an N-phenyl substituted indole ring. Of R 5 to R 8 or R 9 to R 12 , adjacent groups can be connected to each other to form a cyclic structure, and an example of such a ring structure is formed by the adjacent groups of R 1 to R 4 described above. It is the same as the example of the ring structure, and the preferable example is also the same.

構造式IIにおいて、Ar及びArはそれぞれ独立に、置換もしくは無置換のC〜C30のアリール基であってもよく、好ましくは、Ar、Arはそれぞれ独立に、置換もしくは無置換のC〜C20のアリール基である。該アリール基として、より好ましくはフェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントリル基、フェナントリル基、インデニル基、フルオレニル基及びその誘導体、フルオランテニル基、トリフェニレン基、ピレニル基、ペリレニル基、クリセニル基およびナフタセニル基からなる群より選ばれた基である。前記ビフェニル基は、2−ビフェニル基、3−ビフェニル基および4−ビフェニル基からなる群より選ばれた基である。前記ターフェニル基は、p−ターフェニル−4−イル基、p−ターフェニル−3−イル基、p−ターフェニル−2−イル基、m−ターフェニル−4−イル基、m−ターフェニル−3−イル基およびm−ターフェニル−2−イル基を含む。前記ナフチル基は、1−ナフチル基及び2−ナフチル基からなる群より選ばれた基である。前記アントリル基は、1−アントリル基、2−アントリル基および9−アントリル基からなる群より選ばれた基である。前記フルオレニル基は、1−フルオレニル基、2−フルオレニル基、3−フルオレニル基、4−フルオレニル基、9−フルオレニル基からなる群より選ばれた基である。前記フルオレニル誘導体は、9,9’−ジメチルフルオレン、9,9’−スピロビフルオレンおよびベンゾフルオレンからなる群より選ばれた基である。前記ピレニル基は、1−ピレニル基、2−ピレニル基及び4−ピレニル基からなる群より選ばれた基である。前記ナフタセニル基は、1−ナフタセニル基、2−ナフタセニル基及び9−ナフタセニル基からなる群より選ばれた基である。 In Structural Formula II, Ar 1 and Ar 2 may be independently substituted or unsubstituted C 6 to C 30 aryl groups, and preferably Ar 1 and Ar 2 are independently substituted or absent, respectively. Substituted aryl groups of C 6 to C 20 . The aryl group is more preferably a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an indenyl group, a fluorenyl group and a derivative thereof, a fluoranthenyl group, a triphenylene group, a pyrenyl group, a perylenel group, It is a group selected from the group consisting of a chrysenyl group and a naphthacenyl group. The biphenyl group is a group selected from the group consisting of 2-biphenyl groups, 3-biphenyl groups and 4-biphenyl groups. The terphenyl group is p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl. Includes -3-yl group and m-terphenyl-2-yl group. The naphthyl group is a group selected from the group consisting of 1-naphthyl group and 2-naphthyl group. The anthryl group is a group selected from the group consisting of 1-anthril group, 2-anthril group and 9-anthril group. The fluorenyl group is a group selected from the group consisting of 1-fluorenyl group, 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group and 9-fluorenyl group. The fluorenyl derivative is a group selected from the group consisting of 9,9'-dimethylfluorene, 9,9'-spirobifluorene and benzofluorene. The pyrenyl group is a group selected from the group consisting of 1-pyrenyl group, 2-pyrenyl group and 4-pyrenyl group. The naphthalsenyl group is a group selected from the group consisting of 1-naphthacenyl group, 2-naphthacenyl group and 9-naphthacenyl group.

構造式IIにおいて、Ar、Arは置換もしくは無置換のC〜C30のヘテロアリール基であってもよく、このヘテロアリール基におけるヘテロ原子として、O、S及びNからなる群より選ばれた1つ以上のヘテロ原子であることが好ましく、このヘテロアリール基として、置換もしくは無置換のC〜C20のヘテロアリール基であることが好ましい。ここでいうヘテロアリール基の好ましい例として、フラニル基、チエニル基、ピロリル基、ベンゾフラニル基、ベンゾチエニル基、イソベンゾフラニル基、インドリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基及びその誘導体、ベンゾジオキソリル基からなる群から選ばれた少なくとも1種が挙げられる。前記カルバゾリル基誘導体は、9−フェニルカルバゾール、9−ナフチルカルバゾールベンゾカルバゾール、ジベンゾカルバゾール、およびインドロカルバゾールからなる群より選ばれた少なくとも1種を含むが、それらに限定されるものではない。 In Structural Formula II, Ar 1 and Ar 2 may be substituted or unsubstituted C 3 to C 30 heteroaryl groups, and the heteroatom in this heteroaryl group is selected from the group consisting of O, S and N. preferably the it is one or more heteroatoms, as the heteroaryl group is preferably a heteroaryl group substituted or unsubstituted C 5 -C 20. Preferred examples of the heteroaryl group here include a furanyl group, a thienyl group, a pyrrolyl group, a benzofuranyl group, a benzothienyl group, an isobenzofuranyl group, an indolyl group, a dibenzofuranyl group, a dibenzothienyl group, a carbazolyl group and a derivative thereof. , At least one selected from the group consisting of benzodioxolyl groups. The carbazolyl group derivative includes, but is not limited to, at least one selected from the group consisting of 9-phenylcarbazole, 9-naphthylcarbazolebenzocarbazole, dibenzocarbazole, and indolocarbazole.

構造式IIにおいて、ArおよびArは、C〜C30のアリールアミノ基またはヘテロアリールアミノ基であってもよく、その具体的な例として、ジ(ヘテロ)アリールアミノ基、トリ(ヘテロ)アリールアミノ基が挙げられ、ここでいう「(ヘテロ)アリール基」の表現はアリール基及びヘテロアリール基の両者を含む。より具体的な例として、ジフェニルアミノ基、フェニルナフチルアミノ基、4−トリフェニルアミノ基、3−トリフェニルアミノ基、4−[N−フェニル−N−(ジベンゾフラン−3−イル)]フェニルアミノ基、4−[N−フェニル−N−(ジベンゾチオフェン−3−イル)フェニルアミノ基からなる群より選ばれた基が挙げられる。 In Structural Formula II, Ar 1 and Ar 2 may be C 6 to C 30 arylamino groups or heteroarylamino groups, and specific examples thereof include di (hetero) arylamino groups and tri (hetero). ) Arylamino groups are mentioned, and the expression "(hetero) aryl group" here includes both aryl groups and heteroaryl groups. More specific examples include a diphenylamino group, a phenylnaphthylamino group, a 4-triphenylamino group, a 3-triphenylamino group, and a 4- [N-phenyl-N- (dibenzofuran-3-yl)] phenylamino group. , 4- [N-Phenyl-N- (dibenzothiophen-3-yl) A group selected from the group consisting of a phenylamino group can be mentioned.

本発明の好ましい化合物は下記の一般式(III)で表される構造を有する。 The preferred compound of the present invention has a structure represented by the following general formula (III).

Figure 0006765389
Figure 0006765389

式中、Ar、Arは同一でも異なっていてもよく、それぞれ独立にC〜C10のアルキル基、置換もしくは無置換のC〜C30のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基、C〜C30のアリールアミノ基またはヘテロアリールアミノ基である。 In the formula, Ar 3 and Ar 4 may be the same or different, and each independently has an alkyl group of C 1 to C 10 , an aryl group of substituted or unsubstituted C 6 to C 30 , and a substituted or unsubstituted C 2. ~ C 30 heteroaryl group, C 6 ~ C 30 arylamino group or heteroarylamino group.

式中、R13〜R24は同一でも異なっていてもよく、それぞれ独立に水素、ハロゲン、置換もしくは無置換のC〜C30のアルキル基、置換もしくは無置換のC〜C30のアルケニル基、置換もしくは無置換のC〜C30のアルキニル基、置換もしくは無置換のC〜C30のシクロアルキル基、置換もしくは無置換のC〜C30のヘテロシクロアルキル基、置換もしくは無置換のC〜C30のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基、C〜C30のアリールアミノ基またはヘテロアリールアミノ基であることが好ましく、あるいは、R13〜R16の隣接する基は互いに接続して環状構造を形成することができ、このような環構造の例は上記R〜Rにおける隣接する基で形成された環構造の例と同じであり、好ましい例も同じである。R17〜R20における隣接する基は互いに接続して環状構造を形成することができ、このような環構造の例は上記R〜Rにおける隣接する基で形成された環構造の例と同じであり、好ましい例も同じである。 In the formula, R 13 to R 24 may be the same or different, respectively, independently hydrogen, halogen, substituted or unsubstituted C 1 to C 30 alkyl groups, substituted or unsubstituted C 2 to C 30 alkenyl. Group, substituted or unsubstituted C 2 to C 30 alkynyl group, substituted or unsubstituted C 3 to C 30 cycloalkyl group, substituted or unsubstituted C 2 to C 30 heterocycloalkyl group, substituted or unsubstituted It is preferably a substituted C 6 to C 30 aryl group, a substituted or unsubstituted C 2 to C 30 heteroaryl group, a C 6 to C 30 aryl amino group or a heteroaryl amino group, or R 13 Adjacent groups of ~ R 16 can be connected to each other to form a cyclic structure, and the example of such a ring structure is the same as the example of the ring structure formed by the adjacent groups in R 1 to R 4 above. Yes, and the preferred examples are the same. Adjacent groups in R 17 to R 20 can be connected to each other to form a cyclic structure, and examples of such a ring structure are the same as those of the ring structure formed by adjacent groups in R 1 to R 4 above. The same is true, and so are the preferred examples.

構造式IIIにおいて、Ar、Arはそれぞれ独立に置換もしくは無置換のC〜C30のアリール基であってもよく、好ましくは、Ar及びArはそれぞれ独立に置換もしくは無置換のC〜C20のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基、C〜C30のアリールアミノ基またはヘテロアリールアミノ基であり、ここのアリール基、ヘテロアリール基、アリールアミノ基またはヘテロアリールアミノ基の具体的な例及び好ましい例としては、上記構造式IIにおける対応の基について挙げられた代表例、好ましい例と同じである。 In Structural Formula III, Ar 3 and Ar 4 may be independently substituted or unsubstituted C 6 to C 30 aryl groups, respectively, and preferably Ar 3 and Ar 4 are independently substituted or unsubstituted, respectively. C 6 to C 20 aryl groups, substituted or unsubstituted C 3 to C 30 heteroaryl groups, C 6 to C 30 arylamino groups or heteroarylamino groups, wherein the aryl groups, heteroaryl groups, Specific examples and preferred examples of the arylamino group or heteroarylamino group are the same as the representative examples and preferred examples given for the corresponding group in the above structural formula II.

本発明による化合物はベンゾシクロオクタテトラエノジインドール構造の母核を有し、代表例として、Arがフェニル基であるジベンゾシクロオクタテトラエノジインドール構造を有する化合物は三重項準位が約2.8と測定される(下記に示す)。またインドール構造そのものは比較的に強い正孔注入性を有し、このような特定の電子雲密度及び分布に基づき、本発明は、有機エレクトロルミネッセンス素子の発光層ホスト材料、正孔注入材料、及び正孔輸送材料に特に好適に用いられる。 The compound according to the present invention has a mother nucleus having a benzocyclooctatetraenodieindole structure, and as a typical example, a compound having a dibenzocyclooctatetraenodieindole structure in which Ar is a phenyl group has a triplet level of about 2. Measured as 8 (shown below). Further, the indole structure itself has a relatively strong hole injection property, and based on such a specific electron cloud density and distribution, the present invention presents the light emitting layer host material, the hole injection material, and the hole injection material of the organic electroluminescence device. It is particularly preferably used as a hole transport material.

Figure 0006765389
Figure 0006765389

また、特定の置換基修飾によって、本発明による化合物のHOMO及びLUMO準位を調整でき、そしてシクロオクタテトラエンの共役系が各基を効果的に連結することで、高効率の正孔注入・正孔輸送性を実現しながら、比較的に高い三重項準位を保証し、一連の高効率の正孔注入・輸送材料を提供することができる。一方、電子吸引基、好ましくはピリジル基、トリアジニル基、キナゾリニル基、キノリル基、オキサゾリル基等の基で修飾することで、材料分子に電子輸送性及び正孔輸送性を同時に持たせることができ、かつ各種の基の数及び置換基の位置を調整することで、高性能の発光層ホスト材料を得ることができる。一部の好ましい化合物は0に近いΔESTのエネルギ差を示すことさえができ、本発明による化合物をホスト材料とする燐光発光OLED素子の動作電圧を著しく低下させ、長動作寿命を実現することができる。 In addition, the HOMO and LUMO levels of the compounds according to the present invention can be adjusted by modifying specific substituents, and the conjugated system of cyclooctatetraene effectively links each group, resulting in highly efficient hole injection. It is possible to provide a series of highly efficient hole injection / transport materials by guaranteeing a relatively high triplet level while realizing hole transportability. On the other hand, by modifying with an electron-withdrawing group, preferably a pyridyl group, a triazinyl group, a quinazolinyl group, a quinolyl group, an oxazolyl group or the like, the material molecule can have both electron transporting property and hole transporting property at the same time. Moreover, by adjusting the number of various groups and the positions of the substituents, a high-performance light emitting layer host material can be obtained. Some of the preferred compounds even can be to show the energy difference of close Delta] E ST to 0, the compounds according to the invention significantly reduce the operating voltage of the phosphorescent OLED device to a host material, it is possible to realize a long operating life it can.

また、本発明による化合物において、式(II)と(III)の化合物の最も主な差別は、対称関係が異なることである。対称関係は、電子雲の分布、成膜時の結晶成長に明らかな影響を与える。これに基づき、本発明者は鋭意に研究した結果、対称関係を調整して適切な置換基を選択することで、本発明による化合物の三重項準位、正孔注入・輸送性を微調整し、さらに必要に応じて電気学特性を最適化することができることを見出し、且つ以下のルールをまとめた。 Moreover, in the compound according to the present invention, the most main discrimination between the compounds of formulas (II) and (III) is that the symmetric relations are different. The symmetry relation clearly affects the distribution of electron clouds and crystal growth during film formation. Based on this, as a result of diligent research, the present inventor fine-tuned the triplet level and hole injection / transportability of the compound according to the present invention by adjusting the symmetric relation and selecting an appropriate substituent. Furthermore, we found that the electrical characteristics can be optimized as needed, and summarized the following rules.

具体的に言えば、本発明による化合物として、一般式II、IIIにおけるAr〜Ar、R〜R24が水素原子または中性(ここでいう中性とは、電子供与と電子吸引の特性が明らかではないことであり、以下も同じである)のアリール基である化合物がより好ましく、中性のアリール基としては、例えばフェニル基、トリル基、ビフェニル基、ナフチル基、フェナントリル基、トリフェニレン基、フルオランテニル基、クリセニル基、フルオレニル基、インデノフルオレニル基などが挙げられる。具体的な化合物の例として、以下のA−1〜A−24の化合物が挙げられるが、これら化合物に限定されたものではない。 Specifically, as the compound according to the present invention, Ar 1 to Ar 4 and R 1 to R 24 in the general formulas II and III are hydrogen atoms or neutral (neutral here means electron donation and electron attraction. Compounds that are aryl groups of (the characteristics are not clear, and the same applies hereinafter) are more preferable, and neutral aryl groups include, for example, phenyl group, tolyl group, biphenyl group, naphthyl group, phenanthryl group, and triphenylene. Examples thereof include a group, a fluoranthenyl group, a chrysenyl group, a fluorenyl group, an indenofluorenyl group and the like. Specific examples of the compounds include, but are not limited to, the following compounds A-1 to A-24.

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

上記の好ましい化合物として、置換基が中性基であるため、原母体のビスインドロシクロオクタテトラエニル基の電子雲密度および分布を明らかに変えずに、置換基の変化により分子の分子量を変えるとともに分子の堆積方式を調整する作用をよく働くことができ、素子の製造過程における蒸着成膜の工程条件、設備種類に対する異なる要求に応じて成膜分子の物理化学的性質を調整することができ、工程自由度が大幅に高まる。分子の対称性、結晶性などを調整することでよりよい蒸着膜を得て、有機エレクトロルミネッセンス素子の発光効率を向上させ、駆動電圧を低下させることができる。 As the above preferred compound, since the substituent is a neutral group, the molecular weight of the molecule is changed by the change of the substituent without clearly changing the electron cloud density and distribution of the bisindrocyclooctatetraenyl group of the progenitor. At the same time, it can work well to adjust the deposition method of molecules, and the physicochemical properties of the deposited molecules can be adjusted according to the process conditions of vapor deposition deposition in the manufacturing process of the device and different requirements for the equipment type. , The degree of process freedom is greatly increased. By adjusting the molecular symmetry, crystallinity, etc., a better vapor-deposited film can be obtained, the luminous efficiency of the organic electroluminescence device can be improved, and the driving voltage can be lowered.

本発明による化合物として、一般式II、IIIにおけるAr〜Ar、R〜R24が水素原子または電子供与性のヘテロアリール基である下記の化合物が好ましい。このようなヘテロアリール基と母核との相互作用によって、本発明による化合物のHOMO準位を微調整することができる。本発明者が鋭意に研究した結果、有機エレクトロルミネッセンス素子において、正孔輸送層の材料のHOMO準位が5.4eV以上であると、発光層ホスト材料のHOMO、準位とよりよく整合して、発光効率を向上させることができる。一般式II、IIIにおけるAr〜Ar、R〜R24が電子供与性のヘテロアリール基である化合物を用いることで、形成される化合物は、HOMO準位が5.4〜5.7程度になるようにすることができて、正孔輸送材料として非常に有利に用いられる。電子供与性のヘテロアリール基として、カルバゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、インドロカルバゾリル基、ベンゾフラノカルバゾリル基、ベンゾチエノカルバゾリル基などが挙げられる。具体的な化合物の例として、以下のB−1〜B−30の化合物が挙げられるが、これら化合物に限定されるものではない。 As the compound according to the present invention, the following compounds in which Ar 1 to Ar 4 and R 1 to R 24 in the general formulas II and III are hydrogen atoms or electron-donating heteroaryl groups are preferable. By such an interaction between the heteroaryl group and the mother nucleus, the HOMO level of the compound according to the present invention can be finely adjusted. As a result of diligent research by the present inventor, in the organic electroluminescence device, when the HOMO level of the material of the hole transport layer is 5.4 eV or more, it is more consistent with the HOMO and level of the light emitting layer host material. , The luminous efficiency can be improved. The compound formed by using a compound in which Ar 1 to Ar 4 and R 1 to R 24 in the general formulas II and III are electron-donating heteroaryl groups has a HOMO level of 5.4 to 5.7. It can be adjusted to a degree and is used very advantageously as a hole transport material. Examples of the electron-donating heteroaryl group include a carbazolyl group, a dibenzofuranyl group, a dibenzothienyl group, an indolocarbazolyl group, a benzofuranocarbazolyl group, and a benzothienocarbazolyl group. Specific examples of the compounds include, but are not limited to, the following compounds B-1 to B-30.

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

本発明による化合物として、一般式II、IIIにおけるAr〜Ar、R〜R24が水素原子またはアリールアミノ基である下記の化合物がさらに好ましい。アリールアミノ基とベンゾシクロオクタテトラエノジインドールの母核との相互作用によって、化合物の電子供与性を著しく向上させ、分子が比較的に低いHOMO準位を有して強い正孔注入性を有するようにすることができる。このような化合物は、正孔注入層の材料として非常に好適に用いられる。ジアリールアミノ基の具体的な例として、ジフェニルアミノ基、フェニルナフチルアミノ基等が挙げられる。Ar〜Ar、R〜R24のうちの1つ以上はさらにトリアリールアミノ基であっても良く、具体的な例として、4−トリフェニルアミノ基、3−トリフェニルアミノ基、4−[N−フェニル−N−(ジベンゾフラン−3−イル)フェニルアミノ基、4−[N−フェニル−N−(ジベンゾチオフェン−3−イル)]フェニルアミノ基からなる群より選ばれた基である。このような正孔注入層材料化合物として好適に用いられる化合物の具体的な例として、以下のC−1〜C−15の化合物が好ましいが、これら化合物に限定されるものではない。 As the compound according to the present invention, the following compounds in which Ar 1 to Ar 4 and R 1 to R 24 in the general formulas II and III are hydrogen atoms or arylamino groups are more preferable. The interaction of the arylamino group with the parent nucleus of the benzocyclooctatetraenodie indole significantly improves the electron donating property of the compound, and the molecule has a relatively low HOMO level and strong hole injectability. Can be done. Such compounds are very well used as materials for hole injection layers. Specific examples of the diarylamino group include a diphenylamino group and a phenylnaphthylamino group. One or more of Ar 1 to Ar 4 and R 1 to R 24 may be further a triarylamino group, and specific examples thereof include a 4-triphenylamino group and a 3-triphenylamino group, 4 -A group selected from the group consisting of [N-phenyl-N- (dibenzofuran-3-yl) phenylamino group, 4- [N-phenyl-N- (dibenzothiophen-3-yl)] phenylamino group. .. Specific examples of the compound preferably used as such a hole injection layer material compound include, but are not limited to, the following compounds C-1 to C-15.

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

本発明による化合物として、一般式II、IIIにおけるAr〜Ar、R〜R24が水素、または電子吸引性の基である下記の化合物が好ましい。ビスインドロシクロオクタテトラエン母体に比較的に強い電子吸引性基が接続されると、本来の正孔注入・輸送性を保持できる他、電子注入・輸送性を付与して、分子に両極輸送性を同時に持たせる。このような化合物は電子と正孔の輸送性にいずれも優れるため、ホスト材料、特に燐光発光素子のホスト材料とされる場合、パランス的なキャリア輸送性によって高輝度での効率ロールオフが避けられて、素子の点灯および動作電圧を低下させ、素子の効率を向上させ、素子の寿命を延長させる。電子吸引基としては、ピリジル基、フェニルピリジル基、キノリニル基、置換キノリニル基、キナゾリニル基、置換キナゾリニル基、キノキサリニル基、置換キノキサリニル基、ピリミジニル基、置換ピリミジニル基、o−フェナントロリニル基、トリアジニル基、置換トリアジニル基、ベンゾイミダゾリル基、オキサゾリル基などが挙げられる。このような好ましい化合物の具体的な例としては、以下のD−1〜D−39で表される化合物が挙げられるが、これら化合物に限定されるものではない。 As the compound according to the present invention, the following compounds in which Ar 1 to Ar 4 and R 1 to R 24 in the general formulas II and III are hydrogen or electron-withdrawing groups are preferable. When a relatively strong electron-withdrawing group is connected to the bisindrocyclooctatetraene matrix, the original hole injection / transportability can be maintained, and electron injection / transportability is imparted to the molecule for bipolar transport. Have sex at the same time. Since such compounds are excellent in electron and hole transportability, efficient roll-off at high brightness can be avoided due to balance-like carrier transportability when used as a host material, particularly a host material for a phosphorescent light emitting device. Therefore, the lighting and operating voltage of the element are lowered, the efficiency of the element is improved, and the life of the element is extended. Examples of the electron-withdrawing group include pyridyl group, phenylpyridyl group, quinolinyl group, substituted quinolinyl group, quinazolinyl group, substituted quinazolinyl group, quinoxalinyl group, substituted quinoxalinyl group, pyrimidinyl group, substituted pyrimidinyl group, o-phenanthrolinyl group and triazinyl. Examples thereof include a group, a substituted triazinyl group, a benzoimidazolyl group, an oxazolyl group and the like. Specific examples of such preferable compounds include, but are not limited to, the following compounds represented by D-1 to D-39.

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

有機エレクトロルミネッセンス素子
本発明は、上記の本発明による新規の化合物を用いた有機エレクトロルミネッセンス素子をさらに提供した。本発明による有機エレクトロルミネッセンス素子の構造は、公知の素子の構造と相違がなく、一般的に第1の電極、第2の電極および前記第1の電極と第2の電極との間に介在する1層以上の有機層を備え、前記有機層が上記有機エレクトロルミネッセンス化合物を含むことを特徴とする。第1の電極と第2の電極との間の有機層としては、通常、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層等の有機層がある。本発明による化合物は正孔注入材料/正孔輸送材料及び/又は発光ホスト材料として用いられることができるが、これらに限定されるものではない。
Organic Electroluminescent Device The present invention further provides an organic electroluminescent device using the above-mentioned novel compound according to the present invention. The structure of the organic electroluminescence element according to the present invention is not different from the structure of known elements, and is generally interposed between the first electrode, the second electrode, and the first electrode and the second electrode. It is characterized by having one or more organic layers, and the organic layer contains the organic electroluminescence compound. The organic layer between the first electrode and the second electrode usually includes an organic layer such as an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, and a hole injection layer. The compounds according to the invention can be used, but are not limited to, as hole injection materials / hole transport materials and / or light emitting host materials.

中では、本発明による有機エレクトロルミネッセンス素子の好ましい例として、化合物A−1〜A−24、D−1〜D−39を発光層ホスト材料として用いる有機エレクトロルミネッセンス素子、化合物B−1〜B−30を正孔輸送層材料として用いる有機エレクトロルミネッセンス素子、及び上記化合物C−1〜C−15を正孔注入層の材料として用いる有機エレクトロルミネッセンス素子が挙げられる。本発明による有機エレクトロルミネッセンス素子は、本発明による化合物の優れた性能により、素子の点灯及び動作電圧を低下させ、素子の効率を向上させ、素子の寿命を延長させることができる。 Among them, as a preferable example of the organic electroluminescence element according to the present invention, the organic electroluminescence element using compounds A-1 to A-24 and D-1 to D-39 as a light emitting layer host material, compounds B-1 to B- Examples thereof include an organic electroluminescence device using 30 as a material for a hole transport layer, and an organic electroluminescence device using the above compounds C-1 to C-15 as a material for a hole injection layer. The organic electroluminescence device according to the present invention can reduce the lighting and operating voltage of the device, improve the efficiency of the device, and extend the life of the device due to the excellent performance of the compound according to the present invention.

実施例
以下の実施例を参照して本発明に係わる代表的な化合物の製造方法を説明した。本発明による化合物は同じ骨格を有するため、当業者はこれら製造方法に基づき、既知の官能基変換方法によって本発明による他の化合物を容易に合成することができる。以下、前記化合物を含む発光素子の製造方法及び発光性質の測定をさらに提供する。
Examples A method for producing a typical compound according to the present invention has been described with reference to the following examples. Since the compounds according to the present invention have the same skeleton, those skilled in the art can easily synthesize other compounds according to the present invention by known functional group conversion methods based on these production methods. Hereinafter, a method for producing a light emitting device containing the compound and measurement of light emitting properties will be further provided.

合成実施例
以下、本発明による代表的な化合物の合成方法を簡単に説明する。
Synthesis Examples Hereinafter, a method for synthesizing a typical compound according to the present invention will be briefly described.

本発明で用いられる各種の化学薬品、例えば石油エーテル、酢酸エチル、n−ヘキサン、トルエン、テトラヒドロフラン、ジクロロメタン、四塩化炭素、アセトン、1,2−ビス(ブロモメチル)ベンゼン、CuI、塩化フタロイル、塩酸フェニルヒドラジン、トリフルオロ酢酸、酢酸、トランス−ジアミノシクロヘキサン、ヨードベンゼン、炭酸セシウム、リン酸カリウム、エチレンジアミン、ベンゾフェノン、シクロペンタノン、9−フルオレノン、ナトリウムtert−ブトキシド、メタンスルホン酸、1−ブロモ−2−メチルナフタレン、o−ジブロモベンゼン、ブチルリチウム、ジブロモエタン、o−ジブロモベンゼン、過酸化ベンゾイル、1−(2−ブロモフェニル)−2−メチルナフタレン、N−ブロモスクシンイミド、塩化メトキシメチルトリメチルホスホニウム、トリス(ジベンジリデンアセトン)ジパラジウム、テトラキス(トリフェニルホスフィン)パラジウム、1,3−ビスジフェニルホスフィノプロパン塩化ニッケル、カルバゾール、3,6−ジメチルカルバゾール、3−(2−ナフチル)−6−フェニルカルバゾール、N−フェニルカルバゾール−3−ボロン酸、9−(2−ナフチル)カルバゾール−3−ボロン酸等の基礎的な化工原料はいずれも国内化工製品市場で購買することができる。 Various chemicals used in the present invention, such as petroleum ether, ethyl acetate, n-hexane, toluene, tetrahydrofuran, dichloromethane, carbon tetrachloride, acetone, 1,2-bis (bromomethyl) benzene, CuI, phthaloyl chloride, phenyl hydrochloride Hydrazine, trifluoroacetic acid, acetic acid, trans-diaminocyclohexane, iodobenzene, cesium carbonate, potassium phosphate, ethylenediamine, benzophenone, cyclopentanone, 9-fluorenone, sodium tert-butoxide, methanesulfonic acid, 1-bromo-2- Methylnaphthalene, o-dibromobenzene, butyllithium, dibromoethane, o-dibromobenzene, benzoyl peroxide, 1- (2-bromophenyl) -2-methylnaphthalene, N-bromosuccinimide, methoxymethyltrimethylphosphonium chloride, tris ( Dibenzylene acetone) dipalladium, tetrakis (triphenylphosphine) palladium, 1,3-bisdiphenylphosphinopropane nickel chloride, carbazole, 3,6-dimethylcarbazole, 3- (2-naphthyl) -6-phenylcarbazole, N All basic chemical raw materials such as −phenylcarbazole-3-boronic acid and 9- (2-naphthyl) carbazole-3-boronic acid can be purchased in the domestic chemical product market.

本発明における中間体及び化合物の分析検出は、ABSCIEX質量分析計(4000QTRAP)及びブルカー核磁気共鳴装置(400M)を用いる。 For the analytical detection of intermediates and compounds in the present invention, an ABSCIEX mass spectrometer (4000QTRAP) and a Bruker nuclear magnetic resonance apparatus (400M) are used.

有機エレクトロルミネッセンス化合物の製造
合成実施例1.中間体M1の合成
Production of Organic Electroluminescent Compound Synthesis Example 1. Synthesis of intermediate M1

Figure 0006765389
Figure 0006765389

1L三つ口フラスコに、1,2−ビス(ブロモメチル)ベンゼン(26.4g,0.1mol)及び無水テトラヒドロフラン(THF)(500mL)を加え、窒素ガス雰囲気下、活性化された亜鉛粉(13g,0.2mol)を加え、2時間反応させてダブル亜鉛試薬を製造した。CuI(2g,10mmol)及び塩化フタロイル(20g,0.1mol)を加え、室温で1時間反応させた後、還流条件下10時間反応させた。反応終了後、飽和塩化アンモニウム水溶液を徐々に加えて反応をクエンチさせた後、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して無水MgSOで乾燥させ、有機溶剤を減圧によって除去してから、残留物をカラム分離し、中間体化合物M(18.5g,収率78.4%)を得た。 To a 1 L three-necked flask, 1,2-bis (bromomethyl) benzene (26.4 g, 0.1 mol) and anhydrous tetrahydrofuran (THF) (500 mL) were added, and activated zinc powder (13 g) was added under a nitrogen gas atmosphere. , 0.2 mol) was added and reacted for 2 hours to prepare a double zinc reagent. CuI (2 g, 10 mmol) and phthaloyl chloride (20 g, 0.1 mol) were added and reacted at room temperature for 1 hour, and then reacted under reflux conditions for 10 hours. After completion of the reaction, a saturated aqueous solution of ammonium chloride was gradually added to quench the reaction, and then the reaction was extracted three times with ethyl acetate (100 mL), the obtained organic phases were combined and dried with anhydrous silyl 4 to prepare an organic solvent. After removal by reduced pressure, the residue was column-separated to obtain Intermediate Compound M (18.5 g, yield 78.4%).

1L三つ口フラスコに、塩酸フェニルヒドラジン(63.6g,0.44mol)、中間体化合物M(47.2g,0.2mol)及びエタノール(400mL)を加え、3min内に濃硫酸を2.1g滴下し、65℃で4時間反応させ、反応終了後、室温まで冷却させ、濾過し、その後に、濾過ケーキをエタノール、石油エーテルでこの順に洗浄し、白色固体M1−1(83g,収率82.9%)を得た。 To a 1 L three-necked flask, add phenylhydrazine hydrochloride (63.6 g, 0.44 mol), intermediate compound M (47.2 g, 0.2 mol) and ethanol (400 mL), and add 2.1 g of concentrated sulfuric acid within 3 min. Dropped, reacted at 65 ° C. for 4 hours, cooled to room temperature after completion of the reaction, filtered, and then the filtered cake was washed with ethanol and petroleum ether in this order, white solid M1-1 (83 g, yield 82). 9.9%) was obtained.

1L三つ口フラスコに、上記M1−1(49g,0.1mol)、酢酸(650g)及びトリフルオロ酢酸(65g)を加え、72℃で15時間還流反応させ、室温まで冷却させ、濾過し、その後に、濾過ケーキを酢酸、石油エーテルでこの順に洗浄し、白色固体である中間体化合物M1(25g,65%)を得た。 M1-1 (49 g, 0.1 mol), acetic acid (650 g) and trifluoroacetic acid (65 g) were added to a 1 L three-necked flask, and the mixture was reflux-reacted at 72 ° C. for 15 hours, cooled to room temperature, filtered, and filtered. Then, the filtered cake was washed with acetic acid and petroleum ether in this order to obtain intermediate compound M1 (25 g, 65%) as a white solid.

M1のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.76 (s, 1H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 3H), 7.40 (s, 1H), 7.19 (d, J = 10.0 Hz, 2H).
NMR spectrum data of M1:
1 1 H NMR (500 MHz, Chloroform) δ 8.76 (s, 1H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 3H), 7.40 (s, 1H), 7.19 (d, J = 10.0 Hz, 2H).

合成実施例2.中間体M2の合成 Synthesis Example 2. Synthesis of intermediate M2

Figure 0006765389
Figure 0006765389

1L三つ口フラスコに、3−ブロモフェニルヒドラジン塩酸塩(92.8g,0.415mol)、ジオン中間体M(49g,0.207mol)及びエタノール(400mL)を加え、撹拌条件下、3min内に濃硫酸を2g滴下し、65℃で4時間反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをエタノール、石油エーテルでこの順に洗浄し、中間体化合物M2−1(122g,91%)を得た。 To a 1 L three-necked flask, add 3-bromophenylhydrazine hydrochloride (92.8 g, 0.415 mol), dione intermediate M (49 g, 0.207 mol) and ethanol (400 mL), and within 3 min under stirring conditions. 2 g of concentrated sulfuric acid was added dropwise and reacted at 65 ° C. for 4 hours. After the reaction was completed, the mixture was cooled to room temperature, filtered, and the filtered cake was washed with ethanol and petroleum ether in this order, and the intermediate compound M2-1 (122 g, 91) was used. %) Was obtained.

1L三つ口フラスコに、化合物M2−1(48.4g,74.8mmol)、酢酸(650g)およびトリフルオロ酢酸(65g,0.57mol)を加え、72℃で15時間還流反応させ、室温まで冷却させ、濾過し、濾過ケーキを酢酸、石油エーテルでこの順に洗浄し、中間体化合物M2−2(35g,85%)を得た。 Compound M2-1 (48.4 g, 74.8 mmol), acetic acid (650 g) and trifluoroacetic acid (65 g, 0.57 mol) were added to a 1 L three-necked flask, and the mixture was reflux-reacted at 72 ° C. for 15 hours until room temperature. The mixture was cooled, filtered, and the filtered cake was washed with acetic acid and petroleum ether in this order to obtain intermediate compound M2-2 (35 g, 85%).

キシレン(100mL)と、M2−2(5.4g,10mmol)と、ヨードベンゼン(5.1g,25mmol)と、CuI(0.9g,5mmol)と、トランス−ジアミノシクロヘキサン(2.1mL,20mmol)と、炭酸セシウム(6.5g,20mmol)とを混合し、3時間還流反応させ、反応終了後、室温まで冷却させ、濾過し、その後、濾過ケーキをジクロロメタンで洗浄し、濾液を合併して乾燥させた後、溶剤を減圧によって除去し、得られた蒸留残留物をカラム分離し(溶離液:体積比1:2のジクロロメタンと石油エーテルとの混合溶液)、白色固体である中間体化合物M2(5.88g,収率85%)を得た。 Xylene (100 mL), M2-2 (5.4 g, 10 mmol), iodobenzene (5.1 g, 25 mmol), CuI (0.9 g, 5 mmol), and trans-diaminocyclohexane (2.1 mL, 20 mmol). And cesium carbonate (6.5 g, 20 mmol) are mixed and subjected to a reflux reaction for 3 hours. After the reaction is completed, the mixture is cooled to room temperature and filtered, after which the filtered cake is washed with dichloromethane, combined with the filtrate and dried. After that, the solvent was removed by reduced pressure, and the obtained distillation residue was column-separated (eluent: a mixed solution of dichloromethane having a volume ratio of 1: 2 and petroleum ether). 5.88 g, yield 85%) was obtained.

M2のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.72 (s, 1H), 8.41 (s, 2H), 8.09 (s, 2H), 7.88 (s, 1H), 7.59 (d, J = 20.0 Hz, 3H), 7.49 (s, 2H), 7.38 (s, 1H).
NMR spectrum data of M2:
1 H NMR (500 MHz, Chloroform) δ 8.72 (s, 1H), 8.41 (s, 2H), 8.09 (s, 2H), 7.88 (s, 1H), 7.59 (d, J = 20.0 Hz, 3H), 7.49 (s, 2H), 7.38 (s, 1H).

合成実施例3.中間体M3の合成 Synthesis Example 3. Synthesis of intermediate M3

Figure 0006765389
Figure 0006765389

1L三つ口フラスコに、4−ブロモフェニルヒドラジン塩酸塩(92.8g,0.415mol)、ジオン中間体M(49g,0.207mol)及びエタノール(400mL)を加え、撹拌条件下、3min内に濃硫酸を2g滴下し、65℃で4時間反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをエタノール、石油エーテルでこの順に洗浄し、中間体化合物M3−1(113g,収率84%)を得た。 4-Bromophenylhydrazine hydrochloride (92.8 g, 0.415 mol), dione intermediate M (49 g, 0.207 mol) and ethanol (400 mL) were added to a 1 L three-necked flask, and the mixture was placed in 3 min under stirring conditions. 2 g of concentrated sulfuric acid was added dropwise, and the mixture was reacted at 65 ° C. for 4 hours. After the reaction was completed, the mixture was cooled to room temperature, filtered, and the filtered cake was washed with ethanol and petroleum ether in this order, and the intermediate compound M3-1 (113 g, yield) was collected. A rate of 84%) was obtained.

1L三つ口フラスコに、化合物M3−1(65g,0.1mol)、酢酸(650g)およびトリフルオロ酢酸(65g,0.57mol)を加え、72℃で15時間還流反応させ、室温まで冷却させ、濾過し、濾過ケーキを酢酸、石油エーテルでこの順に洗浄し、中間体化合物M3−2(42g,収率77%)を得た。 Compound M3-1 (65 g, 0.1 mol), acetic acid (650 g) and trifluoroacetic acid (65 g, 0.57 mol) were added to a 1 L three-necked flask, and the mixture was subjected to a reflux reaction at 72 ° C. for 15 hours and cooled to room temperature. , And the filtered cake was washed with acetic acid and petroleum ether in this order to obtain intermediate compound M3-2 (42 g, yield 77%).

キシレン(100mL)と、M3−2(5.4g,10mmol)と、ヨードベンゼン(5.1g,25mmol)と、CuI(0.9g,5mmol)と、トランス−ジアミノシクロヘキサン(2.1mL,20mmol)と、炭酸セシウム(6.5g,20mmol)とを混合し、3時間還流反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをジクロロメタンで洗浄し、濾液を合併して乾燥させた後、溶剤を減圧によって除去し、得られた蒸留残留物をカラム分離し(溶離液:体積比1:2のジクロロメタンと石油エーテルとの混合溶液)、白色固体である中間体化合物M3(4.92g,収率71%)を得た。 Xylene (100 mL), M3-2 (5.4 g, 10 mmol), iodobenzene (5.1 g, 25 mmol), CuI (0.9 g, 5 mmol), and trans-diaminocyclohexane (2.1 mL, 20 mmol). And cesium carbonate (6.5 g, 20 mmol) were mixed and subjected to a reflux reaction for 3 hours. After the reaction was completed, the mixture was cooled to room temperature, filtered, the filtered cake was washed with dichloromethane, and the filtrate was mixed and dried. After that, the solvent was removed by reduced pressure, and the obtained distillation residue was column-separated (eluent: a mixed solution of dichloromethane having a volume ratio of 1: 2 and petroleum ether), and the intermediate compound M3 (4. 92 g, yield 71%) was obtained.

M3のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.42 (s, 1H), 8.10 (s, 1H), 7.89 (s, 1H), 7.62 (s, 1H), 7.58 (s, 1H), 7.50 (s, 1H), 7.43 (d, J = 17.9 Hz, 1H).
NMR spectrum data of M3:
1 H NMR (500 MHz, Chloroform) δ 8.42 (s, 1H), 8.10 (s, 1H), 7.89 (s, 1H), 7.62 (s, 1H), 7.58 (s, 1H), 7.50 (s, 1H) ), 7.43 (d, J = 17.9 Hz, 1H).

合成実施例4.中間体M4の合成 Synthesis Example 4. Synthesis of intermediate M4

Figure 0006765389
Figure 0006765389

フェニルヒドラジン塩酸塩を等当量の2−ナフチルヒドラジン塩酸塩に変えた以外、合成実施例1と同じの合成方法を用い、3ステップ合成反応によって白色固体である中間体M4(34.2g,最後のステップでの合成収率が71%である)を得た。 Intermediate M4 (34.2 g, final) which is a white solid by a 3-step synthesis reaction using the same synthesis method as in Synthesis Example 1 except that the phenylhydrazine hydrochloride was changed to an equal amount of 2-naphthylhydrazine hydrochloride. The synthetic yield in the step is 71%).

M4のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.76 (s, 1H), 8.42 (s, 2H), 8.30 (d, J = 16.0 Hz, 2H), 8.14 (s, 1H), 8.10 (s, 2H), 7.84 (s, 1H), 7.75 (s, 1H), 7.48 (s, 1H).
NMR spectrum data of M4:
1 H NMR (500 MHz, Chloroform) δ 8.76 (s, 1H), 8.42 (s, 2H), 8.30 (d, J = 16.0 Hz, 2H), 8.14 (s, 1H), 8.10 (s, 2H), 7.84 (s, 1H), 7.75 (s, 1H), 7.48 (s, 1H).

合成実施例5.中間体M5の合成 Synthesis Example 5. Synthesis of intermediate M5

Figure 0006765389
Figure 0006765389

フェニルヒドラジン塩酸塩を等当量の1−ナフチルヒドラジン塩酸塩に変えた以外、合成実施例1と同じの合成方法を用い、3ステップ合成反応によって白色固体である中間体M5(31g,最後のステップでの合成収率が67%である)を得た。 Intermediate M5 (31 g, in the last step) which is a white solid by a three-step synthesis reaction using the same synthesis method as in Synthesis Example 1 except that the phenylhydrazine hydrochloride was changed to an equal amount of 1-naphthylhydrazine hydrochloride. The synthetic yield is 67%).

M5のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 9.60 (s, 1H), 8.51 (s, 1H), 8.42 (s, 2H), 8.11 (d, J = 5.0 Hz, 3H), 7.72 (s, 1H), 7.67 (s, 1H), 7.63 (s, 1H), 7.08 (s, 1H).
NMR spectrum data of M5:
1 H NMR (500 MHz, Chloroform) δ 9.60 (s, 1H), 8.51 (s, 1H), 8.42 (s, 2H), 8.11 (d, J = 5.0 Hz, 3H), 7.72 (s, 1H), 7.67 (s, 1H), 7.63 (s, 1H), 7.08 (s, 1H).

合成実施例6.中間体M6の合成 Synthesis Example 6. Synthesis of intermediate M6

Figure 0006765389
Figure 0006765389

1L三つ口フラスコに、塩酸フェニルヒドラジン(60g,0.415mol)、ジベンゾ[a,e]−5,11−シクロオクタジエン(6H,12H) −ジオン(49g,0.207mol)及びエタノール(400mL)を加え、撹拌条件下、3min内に濃硫酸を2.1g滴下し、65℃で4時間反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをエタノール、石油エーテルでこの順に洗浄し、固体M6−1(56g)を得た。 In a 1 L three-necked flask, phenylhydrazine hydrochloride (60 g, 0.415 mol), dibenzo [a, e] -5,11-cyclooctadiene (6H, 12H) -dione (49 g, 0.207 mol) and ethanol (400 mL). ) Is added, 2.1 g of concentrated sulfuric acid is added dropwise within 3 min under stirring conditions, and the reaction is carried out at 65 ° C. for 4 hours. After the reaction is completed, the mixture is cooled to room temperature, filtered, and the filtered cake is filtered with ethanol and petroleum ether in this order. The mixture was washed to obtain solid M6-1 (56 g).

1L三つ口フラスコに、化合物M6−1(48g)、酢酸(650g)およびトリフルオロ酢酸(65g)を加え、72℃で15時間還流反応させ、室温まで冷却させ、濾過し、濾過ケーキを酢酸、石油エーテルでこの順に洗浄し、化合物M6(29g,65%)を得た。 Compound M6-1 (48 g), acetic acid (650 g) and trifluoroacetic acid (65 g) are added to a 1 L three-necked flask, refluxed at 72 ° C. for 15 hours, cooled to room temperature, filtered, and the filtered cake is acetic acid. , Petroleum ether was washed in this order to obtain compound M6 (29 g, 65%).

M6のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.75 (s, 1H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 3H), 7.40 (s, 1H), 7.19 (d, J = 10.0 Hz, 2H).
NMR spectrum data of M6:
1 1 H NMR (500 MHz, Chloroform) δ 8.75 (s, 1H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 3H), 7.40 (s, 1H), 7.19 (d, J = 10.0 Hz, 2H).

合成実施例7.中間体M7の合成 Synthesis Example 7. Synthesis of intermediate M7

Figure 0006765389
Figure 0006765389

中間体M6(38.6g,0.1mol)と、1−ブロモ−4−ヨードベンゼン(56.7g,0.2mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、エチレンジアミン(2.3mL,34.3mmol)と、トルエン(500mL)とを混合し、還流条件下1日撹拌し、反応終了後、室温まで冷却させ、有機相を酢酸エチルで抽出して減圧蒸留し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、化合物(48.3g,70.1%)を得た。 Intermediate M6 (38.6 g, 0.1 mol), 1-bromo-4-iodobenzene (56.7 g, 0.2 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 ( 21.8 g, 102.9 mmol), ethylenediamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed, stirred under reflux conditions for 1 day, cooled to room temperature after completion of the reaction, and the organic phase. Was extracted with ethyl acetate and distilled under reduced pressure, and the obtained distillation residue was column-separated (eluent: dichloromethane / hexane) to obtain a compound (48.3 g, 70.1%).

M7のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.47 (d, J = 64.9 Hz, 46H), 8.38 - 8.37 (m, 1H), 8.08 (s, 26H), 7.77 (s, 33H), 7.55 (d, J = 49.9 Hz, 46H), 7.14 (s, 9H), 7.09 (s, 13H).
NMR spectrum data of M7:
1 1 H NMR (500 MHz, Chloroform) δ 8.47 (d, J = 64.9 Hz, 46H), 8.38 --8.37 (m, 1H), 8.08 (s, 26H), 7.77 (s, 33H), 7.55 (d, J) = 49.9 Hz, 46H), 7.14 (s, 9H), 7.09 (s, 13H).

合成実施例8.中間体M8の合成 Synthesis Example 8. Synthesis of intermediate M8

Figure 0006765389
Figure 0006765389

塩化フタロイルを等当量の4−臭塩化フタロイルに変えた以外、合成実施例1と同じの合成方法を用い、3ステップ合成反応によって白色固体である中間体M8(34.6g,3ステップの合計収率が75%である)を得た。 Intermediate M8 (34.6 g, total yield of 3 steps) which is a white solid by a 3-step synthesis reaction using the same synthesis method as in Synthesis Example 1 except that phthaloyl chloride was changed to an equal amount of 4-odor phthaloyl chloride. The rate is 75%).

M8のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.76 (d, J = 15.0 Hz, 2H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 4H), 7.38 (t, J= 27.5 Hz, 4H), 7.19 (d, J = 10.0 Hz, 4H), 7.11 (s, 1H).
NMR spectrum data of M8:
1 1 H NMR (500 MHz, Chloroform) δ 8.76 (d, J = 15.0 Hz, 2H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 4H), 7.38 (t, J = 27.5 Hz, 4H), 7.19 (d, J = 10.0 Hz, 4H), 7.11 (s, 1H).

合成実施例9.中間体M9の合成 Synthesis Example 9. Synthesis of intermediate M9

Figure 0006765389
Figure 0006765389

ジベンゾ[a,e]−5,11−シクロオクタジエン(6H、12H)−ジオンを等当量の2−ブロモジベンゾ[a,e]−5,11−シクロオクタジエン(6H,12H)−ジオンに変えた以外、合成実施例6と同じの合成方法を用い、2ステップ合成反応によって白色固体である中間体M9(37g,2ステップの合計収率が80%である)を得た。 Dibenzo [a, e] -5,11-cyclooctadiene (6H, 12H) -dione to equal equivalent 2-bromodibenzo [a, e] -5,11-cyclooctadiene (6H, 12H) -dione Using the same synthesis method as in Synthesis Example 6 except for the change, intermediate M9 (37 g, total yield of 2 steps is 80%) which is a white solid was obtained by a 2-step synthesis reaction.

M9のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.74 (d, J = 8.5 Hz, 2H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 4H), 7.38 (t, J= 27.5 Hz, 4H), 7.19 (d, J = 10.0 Hz, 4H), 7.11 (s, 1H).
NMR spectrum data of M9:
1 1 H NMR (500 MHz, Chloroform) δ 8.74 (d, J = 8.5 Hz, 2H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 4H), 7.38 (t, J = 27.5 Hz, 4H), 7.19 (d, J = 10.0 Hz, 4H), 7.11 (s, 1H).

合成実施例10.中間体M10の合成 Synthesis Example 10. Synthesis of intermediate M10

Figure 0006765389
Figure 0006765389

o−ジブロモベンジルを等当量の4−ブロモ−o−ジブロモベンジルに変えた以外、合成実施例1と同じの合成方法を用い、3ステップ合成反応によって白色固体である中間体M10(32g,3ステップの合計収率が71%である)を得た。 Intermediate M10 (32 g, 3 steps) which is a white solid by a 3-step synthesis reaction using the same synthesis method as in Synthesis Example 1 except that o-dibromobenzyl was changed to an equal amount of 4-bromo-o-dibromobenzyl. The total yield is 71%).

M10のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.76 (d, J = 8.5 Hz, 2H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 4H), 7.38 (t, J= 27.5 Hz, 4H), 7.19 (d, J = 10.0 Hz, 4H), 7.11 (s, 1H).
NMR spectrum data of M10:
1 1 H NMR (500 MHz, Chloroform) δ 8.76 (d, J = 8.5 Hz, 2H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 4H), 7.38 (t, J = 27.5 Hz, 4H), 7.19 (d, J = 10.0 Hz, 4H), 7.11 (s, 1H).

合成実施例11.化合物A−1の合成 Synthesis Example 11. Synthesis of compound A-1

Figure 0006765389
Figure 0006765389

中間体M6(38.2g,0.1mol)と、ブロモベンゼン(31.5g,0.2mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、エチレンジアミン(2.3mL,34.3mmol)と、トルエン(500mL)とを混合し、還流条件下1日撹拌し、反応終了後、室温まで冷却させ、有機相を酢酸エチルで抽出して減圧蒸留し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、化合物A−1(37.3g,70.1%)を得た。 Intermediate M6 (38.2 g, 0.1 mol), bromobenzene (31.5 g, 0.2 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 (21.8 g, 102.). 9 mmol), ethylenediamine (2.3 mL, 34.3 mmol) and toluene (500 mL) were mixed, stirred under reflux conditions for 1 day, cooled to room temperature after completion of the reaction, and the organic phase was extracted with ethyl acetate. Distillation was carried out under reduced pressure, and the obtained distillation residue was column-separated (eluent: dichloromethane / hexane) to obtain Compound A-1 (37.3 g, 70.1%).

A−1のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.54 (s, 4H), 8.41 (s, 6H), 8.09 (s, 6H), 7.59 (d, J = 20.0 Hz, 11H), 7.50 (d, J = 10.0 Hz, 10H), 7.15 (s, 2H), 7.10 (s, 3H).
NMR spectrum data of A-1:
1 1 H NMR (500 MHz, Chloroform) δ 8.54 (s, 4H), 8.41 (s, 6H), 8.09 (s, 6H), 7.59 (d, J = 20.0 Hz, 11H), 7.50 (d, J = 10.0 Hz, 10H), 7.15 (s, 2H), 7.10 (s, 3H).

合成実施例12.化合物A−2の合成 Synthesis Example 12. Synthesis of compound A-2

Figure 0006765389
Figure 0006765389

ブロモベンゼンを等当量のp−ブロモトルエンに変えた以外、実施例11における化合物A−1と同じの合成方法を用い、反応完成後、処理して白色固体(45.6g,収率81%)を得た。 A white solid (45.6 g, yield 81%) was treated after completion of the reaction using the same synthesis method as compound A-1 in Example 11 except that bromobenzene was converted to an equal amount of p-bromotoluene. Got

合成実施例13.化合物A−3の合成 Synthesis Example 13. Synthesis of compound A-3

Figure 0006765389
Figure 0006765389

ブロモベンゼンを等当量の2−ブロモナフタレンに変えた以外、実施例11における化合物A−1と同じの合成方法を用い、反応完成後、処理して白色固体(48.3g,収率76%)を得た。 A white solid (48.3 g, yield 76%) was treated after completion of the reaction using the same synthesis method as compound A-1 in Example 11 except that bromobenzene was converted to an equivalent amount of 2-bromonaphthalene. Got

合成実施例14.化合物A−4の合成 Synthesis Example 14. Synthesis of compound A-4

Figure 0006765389
Figure 0006765389

ブロモベンゼンを等当量の3−ブロモフェナントレンに変えた以外、実施例11における化合物A−1と同じの合成方法を用い、反応完成後、白色固体(58.8g,収率80%)を得た。 A white solid (58.8 g, yield 80%) was obtained after completion of the reaction using the same synthesis method as compound A-1 in Example 11 except that bromobenzene was converted to an equal equivalent amount of 3-bromophenanthrene. ..

A−4のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 9.40 (s, 1H), 8.84 (s, 1H), 8.55 (s, 1H), 8.42 (s, 2H), 8.25 (s, 1H), 8.12 (d, J= 18.2 Hz, 3H), 7.90 (s, 1H), 7.75 (s, 2H), 7.68 (s, 1H), 7.63 (s, 1H), 7.52 (s, 1H), 7.16 (s, 1H), 7.11 (s, 1H).
NMR spectrum data of A-4:
1 H NMR (500 MHz, Chloroform) δ 9.40 (s, 1H), 8.84 (s, 1H), 8.55 (s, 1H), 8.42 (s, 2H), 8.25 (s, 1H), 8.12 (d, J) = 18.2 Hz, 3H), 7.90 (s, 1H), 7.75 (s, 2H), 7.68 (s, 1H), 7.63 (s, 1H), 7.52 (s, 1H), 7.16 (s, 1H), 7.11 (s, 1H).

合成実施例15.化合物A−5の合成 Synthesis Example 15. Synthesis of compound A-5

Figure 0006765389
Figure 0006765389

ブロモベンゼンを等当量の8−ブロモフルオランテンに変えた以外、実施例11における化合物A−1と同じの合成方法を用い、黄色固体(52.3g,収率67%)を得た。 A yellow solid (52.3 g, 67% yield) was obtained using the same synthetic method as compound A-1 in Example 11 except that bromobenzene was converted to an equal equivalent of 8-bromofluorantene.

合成実施例16.化合物A−6の合成 Synthesis Example 16. Synthesis of compound A-6

Figure 0006765389
Figure 0006765389

ブロモベンゼンを等当量の3−ブロモフルオランテンに変えた以外、実施例11における化合物A−1と同じの合成方法を用い、後処理して淡黄色固体(49.5g,収率60%)を得た。 A pale yellow solid (49.5 g, 60% yield) was post-treated using the same synthetic method as compound A-1 in Example 11 except that bromobenzene was converted to an equal equivalent of 3-bromofluoranthene. Got

A−6のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.55 (s, 13H), 8.42 (s, 46H), 8.32 (s, 37H), 8.10 (s, 25H), 8.02 (d, J = 49.0 Hz, 7H), 7.94 (s, 14H), 7.75 (d, J= 55.0 Hz, 28H), 7.54 (d, J = 15.0 Hz, 27H), 7.16 (s, 8H), 7.11 (s, 11H).
NMR spectrum data of A-6:
1 1 H NMR (500 MHz, Chloroform) δ 8.55 (s, 13H), 8.42 (s, 46H), 8.32 (s, 37H), 8.10 (s, 25H), 8.02 (d, J = 49.0 Hz, 7H), 7.94 (s, 14H), 7.75 (d, J = 55.0 Hz, 28H), 7.54 (d, J = 15.0 Hz, 27H), 7.16 (s, 8H), 7.11 (s, 11H).

合成実施例17.化合物A−7の合成 Synthesis Example 17. Synthesis of compound A-7

Figure 0006765389
Figure 0006765389

ブロモベンゼンを等当量の3−ブロモクリセンに変えた以外、実施例11における化合物A−1と同じの合成方法を用い、後処理して淡黄色固体(53.4g,収率64%)を得た。 A pale yellow solid (53.4 g, 64% yield) was obtained by post-treatment using the same synthetic method as compound A-1 in Example 11 except that bromobenzene was converted to an equal equivalent amount of 3-bromoclycene. ..

合成実施例18.化合物A−8の合成 Synthesis Example 18. Synthesis of compound A-8

Figure 0006765389
Figure 0006765389

ブロモベンゼンを等当量の2−ブロモ−9,9−ジメチルフルオレンに変えた以外、実施例11における化合物A−1と同じの合成方法を用い、淡黄色固体(60.6g,収率79%)を得た。 A pale yellow solid (60.6 g, 79% yield) using the same synthetic method as compound A-1 in Example 11 except that bromobenzene was converted to an equal equivalent of 2-bromo-9,9-dimethylfluorene. Got

合成実施例19.化合物A−9の合成
ブロモベンゼンを等当量の3−ブロモ−9,9−ジメチルフルオレンに変えた以外、実施例11における化合物A−1と同じの合成方法を用い、淡黄色固体(54g,収率76%)を得た。
Synthesis Example 19. Synthesis of Compound A-9 A pale yellow solid (54 g, yield) using the same synthesis method as Compound A-1 in Example 11 except that bromobenzene was converted to an equal equivalent of 3-bromo-9,9-dimethylfluorene. The rate was 76%).

A−9のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.55 (s, 2H), 8.42 (s, 4H), 8.19 (s, 2H), 8.10 (s, 4H), 7.98 (d, J = 1.4 Hz, 1H), 7.94 (d, J = 37.7 Hz, 3H), 7.78 (s, 2H), 7.57 (s, 2H), 7.52 (s, 2H), 7.34 (s, 2H), 7.24 (s, 2H), 7.16 (s, 2H), 7.11 (s, 2H), 1.69 (s, 12H).
NMR spectrum data of A-9:
1 H NMR (500 MHz, Chloroform) δ 8.55 (s, 2H), 8.42 (s, 4H), 8.19 (s, 2H), 8.10 (s, 4H), 7.98 (d, J = 1.4 Hz, 1H), 7.94 (d, J = 37.7 Hz, 3H), 7.78 (s, 2H), 7.57 (s, 2H), 7.52 (s, 2H), 7.34 (s, 2H), 7.24 (s, 2H), 7.16 (s) , 2H), 7.11 (s, 2H), 1.69 (s, 12H).

合成実施例20.化合物A−10の合成
ブロモベンゼンを等当量の3−ブロモ−11,11−ジメチルベンゾ[b]フルオレンに変えた以外、実施例11における化合物A−1と同じの合成方法を用い、黄色固体(47.7g,収率55%)を得た。
Synthesis Example 20. Synthesis of Compound A-10 A yellow solid (using the same synthesis method as Compound A-1 in Example 11 except that bromobenzene was converted to an equal amount of 3-bromo-11,11-dimethylbenzo [b] fluorene. 47.7 g, yield 55%) was obtained.

合成実施例21.化合物A−11の合成 Synthesis Example 21. Synthesis of compound A-11

Figure 0006765389
Figure 0006765389

中間体M1(38.2g,0.1mol)と、ブロモベンゼン(31.5g,0.2mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、エチレンジアミン(2.3mL,34.3mmol)と、トルエン(500mL)とを混合し、還流条件下1日撹拌し、室温まで冷却させ、脱イオン水を加えて反応をクエンチさせる。上記反応系を酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して無水MgSOで乾燥させ、濾過し、その後、有機相を減圧して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、白色化合物A−11(37.4g,収率70%)を得た。 Intermediate M1 (38.2 g, 0.1 mol), bromobenzene (31.5 g, 0.2 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 (21.8 g, 102.). 9 mmol), ethylenediamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed, stirred under reflux conditions for 1 day, cooled to room temperature and deionized water is added to quench the reaction. The reaction system was extracted 3 times with ethyl acetate (100 mL), dried over anhydrous MgSO 4 merged organic phase obtained, filtered, then the organic phase under reduced pressure to remove the solvent, resulting The distillation residue was column-separated (eluent: dichloromethane / hexane) to give white compound A-11 (37.4 g, 70% yield).

合成実施例22.化合物A−12の合成 Synthesis Example 22. Synthesis of compound A-12

Figure 0006765389
Figure 0006765389

中間体M1(38.2g,0.1mol)と、4−ブロモビフェニル(46.6g,0.2mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、エチレンジアミン(2.3mL,34.3mmol)とトルエン(500mL)とを混合し、還流条件下1日撹拌し、室温まで冷却させ、脱イオン水を加えて反応をクエンチさせる。上記反応系を酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して無水MgSOで乾燥させ、濾過し、その後、有機相を減圧して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、白色化合物A−12(52.2g,収率76%)を得た。 Intermediate M1 (38.2 g, 0.1 mol), 4-bromobiphenyl (46.6 g, 0.2 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 (21.8 g, 21.8 g, 102.9 mmol), ethylenediamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed, stirred under reflux conditions for 1 day, cooled to room temperature and deionized water is added to quench the reaction. The reaction system was extracted 3 times with ethyl acetate (100 mL), dried over anhydrous MgSO 4 merged organic phase obtained, filtered, then the organic phase under reduced pressure to remove the solvent, resulting The distillation residue was column separated (eluent: dichloromethane / hexane) to give white compound A-12 (52.2 g, yield 76%).

合成実施例22.化合物A−13の合成 Synthesis Example 22. Synthesis of compound A-13

Figure 0006765389
Figure 0006765389

中間体M1(38.2g,0.1mol)と、2−ブロモナフタレン(41.4g,0.2mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、エチレンジアミン(2.3mL,34.3mmol)とトルエン(500mL)とを混合し、還流条件下1日撹拌し、室温まで冷却させ、脱イオン水を加えて反応をクエンチさせる。上記反応系を酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して無水MgSOで乾燥させ、濾過し、その後、有機相を減圧して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、白色化合物A−13(43.2g,収率68%)を得た。 Intermediate M1 (38.2 g, 0.1 mol), 2-bromonaphthalene (41.4 g, 0.2 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 (21.8 g, 21.8 g, 102.9 mmol), ethylenediamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed, stirred under reflux conditions for 1 day, cooled to room temperature and deionized water is added to quench the reaction. The reaction system was extracted 3 times with ethyl acetate (100 mL), dried over anhydrous MgSO 4 merged organic phase obtained, filtered, then the organic phase under reduced pressure to remove the solvent, resulting The distillation residue was column separated (eluent: dichloromethane / hexane) to give white compound A-13 (43.2 g, yield 68%).

合成実施例23.化合物A−14の合成 Synthesis Example 23. Synthesis of compound A-14

Figure 0006765389
Figure 0006765389

中間体M2(6.92g,10mmol)と、フェニルボロン酸(3.05g,25mmol)と、Pd(PPh(0.58g,0.5mmol)と、NaCO(5.3g,50mmol)と、トルエン(60mL)と、EtOH(20mL)と、蒸留水(20mL)とを混合した後、還流条件下、2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相をMgSOで乾燥させ、回転蒸発器によって溶剤を除去し、溶剤が除去された残留物をカラム分離し、白色固体である化合物A−14(5.63g,84%)を得た。 Intermediate M2 (6.92 g, 10 mmol), phenylboronic acid (3.05 g, 25 mmol), Pd (PPh 3 ) 4 (0.58 g, 0.5 mmol), Na 2 CO 3 (5.3 g, 5.3 g, 50 mmol), toluene (60 mL), EtOH (20 mL), and distilled water (20 mL) were mixed and then stirred under reflux conditions for 2 hours for reaction. After the reaction is completed, the reaction system is washed with distilled water, extracted three times with ethyl acetate (100 mL), the obtained organic phases are combined, the organic phase is dried with sulfonyl 4 , and the solvent is removed by a rotary evaporator. The residue was removed and the solvent-removed residue was column-separated to give compound A-14 (5.63 g, 84%) as a white solid.

A−14のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.42 (s, 21H), 8.38 - 7.82 (m, 51H), 8.07 - 7.82 (m, 2H), 7.79 (s, 14H), 7.75 (s, 23H), 7.62 (s, 20H), 7.58 (s, 15H), 7.49 (d, J = 5.0 Hz, 46H), 7.41 (s, 7H).
NMR spectrum data of A-14:
1 1 H NMR (500 MHz, Chloroform) δ 8.42 (s, 21H), 8.38 --7.82 (m, 51H), 8.07 --7.82 (m, 2H), 7.79 (s, 14H), 7.75 (s, 23H), 7.62 (s, 20H), 7.58 (s, 15H), 7.49 (d, J = 5.0 Hz, 46H), 7.41 (s, 7H).

合成実施例24.化合物A−15の合成
ブロモベンゼンを等当量の2−ブロモ−9,9−ジメチルフルオレンに変えた以外、実施例21と同じ方法を用い、反応完成後、白色固体である化合物A−15(59.8g,收率78%)を得た。
Synthesis Example 24. Synthesis of Compound A-15 Compound A-15 (59), which is a white solid after completion of the reaction, is used in the same manner as in Example 21 except that bromobenzene is converted to an equivalent amount of 2-bromo-9,9-dimethylfluorene. 8.8 g, yield 78%) was obtained.

合成実施例25.化合物A−16の合成 Synthesis Example 25. Synthesis of compound A-16

Figure 0006765389
Figure 0006765389

雰囲気下、三つ口フラスコに、ヨードベンゼン(22g,0.11mol)、中間体M8(46.1g,0.1mol)、塩化第一銅(2g,20mmol)、水和1,10−フェナントロリン(4g,20mmol)、水酸化カリウム(16.8g,0.3mol)及びキシレン(300mL)を加えた。反応系を20h還流反応させ、反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相をMgSOで乾燥させ、回転蒸発器によって溶剤を除去し、溶剤が除去された残留物をカラム分離し、白色固体である中間体化合物A−16−1(52.3g,86%)を得た。 N 2 atmosphere, to a three-necked flask, iodobenzene (22 g, 0.11 mol), intermediate M8 (46.1 g, 0.1 mol), cuprous chloride (2 g, 20 mmol), hydrated 1,10 Phenanthroline (4 g, 20 mmol), potassium hydroxide (16.8 g, 0.3 mol) and xylene (300 mL) were added. The reaction was 20h reflux the reaction, after the reaction completion, after washing the reaction with distilled water, and extracted 3 times with ethyl acetate (100 mL), and merging the resulting organic phase the organic phase is dried over MgSO 4 The solvent was removed by a rotary evaporator, and the residue from which the solvent was removed was column-separated to obtain intermediate compound A-16-1 (52.3 g, 86%) as a white solid.

中間体A−16−1(6.14g,10mmol)と、ビフェニルボロン酸(22g,11mmol)と、Pd(PPh(0.58g,0.5mmol)と、NaCO(5.3g,50mmol)と、トルエン(60mL)と、EtOH(20mL)と、蒸留水(20mL)とを混合し、還流条件下、2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相をMgSOで乾燥させ、回転蒸発器によって溶剤を除去し、溶剤が除去された残留物をカラム分離し、白色固体である中間体化合物A−16(5.97g,87%)を得た。 Intermediate A-16-1 (6.14 g, 10 mmol), biphenylboronic acid (22 g, 11 mmol), Pd (PPh 3 ) 4 (0.58 g, 0.5 mmol), Na 2 CO 3 (5. 3 g, 50 mmol), toluene (60 mL), EtOH (20 mL) and distilled water (20 mL) were mixed and reacted under reflux conditions with stirring for 2 hours. After the reaction is completed, the reaction system is washed with distilled water, extracted three times with ethyl acetate (100 mL), the obtained organic phases are combined, the organic phase is dried with sulfonyl 4 , and the solvent is removed by a rotary evaporator. The residue from which the solvent had been removed was removed by column separation to obtain intermediate compound A-16 (5.97 g, 87%) which was a white solid.

合成実施例26.化合物A−17の合成
中間体M8を等当量の中間体M9に変え、ビフェニルボロン酸を等当量の2−トリフェニレニルボロン酸に変えた以外、合成実施例25と同じの合成方法を用い、反応終了後、白色固体である化合物A−17を得た。
Synthesis Example 26. Synthesis of Compound A-17 Using the same synthesis method as in Synthesis Example 25, except that the intermediate M8 was converted to an equivalent amount of intermediate M9 and the biphenylboronic acid was converted to an equal amount of 2-triphenylenylboronic acid. After completion of the reaction, compound A-17, which was a white solid, was obtained.

合成実施例27.化合物A−18の合成 Synthesis Example 27. Synthesis of compound A-18

Figure 0006765389
Figure 0006765389

1L三つ口フラスコに、3−フェニル塩酸フェニルヒドラジン(91.6g,0.415mol)、ジベンゾ[a,e]−5,11−シクロオクタジエン(6H,12H)−ジオン(49g,0.207mol)及びエタノール(400mL)を加え、撹拌条件下、3min内に濃硫酸を2g滴下し、65℃で4時間反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをエタノール、石油エーテルでこの順に洗浄し、化合物A−18−1(120g,90%)を得た。 In a 1 L three-necked flask, phenylhydrazine 3-phenyl hydrochloride (91.6 g, 0.415 mol), dibenzo [a, e] -5,11-cyclooctadiene (6H, 12H) -dione (49 g, 0.207 mol) ) And ethanol (400 mL) are added, and under stirring conditions, 2 g of concentrated sulfuric acid is added dropwise within 3 minutes, and the reaction is carried out at 65 ° C. for 4 hours. In this order, compound A-18-1 (120 g, 90%) was obtained.

1L三つ口フラスコに、化合物C−19−1(48g,74.8mmol)、酢酸(650g)およびトリフルオロ酢酸(65g,0.57mol)を加え、72℃で15時間還流反応させ、室温まで冷却させ、濾過し、濾過ケーキを酢酸、石油エーテルでこの順に洗浄し、化合物A−18−2(33g,82%)を得た。 Compound C-19-1 (48 g, 74.8 mmol), acetic acid (650 g) and trifluoroacetic acid (65 g, 0.57 mol) were added to a 1 L three-necked flask, and the mixture was refluxed at 72 ° C. for 15 hours until the temperature reached room temperature. The mixture was cooled, filtered, and the filtered cake was washed with acetic acid and petroleum ether in this order to obtain Compound A-18-2 (33 g, 82%).

キシレン(100mL)と、C−19−2(5.4g,10mmol)と、ブロモベンゼン(3.9g,25mmol)と、CuI(0.9g,5mmol)と、トランス−ジアミノシクロヘキサン(2.1mL,20mmol)と、炭酸セシウム(6.5g、20mmol)とを混合し、3時間還流反応させ、反応終了後、室温まで冷却させ、濾過し、その後、濾過ケーキをジクロロメタン(ジクロロメタン)で洗浄し、濾液を減圧蒸留し、得られた蒸留残留物をカラム分離し(溶離液:DCM/PE=1/2,v/v(体積比1:2のジクロロメタンと石油エーテルとの混合溶液))、白色固体である化合物A−18(5.0g,収率72%)を得た。 Xylene (100 mL), C-19-2 (5.4 g, 10 mmol), bromobenzene (3.9 g, 25 mmol), CuI (0.9 g, 5 mmol), trans-diaminocyclohexane (2.1 mL, 20 mmol) and cesium carbonate (6.5 g, 20 mmol) are mixed and subjected to a reflux reaction for 3 hours. After completion of the reaction, the mixture is cooled to room temperature and filtered, after which the filtered cake is washed with dichloromethane (distillate) and the filtrate is used. Distilled under reduced pressure, and the obtained distillation residue was column-separated (eluent: DCM / PE = 1/2, v / v (mixed solution of dichloromethane having a volume ratio of 1: 2 and petroleum ether)) to form a white solid. Compound A-18 (5.0 g, yield 72%) was obtained.

合成実施例28.中間体M11の合成 Synthesis Example 28. Synthesis of intermediate M11

Figure 0006765389
Figure 0006765389

1L三つ口フラスコに、3−ブロモフェニルヒドラジン塩酸塩(92.8g,0.415mol)、ジベンゾ[a,e]−5,11−シクロオクタジエン(6H,12H)−ジオン(49g,0.207mol)及びエタノール(400mL)を加え、撹拌条件下、3min内に濃硫酸を2g滴下し、65℃で4時間反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをエタノール、石油エーテルでこの順に洗浄し、中間体化合物M11−1(122g,91%)を得た。 In a 1 L three-necked flask, 3-bromophenylhydrazine hydrochloride (92.8 g, 0.415 mol), dibenzo [a, e] -5,11-cyclooctadiene (6H, 12H) -dione (49 g, 0. 207 mol) and ethanol (400 mL) were added, 2 g of concentrated sulfuric acid was added dropwise within 3 min under stirring conditions, and the reaction was carried out at 65 ° C. for 4 hours. After the reaction was completed, the mixture was cooled to room temperature, filtered, and the filtered cake was made into ethanol and petroleum oil. The mixture was washed with ether in this order to obtain intermediate compound M11-1 (122 g, 91%).

1L三つ口フラスコに、化合物M11−1(48.4g,74.8mmol)、酢酸(650g)およびトリフルオロ酢酸(65g,0.57mol)を加え、72℃で15時間還流反応させ、室温まで冷却させ、濾過し、濾過ケーキを酢酸、石油エーテルでこの順に洗浄し、中間体化合物M11−2(35g,85%)を得た。 Compound M11-1 (48.4 g, 74.8 mmol), acetic acid (650 g) and trifluoroacetic acid (65 g, 0.57 mol) were added to a 1 L three-necked flask, and the mixture was reflux-reacted at 72 ° C. for 15 hours until room temperature. The mixture was cooled, filtered, and the filtered cake was washed with acetic acid and petroleum ether in this order to obtain intermediate compound M11-2 (35 g, 85%).

キシレン(100mL)と、M11−2(5.4g,10mmol)と、ヨードベンゼン(5.1g,25mmol)と、CuI(0.9g,5mmol)と、トランス−ジアミノシクロヘキサン(2.1mL,20mmol)と、炭酸セシウム(6.5g、20mmol)とを混合し、3時間還流反応させ、反応終了後、室温まで冷却させ、濾過し、その後、濾過ケーキをジクロロメタン(ジクロロメタン)で洗浄し、濾液を合併し、乾燥してから溶剤を減圧によって除去し、得られた蒸留残留物をカラム分離し(溶離液:DCM/PE=1/2,v/v(体積比1:2のジクロロメタンと石油エーテルとの混合溶液))、白色固体である中間体化合物M11(5.88g,収率85%)を得た。 Xylene (100 mL), M11-2 (5.4 g, 10 mmol), iodobenzene (5.1 g, 25 mmol), CuI (0.9 g, 5 mmol), and trans-diaminocyclohexane (2.1 mL, 20 mmol). And cesium carbonate (6.5 g, 20 mmol) are mixed and subjected to a reflux reaction for 3 hours. After completion of the reaction, the mixture is cooled to room temperature and filtered, after which the filtered cake is washed with dichloromethane (dichloromethane) and the filtrate is mixed. After drying, the solvent was removed by reduced pressure, and the obtained distillation residue was column-separated (eluent: DCM / PE = 1/2, v / v (volume ratio 1: 2 dichloromethane and petroleum ether). (Mixed solution)), an intermediate compound M11 (5.88 g, yield 85%) which is a white solid was obtained.

合成実施例29.化合物A−19の合成 Synthesis Example 29. Synthesis of compound A-19

Figure 0006765389
Figure 0006765389

中間体M11(6.92g,10mmol)と、4−ビフェニルボロン酸(4.95g,25mmol)と、Pd(PPh(0.58g,0.5mmol)と、NaCO(5.3g,50mmol)と、トルエン(60mL)と、EtOH(20mL)と、蒸留水(20mL)とを混合し、還流条件下、2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチルで抽出して有機相を得、有機相をMgSOで乾燥させ、回転蒸発器によって溶剤を除去し、溶剤が除去された残留物をカラム分離し、白色固体である化合物A−19(7.0g,81%)を得た。 Intermediate M11 (6.92 g, 10 mmol), 4-biphenylboronic acid (4.95 g, 25 mmol), Pd (PPh 3 ) 4 (0.58 g, 0.5 mmol), Na 2 CO 3 (5. 3 g, 50 mmol), toluene (60 mL), EtOH (20 mL) and distilled water (20 mL) were mixed and reacted under reflux conditions with stirring for 2 hours. After completion of the reaction, the reaction system was washed with distilled water and then extracted with ethyl acetate to obtain an organic phase. The organic phase was dried with 41 4 and the solvent was removed by a rotary evaporator to remove the solvent. The substance was column-separated to obtain Compound A-19 (7.0 g, 81%) which was a white solid.

合成実施例30.化合物A−20の合成
4−ビフェニルボロン酸を等当量の9,9−ジメチルフルオレン−2−ボロン酸に変えた以外、実施例29と同じの合成方法を用いて化合物A−20を製造し、反応完成後、分離して白色固体(6.24g,収率68%)を得た。
Synthesis Example 30. Synthesis of Compound A-20 Compound A-20 was produced using the same synthesis method as in Example 29, except that 4-biphenylboronic acid was converted to an equal amount of 9,9-dimethylfluorene-2-boronic acid. After completion of the reaction, the mixture was separated to obtain a white solid (6.24 g, yield 68%).

合成実施例31.化合物A−21の合成 Synthesis Example 31. Synthesis of compound A-21

Figure 0006765389
Figure 0006765389

中間体M1を等当量の中間体M4に変えた以外、実施例21と同じ方法を用い、反応完成後、白色固体(4.32g,収率68%)を得た。 A white solid (4.32 g, yield 68%) was obtained after completion of the reaction using the same method as in Example 21 except that the intermediate M1 was changed to an equivalent amount of the intermediate M4.

A−21のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.61 (s, 1H), 8.43 (d, J = 6.0 Hz, 3H), 8.28 (s, 1H), 8.10 (s, 2H), 7.84 (s, 1H), 7.75 (s, 1H), 7.62 (s, 2H), 7.58 (s, 1H), 7.49 (d, J = 10.0 Hz, 3H).
NMR spectrum data of A-21:
1 1 H NMR (500 MHz, Chloroform) δ 8.61 (s, 1H), 8.43 (d, J = 6.0 Hz, 3H), 8.28 (s, 1H), 8.10 (s, 2H), 7.84 (s, 1H), 7.75 (s, 1H), 7.62 (s, 2H), 7.58 (s, 1H), 7.49 (d, J = 10.0 Hz, 3H).

合成実施例32.化合物A−22の合成
4−ビフェニルボロン酸を等当量の9,9−ジメチルフルオレン−2−ボロン酸に変えた以外、合成実施例29と同じの合成方法を用い、反応完成後、淡黄色固体(7.08g,収率77%)を得た。
Synthesis Example 32. Synthesis of Compound A-22 Using the same synthesis method as in Synthesis Example 29, except that 4-biphenylboronic acid was converted to an equal amount of 9,9-dimethylfluorene-2-boronic acid, a pale yellow solid after completion of the reaction. (7.08 g, yield 77%) was obtained.

合成実施例33.化合物A−23の合成
4−ビフェニルボロン酸を等当量の6,6,12,12−テトラメチル−6,12−ジヒドロインデノ[1,2−b]フルオレン−2−ボロン酸に変えた以外、実施例23と同じ方法を用いて化合物A−23を製造し、反応完成後、分離して淡黄色固体(6.68g,収率58%)を得た。
Synthesis Example 33. Synthesis of Compound A-23 Except that 4-biphenylboronic acid was converted to equal amounts of 6,6,12,12-tetramethyl-6,12-dihydroindeno [1,2-b] fluoren-2-boronic acid. Compound A-23 was produced using the same method as in Example 23, and after the reaction was completed, it was separated to obtain a pale yellow solid (6.68 g, yield 58%).

合成実施例34.化合物A−24の合成 Synthesis Example 34. Synthesis of compound A-24

Figure 0006765389
Figure 0006765389

中間体M5(48.2g,0.1mol)と、2−ブロモナフタレン(41.4g,0.2mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、エチレンジアミン(2.3mL,34.3mmol)と、トルエン(500mL)とを混合し、還流条件下1日撹拌し、室温まで冷却させ、脱イオン水を加えて反応をクエンチさせる。上記反応系を酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して無水MgSOで乾燥させ、濾過し、その後、有機相を減圧して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、白色化合物A−24(49.9g,収率68%)を得た。 Intermediate M5 (48.2 g, 0.1 mol), 2-bromonaphthalene (41.4 g, 0.2 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 (21.8 g, 21.8 g, 102.9 mmol), ethylenediamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed, stirred under reflux conditions for 1 day, cooled to room temperature, and deionized water is added to quench the reaction. .. The reaction system was extracted 3 times with ethyl acetate (100 mL), dried over anhydrous MgSO 4 merged organic phase obtained, filtered, then the organic phase under reduced pressure to remove the solvent, resulting The distillation residue was column-separated (eluent: dichloromethane / hexane) to give white compound A-24 (49.9 g, 68% yield).

合成実施例35.化合物B−1の合成 Synthesis Example 35. Synthesis of compound B-1

Figure 0006765389
Figure 0006765389

中間体M2(69.6g,0.1mol)と、ブロモベンゼン(31.5g,0.2mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、エチレンジアミン(2.3mL,34.3mmol)と、トルエン(500mL)とを混合し、還流条件下1日撹拌し、室温まで冷却させ、脱イオン水を加えて反応をクエンチさせる。上記反応系を酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して無水MgSOで乾燥させ、濾過し、その後、有機相を減圧して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、白色化合物B−1(55.4g,收率64%)を得た。 Intermediate M2 (69.6 g, 0.1 mol), bromobenzene (31.5 g, 0.2 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 (21.8 g, 102.). 9 mmol), ethylenediamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed, stirred under reflux conditions for 1 day, cooled to room temperature and deionized water is added to quench the reaction. The reaction system was extracted 3 times with ethyl acetate (100 mL), dried over anhydrous MgSO 4 merged organic phase obtained, filtered, then the organic phase under reduced pressure to remove the solvent, resulting The distillation residue was column-separated (eluent: dichloromethane / hexane) to obtain white compound B-1 (55.4 g, yield 64%).

B−1のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.43 - 8.37 (m, 1H), 8.36 - 8.29 (m, 1H), 8.22 - 8.12 (m, 1H), 8.09 - 7.97 (m, 2H), 7.96 - 7.78 (m, 2H), 7.64 - 7.54 (m, 2H), 7.54 - 7.24 (m, 4H).
B-1 NMR spectrum data:
1 1 H NMR (500 MHz, Chloroform) δ 8.43 --8.37 (m, 1H), 8.36 --8.29 (m, 1H), 8.22 --8.12 (m, 1H), 8.09 --7.97 (m, 2H), 7.96 --7.78 ( m, 2H), 7.64 --7.54 (m, 2H), 7.54 --7.24 (m, 4H).

合成実施例36.化合物B−2の合成 Synthesis Example 36. Synthesis of compound B-2

Figure 0006765389
Figure 0006765389

塩酸9−フェニルカルバゾール−3−ヒドラジン(30.98g,0.1mol)と、中間体M(47.2g,0.2mol)と、エタノール(400mL)とを混合し、撹拌条件下、3min内に濃硫酸を2.1g滴下し、65℃で4時間反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをエタノール、石油エーテルでこの順に洗浄し、白色固体B−2−1(68g,収率83%)を得た。 9-Phenylcarbazole-3-hydrazine (30.98 g, 0.1 mol), intermediate M (47.2 g, 0.2 mol), and ethanol (400 mL) were mixed and stirred under 3 min under stirring conditions. 2.1 g of concentrated sulfuric acid was added dropwise, and the mixture was reacted at 65 ° C. for 4 hours. After the reaction was completed, the mixture was cooled to room temperature, filtered, and the filtered cake was washed with ethanol and petroleum ether in this order to obtain a white solid B2-1 ( 68 g, yield 83%) was obtained.

前記固体B−2−1(68g,0.083mol)と、酢酸(600mL)と、トリフルオロ酢酸(60mL)とを混合し、72℃で15時間還流反応させ、室温まで冷却させ、濾過し、濾過ケーキを酢酸、石油エーテルでこの順に洗浄し、化合物B−2−2(32g,収率54%)を得た。 The solid B-2-1 (68 g, 0.083 mol), acetic acid (600 mL), and trifluoroacetic acid (60 mL) were mixed, refluxed at 72 ° C. for 15 hours, cooled to room temperature, and filtered. The filtered cake was washed with acetic acid and petroleum ether in this order to obtain compound B-2-2 (32 g, yield 54%).

中間体B−2−2(35.84g,50mmol)と、ブロモベンゼン(39.2g,250mol)と、CuI(1g,5.3mmol)と、KPO(7g,35mmol)と、ジアミノシクロヘキサン(6mL,34.3mmol)と、キシレン(500mL)とを混合し、還流条件下、1日撹拌して反応させ、反応終了後、室温まで冷却させ、有機相を酢酸エチルで抽出し、分離によって得られた有機相を減圧蒸留し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、白色化合物B−2(29.8g,収率62%)を得た。 Intermediate B-2-2 (35.84g, 50mmol) and, bromobenzene (39.2 g, 250 mol), and CuI (1 g, 5.3 mmol), and K 3 PO 4 (7g, 35mmol ), diaminocyclohexane (6 mL, 34.3 mmol) and xylene (500 mL) are mixed and reacted by stirring under reflux conditions for 1 day. After completion of the reaction, the mixture is cooled to room temperature, the organic phase is extracted with ethyl acetate, and the mixture is separated. The obtained organic phase was distilled under reduced pressure, and the obtained distillation residue was column-separated (eluent: dichloromethane / hexane) to obtain white compound B-2 (29.8 g, yield 62%).

合成実施例37.化合物B−3の合成 Synthesis Example 37. Synthesis of compound B-3

Figure 0006765389
Figure 0006765389

中間体M7(6.9g,10mmol)と、9−フェニル−[9H]−カルバゾール−3−ボロン酸(7.2g,25mmol)と、Pd(PPh(0.58g,0.5mmol)と、KCO(5.3g,50mmol)と、トルエン(60mL)と、EtOH(20mL)と、蒸留水(20mL)とを混合した後、120℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチルで抽出して有機相を得、有機相をMgSOで乾燥させ、回転蒸発器によって溶剤を除去し、溶剤が除去された残留物をカラム分離し、淡黄色固体である化合物B−3(8.8g,87%)を得た。 Intermediate M7 (6.9 g, 10 mmol), 9-phenyl- [9H] -carbazole-3-boronic acid (7.2 g, 25 mmol), and Pd (PPh 3 ) 4 (0.58 g, 0.5 mmol). , K 2 CO 3 (5.3 g, 50 mmol), toluene (60 mL), EtOH (20 mL), and distilled water (20 mL) were mixed, and then stirred at 120 ° C. for 2 hours for reaction. After completion of the reaction, the reaction system was washed with distilled water and then extracted with ethyl acetate to obtain an organic phase. The organic phase was dried with 41 4 and the solvent was removed by a rotary evaporator to remove the solvent. The substance was column-separated to obtain compound B-3 (8.8 g, 87%) which was a pale yellow solid.

B−3のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 9.81 - 9.75 (m, 2H), 9.37 (dd, J = 7.5, 1.4 Hz, 1H), 8.85 (dd, J = 7.5, 2.0 Hz, 2H), 8.49 - 8.41 (m, 4H), 8.17 (dd, J = 7.4, 1.6 Hz, 1H), 8.05 - 7.84 (m, 9H), 7.60 (t, J = 7.5 Hz, 4H), 7.56 - 7.22 (m, 14H), 7.07 (dt, J= 7.5, 2.2 Hz, 2H), 6.76 (td, J = 7.5, 2.0 Hz, 2H), 6.64 (tdt, J = 7.3, 4.9, 2.2 Hz, 2H).
B-3 NMR spectrum data:
1 1 H NMR (500 MHz, Chloroform) δ 9.81 --9.75 (m, 2H), 9.37 (dd, J = 7.5, 1.4 Hz, 1H), 8.85 (dd, J = 7.5, 2.0 Hz, 2H), 8.49 --8.41 (m, 4H), 8.17 (dd, J = 7.4, 1.6 Hz, 1H), 8.05 --7.84 (m, 9H), 7.60 (t, J = 7.5 Hz, 4H), 7.56 --7.22 (m, 14H), 7.07 (dt, J = 7.5, 2.2 Hz, 2H), 6.76 (td, J = 7.5, 2.0 Hz, 2H), 6.64 (tdt, J = 7.3, 4.9, 2.2 Hz, 2H).

合成実施例38.化合物B−4の合成
ブロモベンゼンを等当量の9−(4−ブロモフェニル)−9H−カルバゾールに変えた以外、実施例11と同じの合成方法を用いて化合物B−4を製造し、反応完成後、分離して淡黄色固体(6.5g,収率76%)を得た。
Synthesis Example 38. Synthesis of Compound B-4 Compound B-4 was produced using the same synthesis method as in Example 11 except that bromobenzene was changed to an equal amount of 9- (4-bromophenyl) -9H-carbazole, and the reaction was completed. After that, it was separated to obtain a pale yellow solid (6.5 g, yield 76%).

B−4のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.45 - 8.31 (m, 1H), 8.22 - 8.07 (m, 1H), 8.06 - 7.91 (m, 2H), 7.91 - 7.78 (m, 1H), 7.56 - 7.29 (m, 3H).
B-4 NMR spectrum data:
1 1 H NMR (500 MHz, Chloroform) δ 8.45 --8.31 (m, 1H), 8.22 --8.07 (m, 1H), 8.06 --7.91 (m, 2H), 7.91 --7.78 (m, 1H), 7.56 --7.29 ( m, 3H).

合成実施例39.化合物B−5の合成
ブロモベンゼンを等当量の9−(3−ブロモフェニル)−9H−カルバゾールに変えた以外、実施例11と同じの合成方法を用いて化合物B−5を製造し、反応完成後、分離して淡黄色固体(6.7g,収率78%)を得た。
Synthesis Example 39. Synthesis of Compound B-5 Compound B-5 was produced using the same synthesis method as in Example 11 except that bromobenzene was changed to an equal amount of 9- (3-bromophenyl) -9H-carbazole, and the reaction was completed. After that, it was separated to obtain a pale yellow solid (6.7 g, yield 78%).

合成実施例40.化合物B−6の合成
ブロモベンゼンを等当量の3−ブロモ−フェニルカルバゾールに変えた以外、実施例11と同じの合成方法を用いて化合物B−6を製造し、反応完成後、分離して淡黄色固体(6.06g,収率70%)を得た。
Synthesis Example 40. Synthesis of Compound B-6 Compound B-6 was produced using the same synthesis method as in Example 11 except that bromobenzene was converted to an equal amount of 3-bromo-phenylcarbazole, and after the reaction was completed, it was separated and yielded. A yellow solid (6.06 g, yield 70%) was obtained.

B−6のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.62 (dd, J = 16.8, 1.4 Hz, 1H), 8.51 (ddd, J = 14.0, 7.6, 1.5 Hz, 1H), 8.42 (dt, J = 7.4, 1.8 Hz, 1H), 8.21 (ddd, J = 7.3, 5.9, 1.5 Hz, 1H), 8.14 - 8.02 (m, 1H), 8.06 - 7.95 (m, 1H), 7.95 (dd, J = 7.8, 2.1 Hz, 1H), 7.89 (ddd, J = 7.5, 4.1, 2.0 Hz, 1H), 7.79 (dd, J = 24.9, 7.4 Hz, 1H), 7.70 (ddd, J = 19.2, 7.5, 1.5 Hz, 1H), 7.60 (t, J = 7.4 Hz, 2H), 7.54 - 7.24 (m, 7H).
B-6 NMR spectrum data:
1 H NMR (500 MHz, Chloroform) δ 8.62 (dd, J = 16.8, 1.4 Hz, 1H), 8.51 (ddd, J = 14.0, 7.6, 1.5 Hz, 1H), 8.42 (dt, J = 7.4, 1.8 Hz) , 1H), 8.21 (ddd, J = 7.3, 5.9, 1.5 Hz, 1H), 8.14 --8.02 (m, 1H), 8.06 --7.95 (m, 1H), 7.95 (dd, J = 7.8, 2.1 Hz, 1H) ), 7.89 (ddd, J = 7.5, 4.1, 2.0 Hz, 1H), 7.79 (dd, J = 24.9, 7.4 Hz, 1H), 7.70 (ddd, J = 19.2, 7.5, 1.5 Hz, 1H), 7.60 ( t, J = 7.4 Hz, 2H), 7.54 --7.24 (m, 7H).

合成実施例41.化合物B−7の合成
ブロモベンゼンを等当量の9−(4−ブロモフェニル)−9H−カルバゾールに変えた以外、実施例21と同じ方法を用いて化合物B−7を製造し、反応完成後、分離して白色固体B−7(4.7g,収率54%)を得た。
Synthesis Example 41. Synthesis of Compound B-7 Compound B-7 was produced using the same method as in Example 21 except that bromobenzene was converted to an equal amount of 9- (4-bromophenyl) -9H-carbazole, and after the reaction was completed, Separation was performed to obtain white solid B-7 (4.7 g, yield 54%).

合成実施例42.化合物B−8の合成
ブロモベンゼンを等当量の9−(3−ブロモフェニル)−9H−カルバゾールに変えた以外、実施例21と同じ方法を用いて化合物B−8を製造し、反応完成後、分離して白色固体B−8(5.5g,収率61%)を得た。
Synthesis Example 42. Synthesis of Compound B-8 Compound B-8 was produced using the same method as in Example 21 except that bromobenzene was converted to an equal amount of 9- (3-bromophenyl) -9H-carbazole, and after the reaction was completed, Separation was performed to obtain white solid B-8 (5.5 g, yield 61%).

合成実施例43.化合物B−9の合成
フェニルボロン酸を等当量の(9−フェニル−9H−カルバゾール−3−イル)ボロン酸に変えた以外、実施例23と同じ方法を用いて化合物B−9を製造し、反応完成後、分離して淡黄色固体B−9(8.44g,収率83%)を得た。
Synthesis Example 43. Synthesis of Compound B-9 Compound B-9 was prepared using the same method as in Example 23, except that phenylboronic acid was converted to an equal amount of (9-phenyl-9H-carbazole-3-yl) boronic acid. After completion of the reaction, the mixture was separated to obtain pale yellow solid B-9 (8.44 g, yield 83%).

B−9のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 9.01 (d, J = 1.4 Hz, 1H), 8.97 - 8.91 (m, 2H), 8.42 (dd, J = 7.3, 1.5 Hz, 1H), 8.32 (d, J = 7.5 Hz, 1H), 8.26 - 8.08 (m, 10H), 7.97 (dd, J = 7.5, 2.0 Hz, 2H), 7.90 (dd, J = 7.7, 2.0 Hz, 2H), 7.84 (ddd, J = 7.5, 5.9, 1.6 Hz, 2H), 7.64 - 7.47 (m, 10H), 7.43 (td, J = 7.5, 1.6 Hz, 1H), 7.37 - 7.27 (m, 4H), 7.31 - 7.24 (m, 4H), 7.17 (dd, J = 7.3, 2.3 Hz, 1H), 7.09 (ddd, J = 13.6, 5.7, 3.9 Hz, 2H), 6.69 (dtd, J = 19.6, 7.4, 2.2 Hz, 2H), 6.60 (dd, J = 5.7, 3.8 Hz, 2H).
B-9 NMR spectrum data:
1 H NMR (500 MHz, Chloroform) δ 9.01 (d, J = 1.4 Hz, 1H), 8.97 --8.91 (m, 2H), 8.42 (dd, J = 7.3, 1.5 Hz, 1H), 8.32 (d, J) = 7.5 Hz, 1H), 8.26 --8.08 (m, 10H), 7.97 (dd, J = 7.5, 2.0 Hz, 2H), 7.90 (dd, J = 7.7, 2.0 Hz, 2H), 7.84 (ddd, J = 7.5, 5.9, 1.6 Hz, 2H), 7.64 --7.74 (m, 10H), 7.43 (td, J = 7.5, 1.6 Hz, 1H), 7.37 --7.27 (m, 4H), 7.31 --7.24 (m, 4H) , 7.17 (dd, J = 7.3, 2.3 Hz, 1H), 7.09 (ddd, J = 13.6, 5.7, 3.9 Hz, 2H), 6.69 (dtd, J = 19.6, 7.4, 2.2 Hz, 2H), 6.60 (dd , J = 5.7, 3.8 Hz, 2H).

合成実施例44.化合物B−10の合成
中間体M2を等当量の中間体M3に変え、フェニルボロン酸を等当量の(4−(9H−カルバゾール−9−イル)フェニル)ボロン酸に変えた以外、実施例23と同じ方法を用いて化合物B−10を製造し、反応完成後、分離してほぼ白色固体B−10(7.73g,76%)を得た。
Synthesis Example 44. Synthesis of Compound B-10 Example 23, except that the intermediate M2 was converted to an equivalent amount of intermediate M3 and the phenylboronic acid was converted to an equal amount of (4- (9H-carbazole-9-yl) phenyl) boronic acid. Compound B-10 was produced using the same method as in the above, and after the reaction was completed, it was separated to obtain almost white solid B-10 (7.73 g, 76%).

B−10のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 9.15 - 9.09 (m, 1H), 8.55 - 8.39 (m, 4H), 8.40 - 8.29 (m, 2H), 8.20 - 8.13 (m, 1H), 8.00 - 7.90 (m, 2H), 7.90 (dt, J = 7.7, 3.0 Hz, 2H), 7.72 - 7.55 (m, 4H), 7.50 - 7.38 (m, 2H), 7.35 - 7.24 (m, 2H), 7.19 (ddd, J = 12.7, 7.4, 2.1 Hz, 1H), 6.69 (ddtd, J = 50.7, 23.4, 7.5, 2.2 Hz, 2H).
B-10 NMR spectrum data:
1 1 H NMR (500 MHz, Chloroform) δ 9.15 --9.90 (m, 1H), 8.55 --8.39 (m, 4H), 8.40 --8.29 (m, 2H), 8.20 --8.13 (m, 1H), 8.00 --7.90 ( m, 2H), 7.90 (dt, J = 7.7, 3.0 Hz, 2H), 7.72 --7.55 (m, 4H), 7.50 --7.38 (m, 2H), 7.35 --7.24 (m, 2H), 7.19 (ddd, ddd, J = 12.7, 7.4, 2.1 Hz, 1H), 6.69 (ddtd, J = 50.7, 23.4, 7.5, 2.2 Hz, 2H).

合成実施例45.化合物B−11の合成
ブロモベンゼンを等当量の3−ブロモ−9−エチル−9H−カルバゾールに変えた以外、実施例21と同じ方法を用いて化合物B−11を製造し、反応完成後、分離してほぼ白色固体B−11(5.5g,収率72%)を得た。
Synthesis Example 45. Synthesis of Compound B-11 Compound B-11 was produced using the same method as in Example 21 except that bromobenzene was converted to an equal amount of 3-bromo-9-ethyl-9H-carbazole, and separated after the reaction was completed. A nearly white solid B-11 (5.5 g, yield 72%) was obtained.

合成実施例46.化合物B−12の合成
ブロモベンゼンを等当量の3−ブロモ−9−フェニル−9H−カルバゾールに変えた以外、実施例21と同じ方法を用いて化合物B−12を製造し、反応完成後、分離して淡黄色固体B−12(5.8g,収率67%)を得た。
Synthesis Example 46. Synthesis of Compound B-12 Compound B-12 was produced using the same method as in Example 21 except that bromobenzene was converted to an equal amount of 3-bromo-9-phenyl-9H-carbazole, and separated after the reaction was completed. A pale yellow solid B-12 (5.8 g, yield 67%) was obtained.

B−12のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.33 (dddd, J = 13.1, 11.6, 7.0, 1.8 Hz, 2H), 8.24 - 8.09 (m, 2H), 8.09 - 8.02 (m, 1H), 8.02 - 7.85 (m, 3H), 7.86 - 7.75 (m, 1H), 7.73 - 7.61 (m, 1H), 7.64 - 7.56 (m, 2H), 7.53 - 7.42 (m, 2H), 7.41 - 7.24 (m, 4H).
B-12 NMR spectrum data:
1 1 H NMR (500 MHz, Chloroform) δ 8.33 (dddd, J = 13.1, 11.6, 7.0, 1.8 Hz, 2H), 8.24 --8.09 (m, 2H), 8.09 --8.02 (m, 1H), 8.02 --7.85 ( m, 3H), 7.86 --7.75 (m, 1H), 7.73 --7.61 (m, 1H), 7.64 --7.56 (m, 2H), 7.53 --7.42 (m, 2H), 7.41 --7.24 (m, 4H).

合成実施例47.化合物B−13の合成
中間体M8を等当量の中間体M9に変え、4−ビフェニルボロン酸を等当量の(9−フェニル−9H−カルバゾール−3−イル)ボロン酸に変えた以外、実施例25と同じ方法を用いて化合物B−13を製造し、反応完成後、分離して白色固体B−13(6.1g,収率78%)を得た。
Synthesis Example 47. Synthesis of Compound B-13 Examples except that the intermediate M8 was converted to an equal amount of intermediate M9 and 4-biphenylboronic acid was converted to an equal amount of (9-phenyl-9H-carbazole-3-yl) boronic acid. Compound B-13 was produced using the same method as in 25, and after the reaction was completed, it was separated to obtain white solid B-13 (6.1 g, yield 78%).

B−13のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.50 - 8.43 (m, 3H), 8.36 (dd, J= 7.5, 1.4 Hz, 1H), 8.16 (d, J = 1.0 Hz, 1H), 8.10 (dt, J = 7.5, 1.9 Hz, 3H), 8.03 (dd, J = 7.4, 2.1 Hz, 1H), 7.96 - 7.83 (m, 8H), 7.77 (dd, J = 7.4, 1.4 Hz, 1H), 7.67 (d, J = 1.1 Hz, 2H), 7.60 (t, J= 7.4 Hz, 6H), 7.54 - 7.47 (m, 2H), 7.49 - 7.37 (m, 3H), 7.37 - 7.24 (m, 7H).
B-13 NMR spectrum data:
1 H NMR (500 MHz, Chloroform) δ 8.50 --8.43 (m, 3H), 8.36 (dd, J = 7.5, 1.4 Hz, 1H), 8.16 (d, J = 1.0 Hz, 1H), 8.10 (dt, J = 7.5, 1.9 Hz, 3H), 8.03 (dd, J = 7.4, 2.1 Hz, 1H), 7.96 --7.83 (m, 8H), 7.77 (dd, J = 7.4, 1.4 Hz, 1H), 7.67 (d, J = 1.1 Hz, 2H), 7.60 (t, J = 7.4 Hz, 6H), 7.54 --7.74 (m, 2H), 7.49 --7.37 (m, 3H), 7.37 --7.24 (m, 7H).

合成実施例48.化合物B−14の合成
中間体M8を等当量の中間体M10に変え、4−ビフェニルボロン酸を等当量の(9−フェニル−9H−カルバゾール−3−イル)ボロン酸に変えた以外、実施例25と同じ方法を用いて化合物B−14を製造し、反応完成後、分離して白色固体B−14(6.5g,収率85%)を得た。
Synthesis Example 48. Synthesis of Compound B-14 Examples except that the intermediate M8 was converted to an equivalent amount of intermediate M10 and 4-biphenylboronic acid was converted to an equal amount of (9-phenyl-9H-carbazole-3-yl) boronic acid. Compound B-14 was produced using the same method as in No. 25, and after the reaction was completed, it was separated to obtain white solid B-14 (6.5 g, yield 85%).

合成実施例49.化合物B−15の合成 Synthesis Example 49. Synthesis of compound B-15

Figure 0006765389
Figure 0006765389

塩酸−9H−カルバゾール−3−ヒドラジン(103g、0.44mol)と、ジベンゾ[a、e]−5,11−シクロオクタジエン(6H、12H)−ジオン(49g、0.207mol)と、エタノール(400mL)とを混合し、撹拌条件下、3min内に濃硫酸を2.1g滴下し、65℃で4時間反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをエタノール、石油エーテルでこの順に洗浄し、茶色固体(150g)を得た。 Sulfuric acid-9H-carbazole-3-hydrazine (103 g, 0.44 mol), dibenzo [a, e] -5,11-cyclooctadiene (6H, 12H) -dione (49 g, 0.207 mol) and ethanol ( (400 mL) is mixed, 2.1 g of concentrated sulfuric acid is added dropwise within 3 min under stirring conditions, and the reaction is carried out at 65 ° C. for 4 hours. After the reaction is completed, the mixture is cooled to room temperature, filtered, and the filtered cake is made into ethanol and petroleum ether. The mixture was washed in this order to obtain a brown solid (150 g).

上記の固体(150g)と、酢酸(600mL)と、トリフルオロ酢酸(60mL)とを混合し、72℃で15時間還流反応させ、室温まで冷却させ、濾過し、濾過ケーキを酢酸、石油エーテルでこの順に洗浄し、白色固体である中間体化合物M12(84.6g,75%)を得た。 The above solid (150 g), acetic acid (600 mL) and trifluoroacetic acid (60 mL) are mixed, refluxed at 72 ° C. for 15 hours, cooled to room temperature, filtered, and the filtered cake is filtered with acetic acid and petroleum ether. The mixture was washed in this order to obtain an intermediate compound M12 (84.6 g, 75%) which was a white solid.

中間体M12(28g,50mmol)と、ヨードベンゼン(51g,250mol)と、CuI(1g,5.3mmol)と、CsCO(7g,35mmol)と、エチレンジアミン(10mL,34.3mmol)と、キシレン(500mL)とを混合し、還流条件下、1日撹拌して反応させ、反応終了後、室温まで冷却させ、有機相を酢酸エチルで抽出し、分離によって得られた有機相を減圧蒸留し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、淡黄色固体である化合物B−15(26.8g,62%)を得た。 Intermediate M12 (28 g, 50 mmol), iodobenzene (51 g, 250 mol), CuI (1 g, 5.3 mmol), Cs 2 CO 3 (7 g, 35 mmol), ethylenediamine (10 mL, 34.3 mmol), Mix with xylene (500 mL), stir for 1 day under reflux conditions to react, cool to room temperature after completion of the reaction, extract the organic phase with ethyl acetate, and distill the organic phase obtained by separation under reduced pressure. The obtained distillation residue was column-separated (eluent: dichloromethane / hexane) to obtain compound B-15 (26.8 g, 62%) which was a pale yellow solid.

合成実施例50.化合物B−16の合成
塩酸−9H−カルバゾール−3−ヒドラジンを等当量の塩酸−9H−カルバゾール−2−ヒドラジンに変えた以外、実施49と同じ方法を用いて化合物B−16を製造し、3ステップ反応によって、淡黄色固体(29g,収率67.1%)を得た。
Synthesis Example 50. Synthesis of Compound B-16 Compound B-16 was produced using the same method as in Example 49, except that the hydrochloric acid-9H-carbazole-3-hydrazine was converted to an equal amount of hydrochloric acid-9H-carbazole-2-hydrazine. A pale yellow solid (29 g, yield 67.1%) was obtained by the step reaction.

合成実施例51.化合物B−17の合成 Synthesis Example 51. Synthesis of compound B-17

Figure 0006765389
Figure 0006765389

2−ブロモニトロベンゼン(46g,230mmol)と、ジベンゾチオフェン−3−ボロン酸(63,276mmol)と、Pd(PPh(5g,4.6mmol)と、KCO(61g,575mmol)と、トルエン(600mL)と、EtOH(200mL)とを混合し、該混合物に蒸留水200mLを加えた後、120℃で2時間撹拌して反応させた。反応終了後、反応系を蒸留水で洗浄し、酢酸エチルで抽出して有機相を得、有機相をMgSOで乾燥させ、回転蒸発により溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、化合物B−17−1(61g,87%)を得た。 2-Bromo nitrobenzene (46 g, 230 mmol) and, and dibenzothiophene-3-boronic acid (63,276mmol), and Pd (PPh 3) 4 (5g , 4.6mmol), K 2 CO 3 (61g, 575mmol) and , Toluene (600 mL) and EtOH (200 mL) were mixed, 200 mL of distilled water was added to the mixture, and the mixture was stirred at 120 ° C. for 2 hours for reaction. After completion of the reaction, the reaction system was washed with distilled water and extracted with ethyl acetate to obtain an organic phase, the organic phase was dried with sulfonyl 4 , the solvent was removed by rotary evaporation, and finally the solvent-remained residue was removed. The material was column-separated to give compound B-17-1 (61 g, 87%).

化合物B−17−1(3.05g,10mmol)と、P(OEt)(30mL)と、1,2−ジクロロベンゼン(30mL)とを混合し、150℃で8時間撹拌して反応させ、反応終了後、溶剤を除去し、溶剤が除去された残留物をカラム分離し、化合物B−17−2(1.2g,48%)を得た。 Compound B-17-1 (3.05 g, 10 mmol), P (OEt) 3 (30 mL), and 1,2-dichlorobenzene (30 mL) were mixed and reacted at 150 ° C. for 8 hours with stirring. After completion of the reaction, the solvent was removed, and the residue from which the solvent was removed was column-separated to obtain Compound B-17-2 (1.2 g, 48%).

キシレン(100mL)と、化合物M7(6.9g,10mmol)と、化合物B−17−2(6.2g,25mmol)と、CuI(0.9g,5mmol)と、トランス−ジアミノシクロヘキサン(2.1mL,20mmol)と、炭酸セシウム(6.5g,20mmol)とを混合し、3時間撹拌還流させた。反応終了後、室温まで冷却させてから、濾過し、濾過ケーキをジクロロメタン(ジクロロメタン)で洗浄し、濾液を合併し、減圧蒸留して溶剤を除去し、得られた蒸留残留物をカラム分離し、淡黄色固体である化合物B−17(5.6g,収率52%)を得た。 Xylene (100 mL), compound M7 (6.9 g, 10 mmol), compound B-17-2 (6.2 g, 25 mmol), CuI (0.9 g, 5 mmol), and trans-diaminocyclohexane (2.1 mL). , 20 mmol) and cesium carbonate (6.5 g, 20 mmol) were mixed and refluxed with stirring for 3 hours. After completion of the reaction, the mixture is cooled to room temperature, filtered, the filtered cake is washed with dichloromethane (dichloromethane), the filtrate is mixed, and the solvent is removed by distillation under reduced pressure, and the obtained distillation residue is column-separated. Compound B-17 (5.6 g, yield 52%), which is a pale yellow solid, was obtained.

B−17のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 9.73 (d, J = 7.5 Hz, 2H), 9.21 (dd, J = 7.5, 1.5 Hz, 1H), 8.69 - 8.57 (m, 5H), 8.47 (dd, J = 7.3, 1.5 Hz, 1H), 8.38 - 8.28 (m, 3H), 8.20 (dt, J = 7.5, 1.7 Hz, 2H), 8.12 - 7.99 (m, 5H), 7.98 - 7.93 (m, 2H), 7.80 (td, J = 7.5, 1.5 Hz, 1H), 7.74 - 7.60 (m, 3H), 7.54 - 7.36 (m, 4H), 7.37 - 7.29 (m, 4H), 7.32 - 7.20 (m, 4H), 7.07 (td, J = 7.7, 1.8 Hz, 2H), 6.77 (dddd, J = 14.8, 12.5, 7.4, 2.1 Hz, 3H), 6.63 (td, J = 7.5, 2.1 Hz, 1H).
B-17 NMR spectrum data:
1 H NMR (500 MHz, Chloroform) δ 9.73 (d, J = 7.5 Hz, 2H), 9.21 (dd, J = 7.5, 1.5 Hz, 1H), 8.69 --8.57 (m, 5H), 8.47 (dd, J) = 7.3, 1.5 Hz, 1H), 8.38 --8.28 (m, 3H), 8.20 (dt, J = 7.5, 1.7 Hz, 2H), 8.12 --7.99 (m, 5H), 7.98 --7.93 (m, 2H), 7.80 (td, J = 7.5, 1.5 Hz, 1H), 7.74 --7.60 (m, 3H), 7.54 --7.36 (m, 4H), 7.37 --7.29 (m, 4H), 7.32 --7.20 (m, 4H), 7.07 (td, J = 7.7, 1.8 Hz, 2H), 6.77 (dddd, J = 14.8, 12.5, 7.4, 2.1 Hz, 3H), 6.63 (td, J = 7.5, 2.1 Hz, 1H).

合成実施例52.化合物B−18の合成
ジベンゾチオフェン−3−ボロン酸を等当量のジベンゾフラン−3−ボロン酸に変えた以外、実施例51と同じ方法を用いて化合物B−18を製造し、反応終了後、粗製品をカラムクロマトグラフで分離し、白色固体(7.1g,収率66%)を得た。
Synthesis Example 52. Synthesis of Compound B-18 Compound B-18 was produced using the same method as in Example 51, except that dibenzothiophene-3-boronic acid was converted to an equal amount of dibenzofuran-3-boronic acid. The product was separated by column chromatograph to obtain a white solid (7.1 g, yield 66%).

B−18のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.33 (dd, J = 7.5, 1.7 Hz, 2H), 7.98 (dd, J = 7.5, 1.5 Hz, 2H), 7.88 (dd, J = 5.6, 3.9 Hz, 2H), 7.64 - 7.56 (m, 2H), 7.53 (s, 4H), 7.44 (td, J = 7.5, 1.6 Hz, 1H), 7.39 - 7.20 (m, 7H), 7.16 (td, J = 7.5, 1.6 Hz, 2H).
B-18 NMR spectrum data:
1 1 H NMR (500 MHz, Chloroform) δ 8.33 (dd, J = 7.5, 1.7 Hz, 2H), 7.98 (dd, J = 7.5, 1.5 Hz, 2H), 7.88 (dd, J = 5.6, 3.9 Hz, 2H) ), 7.64 --7.56 (m, 2H), 7.53 (s, 4H), 7.44 (td, J = 7.5, 1.6 Hz, 1H), 7.39 --7.20 (m, 7H), 7.16 (td, J = 7.5, 1.6) Hz, 2H).

合成実施例53.化合物B−19の合成 Synthesis Example 53. Synthesis of compound B-19

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

化合物B−19−1の製造
ジベンゾ[b、d]フラン−3−ボロン酸(106g,0.5mol)と、2−ブロモ−ニトロベンゼン(101g,0.5mol)と、テトラキストリフェニルホスフィンパラジウム(1.15g,1mmol)と、炭酸カリウム(138g,1mol)と、トルエン(1L)と、エタノール(0.5L)と、蒸留水(0.3L)とを混合し、110℃で2h撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(200mL)で3回抽出し、得られた有機相を合併して無水MgSOで乾燥させ、回転蒸発器によって溶剤を除去し、溶剤が除去された残留物をカラム分離し、中間体化合物B−19−1(130g,収率89%)を得た。
Preparation of Compound B-19-1 Dibenzo [b, d] furan-3-boronic acid (106 g, 0.5 mol), 2-bromo-nitrobenzene (101 g, 0.5 mol), and tetrakistriphenylphosphine palladium (1). .15 g, 1 mmol), potassium carbonate (138 g, 1 mol), toluene (1 L), ethanol (0.5 L), and distilled water (0.3 L) are mixed and stirred at 110 ° C. for 2 hours for reaction. I let you. After the reaction is completed, the reaction system is washed with distilled water, extracted three times with ethyl acetate (200 mL), the obtained organic phases are combined and dried with anhydrous silyl 4 , and the solvent is removed by a rotary evaporator. The residue from which the solvent had been removed was column-separated to obtain intermediate compound B-19-1 (130 g, yield 89%).

化合物B−19−2の製造
2L反応フラスコにおいて、中間体化合物B−19−1(100g,0.34mol)にトリエチルホスファイト(1000mL)を加え、150℃で6時間撹拌し、室温まで冷却させ、酢酸エチル(300mL)で3回抽出し、得られた有機相を合併し、有機相を500mL脱イオン水で3回洗浄し、有機相中の水分を無水MgSOで除去してから、有機相を減圧蒸留し、得られた蒸留残留物をカラム分離し、化合物B−19−2(56g,収率64%)を得た。
Preparation of Compound B-19-2 In a 2L reaction flask, triethyl phosphite (1000 mL) was added to intermediate compound B-19-1 (100 g, 0.34 mol), stirred at 150 ° C. for 6 hours, and cooled to room temperature. , extracted three times with ethyl acetate (300 mL), merged with the resulting organic phase, the organic phase was washed 3 times with 500mL deionized water, after removing water in the organic phase with anhydrous MgSO 4, the organic The phase was distilled under reduced pressure, and the obtained distillation residue was column-separated to obtain Compound B-19-2 (56 g, yield 64%).

化合物B−19−3の製造
250mL三つ口フラスコにおいて、中間体化合物B−19−2(10.3g,40mmol)と、p−ブロモヨードベンゼン(14.2g,50mmol)と、CuI(1.8g,10mmol)と、トランス−ジアミノシクロヘキサン(4.2mL,40mmol)と、炭酸セシウム(13g,40mmol)とで形成された混合物を3時間加熱して還流させた。反応混合物を室温まで冷却させ、濾過し、濾過ケーキをジクロロメタンで洗浄した後、得られた濾液を減圧蒸留し、得られた蒸留残留物をカラム分離し、化合物B−19−3(12.4g,収率75%)を得た。
Preparation of Compound B-19-3 In a 250 mL three-necked flask, Intermediate Compound B-19-2 (10.3 g, 40 mmol), p-bromoiodobenzene (14.2 g, 50 mmol) and CuI (1. A mixture formed of 8 g, 10 mmol), trans-diaminocyclohexane (4.2 mL, 40 mmol) and cesium carbonate (13 g, 40 mmol) was heated to reflux for 3 hours. The reaction mixture was cooled to room temperature, filtered, the filtered cake was washed with dichloromethane, the resulting filtrate was distilled under reduced pressure and the resulting distillation residue was column separated from compound B-19-3 (12.4 g). , Yield 75%) was obtained.

化合物B−19−4の製造
1L反応フラスコにおいて、中間体M6(38.2g,0.1mol)と、ブロモベンゼン(16g,0.1mol)と、CuI(3.3g,17.1mmol)と、炭酸セシウム(33.44g,102.9mmol)と、シクロヘキシルジアミン(2.3mL,34.3mmol)と、キシレン(500mL)とを混合し、還流条件下、1日撹拌して反応させ、反応終了後、室温まで冷却させ、250mL酢酸エチルで抽出し、有機相を無水MgSOで処理してから減圧蒸留して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、化合物B−19−4(25.7g,収率56%)を得た。
Preparation of Compound B-19-4 In a 1 L reaction flask, intermediate M6 (38.2 g, 0.1 mol), bromobenzene (16 g, 0.1 mol), CuI (3.3 g, 17.1 mmol) and Cesium carbonate (33.44 g, 102.9 mmol), cyclohexyldiamine (2.3 mL, 34.3 mmol) and xylene (500 mL) were mixed and stirred for 1 day under reflux conditions to react, and after the reaction was completed. , Cool to room temperature, extract with 250 mL ethyl acetate, treat the organic phase with anhydrous sulfonyl 4 , then distill under reduced pressure to remove the solvent and column separate the resulting distillation residue (eluent: dichloromethane / hexane). ), Compound B-19-4 (25.7 g, yield 56%) was obtained.

化合物A−19の製造
1L反応フラスコにおいて、中間体化合物B−19−4(45.9g,0.1mol)と、中間体化合物B−19−3(42g,0.1mol)と、CuI(3.3g,17.1mmol)と、炭酸セシウム(33.44g,102.9mmol)と、シクロヘキシルジアミン(2.3mL,34.3mmol)と、キシレン(500mL)とを混合し、還流条件下、1日撹拌して反応させ、反応終了後、室温まで冷却させ、250mL酢酸エチルで抽出し、有機相を無水MgSOで処理してから減圧蒸留して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、淡黄色化合物B−19(67.2g,収率85%)を得た。
Preparation of Compound A-19 In a 1 L reaction flask, the intermediate compound B-19-4 (45.9 g, 0.1 mol), the intermediate compound B-19-3 (42 g, 0.1 mol), and CuI (3). .3 g, 17.1 mmol), cesium carbonate (33.44 g, 102.9 mmol), cyclohexyldiamine (2.3 mL, 34.3 mmol) and xylene (500 mL) were mixed and mixed under reflux conditions for 1 day. The reaction is stirred and reacted, and after the reaction is completed, the mixture is cooled to room temperature, extracted with 250 mL ethyl acetate, the organic phase is treated with anhydrous sulfonyl 4 , and the solvent is removed by vacuum distillation, and the obtained distillation residue is used as a column. Separation (eluent: dichloromethane / hexane) gave pale yellow compound B-19 (67.2 g, yield 85%).

合成実施例54.化合物B−20の合成 Synthesis Example 54. Synthesis of compound B-20

Figure 0006765389
Figure 0006765389

中間体化合物B−20−1の製造
トルエン(500mL)と、o−ヨードニトロベンゼン(30g,120.4mmol)と、4−ブロモフェニルボロン酸(26g,132.5mmol)と、Pd(PPh(6.9g,6.02mmol)と、NaCO(150mL,濃度2M)とを混合し、100℃で4時間反応させ、反応終了後、室温まで冷却させ、酢酸エチルで抽出して有機相を得、その後、有機相を蒸留水で洗浄し、有機相中の水分を無水MgSOで除去し、有機相を減圧蒸留し、得られた蒸留残留物をカラム分離し、中間体B−20−1(28g,83.3%)を得た。
Preparation of Intermediate Compound B-20-1 Toluene (500 mL), o-iodonitrobenzene (30 g, 120.4 mmol), 4-bromophenylboronic acid (26 g, 132.5 mmol), Pd (PPh 3 ) 4 (6.9 g, 6.02 mmol) and Na 2 CO 3 (150 mL, concentration 2 M) are mixed and reacted at 100 ° C. for 4 hours. After completion of the reaction, the mixture is cooled to room temperature, extracted with ethyl acetate and organic. After obtaining the phase, the organic phase was washed with distilled water, the water content in the organic phase was removed with anhydrous butadiene 4 , the organic phase was distilled under reduced pressure, and the obtained distillation residue was column-separated to form Intermediate B-. 20-1 (28 g, 83.3%) was obtained.

中間体化合物B−20−2の製造
トリエチルホスファイト(300mL)に、化合物B−20−1(28g,0.1mol)を加え、150℃で6時間撹拌し、室温まで冷却させ、酢酸エチルで抽出して有機相を得、有機相を蒸留水で洗浄し、有機相中の水分を無水MgSOで除去し、有機相を減圧蒸留して有機溶剤を除去し、得られた蒸留残留物をカラム分離し、中間体B−20−2(11g,44.4%)を得た。
Preparation of Intermediate Compound B-20-2 Add compound B-20-1 (28 g, 0.1 mol) to triethyl phosphite (300 mL), stir at 150 ° C. for 6 hours, cool to room temperature, and use ethyl acetate. Extraction to obtain an organic phase, the organic phase was washed with distilled water, the water content in the organic phase was removed with anhydrous sulfonyl 4 , and the organic phase was distilled under reduced pressure to remove the organic solvent, and the obtained distillation residue was obtained. The column was separated to obtain intermediate B-20-2 (11 g, 44.4%).

中間体化合物B−20−3の製造
中間体化合物B−20−2(24.6g,0.1mol)と、ヨードベンゼン(41.3g,0.2mol)と、CuI(9.6g,50mmol)と、CsCO(82.5g,0.25mol)と、トルエン(600mL)とを混合し、50℃で反応させた後、混合物にエチレンジアミン(6.8mL,0.1mol)を加え、14時間還流反応させ、反応終了後、室温で冷却させ、蒸留水を加え、酢酸エチルで抽出して有機相を得、有機相を蒸留水で洗浄し、有機相中の水分を無水MgSOで除去し、有機相を減圧蒸留し、得られた蒸留残留物をカラム分離し、中間体化合物B−20−3(24g,収率75%)を得た。
Preparation of Intermediate Compound B-20-3 Intermediate Compound B-20-2 (24.6 g, 0.1 mol), iodobenzene (41.3 g, 0.2 mol), and CuI (9.6 g, 50 mmol) , Cs 2 CO 3 (82.5 g, 0.25 mol) and toluene (600 mL) were mixed and reacted at 50 ° C., then ethylenediamine (6.8 mL, 0.1 mol) was added to the mixture, and 14 by the time the reflux reaction, after completion of the reaction, allowed to cool at room temperature, distilled water was added and the resulting organic phase was extracted with ethyl acetate, the organic phase was washed with distilled water, removing water in the organic phase with anhydrous MgSO 4 The organic phase was distilled under reduced pressure, and the obtained distillation residue was column-separated to obtain intermediate compound B-20-3 (24 g, yield 75%).

中間体化合物B−20−4の製造
化合物B−20−3(21g,86mmol)をTHF(300mL)に溶かし、−78℃で混合物にn−ブチルリチウム(38mL,95mmol,2.5Mヘキサン溶液)を徐々に加えた。−78℃で1時間保持した後、混合物にボロン酸トリメチル(12.4mL,112mmol)を加えた。室温まで徐々に昇温し、室温で12時間撹拌して反応させた。撹拌された混合物に飽和塩化アンモニウム水溶液を加えて反応をクエンチさせ、酢酸エチルで3回抽出し、有機相を合併して有機相中の水分を無水MgSOで除去した。有機相を減圧蒸留し、得られた蒸留残留物をカラム分離し、中間体化合物B−20−4(20g,収率81%)を得た。
Preparation of Intermediate Compound B-20-4 Compound B-20-3 (21 g, 86 mmol) was dissolved in THF (300 mL) and n-butyllithium (38 mL, 95 mmol, 2.5 M hexane solution) was added to the mixture at −78 ° C. Was gradually added. After holding at −78 ° C. for 1 hour, trimethyl boronate (12.4 mL, 112 mmol) was added to the mixture. The temperature was gradually raised to room temperature, and the mixture was stirred and reacted at room temperature for 12 hours. Stirred mixture are added a saturated aqueous ammonium chloride solution was quenched reaction was extracted three times with ethyl acetate, water was removed in the organic phase over anhydrous MgSO 4 merged organic phase. The organic phase was distilled under reduced pressure, and the obtained distillation residue was column-separated to obtain intermediate compound B-20-4 (20 g, yield 81%).

中間体化合物B−20−5の製造
化合物B−20−4(20g,70mmol)と、1−ブロモ−2−ニトロベンゼン(14.3g,71mmol)と、Pd(PPh(4.3g,2.4mmol)と、NaCO溶液(75mL,2M)と、トルエン(300mL)と、エタノール(70mL)とを混合し、5時間還流撹拌した後、室温まで冷却させ、混合物に脱イオン水(200mL)を加えた後、酢酸エチル(100mL)で3回抽出し、有機相を合併して有機相中の水分を無水MgSOで除去し、有機相を減圧蒸留し、得られた蒸留残留物をカラム分離し、中間体化合物B−20−5(20.6g,収率81.%)を得た。
Preparation of Intermediate Compound B-20-5 Compound B-20-4 (20 g, 70 mmol), 1-bromo-2-nitrobenzene (14.3 g, 71 mmol), Pd (PPh 3 ) 4 (4.3 g, 2.4 mmol), Na 2 CO 3 solution (75 mL, 2 M), toluene (300 mL), and ethanol (70 mL) are mixed, stirred at reflux for 5 hours, cooled to room temperature, and deionized water is added to the mixture. After adding (200 mL), the mixture was extracted 3 times with ethyl acetate (100 mL), the organic phase was combined, the water content in the organic phase was removed with anhydrous Series 4 , and the organic phase was distilled under reduced pressure to obtain a distillation residue. The product was column-separated to obtain intermediate compound B-20-5 (20.6 g, yield 81.%).

中間体化合物B−20−6の製造
化合物B−20−5(20g,55mmol)に、トリエチルホスファイト(200mL)を加え、150℃で6時間撹拌した後、室温で冷却させ、酢酸エチルで抽出して有機相を得、有機相を蒸留水で洗浄した後、有機相中の水分を無水MgSOで乾燥して除去し、有機相を減圧蒸留し、得られた蒸留残留物をカラム分離し、中間体化合物B−20−6(7g,収率38%)を得た。
Preparation of Intermediate Compound B-20-6 Triethyl phosphite (200 mL) was added to compound B-20-5 (20 g, 55 mmol), stirred at 150 ° C. for 6 hours, cooled at room temperature, and extracted with ethyl acetate. After washing the organic phase with distilled water, the water content in the organic phase was dried and removed with anhydrous compound 4 , the organic phase was distilled under reduced pressure, and the obtained distillation residue was column-separated. , Intermediate compound B-20-6 (7 g, yield 38%) was obtained.

化合物B−20の製造
キシレン(100mL)に、化合物M7(6.9g,10mmol)、中間体化合物C−31−6(8.3g,25mmol)、CuI(0.9g,5mmol)、トランス−ジアミノシクロヘキサン(2.1mL,20mmol)及び炭酸セシウム(6.5g,20mmol)を加え、該混合物を3時間還流させた。その後、反応混合物を室温まで冷却させ、濾過し、濾過ケーキをジクロロメタン(ジクロロメタン)で洗浄してから、得られた濾液を減圧蒸留し、得られた蒸留残留物をカラム分離し、黄色固体である化合物B−20(5.4g,収率45%)を得た。
Preparation of compound B-20 In xylene (100 mL), compound M7 (6.9 g, 10 mmol), intermediate compound C-31-6 (8.3 g, 25 mmol), CuI (0.9 g, 5 mmol), trans-diamino. Cyclohexane (2.1 mL, 20 mmol) and cesium carbonate (6.5 g, 20 mmol) were added and the mixture was refluxed for 3 hours. The reaction mixture is then cooled to room temperature, filtered, the filtered cake washed with dichloromethane (dichloromethane), the resulting filtrate is distilled under reduced pressure and the resulting distillation residue is column separated to give a yellow solid. Compound B-20 (5.4 g, yield 45%) was obtained.

合成実施例55.化合物B−21の合成
ブロモベンゼンを等当量の2−ブロモジベンゾ[b,d]フランに変えた以外、実施例11と同じ方法を用いて化合物B−21を製造し、反応完成後、粗製品をカラム分離し、白色固体(4.36g,収率61%)を得た。
Synthesis Example 55. Synthesis of Compound B-21 Compound B-21 was produced using the same method as in Example 11 except that bromobenzene was converted to an equal amount of 2-bromodibenzo [b, d] furan, and after the reaction was completed, a crude product was produced. Was column-separated to obtain a white solid (4.36 g, yield 61%).

B−21のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.66 - 8.50 (m, 3H), 8.24 - 8.13 (m, 2H), 8.09 - 7.96 (m, 3H), 7.89 (ddd, J = 16.9, 7.4, 2.0 Hz, 1H), 7.67 - 7.44 (m, 4H), 7.43 - 7.24 (m, 3H).
B-21 NMR spectrum data:
1 1 H NMR (500 MHz, Chloroform) δ 8.66 --8.30 (m, 3H), 8.24 --8.13 (m, 2H), 8.09 --7.96 (m, 3H), 7.89 (ddd, J = 16.9, 7.4, 2.0 Hz, 1H), 7.67 --7.44 (m, 4H), 7.43 --7.24 (m, 3H).

合成実施例56.化合物B−22の合成
ブロモベンゼンを等当量の2−ブロモジベンゾ[b,d]チオフェンに変えた以外、実施例11と同じ方法を用いて化合物B−22を製造し、反応完成後、粗製品をカラム分離し、白色固体(4.86g,収率65%)を得た。
Synthesis Example 56. Synthesis of Compound B-22 Compound B-22 was produced using the same method as in Example 11 except that bromobenzene was converted to an equal amount of 2-bromodibenzo [b, d] thiophene, and after the reaction was completed, a crude product was produced. Was column-separated to obtain a white solid (4.86 g, yield 65%).

合成実施例57.化合物B−23の合成
ブロモベンゼンを等当量の2−ブロモジベンゾ[b,d]チオフェンに変えた以外、実施例21と同じ方法を用いて化合物B−23を製造し、反応完成後、粗製品をカラム分離し、ほぼ白色固体(5.9g,収率79%)を得た。
Synthesis Example 57. Synthesis of Compound B-23 Compound B-23 was produced using the same method as in Example 21 except that bromobenzene was converted to an equal amount of 2-bromodibenzo [b, d] thiophene, and after the reaction was completed, a crude product was produced. Was column-separated to obtain an almost white solid (5.9 g, yield 79%).

合成実施例58.化合物M13の合成 Synthesis Example 58. Synthesis of compound M13

Figure 0006765389
Figure 0006765389

中間体M1(38.6g,0.1mol)と、1−ブロモ−4−ヨードベンゼン(56.7g,0.2mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、エチレンジアミン(2.3mL,34.3mmol)と、トルエン(500mL)とを混合し、還流条件下1日撹拌し、反応終了後、室温まで冷却させ、有機相を酢酸エチルで抽出して減圧蒸留し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、中間体化合物M13(48.3g,70.1%)を得た。 Intermediate M1 (38.6 g, 0.1 mol), 1-bromo-4-iodobenzene (56.7 g, 0.2 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 ( 21.8 g, 102.9 mmol), ethylenediamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed, stirred under reflux conditions for 1 day, cooled to room temperature after completion of the reaction, and the organic phase. Was extracted with ethyl acetate and distilled under reduced pressure, and the obtained distillation residue was column-separated (eluent: dichloromethane / hexane) to obtain intermediate compound M13 (48.3 g, 70.1%).

合成実施例59.化合物M14の合成
p−ブロモヨードベンゼンを等当量の3−ブロモヨードベンゼンに変えた以外、実施例58と同じ方法を用いて化合物M14を製造し、反応完成後、粗製品をカラム分離し、白色固体である中間体M14(52.5g,収率75%)を得た。
Synthesis Example 59. Synthesis of Compound M14 Compound M14 was produced using the same method as in Example 58 except that p-bromoiodobenzene was converted to an equal amount of 3-bromoiodobenzene, and after the reaction was completed, the crude product was column-separated and white. A solid intermediate M14 (52.5 g, yield 75%) was obtained.

合成実施例60.化合物B−24の合成 Synthesis Example 60. Synthesis of compound B-24

Figure 0006765389
Figure 0006765389

中間体M13(6.9g,10mmol)と、ジベンゾチオフェン−2−ボロン酸(5.7g,25mmol)と、Pd(PPh(0.58g,0.5mmol)と、NaCO(5.3g,50mmol)と、トルエン(60mL)と、EtOH(20mL)とを混合し、該混合物に蒸留水(20mL)を加え、120℃で2時間撹拌して反応させた。反応終了後、反応系を蒸留水で洗浄し、酢酸エチル(50mL)で3回抽出し、得られた有機相を合併して有機相をMgSOで乾燥させ、回転蒸発により溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、ほぼ白色固体である化合物B−24(7.3g,81%)を得た。 Intermediate M13 (6.9 g, 10 mmol), dibenzothiophen-2-boronic acid (5.7 g, 25 mmol), Pd (PPh 3 ) 4 (0.58 g, 0.5 mmol), Na 2 CO 3 ( 5.3 g, 50 mmol), toluene (60 mL) and EtOH (20 mL) were mixed, distilled water (20 mL) was added to the mixture, and the mixture was stirred at 120 ° C. for 2 hours for reaction. After completion of the reaction, the reaction system was washed with distilled water, extracted 3 times with ethyl acetate (50 mL), combined with the obtained organic phases, the organic phase was dried with sulfonyl 4 , and the solvent was removed by rotary evaporation. Finally, the solvent-removed residue was column-separated to give compound B-24 (7.3 g, 81%), which was a nearly white solid.

合成実施例61.化合物B−25の合成
中間体M13を等当量の中間体M14に変え、ジベンゾチオフェン−2−ボロン酸を等当量のジベンゾ[b,d]フラン−2−イルボロン酸に変えた以外、実施例60と同じ方法を用いて化合物B−25を製造し、反応完成後、粗製品をカラム分離し、ほぼ白色固体である化合物B−25(6.4g,74%)を得た。
Synthesis Example 61. Synthesis of Compound B-25 Example 60, except that the intermediate M13 was converted to an equal amount of intermediate M14 and the dibenzothiophen-2-boronic acid was converted to an equal amount of dibenzo [b, d] furan-2-ylboronic acid. Compound B-25 was produced using the same method as in the above, and after the reaction was completed, the crude product was column-separated to obtain compound B-25 (6.4 g, 74%) which was an almost white solid.

合成実施例62.化合物B−26の合成
フェニルボロン酸を等当量の2−ジベンゾチオフェンボロン酸に変えた以外、合成実施例23と同じ方法を用い、反応完成後、淡黄色固体(8.1g,収率80%)を得た。
Synthesis Example 62. Synthesis of Compound B-26 A pale yellow solid (8.1 g, yield 80%) after completion of the reaction using the same method as in Synthesis Example 23, except that phenylboronic acid was converted to an equal amount of 2-dibenzothiophene boronic acid. ) Was obtained.

合成実施例63.化合物B−27の合成 Synthesis Example 63. Synthesis of compound B-27

Figure 0006765389
Figure 0006765389

中間体M3−2(6.9g,10mmol)と、フェニルボロン酸(3.05g,25mmol)と、Pd(PPh(0.58g,0.5mmol)と、NaCO(5.3g,50mmol)と、トルエン(60mL)と、EtOH(20mL)とを混合し、該混合物に蒸留水(20mL)を加え、120℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチルで抽出して有機相を得、有機相をMgSOで乾燥させ、回転蒸発により溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、白色固体である中間体化合物B−27−1(4.5g,84%)を得た。 Intermediate M3-2 (6.9 g, 10 mmol), phenylboronic acid (3.05 g, 25 mmol), Pd (PPh 3 ) 4 (0.58 g, 0.5 mmol), Na 2 CO 3 (5. 3 g, 50 mmol), toluene (60 mL) and EtOH (20 mL) were mixed, distilled water (20 mL) was added to the mixture, and the mixture was stirred at 120 ° C. for 2 hours for reaction. After completion of the reaction, the reaction system was washed with distilled water and then extracted with ethyl acetate to obtain an organic phase, the organic phase was dried with 41 4 and the solvent was removed by rotary evaporation, and finally the solvent was removed. The residue was column-separated to obtain intermediate compound B-27-1 (4.5 g, 84%) as a white solid.

中間体化合物B−27−1(5.35g,10mmol)と、2−ブロモジベンゾチオフェン(5.4g,20mmol)と、CuI(1g,5mmol)と、CsCO(8.3g,25mmol)と、トルエン(100mL)とを混合し、50℃で反応させた後、混合物にエチレンジアミン(0.7mL、10mmol)を加え、14時間還流反応させ、反応終了、室温で冷却させ、蒸留水を加え、酢酸エチルで抽出して有機相を得、有機相中の水分をMgSOで除去し、有機相を減圧蒸留し、得られた蒸留残留物をカラム分離し、淡黄色固体である目的化合物B−27(5.84g,収率65%)を得た。 Intermediate compound B-27-1 (5.35 g, 10 mmol), 2-bromodibenzothiophene (5.4 g, 20 mmol), CuI (1 g, 5 mmol), and Cs 2 CO 3 (8.3 g, 25 mmol). And toluene (100 mL) are mixed and reacted at 50 ° C., then ethylenediamine (0.7 mL, 10 mmol) is added to the mixture, reflux reaction is carried out for 14 hours, the reaction is completed, the mixture is cooled at room temperature, and distilled water is added. , Extraction with ethyl acetate to obtain an organic phase, water in the organic phase was removed with Reflux 4 , the organic phase was distilled under reduced pressure, the obtained distillation residue was column-separated, and the target compound B was a pale yellow solid. -27 (5.84 g, yield 65%) was obtained.

合成実施例64.化合物B−28の合成
ブロモベンゼンを等当量の2−ブロモジベンゾ[b,d]チオフェンに変えた以外、合成実施例34と同じの合成方法を用い、反応完成後、白色固体(4.32g,収率68%)を得た。
Synthesis Example 64. Synthesis of Compound B-28 The same synthesis method as in Synthesis Example 34 was used except that the equivalent amount of 2-bromodibenzo [b, d] thiophene was changed to bromobenzene, and after the reaction was completed, a white solid (4.32 g, The yield was 68%).

合成実施例65.化合物B−29の合成
4−ビフェニルボロン酸を等当量のジベンゾ[b,d]チオフェン−2−イルボロン酸に変えた以外、合成実施例25と同じの合成方法を用い、反応完成後、白色固体(4.15g,2ステップの合計収率58%)を得た。
Synthesis Example 65. Synthesis of Compound B-29 Using the same synthesis method as in Synthesis Example 25, except that 4-biphenylboronic acid was converted to an equal amount of dibenzo [b, d] thiophen-2-ylboronic acid, a white solid after completion of the reaction. (4.15 g, total yield of 2 steps 58%) was obtained.

合成実施例66.化合物B−30の合成 Synthesis Example 66. Synthesis of compound B-30

Figure 0006765389
Figure 0006765389

中間体M7(6.9g,10mmol)と、ジベンゾチオフェン−2−ボロン酸(5.7g,25mmol)と、Pd(PPh(0.58g,0.5mmol)と、KCO(5.3g,50mmol)と、トルエン(60mL)と、EtOH(20mL)とを混合し、該混合物に蒸留水(20mL)を加えた後、120℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチルで抽出して有機相を得、有機相をMgSOで乾燥させ、回転蒸発により溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、白色固体である化合物B−30(6.8g,76%)を得た。 Intermediate M7 (6.9 g, 10 mmol), dibenzothiophen-2-boronic acid (5.7 g, 25 mmol), Pd (PPh 3 ) 4 (0.58 g, 0.5 mmol), and K 2 CO 3 ( 5.3 g (50 mmol), toluene (60 mL) and EtOH (20 mL) were mixed, distilled water (20 mL) was added to the mixture, and the mixture was stirred at 120 ° C. for 2 hours for reaction. After the reaction is completed, the reaction system is washed with distilled water and then extracted with ethyl acetate to obtain an organic phase, the organic phase is dried with sulfonyl 4 , the solvent is removed by rotary evaporation, and finally the solvent is removed. The residue was column-separated to give compound B-30 (6.8 g, 76%) as a white solid.

B−30のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.39 (dt, J = 7.5, 1.8 Hz, 1H), 8.23 - 8.16 (m, 2H), 8.19 - 8.12 (m, 1H), 8.15 - 8.04 (m, 2H), 8.01 (dt, J = 7.4, 2.2 Hz, 1H), 7.92 - 7.79 (m, 2H), 7.83 - 7.72 (m, 3H), 7.57 - 7.24 (m, 7H).
B-30 NMR spectrum data:
1 H NMR (500 MHz, Chloroform) δ 8.39 (dt, J = 7.5, 1.8 Hz, 1H), 8.23 --8.16 (m, 2H), 8.19 --8.12 (m, 1H), 8.15 --8.04 (m, 2H) , 8.01 (dt, J = 7.4, 2.2 Hz, 1H), 7.92 --7.79 (m, 2H), 7.83 --7.72 (m, 3H), 7.57 --7.24 (m, 7H).

合成実施例67.化合物B−31の合成
ジベンゾ[b,d]チオフェン−2−イルボロン酸を等当量のジベンゾ[b,d]フラン−2−イルボロン酸に変えた以外、合成実施例66と同じの合成方法を用い、反応完成後、白色固体(7.1g,収率66%)を得た。
Synthesis Example 67. Synthesis of Compound B-31 Using the same synthesis method as in Synthesis Example 66, except that dibenzo [b, d] thiophen-2-ylboronic acid was converted to an equal equivalent of dibenzo [b, d] furan-2-ylboronic acid. After completion of the reaction, a white solid (7.1 g, yield 66%) was obtained.

合成実施例68.化合物C−1の合成 Synthesis Example 68. Synthesis of compound C-1

Figure 0006765389
Figure 0006765389

キシレン(100mL)に、化合物M6(3.86g,10mmol)、4−ブロモトリフェニルアミン(9.7g,30mmol)、CuI(0.9g,5mmol)、トランス−ジアミノシクロヘキサン(2.1mL,20mmol)及び炭酸セシウム(6.5g,20mmol)を加え、該混合物を3時間還流させた。反応混合物を室温まで冷却させ、濾過し、濾過ケーキをジクロロメタンで洗浄し、濾液を減圧蒸留して溶剤を除去し、得られた蒸留残留物をカラム分離し、淡黄色固体化合物C−1(6.25g,収率72%)を得た。 Compound M6 (3.86 g, 10 mmol), 4-bromotriphenylamine (9.7 g, 30 mmol), CuI (0.9 g, 5 mmol), trans-diaminocyclohexane (2.1 mL, 20 mmol) in xylene (100 mL). And cesium carbonate (6.5 g, 20 mmol) were added and the mixture was refluxed for 3 hours. The reaction mixture was cooled to room temperature, filtered, the filtered cake was washed with dichloromethane, the filtrate was distilled under reduced pressure to remove the solvent, the resulting distillation residue was column separated and the pale yellow solid compound C-1 (6). .25 g, yield 72%) was obtained.

C−1のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.50 (s, 12H), 8.37 (s, 17H), 8.05 (s, 17H), 7.64 (s, 21H), 7.47 (s, 10H), 7.32 - 7.03 (m, 105H), 7.12 (s, 6H), 7.15 - 7.03 (m, 44H), 7.05 (d, J = 14.9 Hz, 54H), 6.96 (s, 14H).
NMR spectrum data of C-1:
1 1 H NMR (500 MHz, Chloroform) δ 8.50 (s, 12H), 8.37 (s, 17H), 8.05 (s, 17H), 7.64 (s, 21H), 7.47 (s, 10H), 7.32 --7.03 (m) , 105H), 7.12 (s, 6H), 7.15 --7.03 (m, 44H), 7.05 (d, J = 14.9 Hz, 54H), 6.96 (s, 14H).

合成実施例69.化合物C−2の合成
4−ブロモトリフェニルアミンを等当量のトリフェニルアミン−3−ブロミドに変えた以外、化合物C−1と同じの合成方法を用い、反応完成後、淡黄色固体C−2(5.8g,収率68%)を得た。
Synthesis Example 69. Synthesis of Compound C-2 Using the same synthesis method as Compound C-1, except that 4-bromotriphenylamine was converted to an equal amount of triphenylamine-3-bromid, a pale yellow solid C-2 was used after the reaction was completed. (5.8 g, yield 68%) was obtained.

合成実施例70.化合物C−3の合成
トリフェニルアミン−4−ブロミドを等当量のN−フェニル−N−(4−ブロモフェニル)−2−ナフチルアミンに変えた以外、化合物C−1と同じの合成方法を用い、反応させて淡黄色固体(5.23g,収率55%)を得た。
Synthesis Example 70. Synthesis of Compound C-3 Using the same synthesis method as Compound C-1, except that triphenylamine-4-bromid was converted to an equal amount of N-phenyl-N- (4-bromophenyl) -2-naphthylamine. The reaction was carried out to obtain a pale yellow solid (5.23 g, yield 55%).

C−3のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.49 (d, J = 65.0 Hz, 46H), 8.39 (s, 2H), 8.10 (s, 26H), 7.88 - 7.60 (m, 61H), 7.53 (d, J = 10.0 Hz, 30H), 7.43 (d, J = 15.0 Hz, 33H), 7.38 (s, 11H), 7.32 (s, 27H), 7.24 (s, 31H), 7.19 - 7.06 (m, 72H), 7.00 (s, 14H).
NMR spectrum data of C-3:
1 1 H NMR (500 MHz, Chloroform) δ 8.49 (d, J = 65.0 Hz, 46H), 8.39 (s, 2H), 8.10 (s, 26H), 7.88 --7.60 (m, 61H), 7.53 (d, J) = 10.0 Hz, 30H), 7.43 (d, J = 15.0 Hz, 33H), 7.38 (s, 11H), 7.32 (s, 27H), 7.24 (s, 31H), 7.19 --7.06 (m, 72H), 7.00 (s, 14H).

合成実施例71.化合物C−4の合成 Synthesis Example 71. Synthesis of compound C-4

Figure 0006765389
Figure 0006765389

250mL三つ口フラスコに、Nを導入する。ジフェニルアミン(4.22g,25mmol)、中間体M11(6.92g,10mmol)、Pd(dba)(0.27g,0.5mmol)、ナトリウムtert−ブトキシド(6.2g,125mmol)、トリ−tert−ブチルホスフィン(1.04mL,0.5mmol)及びトルエン(150mL)を三つ口フラスコに配置し、反応混合物を還流状態で2時間反応させ、完全に反応したことをTLCで検出すると、反応を停止させる。混合物の温度が室温まで下がると、脱イオン水を加えて反応をクエンチさせ、トルエンで3回抽出し、有機相を合併して有機相を無水MgSOで乾燥させ、シリカゲルショットカラムに通過させ、濾液を回転乾燥させ、残留物をカラム分離して黄色固体(7.04g,収率81%)を得た。 Introduce N 2 into a 250 mL three-necked flask. Diphenylamine (4.22 g, 25 mmol), intermediate M11 (6.92 g, 10 mmol), Pd (dba) 2 (0.27 g, 0.5 mmol), sodium tert-butoxide (6.2 g, 125 mmol), tri-tert -Butylphosphine (1.04 mL, 0.5 mmol) and toluene (150 mL) were placed in a three-necked flask, the reaction mixture was reacted under reflux for 2 hours, and when TLC was detected that the reaction was complete, the reaction was observed. Stop it. When the temperature of the mixture is lowered to room temperature, the reaction was quenched by the addition of deionized water, and extracted 3 times with toluene, merged organic phases were dried organic phase anhydrous MgSO 4, passed through a silica gel shot column, The filtrate was spin-dried and the residue was column separated to give a yellow solid (7.04 g, 81% yield).

C−4のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.42 (s, 2H), 8.10 (s, 2H), 8.01 (s, 1H), 7.60 (d, J = 20.0 Hz, 3H), 7.49 (d, J = 10.0 Hz, 3H), 7.24 (s, 4H), 7.08 (s, 4H), 7.00 (s, 2H), 6.48 (s, 1H).
NMR spectrum data of C-4:
1H NMR (500 MHz, Chloroform) δ 8.42 (s, 2H), 8.10 (s, 2H), 8.01 (s, 1H), 7.60 (d, J = 20.0 Hz, 3H), 7.49 (d, J = 10.0 Hz) , 3H), 7.24 (s, 4H), 7.08 (s, 4H), 7.00 (s, 2H), 6.48 (s, 1H).

合成実施例72.化合物C−5の合成
中間体M11を等当量の中間体M13に変えた以外、化合物C−4と同じの合成方法を用い、反応させて黄色固体(7.1g,収率82%)を得た。
Synthesis Example 72. Synthesis of Compound C-5 A yellow solid (7.1 g, 82% yield) was obtained by reacting using the same synthesis method as Compound C-4 except that the intermediate M11 was changed to an equivalent amount of the intermediate M13. It was.

合成実施例73.化合物C−6の合成
ジフェニルアミンを等当量のフェニルナフチルアミンに変えた以外、化合物C−5と同じの合成方法を用い、反応させて黄色固体(7.5g,収率84%)を得た。
Synthesis Example 73. Synthesis of Compound C-6 A yellow solid (7.5 g, yield 84%) was obtained by reacting using the same synthesis method as that of Compound C-5 except that diphenylamine was converted to an equal amount of phenylnaphthylamine.

合成実施例74.化合物C−7の合成 Synthesis Example 74. Synthesis of compound C-7

Figure 0006765389
Figure 0006765389

中間体M1(38.6g,0.1mol)と、1−ブロモ−3−ヨードベンゼン(56.7g,0.2mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、エチレンジアミン(2.3mL,34.3mmol)と、トルエン(500mL)とを混合し、還流条件下1日撹拌し、反応終了後、室温まで冷却させ、有機相を酢酸エチルで抽出して減圧蒸留し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、中間体化合物M14(48.3g,70.1%)を得た。 Intermediate M1 (38.6 g, 0.1 mol), 1-bromo-3-iodobenzene (56.7 g, 0.2 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 ( 21.8 g, 102.9 mmol), ethylenediamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed, stirred under reflux conditions for 1 day, cooled to room temperature after completion of the reaction, and the organic phase. Was extracted with ethyl acetate and distilled under reduced pressure, and the obtained distillation residue was column-separated (eluent: dichloromethane / hexane) to obtain intermediate compound M14 (48.3 g, 70.1%).

250mL三つ口フラスコに、Nを導入する。ジフェニルアミン(4.22g,25mmol)、中間体M14(6.92g,10mmol)、Pd(dba)(0.27g,0.5mmol)、ナトリウムtert−ブトキシド(6.2g,125mmol)、トリ−tert−ブチルホスフィン(1.04mL,0.5mmol)及びトルエン(150mL)を三つ口フラスコに配置し、反応混合物を還流状態で2時間反応させ、完全に反応したことをTLCで検出すると、反応を停止させる。混合物の温度が室温まで下がると、脱イオン水を加えて反応をクエンチさせ、トルエンで3回抽出し、有機相を合併して有機相を無水MgSOで乾燥させ、シリカゲルショットカラムに通過させ、濾液を回転乾燥させ、残留物をカラム分離して黄色固体(7.5g,収率85%)を得た。 Introduce N 2 into a 250 mL three-necked flask. Diphenylamine (4.22 g, 25 mmol), intermediate M14 (6.92 g, 10 mmol), Pd (dba) 2 (0.27 g, 0.5 mmol), sodium tert-butoxide (6.2 g, 125 mmol), tri-tert -Butylphosphine (1.04 mL, 0.5 mmol) and toluene (150 mL) were placed in a three-necked flask, the reaction mixture was reacted under reflux for 2 hours, and when TLC was detected that the reaction was complete, the reaction was observed. Stop it. When the temperature of the mixture is lowered to room temperature, the reaction was quenched by the addition of deionized water, and extracted 3 times with toluene, merged organic phases were dried organic phase anhydrous MgSO 4, passed through a silica gel shot column, The filtrate was spin-dried and the residue was column-separated to give a yellow solid (7.5 g, 85% yield).

合成実施例75.化合物C−8の合成 Synthesis Example 75. Synthesis of compound C-8

Figure 0006765389
Figure 0006765389

中間体である2−ブロモジベンゾチオフェンを等当量の4−ブロモトリフェニルアミンに変えた以外、実施例63における化合物B−27と同じの合成方法を用い、反応させて淡黄色固体(7.0g,収率75%)を得た。 A pale yellow solid (7.0 g) was reacted using the same synthetic method as compound B-27 in Example 63 except that the intermediate 2-bromodibenzothiophene was converted to an equal equivalent of 4-bromotriphenylamine. , Yield 75%) was obtained.

合成実施例76.化合物C−9の合成
中間体M11を等当量の中間体M3に変えた以外、化合物C−4と同じの合成方法を用い、反応させて黄色固体(7.04g,収率81%)を得た。
Synthesis Example 76. Synthesis of Compound C-9 A yellow solid (7.04 g, 81% yield) was obtained by reaction using the same synthesis method as Compound C-4 except that the intermediate M11 was changed to an equivalent amount of the intermediate M3. It was.

合成実施例77.化合物C−10の合成
中間体M11を等当量の中間体M2に変えた以外、化合物C−4と同じの合成方法を用い、反応させて黄色固体(7.1g,収率82%)を得た。
Synthesis Example 77. Synthesis of Compound C-10 A yellow solid (7.1 g, 82% yield) was obtained by reacting using the same synthesis method as Compound C-4 except that the intermediate M11 was changed to an equal amount of the intermediate M2. It was.

合成実施例78.化合物C−11の合成
中間体であるジフェニルアミンを等当量のフェニル−2−ナフチルアミンに変えた以外、化合物C−4と同じの合成方法を用い、反応させて淡黄色固体(7.2g,収率74%)を得た。
Synthesis Example 78. Synthesis of Compound C-11 A pale yellow solid (7.2 g, yield) was reacted using the same synthesis method as Compound C-4 except that the intermediate diphenylamine was changed to an equal amount of phenyl-2-naphthylamine. 74%) was obtained.

C−11のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.42 (s, 19H), 8.23 (s, 11H), 8.13 (d, J = 6.6 Hz, 2H), 8.03 (d, J = 70.0 Hz, 34H), 7.73 (t, J = 3.3 Hz, 5H), 7.71 (s, 10H), 7.66 (d, J = 45.0 Hz, 35H), 7.72 - 7.52 (m, 64H), 7.50 (s, 12H), 7.43 (d, J = 15.0 Hz, 33H), 7.38 (s, 8H), 7.24 (s, 22H), 7.10 (d, J = 15.0 Hz, 31H), 7.00 (s, 10H), 6.40 (s, 11H).
NMR spectrum data of C-11:
1 1 H NMR (500 MHz, Chloroform) δ 8.42 (s, 19H), 8.23 (s, 11H), 8.13 (d, J = 6.6 Hz, 2H), 8.03 (d, J = 70.0 Hz, 34H), 7.73 ( t, J = 3.3 Hz, 5H), 7.71 (s, 10H), 7.66 (d, J = 45.0 Hz, 35H), 7.72 --7.52 (m, 64H), 7.50 (s, 12H), 7.43 (d, J = 15.0 Hz, 33H), 7.38 (s, 8H), 7.24 (s, 22H), 7.10 (d, J = 15.0 Hz, 31H), 7.00 (s, 10H), 6.40 (s, 11H).

合成実施例79.化合物C−12の合成 Synthesis Example 79. Synthesis of compound C-12

Figure 0006765389
Figure 0006765389

化合物C−12−1の製造
中間体M7(34.5g,50mmol)と、N−フェニル−ジベンゾ[b,d]フラン−3−アミン(7.8g,30mmol)と、Pd(dba) (0.27g,0.3mmol)と、ナトリウムtert−ブトキシド(5.8g,60mmol)と、トルエン(200mL)とを混合し、110℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相を無水MgSOで乾燥させ、回転蒸発器によって溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、化合物C−12−1(16g,収率61.5%)を得た。
Preparation of compound C-12-1 Intermediate M7 (34.5 g, 50 mmol), N-phenyl-dibenzo [b, d] furan-3-amine (7.8 g, 30 mmol), and Pd 2 (dba) 3 (0.27 g, 0.3 mmol), sodium tert-butoxide (5.8 g, 60 mmol) and toluene (200 mL) were mixed and reacted at 110 ° C. for 2 hours with stirring. After the reaction completion, after washing the reaction with distilled water, and extracted 3 times with ethyl acetate (100 mL), and merging the resulting organic phases are dried organic phase anhydrous MgSO 4, the solvent by rotary evaporator Was removed, and finally, the residue from which the solvent had been removed was column-separated to obtain compound C-12-1 (16 g, yield 61.5%).

化合物C−12の製造
化合物C−12−1(17g,20mmol)と、N−フェニル−ジベンゾ[b,d]チオフェン−3−アミン(7.7g,30mmol)と、Pd(dba) (0.27g,0.3mmol)と、ナトリウムtert−ブトキシド(5.8g,60mmol)と、トルエン(200mL)とを混合し、110℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相を無水MgSOで乾燥させ、回転蒸発器によって溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、黄色化合物である化合物C−12(18.9g,89%)を得た。
Preparation of Compound C-12 Compound C-12-1 (17 g, 20 mmol), N-phenyl-dibenzo [b, d] thiophene-3-amine (7.7 g, 30 mmol), and Pd 2 (dba) 3 ( 0.27 g (0.3 mmol), sodium tert-butoxide (5.8 g, 60 mmol) and toluene (200 mL) were mixed and reacted at 110 ° C. for 2 hours with stirring. After the reaction completion, after washing the reaction with distilled water, and extracted 3 times with ethyl acetate (100 mL), and merging the resulting organic phases are dried organic phase anhydrous MgSO 4, the solvent by rotary evaporator Was removed, and finally, the residue from which the solvent had been removed was column-separated to obtain compound C-12 (18.9 g, 89%), which is a yellow compound.

C−12のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.56 - 8.38 (m, 50H), 8.08 (s, 25H), 8.05 - 8.03 (m, 1H), 7.99 (t, J = 12.5 Hz, 23H), 8.03 - 7.71 (m, 38H), 7.57 (dd, J = 39.9, 34.9 Hz, 54H), 7.51 (s, 12H), 7.38 (s, 8H), 7.33 - 7.26 (m, 51H), 7.23 (s, 28H), 7.15 (s, 9H), 7.08 (d, J= 15.0 Hz, 43H), 7.00 (d, J = 15.0 Hz, 20H).
NMR spectrum data of C-12:
1 1 H NMR (500 MHz, Chloroform) δ 8.56 --8.38 (m, 50H), 8.08 (s, 25H), 8.05 --8.03 (m, 1H), 7.99 (t, J = 12.5 Hz, 23H), 8.03 --7.71 (m, 38H), 7.57 (dd, J = 39.9, 34.9 Hz, 54H), 7.51 (s, 12H), 7.38 (s, 8H), 7.33 --7.26 (m, 51H), 7.23 (s, 28H), 7.15 (s, 9H), 7.08 (d, J = 15.0 Hz, 43H), 7.00 (d, J = 15.0 Hz, 20H).

合成実施例80.化合物C−13の合成 Synthesis Example 80. Synthesis of compound C-13

Figure 0006765389
Figure 0006765389

中間体化合物C−13−1の製造
中間体M7(34.5g,50mmol)と、ジフェニルアミン(5.7g,30mmol)と、Pd(dba)(0.27g,0.3mmol)と、ナトリウムtert−ブトキシド(5.8g,60mmol)と、トルエン(200mL)とを混合し、110℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相を無水MgSOで乾燥させ、回転蒸発器によって溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、単独置換中間体化合物C−13−1(21g,90%)を得た。
Preparation of Intermediate Compound C-13-1 Intermediate M7 (34.5 g, 50 mmol), diphenylamine (5.7 g, 30 mmol), Pd 2 (dba) 3 (0.27 g, 0.3 mmol), and sodium. Tart-butoxide (5.8 g, 60 mmol) and toluene (200 mL) were mixed and stirred at 110 ° C. for 2 hours for reaction. After the reaction completion, after washing the reaction with distilled water, and extracted 3 times with ethyl acetate (100 mL), and merging the resulting organic phases are dried organic phase anhydrous MgSO 4, the solvent by rotary evaporator Was removed, and finally, the residue from which the solvent had been removed was column-separated to obtain a homosubstituted intermediate compound C-13-1 (21 g, 90%).

化合物C−13の製造
化合物C−13−1(21g,27mmol)と、N−フェニル−ジベンゾ[b,d]チオフェン−3−アミン(7.7g,30mmol)と、Pd(dba)(0.27g,0.3mmol)と、ナトリウムtert−ブトキシド(5.8g,60mmol)と、トルエン(200mL)とを混合し、120℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相を無水MgSOで乾燥させ、回転蒸発器によって溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、黄色固体である化合物C−13(23.7g,90%)を得た。
Preparation of Compound C-13 Compound C-13-1 (21 g, 27 mmol), N-phenyl-dibenzo [b, d] thiophene-3-amine (7.7 g, 30 mmol), and Pd 2 (dba) 3 ( (0.27 g, 0.3 mmol), sodium tert-butoxide (5.8 g, 60 mmol) and toluene (200 mL) were mixed and reacted at 120 ° C. for 2 hours with stirring. After the reaction completion, after washing the reaction with distilled water, and extracted 3 times with ethyl acetate (100 mL), and merging the resulting organic phases are dried organic phase anhydrous MgSO 4, the solvent by rotary evaporator Finally, the residue from which the solvent had been removed was column-separated to obtain compound C-13 (23.7 g, 90%) as a yellow solid.

C−13のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.67 - 8.21 (m, 259H), 8.37 (s, 13H), 8.08 (s, 122H), 8.05 (s, 5H), 8.03 (d, J = 21.7 Hz, 6H), 8.01 - 7.70 (m, 112H), 7.61 (d, J = 64.9 Hz, 190H), 7.51 (s, 59H), 7.30 (d, J = 5.0 Hz, 178H), 7.23 (s, 226H), 7.15 (s, 39H), 7.08 (d, J = 15.0 Hz, 299H), 7.00 (d, J = 15.0 Hz, 126H).
NMR spectrum data of C-13:
1 1 H NMR (500 MHz, Chloroform) δ 8.67 --8.21 (m, 259H), 8.37 (s, 13H), 8.08 (s, 122H), 8.05 (s, 5H), 8.03 (d, J = 21.7 Hz, 6H) ), 8.01 --7.70 (m, 112H), 7.61 (d, J = 64.9 Hz, 190H), 7.51 (s, 59H), 7.30 (d, J = 5.0 Hz, 178H), 7.23 (s, 226H), 7.15 (s, 39H), 7.08 (d, J = 15.0 Hz, 299H), 7.00 (d, J = 15.0 Hz, 126H).

合成実施例81.化合物C−14の合成
中間体M8を等当量の中間体M9に変え、4−ビフェニルボロン酸を等当量の(4−(ジフェニルアミノ)フェニル)ボロン酸に変えた以外、実施例25で化合物A−16を製造するのと同じ方法を用いて化合物C−14を製造し、反応完成後、分離して白色固体B−13(6.6g,収率85%)を得た。
Synthesis Example 81. Synthesis of Compound C-14 Compound A in Example 25, except that the intermediate M8 was converted to an equivalent amount of intermediate M9 and 4-biphenylboronic acid was converted to an equal amount of (4- (diphenylamino) phenyl) boronic acid. Compound C-14 was produced using the same method as for producing -16, and after the reaction was completed, it was separated to obtain white solid B-13 (6.6 g, yield 85%).

合成実施例82.化合物C−15の合成
中間体M8を等当量の中間体M9に変え、4−ビフェニルボロン酸を等当量の(4−(ジフェニルアミノ)フェニル)ボロン酸に変えた以外、実施例25で化合物A−16を製造するのと同じ方法を用いて化合物C−14を製造し、反応完成後、分離して白色固体B−13(6.6g,収率85%)を得た。
Synthesis Example 82. Synthesis of Compound C-15 Compound A in Example 25, except that the intermediate M8 was converted to an equivalent amount of intermediate M9 and 4-biphenylboronic acid was converted to an equal amount of (4- (diphenylamino) phenyl) boronic acid. Compound C-14 was produced using the same method as for producing -16, and after the reaction was completed, it was separated to obtain white solid B-13 (6.6 g, yield 85%).

C−15のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.51 (s, 17H), 8.38 (s, 13H), 8.06 (s, 13H), 7.56 (d, J = 19.9 Hz, 46H), 7.48 (d, J= 10.0 Hz, 42H), 7.36 (s, 7H), 7.21 (s, 31H), 7.14 (d, J = 10.0 Hz, 19H), 7.06 (d, J = 14.9 Hz, 43H), 6.97 (s, 9H), 6.90 (s, 9H).
NMR spectrum data of C-15:
1 1 H NMR (500 MHz, Chloroform) δ 8.51 (s, 17H), 8.38 (s, 13H), 8.06 (s, 13H), 7.56 (d, J = 19.9 Hz, 46H), 7.48 (d, J = 10.0 Hz, 42H), 7.36 (s, 7H), 7.21 (s, 31H), 7.14 (d, J = 10.0 Hz, 19H), 7.06 (d, J = 14.9 Hz, 43H), 6.97 (s, 9H), 6.90 (s, 9H).

合成実施例83.化合物C−16の合成 Synthesis Example 83. Synthesis of compound C-16

Figure 0006765389
Figure 0006765389

雰囲気下、三つ口フラスコに、ヨードベンゼン(22g,0.11mol)、中間体M9(46.1g,0.1mol)、塩化第一銅(2g,20mmol)、水和1,10−フェナントロリン(4g,20mmol)、水酸化カリウム(16.8g,0.3mol)及びキシレン(300mL)を加えた。反応系を20h還流反応させ、反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相をMgSOで乾燥させ、回転蒸発器によって溶剤を除去し、溶剤が除去された残留物をカラム分離し、白色固体である中間体化合物(46.1g,75%)を得た。 N 2 atmosphere, to a three-necked flask, iodobenzene (22 g, 0.11 mol), intermediate M9 (46.1 g, 0.1 mol), cuprous chloride (2 g, 20 mmol), hydrated 1,10 Phenanthroline (4 g, 20 mmol), potassium hydroxide (16.8 g, 0.3 mol) and xylene (300 mL) were added. The reaction was 20h reflux the reaction, after the reaction completion, after washing the reaction with distilled water, and extracted 3 times with ethyl acetate (100 mL), and merging the resulting organic phase the organic phase is dried over MgSO 4 The solvent was removed by a rotary evaporator, and the residue from which the solvent was removed was column-separated to obtain an intermediate compound (46.1 g, 75%) which was a white solid.

中間体C−16−1(6.14g,10mmol)と、ジフェニルアミン(1.7g,10mmol)と、Pd(dba)(0.03g,0.03mmol)と、ナトリウムtert−ブトキシド(1.9g,20mmol)と、トルエン(100mL)とを混合し、120℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相を無水MgSOで乾燥させ、回転蒸発器によって溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、黄色固体である化合物C−16(6.25g,89%)を得た。 Intermediate C-16-1 (6.14 g, 10 mmol), diphenylamine (1.7 g, 10 mmol), Pd 2 (dba) 3 (0.03 g, 0.03 mmol), and sodium tert-butoxide (1. 9 g, 20 mmol) and toluene (100 mL) were mixed and stirred at 120 ° C. for 2 hours for reaction. After the reaction completion, after washing the reaction with distilled water, and extracted 3 times with ethyl acetate (100 mL), and merging the resulting organic phases are dried organic phase anhydrous MgSO 4, the solvent by rotary evaporator Finally, the residue from which the solvent had been removed was column-separated to obtain compound C-16 (6.25 g, 89%) which was a yellow solid.

合成実施例84.化合物D−1の合成 Synthesis Example 84. Synthesis of compound D-1

Figure 0006765389
Figure 0006765389

250mL三つ口フラスコに、中間体化合物M6(19.1g,50mmol)と、2−ブロモピリジン(18.9g,120mmol)と、CuI(1.8g,10mmol)と、トランス−ジアミノシクロヘキサン(5.4mL,50mmol)と、炭酸セシウム(16g,50mmol)とで形成された混合物を3時間加熱して還流させた。反応混合物を室温まで冷却させ、濾過し、濾過ケーキをジクロロメタンで洗浄し、得られた有機相を脱イオン水で充分に洗浄してから、有機相を無水NaSOで乾燥させた。乾燥後の有機相を減圧して溶剤を除去し、得られた残留物をカラム分離し、淡黄色化合物D−1(23.1g,収率86%)を得た。 In a 250 mL three-necked flask, intermediate compound M6 (19.1 g, 50 mmol), 2-bromopyridine (18.9 g, 120 mmol), CuI (1.8 g, 10 mmol), and trans-diaminocyclohexane (5. A mixture formed of 4 mL, 50 mmol) and cesium carbonate (16 g, 50 mmol) was heated to reflux for 3 hours. The reaction mixture was cooled to room temperature, filtered, the filtered cake was washed with dichloromethane, the resulting organic phase was thoroughly washed with deionized water and then the organic phase was dried over anhydrous Na 2 SO 4 . The organic phase after drying was depressurized to remove the solvent, and the obtained residue was column-separated to obtain pale yellow compound D-1 (23.1 g, yield 86%).

合成実施例85.化合物D−2の合成
2−ブロモピリジンを等当量の5−ブロモ−2−フェニルピリジンに変えた以外、合成実施例84と同じの合成方法を用い、反応させて淡黄色固体(27.1g,収率79%)を得た。
Synthesis Example 85. Synthesis of Compound D-2 A pale yellow solid (27.1 g, 27.1 g,) was reacted using the same synthesis method as in Synthesis Example 84, except that 2-bromopyridine was converted to an equivalent amount of 5-bromo-2-phenylpyridine. Yield 79%) was obtained.

合成実施例86.化合物D−3の合成
2−ブロモピリジンを等当量の2−(4−ブロモフェニル)ピリジンに変えた以外、合成実施例84と同じの合成方法を用い、反応させて淡黄色固体(29g,収率84%)を得た。
Synthesis Example 86. Synthesis of Compound D-3 A pale yellow solid (29 g, yield) was reacted using the same synthesis method as in Synthesis Example 84, except that 2-bromopyridine was converted to an equivalent amount of 2- (4-bromophenyl) pyridine. A rate of 84%) was obtained.

合成実施例87.化合物D−4の合成
2−ブロモピリジンを等当量の3−(4−ブロモフェニル)ピリジンに変えた以外、合成実施例84と同じの合成方法を用い、反応させて淡黄色固体(24.5g,収率71%)を得た。
Synthesis Example 87. Synthesis of Compound D-4 A pale yellow solid (24.5 g) was reacted using the same synthesis method as in Synthesis Example 84, except that 2-bromopyridine was converted to an equivalent amount of 3- (4-bromophenyl) pyridine. , Yield 71%) was obtained.

D−4のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 9.24 (s, 21H), 8.70 (s, 11H), 8.49 (d, J = 65.0 Hz, 74H), 8.39 (s, 3H), 8.33 (s, 19H), 8.10 (s, 35H), 7.91 (d, J = 5.0 Hz, 84H), 7.49 (d, J = 25.0 Hz, 39H), 7.44 (s, 2H), 7.16 (s, 12H), 7.11 (s, 17H).
NMR spectrum data of D-4:
1 1 H NMR (500 MHz, Chloroform) δ 9.24 (s, 21H), 8.70 (s, 11H), 8.49 (d, J = 65.0 Hz, 74H), 8.39 (s, 3H), 8.33 (s, 19H), 8.10 (s, 35H), 7.91 (d, J = 5.0 Hz, 84H), 7.49 (d, J = 25.0 Hz, 39H), 7.44 (s, 2H), 7.16 (s, 12H), 7.11 (s, 17H) ).

合成実施例88.化合物D−5の合成 Synthesis Example 88. Synthesis of compound D-5

Figure 0006765389
Figure 0006765389

中間体であるブロモベンゼンを等当量の5−ブロモ−2−フェニルピリジンに変えた以外、実施例21における化合物A−11と同じの合成方法を用い、反応させて黄色固体(5.65g,収率82%)を得た。 A yellow solid (5.65 g, yield) was reacted using the same synthesis method as compound A-11 in Example 21 except that the intermediate bromobenzene was changed to an equal amount of 5-bromo-2-phenylpyridine. A rate of 82%) was obtained.

合成実施例89.化合物D−6の合成 Synthesis Example 89. Synthesis of compound D-6

Figure 0006765389
Figure 0006765389

中間体である2−ブロモジベンゾチオフェンを等当量の4−ブロモトリフェニルアミンに変えた以外、実施例63における化合物B−27と同じの合成方法を用い、反応させて淡黄色固体(7.0g,収率75%)を得た。 A pale yellow solid (7.0 g) was reacted using the same synthetic method as compound B-27 in Example 63 except that the intermediate 2-bromodibenzothiophene was converted to an equal equivalent of 4-bromotriphenylamine. , Yield 75%) was obtained.

D−6のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.43 (d, J= 5.0 Hz, 42H), 8.20 (s, 15H), 8.11 (d, J = 10.0 Hz, 41H), 7.92 (t, J= 45.0 Hz, 45H), 7.79 - 7.57 (m, 60H), 7.54 (s, 12H), 7.49 (s, 28H), 7.41 (s, 8H).
NMR spectrum data of D-6:
1 1 H NMR (500 MHz, Chloroform) δ 8.43 (d, J = 5.0 Hz, 42H), 8.20 (s, 15H), 8.11 (d, J = 10.0 Hz, 41H), 7.92 (t, J = 45.0 Hz, 45H), 7.79 --7.57 (m, 60H), 7.54 (s, 12H), 7.49 (s, 28H), 7.41 (s, 8H).

合成実施例90.化合物D−7の合成
中間体M2を等当量の中間体M3に変え、フェニルボロン酸を等当量のピリジン−2−ボロン酸に変えた以外、実施例23と同じ方法を用いて化合物D−7を製造し、反応完成後、黄色固体(5.86g,収率85%)を得た。
Synthesis Example 90. Synthesis of Compound D-7 Compound D-7 using the same method as in Example 23, except that the intermediate M2 was converted to an equal equivalent of the intermediate M3 and the phenylboronic acid was converted to an equivalent of pyridine-2-boronic acid. Was produced, and after the reaction was completed, a yellow solid (5.86 g, yield 85%) was obtained.

合成実施例91.化合物D−8の合成
2−ブロモピリジンを等当量の2−ブロモキノリンに変えた以外、合成実施例84と同じの合成方法を用いて化合物D−8を製造し、反応完成後、黄色固体(26.8g,収率84%)を得た。
Synthesis Example 91. Synthesis of Compound D-8 Compound D-8 was produced using the same synthesis method as in Synthesis Example 84 except that 2-bromopyridine was converted to an equivalent amount of 2-bromoquinoline, and after completion of the reaction, a yellow solid ( 26.8 g, yield 84%) was obtained.

合成実施例92.中間体化合物M15の合成 Synthesis Example 92. Synthesis of intermediate compound M15

Figure 0006765389
Figure 0006765389

1L三つ口フラスコに、4−ブロモフェニルヒドラジン塩酸塩(92.8g,0.415mol)、ジベンゾ[a、e]−5,11−シクロオクタジエン(6H,12H)−ジオン(49g,0.207mol)及びエタノール(400mL)を加え、撹拌条件下、3min内に濃硫酸を2g滴下し、65℃で4時間反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをエタノール、石油エーテルでこの順に洗浄し、中間体化合物M15−1(110g,85%)を得た。 In a 1 L three-necked flask, 4-bromophenylhydrazine hydrochloride (92.8 g, 0.415 mol), dibenzo [a, e] -5,11-cyclooctadiene (6H, 12H) -dione (49 g, 0. 207 mol) and ethanol (400 mL) were added, and under stirring conditions, 2 g of concentrated sulfuric acid was added dropwise within 3 minutes, and the reaction was carried out at 65 ° C. for 4 hours. The mixture was washed with ether in this order to obtain intermediate compound M15-1 (110 g, 85%).

1L三つ口フラスコに、化合物M15−1(48.4g,74.8mmol)、酢酸(650g)及びトリフルオロ酢酸(65g、0.57mol)を加え、72℃で15時間還流反応させ、室温まで冷却させ、濾過し、濾過ケーキを酢酸、石油エーテルでこの順に洗浄し、中間体化合物M15−2(32g,80%)を得た。 Compound M15-1 (48.4 g, 74.8 mmol), acetic acid (650 g) and trifluoroacetic acid (65 g, 0.57 mol) were added to a 1 L three-necked flask, and the mixture was reflux-reacted at 72 ° C. for 15 hours until room temperature. The mixture was cooled, filtered, and the filtered cake was washed with acetic acid and petroleum ether in this order to obtain intermediate compound M15-2 (32 g, 80%).

キシレン(100mL)と、M15−2(5.4g,10mmol)と、ヨードベンゼン(5.1g,25mmol)と、CuI(0.9g,5mmol)と、トランス−ジアミノシクロヘキサン(2.1mL,20mmol)と、炭酸セシウム(6.5g、20mmol)とを混合し、3時間還流反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをジクロロメタン(ジクロロメタン)で洗浄し、濾液を合併して乾燥させてから、減圧して溶剤を除去し、得られた蒸留残留物をカラム分離し(DCM/PE=1/2,v/v(体積比1:2のジクロロメタンと石油エーテルとの混合溶液))、白色固体である中間体化合物M15(5.5g,収率82%)を得た。 Xylene (100 mL), M15-2 (5.4 g, 10 mmol), iodobenzene (5.1 g, 25 mmol), CuI (0.9 g, 5 mmol), and trans-diaminocyclohexane (2.1 mL, 20 mmol). And cesium carbonate (6.5 g, 20 mmol) are mixed and subjected to a reflux reaction for 3 hours. After the reaction is completed, the mixture is cooled to room temperature, filtered, the filtered cake is washed with dichloromethane (dichloromethane), and the filtrate is mixed. After drying, the solvent is removed under reduced pressure, and the obtained distillation residue is column-separated (DCM / PE = 1/2, v / v (mixed solution of dichloromethane having a volume ratio of 1: 2 and petroleum ether). )), A white solid intermediate compound M15 (5.5 g, yield 82%) was obtained.

合成実施例93.化合物D−9の合成 Synthesis Example 93. Synthesis of compound D-9

Figure 0006765389
Figure 0006765389

窒素ガス雰囲気下、中間体M15(6.9g,10mmol)と、3−ピリジンボロン酸(3.08g,25mmol)と、Pd(PPh(0.58g,0.5mmol)と、NaCO(5.3g,50mmol)と、トルエン(60mL)と、EtOH(20mL)とを混合し、該混合物に蒸留水20mLを加えて、110℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄し、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相をMgSOで乾燥させ、回転蒸発により溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、黄色固体化合物D−9(5.2g,75%)を得た。 Under a nitrogen gas atmosphere, the intermediate M15 (6.9 g, 10 mmol), 3-pyridineboronic acid (3.08 g, 25 mmol), Pd (PPh 3 ) 4 (0.58 g, 0.5 mmol), and Na 2 CO 3 (5.3 g, 50 mmol), toluene (60 mL) and EtOH (20 mL) were mixed, 20 mL of distilled water was added to the mixture, and the mixture was stirred at 110 ° C. for 2 hours for reaction. After completion of the reaction, the reaction system was washed with distilled water, extracted 3 times with ethyl acetate (100 mL), combined with the obtained organic phases, the organic phase was dried with sulfonyl 4 , and the solvent was removed by rotary evaporation. Finally, the solvent-removed residue was column-separated to give the yellow solid compound D-9 (5.2 g, 75%).

合成実施例94.化合物D−10の合成
2−ブロモピリジンを等当量の5−ブロモ−1,10フェナントロリンに変えた以外、合成実施例84と同じの合成方法を用い、反応させて淡黄色固体(29.9g,収率81%)を得た。
Synthesis Example 94. Synthesis of Compound D-10 A pale yellow solid (29.9 g, 29.9 g,) was reacted using the same synthesis method as in Synthesis Example 84, except that 2-bromopyridine was converted to an equivalent amount of 5-bromo-1,10 phenanthroline. Yield 81%) was obtained.

D−10のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.80 (s, 2H), 8.55 (s, 1H), 8.43 (d, J= 6.3 Hz, 3H), 8.12 (d, J = 20.0 Hz, 4H), 7.52 (s, 1H), 7.39 (s, 2H), 7.16 (s, 1H), 7.11 (s, 1H).
NMR spectrum data of D-10:
1 1 H NMR (500 MHz, Chloroform) δ 8.80 (s, 2H), 8.55 (s, 1H), 8.43 (d, J = 6.3 Hz, 3H), 8.12 (d, J = 20.0 Hz, 4H), 7.52 ( s, 1H), 7.39 (s, 2H), 7.16 (s, 1H), 7.11 (s, 1H).

合成実施例95.化合物D−11の合成 Synthesis Example 95. Synthesis of compound D-11

Figure 0006765389
Figure 0006765389

乾燥の1L三つ口フラスコに、中間体M6(22.9g,50mmol)を加え、無水DMF(200mL)で溶解させ、室温で窒素ガス雰囲気下、磁力攪拌しながら60%NaH(4g,0.1mol)を逐次に加えると、ガスが大量発生し、加えた後引き続き室温で1時間撹拌した。その後、室温で、定圧滴下漏斗により2−クロロ−4,6−ジフェニルピリミジン(32g,120mmol)の無水DMF溶液(150mL)を加え、約1.5時間かけて滴下した。引き続き室温で3時間撹拌した後、徐々に水を加えて反応をクエンチさせ、その後酢酸エチル(300mL)及び水(200mL)を加えて30分間撹拌し、体系が懸濁状態になった。吸引濾過し、固体をジクロロメタンで溶解させ、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させ、5cmシリカゲルカラムを用いて吸引濾過し、減圧して回転乾燥させた。カラム分離し、黄色粉末状固体である化合物D−11(36.7g,収率87%)を得た。 Intermediate M6 (22.9 g, 50 mmol) was added to a dry 1 L three-necked flask, dissolved in anhydrous DMF (200 mL), and 60% NaH (4 g, 0. When 1 mol) was added sequentially, a large amount of gas was generated, and after the addition, the mixture was continuously stirred at room temperature for 1 hour. Then, at room temperature, an anhydrous DMF solution (150 mL) of 2-chloro-4,6-diphenylpyrimidine (32 g, 120 mmol) was added using a constant pressure dropping funnel, and the mixture was added dropwise over about 1.5 hours. After stirring at room temperature for 3 hours, water was gradually added to quench the reaction, and then ethyl acetate (300 mL) and water (200 mL) were added and stirred for 30 minutes to suspend the system. The solid was suction-filtered, dissolved in dichloromethane, washed with saturated brine, dried over anhydrous sodium sulfate, suction-filtered using a 5 cm silica gel column, reduced under reduced pressure, and rotated to dryness. Column separation was performed to obtain compound D-11 (36.7 g, yield 87%) as a yellow powdery solid.

合成実施例96.化合物D−12の合成
2−クロロ−4,6−ジフェニルピリミジンを等当量の2−クロロ−4−フェニルキナゾリンに変えた以外、合成実施例95と同じの合成方法を用い、反応させて黄色固体(32.4g,収率82%)を得た。
Synthesis Example 96. Synthesis of Compound D-12 A yellow solid was reacted using the same synthesis method as in Synthesis Example 95, except that 2-chloro-4,6-diphenylpyrimidine was converted to an equal amount of 2-chloro-4-phenylquinazoline. (32.4 g, yield 82%) was obtained.

合成実施例97.化合物D−13の合成
2−クロロ−4,6−ジフェニルピリミジンを等当量の2−クロロ−キノキサリンに変えた以外、合成実施例95と同じの合成方法を用い、反応させて黄色固体(25g,収率75%)を得た。
Synthesis Example 97. Synthesis of Compound D-13 Using the same synthesis method as in Synthesis Example 95, except that 2-chloro-4,6-diphenylpyrimidine was converted to an equivalent amount of 2-chloro-quinoxaline, they were reacted to form a yellow solid (25 g, 25 g, Yield 75%) was obtained.

合成実施例98.化合物D−14の合成
2−クロロ−4,6−ジフェニルピリミジンを等当量の2−クロロキナゾリンに変えた以外、合成実施例95と同じの合成方法を用い、反応させて黄色固体(22.7g,収率71%)を得た。
Synthesis Example 98. Synthesis of Compound D-14 A yellow solid (22.7 g) was reacted using the same synthesis method as in Synthesis Example 95, except that 2-chloro-4,6-diphenylpyrimidine was converted to an equal equivalent of 2-chloroquinazoline. , Yield 71%) was obtained.

合成実施例99.化合物D−15の合成
2−クロロ−4,6−ジフェニルピリミジンを等当量の2−クロロ−4,6−ジフェニル−1,3,5−トリアジンに変えた以外、合成実施例95と同じの合成方法を用い、反応させて黄色固体(33.0g,収率78%)を得た。
Synthesis Example 99. Synthesis of Compound D-15 Synthesis of Compound D-15 Same synthesis as Example 95, except that 2-chloro-4,6-diphenylpyrimidine was converted to an equal amount of 2-chloro-4,6-diphenyl-1,3,5-triazine. The reaction was carried out using the method to obtain a yellow solid (33.0 g, yield 78%).

合成実施例100.化合物D−16の合成 Synthesis Example 100. Synthesis of compound D-16

Figure 0006765389
Figure 0006765389

乾燥の1L三つ口フラスコに、中間体B−19−4(22.9g,50mmol,合成実施例53参照)を加え、無水DMF(200mL)で溶解させ、室温で窒素ガス雰囲気下、磁力攪拌しながら60%NaH(4g,0.1mol)を逐次に加えると、ガスが大量発生し、加えた後引き続き室温で1時間撹拌した。その後、室温で、定圧滴下漏斗により2−クロロ−4,6−ジフェニルピリミジン(16g,60mmol)の無水DMF溶液(120mL)を加え、約1.5時間かけて滴下した。引き続き室温で3時間撹拌した後、徐々に水を加えて反応をクエンチさせ、その後酢酸エチル(300mL)及び水(200mL)を加えて30分間撹拌し、体系が懸濁状態になった。吸引濾過し、固体をジクロロメタンで溶解させ、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させ、5cmシリカゲルカラムを用いて吸引濾過し、減圧して回転乾燥させた。カラム分離し、黄色粉末状固体である化合物D−16(26.9g,収率78%)を得た。 Intermediate B-19-4 (22.9 g, 50 mmol, see Synthesis Example 53) was added to a dry 1 L three-necked flask, dissolved in anhydrous DMF (200 mL), and magnetically stirred at room temperature in a nitrogen gas atmosphere. While 60% NaH (4 g, 0.1 mol) was added sequentially, a large amount of gas was generated, and after the addition, the mixture was continuously stirred at room temperature for 1 hour. Then, at room temperature, an anhydrous DMF solution (120 mL) of 2-chloro-4,6-diphenylpyrimidine (16 g, 60 mmol) was added using a constant pressure dropping funnel, and the mixture was added dropwise over about 1.5 hours. After stirring at room temperature for 3 hours, water was gradually added to quench the reaction, and then ethyl acetate (300 mL) and water (200 mL) were added and stirred for 30 minutes to suspend the system. The solid was suction-filtered, dissolved in dichloromethane, washed with saturated brine, dried over anhydrous sodium sulfate, suction-filtered using a 5 cm silica gel column, reduced under reduced pressure, and rotated to dryness. Column separation was performed to obtain compound D-16 (26.9 g, yield 78%) which was a yellow powdery solid.

合成実施例101.化合物D−17の合成 Synthesis Example 101. Synthesis of compound D-17

Figure 0006765389
Figure 0006765389

乾燥の1L三つ口フラスコに、中間体M1(22.9g,50mmol)を加え、無水DMF(200mL)で溶解させ、室温で窒素ガス雰囲気下、磁力攪拌しながら60%NaH(4g,0.1mol)を逐次に加えると、ガスが大量発生し、加えた後引き続き室温で1時間撹拌した。その後、室温で、定圧滴下漏斗により2−クロロ−4,6−ジフェニルピリミジン(23g,120mmol)の無水DMF溶液(150mL)を加え、約1.5時間かけて滴下した。引き続き室温で3時間撹拌した後、徐々に水を加えて反応をクエンチさせ、その後酢酸エチル(300mL)及び水(200mL)を加えて30分間撹拌し、体系が懸濁状態になった。吸引濾過し、固体をジクロロメタンで溶解させ、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させ、5cmシリカゲルカラムを用いて吸引濾過し、減圧して回転乾燥させた。カラム分離し、黄色粉末状固体である化合物D−17(29.4g,収率85%)を得た。 Intermediate M1 (22.9 g, 50 mmol) was added to a dry 1 L three-necked flask, dissolved in anhydrous DMF (200 mL), and 60% NaH (4 g, 0.) was stirred at room temperature in a nitrogen gas atmosphere. When 1 mol) was added sequentially, a large amount of gas was generated, and after the addition, the mixture was continuously stirred at room temperature for 1 hour. Then, at room temperature, an anhydrous DMF solution (150 mL) of 2-chloro-4,6-diphenylpyrimidine (23 g, 120 mmol) was added using a constant pressure dropping funnel, and the mixture was added dropwise over about 1.5 hours. After stirring at room temperature for 3 hours, water was gradually added to quench the reaction, and then ethyl acetate (300 mL) and water (200 mL) were added and stirred for 30 minutes to suspend the system. The solid was suction-filtered, dissolved in dichloromethane, washed with saturated brine, dried over anhydrous sodium sulfate, suction-filtered using a 5 cm silica gel column, reduced under reduced pressure, and rotated to dryness. Column separation was performed to obtain compound D-17 (29.4 g, yield 85%) which was a yellow powdery solid.

合成実施例102.化合物D−18の合成
2−クロロ−4−フェニルピリミジンを等当量の2−クロロ−4,6−ジフェニルピリミジンに変えた以外、合成実施例101と同じの合成方法を用い、反応完成後、黄色固体(33.3g,収率79%)を得た。
Synthesis Example 102. Synthesis of Compound D-18 Using the same synthesis method as in Synthesis Example 101, except that 2-chloro-4-phenylpyrimidine was converted to an equal amount of 2-chloro-4,6-diphenylpyrimidine, yellow after completion of the reaction. A solid (33.3 g, yield 79%) was obtained.

合成実施例103.化合物D−19の合成
2−クロロ−4−フェニルピリミジンを等当量の2−クロロ−4−フェニルキナゾリンに変えた以外、合成実施例101と同じの合成方法を用い、反応完成後、黄色固体(34.4g,収率87%)を得た。
Synthesis Example 103. Synthesis of Compound D-19 Using the same synthesis method as in Synthesis Example 101, except that 2-chloro-4-phenylpyrimidine was converted to an equal amount of 2-chloro-4-phenylquinazoline, after completion of the reaction, a yellow solid ( 34.4 g, yield 87%) was obtained.

合成実施例104.化合物D−20の合成
2−クロロ−4−フェニルピリミジンを等当量の2−クロロ−キノキサリンに変えた以外、合成実施例101と同じの合成方法を用い、反応完成後、黄色固体(22.7g,収率71%)を得た。
Synthesis Example 104. Synthesis of Compound D-20 Using the same synthesis method as in Synthesis Example 101, except that 2-chloro-4-phenylpyrimidine was converted to an equal equivalent of 2-chloro-quinoxaline, after completion of the reaction, a yellow solid (22.7 g). , Yield 71%) was obtained.

合成実施例105.化合物D−21の合成
2−クロロ−4−フェニルピリミジンを等当量の2−クロロ−4−ビフェニルキナゾリンに変えた以外、合成実施例101と同じの合成方法を用い、反応完成後、黄色固体(35g,収率74%)を得た。
Synthesis Example 105. Synthesis of Compound D-21 Using the same synthesis method as in Synthesis Example 101, except that 2-chloro-4-phenylpyrimidine was converted to an equal amount of 2-chloro-4-biphenylquinazoline, after completion of the reaction, a yellow solid ( 35 g, yield 74%) was obtained.

合成実施例106.化合物D−22の合成
2−クロロ−4−フェニルピリミジンを等当量の2−クロロ−4−ビフェニルピリミジンに変えた以外、合成実施例101と同じの合成方法を用い、反応完成後、黄色固体(34.1g,収率81%)を得た。
Synthesis Example 106. Synthesis of Compound D-22 Using the same synthesis method as in Synthesis Example 101, except that 2-chloro-4-phenylpyrimidine was converted to an equivalent amount of 2-chloro-4-biphenylpyrimidine, after completion of the reaction, a yellow solid ( 34.1 g, yield 81%) was obtained.

合成実施例107.化合物D−23の合成
2−クロロ−4−フェニルピリミジンを等当量の2−クロロ−4,6−ジフェニルトリアジンに変えた以外、合成実施例101と同じの合成方法を用い、反応完成後、黄色固体(33.8g,収率80%)を得た。
Synthesis Example 107. Synthesis of Compound D-23 Using the same synthesis method as in Synthesis Example 101, except that 2-chloro-4-phenylpyrimidine was converted to an equivalent amount of 2-chloro-4,6-diphenyltriazine, yellow after completion of the reaction. A solid (33.8 g, yield 80%) was obtained.

合成実施例108.化合物D−24の合成
5−ブロモ−2−フェニルピリジンを等当量の5−ブロモ−1,10−フェナントロリンに変えた以外、合成実施例88における化合物D−5の製造と同じの合成方法を用い、反応完成後、黄色固体(4.95g,収率67%)を得た。
Synthesis Example 108. Synthesis of Compound D-24 Using the same synthesis method as for the production of Compound D-5 in Synthesis Example 88, except that 5-bromo-2-phenylpyridine was converted to an equivalent amount of 5-bromo-1,10-phenanthroline. After completion of the reaction, a yellow solid (4.95 g, yield 67%) was obtained.

合成実施例109.化合物D−25の合成 Synthesis Example 109. Synthesis of compound D-25

Figure 0006765389
Figure 0006765389

1L反応フラスコに、中間体M1(38.2g,0.1mol)と、4−ブロモビフェニル(23.3g,0.1mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、シクロヘキシルジアミン(2.3mL,34.3mmol)と、トルエン(500mL)とを混合し、還流条件下、1日撹拌して反応させ、反応終了後、室温まで冷却させ、酢酸エチル(250mL)で抽出し、有機相を無水硫酸マグネシウムで処理してから減圧蒸留して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、化合物D−25−1(26.8g,収率50%)を得た。 Intermediate M1 (38.2 g, 0.1 mol), 4-bromobiphenyl (23.3 g, 0.1 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 in a 1 L reaction flask. (21.8 g, 102.9 mmol), cyclohexyldiamine (2.3 mL, 34.3 mmol) and toluene (500 mL) were mixed and reacted by stirring under reflux conditions for 1 day. The mixture was cooled to, extracted with ethyl acetate (250 mL), the organic phase was treated with anhydrous magnesium sulfate and then distilled under reduced pressure to remove the solvent, and the obtained distillation residue was column-separated (eluent: dichloromethane / hexane). ), Compound D-25-1 (26.8 g, yield 50%) was obtained.

乾燥の1L三つ口フラスコに、中間体D−25−1(26.8g,50mmol)を加え、無水DMF(200mL)で溶解させ、室温で窒素ガス雰囲気下、磁力攪拌しながら60%NaH(2g,50mol)を逐次に加えると、ガスが大量発生し、加えた後引き続き室温で1時間撹拌した。その後、室温で、定圧滴下漏斗により2−クロロ−4,6−ジフェニルトリアジン(16.1g,60mmol)の無水DMF溶液(150mL)を加え、約1.5時間かけて滴下した。引き続き室温で3時間撹拌した後、徐々に水を加えて反応をクエンチさせ、その後酢酸エチル(300mL)及び水(200mL)を加えて30分間撹拌し、体系が懸濁状態になった。吸引濾過し、固体をジクロロメタンで溶解させ、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させ、5cmシリカゲルカラムを用いて吸引濾過し、減圧して回転乾燥させた。カラム分離し、黄色粉末状固体である化合物D−25(34.5g,収率90%)を得た。 Intermediate D-25-1 (26.8 g, 50 mmol) was added to a dry 1 L three-necked flask, dissolved in anhydrous DMF (200 mL), and 60% NaH (60% NaH (26.8 g, 50 mmol) was dissolved in an anhydrous DMF (200 mL) at room temperature in a nitrogen gas atmosphere while stirring with magnetic force. When 2 g, 50 mol) was added sequentially, a large amount of gas was generated, and after the addition, the mixture was continuously stirred at room temperature for 1 hour. Then, at room temperature, an anhydrous DMF solution (150 mL) of 2-chloro-4,6-diphenyltriazine (16.1 g, 60 mmol) was added using a constant pressure dropping funnel, and the mixture was added dropwise over about 1.5 hours. After stirring at room temperature for 3 hours, water was gradually added to quench the reaction, and then ethyl acetate (300 mL) and water (200 mL) were added and stirred for 30 minutes, and the system became suspended. The solid was suction-filtered, dissolved in dichloromethane, washed with saturated brine, dried over anhydrous sodium sulfate, suction-filtered using a 5 cm silica gel column, reduced under reduced pressure, and rotated to dryness. Column separation was performed to obtain compound D-25 (34.5 g, yield 90%) which was a yellow powdery solid.

D−25のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.49 (d, J = 65.0 Hz, 47H), 8.37 (ddd, J = 5.3, 3.9, 2.7 Hz, 12H), 8.36 (s, 20H), 8.10 (s, 20H), 7.91 (d, J = 5.0 Hz, 24H), 7.77 (dd, J = 3.1, 1.4 Hz, 4H), 7.75 (s, 10H), 7.76 - 7.39 (m, 75H), 7.16 (s, 7H), 7.11 (s, 10H).
NMR spectrum data of D-25:
1 1 H NMR (500 MHz, Chloroform) δ 8.49 (d, J = 65.0 Hz, 47H), 8.37 (ddd, J = 5.3, 3.9, 2.7 Hz, 12H), 8.36 (s, 20H), 8.10 (s, 20H) ), 7.91 (d, J = 5.0 Hz, 24H), 7.77 (dd, J = 3.1, 1.4 Hz, 4H), 7.75 (s, 10H), 7.76 --7.39 (m, 75H), 7.16 (s, 7H) , 7.11 (s, 10H).

合成実施例110.化合物D−26の合成
第1のステップの反応における4−ブロモビフェニルを等当量のブロモベンゼンに変え、第2のステップの反応における2−クロロ−4,6−ジフェニルトリアジンを等当量の2−クロロ−4,6−ジ−ビフェニルトリアジンに変えた以外、合成実施例109と同じの合成方法を用い、反応完成後、黄色固体(35.8g,収率85%)を得た。
Synthesis Example 110. Synthesis of Compound D-26 Equal equivalents of 4-bromobiphenyl in the reaction of the first step are converted to equivalent amounts of bromobenzene and equal amounts of 2-chloro-4,6-diphenyltriazine in the reaction of the second step. A yellow solid (35.8 g, yield 85%) was obtained after completion of the reaction using the same synthesis method as in Synthesis Example 109 except that the mixture was changed to -4,6-di-biphenyltriazine.

合成実施例111.化合物D−27の合成
第1のステップの反応における4−ブロモビフェニルを等当量のブロモベンゼンに変え、中間体M1を等当量の中間体B−27−1に変えた以外、合成実施例109と同じの合成方法を用い、反応終了後、黄色固体である化合物D−27を得た。
Synthesis Example 111. Synthesis of Compound D-27 With Synthesis Example 109, except that 4-bromobiphenyl in the reaction of the first step was converted to an equal amount of bromobenzene and intermediate M1 was converted to an equivalent amount of intermediate B-27-1. Using the same synthetic method, compound D-27, which is a yellow solid, was obtained after completion of the reaction.

D−27のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.42 (s, 16H), 8.36 (s, 15H), 8.24 (s, 5H), 8.10 (d, J = 2.5 Hz, 21H), 7.89 (d, J = 2.9 Hz, 4H), 7.81 (d, J = 60.0 Hz, 23H), 7.72 (s, 2H), 7.67 (d, J = 45.0 Hz, 16H), 7.58 (s, 11H), 7.47 (t, J = 22.5 Hz, 59H), 7.39 (s, 1H).
NMR spectrum data of D-27:
1 1 H NMR (500 MHz, Chloroform) δ 8.42 (s, 16H), 8.36 (s, 15H), 8.24 (s, 5H), 8.10 (d, J = 2.5 Hz, 21H), 7.89 (d, J = 2.9) Hz, 4H), 7.81 (d, J = 60.0 Hz, 23H), 7.72 (s, 2H), 7.67 (d, J = 45.0 Hz, 16H), 7.58 (s, 11H), 7.47 (t, J = 22.5) Hz, 59H), 7.39 (s, 1H).

合成実施例112.化合物D−28の合成
第1のステップの反応における中間体M1を等当量の中間体M4に変えた以外、合成実施例109と同じの合成方法を用い、反応終了後、黄色固体である化合物D−28を得た。
Synthesis Example 112. Synthesis of Compound D-28 Compound D, which is a yellow solid after completion of the reaction, uses the same synthesis method as in Synthesis Example 109 except that the intermediate M1 in the reaction of the first step was changed to an equivalent amount of intermediate M4. -28 was obtained.

合成実施例113.化合物D−29の合成
第1のステップの反応における4−ブロモビフェニルを等当量のブロモベンゼンに変え、中間体M1を等当量の中間体M5に変え、第2のステップの反応における2−クロロ−4,6−ジフェニルトリアジンを等当量の2−クロロ−4,6−ジ−ビフェニルトリアジンに変えた以外、合成実施例109と同じの合成方法を用い、反応終了後、黄色固体である化合物D−29を得た。
Synthesis Example 113. Synthesis of Compound D-29 4-Bromobiphenyl in the reaction of the first step is converted to an equal amount of bromobenzene, intermediate M1 is converted to an equal amount of intermediate M5, and 2-chloro- in the reaction of the second step. Compound D-, which is a yellow solid after completion of the reaction, uses the same synthesis method as in Synthesis Example 109 except that 4,6-diphenyltriazine was converted to an equal amount of 2-chloro-4,6-di-biphenyltriazine. I got 29.

合成実施例114.化合物D−30の合成 Synthesis Example 114. Synthesis of compound D-30

Figure 0006765389
Figure 0006765389

1L反応フラスコに、中間体M1(38.2g,0.1mol)と、ブロモベンゼン(15.7g,0.1mol)と、CuI(3.3g,17.1mmol)と、CsCO(21.8g,102.9mmol)と、シクロヘキシルジアミン(2.3mL,34.3mmol)と、トルエン(500mL)とを混合し、還流条件下、1日撹拌して反応させ、反応終了後、室温まで冷却させ、酢酸エチル(250mL)で抽出し、有機相を無水硫酸マグネシウムで処理してから減圧蒸留して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、化合物D−30−1(20.2g,収率44%)を得た。 Intermediate M1 (38.2 g, 0.1 mol), bromobenzene (15.7 g, 0.1 mol), CuI (3.3 g, 17.1 mmol), and Cs 2 CO 3 (21) in a 1 L reaction flask. 8.8 g, 102.9 mmol), cyclohexyldiamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed, stirred under reflux conditions for 1 day to react, and cooled to room temperature after completion of the reaction. The mixture was extracted with ethyl acetate (250 mL), the organic phase was treated with anhydrous magnesium sulfate and then distilled under reduced pressure to remove the solvent, and the obtained distillation residue was column-separated (eluent: dichloromethane / hexane). Compound D-30-1 (20.2 g, yield 44%) was obtained.

1L反応フラスコに、中間体D−30−1(23g,50mmol)と、1−(4−ブロモフェニル)−2−フェニル−1H−ベンゾイミダゾール(20.9g,60mmol)と、CuI(1.7g,8.5mmol)と、CsCO(21.8g,102.9mmol)と、シクロヘキシルジアミン(1.2mL,17mmol)と、トルエン(300mL)とを混合し、還流条件下、1日撹拌して反応させ、反応終了後、室温まで冷却させ、酢酸エチル(150mL)で抽出し、有機相を無水硫酸マグネシウムで処理してから減圧蒸留して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、化合物D−30(30.9g,収率85%)を得た。 Intermediate D-30-1 (23 g, 50 mmol), 1- (4-bromophenyl) -2-phenyl-1H-benzoimidazole (20.9 g, 60 mmol) and CuI (1.7 g) in a 1 L reaction flask. , 8.5 mmol), Cs 2 CO 3 (21.8 g, 102.9 mmol), cyclohexyldiamine (1.2 mL, 17 mmol) and toluene (300 mL) were mixed and stirred under reflux conditions for 1 day. After the reaction is completed, the mixture is cooled to room temperature, extracted with ethyl acetate (150 mL), the organic phase is treated with anhydrous magnesium sulfate, and the solvent is removed by distillation under reduced pressure. The obtained distillation residue is used as a column. Separation (eluent: dichloromethane / hexane) gave compound D-30 (30.9 g, yield 85%).

合成実施例115.化合物D−31の合成
第1のステップの反応における4−ブロモビフェニルを等当量のブロモベンゼンに変え、第2のステップの反応における2−クロロ−4,6−ジフェニルトリアジンを等当量の2−ブロモ−ジベンゾ[f、h]キノキサリンに変えた以外、合成実施例109と同じの合成方法を用い、反応完成後、黄色固体である化合物D−31を得た。
Synthesis Example 115. Synthesis of Compound D-31 Converts 4-bromobiphenyl in the reaction of the first step to an equal amount of bromobenzene and equal amounts of 2-chloro-4,6-diphenyltriazine in the reaction of the second step. Compound D-31, which is a yellow solid, was obtained after completion of the reaction using the same synthesis method as in Synthesis Example 109 except that the mixture was changed to -dibenzo [f, h] quinoxalin.

合成実施例116.化合物D−32の合成 Synthesis Example 116. Synthesis of compound D-32

Figure 0006765389
Figure 0006765389

中間体D−32−1の合成:250mL三つ口フラスコに、中間体化合物M1(19.1g,50mmol)と、3−ブロモビフェニル(11.7g,50mmol)と、CuI(1.8g,10mmol)と、トランス−ジアミノシクロヘキサン(5.4mL,50mmol)と、炭酸セシウム(16g,50mmol)とで形成された混合物を3時間加熱して還流させた。反応混合物を室温まで冷却させ、濾過し、濾過ケーキをジクロロメタンで洗浄し、得られた有機相を脱イオン水で充分に洗浄してから、無水硫酸ナトリウムで乾燥させた。乾燥後の有機相を減圧して溶剤を除去し、得られた残留物をカラム分離し、白色化合物D−32−1(16.3g,収率61%)を得た。 Synthesis of Intermediate D-32-1: Intermediate compound M1 (19.1 g, 50 mmol), 3-bromobiphenyl (11.7 g, 50 mmol) and CuI (1.8 g, 10 mmol) in a 250 mL three-necked flask. ), Trans-diaminocyclohexane (5.4 mL, 50 mmol) and cesium carbonate (16 g, 50 mmol) were heated to reflux for 3 hours. The reaction mixture was cooled to room temperature, filtered, the filtered cake was washed with dichloromethane, the resulting organic phase was thoroughly washed with deionized water and then dried over anhydrous sodium sulfate. The organic phase after drying was depressurized to remove the solvent, and the obtained residue was column-separated to obtain white compound D-32-1 (16.3 g, yield 61%).

化合物D−32の合成:250mL三つ口フラスコに、中間体化合物D−32−1(26.7g,50mol)と、2−(4−ブロモフェニル)−4,6−ジフェニル−1,3,5−トリアジン(21.3g,55mmol)と、CuI(1.8g,10mmol)と、トランス−ジアミノシクロヘキサン(5.4mL,50mmol)と、炭酸セシウム(16g,50mmol)とで形成された混合物を3時間加熱して還流させた。反応混合物を室温まで冷却させ、濾過し、濾過ケーキをジクロロメタンで洗浄し、得られた有機相を脱イオン水で充分に洗浄してから、無水硫酸ナトリウムで乾燥させた。乾燥後の有機相を減圧して溶剤を除去し、得られた残留物をカラム分離し、淡黄色化合物D−32(35.8g,収率85%)を得た。 Synthesis of compound D-32: Intermediate compound D-32-1 (26.7 g, 50 mol) and 2- (4-bromophenyl) -4,6-diphenyl-1,3, in a 250 mL three-necked flask. 3 A mixture formed of 5-triazine (21.3 g, 55 mmol), CuI (1.8 g, 10 mmol), trans-diaminocyclohexane (5.4 mL, 50 mmol) and cesium carbonate (16 g, 50 mmol). It was heated for hours and refluxed. The reaction mixture was cooled to room temperature, filtered, the filtered cake was washed with dichloromethane, the resulting organic phase was thoroughly washed with deionized water and then dried over anhydrous sodium sulfate. The organic phase after drying was depressurized to remove the solvent, and the obtained residue was column-separated to obtain a pale yellow compound D-32 (35.8 g, yield 85%).

D−32のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.53 (s, 3H), 8.40 (s, 4H), 8.34 (s, 4H), 8.19 (s, 1H), 8.08 (s, 4H), 7.89 (d, J = 5.0 Hz, 5H), 7.68 (d, J= 49.9 Hz, 4H), 7.60 (dd, J = 5.8, 2.8 Hz, 1H), 7.58 (s, 1H), 7.52 - 7.43 (m, 13H), 7.39 (s, 1H), 7.14 (s, 1H), 7.09 (s, 2H).
NMR spectrum data of D-32:
1 1 H NMR (500 MHz, Chloroform) δ 8.53 (s, 3H), 8.40 (s, 4H), 8.34 (s, 4H), 8.19 (s, 1H), 8.08 (s, 4H), 7.89 (d, J) = 5.0 Hz, 5H), 7.68 (d, J = 49.9 Hz, 4H), 7.60 (dd, J = 5.8, 2.8 Hz, 1H), 7.58 (s, 1H), 7.52 --7.43 (m, 13H), 7.39 (s, 1H), 7.14 (s, 1H), 7.09 (s, 2H).

合成実施例117.化合物D−33の合成 Synthesis Example 117. Synthesis of compound D-33

Figure 0006765389
Figure 0006765389

第1のステップの反応における3−ブロモビフェニルを等当量の2−ブロモ−ジベンゾフランに変え、第2のステップの反応における2−(4−ブロモフェニル)−4,6−ジフェニル−1,3,5−トリアジンを等当量の2−(3−ブロモフェニル)−4−フェニルキナゾリンに変えた以外、合成実施例116と同じの合成方法を用いて、反応させて黄色固体(32.3g,2ステップの合計収率47%)を得た。 Converting 3-bromobiphenyl in the reaction of the first step to an equal amount of 2-bromo-dibenzofuran and 2- (4-bromophenyl) -4,6-diphenyl-1,3,5 in the reaction of the second step. The reaction was carried out using the same synthetic method as in Synthesis Example 116, except that −triazine was converted to an equal amount of 2- (3-bromophenyl) -4-phenylquinazoline, and the reaction was carried out as a yellow solid (32.3 g, 2 steps). A total yield of 47%) was obtained.

D−33のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.55 (s, 20H), 8.45 (d, J = 7.2 Hz, 3H), 8.42 (s, 39H), 8.47 - 8.14 (m, 73H), 8.12 (d, J = 15.0 Hz, 41H), 8.08 - 7.86 (m, 35H), 7.82 (t, J = 2.7 Hz, 7H), 7.80 (d, J= 3.6 Hz, 24H), 7.81 - 7.58 (m, 71H), 7.52 (dd, J = 18.2, 8.2 Hz, 44H), 7.39 (s, 10H), 7.31 (s, 5H), 7.16 (s, 11H), 7.11 (s, 16H).
NMR spectrum data of D-33:
1 1 H NMR (500 MHz, Chloroform) δ 8.55 (s, 20H), 8.45 (d, J = 7.2 Hz, 3H), 8.42 (s, 39H), 8.47 --8.14 (m, 73H), 8.12 (d, J) = 15.0 Hz, 41H), 8.08 --7.86 (m, 35H), 7.82 (t, J = 2.7 Hz, 7H), 7.80 (d, J = 3.6 Hz, 24H), 7.81 --7.58 (m, 71H), 7.52 (dd, J = 18.2, 8.2 Hz, 44H), 7.39 (s, 10H), 7.31 (s, 5H), 7.16 (s, 11H), 7.11 (s, 16H).

合成実施例118.化合物D−34の合成 Synthesis Example 118. Synthesis of compound D-34

Figure 0006765389
Figure 0006765389

第1のステップの反応における3−ブロモビフェニルを等当量の2−ブロモナフトフランに変え、第2のステップの反応における2−(4−ブロモフェニル)−4,6−ジフェニル−1,3,5−トリアジンを等当量の2−(4−ブロモフェニル)−4,6−ジフェニルピリミジンに変えた以外、合成実施例116と同じの合成方法を用い、反応させて黄色固体(34.3g,2ステップの合計収率53%)を得た。 Converting 3-bromobiphenyl in the reaction of the first step to an equal amount of 2-bromonaphthofuran and 2- (4-bromophenyl) -4,6-diphenyl-1,3,5 in the reaction of the second step. A yellow solid (34.3 g, 2 steps) was reacted using the same synthesis method as in Synthesis Example 116, except that −triazine was converted to an equal amount of 2- (4-bromophenyl) -4,6-diphenylpyrimidine. The total yield of 53%) was obtained.

合成実施例119.化合物D−35の合成 Synthesis Example 119. Synthesis of compound D-35

Figure 0006765389
Figure 0006765389

第1のステップの反応における3−ブロモビフェニルを等当量の3−ブロモ−N−フェニルカルバゾールに変え、第2のステップの反応における2−(4−ブロモフェニル)−4,6−ジフェニル−1,3,5−トリアジンを等当量の2−(4−ブロモフェニル)−4−フェニルキナゾリンに変えた以外、合成実施例116と同じの合成方法を用い、反応させて黄色固体(35g,2ステップの合計収率49%)を得た。 Equal equivalents of 3-bromo-N-phenylcarbazole in the reaction of the first step are converted to 2- (4-bromophenyl) -4,6-diphenyl-1,2, in the reaction of the second step. Using the same synthesis method as in Synthesis Example 116, except that 3,5-triazine was converted to an equal amount of 2- (4-bromophenyl) -4-phenylquinazoline, the reaction was carried out as a yellow solid (35 g, 2 steps). A total yield of 49%) was obtained.

合成実施例120.化合物D−36の合成 Synthesis Example 120. Synthesis of compound D-36

Figure 0006765389
Figure 0006765389

2−クロロピリジンを等当量の2−(3−ブロモフェニル)−4−フェニルキナゾリンに変えた以外、合成実施例84における化合物D−1の合成と同じの合成方法を用い、反応させて黄色固体(34.9g,収率74%)を得た。 A yellow solid was reacted using the same synthesis method as the synthesis of compound D-1 in Synthesis Example 84, except that 2-chloropyridine was converted to an equivalent amount of 2- (3-bromophenyl) -4-phenylquinazoline. (34.9 g, yield 74%) was obtained.

合成実施例121.化合物D−37の合成 Synthesis Example 121. Synthesis of compound D-37

Figure 0006765389
Figure 0006765389

雰囲気下、三つ口フラスコに、ヨードベンゼン(22g,0.11mol)、中間体M10(46.1g,0.1mol)、塩化第一銅(2g,20mmol)、水和1,10−フェナントロリン(4g,20mmol)、水酸化カリウム(16.8g,0.3mol)及びキシレン(300mL)を加えた。反応系を20h還流反応させ、反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相をMgSOで乾燥させ、回転蒸発器によって溶剤を除去し、溶剤が除去された残留物をカラム分離し、白色固体である中間体化合物(52.3g,86%)を得た。 N 2 atmosphere, to a three-necked flask, iodobenzene (22 g, 0.11 mol), intermediate M10 (46.1 g, 0.1 mol), cuprous chloride (2 g, 20 mmol), hydrated 1,10 Phenanthroline (4 g, 20 mmol), potassium hydroxide (16.8 g, 0.3 mol) and xylene (300 mL) were added. The reaction was 20h reflux the reaction, after the reaction completion, after washing the reaction with distilled water, and extracted 3 times with ethyl acetate (100 mL), and merging the resulting organic phase the organic phase is dried over MgSO 4 The solvent was removed by a rotary evaporator, and the residue from which the solvent was removed was column-separated to obtain an intermediate compound (52.3 g, 86%) which was a white solid.

窒素ガス雰囲気下、機械撹拌、低温温度計、定圧漏斗が取り付けられた1L三つ口フラスコに、上記中間体化合物(31g,50mmol)及びTHF(500mL)を加え、液体窒素で−80℃以下に降温し、2.4Mのn−ブチルリチウム(23mL,55mmol)を滴下し、−80℃を超えないように温度を制御し、滴下完了後−80℃以下で15min保温し、ボロン酸トリイソプロピルを(14.2g,75mmol)滴下し、滴下完了後−80℃以下に温度を制御して1h反応させ、室温まで昇温させ、室温で引き続き5h反応させ、反応液を、濃塩酸(100mL)と水(1L)とで調製された希酸に入れ、撹拌して上層有機相を析出させ、水相をジクロロメタン(600mL)で1回抽出し、有機相を合併して減圧濃縮乾燥で淡黄色オイル状物を得た。カラム分離し、白色固体(26g,収率90%)を得た。 Under a nitrogen gas atmosphere, add the above intermediate compound (31 g, 50 mmol) and THF (500 mL) to a 1 L three-necked flask equipped with mechanical stirring, a low temperature thermometer, and a constant pressure funnel, and bring the temperature to -80 ° C or lower with liquid nitrogen. The temperature was lowered, 2.4 M of n-butyl lithium (23 mL, 55 mmol) was added dropwise, the temperature was controlled so as not to exceed -80 ° C, and after the addition was completed, the temperature was kept at -80 ° C or lower for 15 minutes to add triisopropyl boronate. (14.2 g, 75 mmol) was added dropwise, and after the addition was completed, the temperature was controlled to -80 ° C or lower for 1 h reaction, the temperature was raised to room temperature, and the reaction was continued for 5 hours at room temperature, and the reaction solution was mixed with concentrated hydrochloric acid (100 mL). Put in a dilute acid prepared with water (1 L), stir to precipitate the upper organic phase, extract the aqueous phase once with dichloromethane (600 mL), combine the organic phases, concentrate and dry under reduced pressure to make a pale yellow oil. I got a compound. Column separation was performed to obtain a white solid (26 g, yield 90%).

窒素ガス雰囲気下、中間体ボロン酸(5.78g,10mmol)と、2−クロロ−4−フェニルキナゾリン(2.4g,10mmol)と、Pd(PPh(0.58g,0.5mmol)と、NaCO (5.3g,50mmol)と、トルエン(60mL)と、EtOH(20mL)とを混合し、該混合物に蒸留水を20mL加え、110℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相をMgSOで乾燥させ、回転蒸発により溶剤を除去し、最後に溶剤が除去された残留物をカラム分離し、黄色固体化合物D−37(6.2g,84%)を得た。 Under a nitrogen gas atmosphere, intermediate boronic acid (5.78 g, 10 mmol), 2-chloro-4-phenylquinazoline (2.4 g, 10 mmol), and Pd (PPh 3 ) 4 (0.58 g, 0.5 mmol). , Na 2 CO 3 (5.3 g, 50 mmol), toluene (60 mL), and EtOH (20 mL) were mixed, 20 mL of distilled water was added to the mixture, and the mixture was stirred at 110 ° C. for 2 hours for reaction. .. After the reaction is completed, the reaction system is washed with distilled water, extracted three times with ethyl acetate (100 mL), the obtained organic phases are combined, the organic phase is dried with sulfonyl 4 , and the solvent is removed by rotary evaporation. Finally, the residue from which the solvent was removed was column-separated to obtain a yellow solid compound D-37 (6.2 g, 84%).

D−37のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.49 (d, J = 65.0 Hz, 6H), 8.40 (s, 1H), 8.19 - 7.89 (m, 7H), 7.89 - 7.73 (m, 7H), 7.63 (d, J = 15.0 Hz, 11H), 7.60 - 7.45 (m, 19H), 7.33 (s, 2H), 7.16 (s, 2H), 7.11 (s, 3H).
NMR spectrum data of D-37:
1 1 H NMR (500 MHz, Chloroform) δ 8.49 (d, J = 65.0 Hz, 6H), 8.40 (s, 1H), 8.19 --7.99 (m, 7H), 7.89 --7.73 (m, 7H), 7.63 (d , J = 15.0 Hz, 11H), 7.60 --7.45 (m, 19H), 7.33 (s, 2H), 7.16 (s, 2H), 7.11 (s, 3H).

合成実施例122.化合物D−38の合成
2−クロロ−4−フェニルキナゾリンを等当量の2−(4−ブロモフェニル)−5−フェニル−1,3,4−オキサジアゾールに変えた以外、合成実施例120における化合物D−37の合成と同じの合成方法を用い、反応させて黄色固体である化合物D−38(6.11g,収率81%)を得た。
Synthesis Example 122. Synthesis of Compound D-38 In Synthesis Example 120, except that 2-chloro-4-phenylquinazoline was converted to an equal amount of 2- (4-bromophenyl) -5-phenyl-1,3,4-oxadiazole. Using the same synthesis method as the synthesis of compound D-37, the reaction was carried out to obtain compound D-38 (6.11 g, yield 81%) as a yellow solid.

合成実施例123.化合物D−39の合成
第1のステップの反応における中間体M10を等当量の中間体M9に変え、第3のステップの反応における2−クロロ−4−フェニルキナゾリンを等当量の2−(3−ブロモフェニル)−4,6−ジフェニル−1,3,5−トリアジンに変えた以外、合成実施例120における化合物D−37の合成と同じの合成方法を用い、反応させて黄色固体である化合物D−39(7.58g,収率90%)を得た。
Synthesis Example 123. Synthesis of Compound D-39 The intermediate M10 in the reaction of the first step is converted to an equivalent amount of intermediate M9 and the equivalent amount of 2-chloro-4-phenylquinazoline in the reaction of the third step is 2- (3-). Compound D, which is a yellow solid when reacted using the same synthesis method as the synthesis of compound D-37 in Synthesis Example 120 except that it was changed to bromophenyl) -4,6-diphenyl-1,3,5-triazine. -39 (7.58 g, yield 90%) was obtained.

D−39のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.54 (s, 6H), 8.52 - 8.33 (m, 24H), 8.09 (s, 5H), 7.69 (s, 3H), 7.63 - 7.55 (m, 23H), 7.50 (d, J = 10.0 Hz, 34H), 7.32 (s, 4H), 7.24 (d, J = 85.0 Hz, 10H), 7.36 - 6.89 (m, 19H).
NMR spectrum data of D-39:
1 1 H NMR (500 MHz, Chloroform) δ 8.54 (s, 6H), 8.52 --8.33 (m, 24H), 8.09 (s, 5H), 7.69 (s, 3H), 7.63 --7.55 (m, 23H), 7.50 (d, J = 10.0 Hz, 34H), 7.32 (s, 4H), 7.24 (d, J = 85.0 Hz, 10H), 7.36 --- 6.89 (m, 19H).

本発明による具体的な合成実施例における化合物の分析検出データを下記の表1に示す。 The analysis and detection data of the compounds in the specific synthesis examples according to the present invention are shown in Table 1 below.

表1:

Figure 0006765389
Table 1:
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

素子実施例
以下の素子構造を応用してOLED素子評価を行う。ITO/HIL/HTL/EML/ETL/LiF/Al(上記略称はそれぞれ、ITO陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/LiFおよびAlの負極に対応し、上記略称の意味は以下においても同じである)、素子中の各機能層に用いられた材料の構造式(全ての材料は百霊威試薬から購入;純度>99.9%)を下記に示す。
Element Example An OLED element is evaluated by applying the following element structure. ITO / HIL / HTL / EML / ETL / LiF / Al (the above abbreviations correspond to ITO anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / LiF and Al negative electrodes, respectively. However, the meaning of the above abbreviation is the same in the following), and the structural formula of the material used for each functional layer in the device (all materials are purchased from Hyakurei Reagent; purity> 99.9%) is shown below. Shown.

Figure 0006765389
Figure 0006765389

Figure 0006765389
Figure 0006765389

素子実施例1.本発明による化合物を正孔注入材料とする例
ITO(150nm)透明導電層が塗布されたガラス板を商用洗浄剤に超音波処理し、脱イオン水で洗浄し、アセトン:エタノール混合溶剤(体積比1:1)に超声波でオイルを除去し、水分が完全に除去されるまで清潔環境でベークし、紫外光及びオゾンで洗浄し、Satella(ULVAC)の低エネカチオンビームを用いて表面を衝突した。
Element Example 1. Example of using the compound according to the present invention as a hole injection material A glass plate coated with an ITO (150 nm) transparent conductive layer is ultrasonically treated with a commercial cleaning agent, washed with deionized water, and an acetone: ethanol mixed solvent (volume ratio). At 1: 1), the oil was removed by ultrasonic waves, baked in a clean environment until the water was completely removed, washed with ultraviolet light and ozone, and the surface was collided with a low energy cation beam of Satella (ULVAC). ..

上記陽極付きガラス基板を真空腔内に配置し、1×10−5〜9×10−3Paになるまで真空引きする。上記陽極層膜上に化合物C−1を真空蒸着して、厚さ60nmの正孔注入層を形成した。正孔注入層上に化合物NPBを真空蒸着して、厚さ20nmの正孔輸送層を形成し、蒸着速度が0.1nm/sである。 The glass substrate with an anode is placed in a vacuum chamber and evacuated until it becomes 1 × 10 -5 to 9 × 10 -3 Pa. Compound C-1 was vacuum-deposited on the anode layer film to form a hole injection layer having a thickness of 60 nm. The compound NPB is vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 20 nm, and the deposition rate is 0.1 nm / s.

上記正孔輸送層上にエレクトロルミネッセンス層を形成し、具体的な操作は以下のとおりである。発光層ホストとしてのCBP[4,4’−N、N’−ジカルバゾール−ビフェニル]を真空蒸着装置の小室に配置し、ドーパントとしての(piq)Ir(acac)[ジ−(1−フェニルイソキノリニル)アセチルアセトネートイリジウム(III)]を真空蒸着装置の他の小室に配置し、2種の材料を異なる速度で同時に蒸発させ、(piq)Ir(acac)の濃度が4%であり、蒸着総膜厚さが30nmである。 An electroluminescence layer is formed on the hole transport layer, and the specific operation is as follows. CBP [4,4'-N, N'-dicarbazole-biphenyl] as a light emitting layer host was placed in a small chamber of a vacuum vapor deposition apparatus, and (piq) 2 Ir (acac) [di (1-phenyl) as a dopant was placed. Isoquinolinyl) acetylacetonate iridium (III)] was placed in another chamber of the vacuum film deposition apparatus to simultaneously evaporate the two materials at different rates, resulting in a concentration of (piq) 2 Ir (acac) of 4%. The total film thickness of the vapor deposition is 30 nm.

発光層上にBphenを真空蒸着して膜厚20nmの電子輸送層を形成し、その蒸着速度が0.1nm/sである。 Bphen is vacuum-deposited on the light emitting layer to form an electron transport layer having a film thickness of 20 nm, and the vapor deposition rate is 0.1 nm / s.

電子輸送層上に、0.5nmのLiFを電子注入層として、厚さ150nmのAl層を素子の陰極として真空蒸着する。 On the electron transport layer, a 0.5 nm LiF is vacuum-deposited as an electron injection layer and an Al layer having a thickness of 150 nm is used as a cathode of the device.

素子実施例2.本発明による化合物を正孔注入材料とする例
化合物C−1を化合物C−3に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 2. Example of using the compound according to the present invention as a hole injection material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to compound C-3.

素子実施例3.本発明による化合物を正孔注入材料とする例
化合物C−1を化合物C−4に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 3. Example of using the compound according to the present invention as a hole injection material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to compound C-4.

素子実施例4.本発明による化合物を正孔注入材料とする例
化合物C−1を化合物C−11に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 4. Example of using the compound according to the present invention as a hole injection material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to compound C-11.

素子実施例5.本発明による化合物を正孔注入材料とする例
化合物C−1を化合物C−12に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 5. Example of using the compound according to the present invention as a hole injection material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to compound C-12.

素子実施例6.本発明による化合物を正孔注入材料とする例
化合物C−1を化合物C−13に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 6. Example of using the compound according to the present invention as a hole injection material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to compound C-13.

素子実施例7.本発明による化合物を正孔注入材料とする例
化合物C−1を化合物C−15に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 7. Example of using the compound according to the present invention as a hole injection material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to compound C-15.

素子実施例8.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−1に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 8. Example of using the compound according to the present invention as a hole transporting material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-1. ..

素子実施例9.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−3に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 9. Example of using the compound according to the present invention as a hole transporting material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-3. ..

素子実施例10.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−4に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 10. Example of using the compound according to the present invention as a hole transporting material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-4. ..

素子実施例11.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−6に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 11. Example of using the compound according to the present invention as a hole transporting material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-6. ..

素子実施例12.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−9に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 12. Example of using the compound according to the present invention as a hole transporting material An organic electroluminescence device was produced by the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-9. ..

素子実施例13.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−10に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 13. Example of using the compound according to the present invention as a hole transport material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-10. ..

素子実施例14.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−12に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 14. Example of using the compound according to the present invention as a hole transport material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-12. ..

素子実施例15.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−13に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 15. Example of using the compound according to the present invention as a hole transport material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-13. ..

素子実施例16.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−17に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 16. Example of using the compound according to the present invention as a hole transport material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-17. ..

素子実施例17.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−18に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 17. Example of using the compound according to the present invention as a hole transporting material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-18. ..

素子実施例18.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−21に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 18. Example of using the compound according to the present invention as a hole transporting material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-21. ..

素子実施例19.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−30に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 19. Example of using the compound according to the present invention as a hole transporting material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-30. ..

素子実施例20.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物A−1に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 20. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound A-1. ..

素子実施例21.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物A−4に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 21. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound A-4. ..

素子実施例22.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物A−6に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 22. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound A-6. ..

素子実施例23.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物A−9に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 23. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound A-9. ..

素子実施例24.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物A−14に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 24. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound A-14. ..

素子実施例25.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物A−21に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 25. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound A-21. ..

素子実施例26.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物D−4に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 26. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound D-4. ..

素子実施例27.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物D−6に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 27. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound D-6. ..

素子実施例28.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物D−10に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 28. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound D-10. ..

素子実施例29.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物D−25に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 29. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound D-25. ..

素子実施例30.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物D−27に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 30. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound D-27. ..

素子実施例31.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物D−33に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 31. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound D-33. ..

素子実施例32.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物D−37に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 32. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound D-37. ..

素子実施例33.本発明による化合物をそれぞれ、正孔注入材料、正孔輸送材料及び赤色燐光ホスト材料とする例
化合物C−1をC−10に変え、NPBを化合物B−8に変え、CBPを化合物D−25に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 33. Examples of using the compounds according to the present invention as a hole injection material, a hole transport material, and a red phosphorescent host material, respectively. Compound C-1 is changed to C-10, NPB is changed to compound B-8, and CBP is changed to compound D-25. An organic electroluminescence element was manufactured using the same method as in Example 1 except that the above was changed to.

素子実施例34.本発明による化合物をそれぞれ、正孔注入材料、正孔輸送材料及び赤色燐光ホスト材料とする例
化合物C−1をC−13に変え、NPBを化合物B−6に変え、CBPを化合物D−37に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 34. Examples of using the compounds according to the present invention as a hole injection material, a hole transport material, and a red phosphorescent host material, respectively. Compound C-1 is changed to C-13, NPB is changed to compound B-6, and CBP is changed to compound D-37. An organic electroluminescence element was manufactured using the same method as in Example 1 except that the above was changed to.

素子実施例35.本発明による化合物をそれぞれ、正孔注入材料、正孔輸送材料及び赤色燐光ホスト材料とする例
化合物C−1をC−3に変え、NPBを化合物B−30に変え、CBPを化合物D−4に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 35. Examples of using the compounds according to the present invention as a hole injection material, a hole transport material, and a red phosphorescent host material, respectively. Compound C-1 is changed to C-3, NPB is changed to compound B-30, and CBP is changed to compound D-4. An organic electroluminescence element was manufactured using the same method as in Example 1 except that the above was changed to.

素子実施例36.本発明による化合物を緑色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物D−32に変え、(piq)Ir(acac)をIr(ppy)に変え、ドーピング濃度を10%に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 36. Example of using the compound according to the present invention as a green phosphorescent host material Compound C-1 is converted to 2-TNATA, CBP is converted to compound D-32, (piq) 2 Ir (acac) is converted to Ir (ppy) 3 , and doping is performed. An organic electroluminescence device was produced using the same method as in Example 1 except that the concentration was changed to 10%.

素子実施例37.本発明による化合物を緑色燐光ホスト材料とする例
化合物D−32をD−39に変えた以外、実施例26と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 37. Example of using the compound according to the present invention as a green phosphorescent host material An organic electroluminescent device was produced using the same method as in Example 26 except that compound D-32 was changed to D-39.

素子実施例38.本発明による化合物をそれぞれ、正孔注入材料、正孔輸送材料及び緑色燐光ホスト材料とする例
化合物C−1をC−3に変え、NPBを化合物B−8に変え、CBPを化合物D−32に変え、(piq)Ir(acac)をIr(ppy)に変え、ドーピング濃度を10%に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 38. Examples of using the compounds according to the present invention as a hole injection material, a hole transport material, and a green phosphorescence host material, respectively. Compound C-1 is changed to C-3, NPB is changed to compound B-8, and CBP is changed to compound D-32. The organic electroluminescence device was manufactured using the same method as in Example 1 except that (piq) 2 Ir (acac) was changed to Ir (ppy) 3 and the doping concentration was changed to 10%.

素子実施例39.本発明による化合物をそれぞれ、正孔注入材料、正孔輸送材料及び緑色燐光ホスト材料とする例
化合物C−1をC−11に変え、NPBを化合物B−30に変え、CBPを化合物D−39に変え、(piq)Ir(acac)をIr(ppy)に変え、ドーピング濃度を10%に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 39. Examples of using the compounds according to the present invention as a hole injection material, a hole transport material, and a green phosphorescence host material, respectively. Compound C-1 is changed to C-11, NPB is changed to compound B-30, and CBP is changed to compound D-39. The organic electroluminescence device was manufactured using the same method as in Example 1 except that (piq) 2 Ir (acac) was changed to Ir (ppy) 3 and the doping concentration was changed to 10%.

比較実施例1.2−TNATAを正孔注入材料とし、NPBを正孔輸送材料とし、CBPを赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Comparative Example 1.2-TNATA is used as a hole injection material, NPB is used as a hole transport material, and CBP is used as a red phosphorescence host material. Same as Example 1 except that compound C-1 is changed to 2-TNATA. An organic electroluminescence device was manufactured using the method.

比較実施例2.2−TNATAを正孔注入材料とし、NPBを正孔輸送材料とし、CBPを赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、(piq)Ir(acac)をIr(ppy)に変え、ドーピング濃度を10%に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Comparative Example 2.2 Example in which 2-TNATA is used as a hole injection material, NPB is used as a hole transport material, and CBP is used as a red phosphorescent host material. Compound C-1 is changed to 2-TNATA, and (piq) 2 Ir (acac) is used. ) Was changed to Ir (ppy) 3 and the doping concentration was changed to 10%, and an organic electroluminescent device was produced using the same method as in Example 1.

テスト実施例1
赤光素子の輝度1000cd/mで、Keithley 2602数字源表輝度計(北京師範大学光電機器場製)を用い、実施例1〜25および比較例1において製造された有機エレクトロルミネッセンス素子の駆動電圧及び電流効率をテストし、その結果を表2に示す。
Test Example 1
The drive voltage of the organic electroluminescence device manufactured in Examples 1 to 25 and Comparative Example 1 using a Keithley 2602 numerical source table luminance meter (manufactured by Beijing Normal University Photoelectric Equipment Field) at a brightness of 1000 cd / m 2 of the red light element. And the current efficiency was tested and the results are shown in Table 2.

テスト実施例2
緑光素子の輝度2000cd/mで、Keithley 2602数字源表輝度計(北京師範大学光電機械場製)を用い、実施例26〜27および比較例2において製造された有機エレクトロルミネッセンス素子の駆動電圧及び電流効率をテストし、その結果を表2に示す。
Test Example 2
The drive voltage and drive voltage of the organic electroluminescence device manufactured in Examples 26 to 27 and Comparative Example 2 using a Keithley 2602 numerical source table luminance meter (manufactured by Beijing Normal University Photoelectric Machinery Works) at a brightness of 2000 cd / m 2 of the green light element. The current efficiency was tested and the results are shown in Table 2.

表2:

Figure 0006765389
Table 2:
Figure 0006765389

表1における素子実施例1〜7及び比較実施例1は、有機エレクトロルミネッセンス素子構造における他の材料が同一である場合、比較素子実施例1における2−TNATAの代わりに、本発明によるCシリーズ化合物を正孔注入材料とする。Cシリーズ化合物の好ましいアリールアミン類置換基は母核のHOMO準位を向上させ、シングルキャリア性能を向上させる。その素子性能には、より低い駆動電圧及び比較的に高い電流効率が得られたとともに、発光素子の発光効率が向上されたことは、本発明による材料がより効率的な正孔注入性を有することを示した。 In Device Examples 1 to 7 and Comparative Example 1 in Table 1, when other materials in the organic electroluminescence device structure are the same, the C series compound according to the present invention is used instead of 2-TNATA in Comparative Device Example 1. Is used as a hole injection material. Preferred arylamine substituents in C-series compounds improve the HOMO level of the parent nucleus and improve single carrier performance. As for the device performance, a lower drive voltage and a relatively high current efficiency were obtained, and the luminous efficiency of the light emitting device was improved, so that the material according to the present invention has more efficient hole injection property. I showed that.

素子実施例8−19及び比較実施例1は、有機エレクトロルミネッセンス素子構造における他の材料が同一である場合、比較素子実施例1におけるNPBの代わりに、本発明によるBシリーズ化合物を正孔輸送材料とする。Bシリーズ化合物は、カルバゾリル基、ジベンゾフラニル基、ジベンゾチエニル基などの置換基が好ましく、母核のHOMO準位をやや向上させ、ホスト準位とより整合させ、より高い三重項準位に対して励起子阻止層の作用を同時に働かせ、シングルキャリアの注入・輸送性を向上させ、比較的に強い正孔輸送性を有し、より高い電流効率及び比較的に低い駆動電圧を得、同様の素子構造において、発光素子の発光効率を向上させた。 In Device Example 8-19 and Comparative Example 1, when other materials in the organic electroluminescence device structure are the same, the B series compound according to the present invention is used as a hole transport material instead of NPB in Comparative Device Example 1. And. Substituents such as carbazolyl group, dibenzofuranyl group, and dibenzothienyl group are preferable for the B series compound, which slightly improves the HOMO level of the mother nucleus, makes it more consistent with the host level, and for a higher triplet level. By simultaneously acting as an exciton blocking layer, the injection / transportability of a single carrier is improved, the hole transportability is relatively strong, and a higher current efficiency and a relatively lower drive voltage are obtained. In the element structure, the light emitting efficiency of the light emitting element was improved.

素子実施例20−32及び比較素子実施例1は、有機エレクトロルミネッセンス素子構造における他の材料が同一である場合、比較素子実施例1におけるCBPの代わりに、本発明によるA、Dシリーズ化合物を赤色ホスト材料とする。Aシリーズ化合物における中性アリール基は母核への影響が少なく、そのシングルキャリアの性能が良好であり、その素子がより低い電圧及びより高い電流効率を有する。Dシリーズ化合物はピリジル基、フェニルピリジル基、キノリニル基等の電子吸引性を有する置換基が好ましく、そのダブルキャリアの性能が良好で、複合領域が広く、素子の動作電圧をさらに低下させ、より高い電流効率を有することは、本発明による材料の優れたキャリア輸送平衡性および準位整合性を示した。 In device examples 20-32 and comparative device example 1, when other materials in the organic electroluminescence device structure are the same, the A and D series compounds according to the present invention are red instead of CBP in comparative device example 1. Use as host material. Neutral aryl groups in A-series compounds have less effect on the mother nucleus, their single carrier performance is good, and their devices have lower voltage and higher current efficiency. The D series compound is preferably a substituent having an electron-withdrawing property such as a pyridyl group, a phenylpyridyl group, a quinolinyl group, etc. Having current efficiency demonstrated excellent carrier transport equilibrium and level consistency of the materials according to the invention.

素子実施例36/37及び比較素子実施例2は、有機エレクトロルミネッセンス素子構造における他の材料が同一である場合、比較素子実施例2におけるCBPの代わりに、本発明によるD−32、D−39化合物を緑光ホスト材料とする。実施例36/37による素子は、電流効率が30cd/Aから40cd/Aまで向上し、十分に顕著な向上効果を有するとともに、動作電圧も大幅に低下させる。素子実施例33−35及び比較素子実施例1は、有機エレクトロルミネッセンス素子構造における他の材料が同一である場合、本発明による異なる類型の材料をそれぞれ同時に選択して、2−TNATAの代わりにC−10、C−13、C−3を用い、NPBの代わりにB−8、B−6、B−30を用い、CBPの代わりにD−25、D−37、D−4を用い、赤色素子において有機エレクトロルミネッセンス素子の動作電圧を明らかに低下させ、電流効率を向上させた。緑光素子38、39においても、電圧の低下及び効率の向上という効果を働き、本発明による化合物の優位性を示した。 In element example 36/37 and comparative element example 2, when other materials in the organic electroluminescence device structure are the same, D-32 and D-39 according to the present invention are used instead of CBP in comparative element example 2. The compound is used as a green light host material. In the element according to the 36/37 embodiment, the current efficiency is improved from 30 cd / A to 40 cd / A, which has a sufficiently remarkable improvement effect, and the operating voltage is also significantly reduced. In device examples 33-35 and comparative device example 1, when other materials in the organic electroluminescence device structure are the same, different types of materials according to the present invention are simultaneously selected, and C instead of 2-TNATA. Use -10, C-13, C-3, use B-8, B-6, B-30 instead of NPB, use D-25, D-37, D-4 instead of CBP, red In the device, the operating voltage of the organic electroluminescence device was clearly lowered, and the current efficiency was improved. The green light elements 38 and 39 also worked to reduce the voltage and improve the efficiency, demonstrating the superiority of the compound according to the present invention.

以上は、本発明の好ましい実施形態を詳細に説明したが、本発明は、上記実施形態における具体的な内容に限定されるものではなく、本発明の技術構想範囲内において、本発明の技術案に対して多種の簡単な変形を行ってもよく、これら簡単な変形はいずれも本発明の保護範囲に属する。 Although the preferred embodiment of the present invention has been described in detail above, the present invention is not limited to the specific contents of the above embodiment, and the technical proposal of the present invention is within the scope of the technical concept of the present invention. A variety of simple modifications may be made to, and all of these simple modifications fall within the scope of the present invention.

Claims (17)

下記の一般式(I)で表されるベンゾシクロオクタテトラエノジインドール構造を有する化合物。
Figure 0006765389
(上記式(I)中、環Aは
Figure 0006765389
であり、破線は継ぎ位置であり、
Arは、水素、C〜C30アリールアミノフェニル基又はヘテロアリールアミノフェニル基、置換もしくは無置換のC〜C30のアリール基、または置換もしくは無置換のC〜C30のヘテロアリール基であり、2つのArは同一でも異なっていてもよく、
〜R12はそれぞれ独立に、水素、ハロゲン、C〜C30のアリールアミノ基又はヘテロアリールアミノ基、置換もしくは無置換のC〜C30のアルキル基、置換もしくは無置換のC〜C30のアルケニル基、置換もしくは無置換のC〜C30のアルキニル基、置換もしくは無置換のC〜C30のシクロアルキル基、置換もしくは無置換のC〜C30のヘテロシクロアルキル基、置換もしくは無置換のC〜C30のアリール基、または置換もしくは無置換のC〜C30のヘテロアリール基であり、あるいは、R〜R及び/又はR〜Rは環を形成していてもよい。)
A compound having a benzocyclooctatetraenodiindole structure represented by the following general formula (I).
Figure 0006765389
(In the above formula (I), the ring A is
Figure 0006765389
And the dashed line is the joint position,
Ar is selected from hydrogen, aryl aminophenyl group or heteroaryl aminophenyl group C 6 -C 30, a substituted or unsubstituted C 6 -C 30 aryl group or a substituted or unsubstituted C 2 -C 30 heteroaryl, It is a group and the two Ars may be the same or different.
R 1 to R 12 are independently hydrogen, halogen, arylamino or heteroarylamino groups of C 6 to C 30 , substituted or unsubstituted alkyl groups of C 1 to C 30 , substituted or unsubstituted C 2 ~ C 30 alkenyl group, substituted or unsubstituted C 2 to C 30 alkynyl group, substituted or unsubstituted C 3 to C 30 cycloalkyl group, substituted or unsubstituted C 2 to C 30 heterocycloalkyl Groups, substituted or unsubstituted C 6 to C 30 aryl groups, or substituted or unsubstituted C 2 to C 30 heteroaryl groups, or R 1 to R 4 and / or R 5 to R 8 are It may form a ring. )
〜R12はそれぞれ独立に、水素、置換もしくは無置換のC〜C30のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基、C〜C30のアリールアミノ基又はヘテロアリールアミノ基である、ことを特徴とする請求項1に記載の化合物。 R 1 to R 12 are independently hydrogen, substituted or unsubstituted C 6 to C 30 aryl groups, substituted or unsubstituted C 2 to C 30 heteroaryl groups, and C 6 to C 30 aryl amino groups, respectively. The compound according to claim 1, wherein the compound is a heteroarylamino group. Ar、R〜R12はそれぞれ独立に、水素、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントリル基、フェナントリル基、インデニル基、フルオレニル基およびその誘導体、フルオランテニル基、トリフェニレン基、ピレニル基、ペリレニル基、クリセニル基、ナフタセニル基、フラニル基、チエニル基、ピロリル基、ベンゾフラニル基、ベンゾチエニル基、イソベンゾフラニル基、インドリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基及びこれら誘導体、ベンゾジオキソリル基、ピリジル基、フェニルピリジル基、キノリニル基、置換キノリニル基、キナゾリニル基、置換キナゾリニル基、キノキサリニル基、置換キノキサリニル基、ピリミジニル基、置換ピリミジニル基、o−フェナントロリニル基、トリアジニル基、置換トリアジニル基、ベンゾイミダゾリル基、オキサゾリル基、ジフェニルアミノ基、フェニルナフチルアミノ基、4−トリフェニルアミノ基、3−トリフェニルアミノ基、4−[N−フェニル−N−(ジベンゾフラン−3−イル)]フェニルアミノ基、4−[N−フェニル−N−(ジベンゾチオフェン−3−イル)]フェニルアミノ基からなる群から選ばれる1種以上の基が単結合または縮合によって接続した組み合わせであり、R〜R及び/又はR〜Rはそれぞれ環を形成していてもよい、ことを特徴とする請求項1に記載の化合物。
Ar and R 1 to R 12 are independently hydrogen, phenyl group, biphenyl group, terphenyl group, naphthyl group, anthryl group, phenanthryl group, indenyl group, fluorenyl group and derivatives thereof, fluoranthenyl group, triphenylene group, respectively. Pyrenyl group, perylenyl group, chrysenyl group, naphthacenyl group, phenyl group, thienyl group, pyrrolyl group, benzofuranyl group, benzothienyl group, isobenzofuranyl group, indolyl group, dibenzofuranyl group, dibenzothienyl group, carbazolyl group and these Derivatives, benzodioxolyl group, pyridyl group, phenylpyridyl group, quinolinyl group, substituted quinolinyl group, quinazolinyl group, substituted quinazolinyl group, quinoxalinyl group, substituted quinoxalinyl group, pyrimidinyl group, substituted pyrimidinyl group, o-phenanthrolinyl group , Triazinyl group, substituted triazinyl group, benzoimidazolyl group, oxazolyl group, diphenylamino group, phenylnaphthylamino group, 4-triphenylamino group, 3-triphenylamino group, 4- [N-phenyl-N- (dibenzofuran-3) -Il)] Phenylamino group, 4- [N-Phenyl-N- (dibenzothiophen-3-yl)] Phenylamino group A combination of one or more groups selected from the group consisting of a single bond or a condensation The compound according to claim 1, wherein R 1 to R 4 and / or R 5 to R 8 may each form a ring.
下記の一般式(II)で表される構造を有する請求項1に記載の化合物。
Figure 0006765389
(上記式(II)中、Ar、Arは同一でも異なっていてもよく、それぞれ独立的にC〜C10アルキル基、置換もしくは無置換のC〜C30のアリール基、または置換もしくは無置換のC〜C30のヘテロアリール基であり、
上記式(II)中、R〜R12は同一でも異なっていてもよく、それぞれ独立に水素、ハロゲン、置換もしくは無置換のC〜C30のアルキル基、置換もしくは無置換のC〜C30のアルケニル基、置換もしくは無置換のC〜C30のアルキニル基、置換もしくは無置換のC〜C30のシクロアルキル基、置換もしくは無置換のC〜C30のヘテロシクロアルキル基、置換もしくは無置換のC〜C30のアリール基、または置換もしくは無置換のC〜C30のヘテロアリール基であり、あるいは、R〜Rが同一でも異なっていてもよく、隣接する基は互いに環を形成していてもよく、R〜Rは同一でも異なっていてもよく、隣接する基は互いに環を形成していてもよく、R〜R12は同一でも異なっていてもよく、隣接する基は互いに環を形成していてもよい。)
The compound according to claim 1, which has a structure represented by the following general formula (II).
Figure 0006765389
(In the above formula (II), Ar 1 and Ar 2 may be the same or different, and are independently C 1 to C 10 alkyl groups, substituted or unsubstituted C 6 to C 30 aryl groups, or substitutions. Alternatively, it is an unsubstituted C 2 to C 30 heteroaryl group.
In the above formula (II), R 1 to R 12 may be the same or different, and independently hydrogen, halogen, substituted or unsubstituted C 1 to C 30 alkyl groups, substituted or unsubstituted C 2 to C 30 alkenyl group, substituted or unsubstituted C 2 to C 30 alkynyl group, substituted or unsubstituted C 3 to C 30 cycloalkyl group, substituted or unsubstituted C 2 to C 30 heterocycloalkyl group , Substituent or unsubstituted C 6 to C 30 aryl groups, or substituted or unsubstituted C 2 to C 30 heteroaryl groups, or R 1 to R 4 may be the same or different and adjacent. Groups may form rings with each other, R 5 to R 8 may be the same or different, adjacent groups may form rings with each other, and R 9 to R 12 may be the same or different. Adjacent groups may form a ring with each other. )
下記の一般式(III)で表される構造を有する請求項1に記載の化合物。
Figure 0006765389
(上記式(III)中、Ar、Arは同一でも異なっていてもよく、それぞれ独立的にC〜C10アルキル基、置換もしくは無置換のC〜C30のアリール基、または置換もしくは無置換のC〜C30のヘテロアリール基であり、
上記式(III)中、R13〜R24は同一でも異なっていてもよく、それぞれ独立に水素、ハロゲン、置換もしくは無置換のC〜C30のアルキル基、置換もしくは無置換のC〜C30のアルケニル基、置換もしくは無置換のC〜C30のアルキニル基、置換もしくは無置換のC〜C30のシクロアルキル基、置換もしくは無置換のC〜C30のヘテロシクロアルキル基、置換もしくは無置換のC〜C30のアリール基、または置換もしくは無置換のC〜C30のヘテロアリール基であり、あるいは、R13〜R16が同一でも異なっていてもよく、隣接する基は互いに環を形成していてもよく、R17〜R20は同一でも異なっていてもよく、隣接する基は互いに環を形成していてもよく、R21〜R24は同一でも異なっていてもよく、隣接する基は互いに環を形成していてもよい。)
The compound according to claim 1, which has a structure represented by the following general formula (III).
Figure 0006765389
(In the above formula (III), Ar 3 and Ar 4 may be the same or different, and are independently C 1 to C 10 alkyl groups, substituted or unsubstituted C 6 to C 30 aryl groups, or substitutions. Alternatively, it is an unsubstituted C 2 to C 30 heteroaryl group.
In the above formula (III), R 13 to R 24 may be the same or different, and independently hydrogen, halogen, substituted or unsubstituted C 1 to C 30 alkyl groups, substituted or unsubstituted C 2 to C 30 alkenyl group, substituted or unsubstituted C 2 to C 30 alkynyl group, substituted or unsubstituted C 3 to C 30 cycloalkyl group, substituted or unsubstituted C 2 to C 30 heterocycloalkyl group , Substituent or unsubstituted C 6 to C 30 aryl groups, or substituted or unsubstituted C 2 to C 30 heteroaryl groups, or R 13 to R 16 may be the same or different and adjacent. The groups to form rings with each other, R 17 to R 20 may be the same or different, adjacent groups may form a ring with each other, and R 21 to R 24 may be the same or different. Adjacent groups may form a ring with each other. )
Ar、R〜R12は、水素、またはフェニル基、トリル基、ビフェニル基、ナフチル基、フェナントリル基、トリフェニレン基、フルオランテニル基、クリセニル基、フルオレニル基、インデノフルオレニル基からなる群より選ばれた基である、ことを特徴とする請求項1に記載の化合物。 Ar, R 1 to R 12 are hydrogen or a group consisting of a phenyl group, a tolyl group, a biphenyl group, a naphthyl group, a phenanthryl group, a triphenylene group, a fluoranthenyl group, a chrysenyl group, a fluorenyl group and an indenofluorenyl group. The compound according to claim 1, wherein the group is a more selected group. 下記のA−1〜A−24化合物から選ばれた請求項6に記載の化合物。
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
The compound according to claim 6, which is selected from the following A-1 to A-24 compounds.
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Ar、R〜R12は水素、またはカルバゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、インドロカルバゾリル基、ベンゾフラノカルバゾリル基、ベンゾチエノカルバゾリル基からなる群より選ばれた基である、ことを特徴とする請求項1に記載の化合物。 Ar, R 1 to R 12 were selected from the group consisting of hydrogen or a carbazolyl group, a dibenzofuranyl group, a dibenzothienyl group, an indolocarbazolyl group, a benzofuranocarbazolyl group, and a benzothienocarbazolyl group. The compound according to claim 1, wherein the compound is a group. 下記のB−1〜B−31化合物から選ばれた請求項に記載の化合物。
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
The compound according to claim 1 , which is selected from the following B-1 to B-31 compounds.
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Ar、R〜R12は水素、またはC〜C30のアリールアミノ基又はヘテロアリールアミノ基である、ことを特徴とする請求項1に記載の化合物。 The compound according to claim 1, wherein Ar, R 1 to R 12 are hydrogen, or an arylamino group or a heteroarylamino group of C 6 to C 30 . 下記のC−1〜C−15化合物から選ばれた請求項10に記載の化合物。
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
The compound according to claim 10, which is selected from the following C-1 to C-15 compounds.
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Ar、R〜R12は水素、またはピリジル基、フェニルピリジル基、キノリニル基、置換キノリニル基、キナゾリニル基、置換キナゾリニル基、キノキサリニル基、置換キノキサリニル基、ピリミジニル基、置換ピリミジニル基、o−フェナントロリニル基、トリアジニル基、置換トリアジニル基、ベンゾイミダゾリル基、オキサゾリル基からなる群より選ばれた基である、ことを特徴とする請求項1に記載の化合物。 Ar, R 1 to R 12 are hydrogen, or pyridyl group, phenylpyridyl group, quinolinyl group, substituted quinolinyl group, quinazolinyl group, substituted quinazolinyl group, quinoxalinyl group, substituted quinoxalinyl group, pyrimidinyl group, substituted pyrimidinyl group, o-phenant. The compound according to claim 1, wherein the group is selected from the group consisting of a lolinyl group, a triazinyl group, a substituted triazinyl group, a benzoimidazolyl group and an oxazolyl group. 下記のD−1〜D−39化合物から選ばれた請求項12に記載の化合物。
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
The compound according to claim 12, which is selected from the following D-1 to D-39 compounds.
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
Figure 0006765389
第1の電極と、第2の電極と、前記第1の電極と第2の電極との間に介在する1層以上の有機層とを備える有機エレクトロルミネッセンス素子であって、
前記有機層は、請求項1〜13のいずれか一項に記載の化合物を含む、ことを特徴とする有機エレクトロルミネッセンス素子。
An organic electroluminescence device including a first electrode, a second electrode, and one or more organic layers interposed between the first electrode and the second electrode.
An organic electroluminescent device, wherein the organic layer contains the compound according to any one of claims 1 to 13.
前記有機層は正孔注入層を含み、前記正孔注入層は請求項1〜13のいずれか一項に記載の化合物を含む、請求項14に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 14, wherein the organic layer includes a hole injection layer, and the hole injection layer contains the compound according to any one of claims 1 to 13. 前記有機層は正孔輸送層を含み、前記正孔輸送層は請求項1〜13のいずれか一項に記載の化合物を含む、請求項14に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 14, wherein the organic layer includes a hole transport layer, and the hole transport layer contains the compound according to any one of claims 1 to 13. 前記有機層は発光層を含み、前記発光層は請求項1〜13のいずれか一項に記載の化合物を含む、請求項14に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 14, wherein the organic layer includes a light emitting layer, and the light emitting layer contains the compound according to any one of claims 1 to 13.
JP2017568412A 2015-08-04 2016-08-03 Compound and organic electroluminescence devices Active JP6765389B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201510472766.4A CN106433614B (en) 2015-08-04 2015-08-04 Organic electroluminescent compound, application thereof and organic electroluminescent device
CN201510472703.9A CN106432242B (en) 2015-08-04 2015-08-04 A kind of organic electroluminescent compounds and application thereof and organic electroluminescence device
CN201510472703.9 2015-08-04
CN201510472766.4 2015-08-04
PCT/CN2016/093026 WO2017020831A1 (en) 2015-08-04 2016-08-03 Compound and organic light-emitting device

Publications (2)

Publication Number Publication Date
JP2018523638A JP2018523638A (en) 2018-08-23
JP6765389B2 true JP6765389B2 (en) 2020-10-07

Family

ID=57942431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017568412A Active JP6765389B2 (en) 2015-08-04 2016-08-03 Compound and organic electroluminescence devices

Country Status (3)

Country Link
JP (1) JP6765389B2 (en)
KR (1) KR102592175B1 (en)
WO (1) WO2017020831A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112876464A (en) * 2021-02-08 2021-06-01 北京燕化集联光电技术有限公司 Organic material with heterocyclic structure and application thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3389905B2 (en) * 1999-12-13 2003-03-24 日本電気株式会社 Organic electroluminescence device
JP4822687B2 (en) * 2003-11-21 2011-11-24 富士フイルム株式会社 Organic electroluminescence device
JP2006104133A (en) * 2004-10-06 2006-04-20 Ihara Chem Ind Co Ltd Indole tetramer and method for producing the same
JP5390693B2 (en) * 2009-03-30 2014-01-15 ドゥクサン ハイ メタル カンパニー リミテッド Organic electronic device and its compound, terminal
KR20100137188A (en) * 2009-06-22 2010-12-30 다우어드밴스드디스플레이머티리얼 유한회사 Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR20110041726A (en) * 2009-10-16 2011-04-22 에스에프씨 주식회사 Aromatic compound and organic electroluminescent device using the same
CN104513247B (en) * 2013-09-30 2018-05-18 北京鼎材科技有限公司 A kind of benzo [ c ] benzo [ 3,4 ] carbazole and carbazole derivates and application
CN104513662A (en) * 2013-09-30 2015-04-15 北京鼎材科技有限公司 Organic light-emitting material and application thereof
CN104513206B (en) * 2013-09-30 2019-07-19 北京鼎材科技有限公司 A kind of dianthranide radical derivative and its application
CN104513246A (en) * 2013-09-30 2015-04-15 北京鼎材科技有限公司 Anthra bicarbazole derivative and applications thereof
CN103880850A (en) * 2014-03-05 2014-06-25 南京邮电大学 Tetramer indole derivative material and preparation method and application thereof
KR102372950B1 (en) * 2014-05-02 2022-03-14 롬엔드하스전자재료코리아유한회사 Organic Electroluminescent Compounds and Organic Electroluminescent Device Comprising the Same
KR20140130637A (en) * 2014-09-02 2014-11-11 롬엔드하스전자재료코리아유한회사 Novel organic electroluminescent compounds and organic electroluminescent device using the same
CN104673276B (en) * 2014-12-31 2017-05-31 固安鼎材科技有限公司 A kind of luminous organic material and its application

Also Published As

Publication number Publication date
KR20180032527A (en) 2018-03-30
JP2018523638A (en) 2018-08-23
KR102592175B1 (en) 2023-10-19
WO2017020831A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
CN109251176B (en) Organic electroluminescent device
CN106688119B (en) Organic electroluminescence device
WO2020071478A1 (en) Novel compound and organic electroluminescent element material containing same
WO2020022378A1 (en) Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
WO2019240251A1 (en) Organic electroluminescent element and electronic equipment using same
WO2020075784A1 (en) Organic electroluminescent element and electronic device using same
WO2020116562A1 (en) Organic electroluminescence element and electronic device
WO2010122799A1 (en) Aromatic amine derivative and organic electroluminescent element comprising same
WO2020075769A1 (en) Organic electroluminescent element and electronic device using same
KR20190010499A (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
TWI719291B (en) Compound and organic electronic device using the same
TWI641598B (en) Compound and organic electronic device using the same
CN114394929B (en) Carbazole-based triarylamine derivative and organic electroluminescent device thereof
JP7402831B2 (en) Organic electroluminescent compound and organic electroluminescent device containing the same
CN107840834B (en) Benzopyrene compound and application thereof
JP2017533884A (en) Nitrogen-containing polycyclic compound and organic light-emitting device using the same
CN108727389B (en) Pyrene derivative and application thereof in organic luminescent material
CN107778309B (en) Quinoline derivative and application thereof
CN112759524A (en) Aromatic amine derivative and organic electroluminescent device thereof
JP7383299B2 (en) Heterocyclic compounds and organic light-emitting devices containing them
JP6765389B2 (en) Compound and organic electroluminescence devices
CN110526900B (en) Organic electroluminescent material and device
CN109836421B (en) A compound of general formula and its application
CN114933571A (en) Organic compound, electronic element, and electronic device
CN107759527B (en) Compound, application thereof and organic electroluminescent device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R150 Certificate of patent or registration of utility model

Ref document number: 6765389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250