JP2018523638A - Compound and organic electroluminescence device - Google Patents

Compound and organic electroluminescence device Download PDF

Info

Publication number
JP2018523638A
JP2018523638A JP2017568412A JP2017568412A JP2018523638A JP 2018523638 A JP2018523638 A JP 2018523638A JP 2017568412 A JP2017568412 A JP 2017568412A JP 2017568412 A JP2017568412 A JP 2017568412A JP 2018523638 A JP2018523638 A JP 2018523638A
Authority
JP
Japan
Prior art keywords
group
compound
substituted
unsubstituted
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017568412A
Other languages
Japanese (ja)
Other versions
JP6765389B2 (en
Inventor
洪涛 范
洪涛 范
向慧 張
向慧 張
爽 邵
爽 邵
雪艶 任
雪艶 任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Eternal Material Technology Co Ltd
Guan Eternal Material Technology Co Ltd
Original Assignee
Beijing Eternal Material Technology Co Ltd
Guan Eternal Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510472766.4A external-priority patent/CN106433614B/en
Priority claimed from CN201510472703.9A external-priority patent/CN106432242B/en
Application filed by Beijing Eternal Material Technology Co Ltd, Guan Eternal Material Technology Co Ltd filed Critical Beijing Eternal Material Technology Co Ltd
Publication of JP2018523638A publication Critical patent/JP2018523638A/en
Application granted granted Critical
Publication of JP6765389B2 publication Critical patent/JP6765389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom

Abstract

本発明は、有機エレクトロルミネッセンス化合物、及び有機エレクトロルミネッセンス素子の製造におけるその使用を提供している。上記有機エレクトロルミネッセンス化合物を含む有機エレクトロルミネッセンス素子をさらに提供している。提供する有機エレクトロルミネッセンス化合物は、有機エレクトロルミネッセンス素子の動作電圧を効率的に低下させ、発光効率を向上させることができる。  The present invention provides organic electroluminescent compounds and their use in the manufacture of organic electroluminescent devices. The present invention further provides an organic electroluminescence device comprising the organic electroluminescence compound. The provided organic electroluminescent compound can efficiently reduce the operating voltage of the organic electroluminescent element and improve the light emission efficiency.

Description

本発明は新規の化合物に関し、さらに、該化合物を用いた有機エレクトロルミネッセンス素子に関する。   The present invention relates to a novel compound, and further relates to an organic electroluminescence device using the compound.

OLED技術は照明とディスプレイという2つの分野において押し広げられていることにつれて、その高効率の有機材料への研究がますます注目されている。高効率で長寿命の有機エレクトロルミネッセンス素子は、通常、素子構造と各種の有機材料とを最適化して組み合わせたものであるが、材料の作用がもっと著しく、材料はOLED技術の根本とも言える。OLED分野における有機材料は主に、正孔注入材料、正孔輸送材料、正孔阻止材料、電子注入材料、電子輸送材料、電子阻止材料、発光ホスト材料及び発光ゲスト(染料)などを含む。   As OLED technology is being expanded in two areas, lighting and display, research into its high-efficiency organic materials is gaining more and more attention. A high-efficiency and long-life organic electroluminescence element is usually an optimized combination of an element structure and various organic materials, but the action of the material is more remarkable, and the material can be said to be the basis of OLED technology. Organic materials in the field of OLED mainly include a hole injection material, a hole transport material, a hole blocking material, an electron injection material, an electron transport material, an electron blocking material, a light emitting host material, and a light emitting guest (dye).

現在、有機エレクトロルミネッセンス素子に使用する正孔注入材料は、一般的にトリアリールアミン構造を有する下記に示す誘導体である(出光特許:CN1152607C;保土谷特許:EP0650955A1及びChemipro特許:JPH09301934など)。   Currently, hole injection materials used for organic electroluminescence devices are generally derivatives having a triarylamine structure as shown below (Idemitsu Patent: CN1152607C; Hodogaya Patent: EP0650955A1 and Chemipro Patent: JPH09301934, etc.).

Figure 2018523638
Figure 2018523638

正孔輸送材料は、材料分子構造中に一般的にトリアリールアミン、カルバゾール又はチオフェンなどの構造を有する。出光特許(公開番号:CN101506191A、公開日:2009.8.12)はチエニル基を有する材料を保護しているが、出光特許(公開番号:CN102334210A、公開日:2012.1.25;及びWO2010/114017A1、公開日:2010.10.7)はカルバゾールとジベンゾフラン構造を有する正孔輸送材料を保護している。一部の代表的な化合物は下記に示す。   The hole transport material generally has a structure such as triarylamine, carbazole or thiophene in the material molecular structure. Although the Idemitsu patent (publication number: CN10156191A, publication date: 2009.8.12) protects materials with thienyl groups, the Idemitsu patent (publication number: CN102334210A, publication date: 2012.12.25; and WO2010 / 25). 1114017A1, date of publication: 2011.10.7) protects hole transport materials having carbazole and dibenzofuran structures. Some representative compounds are shown below.

Figure 2018523638
Figure 2018523638

既知の正孔輸送材料及び正孔注入材料の性能は理想的ではなく、業界では、新規の正孔輸送材料及び正孔注入材料の開発は依然として求められている。   The performance of known hole transport materials and hole injection materials is not ideal, and there is still a need in the industry to develop new hole transport materials and hole injection materials.

また、常用の発光ホスト材料CBP(特開2001−313178号公報)は良好な正孔輸送性を有するが、電子輸送性が劣るために、キャリア輸送がバランスしなくなる。TAZをホスト材料(特開2002−352957号公報)とする場合は逆に、良好な電子輸送性を有するが、正孔輸送性が劣るために、同様にバランス的なキャリア輸送を実現できない。良好な発光ホスト材料の開発も業界で解決する必要のある課題である。   Moreover, although the usual light emission host material CBP (Unexamined-Japanese-Patent No. 2001-313178) has favorable hole transport property, since electron transport property is inferior, carrier transport becomes unbalanced. Conversely, when TAZ is used as the host material (Japanese Patent Laid-Open No. 2002-352957), it has good electron transport properties, but since the hole transport properties are inferior, balanced carrier transport cannot be realized as well. Development of a good light-emitting host material is also a problem that needs to be solved in the industry.

Figure 2018523638
Figure 2018523638

上記課題を解決するために、本発明は、有機エレクトロルミネッセンス素子に用いる新規の化合物を提供する。該化合物は、新規のベンゾシクロオクタテトラエノジインドール構造を導入することで、良好なホスト材料特性及び正孔注入・輸送性を実現した。本発明による化合物は下記の一般式(I)で表される。   In order to solve the above problems, the present invention provides a novel compound used for an organic electroluminescence device. By introducing a novel benzocyclooctatetraenodiindole structure, the compound realized good host material properties and hole injection / transport properties. The compound according to the present invention is represented by the following general formula (I).

Figure 2018523638
Figure 2018523638

式中、環Aは

Figure 2018523638
環であり、破線はシクロオクタテトラエンとの継ぎ位置を表す。 Where ring A is
Figure 2018523638
It is a ring, and a broken line represents a joint position with cyclooctatetraene.

Arは、水素、C〜C30のアリールアミノ基又はヘテロアリールアミノ基、置換もしくは無置換のC〜C30のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基であることが好ましい。 Ar is selected from hydrogen, an arylamino group or heteroarylamino group C 6 -C 30, a substituted or unsubstituted C 6 -C 30 aryl group is a heteroaryl group of C 2 -C 30 substituted or unsubstituted It is preferable.

〜R12はそれぞれ独立に、水素、ハロゲン、置換もしくは無置換のC〜C30のアルキル基、置換もしくは無置換のC〜C30のアルケニル基、置換もしくは無置換のC〜C30のアルキニル基、置換もしくは無置換のC〜C30のシクロアルキル基、置換もしくは無置換のC〜C30のヘテロシクロアルキル基、置換もしくは無置換のC〜C30のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基であることが好ましく、あるいは、R〜R及び/又はR〜Rはそれぞれ環を形成することができる。 R 1 to R 12 are each independently hydrogen, halogen, a substituted or unsubstituted C 1 to C 30 alkyl group, a substituted or unsubstituted C 2 to C 30 alkenyl group, a substituted or unsubstituted C 2 to alkynyl group C 30, substituted or unsubstituted C 3 -C 30 cycloalkyl group, a substituted or unsubstituted C 2 -C 30 heterocycloalkyl group, a substituted or unsubstituted C 6 -C 30 aryl group It is preferably a substituted or unsubstituted C 2 to C 30 heteroaryl group, or R 1 to R 4 and / or R 5 to R 8 may each form a ring.

本発明による化合物は正孔注入材料に用いられることができ、ITO陽極から正孔を有機材料に効果的に注入することができ、さらに正孔輸送材料に用いられることができ、発光層ホスト材料のHOMO準位とよりよく整合することができ、素子の動作電圧を効果的に低下させるとともに素子の発光効率を向上させることができる。また、本発明による化合物はさらに、発光層のホスト材料に用いられることができ、比較的にパランス的な電子・正孔輸送性を有し、隣接する電子・正孔輸送層材料と整合する準位を有し、十分なエネルギーを発光材料に移転して高い発光効率を実現でき、素子の点灯及び動作電圧を低下させ、素子の効率を向上させ、素子の寿命を延長させることができ、有機エレクトロルミネッセンス素子の製造において非常に重要な実際的意義を有する。   The compound according to the present invention can be used as a hole injection material, can effectively inject holes into an organic material from an ITO anode, can be further used as a hole transport material, and is a light emitting layer host material It is possible to better match the HOMO level of the device, effectively lowering the operating voltage of the device and improving the light emission efficiency of the device. In addition, the compound according to the present invention can be used as a host material of the light emitting layer, has a relatively balanced electron / hole transport property, and matches the adjacent electron / hole transport layer material. Can achieve high luminous efficiency by transferring sufficient energy to the luminescent material, reducing the lighting and operating voltage of the element, improving the efficiency of the element, extending the lifetime of the element, and organic It has very important practical significance in the manufacture of electroluminescent devices.

本発明において、C〜Cの表現は、この基の有する炭素数がa〜bであることを表す。特記しない限り、一般的には該炭素数が置換基の炭素数を含まない。 In the present invention, the expression C a to C b represents that the number of carbon atoms of the group is a to b . Unless otherwise specified, generally the carbon number does not include the carbon number of the substituent.

本発明において、化学元素に関する表現は、化学的性質が同じの同位体の概念を含み、例えば「水素」の表現は化学性質が同じの「重水素」、「三重水素」の概念をも含む。   In the present invention, expressions relating to chemical elements include the concept of isotopes having the same chemical properties. For example, the expression “hydrogen” also includes the concepts of “deuterium” and “tritium” having the same chemical properties.

本発明におけるヘテロ原子とは、一般的にB、N、O、S、P、P(=O)、Si及びSeからなる群より選ばれた原子又は原子団のことをいう。   The heteroatom in the present invention generally means an atom or an atomic group selected from the group consisting of B, N, O, S, P, P (═O), Si and Se.

本発明による化合物は下記の一般式(I)で表される構造を有する。   The compound according to the present invention has a structure represented by the following general formula (I).

Figure 2018523638
Figure 2018523638

式中、環Aは

Figure 2018523638
であり、破線は継ぎ位置であり、
Arは、水素、C〜C30のアリールアミノ基又はヘテロアリールアミノ基、置換もしくは無置換のC〜C30のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基であってもよい。 Where ring A is
Figure 2018523638
The broken line is the splice position,
Ar is selected from hydrogen, a by C 6 -C 30 arylamino group or heteroarylamino group, a substituted or unsubstituted C 6 -C 30 aryl group, a substituted or unsubstituted C 2 -C 30 heteroaryl group May be.

〜R12はそれぞれ独立に、水素、ハロゲン、置換もしくは無置換のC〜C30のアルキル基、置換もしくは無置換のC〜C30のアルケニル基、置換もしくは無置換のC〜C30のアルキニル基、置換もしくは無置換のC〜C30のシクロアルキル基、置換もしくは無置換のC〜C30のヘテロシクロアルキル基、置換もしくは無置換のC〜C30のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基である。 R 1 to R 12 are each independently hydrogen, halogen, a substituted or unsubstituted C 1 to C 30 alkyl group, a substituted or unsubstituted C 2 to C 30 alkenyl group, a substituted or unsubstituted C 2 to alkynyl group C 30, substituted or unsubstituted C 3 -C 30 cycloalkyl group, a substituted or unsubstituted C 2 -C 30 heterocycloalkyl group, a substituted or unsubstituted C 6 -C 30 aryl group a heteroaryl group C 2 -C 30 substituted or unsubstituted.

また、これらR〜R及び/又はR〜Rの間は互いに接続して環状構造を形成することができ、このような環構造は、脂肪族の単環または多環、芳香族の単環または縮合環であってもよく、これら環はいずれもヘテロ原子を含んでもよい。脂肪族単環の例として、例えば、R〜RまたはR〜Rのうち、任意の隣接する2つの基が接続して脂肪族の五員環、六員環を形成し、これら環の構成原子は炭素原子の他、ヘテロ原子であってもよく、これら環は置換基を有してもよく、環を構成する炭素原子はケトン基を形成しても良い。これら環の例としては、シクロペンタン環、シクロヘキサン環、ジシクロペンテン環、テトラヒドロピロール環、テトラヒドロフラン環、ピペリジン環、及び、シクロペンタン環とシクロヘキサン環における炭素原子がケトン基によって置換されたエステル環などが挙げられる。芳香族の単環または縮合環として、好ましくはC〜C30の単環または縮合環であり、例として、ベンゼン環、ナフタレン環などが挙げられる。ヘテロ原子を含む単環または多環として、好ましくは、ピロール環、ピリジン環、インドール環、N−フェニル置換インドール環である。上記脂肪族環と芳香族環、芳香族複素環とは組み合わせて、例えばベンゾピロール環、ベンゾフラン環、ベンゾチオフェン環、フルオレン環などの多環を形成してもよい。 Further, these R 1 to R 4 and / or R 5 to R 8 can be connected to each other to form a cyclic structure, and such a ring structure is an aliphatic monocyclic or polycyclic, aromatic Or any of these rings may contain a heteroatom. Examples of aliphatic monocycles include, for example, any two adjacent groups of R 1 to R 4 or R 5 to R 8 connected to form an aliphatic 5-membered ring or 6-membered ring. The ring-constituting atoms may be carbon atoms or heteroatoms. These rings may have a substituent, and the carbon atoms constituting the ring may form a ketone group. Examples of these rings include a cyclopentane ring, a cyclohexane ring, a dicyclopentene ring, a tetrahydropyrrole ring, a tetrahydrofuran ring, a piperidine ring, and an ester ring in which carbon atoms in the cyclopentane ring and the cyclohexane ring are substituted with a ketone group. Can be mentioned. The aromatic monocyclic ring or condensed ring is preferably a C 6 to C 30 monocyclic ring or condensed ring, and examples thereof include a benzene ring and a naphthalene ring. The monocyclic or polycyclic ring containing a hetero atom is preferably a pyrrole ring, a pyridine ring, an indole ring, or an N-phenyl substituted indole ring. The aliphatic ring, the aromatic ring, and the aromatic heterocyclic ring may be combined to form a polycycle such as a benzopyrrole ring, a benzofuran ring, a benzothiophene ring, or a fluorene ring.

上記の置換もしくは無置換のC〜C30のアルキル基としては、好ましくはC〜C10のアルキル基であり、より好ましくはC〜Cのアルキル基であり、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、n−ヘキシル基、n−オクチル基、イソブチル基、t−ブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。 The alkyl group of C 1 -C 30 of the above substituted or unsubstituted, preferably an alkyl group of C 1 -C 10, more preferably an alkyl group of C 1 -C 6, for example, a methyl group, Examples include ethyl group, n-propyl group, isopropyl group, n-butyl group, n-hexyl group, n-octyl group, isobutyl group, t-butyl group, cyclopentyl group, cyclohexyl group and the like.

上記の置換もしくは無置換のC〜C30のアルケニル基としては、好ましくはC〜C10のアルケニル基であり、その例として、例えばビニール基、プロペニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、シクロヘキセニル基などが挙げられる。 Examples of the alkenyl group of the above substituted or unsubstituted C 2 -C 30, preferably an alkenyl group of C 2 -C 10, as an example, for example vinyl group, a propenyl group, propenyl group, butenyl group, pentenyl group Hexenyl group, heptenyl group, octenyl group, cyclohexenyl group and the like.

上記の置換もしくは無置換のC〜C30のアルキニル基としては、好ましくはC〜C10のアルキニル基であり、その例として、例えばエチニル基、1−プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、ヘプチニル基、オクチニル基、シクロヘキシルエチニル基などが挙げられる。 The alkynyl groups of C 2 -C 30 of the above substituted or unsubstituted, preferably an alkynyl group of C 2 -C 10, as an example, such as ethynyl group, 1-propynyl group, butynyl group, pentynyl group, A hexynyl group, a heptynyl group, an octynyl group, a cyclohexylethynyl group, etc. are mentioned.

上記の置換もしくは無置換のC〜C30のシクロアルキル基としては、好ましくはC〜C10のシクロアルキル基であり、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。 The substituted or unsubstituted C 3 to C 30 cycloalkyl group is preferably a C 3 to C 10 cycloalkyl group, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group. .

上記の置換もしくは無置換のC〜C30のヘテロシクロアルキル基としては、環骨格原子を3〜10有し、かつO、S及びNからなる群より選ばれたものを少なくとも1つ含むヘテロシクロアルキル基が好ましい。好ましい例として、テトラヒドロフラン、ピロリジンおよびテトラヒドロチオフェンなどが挙げられる。 The substituted or unsubstituted C 2 to C 30 heterocycloalkyl group has 3 to 10 ring skeleton atoms and includes at least one selected from the group consisting of O, S and N A cycloalkyl group is preferred. Preferred examples include tetrahydrofuran, pyrrolidine and tetrahydrothiophene.

上記の置換もしくは無置換のC〜C30のアリール基としては、骨格炭素原子を6〜20有するものが好ましい。前記アリール基は、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントリル基、フェナントリル基、インデニル基、フルオレニル基及びその誘導体、フルオランテニル基、トリフェニレン基、ピレニル基、ペリレニル基、クリセニル基およびナフタセニル基からなる群より選ばれた基であることが好ましい。前記ビフェニル基は、2−ビフェニル基、3−ビフェニル基および4−ビフェニル基より選ばれた基である。前記ターフェニル基は、p−ターフェニル−4−イル基、p−ターフェニル−3−イル基、p−ターフェニル−2−イル基、m−ターフェニル−4−イル基、m−ターフェニル−3−イル基及びm−ターフェニル−2−イル基を含む。前記ナフチル基は、1−ナフチル基及び2−ナフチル基からなる群より選ばれた基である。前記アントリル基は、1−アントリル基、2−アントリル基及び9−アントリル基からなる群より選ばれた基である。前記フルオレニル基は、1−フルオレニル基、2−フルオレニル基、3−フルオレニル基、4−フルオレニル基及び9−フルオレニル基からなる群より選ばれた基である。前記フルオレニル誘導体は、9,9’−ジメチルフルオレン、9,9’−スピロビフルオレンおよびベンゾフルオレンからなる群より選ばれた基である。前記ピレニル基は、1−ピレニル基、2−ピレニル基及び4−ピレニル基からなる群より選ばれた基である。前記ナフタセニル基は、1−ナフタセニル基、2−ナフタセニル基及び9−ナフタセニル基からなる群より選ばれた基である。 The aryl group of the substituted or unsubstituted C 6 -C 30, preferably has a backbone carbon atoms 6-20. The aryl group includes phenyl, biphenyl, terphenyl, naphthyl, anthryl, phenanthryl, indenyl, fluorenyl and derivatives thereof, fluoranthenyl, triphenylene, pyrenyl, perylenyl, chrysenyl and A group selected from the group consisting of naphthacenyl groups is preferred. The biphenyl group is a group selected from a 2-biphenyl group, a 3-biphenyl group, and a 4-biphenyl group. The terphenyl group includes p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, and m-terphenyl group. Includes a -3-yl group and an m-terphenyl-2-yl group. The naphthyl group is a group selected from the group consisting of a 1-naphthyl group and a 2-naphthyl group. The anthryl group is a group selected from the group consisting of a 1-anthryl group, a 2-anthryl group, and a 9-anthryl group. The fluorenyl group is a group selected from the group consisting of 1-fluorenyl group, 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group and 9-fluorenyl group. The fluorenyl derivative is a group selected from the group consisting of 9,9′-dimethylfluorene, 9,9′-spirobifluorene and benzofluorene. The pyrenyl group is a group selected from the group consisting of a 1-pyrenyl group, a 2-pyrenyl group, and a 4-pyrenyl group. The naphthacenyl group is a group selected from the group consisting of 1-naphthacenyl group, 2-naphthacenyl group and 9-naphthacenyl group.

置換もしくは無置換のC〜C30のヘテロアリール基としては、骨格炭素原子を5〜20有するものが好ましい。前記ヘテロアリール基は、フラニル基、チエニル基、ピロリル基、ベンゾフラニル基、ベンゾチエニル基、イソベンゾフラニル基、インドリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基およびその誘導体またはベンゾm−ジオキソリル基であることが好ましく、中でも、前記カルバゾリル基誘導体は、9−フェニルカルバゾール、9−ナフチルカルバゾールベンゾカルバゾール、ジベンゾカルバゾール、またはインドロカルバゾールであることが好ましい。 The heteroaryl groups of C 2 -C 30 substituted or unsubstituted, preferably has a backbone carbon atoms from 5 to 20. The heteroaryl group includes a furanyl group, a thienyl group, a pyrrolyl group, a benzofuranyl group, a benzothienyl group, an isobenzofuranyl group, an indolyl group, a dibenzofuranyl group, a dibenzothienyl group, a carbazolyl group, and a derivative thereof, or benzom-dioxolyl. Among them, the carbazolyl group derivative is preferably 9-phenylcarbazole, 9-naphthylcarbazole benzocarbazole, dibenzocarbazole, or indolocarbazole.

〜C30のアリールアミノ基またはヘテロアリールアミノ基としては、ジ(ヘテロ)アリールアミノ基、トリ(ヘテロ)アリールアミノ基が挙げられ、ここでいう「(ヘテロ)アリール基」の表現はアリール基及びヘテロアリール基の両者を含む。具体的な例として、ジフェニルアミノ基、フェニルナフチルアミノ基、4−トリフェニルアミノ基、3−トリフェニルアミノ基、4−[N−フェニル−N−(ジベンゾフラン−3−イル)]フェニルアミノ基、4−[N−フェニル−N−(ジベンゾチオフェン−3−イル)フェニルアミノ基からなる群より選ばれた基が挙げられる。 Examples of the C 6 -C 30 arylamino group or heteroarylamino group include a di (hetero) arylamino group and a tri (hetero) arylamino group, and the expression “(hetero) aryl group” herein is aryl. Includes both groups and heteroaryl groups. Specific examples include diphenylamino group, phenylnaphthylamino group, 4-triphenylamino group, 3-triphenylamino group, 4- [N-phenyl-N- (dibenzofuran-3-yl)] phenylamino group, And a group selected from the group consisting of 4- [N-phenyl-N- (dibenzothiophen-3-yl) phenylamino group.

本発明の1つの好ましい化合物は下記の一般式(II)で表される構造を有する。   One preferable compound of the present invention has a structure represented by the following general formula (II).

Figure 2018523638
Figure 2018523638

式中、Ar、Arは同一でも異なっていてもよく、それぞれ独立にC〜C10のアルキル基、C〜C30のアリールアミノ基またはヘテロアリールアミノ基、置換もしくは無置換のC〜C30のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基である。 In the formula, Ar 1 and Ar 2 may be the same or different and are each independently a C 1 to C 10 alkyl group, a C 6 to C 30 arylamino group or a heteroarylamino group, a substituted or unsubstituted C 1 an aryl group of 6 -C 30, a heteroaryl group C 2 -C 30 substituted or unsubstituted.

式中、R〜R12は同一でも異なっていてもよく、それぞれ独立に水素、ハロゲン、置換もしくは無置換のC〜C30のアルキル基、置換もしくは無置換のC〜C30のアルケニル基、置換もしくは無置換のC〜C30のアルキニル基、置換もしくは無置換のC〜C30のシクロアルキル基、置換もしくは無置換のC〜C30のヘテロシクロアルキル基、置換もしくは無置換のC〜C30のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基、C〜C30のアリールアミノ基またはヘテロアリールアミノ基であることが好ましく、あるいは、R〜Rの隣接する基は互いに接続して環状構造を形成することができ、このような環構造は、脂肪族の単環または多環、芳香族の単環または縮合環であってもよく、これら環にはヘテロ原子を含んでもよく、脂肪族単環の例として、例えば、R〜Rのうち、任意に隣接する2つの基が接続して脂肪族の五員環、六員環を形成し、これら環の構成原子は炭素原子の他、ヘテロ原子であってもよく、これら環は置換基を有してもよく、環を構成する炭素原子はケトン基を形成しても良い。これら環の例としては、シクロペンタン環、シクロヘキサン環、ジシクロペンテン環、テトラヒドロピロール環、テトラヒドロフラン環、ピペリジン環、及び、シクロペンタン環とシクロヘキサン環における炭素原子がケトン基によって置換されたエステル環などが挙げられる。芳香族の単環または縮合環として、好ましくはC〜C30の単環または縮合環であり、例として、ベンゼン環、ナフタレン環などが挙げられる。ヘテロ原子を含む単環または多環として、好ましくは、ピロール環、ピリジン環、インドール環、N−フェニル置換インドール環である。R〜R、あるいはR〜R12のうち、隣接する基が互いに接続して環状構造を形成でき、このような環構造の例は上記R〜Rの隣接する基で形成された環構造の例と同じであり、好ましい例も同じである。 In the formula, R 1 to R 12 may be the same or different and are each independently hydrogen, halogen, a substituted or unsubstituted C 1 to C 30 alkyl group, or a substituted or unsubstituted C 2 to C 30 alkenyl. group, a substituted or unsubstituted C 2 -C 30 alkynyl group, a substituted or unsubstituted C 3 -C 30 cycloalkyl group, a substituted or unsubstituted C 2 -C 30 heterocycloalkyl group, a substituted or unsubstituted It is preferably a substituted C 6 -C 30 aryl group, a substituted or unsubstituted C 2 -C 30 heteroaryl group, a C 6 -C 30 arylamino group or a heteroarylamino group, or R 1 ~R the adjacent groups of 4 can form a cyclic structure connected to each other, such ring structure, monocyclic or polycyclic aliphatic, monocyclic aromatic also It may be a condensed ring, and may contain a hetero atom in these rings, as examples of the aliphatic monocyclic, for example, of R 1 to R 4, aliphatic and connect two adjacent groups optionally The five-membered ring and the six-membered ring are formed, and the atoms constituting these rings may be carbon atoms or heteroatoms, these rings may have a substituent, and the carbon atoms constituting the ring are A ketone group may be formed. Examples of these rings include a cyclopentane ring, a cyclohexane ring, a dicyclopentene ring, a tetrahydropyrrole ring, a tetrahydrofuran ring, a piperidine ring, and an ester ring in which carbon atoms in the cyclopentane ring and the cyclohexane ring are substituted with a ketone group. Can be mentioned. The aromatic monocyclic ring or condensed ring is preferably a C 6 to C 30 monocyclic ring or condensed ring, and examples thereof include a benzene ring and a naphthalene ring. The monocyclic or polycyclic ring containing a hetero atom is preferably a pyrrole ring, a pyridine ring, an indole ring, or an N-phenyl substituted indole ring. Among R 5 to R 8 or R 9 to R 12 , adjacent groups can be connected to each other to form a cyclic structure, and examples of such ring structures are formed by the adjacent groups of R 1 to R 4 described above. Examples of the ring structure are the same, and preferred examples are also the same.

構造式IIにおいて、Ar及びArはそれぞれ独立に、置換もしくは無置換のC〜C30のアリール基であってもよく、好ましくは、Ar、Arはそれぞれ独立に、置換もしくは無置換のC〜C20のアリール基である。該アリール基として、より好ましくはフェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントリル基、フェナントリル基、インデニル基、フルオレニル基及びその誘導体、フルオランテニル基、トリフェニレン基、ピレニル基、ペリレニル基、クリセニル基およびナフタセニル基からなる群より選ばれた基である。前記ビフェニル基は、2−ビフェニル基、3−ビフェニル基および4−ビフェニル基からなる群より選ばれた基である。前記ターフェニル基は、p−ターフェニル−4−イル基、p−ターフェニル−3−イル基、p−ターフェニル−2−イル基、m−ターフェニル−4−イル基、m−ターフェニル−3−イル基およびm−ターフェニル−2−イル基を含む。前記ナフチル基は、1−ナフチル基及び2−ナフチル基からなる群より選ばれた基である。前記アントリル基は、1−アントリル基、2−アントリル基および9−アントリル基からなる群より選ばれた基である。前記フルオレニル基は、1−フルオレニル基、2−フルオレニル基、3−フルオレニル基、4−フルオレニル基、9−フルオレニル基からなる群より選ばれた基である。前記フルオレニル誘導体は、9,9’−ジメチルフルオレン、9,9’−スピロビフルオレンおよびベンゾフルオレンからなる群より選ばれた基である。前記ピレニル基は、1−ピレニル基、2−ピレニル基及び4−ピレニル基からなる群より選ばれた基である。前記ナフタセニル基は、1−ナフタセニル基、2−ナフタセニル基及び9−ナフタセニル基からなる群より選ばれた基である。 In Structural Formula II, Ar 1 and Ar 2 may each independently be a substituted or unsubstituted C 6 -C 30 aryl group. Preferably, Ar 1 and Ar 2 are each independently substituted or unsubstituted. It is a substituted C 6 -C 20 aryl group. More preferably, the aryl group is a phenyl group, biphenyl group, terphenyl group, naphthyl group, anthryl group, phenanthryl group, indenyl group, fluorenyl group and derivatives thereof, fluoranthenyl group, triphenylene group, pyrenyl group, perylenyl group, It is a group selected from the group consisting of a chrycenyl group and a naphthacenyl group. The biphenyl group is a group selected from the group consisting of a 2-biphenyl group, a 3-biphenyl group, and a 4-biphenyl group. The terphenyl group includes p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, and m-terphenyl group. Includes a -3-yl group and an m-terphenyl-2-yl group. The naphthyl group is a group selected from the group consisting of a 1-naphthyl group and a 2-naphthyl group. The anthryl group is a group selected from the group consisting of a 1-anthryl group, a 2-anthryl group, and a 9-anthryl group. The fluorenyl group is a group selected from the group consisting of a 1-fluorenyl group, a 2-fluorenyl group, a 3-fluorenyl group, a 4-fluorenyl group, and a 9-fluorenyl group. The fluorenyl derivative is a group selected from the group consisting of 9,9′-dimethylfluorene, 9,9′-spirobifluorene and benzofluorene. The pyrenyl group is a group selected from the group consisting of a 1-pyrenyl group, a 2-pyrenyl group, and a 4-pyrenyl group. The naphthacenyl group is a group selected from the group consisting of 1-naphthacenyl group, 2-naphthacenyl group and 9-naphthacenyl group.

構造式IIにおいて、Ar、Arは置換もしくは無置換のC〜C30のヘテロアリール基であってもよく、このヘテロアリール基におけるヘテロ原子として、O、S及びNからなる群より選ばれた1つ以上のヘテロ原子であることが好ましく、このヘテロアリール基として、置換もしくは無置換のC〜C20のヘテロアリール基であることが好ましい。ここでいうヘテロアリール基の好ましい例として、フラニル基、チエニル基、ピロリル基、ベンゾフラニル基、ベンゾチエニル基、イソベンゾフラニル基、インドリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基及びその誘導体、ベンゾジオキソリル基からなる群から選ばれた少なくとも1種が挙げられる。前記カルバゾリル基誘導体は、9−フェニルカルバゾール、9−ナフチルカルバゾールベンゾカルバゾール、ジベンゾカルバゾール、およびインドロカルバゾールからなる群より選ばれた少なくとも1種を含むが、それらに限定されるものではない。 In Structural Formula II, Ar 1 and Ar 2 may be a substituted or unsubstituted C 3 to C 30 heteroaryl group, and a hetero atom in the heteroaryl group is selected from the group consisting of O, S and N preferably the it is one or more heteroatoms, as the heteroaryl group is preferably a heteroaryl group substituted or unsubstituted C 5 -C 20. Preferred examples of the heteroaryl group herein include furanyl group, thienyl group, pyrrolyl group, benzofuranyl group, benzothienyl group, isobenzofuranyl group, indolyl group, dibenzofuranyl group, dibenzothienyl group, carbazolyl group and derivatives thereof. And at least one selected from the group consisting of benzodioxolyl groups. The carbazolyl group derivative includes at least one selected from the group consisting of 9-phenylcarbazole, 9-naphthylcarbazole benzocarbazole, dibenzocarbazole, and indolocarbazole, but is not limited thereto.

構造式IIにおいて、ArおよびArは、C〜C30のアリールアミノ基またはヘテロアリールアミノ基であってもよく、その具体的な例として、ジ(ヘテロ)アリールアミノ基、トリ(ヘテロ)アリールアミノ基が挙げられ、ここでいう「(ヘテロ)アリール基」の表現はアリール基及びヘテロアリール基の両者を含む。より具体的な例として、ジフェニルアミノ基、フェニルナフチルアミノ基、4−トリフェニルアミノ基、3−トリフェニルアミノ基、4−[N−フェニル−N−(ジベンゾフラン−3−イル)]フェニルアミノ基、4−[N−フェニル−N−(ジベンゾチオフェン−3−イル)フェニルアミノ基からなる群より選ばれた基が挙げられる。 In Structural Formula II, Ar 1 and Ar 2 may be a C 6 -C 30 arylamino group or heteroarylamino group, and specific examples thereof include a di (hetero) arylamino group, tri (hetero ) Arylamino group, and the expression “(hetero) aryl group” herein includes both aryl groups and heteroaryl groups. As more specific examples, diphenylamino group, phenylnaphthylamino group, 4-triphenylamino group, 3-triphenylamino group, 4- [N-phenyl-N- (dibenzofuran-3-yl)] phenylamino group , 4- [N-phenyl-N- (dibenzothiophen-3-yl) phenylamino group.

本発明の好ましい化合物は下記の一般式(III)で表される構造を有する。   A preferred compound of the present invention has a structure represented by the following general formula (III).

Figure 2018523638
Figure 2018523638

式中、Ar、Arは同一でも異なっていてもよく、それぞれ独立にC〜C10のアルキル基、置換もしくは無置換のC〜C30のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基、C〜C30のアリールアミノ基またはヘテロアリールアミノ基である。 In the formula, Ar 3 and Ar 4 may be the same or different and are each independently a C 1 to C 10 alkyl group, a substituted or unsubstituted C 6 to C 30 aryl group, a substituted or unsubstituted C 2. heteroaryl groups -C 30, an arylamino group or heteroarylamino group C 6 -C 30.

式中、R13〜R24は同一でも異なっていてもよく、それぞれ独立に水素、ハロゲン、置換もしくは無置換のC〜C30のアルキル基、置換もしくは無置換のC〜C30のアルケニル基、置換もしくは無置換のC〜C30のアルキニル基、置換もしくは無置換のC〜C30のシクロアルキル基、置換もしくは無置換のC〜C30のヘテロシクロアルキル基、置換もしくは無置換のC〜C30のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基、C〜C30のアリールアミノ基またはヘテロアリールアミノ基であることが好ましく、あるいは、R13〜R16の隣接する基は互いに接続して環状構造を形成することができ、このような環構造の例は上記R〜Rにおける隣接する基で形成された環構造の例と同じであり、好ましい例も同じである。R17〜R20における隣接する基は互いに接続して環状構造を形成することができ、このような環構造の例は上記R〜Rにおける隣接する基で形成された環構造の例と同じであり、好ましい例も同じである。 In the formula, R 13 to R 24 may be the same or different and each independently represents hydrogen, halogen, a substituted or unsubstituted C 1 to C 30 alkyl group, or a substituted or unsubstituted C 2 to C 30 alkenyl. group, a substituted or unsubstituted C 2 -C 30 alkynyl group, a substituted or unsubstituted C 3 -C 30 cycloalkyl group, a substituted or unsubstituted C 2 -C 30 heterocycloalkyl group, a substituted or unsubstituted It is preferably a substituted C 6 -C 30 aryl group, a substituted or unsubstituted C 2 -C 30 heteroaryl group, a C 6 -C 30 arylamino group or a heteroarylamino group, or R 13 adjacent groups to R 16 are connected to be able to form a cyclic structure, examples of such ring structures adjacent in the R 1 to R 4 In the same as the examples of the formed ring structure, and preferred examples are also the same. Adjacent groups in R 17 to R 20 can be connected to each other to form a cyclic structure, and examples of such a ring structure include examples of the ring structure formed by the adjacent groups in R 1 to R 4 above. It is the same, and a preferable example is also the same.

構造式IIIにおいて、Ar、Arはそれぞれ独立に置換もしくは無置換のC〜C30のアリール基であってもよく、好ましくは、Ar及びArはそれぞれ独立に置換もしくは無置換のC〜C20のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基、C〜C30のアリールアミノ基またはヘテロアリールアミノ基であり、ここのアリール基、ヘテロアリール基、アリールアミノ基またはヘテロアリールアミノ基の具体的な例及び好ましい例としては、上記構造式IIにおける対応の基について挙げられた代表例、好ましい例と同じである。 In Structural Formula III, Ar 3 and Ar 4 may each independently be a substituted or unsubstituted C 6 -C 30 aryl group. Preferably, Ar 3 and Ar 4 are each independently substituted or unsubstituted. an aryl group of C 6 -C 20, a substituted or unsubstituted C 3 -C 30 heteroaryl group, an arylamino group or heteroarylamino group C 6 -C 30, wherein the aryl, heteroaryl, Specific examples and preferred examples of the arylamino group or heteroarylamino group are the same as the representative examples and preferred examples given for the corresponding group in the structural formula II.

本発明による化合物はベンゾシクロオクタテトラエノジインドール構造の母核を有し、代表例として、Arがフェニル基であるジベンゾシクロオクタテトラエノジインドール構造を有する化合物は三重項準位が約2.8と測定される(下記に示す)。またインドール構造そのものは比較的に強い正孔注入性を有し、このような特定の電子雲密度及び分布に基づき、本発明は、有機エレクトロルミネッセンス素子の発光層ホスト材料、正孔注入材料、及び正孔輸送材料に特に好適に用いられる。   The compound according to the present invention has a mother nucleus of a benzocyclooctatetraenodiindole structure. As a typical example, a compound having a dibenzocyclooctatetraenodiindole structure in which Ar is a phenyl group has a triplet level of about 2. 8 (shown below). Further, the indole structure itself has a relatively strong hole injection property, and based on such a specific electron cloud density and distribution, the present invention provides a light emitting layer host material, a hole injection material, and an organic electroluminescence element. It is particularly preferably used for a hole transport material.

Figure 2018523638
Figure 2018523638

また、特定の置換基修飾によって、本発明による化合物のHOMO及びLUMO準位を調整でき、そしてシクロオクタテトラエンの共役系が各基を効果的に連結することで、高効率の正孔注入・正孔輸送性を実現しながら、比較的に高い三重項準位を保証し、一連の高効率の正孔注入・輸送材料を提供することができる。一方、電子吸引基、好ましくはピリジル基、トリアジニル基、キナゾリニル基、キノリル基、オキサゾリル基等の基で修飾することで、材料分子に電子輸送性及び正孔輸送性を同時に持たせることができ、かつ各種の基の数及び置換基の位置を調整することで、高性能の発光層ホスト材料を得ることができる。一部の好ましい化合物は0に近いΔESTのエネルギ差を示すことさえができ、本発明による化合物をホスト材料とする燐光発光OLED素子の動作電圧を著しく低下させ、長動作寿命を実現することができる。 In addition, the HOMO and LUMO levels of the compound according to the present invention can be adjusted by a specific substituent modification, and the conjugated system of cyclooctatetraene effectively links each group, so that a highly efficient hole injection / While realizing a hole transport property, a relatively high triplet level can be ensured, and a series of highly efficient hole injection / transport materials can be provided. On the other hand, by modifying with an electron-withdrawing group, preferably a group such as a pyridyl group, a triazinyl group, a quinazolinyl group, a quinolyl group, an oxazolyl group, the material molecule can have an electron transport property and a hole transport property at the same time. In addition, a high-performance light emitting layer host material can be obtained by adjusting the number of various groups and the positions of substituents. Some of the preferred compounds even can be to show the energy difference of close Delta] E ST to 0, the compounds according to the invention significantly reduce the operating voltage of the phosphorescent OLED device to a host material, it is possible to realize a long operating life it can.

また、本発明による化合物において、式(II)と(III)の化合物の最も主な差別は、対称関係が異なることである。対称関係は、電子雲の分布、成膜時の結晶成長に明らかな影響を与える。これに基づき、本発明者は鋭意に研究した結果、対称関係を調整して適切な置換基を選択することで、本発明による化合物の三重項準位、正孔注入・輸送性を微調整し、さらに必要に応じて電気学特性を最適化することができることを見出し、且つ以下のルールをまとめた。   Also, in the compounds according to the present invention, the main difference between the compounds of formulas (II) and (III) is that the symmetry relationship is different. The symmetry relationship clearly affects the electron cloud distribution and crystal growth during film formation. Based on this, the present inventor has intensively studied, and as a result, the triplet level and hole injection / transport properties of the compound according to the present invention are finely adjusted by adjusting the symmetry relationship and selecting an appropriate substituent. Furthermore, the inventors have found that electrical characteristics can be optimized as necessary, and summarized the following rules.

具体的に言えば、本発明による化合物として、一般式II、IIIにおけるAr〜Ar、R〜R24が水素原子または中性(ここでいう中性とは、電子供与と電子吸引の特性が明らかではないことであり、以下も同じである)のアリール基である化合物がより好ましく、中性のアリール基としては、例えばフェニル基、トリル基、ビフェニル基、ナフチル基、フェナントリル基、トリフェニレン基、フルオランテニル基、クリセニル基、フルオレニル基、インデノフルオレニル基などが挙げられる。具体的な化合物の例として、以下のA−1〜A−24の化合物が挙げられるが、これら化合物に限定されたものではない。 Specifically, as the compound according to the present invention, Ar 1 to Ar 4 and R 1 to R 24 in the general formulas II and III are hydrogen atoms or neutral (neutral here refers to electron donation and electron withdrawing). The compound having an aryl group is more preferable, and the neutral aryl group includes, for example, a phenyl group, a tolyl group, a biphenyl group, a naphthyl group, a phenanthryl group, and a triphenylene group. Group, fluoranthenyl group, chrycenyl group, fluorenyl group, indenofluorenyl group and the like. Specific examples of the compound include the following compounds A-1 to A-24, but are not limited to these compounds.

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

上記の好ましい化合物として、置換基が中性基であるため、原母体のビスインドロシクロオクタテトラエニル基の電子雲密度および分布を明らかに変えずに、置換基の変化により分子の分子量を変えるとともに分子の堆積方式を調整する作用をよく働くことができ、素子の製造過程における蒸着成膜の工程条件、設備種類に対する異なる要求に応じて成膜分子の物理化学的性質を調整することができ、工程自由度が大幅に高まる。分子の対称性、結晶性などを調整することでよりよい蒸着膜を得て、有機エレクトロルミネッセンス素子の発光効率を向上させ、駆動電圧を低下させることができる。   As a preferable compound, since the substituent is a neutral group, the molecular weight of the molecule is changed by changing the substituent without clearly changing the electron cloud density and distribution of the bisindolocyclooctatetraenyl group of the original matrix At the same time, it can work well to adjust the molecular deposition method, and the physicochemical properties of the deposited molecules can be adjusted according to different requirements for the deposition film forming process conditions and equipment types in the device manufacturing process. , Process flexibility is greatly increased. By adjusting the molecular symmetry, crystallinity, and the like, a better vapor deposition film can be obtained, the light emission efficiency of the organic electroluminescence element can be improved, and the driving voltage can be lowered.

本発明による化合物として、一般式II、IIIにおけるAr〜Ar、R〜R24が水素原子または電子供与性のヘテロアリール基である下記の化合物が好ましい。このようなヘテロアリール基と母核との相互作用によって、本発明による化合物のHOMO準位を微調整することができる。本発明者が鋭意に研究した結果、有機エレクトロルミネッセンス素子において、正孔輸送層の材料のHOMO準位が5.4eV以上であると、発光層ホスト材料のHOMO、準位とよりよく整合して、発光効率を向上させることができる。一般式II、IIIにおけるAr〜Ar、R〜R24が電子供与性のヘテロアリール基である化合物を用いることで、形成される化合物は、HOMO準位が5.4〜5.7程度になるようにすることができて、正孔輸送材料として非常に有利に用いられる。電子供与性のヘテロアリール基として、カルバゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、インドロカルバゾリル基、ベンゾフラノカルバゾリル基、ベンゾチエノカルバゾリル基などが挙げられる。具体的な化合物の例として、以下のB−1〜B−30の化合物が挙げられるが、これら化合物に限定されるものではない。 As the compounds according to the present invention, the following compounds in which Ar 1 to Ar 4 and R 1 to R 24 in the general formulas II and III are hydrogen atoms or electron-donating heteroaryl groups are preferable. By such interaction between the heteroaryl group and the mother nucleus, the HOMO level of the compound according to the present invention can be finely adjusted. As a result of intensive studies by the present inventors, in the organic electroluminescence device, when the HOMO level of the material of the hole transport layer is 5.4 eV or more, the HOMO and level of the light emitting layer host material are better matched. , Luminous efficiency can be improved. By using a compound in which Ar 1 to Ar 4 and R 1 to R 24 in General Formulas II and III are electron-donating heteroaryl groups, the formed compound has a HOMO level of 5.4 to 5.7. And can be used very advantageously as a hole transport material. Examples of the electron-donating heteroaryl group include a carbazolyl group, a dibenzofuranyl group, a dibenzothienyl group, an indolocarbazolyl group, a benzofuranocarbazolyl group, and a benzothienocarbazolyl group. Specific examples of the compound include the following compounds B-1 to B-30, but are not limited to these compounds.

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

本発明による化合物として、一般式II、IIIにおけるAr〜Ar、R〜R24が水素原子またはアリールアミノ基である下記の化合物がさらに好ましい。アリールアミノ基とベンゾシクロオクタテトラエノジインドールの母核との相互作用によって、化合物の電子供与性を著しく向上させ、分子が比較的に低いHOMO準位を有して強い正孔注入性を有するようにすることができる。このような化合物は、正孔注入層の材料として非常に好適に用いられる。ジアリールアミノ基の具体的な例として、ジフェニルアミノ基、フェニルナフチルアミノ基等が挙げられる。Ar〜Ar、R〜R24のうちの1つ以上はさらにトリアリールアミノ基であっても良く、具体的な例として、4−トリフェニルアミノ基、3−トリフェニルアミノ基、4−[N−フェニル−N−(ジベンゾフラン−3−イル)フェニルアミノ基、4−[N−フェニル−N−(ジベンゾチオフェン−3−イル)]フェニルアミノ基からなる群より選ばれた基である。このような正孔注入層材料化合物として好適に用いられる化合物の具体的な例として、以下のC−1〜C−15の化合物が好ましいが、これら化合物に限定されるものではない。 As the compound according to the present invention, the following compounds in which Ar 1 to Ar 4 and R 1 to R 24 in the general formulas II and III are hydrogen atoms or arylamino groups are more preferable. The interaction between the arylamino group and the mother nucleus of benzocyclooctatetraenodiindole significantly improves the electron donating property of the compound, and the molecule has a relatively low HOMO level and a strong hole injection property. Can be. Such a compound is very suitably used as a material for the hole injection layer. Specific examples of the diarylamino group include a diphenylamino group and a phenylnaphthylamino group. One or more of Ar 1 to Ar 4 and R 1 to R 24 may further be a triarylamino group. Specific examples include a 4-triphenylamino group, a 3-triphenylamino group, 4 -[N-phenyl-N- (dibenzofuran-3-yl) phenylamino group, 4- [N-phenyl-N- (dibenzothiophen-3-yl)] phenylamino group is a group selected from the group consisting of . As specific examples of the compound suitably used as such a hole injection layer material compound, the following compounds of C-1 to C-15 are preferable, but are not limited to these compounds.

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

本発明による化合物として、一般式II、IIIにおけるAr〜Ar、R〜R24が水素、または電子吸引性の基である下記の化合物が好ましい。ビスインドロシクロオクタテトラエン母体に比較的に強い電子吸引性基が接続されると、本来の正孔注入・輸送性を保持できる他、電子注入・輸送性を付与して、分子に両極輸送性を同時に持たせる。このような化合物は電子と正孔の輸送性にいずれも優れるため、ホスト材料、特に燐光発光素子のホスト材料とされる場合、パランス的なキャリア輸送性によって高輝度での効率ロールオフが避けられて、素子の点灯および動作電圧を低下させ、素子の効率を向上させ、素子の寿命を延長させる。電子吸引基としては、ピリジル基、フェニルピリジル基、キノリニル基、置換キノリニル基、キナゾリニル基、置換キナゾリニル基、キノキサリニル基、置換キノキサリニル基、ピリミジニル基、置換ピリミジニル基、o−フェナントロリニル基、トリアジニル基、置換トリアジニル基、ベンゾイミダゾリル基、オキサゾリル基などが挙げられる。このような好ましい化合物の具体的な例としては、以下のD−1〜D−39で表される化合物が挙げられるが、これら化合物に限定されるものではない。 As the compound according to the present invention, the following compounds in which Ar 1 to Ar 4 and R 1 to R 24 in the general formulas II and III are hydrogen or an electron-withdrawing group are preferable. When a relatively strong electron-withdrawing group is connected to the bisindolocyclooctatetraene base, the original hole-injection / transport properties can be maintained, and electron injection / transport properties can be imparted to the bipolar transport of molecules. Give sex at the same time. Since such a compound is excellent in both electron and hole transport properties, when it is used as a host material, particularly a host material of a phosphorescent light-emitting device, efficient roll-off at high luminance can be avoided due to the balanced carrier transport property. Thus, the lighting and operating voltage of the element are lowered, the efficiency of the element is improved, and the lifetime of the element is extended. As an electron withdrawing group, pyridyl group, phenylpyridyl group, quinolinyl group, substituted quinolinyl group, quinazolinyl group, substituted quinazolinyl group, quinoxalinyl group, substituted quinoxalinyl group, pyrimidinyl group, substituted pyrimidinyl group, o-phenanthrolinyl group, triazinyl Group, substituted triazinyl group, benzimidazolyl group, oxazolyl group and the like. Specific examples of such preferable compounds include compounds represented by the following D-1 to D-39, but are not limited to these compounds.

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

有機エレクトロルミネッセンス素子
本発明は、上記の本発明による新規の化合物を用いた有機エレクトロルミネッセンス素子をさらに提供した。本発明による有機エレクトロルミネッセンス素子の構造は、公知の素子の構造と相違がなく、一般的に第1の電極、第2の電極および前記第1の電極と第2の電極との間に介在する1層以上の有機層を備え、前記有機層が上記有機エレクトロルミネッセンス化合物を含むことを特徴とする。第1の電極と第2の電極との間の有機層としては、通常、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層等の有機層がある。本発明による化合物は正孔注入材料/正孔輸送材料及び/又は発光ホスト材料として用いられることができるが、これらに限定されるものではない。
Organic electroluminescence device The present invention further provides an organic electroluminescence device using the novel compound according to the present invention. The structure of the organic electroluminescence device according to the present invention is not different from the structure of a known device, and is generally interposed between the first electrode, the second electrode, and the first electrode and the second electrode. One or more organic layers are provided, and the organic layer contains the organic electroluminescent compound. As the organic layer between the first electrode and the second electrode, there are usually organic layers such as an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, and a hole injection layer. The compounds according to the present invention can be used as a hole injection material / hole transport material and / or a light emitting host material, but are not limited thereto.

中では、本発明による有機エレクトロルミネッセンス素子の好ましい例として、化合物A−1〜A−24、D−1〜D−39を発光層ホスト材料として用いる有機エレクトロルミネッセンス素子、化合物B−1〜B−30を正孔輸送層材料として用いる有機エレクトロルミネッセンス素子、及び上記化合物C−1〜C−15を正孔注入層の材料として用いる有機エレクトロルミネッセンス素子が挙げられる。本発明による有機エレクトロルミネッセンス素子は、本発明による化合物の優れた性能により、素子の点灯及び動作電圧を低下させ、素子の効率を向上させ、素子の寿命を延長させることができる。   Among these, as preferred examples of the organic electroluminescence device according to the present invention, organic electroluminescence devices using compounds A-1 to A-24 and D-1 to D-39 as light emitting layer host materials, compounds B-1 to B- An organic electroluminescence device using 30 as a hole transport layer material, and an organic electroluminescence device using the compounds C-1 to C-15 as a material for a hole injection layer are exemplified. The organic electroluminescent device according to the present invention can reduce the lighting and operating voltage of the device, improve the efficiency of the device, and extend the lifetime of the device due to the excellent performance of the compound according to the present invention.

実施例
以下の実施例を参照して本発明に係わる代表的な化合物の製造方法を説明した。本発明による化合物は同じ骨格を有するため、当業者はこれら製造方法に基づき、既知の官能基変換方法によって本発明による他の化合物を容易に合成することができる。以下、前記化合物を含む発光素子の製造方法及び発光性質の測定をさらに提供する。
Examples The production methods of representative compounds according to the present invention were described with reference to the following examples. Since the compounds according to the present invention have the same skeleton, those skilled in the art can easily synthesize other compounds according to the present invention by known functional group conversion methods based on these production methods. Hereinafter, a method for manufacturing a light emitting device including the compound and measurement of light emitting properties are further provided.

合成実施例
以下、本発明による代表的な化合物の合成方法を簡単に説明する。
Synthesis Examples Hereinafter, a method for synthesizing representative compounds according to the present invention will be briefly described.

本発明で用いられる各種の化学薬品、例えば石油エーテル、酢酸エチル、n−ヘキサン、トルエン、テトラヒドロフラン、ジクロロメタン、四塩化炭素、アセトン、1,2−ビス(ブロモメチル)ベンゼン、CuI、塩化フタロイル、塩酸フェニルヒドラジン、トリフルオロ酢酸、酢酸、トランス−ジアミノシクロヘキサン、ヨードベンゼン、炭酸セシウム、リン酸カリウム、エチレンジアミン、ベンゾフェノン、シクロペンタノン、9−フルオレノン、ナトリウムtert−ブトキシド、メタンスルホン酸、1−ブロモ−2−メチルナフタレン、o−ジブロモベンゼン、ブチルリチウム、ジブロモエタン、o−ジブロモベンゼン、過酸化ベンゾイル、1−(2−ブロモフェニル)−2−メチルナフタレン、N−ブロモスクシンイミド、塩化メトキシメチルトリメチルホスホニウム、トリス(ジベンジリデンアセトン)ジパラジウム、テトラキス(トリフェニルホスフィン)パラジウム、1,3−ビスジフェニルホスフィノプロパン塩化ニッケル、カルバゾール、3,6−ジメチルカルバゾール、3−(2−ナフチル)−6−フェニルカルバゾール、N−フェニルカルバゾール−3−ボロン酸、9−(2−ナフチル)カルバゾール−3−ボロン酸等の基礎的な化工原料はいずれも国内化工製品市場で購買することができる。   Various chemicals used in the present invention, such as petroleum ether, ethyl acetate, n-hexane, toluene, tetrahydrofuran, dichloromethane, carbon tetrachloride, acetone, 1,2-bis (bromomethyl) benzene, CuI, phthaloyl chloride, phenyl hydrochloride Hydrazine, trifluoroacetic acid, acetic acid, trans-diaminocyclohexane, iodobenzene, cesium carbonate, potassium phosphate, ethylenediamine, benzophenone, cyclopentanone, 9-fluorenone, sodium tert-butoxide, methanesulfonic acid, 1-bromo-2- Methylnaphthalene, o-dibromobenzene, butyllithium, dibromoethane, o-dibromobenzene, benzoyl peroxide, 1- (2-bromophenyl) -2-methylnaphthalene, N-bromosuccinimide, chloride Toximethyltrimethylphosphonium, tris (dibenzylideneacetone) dipalladium, tetrakis (triphenylphosphine) palladium, 1,3-bisdiphenylphosphinopropane nickel chloride, carbazole, 3,6-dimethylcarbazole, 3- (2-naphthyl) Basic chemical raw materials such as -6-phenylcarbazole, N-phenylcarbazole-3-boronic acid, 9- (2-naphthyl) carbazole-3-boronic acid can be purchased in the domestic chemical product market.

本発明における中間体及び化合物の分析検出は、ABSCIEX質量分析計(4000QTRAP)及びブルカー核磁気共鳴装置(400M)を用いる。   For the analysis and detection of intermediates and compounds in the present invention, an ABSCIEX mass spectrometer (4000QTRAP) and a Bruker nuclear magnetic resonance apparatus (400M) are used.

有機エレクトロルミネッセンス化合物の製造
合成実施例1.中間体M1の合成
Production of organic electroluminescent compounds Synthesis Example 1. Synthesis of intermediate M1

Figure 2018523638
Figure 2018523638

1L三つ口フラスコに、1,2−ビス(ブロモメチル)ベンゼン(26.4g,0.1mol)及び無水テトラヒドロフラン(THF)(500mL)を加え、窒素ガス雰囲気下、活性化された亜鉛粉(13g,0.2mol)を加え、2時間反応させてダブル亜鉛試薬を製造した。CuI(2g,10mmol)及び塩化フタロイル(20g,0.1mol)を加え、室温で1時間反応させた後、還流条件下10時間反応させた。反応終了後、飽和塩化アンモニウム水溶液を徐々に加えて反応をクエンチさせた後、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して無水MgSOで乾燥させ、有機溶剤を減圧によって除去してから、残留物をカラム分離し、中間体化合物M(18.5g,収率78.4%)を得た。 To a 1 L three-necked flask, 1,2-bis (bromomethyl) benzene (26.4 g, 0.1 mol) and anhydrous tetrahydrofuran (THF) (500 mL) were added, and activated zinc powder (13 g) under a nitrogen gas atmosphere. , 0.2 mol) was added and reacted for 2 hours to produce a double zinc reagent. CuI (2 g, 10 mmol) and phthaloyl chloride (20 g, 0.1 mol) were added and reacted at room temperature for 1 hour, followed by reaction under reflux conditions for 10 hours. After completion of the reaction, a saturated aqueous ammonium chloride solution was gradually added to quench the reaction, followed by extraction three times with ethyl acetate (100 mL). The resulting organic phases were combined and dried over anhydrous MgSO 4 , and the organic solvent was removed. After removal by reduced pressure, the residue was separated by column to obtain intermediate compound M (18.5 g, yield 78.4%).

1L三つ口フラスコに、塩酸フェニルヒドラジン(63.6g,0.44mol)、中間体化合物M(47.2g,0.2mol)及びエタノール(400mL)を加え、3min内に濃硫酸を2.1g滴下し、65℃で4時間反応させ、反応終了後、室温まで冷却させ、濾過し、その後に、濾過ケーキをエタノール、石油エーテルでこの順に洗浄し、白色固体M1−1(83g,収率82.9%)を得た。   To a 1 L three-necked flask, phenylhydrazine hydrochloride (63.6 g, 0.44 mol), intermediate compound M (47.2 g, 0.2 mol) and ethanol (400 mL) were added, and 2.1 g of concentrated sulfuric acid was added within 3 min. The mixture was added dropwise and reacted at 65 ° C. for 4 hours. After completion of the reaction, the mixture was cooled to room temperature, filtered, and then the filter cake was washed with ethanol and petroleum ether in this order to obtain a white solid M1-1 (83 g, yield 82). 0.9%).

1L三つ口フラスコに、上記M1−1(49g,0.1mol)、酢酸(650g)及びトリフルオロ酢酸(65g)を加え、72℃で15時間還流反応させ、室温まで冷却させ、濾過し、その後に、濾過ケーキを酢酸、石油エーテルでこの順に洗浄し、白色固体である中間体化合物M1(25g,65%)を得た。   To the 1 L three-necked flask, the above M1-1 (49 g, 0.1 mol), acetic acid (650 g) and trifluoroacetic acid (65 g) were added, refluxed at 72 ° C. for 15 hours, cooled to room temperature, filtered, Thereafter, the filter cake was washed with acetic acid and petroleum ether in this order to obtain an intermediate compound M1 (25 g, 65%) as a white solid.

M1のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.76 (s, 1H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 3H), 7.40 (s, 1H), 7.19 (d, J = 10.0 Hz, 2H).
NMR spectral data of M1:
1 H NMR (500 MHz, Chloroform) δ 8.76 (s, 1H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 3H), 7.40 (s, 1H), 7.19 (d, J = 10.0 Hz, 2H).

合成実施例2.中間体M2の合成   Synthesis Example 2. Synthesis of intermediate M2

Figure 2018523638
Figure 2018523638

1L三つ口フラスコに、3−ブロモフェニルヒドラジン塩酸塩(92.8g,0.415mol)、ジオン中間体M(49g,0.207mol)及びエタノール(400mL)を加え、撹拌条件下、3min内に濃硫酸を2g滴下し、65℃で4時間反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをエタノール、石油エーテルでこの順に洗浄し、中間体化合物M2−1(122g,91%)を得た。   To a 1 L three-necked flask, 3-bromophenylhydrazine hydrochloride (92.8 g, 0.415 mol), dione intermediate M (49 g, 0.207 mol) and ethanol (400 mL) were added, and within 3 min under stirring conditions. 2 g of concentrated sulfuric acid was added dropwise and reacted at 65 ° C. for 4 hours. After completion of the reaction, the mixture was cooled to room temperature, filtered, and the filter cake was washed with ethanol and petroleum ether in this order to obtain intermediate compound M2-1 (122 g, 91 %).

1L三つ口フラスコに、化合物M2−1(48.4g,74.8mmol)、酢酸(650g)およびトリフルオロ酢酸(65g,0.57mol)を加え、72℃で15時間還流反応させ、室温まで冷却させ、濾過し、濾過ケーキを酢酸、石油エーテルでこの順に洗浄し、中間体化合物M2−2(35g,85%)を得た。   To a 1 L three-necked flask, compound M2-1 (48.4 g, 74.8 mmol), acetic acid (650 g) and trifluoroacetic acid (65 g, 0.57 mol) were added, and the mixture was refluxed at 72 ° C. for 15 hours. Allow to cool, filter, and wash the filter cake with acetic acid and petroleum ether in this order to give intermediate compound M2-2 (35 g, 85%).

キシレン(100mL)と、M2−2(5.4g,10mmol)と、ヨードベンゼン(5.1g,25mmol)と、CuI(0.9g,5mmol)と、トランス−ジアミノシクロヘキサン(2.1mL,20mmol)と、炭酸セシウム(6.5g,20mmol)とを混合し、3時間還流反応させ、反応終了後、室温まで冷却させ、濾過し、その後、濾過ケーキをジクロロメタンで洗浄し、濾液を合併して乾燥させた後、溶剤を減圧によって除去し、得られた蒸留残留物をカラム分離し(溶離液:体積比1:2のジクロロメタンと石油エーテルとの混合溶液)、白色固体である中間体化合物M2(5.88g,収率85%)を得た。   Xylene (100 mL), M2-2 (5.4 g, 10 mmol), iodobenzene (5.1 g, 25 mmol), CuI (0.9 g, 5 mmol), trans-diaminocyclohexane (2.1 mL, 20 mmol) And cesium carbonate (6.5 g, 20 mmol) are mixed and refluxed for 3 hours. After completion of the reaction, the mixture is cooled to room temperature, filtered, and then the filter cake is washed with dichloromethane, and the filtrate is combined and dried. Then, the solvent was removed under reduced pressure, and the resulting distillation residue was subjected to column separation (eluent: mixed solution of dichloromethane and petroleum ether in a volume ratio of 1: 2), and intermediate compound M2 ( 5.88 g, yield 85%).

M2のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.72 (s, 1H), 8.41 (s, 2H), 8.09 (s, 2H), 7.88 (s, 1H), 7.59 (d, J = 20.0 Hz, 3H), 7.49 (s, 2H), 7.38 (s, 1H).
NMR spectrum data of M2:
1 H NMR (500 MHz, Chloroform) δ 8.72 (s, 1H), 8.41 (s, 2H), 8.09 (s, 2H), 7.88 (s, 1H), 7.59 (d, J = 20.0 Hz, 3H), 7.49 (s, 2H), 7.38 (s, 1H).

合成実施例3.中間体M3の合成   Synthesis Example 3. Synthesis of intermediate M3

Figure 2018523638
Figure 2018523638

1L三つ口フラスコに、4−ブロモフェニルヒドラジン塩酸塩(92.8g,0.415mol)、ジオン中間体M(49g,0.207mol)及びエタノール(400mL)を加え、撹拌条件下、3min内に濃硫酸を2g滴下し、65℃で4時間反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをエタノール、石油エーテルでこの順に洗浄し、中間体化合物M3−1(113g,収率84%)を得た。   To a 1 L three-necked flask, 4-bromophenylhydrazine hydrochloride (92.8 g, 0.415 mol), dione intermediate M (49 g, 0.207 mol) and ethanol (400 mL) were added, and under stirring conditions within 3 min. 2 g of concentrated sulfuric acid was added dropwise and reacted at 65 ° C. for 4 hours. After completion of the reaction, the mixture was cooled to room temperature, filtered, and the filter cake was washed with ethanol and petroleum ether in this order to obtain intermediate compound M3-1 (113 g, yield). 84%).

1L三つ口フラスコに、化合物M3−1(65g,0.1mol)、酢酸(650g)およびトリフルオロ酢酸(65g,0.57mol)を加え、72℃で15時間還流反応させ、室温まで冷却させ、濾過し、濾過ケーキを酢酸、石油エーテルでこの順に洗浄し、中間体化合物M3−2(42g,収率77%)を得た。   To a 1 L three-necked flask, compound M3-1 (65 g, 0.1 mol), acetic acid (650 g) and trifluoroacetic acid (65 g, 0.57 mol) were added, reacted at reflux at 72 ° C. for 15 hours, and cooled to room temperature. The filter cake was washed with acetic acid and petroleum ether in this order to obtain an intermediate compound M3-2 (42 g, yield 77%).

キシレン(100mL)と、M3−2(5.4g,10mmol)と、ヨードベンゼン(5.1g,25mmol)と、CuI(0.9g,5mmol)と、トランス−ジアミノシクロヘキサン(2.1mL,20mmol)と、炭酸セシウム(6.5g,20mmol)とを混合し、3時間還流反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをジクロロメタンで洗浄し、濾液を合併して乾燥させた後、溶剤を減圧によって除去し、得られた蒸留残留物をカラム分離し(溶離液:体積比1:2のジクロロメタンと石油エーテルとの混合溶液)、白色固体である中間体化合物M3(4.92g,収率71%)を得た。   Xylene (100 mL), M3-2 (5.4 g, 10 mmol), iodobenzene (5.1 g, 25 mmol), CuI (0.9 g, 5 mmol), trans-diaminocyclohexane (2.1 mL, 20 mmol) And cesium carbonate (6.5 g, 20 mmol) were mixed and refluxed for 3 hours. After completion of the reaction, the mixture was cooled to room temperature, filtered, the filter cake was washed with dichloromethane, and the filtrate was combined and dried. Thereafter, the solvent was removed under reduced pressure, and the resulting distillation residue was subjected to column separation (eluent: mixed solution of dichloromethane and petroleum ether in a volume ratio of 1: 2), and intermediate compound M3 (4. 92 g, 71% yield).

M3のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.42 (s, 1H), 8.10 (s, 1H), 7.89 (s, 1H), 7.62 (s, 1H), 7.58 (s, 1H), 7.50 (s, 1H), 7.43 (d, J = 17.9 Hz, 1H).
NMR spectrum data of M3:
1 H NMR (500 MHz, Chloroform) δ 8.42 (s, 1H), 8.10 (s, 1H), 7.89 (s, 1H), 7.62 (s, 1H), 7.58 (s, 1H), 7.50 (s, 1H ), 7.43 (d, J = 17.9 Hz, 1H).

合成実施例4.中間体M4の合成   Synthesis Example 4 Synthesis of intermediate M4

Figure 2018523638
Figure 2018523638

フェニルヒドラジン塩酸塩を等当量の2−ナフチルヒドラジン塩酸塩に変えた以外、合成実施例1と同じの合成方法を用い、3ステップ合成反応によって白色固体である中間体M4(34.2g,最後のステップでの合成収率が71%である)を得た。   Intermediate M4 (34.2 g, the last), which was a white solid by a three-step synthesis reaction, using the same synthesis method as in Synthesis Example 1, except that phenylhydrazine hydrochloride was replaced with an equivalent equivalent of 2-naphthylhydrazine hydrochloride. The synthesis yield in the step is 71%).

M4のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.76 (s, 1H), 8.42 (s, 2H), 8.30 (d, J = 16.0 Hz, 2H), 8.14 (s, 1H), 8.10 (s, 2H), 7.84 (s, 1H), 7.75 (s, 1H), 7.48 (s, 1H).
NMR spectrum data of M4:
1 H NMR (500 MHz, Chloroform) δ 8.76 (s, 1H), 8.42 (s, 2H), 8.30 (d, J = 16.0 Hz, 2H), 8.14 (s, 1H), 8.10 (s, 2H), 7.84 (s, 1H), 7.75 (s, 1H), 7.48 (s, 1H).

合成実施例5.中間体M5の合成   Synthesis Example 5. Synthesis of intermediate M5

Figure 2018523638
Figure 2018523638

フェニルヒドラジン塩酸塩を等当量の1−ナフチルヒドラジン塩酸塩に変えた以外、合成実施例1と同じの合成方法を用い、3ステップ合成反応によって白色固体である中間体M5(31g,最後のステップでの合成収率が67%である)を得た。   Intermediate M5 (31 g, in the last step) which is a white solid by a three-step synthesis reaction using the same synthesis method as in Synthesis Example 1 except that phenylhydrazine hydrochloride was replaced with an equivalent equivalent of 1-naphthylhydrazine hydrochloride. Yield of 67%).

M5のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 9.60 (s, 1H), 8.51 (s, 1H), 8.42 (s, 2H), 8.11 (d, J = 5.0 Hz, 3H), 7.72 (s, 1H), 7.67 (s, 1H), 7.63 (s, 1H), 7.08 (s, 1H).
NMR spectral data for M5:
1 H NMR (500 MHz, Chloroform) δ 9.60 (s, 1H), 8.51 (s, 1H), 8.42 (s, 2H), 8.11 (d, J = 5.0 Hz, 3H), 7.72 (s, 1H), 7.67 (s, 1H), 7.63 (s, 1H), 7.08 (s, 1H).

合成実施例6.中間体M6の合成   Synthesis Example 6 Synthesis of intermediate M6

Figure 2018523638
Figure 2018523638

1L三つ口フラスコに、塩酸フェニルヒドラジン(60g,0.415mol)、ジベンゾ[a,e]−5,11−シクロオクタジエン(6H,12H) −ジオン(49g,0.207mol)及びエタノール(400mL)を加え、撹拌条件下、3min内に濃硫酸を2.1g滴下し、65℃で4時間反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをエタノール、石油エーテルでこの順に洗浄し、固体M6−1(56g)を得た。   To a 1 L three-necked flask was added phenylhydrazine hydrochloride (60 g, 0.415 mol), dibenzo [a, e] -5,11-cyclooctadiene (6H, 12H) -dione (49 g, 0.207 mol) and ethanol (400 mL). ), 2.1 g of concentrated sulfuric acid was added dropwise within 3 min under stirring conditions, and the mixture was reacted at 65 ° C. for 4 hours. After the reaction, the mixture was cooled to room temperature, filtered, and the filter cake was added with ethanol and petroleum ether in this order. Washed to obtain solid M6-1 (56 g).

1L三つ口フラスコに、化合物M6−1(48g)、酢酸(650g)およびトリフルオロ酢酸(65g)を加え、72℃で15時間還流反応させ、室温まで冷却させ、濾過し、濾過ケーキを酢酸、石油エーテルでこの順に洗浄し、化合物M6(29g,65%)を得た。   To a 1 L three-necked flask, compound M6-1 (48 g), acetic acid (650 g) and trifluoroacetic acid (65 g) were added, reacted at reflux at 72 ° C. for 15 hours, cooled to room temperature, filtered, and the filter cake was acetic acid. Washing with petroleum ether in this order gave compound M6 (29 g, 65%).

M6のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.75 (s, 1H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 3H), 7.40 (s, 1H), 7.19 (d, J = 10.0 Hz, 2H).
NMR spectrum data of M6:
1 H NMR (500 MHz, Chloroform) δ 8.75 (s, 1H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 3H), 7.40 (s, 1H), 7.19 (d, J = 10.0 Hz, 2H).

合成実施例7.中間体M7の合成   Synthesis Example 7 Synthesis of intermediate M7

Figure 2018523638
Figure 2018523638

中間体M6(38.6g,0.1mol)と、1−ブロモ−4−ヨードベンゼン(56.7g,0.2mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、エチレンジアミン(2.3mL,34.3mmol)と、トルエン(500mL)とを混合し、還流条件下1日撹拌し、反応終了後、室温まで冷却させ、有機相を酢酸エチルで抽出して減圧蒸留し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、化合物(48.3g,70.1%)を得た。 Intermediate M6 (38.6 g, 0.1 mol), 1-bromo-4-iodobenzene (56.7 g, 0.2 mol), CuI (3.3 g, 17.1 mmol) and K 3 PO 4 ( 21.8 g, 102.9 mmol), ethylenediamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed, stirred under reflux conditions for 1 day, and after completion of the reaction, allowed to cool to room temperature, Was extracted with ethyl acetate and distilled under reduced pressure, and the resulting distillation residue was subjected to column separation (eluent: dichloromethane / hexane) to obtain a compound (48.3 g, 70.1%).

M7のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.47 (d, J = 64.9 Hz, 46H), 8.38 - 8.37 (m, 1H), 8.08 (s, 26H), 7.77 (s, 33H), 7.55 (d, J = 49.9 Hz, 46H), 7.14 (s, 9H), 7.09 (s, 13H).
NMR spectrum data of M7:
1 H NMR (500 MHz, Chloroform) δ 8.47 (d, J = 64.9 Hz, 46H), 8.38-8.37 (m, 1H), 8.08 (s, 26H), 7.77 (s, 33H), 7.55 (d, J = 49.9 Hz, 46H), 7.14 (s, 9H), 7.09 (s, 13H).

合成実施例8.中間体M8の合成   Synthesis Example 8 Synthesis of intermediate M8

Figure 2018523638
Figure 2018523638

塩化フタロイルを等当量の4−臭塩化フタロイルに変えた以外、合成実施例1と同じの合成方法を用い、3ステップ合成反応によって白色固体である中間体M8(34.6g,3ステップの合計収率が75%である)を得た。   Using the same synthesis method as in Synthesis Example 1 except that phthaloyl chloride was changed to an equivalent equivalent of 4-odor phthaloyl chloride, intermediate M8 (34.6 g, 3 steps total yield) was obtained by a three-step synthesis reaction. The rate is 75%).

M8のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.76 (d, J = 15.0 Hz, 2H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 4H), 7.38 (t, J= 27.5 Hz, 4H), 7.19 (d, J = 10.0 Hz, 4H), 7.11 (s, 1H).
NMR spectral data for M8:
1 H NMR (500 MHz, Chloroform) δ 8.76 (d, J = 15.0 Hz, 2H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 4H), 7.38 (t, J = 27.5 Hz, 4H), 7.19 (d, J = 10.0 Hz, 4H), 7.11 (s, 1H).

合成実施例9.中間体M9の合成   Synthesis Example 9 Synthesis of intermediate M9

Figure 2018523638
Figure 2018523638

ジベンゾ[a,e]−5,11−シクロオクタジエン(6H、12H)−ジオンを等当量の2−ブロモジベンゾ[a,e]−5,11−シクロオクタジエン(6H,12H)−ジオンに変えた以外、合成実施例6と同じの合成方法を用い、2ステップ合成反応によって白色固体である中間体M9(37g,2ステップの合計収率が80%である)を得た。   Dibenzo [a, e] -5,11-cyclooctadiene (6H, 12H) -dione is converted to an equivalent equivalent of 2-bromodibenzo [a, e] -5,11-cyclooctadiene (6H, 12H) -dione. The intermediate M9 (37 g, total yield of 2 steps is 80%) as a white solid was obtained by a 2-step synthesis reaction using the same synthesis method as in Synthesis Example 6 except that the change was made.

M9のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.74 (d, J = 8.5 Hz, 2H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 4H), 7.38 (t, J= 27.5 Hz, 4H), 7.19 (d, J = 10.0 Hz, 4H), 7.11 (s, 1H).
NMR spectral data for M9:
1 H NMR (500 MHz, Chloroform) δ 8.74 (d, J = 8.5 Hz, 2H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 4H), 7.38 (t, J = 27.5 Hz, 4H), 7.19 (d, J = 10.0 Hz, 4H), 7.11 (s, 1H).

合成実施例10.中間体M10の合成   Synthesis Example 10 Synthesis of intermediate M10

Figure 2018523638
Figure 2018523638

o−ジブロモベンジルを等当量の4−ブロモ−o−ジブロモベンジルに変えた以外、合成実施例1と同じの合成方法を用い、3ステップ合成反応によって白色固体である中間体M10(32g,3ステップの合計収率が71%である)を得た。   Intermediate M10 (32 g, 3 steps) which is a white solid by a 3-step synthesis reaction using the same synthesis method as in Synthesis Example 1 except that o-dibromobenzyl is changed to an equivalent equivalent of 4-bromo-o-dibromobenzyl. Yielded 71%).

M10のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.76 (d, J = 8.5 Hz, 2H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 4H), 7.38 (t, J= 27.5 Hz, 4H), 7.19 (d, J = 10.0 Hz, 4H), 7.11 (s, 1H).
NMR spectrum data of M10:
1 H NMR (500 MHz, Chloroform) δ 8.76 (d, J = 8.5 Hz, 2H), 8.42 (s, 2H), 8.14 (d, J = 45.0 Hz, 4H), 7.38 (t, J = 27.5 Hz, 4H), 7.19 (d, J = 10.0 Hz, 4H), 7.11 (s, 1H).

合成実施例11.化合物A−1の合成   Synthesis Example 11 Synthesis of Compound A-1

Figure 2018523638
Figure 2018523638

中間体M6(38.2g,0.1mol)と、ブロモベンゼン(31.5g,0.2mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、エチレンジアミン(2.3mL,34.3mmol)と、トルエン(500mL)とを混合し、還流条件下1日撹拌し、反応終了後、室温まで冷却させ、有機相を酢酸エチルで抽出して減圧蒸留し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、化合物A−1(37.3g,70.1%)を得た。 Intermediate M6 (38.2 g, 0.1 mol), bromobenzene (31.5 g, 0.2 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 (21.8 g, 102. 9 mmol), ethylenediamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed and stirred for one day under reflux conditions. After completion of the reaction, the mixture is cooled to room temperature, and the organic phase is extracted with ethyl acetate. Then, the distillation residue obtained was subjected to column separation (eluent: dichloromethane / hexane) to obtain Compound A-1 (37.3 g, 70.1%).

A−1のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.54 (s, 4H), 8.41 (s, 6H), 8.09 (s, 6H), 7.59 (d, J = 20.0 Hz, 11H), 7.50 (d, J = 10.0 Hz, 10H), 7.15 (s, 2H), 7.10 (s, 3H).
NMR spectrum data of A-1:
1 H NMR (500 MHz, Chloroform) δ 8.54 (s, 4H), 8.41 (s, 6H), 8.09 (s, 6H), 7.59 (d, J = 20.0 Hz, 11H), 7.50 (d, J = 10.0 Hz, 10H), 7.15 (s, 2H), 7.10 (s, 3H).

合成実施例12.化合物A−2の合成   Synthesis Example 12. Synthesis of Compound A-2

Figure 2018523638
Figure 2018523638

ブロモベンゼンを等当量のp−ブロモトルエンに変えた以外、実施例11における化合物A−1と同じの合成方法を用い、反応完成後、処理して白色固体(45.6g,収率81%)を得た。   A white solid (45.6 g, 81% yield) was processed after completion of the reaction using the same synthesis method as compound A-1 in Example 11, except that bromobenzene was replaced with an equivalent equivalent of p-bromotoluene. Got.

合成実施例13.化合物A−3の合成   Synthesis Example 13 Synthesis of Compound A-3

Figure 2018523638
Figure 2018523638

ブロモベンゼンを等当量の2−ブロモナフタレンに変えた以外、実施例11における化合物A−1と同じの合成方法を用い、反応完成後、処理して白色固体(48.3g,収率76%)を得た。   A white solid (48.3 g, 76% yield) was prepared after completion of the reaction using the same synthesis method as compound A-1 in Example 11 except that bromobenzene was replaced with an equivalent equivalent of 2-bromonaphthalene. Got.

合成実施例14.化合物A−4の合成   Synthesis Example 14 Synthesis of Compound A-4

Figure 2018523638
Figure 2018523638

ブロモベンゼンを等当量の3−ブロモフェナントレンに変えた以外、実施例11における化合物A−1と同じの合成方法を用い、反応完成後、白色固体(58.8g,収率80%)を得た。   A white solid (58.8 g, yield 80%) was obtained after completion of the reaction using the same synthesis method as compound A-1 in Example 11, except that bromobenzene was replaced with an equivalent equivalent of 3-bromophenanthrene. .

A−4のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 9.40 (s, 1H), 8.84 (s, 1H), 8.55 (s, 1H), 8.42 (s, 2H), 8.25 (s, 1H), 8.12 (d, J= 18.2 Hz, 3H), 7.90 (s, 1H), 7.75 (s, 2H), 7.68 (s, 1H), 7.63 (s, 1H), 7.52 (s, 1H), 7.16 (s, 1H), 7.11 (s, 1H).
NMR spectrum data of A-4:
1 H NMR (500 MHz, Chloroform) δ 9.40 (s, 1H), 8.84 (s, 1H), 8.55 (s, 1H), 8.42 (s, 2H), 8.25 (s, 1H), 8.12 (d, J = 18.2 Hz, 3H), 7.90 (s, 1H), 7.75 (s, 2H), 7.68 (s, 1H), 7.63 (s, 1H), 7.52 (s, 1H), 7.16 (s, 1H), 7.11 (s, 1H).

合成実施例15.化合物A−5の合成   Synthesis Example 15. Synthesis of Compound A-5

Figure 2018523638
Figure 2018523638

ブロモベンゼンを等当量の8−ブロモフルオランテンに変えた以外、実施例11における化合物A−1と同じの合成方法を用い、黄色固体(52.3g,収率67%)を得た。   A yellow solid (52.3 g, 67% yield) was obtained using the same synthesis method as compound A-1 in Example 11 except that bromobenzene was replaced with an equivalent equivalent of 8-bromofluoranthene.

合成実施例16.化合物A−6の合成   Synthesis Example 16 Synthesis of Compound A-6

Figure 2018523638
Figure 2018523638

ブロモベンゼンを等当量の3−ブロモフルオランテンに変えた以外、実施例11における化合物A−1と同じの合成方法を用い、後処理して淡黄色固体(49.5g,収率60%)を得た。   A light yellow solid (49.5 g, 60% yield) was obtained by post-treatment using the same synthesis method as compound A-1 in Example 11 except that bromobenzene was replaced with an equivalent equivalent of 3-bromofluoranthene. Got.

A−6のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.55 (s, 13H), 8.42 (s, 46H), 8.32 (s, 37H), 8.10 (s, 25H), 8.02 (d, J = 49.0 Hz, 7H), 7.94 (s, 14H), 7.75 (d, J= 55.0 Hz, 28H), 7.54 (d, J = 15.0 Hz, 27H), 7.16 (s, 8H), 7.11 (s, 11H).
NMR spectrum data of A-6:
1 H NMR (500 MHz, Chloroform) δ 8.55 (s, 13H), 8.42 (s, 46H), 8.32 (s, 37H), 8.10 (s, 25H), 8.02 (d, J = 49.0 Hz, 7H), 7.94 (s, 14H), 7.75 (d, J = 55.0 Hz, 28H), 7.54 (d, J = 15.0 Hz, 27H), 7.16 (s, 8H), 7.11 (s, 11H).

合成実施例17.化合物A−7の合成   Synthesis Example 17. Synthesis of Compound A-7

Figure 2018523638
Figure 2018523638

ブロモベンゼンを等当量の3−ブロモクリセンに変えた以外、実施例11における化合物A−1と同じの合成方法を用い、後処理して淡黄色固体(53.4g,収率64%)を得た。   A light yellow solid (53.4 g, yield 64%) was obtained by post-treatment using the same synthesis method as compound A-1 in Example 11 except that bromobenzene was replaced with an equivalent equivalent of 3-bromochrysene. .

合成実施例18.化合物A−8の合成   Synthesis Example 18. Synthesis of Compound A-8

Figure 2018523638
Figure 2018523638

ブロモベンゼンを等当量の2−ブロモ−9,9−ジメチルフルオレンに変えた以外、実施例11における化合物A−1と同じの合成方法を用い、淡黄色固体(60.6g,収率79%)を得た。   A pale yellow solid (60.6 g, yield 79%) was prepared using the same synthesis method as compound A-1 in Example 11, except that bromobenzene was replaced with an equivalent equivalent of 2-bromo-9,9-dimethylfluorene. Got.

合成実施例19.化合物A−9の合成
ブロモベンゼンを等当量の3−ブロモ−9,9−ジメチルフルオレンに変えた以外、実施例11における化合物A−1と同じの合成方法を用い、淡黄色固体(54g,収率76%)を得た。
Synthesis Example 19. Synthesis of Compound A-9 A pale yellow solid (54 g, yield) was obtained using the same synthesis method as Compound A-1 in Example 11 except that bromobenzene was replaced with an equivalent equivalent of 3-bromo-9,9-dimethylfluorene. 76%).

A−9のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.55 (s, 2H), 8.42 (s, 4H), 8.19 (s, 2H), 8.10 (s, 4H), 7.98 (d, J = 1.4 Hz, 1H), 7.94 (d, J = 37.7 Hz, 3H), 7.78 (s, 2H), 7.57 (s, 2H), 7.52 (s, 2H), 7.34 (s, 2H), 7.24 (s, 2H), 7.16 (s, 2H), 7.11 (s, 2H), 1.69 (s, 12H).
NMR spectrum data of A-9:
1 H NMR (500 MHz, Chloroform) δ 8.55 (s, 2H), 8.42 (s, 4H), 8.19 (s, 2H), 8.10 (s, 4H), 7.98 (d, J = 1.4 Hz, 1H), 7.94 (d, J = 37.7 Hz, 3H), 7.78 (s, 2H), 7.57 (s, 2H), 7.52 (s, 2H), 7.34 (s, 2H), 7.24 (s, 2H), 7.16 (s , 2H), 7.11 (s, 2H), 1.69 (s, 12H).

合成実施例20.化合物A−10の合成
ブロモベンゼンを等当量の3−ブロモ−11,11−ジメチルベンゾ[b]フルオレンに変えた以外、実施例11における化合物A−1と同じの合成方法を用い、黄色固体(47.7g,収率55%)を得た。
Synthesis Example 20 Synthesis of Compound A-10 Using the same synthesis method as Compound A-1 in Example 11, except that bromobenzene was replaced with an equivalent equivalent of 3-bromo-11,11-dimethylbenzo [b] fluorene, a yellow solid ( 47.7 g, yield 55%).

合成実施例21.化合物A−11の合成   Synthesis Example 21. Synthesis of Compound A-11

Figure 2018523638
Figure 2018523638

中間体M1(38.2g,0.1mol)と、ブロモベンゼン(31.5g,0.2mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、エチレンジアミン(2.3mL,34.3mmol)と、トルエン(500mL)とを混合し、還流条件下1日撹拌し、室温まで冷却させ、脱イオン水を加えて反応をクエンチさせる。上記反応系を酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して無水MgSOで乾燥させ、濾過し、その後、有機相を減圧して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、白色化合物A−11(37.4g,収率70%)を得た。 Intermediate M1 (38.2 g, 0.1 mol), bromobenzene (31.5 g, 0.2 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 (21.8 g, 102. 9 mmol), ethylenediamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed, stirred under reflux conditions for 1 day, allowed to cool to room temperature, and deionized water is added to quench the reaction. The above reaction system was extracted three times with ethyl acetate (100 mL), and the resulting organic phases were combined, dried over anhydrous MgSO 4 , filtered, and then the organic phase was reduced in pressure to remove the solvent. The distillation residue was separated by column (eluent: dichloromethane / hexane) to obtain white compound A-11 (37.4 g, yield 70%).

合成実施例22.化合物A−12の合成   Synthesis Example 22. Synthesis of Compound A-12

Figure 2018523638
Figure 2018523638

中間体M1(38.2g,0.1mol)と、4−ブロモビフェニル(46.6g,0.2mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、エチレンジアミン(2.3mL,34.3mmol)とトルエン(500mL)とを混合し、還流条件下1日撹拌し、室温まで冷却させ、脱イオン水を加えて反応をクエンチさせる。上記反応系を酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して無水MgSOで乾燥させ、濾過し、その後、有機相を減圧して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、白色化合物A−12(52.2g,収率76%)を得た。 Intermediate M1 (38.2 g, 0.1 mol), 4-bromobiphenyl (46.6 g, 0.2 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 (21.8 g, 102.9 mmol), ethylenediamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed, stirred for 1 day under reflux, allowed to cool to room temperature, and deionized water is added to quench the reaction. The above reaction system was extracted three times with ethyl acetate (100 mL), and the resulting organic phases were combined, dried over anhydrous MgSO 4 , filtered, and then the organic phase was reduced in pressure to remove the solvent. The distillation residue was separated by column (eluent: dichloromethane / hexane) to obtain white compound A-12 (52.2 g, yield 76%).

合成実施例22.化合物A−13の合成   Synthesis Example 22. Synthesis of Compound A-13

Figure 2018523638
Figure 2018523638

中間体M1(38.2g,0.1mol)と、2−ブロモナフタレン(41.4g,0.2mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、エチレンジアミン(2.3mL,34.3mmol)とトルエン(500mL)とを混合し、還流条件下1日撹拌し、室温まで冷却させ、脱イオン水を加えて反応をクエンチさせる。上記反応系を酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して無水MgSOで乾燥させ、濾過し、その後、有機相を減圧して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、白色化合物A−13(43.2g,収率68%)を得た。 Intermediate M1 (38.2 g, 0.1 mol), 2-bromonaphthalene (41.4 g, 0.2 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 (21.8 g, 102.9 mmol), ethylenediamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed, stirred for 1 day under reflux, allowed to cool to room temperature, and deionized water is added to quench the reaction. The above reaction system was extracted three times with ethyl acetate (100 mL), and the resulting organic phases were combined, dried over anhydrous MgSO 4 , filtered, and then the organic phase was reduced in pressure to remove the solvent. The distillation residue was separated by column (eluent: dichloromethane / hexane) to obtain white compound A-13 (43.2 g, yield 68%).

合成実施例23.化合物A−14の合成   Synthesis Example 23. Synthesis of Compound A-14

Figure 2018523638
Figure 2018523638

中間体M2(6.92g,10mmol)と、フェニルボロン酸(3.05g,25mmol)と、Pd(PPh(0.58g,0.5mmol)と、NaCO(5.3g,50mmol)と、トルエン(60mL)と、EtOH(20mL)と、蒸留水(20mL)とを混合した後、還流条件下、2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相をMgSOで乾燥させ、回転蒸発器によって溶剤を除去し、溶剤が除去された残留物をカラム分離し、白色固体である化合物A−14(5.63g,84%)を得た。 Intermediate M2 (6.92 g, 10 mmol), phenylboronic acid (3.05 g, 25 mmol), Pd (PPh 3 ) 4 (0.58 g, 0.5 mmol), Na 2 CO 3 (5.3 g, 50 mmol), toluene (60 mL), EtOH (20 mL), and distilled water (20 mL) were mixed, and the mixture was reacted under stirring under reflux conditions for 2 hours. After completion of the reaction, the reaction system is washed with distilled water, extracted three times with ethyl acetate (100 mL), the organic phases obtained are combined, the organic phase is dried over MgSO 4 , and the solvent is removed by a rotary evaporator. The residue from which the solvent was removed was subjected to column separation to obtain a white solid, compound A-14 (5.63 g, 84%).

A−14のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.42 (s, 21H), 8.38 - 7.82 (m, 51H), 8.07 - 7.82 (m, 2H), 7.79 (s, 14H), 7.75 (s, 23H), 7.62 (s, 20H), 7.58 (s, 15H), 7.49 (d, J = 5.0 Hz, 46H), 7.41 (s, 7H).
NMR spectrum data of A-14:
1 H NMR (500 MHz, Chloroform) δ 8.42 (s, 21H), 8.38-7.82 (m, 51H), 8.07-7.82 (m, 2H), 7.79 (s, 14H), 7.75 (s, 23H), 7.62 (s, 20H), 7.58 (s, 15H), 7.49 (d, J = 5.0 Hz, 46H), 7.41 (s, 7H).

合成実施例24.化合物A−15の合成
ブロモベンゼンを等当量の2−ブロモ−9,9−ジメチルフルオレンに変えた以外、実施例21と同じ方法を用い、反応完成後、白色固体である化合物A−15(59.8g,收率78%)を得た。
Synthesis Example 24. Synthesis of Compound A-15 Using the same method as in Example 21 except that bromobenzene was changed to an equivalent equivalent of 2-bromo-9,9-dimethylfluorene, after completion of the reaction, Compound A-15 (59 0.8 g, yield 78%).

合成実施例25.化合物A−16の合成   Synthesis Example 25. Synthesis of Compound A-16

Figure 2018523638
Figure 2018523638

雰囲気下、三つ口フラスコに、ヨードベンゼン(22g,0.11mol)、中間体M8(46.1g,0.1mol)、塩化第一銅(2g,20mmol)、水和1,10−フェナントロリン(4g,20mmol)、水酸化カリウム(16.8g,0.3mol)及びキシレン(300mL)を加えた。反応系を20h還流反応させ、反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相をMgSOで乾燥させ、回転蒸発器によって溶剤を除去し、溶剤が除去された残留物をカラム分離し、白色固体である中間体化合物A−16−1(52.3g,86%)を得た。 In a N 2 atmosphere, in a three-necked flask, iodobenzene (22 g, 0.11 mol), intermediate M8 (46.1 g, 0.1 mol), cuprous chloride (2 g, 20 mmol), hydrated 1,10- Phenanthroline (4 g, 20 mmol), potassium hydroxide (16.8 g, 0.3 mol) and xylene (300 mL) were added. The reaction system was refluxed for 20 hours. After completion of the reaction, the reaction system was washed with distilled water, extracted three times with ethyl acetate (100 mL), and the resulting organic phase was combined and the organic phase was dried over MgSO 4 . The solvent was removed by a rotary evaporator, and the residue from which the solvent was removed was subjected to column separation to obtain an intermediate compound A-16-1 (52.3 g, 86%) as a white solid.

中間体A−16−1(6.14g,10mmol)と、ビフェニルボロン酸(22g,11mmol)と、Pd(PPh(0.58g,0.5mmol)と、NaCO(5.3g,50mmol)と、トルエン(60mL)と、EtOH(20mL)と、蒸留水(20mL)とを混合し、還流条件下、2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相をMgSOで乾燥させ、回転蒸発器によって溶剤を除去し、溶剤が除去された残留物をカラム分離し、白色固体である中間体化合物A−16(5.97g,87%)を得た。 Intermediate A-16-1 (6.14 g, 10 mmol), biphenylboronic acid (22 g, 11 mmol), Pd (PPh 3 ) 4 (0.58 g, 0.5 mmol), and Na 2 CO 3 (5. 3 g, 50 mmol), toluene (60 mL), EtOH (20 mL), and distilled water (20 mL) were mixed, and the mixture was reacted under stirring under reflux conditions for 2 hours. After completion of the reaction, the reaction system is washed with distilled water, extracted three times with ethyl acetate (100 mL), the organic phases obtained are combined, the organic phase is dried over MgSO 4 , and the solvent is removed by a rotary evaporator. The residue from which the solvent was removed was subjected to column separation to obtain Intermediate Compound A-16 (5.97 g, 87%) as a white solid.

合成実施例26.化合物A−17の合成
中間体M8を等当量の中間体M9に変え、ビフェニルボロン酸を等当量の2−トリフェニレニルボロン酸に変えた以外、合成実施例25と同じの合成方法を用い、反応終了後、白色固体である化合物A−17を得た。
Synthesis Example 26. Synthesis of Compound A-17 Using the same synthesis method as in Synthesis Example 25, except that intermediate M8 was changed to equivalent equivalent of intermediate M9 and biphenylboronic acid was changed to equivalent equivalent of 2-triphenylenylboronic acid, After completion of the reaction, Compound A-17 as a white solid was obtained.

合成実施例27.化合物A−18の合成   Synthesis Example 27. Synthesis of Compound A-18

Figure 2018523638
Figure 2018523638

1L三つ口フラスコに、3−フェニル塩酸フェニルヒドラジン(91.6g,0.415mol)、ジベンゾ[a,e]−5,11−シクロオクタジエン(6H,12H)−ジオン(49g,0.207mol)及びエタノール(400mL)を加え、撹拌条件下、3min内に濃硫酸を2g滴下し、65℃で4時間反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをエタノール、石油エーテルでこの順に洗浄し、化合物A−18−1(120g,90%)を得た。   To a 1 L three-necked flask was added phenylhydrazine hydrochloride 3-phenyl (91.6 g, 0.415 mol), dibenzo [a, e] -5,11-cyclooctadiene (6H, 12H) -dione (49 g, 0.207 mol). ) And ethanol (400 mL), 2 g of concentrated sulfuric acid was added dropwise within 3 min under stirring conditions, and the mixture was reacted at 65 ° C. for 4 hours. After completion of the reaction, the mixture was cooled to room temperature, filtered, and the filter cake was ethanol, petroleum ether In this order, Compound A-18-1 (120 g, 90%) was obtained.

1L三つ口フラスコに、化合物C−19−1(48g,74.8mmol)、酢酸(650g)およびトリフルオロ酢酸(65g,0.57mol)を加え、72℃で15時間還流反応させ、室温まで冷却させ、濾過し、濾過ケーキを酢酸、石油エーテルでこの順に洗浄し、化合物A−18−2(33g,82%)を得た。   To a 1 L three-necked flask, compound C-19-1 (48 g, 74.8 mmol), acetic acid (650 g) and trifluoroacetic acid (65 g, 0.57 mol) were added, and the mixture was refluxed at 72 ° C. for 15 hours. The mixture was cooled and filtered, and the filter cake was washed with acetic acid and petroleum ether in this order to obtain Compound A-18-2 (33 g, 82%).

キシレン(100mL)と、C−19−2(5.4g,10mmol)と、ブロモベンゼン(3.9g,25mmol)と、CuI(0.9g,5mmol)と、トランス−ジアミノシクロヘキサン(2.1mL,20mmol)と、炭酸セシウム(6.5g、20mmol)とを混合し、3時間還流反応させ、反応終了後、室温まで冷却させ、濾過し、その後、濾過ケーキをジクロロメタン(ジクロロメタン)で洗浄し、濾液を減圧蒸留し、得られた蒸留残留物をカラム分離し(溶離液:DCM/PE=1/2,v/v(体積比1:2のジクロロメタンと石油エーテルとの混合溶液))、白色固体である化合物A−18(5.0g,収率72%)を得た。   Xylene (100 mL), C-19-2 (5.4 g, 10 mmol), bromobenzene (3.9 g, 25 mmol), CuI (0.9 g, 5 mmol), trans-diaminocyclohexane (2.1 mL, 20 mmol) and cesium carbonate (6.5 g, 20 mmol) were mixed and refluxed for 3 hours. After completion of the reaction, the mixture was cooled to room temperature, filtered, and then the filter cake was washed with dichloromethane (dichloromethane). Was distilled under reduced pressure, and the resulting distillation residue was separated into columns (eluent: DCM / PE = 1/2, v / v (mixed solution of dichloromethane and petroleum ether in a volume ratio of 1: 2)), a white solid Compound A-18 (5.0 g, yield 72%) was obtained.

合成実施例28.中間体M11の合成   Synthesis Example 28. Synthesis of intermediate M11

Figure 2018523638
Figure 2018523638

1L三つ口フラスコに、3−ブロモフェニルヒドラジン塩酸塩(92.8g,0.415mol)、ジベンゾ[a,e]−5,11−シクロオクタジエン(6H,12H)−ジオン(49g,0.207mol)及びエタノール(400mL)を加え、撹拌条件下、3min内に濃硫酸を2g滴下し、65℃で4時間反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをエタノール、石油エーテルでこの順に洗浄し、中間体化合物M11−1(122g,91%)を得た。   In a 1 L three-necked flask, 3-bromophenylhydrazine hydrochloride (92.8 g, 0.415 mol), dibenzo [a, e] -5,11-cyclooctadiene (6H, 12H) -dione (49 g, 0. 207 mol) and ethanol (400 mL) were added, 2 g of concentrated sulfuric acid was added dropwise within 3 min under stirring conditions, and the mixture was reacted at 65 ° C. for 4 hours. After completion of the reaction, the mixture was cooled to room temperature and filtered. Washing with ether in this order gave intermediate compound M11-1 (122 g, 91%).

1L三つ口フラスコに、化合物M11−1(48.4g,74.8mmol)、酢酸(650g)およびトリフルオロ酢酸(65g,0.57mol)を加え、72℃で15時間還流反応させ、室温まで冷却させ、濾過し、濾過ケーキを酢酸、石油エーテルでこの順に洗浄し、中間体化合物M11−2(35g,85%)を得た。   To a 1 L three-necked flask, compound M11-1 (48.4 g, 74.8 mmol), acetic acid (650 g) and trifluoroacetic acid (65 g, 0.57 mol) were added, and the mixture was refluxed at 72 ° C. for 15 hours. Cooled and filtered, and the filter cake was washed in this order with acetic acid and petroleum ether, yielding intermediate compound M11-2 (35 g, 85%).

キシレン(100mL)と、M11−2(5.4g,10mmol)と、ヨードベンゼン(5.1g,25mmol)と、CuI(0.9g,5mmol)と、トランス−ジアミノシクロヘキサン(2.1mL,20mmol)と、炭酸セシウム(6.5g、20mmol)とを混合し、3時間還流反応させ、反応終了後、室温まで冷却させ、濾過し、その後、濾過ケーキをジクロロメタン(ジクロロメタン)で洗浄し、濾液を合併し、乾燥してから溶剤を減圧によって除去し、得られた蒸留残留物をカラム分離し(溶離液:DCM/PE=1/2,v/v(体積比1:2のジクロロメタンと石油エーテルとの混合溶液))、白色固体である中間体化合物M11(5.88g,収率85%)を得た。   Xylene (100 mL), M11-2 (5.4 g, 10 mmol), iodobenzene (5.1 g, 25 mmol), CuI (0.9 g, 5 mmol), trans-diaminocyclohexane (2.1 mL, 20 mmol) And cesium carbonate (6.5 g, 20 mmol) were mixed and refluxed for 3 hours. After completion of the reaction, the mixture was cooled to room temperature, filtered, and then the filter cake was washed with dichloromethane (dichloromethane), and the filtrate was combined. And the solvent is removed by reduced pressure, and the resulting distillation residue is separated by column (eluent: DCM / PE = 1/2, v / v (1: 2 volume ratio of dichloromethane and petroleum ether). The intermediate compound M11 (5.88 g, yield 85%) was obtained as a white solid.

合成実施例29.化合物A−19の合成   Synthesis Example 29 Synthesis of Compound A-19

Figure 2018523638
Figure 2018523638

中間体M11(6.92g,10mmol)と、4−ビフェニルボロン酸(4.95g,25mmol)と、Pd(PPh(0.58g,0.5mmol)と、NaCO(5.3g,50mmol)と、トルエン(60mL)と、EtOH(20mL)と、蒸留水(20mL)とを混合し、還流条件下、2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチルで抽出して有機相を得、有機相をMgSOで乾燥させ、回転蒸発器によって溶剤を除去し、溶剤が除去された残留物をカラム分離し、白色固体である化合物A−19(7.0g,81%)を得た。 Intermediate M11 (6.92 g, 10 mmol), 4-biphenylboronic acid (4.95 g, 25 mmol), Pd (PPh 3 ) 4 (0.58 g, 0.5 mmol), and Na 2 CO 3 (5. 3 g, 50 mmol), toluene (60 mL), EtOH (20 mL), and distilled water (20 mL) were mixed, and the mixture was reacted under stirring under reflux conditions for 2 hours. After completion of the reaction, the reaction system is washed with distilled water and then extracted with ethyl acetate to obtain an organic phase. The organic phase is dried with MgSO 4 , the solvent is removed by a rotary evaporator, and the solvent is removed. The product was subjected to column separation to obtain Compound A-19 (7.0 g, 81%) as a white solid.

合成実施例30.化合物A−20の合成
4−ビフェニルボロン酸を等当量の9,9−ジメチルフルオレン−2−ボロン酸に変えた以外、実施例29と同じの合成方法を用いて化合物A−20を製造し、反応完成後、分離して白色固体(6.24g,収率68%)を得た。
Synthesis Example 30. Synthesis of Compound A-20 Compound A-20 was produced using the same synthesis method as Example 29, except that 4-biphenylboronic acid was replaced with an equivalent equivalent of 9,9-dimethylfluorene-2-boronic acid. After completion of the reaction, separation was performed to obtain a white solid (6.24 g, yield 68%).

合成実施例31.化合物A−21の合成   Synthesis Example 31. Synthesis of Compound A-21

Figure 2018523638
Figure 2018523638

中間体M1を等当量の中間体M4に変えた以外、実施例21と同じ方法を用い、反応完成後、白色固体(4.32g,収率68%)を得た。   A white solid (4.32 g, yield 68%) was obtained after completion of the reaction using the same method as in Example 21 except that the intermediate M1 was changed to an equivalent equivalent of the intermediate M4.

A−21のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.61 (s, 1H), 8.43 (d, J = 6.0 Hz, 3H), 8.28 (s, 1H), 8.10 (s, 2H), 7.84 (s, 1H), 7.75 (s, 1H), 7.62 (s, 2H), 7.58 (s, 1H), 7.49 (d, J = 10.0 Hz, 3H).
NMR spectrum data of A-21:
1 H NMR (500 MHz, Chloroform) δ 8.61 (s, 1H), 8.43 (d, J = 6.0 Hz, 3H), 8.28 (s, 1H), 8.10 (s, 2H), 7.84 (s, 1H), 7.75 (s, 1H), 7.62 (s, 2H), 7.58 (s, 1H), 7.49 (d, J = 10.0 Hz, 3H).

合成実施例32.化合物A−22の合成
4−ビフェニルボロン酸を等当量の9,9−ジメチルフルオレン−2−ボロン酸に変えた以外、合成実施例29と同じの合成方法を用い、反応完成後、淡黄色固体(7.08g,収率77%)を得た。
Synthesis Example 32. Synthesis of Compound A-22 A light yellow solid was used after completion of the reaction using the same synthesis method as in Synthesis Example 29 except that 4-biphenylboronic acid was changed to an equivalent equivalent of 9,9-dimethylfluorene-2-boronic acid. (7.08 g, yield 77%) was obtained.

合成実施例33.化合物A−23の合成
4−ビフェニルボロン酸を等当量の6,6,12,12−テトラメチル−6,12−ジヒドロインデノ[1,2−b]フルオレン−2−ボロン酸に変えた以外、実施例23と同じ方法を用いて化合物A−23を製造し、反応完成後、分離して淡黄色固体(6.68g,収率58%)を得た。
Synthesis Example 33. Synthesis of Compound A-23 Except that 4-biphenylboronic acid was replaced with an equivalent equivalent of 6,6,12,12-tetramethyl-6,12-dihydroindeno [1,2-b] fluorene-2-boronic acid Compound A-23 was produced using the same method as in Example 23, and after completion of the reaction, it was separated to obtain a pale yellow solid (6.68 g, yield 58%).

合成実施例34.化合物A−24の合成   Synthesis Example 34. Synthesis of Compound A-24

Figure 2018523638
Figure 2018523638

中間体M5(48.2g,0.1mol)と、2−ブロモナフタレン(41.4g,0.2mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、エチレンジアミン(2.3mL,34.3mmol)と、トルエン(500mL)とを混合し、還流条件下1日撹拌し、室温まで冷却させ、脱イオン水を加えて反応をクエンチさせる。上記反応系を酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して無水MgSOで乾燥させ、濾過し、その後、有機相を減圧して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、白色化合物A−24(49.9g,収率68%)を得た。 Intermediate M5 (48.2 g, 0.1 mol), 2-bromonaphthalene (41.4 g, 0.2 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 (21.8 g, 102.9 mmol), ethylenediamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed, stirred under reflux conditions for 1 day, allowed to cool to room temperature, and deionized water is added to quench the reaction. . The above reaction system was extracted three times with ethyl acetate (100 mL), and the resulting organic phases were combined, dried over anhydrous MgSO 4 , filtered, and then the organic phase was reduced in pressure to remove the solvent. The distillation residue was separated by column (eluent: dichloromethane / hexane) to obtain white compound A-24 (49.9 g, yield 68%).

合成実施例35.化合物B−1の合成   Synthesis Example 35. Synthesis of Compound B-1

Figure 2018523638
Figure 2018523638

中間体M2(69.6g,0.1mol)と、ブロモベンゼン(31.5g,0.2mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、エチレンジアミン(2.3mL,34.3mmol)と、トルエン(500mL)とを混合し、還流条件下1日撹拌し、室温まで冷却させ、脱イオン水を加えて反応をクエンチさせる。上記反応系を酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して無水MgSOで乾燥させ、濾過し、その後、有機相を減圧して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、白色化合物B−1(55.4g,收率64%)を得た。 Intermediate M2 (69.6 g, 0.1 mol), bromobenzene (31.5 g, 0.2 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 (21.8 g, 102. 9 mmol), ethylenediamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed, stirred under reflux conditions for 1 day, allowed to cool to room temperature, and deionized water is added to quench the reaction. The above reaction system was extracted three times with ethyl acetate (100 mL), and the resulting organic phases were combined, dried over anhydrous MgSO 4 , filtered, and then the organic phase was reduced in pressure to remove the solvent. The distillation residue was separated by column (eluent: dichloromethane / hexane) to obtain white compound B-1 (55.4 g, yield 64%).

B−1のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.43 - 8.37 (m, 1H), 8.36 - 8.29 (m, 1H), 8.22 - 8.12 (m, 1H), 8.09 - 7.97 (m, 2H), 7.96 - 7.78 (m, 2H), 7.64 - 7.54 (m, 2H), 7.54 - 7.24 (m, 4H).
NMR spectrum data of B-1:
1 H NMR (500 MHz, Chloroform) δ 8.43-8.37 (m, 1H), 8.36-8.29 (m, 1H), 8.22-8.12 (m, 1H), 8.09-7.97 (m, 2H), 7.96-7.78 ( m, 2H), 7.64-7.54 (m, 2H), 7.54-7.24 (m, 4H).

合成実施例36.化合物B−2の合成   Synthesis Example 36. Synthesis of compound B-2

Figure 2018523638
Figure 2018523638

塩酸9−フェニルカルバゾール−3−ヒドラジン(30.98g,0.1mol)と、中間体M(47.2g,0.2mol)と、エタノール(400mL)とを混合し、撹拌条件下、3min内に濃硫酸を2.1g滴下し、65℃で4時間反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをエタノール、石油エーテルでこの順に洗浄し、白色固体B−2−1(68g,収率83%)を得た。   Hydrochloric acid 9-phenylcarbazole-3-hydrazine (30.98 g, 0.1 mol), intermediate M (47.2 g, 0.2 mol) and ethanol (400 mL) were mixed, and under stirring conditions, within 3 min. 2.1 g of concentrated sulfuric acid was added dropwise and reacted at 65 ° C. for 4 hours. After completion of the reaction, the mixture was cooled to room temperature, filtered, and the filter cake was washed with ethanol and petroleum ether in this order to obtain a white solid B-2-1 ( 68 g, 83% yield).

前記固体B−2−1(68g,0.083mol)と、酢酸(600mL)と、トリフルオロ酢酸(60mL)とを混合し、72℃で15時間還流反応させ、室温まで冷却させ、濾過し、濾過ケーキを酢酸、石油エーテルでこの順に洗浄し、化合物B−2−2(32g,収率54%)を得た。   The solid B-2-1 (68 g, 0.083 mol), acetic acid (600 mL) and trifluoroacetic acid (60 mL) were mixed, refluxed at 72 ° C. for 15 hours, cooled to room temperature, filtered, The filter cake was washed with acetic acid and petroleum ether in this order to obtain Compound B-2-2 (32 g, yield 54%).

中間体B−2−2(35.84g,50mmol)と、ブロモベンゼン(39.2g,250mol)と、CuI(1g,5.3mmol)と、KPO(7g,35mmol)と、ジアミノシクロヘキサン(6mL,34.3mmol)と、キシレン(500mL)とを混合し、還流条件下、1日撹拌して反応させ、反応終了後、室温まで冷却させ、有機相を酢酸エチルで抽出し、分離によって得られた有機相を減圧蒸留し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、白色化合物B−2(29.8g,収率62%)を得た。 Intermediate B-2-2 (35.84 g, 50 mmol), bromobenzene (39.2 g, 250 mol), CuI (1 g, 5.3 mmol), K 3 PO 4 (7 g, 35 mmol), and diaminocyclohexane (6 mL, 34.3 mmol) and xylene (500 mL) are mixed and reacted under reflux conditions for 1 day. After completion of the reaction, the reaction is allowed to cool to room temperature, and the organic phase is extracted with ethyl acetate and separated by separation. The obtained organic phase was distilled under reduced pressure, and the resulting distillation residue was subjected to column separation (eluent: dichloromethane / hexane) to obtain white compound B-2 (29.8 g, yield 62%).

合成実施例37.化合物B−3の合成   Synthesis Example 37. Synthesis of compound B-3

Figure 2018523638
Figure 2018523638

中間体M7(6.9g,10mmol)と、9−フェニル−[9H]−カルバゾール−3−ボロン酸(7.2g,25mmol)と、Pd(PPh(0.58g,0.5mmol)と、KCO(5.3g,50mmol)と、トルエン(60mL)と、EtOH(20mL)と、蒸留水(20mL)とを混合した後、120℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチルで抽出して有機相を得、有機相をMgSOで乾燥させ、回転蒸発器によって溶剤を除去し、溶剤が除去された残留物をカラム分離し、淡黄色固体である化合物B−3(8.8g,87%)を得た。 Intermediate M7 (6.9 g, 10 mmol), 9-phenyl- [9H] -carbazole-3-boronic acid (7.2 g, 25 mmol) and Pd (PPh 3 ) 4 (0.58 g, 0.5 mmol) , K 2 CO 3 (5.3 g, 50 mmol), toluene (60 mL), EtOH (20 mL), and distilled water (20 mL) were mixed and stirred at 120 ° C. for 2 hours for reaction. After completion of the reaction, the reaction system is washed with distilled water and then extracted with ethyl acetate to obtain an organic phase. The organic phase is dried with MgSO 4 , the solvent is removed by a rotary evaporator, and the solvent is removed. The product was subjected to column separation to obtain Compound B-3 (8.8 g, 87%) as a pale yellow solid.

B−3のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 9.81 - 9.75 (m, 2H), 9.37 (dd, J = 7.5, 1.4 Hz, 1H), 8.85 (dd, J = 7.5, 2.0 Hz, 2H), 8.49 - 8.41 (m, 4H), 8.17 (dd, J = 7.4, 1.6 Hz, 1H), 8.05 - 7.84 (m, 9H), 7.60 (t, J = 7.5 Hz, 4H), 7.56 - 7.22 (m, 14H), 7.07 (dt, J= 7.5, 2.2 Hz, 2H), 6.76 (td, J = 7.5, 2.0 Hz, 2H), 6.64 (tdt, J = 7.3, 4.9, 2.2 Hz, 2H).
NMR spectrum data of B-3:
1 H NMR (500 MHz, Chloroform) δ 9.81-9.75 (m, 2H), 9.37 (dd, J = 7.5, 1.4 Hz, 1H), 8.85 (dd, J = 7.5, 2.0 Hz, 2H), 8.49-8.41 (m, 4H), 8.17 (dd, J = 7.4, 1.6 Hz, 1H), 8.05-7.84 (m, 9H), 7.60 (t, J = 7.5 Hz, 4H), 7.56-7.22 (m, 14H), 7.07 (dt, J = 7.5, 2.2 Hz, 2H), 6.76 (td, J = 7.5, 2.0 Hz, 2H), 6.64 (tdt, J = 7.3, 4.9, 2.2 Hz, 2H).

合成実施例38.化合物B−4の合成
ブロモベンゼンを等当量の9−(4−ブロモフェニル)−9H−カルバゾールに変えた以外、実施例11と同じの合成方法を用いて化合物B−4を製造し、反応完成後、分離して淡黄色固体(6.5g,収率76%)を得た。
Synthesis Example 38. Synthesis of Compound B-4 Compound B-4 was produced using the same synthesis method as Example 11 except that bromobenzene was replaced with an equivalent equivalent of 9- (4-bromophenyl) -9H-carbazole, and the reaction was completed. Thereafter, separation was performed to obtain a pale yellow solid (6.5 g, yield 76%).

B−4のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.45 - 8.31 (m, 1H), 8.22 - 8.07 (m, 1H), 8.06 - 7.91 (m, 2H), 7.91 - 7.78 (m, 1H), 7.56 - 7.29 (m, 3H).
NMR spectrum data of B-4:
1 H NMR (500 MHz, Chloroform) δ 8.45-8.31 (m, 1H), 8.22-8.07 (m, 1H), 8.06-7.91 (m, 2H), 7.91-7.78 (m, 1H), 7.56-7.29 ( m, 3H).

合成実施例39.化合物B−5の合成
ブロモベンゼンを等当量の9−(3−ブロモフェニル)−9H−カルバゾールに変えた以外、実施例11と同じの合成方法を用いて化合物B−5を製造し、反応完成後、分離して淡黄色固体(6.7g,収率78%)を得た。
Synthesis Example 39. Synthesis of Compound B-5 Compound B-5 was produced using the same synthesis method as in Example 11 except that bromobenzene was replaced with an equivalent equivalent of 9- (3-bromophenyl) -9H-carbazole, and the reaction was completed. Thereafter, separation was performed to obtain a pale yellow solid (6.7 g, yield 78%).

合成実施例40.化合物B−6の合成
ブロモベンゼンを等当量の3−ブロモ−フェニルカルバゾールに変えた以外、実施例11と同じの合成方法を用いて化合物B−6を製造し、反応完成後、分離して淡黄色固体(6.06g,収率70%)を得た。
Synthesis Example 40. Synthesis of Compound B-6 Compound B-6 was produced using the same synthesis method as in Example 11 except that bromobenzene was replaced with an equivalent equivalent of 3-bromo-phenylcarbazole. A yellow solid (6.06 g, yield 70%) was obtained.

B−6のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.62 (dd, J = 16.8, 1.4 Hz, 1H), 8.51 (ddd, J = 14.0, 7.6, 1.5 Hz, 1H), 8.42 (dt, J = 7.4, 1.8 Hz, 1H), 8.21 (ddd, J = 7.3, 5.9, 1.5 Hz, 1H), 8.14 - 8.02 (m, 1H), 8.06 - 7.95 (m, 1H), 7.95 (dd, J = 7.8, 2.1 Hz, 1H), 7.89 (ddd, J = 7.5, 4.1, 2.0 Hz, 1H), 7.79 (dd, J = 24.9, 7.4 Hz, 1H), 7.70 (ddd, J = 19.2, 7.5, 1.5 Hz, 1H), 7.60 (t, J = 7.4 Hz, 2H), 7.54 - 7.24 (m, 7H).
NMR spectrum data of B-6:
1 H NMR (500 MHz, Chloroform) δ 8.62 (dd, J = 16.8, 1.4 Hz, 1H), 8.51 (ddd, J = 14.0, 7.6, 1.5 Hz, 1H), 8.42 (dt, J = 7.4, 1.8 Hz , 1H), 8.21 (ddd, J = 7.3, 5.9, 1.5 Hz, 1H), 8.14-8.02 (m, 1H), 8.06-7.95 (m, 1H), 7.95 (dd, J = 7.8, 2.1 Hz, 1H ), 7.89 (ddd, J = 7.5, 4.1, 2.0 Hz, 1H), 7.79 (dd, J = 24.9, 7.4 Hz, 1H), 7.70 (ddd, J = 19.2, 7.5, 1.5 Hz, 1H), 7.60 ( t, J = 7.4 Hz, 2H), 7.54-7.24 (m, 7H).

合成実施例41.化合物B−7の合成
ブロモベンゼンを等当量の9−(4−ブロモフェニル)−9H−カルバゾールに変えた以外、実施例21と同じ方法を用いて化合物B−7を製造し、反応完成後、分離して白色固体B−7(4.7g,収率54%)を得た。
Synthesis Example 41. Synthesis of Compound B-7 Compound B-7 was produced using the same method as Example 21 except that bromobenzene was replaced with an equivalent equivalent of 9- (4-bromophenyl) -9H-carbazole. Separation gave white solid B-7 (4.7 g, 54% yield).

合成実施例42.化合物B−8の合成
ブロモベンゼンを等当量の9−(3−ブロモフェニル)−9H−カルバゾールに変えた以外、実施例21と同じ方法を用いて化合物B−8を製造し、反応完成後、分離して白色固体B−8(5.5g,収率61%)を得た。
Synthesis Example 42. Synthesis of Compound B-8 Compound B-8 was produced in the same manner as in Example 21 except that bromobenzene was replaced with an equivalent equivalent of 9- (3-bromophenyl) -9H-carbazole. Separation gave white solid B-8 (5.5 g, 61% yield).

合成実施例43.化合物B−9の合成
フェニルボロン酸を等当量の(9−フェニル−9H−カルバゾール−3−イル)ボロン酸に変えた以外、実施例23と同じ方法を用いて化合物B−9を製造し、反応完成後、分離して淡黄色固体B−9(8.44g,収率83%)を得た。
Synthesis Example 43. Synthesis of Compound B-9 Compound B-9 was produced using the same method as in Example 23, except that phenylboronic acid was changed to an equivalent equivalent of (9-phenyl-9H-carbazol-3-yl) boronic acid. After completion of the reaction, separation was performed to obtain a pale yellow solid B-9 (8.44 g, yield 83%).

B−9のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 9.01 (d, J = 1.4 Hz, 1H), 8.97 - 8.91 (m, 2H), 8.42 (dd, J = 7.3, 1.5 Hz, 1H), 8.32 (d, J = 7.5 Hz, 1H), 8.26 - 8.08 (m, 10H), 7.97 (dd, J = 7.5, 2.0 Hz, 2H), 7.90 (dd, J = 7.7, 2.0 Hz, 2H), 7.84 (ddd, J = 7.5, 5.9, 1.6 Hz, 2H), 7.64 - 7.47 (m, 10H), 7.43 (td, J = 7.5, 1.6 Hz, 1H), 7.37 - 7.27 (m, 4H), 7.31 - 7.24 (m, 4H), 7.17 (dd, J = 7.3, 2.3 Hz, 1H), 7.09 (ddd, J = 13.6, 5.7, 3.9 Hz, 2H), 6.69 (dtd, J = 19.6, 7.4, 2.2 Hz, 2H), 6.60 (dd, J = 5.7, 3.8 Hz, 2H).
NMR spectrum data of B-9:
1 H NMR (500 MHz, Chloroform) δ 9.01 (d, J = 1.4 Hz, 1H), 8.97-8.91 (m, 2H), 8.42 (dd, J = 7.3, 1.5 Hz, 1H), 8.32 (d, J = 7.5 Hz, 1H), 8.26-8.08 (m, 10H), 7.97 (dd, J = 7.5, 2.0 Hz, 2H), 7.90 (dd, J = 7.7, 2.0 Hz, 2H), 7.84 (ddd, J = 7.5, 5.9, 1.6 Hz, 2H), 7.64-7.47 (m, 10H), 7.43 (td, J = 7.5, 1.6 Hz, 1H), 7.37-7.27 (m, 4H), 7.31-7.24 (m, 4H) , 7.17 (dd, J = 7.3, 2.3 Hz, 1H), 7.09 (ddd, J = 13.6, 5.7, 3.9 Hz, 2H), 6.69 (dtd, J = 19.6, 7.4, 2.2 Hz, 2H), 6.60 (dd , J = 5.7, 3.8 Hz, 2H).

合成実施例44.化合物B−10の合成
中間体M2を等当量の中間体M3に変え、フェニルボロン酸を等当量の(4−(9H−カルバゾール−9−イル)フェニル)ボロン酸に変えた以外、実施例23と同じ方法を用いて化合物B−10を製造し、反応完成後、分離してほぼ白色固体B−10(7.73g,76%)を得た。
Synthesis Example 44. Synthesis of Compound B-10 Example 23, except that intermediate M2 was changed to equivalent equivalent intermediate M3 and phenylboronic acid was changed to equivalent equivalent (4- (9H-carbazol-9-yl) phenyl) boronic acid Compound B-10 was produced using the same method as above, and after the completion of the reaction, it was separated to obtain almost white solid B-10 (7.73 g, 76%).

B−10のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 9.15 - 9.09 (m, 1H), 8.55 - 8.39 (m, 4H), 8.40 - 8.29 (m, 2H), 8.20 - 8.13 (m, 1H), 8.00 - 7.90 (m, 2H), 7.90 (dt, J = 7.7, 3.0 Hz, 2H), 7.72 - 7.55 (m, 4H), 7.50 - 7.38 (m, 2H), 7.35 - 7.24 (m, 2H), 7.19 (ddd, J = 12.7, 7.4, 2.1 Hz, 1H), 6.69 (ddtd, J = 50.7, 23.4, 7.5, 2.2 Hz, 2H).
NMR spectrum data of B-10:
1 H NMR (500 MHz, Chloroform) δ 9.15-9.09 (m, 1H), 8.55-8.39 (m, 4H), 8.40-8.29 (m, 2H), 8.20-8.13 (m, 1H), 8.00-7.90 ( m, 2H), 7.90 (dt, J = 7.7, 3.0 Hz, 2H), 7.72-7.55 (m, 4H), 7.50-7.38 (m, 2H), 7.35-7.24 (m, 2H), 7.19 (ddd, J = 12.7, 7.4, 2.1 Hz, 1H), 6.69 (ddtd, J = 50.7, 23.4, 7.5, 2.2 Hz, 2H).

合成実施例45.化合物B−11の合成
ブロモベンゼンを等当量の3−ブロモ−9−エチル−9H−カルバゾールに変えた以外、実施例21と同じ方法を用いて化合物B−11を製造し、反応完成後、分離してほぼ白色固体B−11(5.5g,収率72%)を得た。
Synthesis Example 45. Synthesis of Compound B-11 Compound B-11 was produced in the same manner as in Example 21 except that bromobenzene was replaced with an equivalent equivalent of 3-bromo-9-ethyl-9H-carbazole. As a result, an almost white solid B-11 (5.5 g, yield 72%) was obtained.

合成実施例46.化合物B−12の合成
ブロモベンゼンを等当量の3−ブロモ−9−フェニル−9H−カルバゾールに変えた以外、実施例21と同じ方法を用いて化合物B−12を製造し、反応完成後、分離して淡黄色固体B−12(5.8g,収率67%)を得た。
Synthesis Example 46. Synthesis of Compound B-12 Compound B-12 was produced in the same manner as in Example 21 except that bromobenzene was replaced with an equivalent equivalent of 3-bromo-9-phenyl-9H-carbazole. As a result, a pale yellow solid B-12 (5.8 g, yield 67%) was obtained.

B−12のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.33 (dddd, J = 13.1, 11.6, 7.0, 1.8 Hz, 2H), 8.24 - 8.09 (m, 2H), 8.09 - 8.02 (m, 1H), 8.02 - 7.85 (m, 3H), 7.86 - 7.75 (m, 1H), 7.73 - 7.61 (m, 1H), 7.64 - 7.56 (m, 2H), 7.53 - 7.42 (m, 2H), 7.41 - 7.24 (m, 4H).
NMR spectrum data of B-12:
1 H NMR (500 MHz, Chloroform) δ 8.33 (dddd, J = 13.1, 11.6, 7.0, 1.8 Hz, 2H), 8.24-8.09 (m, 2H), 8.09-8.02 (m, 1H), 8.02-7.85 ( m, 3H), 7.86-7.75 (m, 1H), 7.73-7.61 (m, 1H), 7.64-7.56 (m, 2H), 7.53-7.42 (m, 2H), 7.41-7.24 (m, 4H).

合成実施例47.化合物B−13の合成
中間体M8を等当量の中間体M9に変え、4−ビフェニルボロン酸を等当量の(9−フェニル−9H−カルバゾール−3−イル)ボロン酸に変えた以外、実施例25と同じ方法を用いて化合物B−13を製造し、反応完成後、分離して白色固体B−13(6.1g,収率78%)を得た。
Synthesis Example 47. Synthesis of Compound B-13 Example except that intermediate M8 was changed to equivalent equivalent of intermediate M9 and 4-biphenylboronic acid was changed to equivalent equivalent of (9-phenyl-9H-carbazol-3-yl) boronic acid Compound B-13 was produced using the same method as No. 25, and after completion of the reaction, it was separated to obtain a white solid B-13 (6.1 g, yield 78%).

B−13のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.50 - 8.43 (m, 3H), 8.36 (dd, J= 7.5, 1.4 Hz, 1H), 8.16 (d, J = 1.0 Hz, 1H), 8.10 (dt, J = 7.5, 1.9 Hz, 3H), 8.03 (dd, J = 7.4, 2.1 Hz, 1H), 7.96 - 7.83 (m, 8H), 7.77 (dd, J = 7.4, 1.4 Hz, 1H), 7.67 (d, J = 1.1 Hz, 2H), 7.60 (t, J= 7.4 Hz, 6H), 7.54 - 7.47 (m, 2H), 7.49 - 7.37 (m, 3H), 7.37 - 7.24 (m, 7H).
NMR spectrum data of B-13:
1 H NMR (500 MHz, Chloroform) δ 8.50-8.43 (m, 3H), 8.36 (dd, J = 7.5, 1.4 Hz, 1H), 8.16 (d, J = 1.0 Hz, 1H), 8.10 (dt, J = 7.5, 1.9 Hz, 3H), 8.03 (dd, J = 7.4, 2.1 Hz, 1H), 7.96-7.83 (m, 8H), 7.77 (dd, J = 7.4, 1.4 Hz, 1H), 7.67 (d, J = 1.1 Hz, 2H), 7.60 (t, J = 7.4 Hz, 6H), 7.54-7.47 (m, 2H), 7.49-7.37 (m, 3H), 7.37-7.24 (m, 7H).

合成実施例48.化合物B−14の合成
中間体M8を等当量の中間体M10に変え、4−ビフェニルボロン酸を等当量の(9−フェニル−9H−カルバゾール−3−イル)ボロン酸に変えた以外、実施例25と同じ方法を用いて化合物B−14を製造し、反応完成後、分離して白色固体B−14(6.5g,収率85%)を得た。
Synthesis Example 48. Synthesis of Compound B-14 Example except that intermediate M8 was changed to equivalent equivalent of intermediate M10 and 4-biphenylboronic acid was changed to equivalent equivalent of (9-phenyl-9H-carbazol-3-yl) boronic acid Compound B-14 was produced using the same method as No. 25, and after completion of the reaction, it was separated to obtain a white solid B-14 (6.5 g, yield 85%).

合成実施例49.化合物B−15の合成   Synthesis Example 49. Synthesis of Compound B-15

Figure 2018523638
Figure 2018523638

塩酸−9H−カルバゾール−3−ヒドラジン(103g、0.44mol)と、ジベンゾ[a、e]−5,11−シクロオクタジエン(6H、12H)−ジオン(49g、0.207mol)と、エタノール(400mL)とを混合し、撹拌条件下、3min内に濃硫酸を2.1g滴下し、65℃で4時間反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをエタノール、石油エーテルでこの順に洗浄し、茶色固体(150g)を得た。   Hydrochloric acid-9H-carbazole-3-hydrazine (103 g, 0.44 mol), dibenzo [a, e] -5,11-cyclooctadiene (6H, 12H) -dione (49 g, 0.207 mol) and ethanol ( 400 mL), 2.1 g of concentrated sulfuric acid was added dropwise within 3 min under stirring conditions, and the mixture was reacted at 65 ° C. for 4 hours. After completion of the reaction, the mixture was cooled to room temperature, filtered, and the filter cake was ethanol, petroleum ether Were washed in this order to obtain a brown solid (150 g).

上記の固体(150g)と、酢酸(600mL)と、トリフルオロ酢酸(60mL)とを混合し、72℃で15時間還流反応させ、室温まで冷却させ、濾過し、濾過ケーキを酢酸、石油エーテルでこの順に洗浄し、白色固体である中間体化合物M12(84.6g,75%)を得た。   The above solid (150 g), acetic acid (600 mL), and trifluoroacetic acid (60 mL) were mixed, refluxed at 72 ° C. for 15 hours, cooled to room temperature, filtered, and the filter cake was filtered with acetic acid and petroleum ether. This was washed in this order to obtain an intermediate compound M12 (84.6 g, 75%) as a white solid.

中間体M12(28g,50mmol)と、ヨードベンゼン(51g,250mol)と、CuI(1g,5.3mmol)と、CsCO(7g,35mmol)と、エチレンジアミン(10mL,34.3mmol)と、キシレン(500mL)とを混合し、還流条件下、1日撹拌して反応させ、反応終了後、室温まで冷却させ、有機相を酢酸エチルで抽出し、分離によって得られた有機相を減圧蒸留し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、淡黄色固体である化合物B−15(26.8g,62%)を得た。 Intermediate M12 (28 g, 50 mmol), iodobenzene (51 g, 250 mol), CuI (1 g, 5.3 mmol), Cs 2 CO 3 (7 g, 35 mmol), ethylenediamine (10 mL, 34.3 mmol), Xylene (500 mL) was mixed, reacted under stirring under reflux conditions for 1 day, cooled to room temperature after completion of the reaction, the organic phase was extracted with ethyl acetate, and the organic phase obtained by separation was distilled under reduced pressure. The obtained distillation residue was subjected to column separation (eluent: dichloromethane / hexane) to obtain a light yellow solid compound B-15 (26.8 g, 62%).

合成実施例50.化合物B−16の合成
塩酸−9H−カルバゾール−3−ヒドラジンを等当量の塩酸−9H−カルバゾール−2−ヒドラジンに変えた以外、実施49と同じ方法を用いて化合物B−16を製造し、3ステップ反応によって、淡黄色固体(29g,収率67.1%)を得た。
Synthesis Example 50. Synthesis of Compound B-16 Compound B-16 was produced using the same method as in Example 49 except that hydrochloric acid-9H-carbazole-3-hydrazine was changed to an equivalent equivalent of hydrochloric acid-9H-carbazole-2-hydrazine. The step reaction gave a pale yellow solid (29 g, 67.1% yield).

合成実施例51.化合物B−17の合成   Synthesis Example 51. Synthesis of Compound B-17

Figure 2018523638
Figure 2018523638

2−ブロモニトロベンゼン(46g,230mmol)と、ジベンゾチオフェン−3−ボロン酸(63,276mmol)と、Pd(PPh(5g,4.6mmol)と、KCO(61g,575mmol)と、トルエン(600mL)と、EtOH(200mL)とを混合し、該混合物に蒸留水200mLを加えた後、120℃で2時間撹拌して反応させた。反応終了後、反応系を蒸留水で洗浄し、酢酸エチルで抽出して有機相を得、有機相をMgSOで乾燥させ、回転蒸発により溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、化合物B−17−1(61g,87%)を得た。 2-bromonitrobenzene (46 g, 230 mmol), dibenzothiophene-3-boronic acid (63,276 mmol), Pd (PPh 3 ) 4 (5 g, 4.6 mmol), K 2 CO 3 (61 g, 575 mmol), Toluene (600 mL) and EtOH (200 mL) were mixed, 200 mL of distilled water was added to the mixture, and the mixture was stirred at 120 ° C. for 2 hours to be reacted. After completion of the reaction, the reaction system was washed with distilled water and extracted with ethyl acetate to obtain an organic phase, the organic phase was dried over MgSO 4 , the solvent was removed by rotary evaporation, and finally the residue from which the solvent was removed was removed. The product was separated by column to obtain Compound B-17-1 (61 g, 87%).

化合物B−17−1(3.05g,10mmol)と、P(OEt)(30mL)と、1,2−ジクロロベンゼン(30mL)とを混合し、150℃で8時間撹拌して反応させ、反応終了後、溶剤を除去し、溶剤が除去された残留物をカラム分離し、化合物B−17−2(1.2g,48%)を得た。 Compound B-17-1 (3.05 g, 10 mmol), P (OEt) 3 (30 mL), and 1,2-dichlorobenzene (30 mL) were mixed and reacted by stirring at 150 ° C. for 8 hours. After completion of the reaction, the solvent was removed, and the residue from which the solvent was removed was subjected to column separation to obtain Compound B-17-2 (1.2 g, 48%).

キシレン(100mL)と、化合物M7(6.9g,10mmol)と、化合物B−17−2(6.2g,25mmol)と、CuI(0.9g,5mmol)と、トランス−ジアミノシクロヘキサン(2.1mL,20mmol)と、炭酸セシウム(6.5g,20mmol)とを混合し、3時間撹拌還流させた。反応終了後、室温まで冷却させてから、濾過し、濾過ケーキをジクロロメタン(ジクロロメタン)で洗浄し、濾液を合併し、減圧蒸留して溶剤を除去し、得られた蒸留残留物をカラム分離し、淡黄色固体である化合物B−17(5.6g,収率52%)を得た。   Xylene (100 mL), Compound M7 (6.9 g, 10 mmol), Compound B-17-2 (6.2 g, 25 mmol), CuI (0.9 g, 5 mmol), and trans-diaminocyclohexane (2.1 mL) , 20 mmol) and cesium carbonate (6.5 g, 20 mmol) were mixed and stirred and refluxed for 3 hours. After completion of the reaction, the reaction mixture is cooled to room temperature, filtered, and the filter cake is washed with dichloromethane (dichloromethane). The filtrates are combined, distilled under reduced pressure to remove the solvent, and the resulting distillation residue is separated into a column. Compound B-17 (5.6 g, yield 52%) was obtained as a pale yellow solid.

B−17のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 9.73 (d, J = 7.5 Hz, 2H), 9.21 (dd, J = 7.5, 1.5 Hz, 1H), 8.69 - 8.57 (m, 5H), 8.47 (dd, J = 7.3, 1.5 Hz, 1H), 8.38 - 8.28 (m, 3H), 8.20 (dt, J = 7.5, 1.7 Hz, 2H), 8.12 - 7.99 (m, 5H), 7.98 - 7.93 (m, 2H), 7.80 (td, J = 7.5, 1.5 Hz, 1H), 7.74 - 7.60 (m, 3H), 7.54 - 7.36 (m, 4H), 7.37 - 7.29 (m, 4H), 7.32 - 7.20 (m, 4H), 7.07 (td, J = 7.7, 1.8 Hz, 2H), 6.77 (dddd, J = 14.8, 12.5, 7.4, 2.1 Hz, 3H), 6.63 (td, J = 7.5, 2.1 Hz, 1H).
NMR spectrum data of B-17:
1 H NMR (500 MHz, Chloroform) δ 9.73 (d, J = 7.5 Hz, 2H), 9.21 (dd, J = 7.5, 1.5 Hz, 1H), 8.69-8.57 (m, 5H), 8.47 (dd, J = 7.3, 1.5 Hz, 1H), 8.38-8.28 (m, 3H), 8.20 (dt, J = 7.5, 1.7 Hz, 2H), 8.12-7.99 (m, 5H), 7.98-7.93 (m, 2H), 7.80 (td, J = 7.5, 1.5 Hz, 1H), 7.74-7.60 (m, 3H), 7.54-7.36 (m, 4H), 7.37-7.29 (m, 4H), 7.32-7.20 (m, 4H), 7.07 (td, J = 7.7, 1.8 Hz, 2H), 6.77 (dddd, J = 14.8, 12.5, 7.4, 2.1 Hz, 3H), 6.63 (td, J = 7.5, 2.1 Hz, 1H).

合成実施例52.化合物B−18の合成
ジベンゾチオフェン−3−ボロン酸を等当量のジベンゾフラン−3−ボロン酸に変えた以外、実施例51と同じ方法を用いて化合物B−18を製造し、反応終了後、粗製品をカラムクロマトグラフで分離し、白色固体(7.1g,収率66%)を得た。
Synthesis Example 52. Synthesis of Compound B-18 Compound B-18 was produced in the same manner as in Example 51 except that dibenzothiophene-3-boronic acid was changed to an equivalent equivalent dibenzofuran-3-boronic acid. The product was separated by column chromatography to obtain a white solid (7.1 g, yield 66%).

B−18のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.33 (dd, J = 7.5, 1.7 Hz, 2H), 7.98 (dd, J = 7.5, 1.5 Hz, 2H), 7.88 (dd, J = 5.6, 3.9 Hz, 2H), 7.64 - 7.56 (m, 2H), 7.53 (s, 4H), 7.44 (td, J = 7.5, 1.6 Hz, 1H), 7.39 - 7.20 (m, 7H), 7.16 (td, J = 7.5, 1.6 Hz, 2H).
NMR spectrum data of B-18:
1 H NMR (500 MHz, Chloroform) δ 8.33 (dd, J = 7.5, 1.7 Hz, 2H), 7.98 (dd, J = 7.5, 1.5 Hz, 2H), 7.88 (dd, J = 5.6, 3.9 Hz, 2H ), 7.64-7.56 (m, 2H), 7.53 (s, 4H), 7.44 (td, J = 7.5, 1.6 Hz, 1H), 7.39-7.20 (m, 7H), 7.16 (td, J = 7.5, 1.6 Hz, 2H).

合成実施例53.化合物B−19の合成   Synthesis Example 53. Synthesis of Compound B-19

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

化合物B−19−1の製造
ジベンゾ[b、d]フラン−3−ボロン酸(106g,0.5mol)と、2−ブロモ−ニトロベンゼン(101g,0.5mol)と、テトラキストリフェニルホスフィンパラジウム(1.15g,1mmol)と、炭酸カリウム(138g,1mol)と、トルエン(1L)と、エタノール(0.5L)と、蒸留水(0.3L)とを混合し、110℃で2h撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(200mL)で3回抽出し、得られた有機相を合併して無水MgSOで乾燥させ、回転蒸発器によって溶剤を除去し、溶剤が除去された残留物をカラム分離し、中間体化合物B−19−1(130g,収率89%)を得た。
Preparation of Compound B-19-1 Dibenzo [b, d] furan-3-boronic acid (106 g, 0.5 mol), 2-bromo-nitrobenzene (101 g, 0.5 mol), tetrakistriphenylphosphine palladium (1 .15 g, 1 mmol), potassium carbonate (138 g, 1 mol), toluene (1 L), ethanol (0.5 L), and distilled water (0.3 L) are mixed and stirred at 110 ° C. for 2 h to react. I let you. After completion of the reaction, the reaction system was washed with distilled water and extracted three times with ethyl acetate (200 mL). The obtained organic phases were combined and dried over anhydrous MgSO 4 , and the solvent was removed by a rotary evaporator. The residue from which the solvent was removed was subjected to column separation to obtain Intermediate Compound B-19-1 (130 g, yield 89%).

化合物B−19−2の製造
2L反応フラスコにおいて、中間体化合物B−19−1(100g,0.34mol)にトリエチルホスファイト(1000mL)を加え、150℃で6時間撹拌し、室温まで冷却させ、酢酸エチル(300mL)で3回抽出し、得られた有機相を合併し、有機相を500mL脱イオン水で3回洗浄し、有機相中の水分を無水MgSOで除去してから、有機相を減圧蒸留し、得られた蒸留残留物をカラム分離し、化合物B−19−2(56g,収率64%)を得た。
Preparation of compound B-19-2 In a 2 L reaction flask, triethyl phosphite (1000 mL) was added to intermediate compound B-19-1 (100 g, 0.34 mol), stirred at 150 ° C. for 6 hours, and cooled to room temperature. Extract with ethyl acetate (300 mL) three times, combine the resulting organic phases, wash the organic phase three times with 500 mL deionized water, remove the water in the organic phase with anhydrous MgSO 4 , The phase was distilled under reduced pressure, and the resulting distillation residue was subjected to column separation to obtain Compound B-19-2 (56 g, yield 64%).

化合物B−19−3の製造
250mL三つ口フラスコにおいて、中間体化合物B−19−2(10.3g,40mmol)と、p−ブロモヨードベンゼン(14.2g,50mmol)と、CuI(1.8g,10mmol)と、トランス−ジアミノシクロヘキサン(4.2mL,40mmol)と、炭酸セシウム(13g,40mmol)とで形成された混合物を3時間加熱して還流させた。反応混合物を室温まで冷却させ、濾過し、濾過ケーキをジクロロメタンで洗浄した後、得られた濾液を減圧蒸留し、得られた蒸留残留物をカラム分離し、化合物B−19−3(12.4g,収率75%)を得た。
Preparation of Compound B-19-3 In a 250 mL three-necked flask, intermediate compound B-19-2 (10.3 g, 40 mmol), p-bromoiodobenzene (14.2 g, 50 mmol), and CuI (1. 8 g, 10 mmol), a mixture formed with trans-diaminocyclohexane (4.2 mL, 40 mmol) and cesium carbonate (13 g, 40 mmol) was heated to reflux for 3 hours. The reaction mixture was allowed to cool to room temperature, filtered, and the filter cake was washed with dichloromethane. The resulting filtrate was distilled under reduced pressure, and the resulting distillation residue was separated by column to obtain compound B-19-3 (12.4 g , Yield 75%).

化合物B−19−4の製造
1L反応フラスコにおいて、中間体M6(38.2g,0.1mol)と、ブロモベンゼン(16g,0.1mol)と、CuI(3.3g,17.1mmol)と、炭酸セシウム(33.44g,102.9mmol)と、シクロヘキシルジアミン(2.3mL,34.3mmol)と、キシレン(500mL)とを混合し、還流条件下、1日撹拌して反応させ、反応終了後、室温まで冷却させ、250mL酢酸エチルで抽出し、有機相を無水MgSOで処理してから減圧蒸留して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、化合物B−19−4(25.7g,収率56%)を得た。
Preparation of Compound B-19-4 In a 1 L reaction flask, intermediate M6 (38.2 g, 0.1 mol), bromobenzene (16 g, 0.1 mol), CuI (3.3 g, 17.1 mmol), Cesium carbonate (33.44 g, 102.9 mmol), cyclohexyldiamine (2.3 mL, 34.3 mmol) and xylene (500 mL) were mixed and reacted with stirring under reflux conditions for 1 day. , Cooled to room temperature, extracted with 250 mL ethyl acetate, the organic phase was treated with anhydrous MgSO 4 , distilled under reduced pressure to remove the solvent, and the resulting distillation residue was separated by column (eluent: dichloromethane / hexane). ), Compound B-19-4 (25.7 g, yield 56%) was obtained.

化合物A−19の製造
1L反応フラスコにおいて、中間体化合物B−19−4(45.9g,0.1mol)と、中間体化合物B−19−3(42g,0.1mol)と、CuI(3.3g,17.1mmol)と、炭酸セシウム(33.44g,102.9mmol)と、シクロヘキシルジアミン(2.3mL,34.3mmol)と、キシレン(500mL)とを混合し、還流条件下、1日撹拌して反応させ、反応終了後、室温まで冷却させ、250mL酢酸エチルで抽出し、有機相を無水MgSOで処理してから減圧蒸留して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、淡黄色化合物B−19(67.2g,収率85%)を得た。
Preparation of Compound A-19 In a 1 L reaction flask, intermediate compound B-19-4 (45.9 g, 0.1 mol), intermediate compound B-19-3 (42 g, 0.1 mol), CuI (3 .3 g, 17.1 mmol), cesium carbonate (33.44 g, 102.9 mmol), cyclohexyldiamine (2.3 mL, 34.3 mmol), and xylene (500 mL) are mixed and refluxed for one day. Stir to react, and after the reaction is complete, cool to room temperature, extract with 250 mL ethyl acetate, treat the organic phase with anhydrous MgSO 4 , remove the solvent by vacuum distillation, and remove the resulting distillation residue in a column. Separation (eluent: dichloromethane / hexane) gave pale yellow compound B-19 (67.2 g, yield 85%).

合成実施例54.化合物B−20の合成   Synthesis Example 54. Synthesis of Compound B-20

Figure 2018523638
Figure 2018523638

中間体化合物B−20−1の製造
トルエン(500mL)と、o−ヨードニトロベンゼン(30g,120.4mmol)と、4−ブロモフェニルボロン酸(26g,132.5mmol)と、Pd(PPh(6.9g,6.02mmol)と、NaCO(150mL,濃度2M)とを混合し、100℃で4時間反応させ、反応終了後、室温まで冷却させ、酢酸エチルで抽出して有機相を得、その後、有機相を蒸留水で洗浄し、有機相中の水分を無水MgSOで除去し、有機相を減圧蒸留し、得られた蒸留残留物をカラム分離し、中間体B−20−1(28g,83.3%)を得た。
Preparation of intermediate compound B-20-1 Toluene (500 mL), o-iodonitrobenzene (30 g, 120.4 mmol), 4-bromophenylboronic acid (26 g, 132.5 mmol), and Pd (PPh 3 ) 4 (6.9 g, 6.02 mmol) and Na 2 CO 3 (150 mL, concentration 2M) were mixed and reacted at 100 ° C. for 4 hours. After completion of the reaction, the mixture was cooled to room temperature, extracted with ethyl acetate and organic The organic phase is then washed with distilled water, the water in the organic phase is removed with anhydrous MgSO 4 , the organic phase is distilled under reduced pressure, the resulting distillation residue is separated by column and the intermediate B- 20-1 (28 g, 83.3%) was obtained.

中間体化合物B−20−2の製造
トリエチルホスファイト(300mL)に、化合物B−20−1(28g,0.1mol)を加え、150℃で6時間撹拌し、室温まで冷却させ、酢酸エチルで抽出して有機相を得、有機相を蒸留水で洗浄し、有機相中の水分を無水MgSOで除去し、有機相を減圧蒸留して有機溶剤を除去し、得られた蒸留残留物をカラム分離し、中間体B−20−2(11g,44.4%)を得た。
Preparation of Intermediate Compound B-20-2 Compound B-20-1 (28 g, 0.1 mol) was added to triethyl phosphite (300 mL), stirred at 150 ° C. for 6 hours, cooled to room temperature, and ethyl acetate was added. The organic phase is obtained by extraction, the organic phase is washed with distilled water, the water in the organic phase is removed with anhydrous MgSO 4 , the organic phase is distilled under reduced pressure to remove the organic solvent, and the resulting distillation residue is removed. Column separation was performed to obtain Intermediate B-20-2 (11 g, 44.4%).

中間体化合物B−20−3の製造
中間体化合物B−20−2(24.6g,0.1mol)と、ヨードベンゼン(41.3g,0.2mol)と、CuI(9.6g,50mmol)と、CsCO(82.5g,0.25mol)と、トルエン(600mL)とを混合し、50℃で反応させた後、混合物にエチレンジアミン(6.8mL,0.1mol)を加え、14時間還流反応させ、反応終了後、室温で冷却させ、蒸留水を加え、酢酸エチルで抽出して有機相を得、有機相を蒸留水で洗浄し、有機相中の水分を無水MgSOで除去し、有機相を減圧蒸留し、得られた蒸留残留物をカラム分離し、中間体化合物B−20−3(24g,収率75%)を得た。
Preparation of intermediate compound B-20-3 Intermediate compound B-20-2 (24.6 g, 0.1 mol), iodobenzene (41.3 g, 0.2 mol), and CuI (9.6 g, 50 mmol) Then, Cs 2 CO 3 (82.5 g, 0.25 mol) and toluene (600 mL) were mixed and reacted at 50 ° C., and then ethylenediamine (6.8 mL, 0.1 mol) was added to the mixture. Reflux reaction for hours, and after completion of the reaction, cool at room temperature, add distilled water, extract with ethyl acetate to obtain an organic phase, wash the organic phase with distilled water, and remove moisture in the organic phase with anhydrous MgSO 4 Then, the organic phase was distilled under reduced pressure, and the resulting distillation residue was subjected to column separation to obtain an intermediate compound B-20-3 (24 g, yield 75%).

中間体化合物B−20−4の製造
化合物B−20−3(21g,86mmol)をTHF(300mL)に溶かし、−78℃で混合物にn−ブチルリチウム(38mL,95mmol,2.5Mヘキサン溶液)を徐々に加えた。−78℃で1時間保持した後、混合物にボロン酸トリメチル(12.4mL,112mmol)を加えた。室温まで徐々に昇温し、室温で12時間撹拌して反応させた。撹拌された混合物に飽和塩化アンモニウム水溶液を加えて反応をクエンチさせ、酢酸エチルで3回抽出し、有機相を合併して有機相中の水分を無水MgSOで除去した。有機相を減圧蒸留し、得られた蒸留残留物をカラム分離し、中間体化合物B−20−4(20g,収率81%)を得た。
Preparation of Intermediate Compound B-20-4 Compound B-20-3 (21 g, 86 mmol) was dissolved in THF (300 mL), and n-butyllithium (38 mL, 95 mmol, 2.5 M hexane solution) was added to the mixture at −78 ° C. Was gradually added. After holding at −78 ° C. for 1 hour, trimethyl boronate (12.4 mL, 112 mmol) was added to the mixture. The temperature was gradually raised to room temperature, and the reaction was allowed to stir at room temperature for 12 hours. The reaction was quenched by adding saturated aqueous ammonium chloride to the stirred mixture, extracted three times with ethyl acetate, the organic phases were combined, and water in the organic phase was removed with anhydrous MgSO 4 . The organic phase was distilled under reduced pressure, and the resulting distillation residue was subjected to column separation to obtain an intermediate compound B-20-4 (20 g, yield 81%).

中間体化合物B−20−5の製造
化合物B−20−4(20g,70mmol)と、1−ブロモ−2−ニトロベンゼン(14.3g,71mmol)と、Pd(PPh(4.3g,2.4mmol)と、NaCO溶液(75mL,2M)と、トルエン(300mL)と、エタノール(70mL)とを混合し、5時間還流撹拌した後、室温まで冷却させ、混合物に脱イオン水(200mL)を加えた後、酢酸エチル(100mL)で3回抽出し、有機相を合併して有機相中の水分を無水MgSOで除去し、有機相を減圧蒸留し、得られた蒸留残留物をカラム分離し、中間体化合物B−20−5(20.6g,収率81.%)を得た。
Preparation of Intermediate Compound B-20-5 Compound B-20-4 (20 g, 70 mmol), 1-bromo-2-nitrobenzene (14.3 g, 71 mmol), and Pd (PPh 3 ) 4 (4.3 g, 2.4 mmol), Na 2 CO 3 solution (75 mL, 2 M), toluene (300 mL), and ethanol (70 mL) are mixed and stirred at reflux for 5 hours, and then cooled to room temperature. (200 mL) was added, followed by extraction three times with ethyl acetate (100 mL), the organic phases were combined, water in the organic phase was removed with anhydrous MgSO 4 , the organic phase was distilled under reduced pressure, and the resulting distillation residue The product was subjected to column separation to obtain intermediate compound B-20-5 (20.6 g, yield 81.%).

中間体化合物B−20−6の製造
化合物B−20−5(20g,55mmol)に、トリエチルホスファイト(200mL)を加え、150℃で6時間撹拌した後、室温で冷却させ、酢酸エチルで抽出して有機相を得、有機相を蒸留水で洗浄した後、有機相中の水分を無水MgSOで乾燥して除去し、有機相を減圧蒸留し、得られた蒸留残留物をカラム分離し、中間体化合物B−20−6(7g,収率38%)を得た。
Preparation of Intermediate Compound B-20-6 Triethyl phosphite (200 mL) was added to Compound B-20-5 (20 g, 55 mmol), stirred at 150 ° C. for 6 hours, cooled at room temperature, and extracted with ethyl acetate. After the organic phase is washed with distilled water, water in the organic phase is removed by drying with anhydrous MgSO 4 , the organic phase is distilled under reduced pressure, and the resulting distillation residue is separated by column. Intermediate compound B-20-6 (7 g, 38% yield) was obtained.

化合物B−20の製造
キシレン(100mL)に、化合物M7(6.9g,10mmol)、中間体化合物C−31−6(8.3g,25mmol)、CuI(0.9g,5mmol)、トランス−ジアミノシクロヘキサン(2.1mL,20mmol)及び炭酸セシウム(6.5g,20mmol)を加え、該混合物を3時間還流させた。その後、反応混合物を室温まで冷却させ、濾過し、濾過ケーキをジクロロメタン(ジクロロメタン)で洗浄してから、得られた濾液を減圧蒸留し、得られた蒸留残留物をカラム分離し、黄色固体である化合物B−20(5.4g,収率45%)を得た。
Preparation of Compound B-20 To xylene (100 mL), compound M7 (6.9 g, 10 mmol), intermediate compound C-31-6 (8.3 g, 25 mmol), CuI (0.9 g, 5 mmol), trans-diamino Cyclohexane (2.1 mL, 20 mmol) and cesium carbonate (6.5 g, 20 mmol) were added and the mixture was refluxed for 3 hours. The reaction mixture is then allowed to cool to room temperature, filtered, the filter cake is washed with dichloromethane (dichloromethane), and the resulting filtrate is distilled under reduced pressure, and the resulting distillation residue is column separated and is a yellow solid Compound B-20 (5.4 g, yield 45%) was obtained.

合成実施例55.化合物B−21の合成
ブロモベンゼンを等当量の2−ブロモジベンゾ[b,d]フランに変えた以外、実施例11と同じ方法を用いて化合物B−21を製造し、反応完成後、粗製品をカラム分離し、白色固体(4.36g,収率61%)を得た。
Synthesis Example 55. Synthesis of Compound B-21 Compound B-21 was produced in the same manner as in Example 11 except that bromobenzene was replaced with an equivalent equivalent of 2-bromodibenzo [b, d] furan. Were separated by column to obtain a white solid (4.36 g, yield 61%).

B−21のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.66 - 8.50 (m, 3H), 8.24 - 8.13 (m, 2H), 8.09 - 7.96 (m, 3H), 7.89 (ddd, J = 16.9, 7.4, 2.0 Hz, 1H), 7.67 - 7.44 (m, 4H), 7.43 - 7.24 (m, 3H).
NMR spectrum data of B-21:
1 H NMR (500 MHz, Chloroform) δ 8.66-8.50 (m, 3H), 8.24-8.13 (m, 2H), 8.09-7.96 (m, 3H), 7.89 (ddd, J = 16.9, 7.4, 2.0 Hz, 1H), 7.67-7.44 (m, 4H), 7.43-7.24 (m, 3H).

合成実施例56.化合物B−22の合成
ブロモベンゼンを等当量の2−ブロモジベンゾ[b,d]チオフェンに変えた以外、実施例11と同じ方法を用いて化合物B−22を製造し、反応完成後、粗製品をカラム分離し、白色固体(4.86g,収率65%)を得た。
Synthesis Example 56. Synthesis of Compound B-22 Compound B-22 was produced in the same manner as in Example 11 except that bromobenzene was changed to an equivalent equivalent of 2-bromodibenzo [b, d] thiophene. Were separated by column to obtain a white solid (4.86 g, yield 65%).

合成実施例57.化合物B−23の合成
ブロモベンゼンを等当量の2−ブロモジベンゾ[b,d]チオフェンに変えた以外、実施例21と同じ方法を用いて化合物B−23を製造し、反応完成後、粗製品をカラム分離し、ほぼ白色固体(5.9g,収率79%)を得た。
Synthesis Example 57. Synthesis of Compound B-23 Compound B-23 was produced in the same manner as in Example 21, except that bromobenzene was replaced with an equivalent equivalent of 2-bromodibenzo [b, d] thiophene. Were separated by column to obtain almost white solid (5.9 g, yield 79%).

合成実施例58.化合物M13の合成   Synthesis Example 58. Synthesis of compound M13

Figure 2018523638
Figure 2018523638

中間体M1(38.6g,0.1mol)と、1−ブロモ−4−ヨードベンゼン(56.7g,0.2mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、エチレンジアミン(2.3mL,34.3mmol)と、トルエン(500mL)とを混合し、還流条件下1日撹拌し、反応終了後、室温まで冷却させ、有機相を酢酸エチルで抽出して減圧蒸留し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、中間体化合物M13(48.3g,70.1%)を得た。 Intermediate M1 (38.6 g, 0.1 mol), 1-bromo-4-iodobenzene (56.7 g, 0.2 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 ( 21.8 g, 102.9 mmol), ethylenediamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed, stirred under reflux conditions for 1 day, and after completion of the reaction, allowed to cool to room temperature, Was extracted with ethyl acetate and distilled under reduced pressure, and the resulting distillation residue was subjected to column separation (eluent: dichloromethane / hexane) to obtain intermediate compound M13 (48.3 g, 70.1%).

合成実施例59.化合物M14の合成
p−ブロモヨードベンゼンを等当量の3−ブロモヨードベンゼンに変えた以外、実施例58と同じ方法を用いて化合物M14を製造し、反応完成後、粗製品をカラム分離し、白色固体である中間体M14(52.5g,収率75%)を得た。
Synthesis Example 59 Synthesis of Compound M14 Compound M14 was produced in the same manner as in Example 58 except that p-bromoiodobenzene was changed to an equivalent equivalent of 3-bromoiodobenzene. After completion of the reaction, the crude product was separated into columns and white. Intermediate M14 (52.5 g, 75% yield) as a solid was obtained.

合成実施例60.化合物B−24の合成   Synthesis Example 60. Synthesis of Compound B-24

Figure 2018523638
Figure 2018523638

中間体M13(6.9g,10mmol)と、ジベンゾチオフェン−2−ボロン酸(5.7g,25mmol)と、Pd(PPh(0.58g,0.5mmol)と、NaCO(5.3g,50mmol)と、トルエン(60mL)と、EtOH(20mL)とを混合し、該混合物に蒸留水(20mL)を加え、120℃で2時間撹拌して反応させた。反応終了後、反応系を蒸留水で洗浄し、酢酸エチル(50mL)で3回抽出し、得られた有機相を合併して有機相をMgSOで乾燥させ、回転蒸発により溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、ほぼ白色固体である化合物B−24(7.3g,81%)を得た。 Intermediate M13 (6.9 g, 10 mmol), dibenzothiophene-2-boronic acid (5.7 g, 25 mmol), Pd (PPh 3 ) 4 (0.58 g, 0.5 mmol), Na 2 CO 3 ( 5.3 g, 50 mmol), toluene (60 mL) and EtOH (20 mL) were mixed, distilled water (20 mL) was added to the mixture, and the mixture was stirred at 120 ° C. for 2 hours to be reacted. After completion of the reaction, the reaction system was washed with distilled water, extracted three times with ethyl acetate (50 mL), the organic phases obtained were combined, the organic phase was dried over MgSO 4 , the solvent was removed by rotary evaporation, Finally, the residue from which the solvent was removed was subjected to column separation to obtain Compound B-24 (7.3 g, 81%) as an almost white solid.

合成実施例61.化合物B−25の合成
中間体M13を等当量の中間体M14に変え、ジベンゾチオフェン−2−ボロン酸を等当量のジベンゾ[b,d]フラン−2−イルボロン酸に変えた以外、実施例60と同じ方法を用いて化合物B−25を製造し、反応完成後、粗製品をカラム分離し、ほぼ白色固体である化合物B−25(6.4g,74%)を得た。
Synthesis Example 61. Synthesis of Compound B-25 Example 60, except that intermediate M13 was changed to an equivalent equivalent of intermediate M14 and dibenzothiophene-2-boronic acid was changed to an equivalent equivalent of dibenzo [b, d] furan-2-ylboronic acid. Compound B-25 was produced using the same method as above, and after completion of the reaction, the crude product was subjected to column separation to obtain Compound B-25 (6.4 g, 74%) as an almost white solid.

合成実施例62.化合物B−26の合成
フェニルボロン酸を等当量の2−ジベンゾチオフェンボロン酸に変えた以外、合成実施例23と同じ方法を用い、反応完成後、淡黄色固体(8.1g,収率80%)を得た。
Synthesis Example 62. Synthesis of Compound B-26 A pale yellow solid (8.1 g, yield 80%) was obtained after completion of the reaction using the same method as in Synthesis Example 23, except that phenylboronic acid was replaced with an equivalent equivalent of 2-dibenzothiopheneboronic acid. )

合成実施例63.化合物B−27の合成   Synthesis Example 63. Synthesis of Compound B-27

Figure 2018523638
Figure 2018523638

中間体M3−2(6.9g,10mmol)と、フェニルボロン酸(3.05g,25mmol)と、Pd(PPh(0.58g,0.5mmol)と、NaCO(5.3g,50mmol)と、トルエン(60mL)と、EtOH(20mL)とを混合し、該混合物に蒸留水(20mL)を加え、120℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチルで抽出して有機相を得、有機相をMgSOで乾燥させ、回転蒸発により溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、白色固体である中間体化合物B−27−1(4.5g,84%)を得た。 Intermediate M3-2 (6.9 g, 10 mmol), phenylboronic acid (3.05 g, 25 mmol), Pd (PPh 3 ) 4 (0.58 g, 0.5 mmol), and Na 2 CO 3 (5. 3 g, 50 mmol), toluene (60 mL), and EtOH (20 mL) were mixed, distilled water (20 mL) was added to the mixture, and the mixture was stirred at 120 ° C. for 2 hours to be reacted. After completion of the reaction, the reaction system is washed with distilled water and then extracted with ethyl acetate to obtain an organic phase, the organic phase is dried with MgSO 4 , the solvent is removed by rotary evaporation, and finally the solvent is removed. The remaining residue was subjected to column separation to obtain an intermediate compound B-27-1 (4.5 g, 84%) as a white solid.

中間体化合物B−27−1(5.35g,10mmol)と、2−ブロモジベンゾチオフェン(5.4g,20mmol)と、CuI(1g,5mmol)と、CsCO(8.3g,25mmol)と、トルエン(100mL)とを混合し、50℃で反応させた後、混合物にエチレンジアミン(0.7mL、10mmol)を加え、14時間還流反応させ、反応終了、室温で冷却させ、蒸留水を加え、酢酸エチルで抽出して有機相を得、有機相中の水分をMgSOで除去し、有機相を減圧蒸留し、得られた蒸留残留物をカラム分離し、淡黄色固体である目的化合物B−27(5.84g,収率65%)を得た。 Intermediate compound B-27-1 (5.35 g, 10 mmol), 2-bromodibenzothiophene (5.4 g, 20 mmol), CuI (1 g, 5 mmol), Cs 2 CO 3 (8.3 g, 25 mmol) And toluene (100 mL) are mixed and reacted at 50 ° C., then ethylenediamine (0.7 mL, 10 mmol) is added to the mixture, and the mixture is refluxed for 14 hours. After completion of the reaction, cooled at room temperature, distilled water is added. Extraction with ethyl acetate yields an organic phase, water in the organic phase is removed with MgSO 4 , the organic phase is distilled under reduced pressure, and the resulting distillation residue is separated by column to obtain the target compound B as a pale yellow solid. -27 (5.84 g, 65% yield) was obtained.

合成実施例64.化合物B−28の合成
ブロモベンゼンを等当量の2−ブロモジベンゾ[b,d]チオフェンに変えた以外、合成実施例34と同じの合成方法を用い、反応完成後、白色固体(4.32g,収率68%)を得た。
Synthesis Example 64. Synthesis of Compound B-28 A white solid (4.32 g, 4.32 g, after completion of the reaction was carried out using the same synthesis method as in Synthesis Example 34, except that bromobenzene was replaced with an equivalent equivalent of 2-bromodibenzo [b, d] thiophene. Yield 68%).

合成実施例65.化合物B−29の合成
4−ビフェニルボロン酸を等当量のジベンゾ[b,d]チオフェン−2−イルボロン酸に変えた以外、合成実施例25と同じの合成方法を用い、反応完成後、白色固体(4.15g,2ステップの合計収率58%)を得た。
Synthesis Example 65. Synthesis of Compound B-29 A white solid was obtained after completion of the reaction using the same synthesis method as in Synthesis Example 25 except that 4-biphenylboronic acid was changed to an equivalent equivalent of dibenzo [b, d] thiophen-2-ylboronic acid. (4.15 g, total yield of 2 steps 58%).

合成実施例66.化合物B−30の合成   Synthesis Example 66. Synthesis of Compound B-30

Figure 2018523638
Figure 2018523638

中間体M7(6.9g,10mmol)と、ジベンゾチオフェン−2−ボロン酸(5.7g,25mmol)と、Pd(PPh(0.58g,0.5mmol)と、KCO(5.3g,50mmol)と、トルエン(60mL)と、EtOH(20mL)とを混合し、該混合物に蒸留水(20mL)を加えた後、120℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチルで抽出して有機相を得、有機相をMgSOで乾燥させ、回転蒸発により溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、白色固体である化合物B−30(6.8g,76%)を得た。 Intermediate M7 (6.9 g, 10 mmol), dibenzothiophene-2-boronic acid (5.7 g, 25 mmol), Pd (PPh 3 ) 4 (0.58 g, 0.5 mmol), and K 2 CO 3 ( 5.3 g, 50 mmol), toluene (60 mL), and EtOH (20 mL) were mixed, and distilled water (20 mL) was added to the mixture, followed by stirring at 120 ° C. for 2 hours for reaction. After completion of the reaction, the reaction system is washed with distilled water and then extracted with ethyl acetate to obtain an organic phase, the organic phase is dried with MgSO 4 , the solvent is removed by rotary evaporation, and finally the solvent is removed. The residue was separated by column to obtain Compound B-30 (6.8 g, 76%) as a white solid.

B−30のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.39 (dt, J = 7.5, 1.8 Hz, 1H), 8.23 - 8.16 (m, 2H), 8.19 - 8.12 (m, 1H), 8.15 - 8.04 (m, 2H), 8.01 (dt, J = 7.4, 2.2 Hz, 1H), 7.92 - 7.79 (m, 2H), 7.83 - 7.72 (m, 3H), 7.57 - 7.24 (m, 7H).
NMR spectrum data of B-30:
1 H NMR (500 MHz, Chloroform) δ 8.39 (dt, J = 7.5, 1.8 Hz, 1H), 8.23-8.16 (m, 2H), 8.19-8.12 (m, 1H), 8.15-8.04 (m, 2H) , 8.01 (dt, J = 7.4, 2.2 Hz, 1H), 7.92-7.79 (m, 2H), 7.83-7.72 (m, 3H), 7.57-7.24 (m, 7H).

合成実施例67.化合物B−31の合成
ジベンゾ[b,d]チオフェン−2−イルボロン酸を等当量のジベンゾ[b,d]フラン−2−イルボロン酸に変えた以外、合成実施例66と同じの合成方法を用い、反応完成後、白色固体(7.1g,収率66%)を得た。
Synthesis Example 67. Synthesis of Compound B-31 The same synthesis method as in Synthesis Example 66 was used, except that dibenzo [b, d] thiophen-2-ylboronic acid was replaced with an equivalent equivalent of dibenzo [b, d] furan-2-ylboronic acid. After completion of the reaction, a white solid (7.1 g, yield 66%) was obtained.

合成実施例68.化合物C−1の合成   Synthesis Example 68. Synthesis of Compound C-1

Figure 2018523638
Figure 2018523638

キシレン(100mL)に、化合物M6(3.86g,10mmol)、4−ブロモトリフェニルアミン(9.7g,30mmol)、CuI(0.9g,5mmol)、トランス−ジアミノシクロヘキサン(2.1mL,20mmol)及び炭酸セシウム(6.5g,20mmol)を加え、該混合物を3時間還流させた。反応混合物を室温まで冷却させ、濾過し、濾過ケーキをジクロロメタンで洗浄し、濾液を減圧蒸留して溶剤を除去し、得られた蒸留残留物をカラム分離し、淡黄色固体化合物C−1(6.25g,収率72%)を得た。   Xylene (100 mL), compound M6 (3.86 g, 10 mmol), 4-bromotriphenylamine (9.7 g, 30 mmol), CuI (0.9 g, 5 mmol), trans-diaminocyclohexane (2.1 mL, 20 mmol) And cesium carbonate (6.5 g, 20 mmol) was added and the mixture was refluxed for 3 hours. The reaction mixture is allowed to cool to room temperature, filtered, the filter cake is washed with dichloromethane, the filtrate is distilled under reduced pressure to remove the solvent, the resulting distillation residue is separated by column, and the pale yellow solid compound C-1 (6 .25 g, yield 72%).

C−1のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.50 (s, 12H), 8.37 (s, 17H), 8.05 (s, 17H), 7.64 (s, 21H), 7.47 (s, 10H), 7.32 - 7.03 (m, 105H), 7.12 (s, 6H), 7.15 - 7.03 (m, 44H), 7.05 (d, J = 14.9 Hz, 54H), 6.96 (s, 14H).
NMR spectrum data of C-1:
1 H NMR (500 MHz, Chloroform) δ 8.50 (s, 12H), 8.37 (s, 17H), 8.05 (s, 17H), 7.64 (s, 21H), 7.47 (s, 10H), 7.32-7.03 (m , 105H), 7.12 (s, 6H), 7.15-7.03 (m, 44H), 7.05 (d, J = 14.9 Hz, 54H), 6.96 (s, 14H).

合成実施例69.化合物C−2の合成
4−ブロモトリフェニルアミンを等当量のトリフェニルアミン−3−ブロミドに変えた以外、化合物C−1と同じの合成方法を用い、反応完成後、淡黄色固体C−2(5.8g,収率68%)を得た。
Synthesis Example 69. Synthesis of Compound C-2 Using the same synthesis method as Compound C-1, except that 4-bromotriphenylamine was changed to an equivalent equivalent of triphenylamine-3-bromide, after completion of the reaction, a pale yellow solid C-2 (5.8 g, yield 68%) was obtained.

合成実施例70.化合物C−3の合成
トリフェニルアミン−4−ブロミドを等当量のN−フェニル−N−(4−ブロモフェニル)−2−ナフチルアミンに変えた以外、化合物C−1と同じの合成方法を用い、反応させて淡黄色固体(5.23g,収率55%)を得た。
Synthesis Example 70. Synthesis of Compound C-3 Using the same synthesis method as Compound C-1, except that triphenylamine-4-bromide was replaced with an equivalent equivalent of N-phenyl-N- (4-bromophenyl) -2-naphthylamine, The reaction gave a pale yellow solid (5.23 g, 55% yield).

C−3のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.49 (d, J = 65.0 Hz, 46H), 8.39 (s, 2H), 8.10 (s, 26H), 7.88 - 7.60 (m, 61H), 7.53 (d, J = 10.0 Hz, 30H), 7.43 (d, J = 15.0 Hz, 33H), 7.38 (s, 11H), 7.32 (s, 27H), 7.24 (s, 31H), 7.19 - 7.06 (m, 72H), 7.00 (s, 14H).
NMR spectrum data of C-3:
1 H NMR (500 MHz, Chloroform) δ 8.49 (d, J = 65.0 Hz, 46H), 8.39 (s, 2H), 8.10 (s, 26H), 7.88-7.60 (m, 61H), 7.53 (d, J = 10.0 Hz, 30H), 7.43 (d, J = 15.0 Hz, 33H), 7.38 (s, 11H), 7.32 (s, 27H), 7.24 (s, 31H), 7.19-7.06 (m, 72H), 7.00 (s, 14H).

合成実施例71.化合物C−4の合成   Synthesis Example 71 Synthesis of Compound C-4

Figure 2018523638
Figure 2018523638

250mL三つ口フラスコに、Nを導入する。ジフェニルアミン(4.22g,25mmol)、中間体M11(6.92g,10mmol)、Pd(dba)(0.27g,0.5mmol)、ナトリウムtert−ブトキシド(6.2g,125mmol)、トリ−tert−ブチルホスフィン(1.04mL,0.5mmol)及びトルエン(150mL)を三つ口フラスコに配置し、反応混合物を還流状態で2時間反応させ、完全に反応したことをTLCで検出すると、反応を停止させる。混合物の温度が室温まで下がると、脱イオン水を加えて反応をクエンチさせ、トルエンで3回抽出し、有機相を合併して有機相を無水MgSOで乾燥させ、シリカゲルショットカラムに通過させ、濾液を回転乾燥させ、残留物をカラム分離して黄色固体(7.04g,収率81%)を得た。 N 2 is introduced into a 250 mL three-necked flask. Diphenylamine (4.22 g, 25 mmol), intermediate M11 (6.92 g, 10 mmol), Pd (dba) 2 (0.27 g, 0.5 mmol), sodium tert-butoxide (6.2 g, 125 mmol), tri-tert -Butylphosphine (1.04 mL, 0.5 mmol) and toluene (150 mL) were placed in a three-necked flask and the reaction mixture was allowed to react at reflux for 2 hours, and when complete reaction was detected by TLC, the reaction was Stop. When the temperature of the mixture is lowered to room temperature, the reaction was quenched by the addition of deionized water, and extracted 3 times with toluene, merged organic phases were dried organic phase anhydrous MgSO 4, passed through a silica gel shot column, The filtrate was spin-dried, and the residue was separated by column to obtain a yellow solid (7.04 g, yield 81%).

C−4のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.42 (s, 2H), 8.10 (s, 2H), 8.01 (s, 1H), 7.60 (d, J = 20.0 Hz, 3H), 7.49 (d, J = 10.0 Hz, 3H), 7.24 (s, 4H), 7.08 (s, 4H), 7.00 (s, 2H), 6.48 (s, 1H).
NMR spectrum data of C-4:
1H NMR (500 MHz, Chloroform) δ 8.42 (s, 2H), 8.10 (s, 2H), 8.01 (s, 1H), 7.60 (d, J = 20.0 Hz, 3H), 7.49 (d, J = 10.0 Hz , 3H), 7.24 (s, 4H), 7.08 (s, 4H), 7.00 (s, 2H), 6.48 (s, 1H).

合成実施例72.化合物C−5の合成
中間体M11を等当量の中間体M13に変えた以外、化合物C−4と同じの合成方法を用い、反応させて黄色固体(7.1g,収率82%)を得た。
Synthesis Example 72 Synthesis of Compound C-5 A yellow solid (7.1 g, yield 82%) was obtained by reacting using the same synthesis method as Compound C-4, except that Intermediate M11 was changed to Intermediate E13 with an equivalent equivalent weight. It was.

合成実施例73.化合物C−6の合成
ジフェニルアミンを等当量のフェニルナフチルアミンに変えた以外、化合物C−5と同じの合成方法を用い、反応させて黄色固体(7.5g,収率84%)を得た。
Synthesis Example 73 Synthesis of Compound C-6 A yellow solid (7.5 g, yield 84%) was obtained by reacting using the same synthesis method as Compound C-5, except that diphenylamine was replaced with an equivalent equivalent of phenylnaphthylamine.

合成実施例74.化合物C−7の合成   Synthesis Example 74. Synthesis of Compound C-7

Figure 2018523638
Figure 2018523638

中間体M1(38.6g,0.1mol)と、1−ブロモ−3−ヨードベンゼン(56.7g,0.2mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、エチレンジアミン(2.3mL,34.3mmol)と、トルエン(500mL)とを混合し、還流条件下1日撹拌し、反応終了後、室温まで冷却させ、有機相を酢酸エチルで抽出して減圧蒸留し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、中間体化合物M14(48.3g,70.1%)を得た。 Intermediate M1 (38.6 g, 0.1 mol), 1-bromo-3-iodobenzene (56.7 g, 0.2 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 ( 21.8 g, 102.9 mmol), ethylenediamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed, stirred under reflux conditions for 1 day, and after completion of the reaction, allowed to cool to room temperature, Was extracted with ethyl acetate and distilled under reduced pressure, and the resulting distillation residue was separated by column (eluent: dichloromethane / hexane) to obtain intermediate compound M14 (48.3 g, 70.1%).

250mL三つ口フラスコに、Nを導入する。ジフェニルアミン(4.22g,25mmol)、中間体M14(6.92g,10mmol)、Pd(dba)(0.27g,0.5mmol)、ナトリウムtert−ブトキシド(6.2g,125mmol)、トリ−tert−ブチルホスフィン(1.04mL,0.5mmol)及びトルエン(150mL)を三つ口フラスコに配置し、反応混合物を還流状態で2時間反応させ、完全に反応したことをTLCで検出すると、反応を停止させる。混合物の温度が室温まで下がると、脱イオン水を加えて反応をクエンチさせ、トルエンで3回抽出し、有機相を合併して有機相を無水MgSOで乾燥させ、シリカゲルショットカラムに通過させ、濾液を回転乾燥させ、残留物をカラム分離して黄色固体(7.5g,収率85%)を得た。 N 2 is introduced into a 250 mL three-necked flask. Diphenylamine (4.22 g, 25 mmol), intermediate M14 (6.92 g, 10 mmol), Pd (dba) 2 (0.27 g, 0.5 mmol), sodium tert-butoxide (6.2 g, 125 mmol), tri-tert -Butylphosphine (1.04 mL, 0.5 mmol) and toluene (150 mL) were placed in a three-necked flask and the reaction mixture was allowed to react at reflux for 2 hours, and when complete reaction was detected by TLC, the reaction was Stop. When the temperature of the mixture is lowered to room temperature, the reaction was quenched by the addition of deionized water, and extracted 3 times with toluene, merged organic phases were dried organic phase anhydrous MgSO 4, passed through a silica gel shot column, The filtrate was spin-dried, and the residue was separated by column to obtain a yellow solid (7.5 g, yield 85%).

合成実施例75.化合物C−8の合成   Synthesis Example 75. Synthesis of Compound C-8

Figure 2018523638
Figure 2018523638

中間体である2−ブロモジベンゾチオフェンを等当量の4−ブロモトリフェニルアミンに変えた以外、実施例63における化合物B−27と同じの合成方法を用い、反応させて淡黄色固体(7.0g,収率75%)を得た。   A light yellow solid (7.0 g) was reacted using the same synthesis method as compound B-27 in Example 63 except that the intermediate 2-bromodibenzothiophene was changed to an equivalent equivalent of 4-bromotriphenylamine. , Yield 75%).

合成実施例76.化合物C−9の合成
中間体M11を等当量の中間体M3に変えた以外、化合物C−4と同じの合成方法を用い、反応させて黄色固体(7.04g,収率81%)を得た。
Synthesis Example 76. Synthesis of Compound C-9 A yellow solid (7.04 g, 81% yield) was obtained by reacting using the same synthesis method as Compound C-4, except that Intermediate M11 was changed to Intermediate E3 with an equivalent equivalent weight. It was.

合成実施例77.化合物C−10の合成
中間体M11を等当量の中間体M2に変えた以外、化合物C−4と同じの合成方法を用い、反応させて黄色固体(7.1g,収率82%)を得た。
Synthesis Example 77. Synthesis of Compound C-10 A yellow solid (7.1 g, yield 82%) was obtained by reacting using the same synthesis method as Compound C-4, except that Intermediate M11 was changed to Intermediate E2 with an equivalent equivalent weight. It was.

合成実施例78.化合物C−11の合成
中間体であるジフェニルアミンを等当量のフェニル−2−ナフチルアミンに変えた以外、化合物C−4と同じの合成方法を用い、反応させて淡黄色固体(7.2g,収率74%)を得た。
Synthesis Example 78 Synthesis of Compound C-11 A light yellow solid (7.2 g, yield) was prepared by reacting using the same synthesis method as Compound C-4, except that diphenylamine as an intermediate was changed to an equivalent equivalent of phenyl-2-naphthylamine. 74%).

C−11のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.42 (s, 19H), 8.23 (s, 11H), 8.13 (d, J = 6.6 Hz, 2H), 8.03 (d, J = 70.0 Hz, 34H), 7.73 (t, J = 3.3 Hz, 5H), 7.71 (s, 10H), 7.66 (d, J = 45.0 Hz, 35H), 7.72 - 7.52 (m, 64H), 7.50 (s, 12H), 7.43 (d, J = 15.0 Hz, 33H), 7.38 (s, 8H), 7.24 (s, 22H), 7.10 (d, J = 15.0 Hz, 31H), 7.00 (s, 10H), 6.40 (s, 11H).
NMR spectrum data of C-11:
1 H NMR (500 MHz, Chloroform) δ 8.42 (s, 19H), 8.23 (s, 11H), 8.13 (d, J = 6.6 Hz, 2H), 8.03 (d, J = 70.0 Hz, 34H), 7.73 ( t, J = 3.3 Hz, 5H), 7.71 (s, 10H), 7.66 (d, J = 45.0 Hz, 35H), 7.72-7.52 (m, 64H), 7.50 (s, 12H), 7.43 (d, J = 15.0 Hz, 33H), 7.38 (s, 8H), 7.24 (s, 22H), 7.10 (d, J = 15.0 Hz, 31H), 7.00 (s, 10H), 6.40 (s, 11H).

合成実施例79.化合物C−12の合成   Synthesis Example 79. Synthesis of Compound C-12

Figure 2018523638
Figure 2018523638

化合物C−12−1の製造
中間体M7(34.5g,50mmol)と、N−フェニル−ジベンゾ[b,d]フラン−3−アミン(7.8g,30mmol)と、Pd(dba) (0.27g,0.3mmol)と、ナトリウムtert−ブトキシド(5.8g,60mmol)と、トルエン(200mL)とを混合し、110℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相を無水MgSOで乾燥させ、回転蒸発器によって溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、化合物C−12−1(16g,収率61.5%)を得た。
Preparation of Compound C-12-1 Intermediate M7 (34.5 g, 50 mmol), N-phenyl-dibenzo [b, d] furan-3-amine (7.8 g, 30 mmol), and Pd 2 (dba) 3 (0.27 g, 0.3 mmol), sodium tert-butoxide (5.8 g, 60 mmol), and toluene (200 mL) were mixed and stirred at 110 ° C. for 2 hours for reaction. After completion of the reaction, the reaction system is washed with distilled water and extracted three times with ethyl acetate (100 mL). The obtained organic phases are combined, and the organic phase is dried over anhydrous MgSO 4. And finally, the residue from which the solvent was removed was subjected to column separation to obtain Compound C-12-1 (16 g, yield 61.5%).

化合物C−12の製造
化合物C−12−1(17g,20mmol)と、N−フェニル−ジベンゾ[b,d]チオフェン−3−アミン(7.7g,30mmol)と、Pd(dba) (0.27g,0.3mmol)と、ナトリウムtert−ブトキシド(5.8g,60mmol)と、トルエン(200mL)とを混合し、110℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相を無水MgSOで乾燥させ、回転蒸発器によって溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、黄色化合物である化合物C−12(18.9g,89%)を得た。
Preparation of Compound C-12 Compound C-12-1 (17 g, 20 mmol), N-phenyl-dibenzo [b, d] thiophen-3-amine (7.7 g, 30 mmol), and Pd 2 (dba) 3 ( 0.27 g, 0.3 mmol), sodium tert-butoxide (5.8 g, 60 mmol), and toluene (200 mL) were mixed and stirred at 110 ° C. for 2 hours for reaction. After completion of the reaction, the reaction system is washed with distilled water and extracted three times with ethyl acetate (100 mL). The obtained organic phases are combined, and the organic phase is dried over anhydrous MgSO 4. And finally, the residue from which the solvent was removed was separated by column to obtain Compound C-12 (18.9 g, 89%) as a yellow compound.

C−12のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.56 - 8.38 (m, 50H), 8.08 (s, 25H), 8.05 - 8.03 (m, 1H), 7.99 (t, J = 12.5 Hz, 23H), 8.03 - 7.71 (m, 38H), 7.57 (dd, J = 39.9, 34.9 Hz, 54H), 7.51 (s, 12H), 7.38 (s, 8H), 7.33 - 7.26 (m, 51H), 7.23 (s, 28H), 7.15 (s, 9H), 7.08 (d, J= 15.0 Hz, 43H), 7.00 (d, J = 15.0 Hz, 20H).
NMR spectrum data of C-12:
1 H NMR (500 MHz, Chloroform) δ 8.56-8.38 (m, 50H), 8.08 (s, 25H), 8.05-8.03 (m, 1H), 7.99 (t, J = 12.5 Hz, 23H), 8.03-7.71 (m, 38H), 7.57 (dd, J = 39.9, 34.9 Hz, 54H), 7.51 (s, 12H), 7.38 (s, 8H), 7.33-7.26 (m, 51H), 7.23 (s, 28H), 7.15 (s, 9H), 7.08 (d, J = 15.0 Hz, 43H), 7.00 (d, J = 15.0 Hz, 20H).

合成実施例80.化合物C−13の合成   Synthesis Example 80. Synthesis of Compound C-13

Figure 2018523638
Figure 2018523638

中間体化合物C−13−1の製造
中間体M7(34.5g,50mmol)と、ジフェニルアミン(5.7g,30mmol)と、Pd(dba)(0.27g,0.3mmol)と、ナトリウムtert−ブトキシド(5.8g,60mmol)と、トルエン(200mL)とを混合し、110℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相を無水MgSOで乾燥させ、回転蒸発器によって溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、単独置換中間体化合物C−13−1(21g,90%)を得た。
Preparation of Intermediate Compound C-13-1 Intermediate M7 (34.5 g, 50 mmol), diphenylamine (5.7 g, 30 mmol), Pd 2 (dba) 3 (0.27 g, 0.3 mmol), sodium Tert-butoxide (5.8 g, 60 mmol) and toluene (200 mL) were mixed and reacted by stirring at 110 ° C. for 2 hours. After completion of the reaction, the reaction system is washed with distilled water and extracted three times with ethyl acetate (100 mL). The obtained organic phases are combined, and the organic phase is dried over anhydrous MgSO 4. Finally, the residue from which the solvent was removed was subjected to column separation to obtain a single substituted intermediate compound C-13-1 (21 g, 90%).

化合物C−13の製造
化合物C−13−1(21g,27mmol)と、N−フェニル−ジベンゾ[b,d]チオフェン−3−アミン(7.7g,30mmol)と、Pd(dba)(0.27g,0.3mmol)と、ナトリウムtert−ブトキシド(5.8g,60mmol)と、トルエン(200mL)とを混合し、120℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相を無水MgSOで乾燥させ、回転蒸発器によって溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、黄色固体である化合物C−13(23.7g,90%)を得た。
Preparation of Compound C-13 Compound C-13-1 (21 g, 27 mmol), N-phenyl-dibenzo [b, d] thiophen-3-amine (7.7 g, 30 mmol), and Pd 2 (dba) 3 ( 0.27 g, 0.3 mmol), sodium tert-butoxide (5.8 g, 60 mmol), and toluene (200 mL) were mixed and stirred at 120 ° C. for 2 hours for reaction. After completion of the reaction, the reaction system is washed with distilled water and extracted three times with ethyl acetate (100 mL). The obtained organic phases are combined, and the organic phase is dried over anhydrous MgSO 4. Finally, the residue from which the solvent was removed was subjected to column separation to obtain Compound C-13 (23.7 g, 90%) as a yellow solid.

C−13のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.67 - 8.21 (m, 259H), 8.37 (s, 13H), 8.08 (s, 122H), 8.05 (s, 5H), 8.03 (d, J = 21.7 Hz, 6H), 8.01 - 7.70 (m, 112H), 7.61 (d, J = 64.9 Hz, 190H), 7.51 (s, 59H), 7.30 (d, J = 5.0 Hz, 178H), 7.23 (s, 226H), 7.15 (s, 39H), 7.08 (d, J = 15.0 Hz, 299H), 7.00 (d, J = 15.0 Hz, 126H).
NMR spectrum data of C-13:
1 H NMR (500 MHz, Chloroform) δ 8.67-8.21 (m, 259H), 8.37 (s, 13H), 8.08 (s, 122H), 8.05 (s, 5H), 8.03 (d, J = 21.7 Hz, 6H ), 8.01-7.70 (m, 112H), 7.61 (d, J = 64.9 Hz, 190H), 7.51 (s, 59H), 7.30 (d, J = 5.0 Hz, 178H), 7.23 (s, 226H), 7.15 (s, 39H), 7.08 (d, J = 15.0 Hz, 299H), 7.00 (d, J = 15.0 Hz, 126H).

合成実施例81.化合物C−14の合成
中間体M8を等当量の中間体M9に変え、4−ビフェニルボロン酸を等当量の(4−(ジフェニルアミノ)フェニル)ボロン酸に変えた以外、実施例25で化合物A−16を製造するのと同じ方法を用いて化合物C−14を製造し、反応完成後、分離して白色固体B−13(6.6g,収率85%)を得た。
Synthesis Example 81. Synthesis of Compound C-14 Compound A was prepared in Example 25 except that intermediate M8 was changed to equivalent equivalent of intermediate M9 and 4-biphenylboronic acid was changed to equivalent equivalent of (4- (diphenylamino) phenyl) boronic acid. Compound C-14 was produced using the same method for producing -16, and after completion of the reaction, it was separated to obtain white solid B-13 (6.6 g, yield 85%).

合成実施例82.化合物C−15の合成
中間体M8を等当量の中間体M9に変え、4−ビフェニルボロン酸を等当量の(4−(ジフェニルアミノ)フェニル)ボロン酸に変えた以外、実施例25で化合物A−16を製造するのと同じ方法を用いて化合物C−14を製造し、反応完成後、分離して白色固体B−13(6.6g,収率85%)を得た。
Synthesis Example 82. Synthesis of Compound C-15 Compound A was prepared in Example 25 except that intermediate M8 was changed to equivalent equivalent of intermediate M9 and 4-biphenylboronic acid was changed to equivalent equivalent of (4- (diphenylamino) phenyl) boronic acid. Compound C-14 was produced using the same method for producing -16, and after completion of the reaction, it was separated to obtain white solid B-13 (6.6 g, yield 85%).

C−15のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.51 (s, 17H), 8.38 (s, 13H), 8.06 (s, 13H), 7.56 (d, J = 19.9 Hz, 46H), 7.48 (d, J= 10.0 Hz, 42H), 7.36 (s, 7H), 7.21 (s, 31H), 7.14 (d, J = 10.0 Hz, 19H), 7.06 (d, J = 14.9 Hz, 43H), 6.97 (s, 9H), 6.90 (s, 9H).
NMR spectrum data of C-15:
1 H NMR (500 MHz, Chloroform) δ 8.51 (s, 17H), 8.38 (s, 13H), 8.06 (s, 13H), 7.56 (d, J = 19.9 Hz, 46H), 7.48 (d, J = 10.0 Hz, 42H), 7.36 (s, 7H), 7.21 (s, 31H), 7.14 (d, J = 10.0 Hz, 19H), 7.06 (d, J = 14.9 Hz, 43H), 6.97 (s, 9H), 6.90 (s, 9H).

合成実施例83.化合物C−16の合成   Synthesis Example 83. Synthesis of Compound C-16

Figure 2018523638
Figure 2018523638

雰囲気下、三つ口フラスコに、ヨードベンゼン(22g,0.11mol)、中間体M9(46.1g,0.1mol)、塩化第一銅(2g,20mmol)、水和1,10−フェナントロリン(4g,20mmol)、水酸化カリウム(16.8g,0.3mol)及びキシレン(300mL)を加えた。反応系を20h還流反応させ、反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相をMgSOで乾燥させ、回転蒸発器によって溶剤を除去し、溶剤が除去された残留物をカラム分離し、白色固体である中間体化合物(46.1g,75%)を得た。 Under a N 2 atmosphere, in a three-necked flask, iodobenzene (22 g, 0.11 mol), intermediate M9 (46.1 g, 0.1 mol), cuprous chloride (2 g, 20 mmol), hydrated 1,10- Phenanthroline (4 g, 20 mmol), potassium hydroxide (16.8 g, 0.3 mol) and xylene (300 mL) were added. The reaction system was refluxed for 20 hours. After completion of the reaction, the reaction system was washed with distilled water, extracted three times with ethyl acetate (100 mL), and the resulting organic phase was combined and the organic phase was dried over MgSO 4 . The solvent was removed by a rotary evaporator, and the residue from which the solvent was removed was separated by column to obtain an intermediate compound (46.1 g, 75%) as a white solid.

中間体C−16−1(6.14g,10mmol)と、ジフェニルアミン(1.7g,10mmol)と、Pd(dba)(0.03g,0.03mmol)と、ナトリウムtert−ブトキシド(1.9g,20mmol)と、トルエン(100mL)とを混合し、120℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相を無水MgSOで乾燥させ、回転蒸発器によって溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、黄色固体である化合物C−16(6.25g,89%)を得た。 Intermediate C-16-1 (6.14 g, 10 mmol), diphenylamine (1.7 g, 10 mmol), Pd 2 (dba) 3 (0.03 g, 0.03 mmol), and sodium tert-butoxide (1. 9 g, 20 mmol) and toluene (100 mL) were mixed and stirred at 120 ° C. for 2 hours for reaction. After completion of the reaction, the reaction system is washed with distilled water and extracted three times with ethyl acetate (100 mL). The obtained organic phases are combined, and the organic phase is dried over anhydrous MgSO 4. Finally, the residue from which the solvent was removed was subjected to column separation to obtain Compound C-16 (6.25 g, 89%) as a yellow solid.

合成実施例84.化合物D−1の合成   Synthesis Example 84. Synthesis of Compound D-1

Figure 2018523638
Figure 2018523638

250mL三つ口フラスコに、中間体化合物M6(19.1g,50mmol)と、2−ブロモピリジン(18.9g,120mmol)と、CuI(1.8g,10mmol)と、トランス−ジアミノシクロヘキサン(5.4mL,50mmol)と、炭酸セシウム(16g,50mmol)とで形成された混合物を3時間加熱して還流させた。反応混合物を室温まで冷却させ、濾過し、濾過ケーキをジクロロメタンで洗浄し、得られた有機相を脱イオン水で充分に洗浄してから、有機相を無水NaSOで乾燥させた。乾燥後の有機相を減圧して溶剤を除去し、得られた残留物をカラム分離し、淡黄色化合物D−1(23.1g,収率86%)を得た。 In a 250 mL three-necked flask, intermediate compound M6 (19.1 g, 50 mmol), 2-bromopyridine (18.9 g, 120 mmol), CuI (1.8 g, 10 mmol), and trans-diaminocyclohexane (5. 4 mL, 50 mmol) and a mixture formed of cesium carbonate (16 g, 50 mmol) was heated to reflux for 3 hours. The reaction mixture was allowed to cool to room temperature, filtered, the filter cake was washed with dichloromethane and the resulting organic phase was washed thoroughly with deionized water before the organic phase was dried over anhydrous Na 2 SO 4 . The dried organic phase was depressurized to remove the solvent, and the resulting residue was subjected to column separation to obtain pale yellow compound D-1 (23.1 g, yield 86%).

合成実施例85.化合物D−2の合成
2−ブロモピリジンを等当量の5−ブロモ−2−フェニルピリジンに変えた以外、合成実施例84と同じの合成方法を用い、反応させて淡黄色固体(27.1g,収率79%)を得た。
Synthesis Example 85. Synthesis of Compound D-2 A reaction was carried out using the same synthesis method as in Synthesis Example 84, except that 2-bromopyridine was replaced with an equivalent equivalent of 5-bromo-2-phenylpyridine, and a light yellow solid (27.1 g, Yield 79%).

合成実施例86.化合物D−3の合成
2−ブロモピリジンを等当量の2−(4−ブロモフェニル)ピリジンに変えた以外、合成実施例84と同じの合成方法を用い、反応させて淡黄色固体(29g,収率84%)を得た。
Synthesis Example 86. Synthesis of Compound D-3 The reaction was carried out using the same synthesis method as in Synthesis Example 84 except that 2-bromopyridine was changed to an equivalent equivalent of 2- (4-bromophenyl) pyridine. 84%).

合成実施例87.化合物D−4の合成
2−ブロモピリジンを等当量の3−(4−ブロモフェニル)ピリジンに変えた以外、合成実施例84と同じの合成方法を用い、反応させて淡黄色固体(24.5g,収率71%)を得た。
Synthesis Example 87. Synthesis of Compound D-4 A reaction was carried out using the same synthesis method as in Synthesis Example 84 except that 2-bromopyridine was replaced with an equivalent equivalent of 3- (4-bromophenyl) pyridine. Yield 71%).

D−4のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 9.24 (s, 21H), 8.70 (s, 11H), 8.49 (d, J = 65.0 Hz, 74H), 8.39 (s, 3H), 8.33 (s, 19H), 8.10 (s, 35H), 7.91 (d, J = 5.0 Hz, 84H), 7.49 (d, J = 25.0 Hz, 39H), 7.44 (s, 2H), 7.16 (s, 12H), 7.11 (s, 17H).
NMR spectrum data of D-4:
1 H NMR (500 MHz, Chloroform) δ 9.24 (s, 21H), 8.70 (s, 11H), 8.49 (d, J = 65.0 Hz, 74H), 8.39 (s, 3H), 8.33 (s, 19H), 8.10 (s, 35H), 7.91 (d, J = 5.0 Hz, 84H), 7.49 (d, J = 25.0 Hz, 39H), 7.44 (s, 2H), 7.16 (s, 12H), 7.11 (s, 17H ).

合成実施例88.化合物D−5の合成   Synthesis Example 88. Synthesis of Compound D-5

Figure 2018523638
Figure 2018523638

中間体であるブロモベンゼンを等当量の5−ブロモ−2−フェニルピリジンに変えた以外、実施例21における化合物A−11と同じの合成方法を用い、反応させて黄色固体(5.65g,収率82%)を得た。   A yellow solid (5.65 g, yield) was obtained using the same synthesis method as compound A-11 in Example 21, except that the intermediate bromobenzene was changed to an equivalent equivalent of 5-bromo-2-phenylpyridine. 82%).

合成実施例89.化合物D−6の合成   Synthesis Example 89. Synthesis of Compound D-6

Figure 2018523638
Figure 2018523638

中間体である2−ブロモジベンゾチオフェンを等当量の4−ブロモトリフェニルアミンに変えた以外、実施例63における化合物B−27と同じの合成方法を用い、反応させて淡黄色固体(7.0g,収率75%)を得た。   A light yellow solid (7.0 g) was reacted using the same synthesis method as compound B-27 in Example 63 except that the intermediate 2-bromodibenzothiophene was changed to an equivalent equivalent of 4-bromotriphenylamine. , Yield 75%).

D−6のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.43 (d, J= 5.0 Hz, 42H), 8.20 (s, 15H), 8.11 (d, J = 10.0 Hz, 41H), 7.92 (t, J= 45.0 Hz, 45H), 7.79 - 7.57 (m, 60H), 7.54 (s, 12H), 7.49 (s, 28H), 7.41 (s, 8H).
NMR spectrum data of D-6:
1 H NMR (500 MHz, Chloroform) δ 8.43 (d, J = 5.0 Hz, 42H), 8.20 (s, 15H), 8.11 (d, J = 10.0 Hz, 41H), 7.92 (t, J = 45.0 Hz, 45H), 7.79-7.57 (m, 60H), 7.54 (s, 12H), 7.49 (s, 28H), 7.41 (s, 8H).

合成実施例90.化合物D−7の合成
中間体M2を等当量の中間体M3に変え、フェニルボロン酸を等当量のピリジン−2−ボロン酸に変えた以外、実施例23と同じ方法を用いて化合物D−7を製造し、反応完成後、黄色固体(5.86g,収率85%)を得た。
Synthesis Example 90. Synthesis of Compound D-7 Compound D-7 was prepared in the same manner as in Example 23, except that intermediate M2 was changed to equivalent equivalent intermediate M3 and phenylboronic acid was changed to equivalent equivalent pyridine-2-boronic acid. After the reaction was completed, a yellow solid (5.86 g, yield 85%) was obtained.

合成実施例91.化合物D−8の合成
2−ブロモピリジンを等当量の2−ブロモキノリンに変えた以外、合成実施例84と同じの合成方法を用いて化合物D−8を製造し、反応完成後、黄色固体(26.8g,収率84%)を得た。
Synthesis Example 91. Synthesis of Compound D-8 Compound D-8 was produced using the same synthesis method as in Synthesis Example 84 except that 2-bromopyridine was replaced with an equivalent equivalent of 2-bromoquinoline. After completion of the reaction, a yellow solid ( 26.8 g, 84% yield).

合成実施例92.中間体化合物M15の合成   Synthesis Example 92. Synthesis of intermediate compound M15

Figure 2018523638
Figure 2018523638

1L三つ口フラスコに、4−ブロモフェニルヒドラジン塩酸塩(92.8g,0.415mol)、ジベンゾ[a、e]−5,11−シクロオクタジエン(6H,12H)−ジオン(49g,0.207mol)及びエタノール(400mL)を加え、撹拌条件下、3min内に濃硫酸を2g滴下し、65℃で4時間反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをエタノール、石油エーテルでこの順に洗浄し、中間体化合物M15−1(110g,85%)を得た。   In a 1 L three-necked flask, 4-bromophenylhydrazine hydrochloride (92.8 g, 0.415 mol), dibenzo [a, e] -5,11-cyclooctadiene (6H, 12H) -dione (49 g, 0. 207 mol) and ethanol (400 mL) were added, 2 g of concentrated sulfuric acid was added dropwise within 3 min under stirring conditions, and the mixture was reacted at 65 ° C. for 4 hours. After completion of the reaction, the mixture was cooled to room temperature and filtered. Washing with ether in this order gave intermediate compound M15-1 (110 g, 85%).

1L三つ口フラスコに、化合物M15−1(48.4g,74.8mmol)、酢酸(650g)及びトリフルオロ酢酸(65g、0.57mol)を加え、72℃で15時間還流反応させ、室温まで冷却させ、濾過し、濾過ケーキを酢酸、石油エーテルでこの順に洗浄し、中間体化合物M15−2(32g,80%)を得た。   To a 1 L three-necked flask, compound M15-1 (48.4 g, 74.8 mmol), acetic acid (650 g) and trifluoroacetic acid (65 g, 0.57 mol) were added, and the mixture was refluxed at 72 ° C. for 15 hours. Allow to cool, filter, and wash the filter cake with acetic acid and petroleum ether in this order, yielding intermediate compound M15-2 (32 g, 80%).

キシレン(100mL)と、M15−2(5.4g,10mmol)と、ヨードベンゼン(5.1g,25mmol)と、CuI(0.9g,5mmol)と、トランス−ジアミノシクロヘキサン(2.1mL,20mmol)と、炭酸セシウム(6.5g、20mmol)とを混合し、3時間還流反応させ、反応終了後、室温まで冷却させ、濾過し、濾過ケーキをジクロロメタン(ジクロロメタン)で洗浄し、濾液を合併して乾燥させてから、減圧して溶剤を除去し、得られた蒸留残留物をカラム分離し(DCM/PE=1/2,v/v(体積比1:2のジクロロメタンと石油エーテルとの混合溶液))、白色固体である中間体化合物M15(5.5g,収率82%)を得た。   Xylene (100 mL), M15-2 (5.4 g, 10 mmol), iodobenzene (5.1 g, 25 mmol), CuI (0.9 g, 5 mmol), trans-diaminocyclohexane (2.1 mL, 20 mmol) And cesium carbonate (6.5 g, 20 mmol) were mixed and refluxed for 3 hours. After completion of the reaction, the mixture was cooled to room temperature, filtered, the filter cake was washed with dichloromethane (dichloromethane), and the filtrate was combined. After drying, the solvent is removed under reduced pressure, and the resulting distillation residue is separated by column (DCM / PE = 1/2, v / v (volume ratio 1: 2 mixed solution of dichloromethane and petroleum ether). )), And intermediate compound M15 (5.5 g, yield 82%) was obtained as a white solid.

合成実施例93.化合物D−9の合成   Synthesis Example 93. Synthesis of Compound D-9

Figure 2018523638
Figure 2018523638

窒素ガス雰囲気下、中間体M15(6.9g,10mmol)と、3−ピリジンボロン酸(3.08g,25mmol)と、Pd(PPh(0.58g,0.5mmol)と、NaCO(5.3g,50mmol)と、トルエン(60mL)と、EtOH(20mL)とを混合し、該混合物に蒸留水20mLを加えて、110℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄し、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相をMgSOで乾燥させ、回転蒸発により溶剤を除去し、最後に、溶剤が除去された残留物をカラム分離し、黄色固体化合物D−9(5.2g,75%)を得た。 Under a nitrogen gas atmosphere, intermediate M15 (6.9 g, 10 mmol), 3-pyridineboronic acid (3.08 g, 25 mmol), Pd (PPh 3 ) 4 (0.58 g, 0.5 mmol), Na 2 CO 3 (5.3 g, 50 mmol), toluene (60 mL) and EtOH (20 mL) were mixed, 20 mL of distilled water was added to the mixture, and the mixture was reacted at 110 ° C. for 2 hours with stirring. After completion of the reaction, the reaction system was washed with distilled water, extracted three times with ethyl acetate (100 mL), the resulting organic phases were combined, the organic phase was dried over MgSO 4 , the solvent was removed by rotary evaporation, Finally, the residue from which the solvent was removed was subjected to column separation to obtain a yellow solid compound D-9 (5.2 g, 75%).

合成実施例94.化合物D−10の合成
2−ブロモピリジンを等当量の5−ブロモ−1,10フェナントロリンに変えた以外、合成実施例84と同じの合成方法を用い、反応させて淡黄色固体(29.9g,収率81%)を得た。
Synthesis Example 94. Synthesis of Compound D-10 The reaction was carried out using the same synthesis method as in Synthesis Example 84, except that 2-bromopyridine was changed to an equivalent equivalent of 5-bromo-1,10phenanthroline, and a light yellow solid (29.9 g, Yield 81%) was obtained.

D−10のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.80 (s, 2H), 8.55 (s, 1H), 8.43 (d, J= 6.3 Hz, 3H), 8.12 (d, J = 20.0 Hz, 4H), 7.52 (s, 1H), 7.39 (s, 2H), 7.16 (s, 1H), 7.11 (s, 1H).
NMR spectrum data of D-10:
1 H NMR (500 MHz, Chloroform) δ 8.80 (s, 2H), 8.55 (s, 1H), 8.43 (d, J = 6.3 Hz, 3H), 8.12 (d, J = 20.0 Hz, 4H), 7.52 ( s, 1H), 7.39 (s, 2H), 7.16 (s, 1H), 7.11 (s, 1H).

合成実施例95.化合物D−11の合成   Synthesis Example 95. Synthesis of Compound D-11

Figure 2018523638
Figure 2018523638

乾燥の1L三つ口フラスコに、中間体M6(22.9g,50mmol)を加え、無水DMF(200mL)で溶解させ、室温で窒素ガス雰囲気下、磁力攪拌しながら60%NaH(4g,0.1mol)を逐次に加えると、ガスが大量発生し、加えた後引き続き室温で1時間撹拌した。その後、室温で、定圧滴下漏斗により2−クロロ−4,6−ジフェニルピリミジン(32g,120mmol)の無水DMF溶液(150mL)を加え、約1.5時間かけて滴下した。引き続き室温で3時間撹拌した後、徐々に水を加えて反応をクエンチさせ、その後酢酸エチル(300mL)及び水(200mL)を加えて30分間撹拌し、体系が懸濁状態になった。吸引濾過し、固体をジクロロメタンで溶解させ、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させ、5cmシリカゲルカラムを用いて吸引濾過し、減圧して回転乾燥させた。カラム分離し、黄色粉末状固体である化合物D−11(36.7g,収率87%)を得た。   Intermediate M6 (22.9 g, 50 mmol) was added to a dry 1 L three-necked flask, dissolved in anhydrous DMF (200 mL), and 60% NaH (4 g,. When 1 mol) was added sequentially, a large amount of gas was generated, and after the addition, stirring was continued at room temperature for 1 hour. Thereafter, an anhydrous DMF solution (150 mL) of 2-chloro-4,6-diphenylpyrimidine (32 g, 120 mmol) was added with a constant pressure dropping funnel at room temperature, and the mixture was added dropwise over about 1.5 hours. Subsequently, after stirring at room temperature for 3 hours, water was gradually added to quench the reaction, and then ethyl acetate (300 mL) and water (200 mL) were added, followed by stirring for 30 minutes, and the system became suspended. Suction filtered, the solid was dissolved in dichloromethane, washed with saturated brine, dried over anhydrous sodium sulfate, filtered with suction using a 5 cm silica gel column, and vacuum dried at reduced pressure. Column separation was performed to obtain Compound D-11 (36.7 g, yield 87%) as a yellow powdery solid.

合成実施例96.化合物D−12の合成
2−クロロ−4,6−ジフェニルピリミジンを等当量の2−クロロ−4−フェニルキナゾリンに変えた以外、合成実施例95と同じの合成方法を用い、反応させて黄色固体(32.4g,収率82%)を得た。
Synthesis Example 96. Synthesis of Compound D-12 A yellow solid was reacted by using the same synthesis method as in Synthesis Example 95 except that 2-chloro-4,6-diphenylpyrimidine was replaced with an equivalent equivalent of 2-chloro-4-phenylquinazoline. (32.4 g, yield 82%) was obtained.

合成実施例97.化合物D−13の合成
2−クロロ−4,6−ジフェニルピリミジンを等当量の2−クロロ−キノキサリンに変えた以外、合成実施例95と同じの合成方法を用い、反応させて黄色固体(25g,収率75%)を得た。
Synthesis Example 97. Synthesis of Compound D-13 The reaction was carried out using the same synthesis method as in Synthesis Example 95, except that 2-chloro-4,6-diphenylpyrimidine was replaced with an equivalent amount of 2-chloro-quinoxaline, and a yellow solid (25 g, Yield 75%).

合成実施例98.化合物D−14の合成
2−クロロ−4,6−ジフェニルピリミジンを等当量の2−クロロキナゾリンに変えた以外、合成実施例95と同じの合成方法を用い、反応させて黄色固体(22.7g,収率71%)を得た。
Synthesis Example 98. Synthesis of Compound D-14 A yellow solid (22.7 g) was reacted using the same synthesis method as in Synthesis Example 95 except that 2-chloro-4,6-diphenylpyrimidine was replaced with an equivalent equivalent of 2-chloroquinazoline. Yield 71%).

合成実施例99.化合物D−15の合成
2−クロロ−4,6−ジフェニルピリミジンを等当量の2−クロロ−4,6−ジフェニル−1,3,5−トリアジンに変えた以外、合成実施例95と同じの合成方法を用い、反応させて黄色固体(33.0g,収率78%)を得た。
Synthesis Example 99. Synthesis of Compound D-15 The same synthesis as in Synthesis Example 95, except that 2-chloro-4,6-diphenylpyrimidine was changed to an equivalent equivalent of 2-chloro-4,6-diphenyl-1,3,5-triazine. Using the method, the reaction yielded a yellow solid (33.0 g, 78% yield).

合成実施例100.化合物D−16の合成   Synthesis Example 100. Synthesis of Compound D-16

Figure 2018523638
Figure 2018523638

乾燥の1L三つ口フラスコに、中間体B−19−4(22.9g,50mmol,合成実施例53参照)を加え、無水DMF(200mL)で溶解させ、室温で窒素ガス雰囲気下、磁力攪拌しながら60%NaH(4g,0.1mol)を逐次に加えると、ガスが大量発生し、加えた後引き続き室温で1時間撹拌した。その後、室温で、定圧滴下漏斗により2−クロロ−4,6−ジフェニルピリミジン(16g,60mmol)の無水DMF溶液(120mL)を加え、約1.5時間かけて滴下した。引き続き室温で3時間撹拌した後、徐々に水を加えて反応をクエンチさせ、その後酢酸エチル(300mL)及び水(200mL)を加えて30分間撹拌し、体系が懸濁状態になった。吸引濾過し、固体をジクロロメタンで溶解させ、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させ、5cmシリカゲルカラムを用いて吸引濾過し、減圧して回転乾燥させた。カラム分離し、黄色粉末状固体である化合物D−16(26.9g,収率78%)を得た。   Intermediate B-19-4 (22.9 g, 50 mmol, see Synthesis Example 53) was added to a dry 1 L three-necked flask, dissolved in anhydrous DMF (200 mL), and stirred magnetically at room temperature under a nitrogen gas atmosphere. However, when 60% NaH (4 g, 0.1 mol) was added successively, a large amount of gas was generated, and after the addition, stirring was continued at room temperature for 1 hour. Thereafter, an anhydrous DMF solution (120 mL) of 2-chloro-4,6-diphenylpyrimidine (16 g, 60 mmol) was added at room temperature with a constant pressure dropping funnel, and the mixture was added dropwise over about 1.5 hours. Subsequently, after stirring at room temperature for 3 hours, water was gradually added to quench the reaction, and then ethyl acetate (300 mL) and water (200 mL) were added, followed by stirring for 30 minutes, and the system became suspended. Suction filtered, the solid was dissolved in dichloromethane, washed with saturated brine, dried over anhydrous sodium sulfate, filtered with suction using a 5 cm silica gel column, and vacuum dried at reduced pressure. Column separation was performed to obtain Compound D-16 (26.9 g, yield 78%) as a yellow powdery solid.

合成実施例101.化合物D−17の合成   Synthesis Example 101. Synthesis of Compound D-17

Figure 2018523638
Figure 2018523638

乾燥の1L三つ口フラスコに、中間体M1(22.9g,50mmol)を加え、無水DMF(200mL)で溶解させ、室温で窒素ガス雰囲気下、磁力攪拌しながら60%NaH(4g,0.1mol)を逐次に加えると、ガスが大量発生し、加えた後引き続き室温で1時間撹拌した。その後、室温で、定圧滴下漏斗により2−クロロ−4,6−ジフェニルピリミジン(23g,120mmol)の無水DMF溶液(150mL)を加え、約1.5時間かけて滴下した。引き続き室温で3時間撹拌した後、徐々に水を加えて反応をクエンチさせ、その後酢酸エチル(300mL)及び水(200mL)を加えて30分間撹拌し、体系が懸濁状態になった。吸引濾過し、固体をジクロロメタンで溶解させ、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させ、5cmシリカゲルカラムを用いて吸引濾過し、減圧して回転乾燥させた。カラム分離し、黄色粉末状固体である化合物D−17(29.4g,収率85%)を得た。   Intermediate M1 (22.9 g, 50 mmol) was added to a dry 1 L three-necked flask, dissolved in anhydrous DMF (200 mL), and 60% NaH (4 g, 0. When 1 mol) was added sequentially, a large amount of gas was generated, and after the addition, stirring was continued at room temperature for 1 hour. Thereafter, an anhydrous DMF solution (150 mL) of 2-chloro-4,6-diphenylpyrimidine (23 g, 120 mmol) was added with a constant pressure dropping funnel at room temperature, and the mixture was added dropwise over about 1.5 hours. Subsequently, after stirring at room temperature for 3 hours, water was gradually added to quench the reaction, and then ethyl acetate (300 mL) and water (200 mL) were added, followed by stirring for 30 minutes, and the system became suspended. Suction filtered, the solid was dissolved in dichloromethane, washed with saturated brine, dried over anhydrous sodium sulfate, filtered with suction using a 5 cm silica gel column, and vacuum dried at reduced pressure. Column separation was performed to obtain Compound D-17 (29.4 g, yield: 85%) as a yellow powdery solid.

合成実施例102.化合物D−18の合成
2−クロロ−4−フェニルピリミジンを等当量の2−クロロ−4,6−ジフェニルピリミジンに変えた以外、合成実施例101と同じの合成方法を用い、反応完成後、黄色固体(33.3g,収率79%)を得た。
Synthesis Example 102. Synthesis of Compound D-18 Using the same synthesis method as in Synthesis Example 101, except that 2-chloro-4-phenylpyrimidine was replaced with an equivalent equivalent of 2-chloro-4,6-diphenylpyrimidine, yellow was obtained after completion of the reaction. A solid (33.3 g, yield 79%) was obtained.

合成実施例103.化合物D−19の合成
2−クロロ−4−フェニルピリミジンを等当量の2−クロロ−4−フェニルキナゾリンに変えた以外、合成実施例101と同じの合成方法を用い、反応完成後、黄色固体(34.4g,収率87%)を得た。
Synthesis Example 103. Synthesis of Compound D-19 Using the same synthesis method as in Synthesis Example 101 except that 2-chloro-4-phenylpyrimidine was changed to an equivalent equivalent of 2-chloro-4-phenylquinazoline, a yellow solid ( 34.4 g, 87% yield).

合成実施例104.化合物D−20の合成
2−クロロ−4−フェニルピリミジンを等当量の2−クロロ−キノキサリンに変えた以外、合成実施例101と同じの合成方法を用い、反応完成後、黄色固体(22.7g,収率71%)を得た。
Synthesis Example 104. Synthesis of Compound D-20 A yellow solid (22.7 g) was obtained after completion of the reaction using the same synthesis method as in Synthesis Example 101 except that 2-chloro-4-phenylpyrimidine was replaced with an equivalent equivalent of 2-chloro-quinoxaline. Yield 71%).

合成実施例105.化合物D−21の合成
2−クロロ−4−フェニルピリミジンを等当量の2−クロロ−4−ビフェニルキナゾリンに変えた以外、合成実施例101と同じの合成方法を用い、反応完成後、黄色固体(35g,収率74%)を得た。
Synthesis Example 105. Synthesis of Compound D-21 Using the same synthesis method as in Synthesis Example 101 except that 2-chloro-4-phenylpyrimidine was changed to an equivalent equivalent of 2-chloro-4-biphenylquinazoline, a yellow solid ( 35 g, yield 74%).

合成実施例106.化合物D−22の合成
2−クロロ−4−フェニルピリミジンを等当量の2−クロロ−4−ビフェニルピリミジンに変えた以外、合成実施例101と同じの合成方法を用い、反応完成後、黄色固体(34.1g,収率81%)を得た。
Synthesis Example 106. Synthesis of Compound D-22 Using the same synthesis method as in Synthesis Example 101 except that 2-chloro-4-phenylpyrimidine was changed to an equivalent equivalent of 2-chloro-4-biphenylpyrimidine, a yellow solid ( 34.1 g, 81% yield).

合成実施例107.化合物D−23の合成
2−クロロ−4−フェニルピリミジンを等当量の2−クロロ−4,6−ジフェニルトリアジンに変えた以外、合成実施例101と同じの合成方法を用い、反応完成後、黄色固体(33.8g,収率80%)を得た。
Synthesis Example 107. Synthesis of Compound D-23 Using the same synthesis method as in Synthesis Example 101, except that 2-chloro-4-phenylpyrimidine was replaced with an equivalent equivalent of 2-chloro-4,6-diphenyltriazine, yellow was obtained after completion of the reaction. A solid (33.8 g, 80% yield) was obtained.

合成実施例108.化合物D−24の合成
5−ブロモ−2−フェニルピリジンを等当量の5−ブロモ−1,10−フェナントロリンに変えた以外、合成実施例88における化合物D−5の製造と同じの合成方法を用い、反応完成後、黄色固体(4.95g,収率67%)を得た。
Synthesis Example 108. Synthesis of Compound D-24 The same synthesis method as that for the preparation of Compound D-5 in Synthesis Example 88 was used, except that 5-bromo-2-phenylpyridine was changed to an equivalent equivalent of 5-bromo-1,10-phenanthroline. After completion of the reaction, a yellow solid (4.95 g, yield 67%) was obtained.

合成実施例109.化合物D−25の合成   Synthesis Example 109. Synthesis of Compound D-25

Figure 2018523638
Figure 2018523638

1L反応フラスコに、中間体M1(38.2g,0.1mol)と、4−ブロモビフェニル(23.3g,0.1mol)と、CuI(3.3g,17.1mmol)と、KPO(21.8g,102.9mmol)と、シクロヘキシルジアミン(2.3mL,34.3mmol)と、トルエン(500mL)とを混合し、還流条件下、1日撹拌して反応させ、反応終了後、室温まで冷却させ、酢酸エチル(250mL)で抽出し、有機相を無水硫酸マグネシウムで処理してから減圧蒸留して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、化合物D−25−1(26.8g,収率50%)を得た。 In a 1 L reaction flask, intermediate M1 (38.2 g, 0.1 mol), 4-bromobiphenyl (23.3 g, 0.1 mol), CuI (3.3 g, 17.1 mmol), and K 3 PO 4 (21.8 g, 102.9 mmol), cyclohexyldiamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed and reacted under reflux conditions for one day. After completion of the reaction, The mixture is cooled to rt, extracted with ethyl acetate (250 mL), the organic phase is treated with anhydrous magnesium sulfate and distilled under reduced pressure to remove the solvent, and the resulting distillation residue is separated by column (eluent: dichloromethane / hexane). ), Compound D-25-1 (26.8 g, yield 50%) was obtained.

乾燥の1L三つ口フラスコに、中間体D−25−1(26.8g,50mmol)を加え、無水DMF(200mL)で溶解させ、室温で窒素ガス雰囲気下、磁力攪拌しながら60%NaH(2g,50mol)を逐次に加えると、ガスが大量発生し、加えた後引き続き室温で1時間撹拌した。その後、室温で、定圧滴下漏斗により2−クロロ−4,6−ジフェニルトリアジン(16.1g,60mmol)の無水DMF溶液(150mL)を加え、約1.5時間かけて滴下した。引き続き室温で3時間撹拌した後、徐々に水を加えて反応をクエンチさせ、その後酢酸エチル(300mL)及び水(200mL)を加えて30分間撹拌し、体系が懸濁状態になった。吸引濾過し、固体をジクロロメタンで溶解させ、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させ、5cmシリカゲルカラムを用いて吸引濾過し、減圧して回転乾燥させた。カラム分離し、黄色粉末状固体である化合物D−25(34.5g,収率90%)を得た。   Intermediate D-25-1 (26.8 g, 50 mmol) was added to a dry 1 L three-necked flask, dissolved in anhydrous DMF (200 mL), and 60% NaH ( 2 g, 50 mol) were added sequentially, a large amount of gas was generated, and after the addition, stirring was continued for 1 hour at room temperature. Thereafter, an anhydrous DMF solution (150 mL) of 2-chloro-4,6-diphenyltriazine (16.1 g, 60 mmol) was added with a constant pressure dropping funnel at room temperature, and the mixture was added dropwise over about 1.5 hours. Subsequently, after stirring at room temperature for 3 hours, water was gradually added to quench the reaction, and then ethyl acetate (300 mL) and water (200 mL) were added, followed by stirring for 30 minutes, and the system became suspended. Suction filtered, the solid was dissolved in dichloromethane, washed with saturated brine, dried over anhydrous sodium sulfate, filtered with suction using a 5 cm silica gel column, and vacuum dried at reduced pressure. Column separation was performed to obtain Compound D-25 (34.5 g, yield 90%) as a yellow powdery solid.

D−25のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.49 (d, J = 65.0 Hz, 47H), 8.37 (ddd, J = 5.3, 3.9, 2.7 Hz, 12H), 8.36 (s, 20H), 8.10 (s, 20H), 7.91 (d, J = 5.0 Hz, 24H), 7.77 (dd, J = 3.1, 1.4 Hz, 4H), 7.75 (s, 10H), 7.76 - 7.39 (m, 75H), 7.16 (s, 7H), 7.11 (s, 10H).
NMR spectrum data of D-25:
1 H NMR (500 MHz, Chloroform) δ 8.49 (d, J = 65.0 Hz, 47H), 8.37 (ddd, J = 5.3, 3.9, 2.7 Hz, 12H), 8.36 (s, 20H), 8.10 (s, 20H ), 7.91 (d, J = 5.0 Hz, 24H), 7.77 (dd, J = 3.1, 1.4 Hz, 4H), 7.75 (s, 10H), 7.76-7.39 (m, 75H), 7.16 (s, 7H) , 7.11 (s, 10H).

合成実施例110.化合物D−26の合成
第1のステップの反応における4−ブロモビフェニルを等当量のブロモベンゼンに変え、第2のステップの反応における2−クロロ−4,6−ジフェニルトリアジンを等当量の2−クロロ−4,6−ジ−ビフェニルトリアジンに変えた以外、合成実施例109と同じの合成方法を用い、反応完成後、黄色固体(35.8g,収率85%)を得た。
Synthesis Example 110. Synthesis of Compound D-26 4-Bromobiphenyl in the first step reaction was changed to an equivalent equivalent of bromobenzene, and 2-chloro-4,6-diphenyltriazine in the second step reaction was changed to an equivalent equivalent of 2-chloro. A yellow solid (35.8 g, 85% yield) was obtained after completion of the reaction using the same synthesis method as in Synthesis Example 109, except that it was changed to -4,6-di-biphenyltriazine.

合成実施例111.化合物D−27の合成
第1のステップの反応における4−ブロモビフェニルを等当量のブロモベンゼンに変え、中間体M1を等当量の中間体B−27−1に変えた以外、合成実施例109と同じの合成方法を用い、反応終了後、黄色固体である化合物D−27を得た。
Synthesis Example 111. Synthesis of Compound D-27 Synthesis Example 109 except that 4-bromobiphenyl in the reaction of the first step was changed to an equivalent equivalent of bromobenzene and intermediate M1 was changed to an equivalent equivalent of intermediate B-27-1. Using the same synthesis method, Compound D-27 was obtained as a yellow solid after completion of the reaction.

D−27のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.42 (s, 16H), 8.36 (s, 15H), 8.24 (s, 5H), 8.10 (d, J = 2.5 Hz, 21H), 7.89 (d, J = 2.9 Hz, 4H), 7.81 (d, J = 60.0 Hz, 23H), 7.72 (s, 2H), 7.67 (d, J = 45.0 Hz, 16H), 7.58 (s, 11H), 7.47 (t, J = 22.5 Hz, 59H), 7.39 (s, 1H).
NMR spectrum data of D-27:
1 H NMR (500 MHz, Chloroform) δ 8.42 (s, 16H), 8.36 (s, 15H), 8.24 (s, 5H), 8.10 (d, J = 2.5 Hz, 21H), 7.89 (d, J = 2.9 Hz, 4H), 7.81 (d, J = 60.0 Hz, 23H), 7.72 (s, 2H), 7.67 (d, J = 45.0 Hz, 16H), 7.58 (s, 11H), 7.47 (t, J = 22.5 Hz, 59H), 7.39 (s, 1H).

合成実施例112.化合物D−28の合成
第1のステップの反応における中間体M1を等当量の中間体M4に変えた以外、合成実施例109と同じの合成方法を用い、反応終了後、黄色固体である化合物D−28を得た。
Synthesis Example 112. Synthesis of Compound D-28 Compound D which is a yellow solid after completion of the reaction using the same synthesis method as in Synthesis Example 109, except that intermediate M1 in the reaction in the first step was changed to equivalent equivalent of intermediate M4 -28 was obtained.

合成実施例113.化合物D−29の合成
第1のステップの反応における4−ブロモビフェニルを等当量のブロモベンゼンに変え、中間体M1を等当量の中間体M5に変え、第2のステップの反応における2−クロロ−4,6−ジフェニルトリアジンを等当量の2−クロロ−4,6−ジ−ビフェニルトリアジンに変えた以外、合成実施例109と同じの合成方法を用い、反応終了後、黄色固体である化合物D−29を得た。
Synthesis Example 113. Synthesis of Compound D-29 4-Bromobiphenyl in the first step reaction is changed to an equivalent equivalent of bromobenzene, intermediate M1 is changed to an equivalent equivalent of intermediate M5, and 2-chloro- in the second step reaction. Compound D-, which is a yellow solid after completion of the reaction, using the same synthesis method as in Synthesis Example 109, except that 4,6-diphenyltriazine was changed to an equivalent equivalent of 2-chloro-4,6-diphenylbiazine. 29 was obtained.

合成実施例114.化合物D−30の合成   Synthesis Example 114. Synthesis of Compound D-30

Figure 2018523638
Figure 2018523638

1L反応フラスコに、中間体M1(38.2g,0.1mol)と、ブロモベンゼン(15.7g,0.1mol)と、CuI(3.3g,17.1mmol)と、CsCO(21.8g,102.9mmol)と、シクロヘキシルジアミン(2.3mL,34.3mmol)と、トルエン(500mL)とを混合し、還流条件下、1日撹拌して反応させ、反応終了後、室温まで冷却させ、酢酸エチル(250mL)で抽出し、有機相を無水硫酸マグネシウムで処理してから減圧蒸留して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、化合物D−30−1(20.2g,収率44%)を得た。 In a 1 L reaction flask, intermediate M1 (38.2 g, 0.1 mol), bromobenzene (15.7 g, 0.1 mol), CuI (3.3 g, 17.1 mmol), and Cs 2 CO 3 (21 .8 g, 102.9 mmol), cyclohexyldiamine (2.3 mL, 34.3 mmol) and toluene (500 mL) are mixed and stirred under reflux conditions for 1 day. After completion of the reaction, the mixture is cooled to room temperature. Extracted with ethyl acetate (250 mL), the organic phase was treated with anhydrous magnesium sulfate, distilled under reduced pressure to remove the solvent, and the resulting distillation residue was separated by column (eluent: dichloromethane / hexane) Compound D-30-1 (20.2 g, yield 44%) was obtained.

1L反応フラスコに、中間体D−30−1(23g,50mmol)と、1−(4−ブロモフェニル)−2−フェニル−1H−ベンゾイミダゾール(20.9g,60mmol)と、CuI(1.7g,8.5mmol)と、CsCO(21.8g,102.9mmol)と、シクロヘキシルジアミン(1.2mL,17mmol)と、トルエン(300mL)とを混合し、還流条件下、1日撹拌して反応させ、反応終了後、室温まで冷却させ、酢酸エチル(150mL)で抽出し、有機相を無水硫酸マグネシウムで処理してから減圧蒸留して溶剤を除去し、得られた蒸留残留物をカラム分離し(溶離液:ジクロロメタン/ヘキサン)、化合物D−30(30.9g,収率85%)を得た。 In a 1 L reaction flask, intermediate D-30-1 (23 g, 50 mmol), 1- (4-bromophenyl) -2-phenyl-1H-benzimidazole (20.9 g, 60 mmol), and CuI (1.7 g) were added. , 8.5 mmol), Cs 2 CO 3 (21.8 g, 102.9 mmol), cyclohexyldiamine (1.2 mL, 17 mmol), and toluene (300 mL), and stirred for 1 day under reflux conditions. After completion of the reaction, the mixture was cooled to room temperature, extracted with ethyl acetate (150 mL), the organic phase was treated with anhydrous magnesium sulfate, and the solvent was removed by distillation under reduced pressure. Separation (eluent: dichloromethane / hexane) gave Compound D-30 (30.9 g, 85% yield).

合成実施例115.化合物D−31の合成
第1のステップの反応における4−ブロモビフェニルを等当量のブロモベンゼンに変え、第2のステップの反応における2−クロロ−4,6−ジフェニルトリアジンを等当量の2−ブロモ−ジベンゾ[f、h]キノキサリンに変えた以外、合成実施例109と同じの合成方法を用い、反応完成後、黄色固体である化合物D−31を得た。
Synthesis Example 115. Synthesis of Compound D-31 4-bromobiphenyl in the first step reaction was changed to an equivalent equivalent of bromobenzene, and 2-chloro-4,6-diphenyltriazine in the second step reaction was converted to an equivalent equivalent of 2-bromo. -Compound D-31 was obtained as a yellow solid after completion of the reaction using the same synthesis method as in Synthesis Example 109, except that it was changed to dibenzo [f, h] quinoxaline.

合成実施例116.化合物D−32の合成   Synthesis Example 116. Synthesis of Compound D-32

Figure 2018523638
Figure 2018523638

中間体D−32−1の合成:250mL三つ口フラスコに、中間体化合物M1(19.1g,50mmol)と、3−ブロモビフェニル(11.7g,50mmol)と、CuI(1.8g,10mmol)と、トランス−ジアミノシクロヘキサン(5.4mL,50mmol)と、炭酸セシウム(16g,50mmol)とで形成された混合物を3時間加熱して還流させた。反応混合物を室温まで冷却させ、濾過し、濾過ケーキをジクロロメタンで洗浄し、得られた有機相を脱イオン水で充分に洗浄してから、無水硫酸ナトリウムで乾燥させた。乾燥後の有機相を減圧して溶剤を除去し、得られた残留物をカラム分離し、白色化合物D−32−1(16.3g,収率61%)を得た。   Synthesis of intermediate D-32-1: In a 250 mL three-necked flask, intermediate compound M1 (19.1 g, 50 mmol), 3-bromobiphenyl (11.7 g, 50 mmol), CuI (1.8 g, 10 mmol) ), Trans-diaminocyclohexane (5.4 mL, 50 mmol) and cesium carbonate (16 g, 50 mmol) were heated to reflux for 3 hours. The reaction mixture was allowed to cool to room temperature, filtered, the filter cake was washed with dichloromethane, and the resulting organic phase was washed thoroughly with deionized water before being dried over anhydrous sodium sulfate. The organic phase after drying was decompressed to remove the solvent, and the resulting residue was subjected to column separation to obtain white compound D-3-1 (16.3 g, yield 61%).

化合物D−32の合成:250mL三つ口フラスコに、中間体化合物D−32−1(26.7g,50mol)と、2−(4−ブロモフェニル)−4,6−ジフェニル−1,3,5−トリアジン(21.3g,55mmol)と、CuI(1.8g,10mmol)と、トランス−ジアミノシクロヘキサン(5.4mL,50mmol)と、炭酸セシウム(16g,50mmol)とで形成された混合物を3時間加熱して還流させた。反応混合物を室温まで冷却させ、濾過し、濾過ケーキをジクロロメタンで洗浄し、得られた有機相を脱イオン水で充分に洗浄してから、無水硫酸ナトリウムで乾燥させた。乾燥後の有機相を減圧して溶剤を除去し、得られた残留物をカラム分離し、淡黄色化合物D−32(35.8g,収率85%)を得た。   Synthesis of compound D-32: In a 250 mL three-necked flask, intermediate compound D-32-1 (26.7 g, 50 mol) and 2- (4-bromophenyl) -4,6-diphenyl-1,3, A mixture formed with 5-triazine (21.3 g, 55 mmol), CuI (1.8 g, 10 mmol), trans-diaminocyclohexane (5.4 mL, 50 mmol) and cesium carbonate (16 g, 50 mmol) Heated to reflux for hours. The reaction mixture was allowed to cool to room temperature, filtered, the filter cake was washed with dichloromethane, and the resulting organic phase was washed thoroughly with deionized water before being dried over anhydrous sodium sulfate. The organic phase after drying was decompressed to remove the solvent, and the resulting residue was subjected to column separation to obtain pale yellow compound D-32 (35.8 g, yield 85%).

D−32のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.53 (s, 3H), 8.40 (s, 4H), 8.34 (s, 4H), 8.19 (s, 1H), 8.08 (s, 4H), 7.89 (d, J = 5.0 Hz, 5H), 7.68 (d, J= 49.9 Hz, 4H), 7.60 (dd, J = 5.8, 2.8 Hz, 1H), 7.58 (s, 1H), 7.52 - 7.43 (m, 13H), 7.39 (s, 1H), 7.14 (s, 1H), 7.09 (s, 2H).
NMR spectral data of D-32:
1 H NMR (500 MHz, Chloroform) δ 8.53 (s, 3H), 8.40 (s, 4H), 8.34 (s, 4H), 8.19 (s, 1H), 8.08 (s, 4H), 7.89 (d, J = 5.0 Hz, 5H), 7.68 (d, J = 49.9 Hz, 4H), 7.60 (dd, J = 5.8, 2.8 Hz, 1H), 7.58 (s, 1H), 7.52-7.43 (m, 13H), 7.39 (s, 1H), 7.14 (s, 1H), 7.09 (s, 2H).

合成実施例117.化合物D−33の合成   Synthesis Example 117. Synthesis of Compound D-33

Figure 2018523638
Figure 2018523638

第1のステップの反応における3−ブロモビフェニルを等当量の2−ブロモ−ジベンゾフランに変え、第2のステップの反応における2−(4−ブロモフェニル)−4,6−ジフェニル−1,3,5−トリアジンを等当量の2−(3−ブロモフェニル)−4−フェニルキナゾリンに変えた以外、合成実施例116と同じの合成方法を用いて、反応させて黄色固体(32.3g,2ステップの合計収率47%)を得た。   3-Bromobiphenyl in the first step reaction is replaced with an equivalent equivalent of 2-bromo-dibenzofuran, and 2- (4-bromophenyl) -4,6-diphenyl-1,3,5 in the second step reaction. Using the same method of synthesis as in Synthesis Example 116, except that the triazine was replaced with an equivalent equivalent of 2- (3-bromophenyl) -4-phenylquinazoline to give a yellow solid (32.3 g, 2 steps of A total yield of 47%) was obtained.

D−33のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.55 (s, 20H), 8.45 (d, J = 7.2 Hz, 3H), 8.42 (s, 39H), 8.47 - 8.14 (m, 73H), 8.12 (d, J = 15.0 Hz, 41H), 8.08 - 7.86 (m, 35H), 7.82 (t, J = 2.7 Hz, 7H), 7.80 (d, J= 3.6 Hz, 24H), 7.81 - 7.58 (m, 71H), 7.52 (dd, J = 18.2, 8.2 Hz, 44H), 7.39 (s, 10H), 7.31 (s, 5H), 7.16 (s, 11H), 7.11 (s, 16H).
NMR spectrum data of D-33:
1 H NMR (500 MHz, Chloroform) δ 8.55 (s, 20H), 8.45 (d, J = 7.2 Hz, 3H), 8.42 (s, 39H), 8.47-8.14 (m, 73H), 8.12 (d, J = 15.0 Hz, 41H), 8.08-7.86 (m, 35H), 7.82 (t, J = 2.7 Hz, 7H), 7.80 (d, J = 3.6 Hz, 24H), 7.81-7.58 (m, 71H), 7.52 (dd, J = 18.2, 8.2 Hz, 44H), 7.39 (s, 10H), 7.31 (s, 5H), 7.16 (s, 11H), 7.11 (s, 16H).

合成実施例118.化合物D−34の合成   Synthesis Example 118. Synthesis of Compound D-34

Figure 2018523638
Figure 2018523638

第1のステップの反応における3−ブロモビフェニルを等当量の2−ブロモナフトフランに変え、第2のステップの反応における2−(4−ブロモフェニル)−4,6−ジフェニル−1,3,5−トリアジンを等当量の2−(4−ブロモフェニル)−4,6−ジフェニルピリミジンに変えた以外、合成実施例116と同じの合成方法を用い、反応させて黄色固体(34.3g,2ステップの合計収率53%)を得た。   3-Bromobiphenyl in the first step reaction is changed to an equivalent equivalent of 2-bromonaphthofuran, and 2- (4-bromophenyl) -4,6-diphenyl-1,3,5 in the second step reaction. A yellow solid (34.3 g, 2 steps), reacted using the same synthesis method as in Synthesis Example 116, except that the triazine was changed to an equivalent equivalent of 2- (4-bromophenyl) -4,6-diphenylpyrimidine. Yield of 53%).

合成実施例119.化合物D−35の合成   Synthesis Example 119. Synthesis of Compound D-35

Figure 2018523638
Figure 2018523638

第1のステップの反応における3−ブロモビフェニルを等当量の3−ブロモ−N−フェニルカルバゾールに変え、第2のステップの反応における2−(4−ブロモフェニル)−4,6−ジフェニル−1,3,5−トリアジンを等当量の2−(4−ブロモフェニル)−4−フェニルキナゾリンに変えた以外、合成実施例116と同じの合成方法を用い、反応させて黄色固体(35g,2ステップの合計収率49%)を得た。   3-Bromobiphenyl in the first step reaction is changed to an equivalent equivalent of 3-bromo-N-phenylcarbazole, and 2- (4-bromophenyl) -4,6-diphenyl-1, in the second step reaction, Using the same synthetic method as in Synthesis Example 116, except that 3,5-triazine was replaced with an equivalent equivalent of 2- (4-bromophenyl) -4-phenylquinazoline, a yellow solid (35 g, 2 steps of A total yield of 49%) was obtained.

合成実施例120.化合物D−36の合成   Synthesis Example 120. Synthesis of Compound D-36

Figure 2018523638
Figure 2018523638

2−クロロピリジンを等当量の2−(3−ブロモフェニル)−4−フェニルキナゾリンに変えた以外、合成実施例84における化合物D−1の合成と同じの合成方法を用い、反応させて黄色固体(34.9g,収率74%)を得た。   A yellow solid was reacted using the same synthesis method as the synthesis of compound D-1 in Synthesis Example 84, except that 2-chloropyridine was changed to an equivalent equivalent of 2- (3-bromophenyl) -4-phenylquinazoline. (34.9 g, yield 74%) was obtained.

合成実施例121.化合物D−37の合成   Synthesis Example 121. Synthesis of Compound D-37

Figure 2018523638
Figure 2018523638

雰囲気下、三つ口フラスコに、ヨードベンゼン(22g,0.11mol)、中間体M10(46.1g,0.1mol)、塩化第一銅(2g,20mmol)、水和1,10−フェナントロリン(4g,20mmol)、水酸化カリウム(16.8g,0.3mol)及びキシレン(300mL)を加えた。反応系を20h還流反応させ、反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相をMgSOで乾燥させ、回転蒸発器によって溶剤を除去し、溶剤が除去された残留物をカラム分離し、白色固体である中間体化合物(52.3g,86%)を得た。 In a N 2 atmosphere, in a three-necked flask, iodobenzene (22 g, 0.11 mol), intermediate M10 (46.1 g, 0.1 mol), cuprous chloride (2 g, 20 mmol), hydrated 1,10- Phenanthroline (4 g, 20 mmol), potassium hydroxide (16.8 g, 0.3 mol) and xylene (300 mL) were added. The reaction system was refluxed for 20 hours. After completion of the reaction, the reaction system was washed with distilled water, extracted three times with ethyl acetate (100 mL), and the resulting organic phase was combined and the organic phase was dried over MgSO 4 . The solvent was removed by a rotary evaporator, and the residue from which the solvent was removed was separated by column to obtain an intermediate compound (52.3 g, 86%) as a white solid.

窒素ガス雰囲気下、機械撹拌、低温温度計、定圧漏斗が取り付けられた1L三つ口フラスコに、上記中間体化合物(31g,50mmol)及びTHF(500mL)を加え、液体窒素で−80℃以下に降温し、2.4Mのn−ブチルリチウム(23mL,55mmol)を滴下し、−80℃を超えないように温度を制御し、滴下完了後−80℃以下で15min保温し、ボロン酸トリイソプロピルを(14.2g,75mmol)滴下し、滴下完了後−80℃以下に温度を制御して1h反応させ、室温まで昇温させ、室温で引き続き5h反応させ、反応液を、濃塩酸(100mL)と水(1L)とで調製された希酸に入れ、撹拌して上層有機相を析出させ、水相をジクロロメタン(600mL)で1回抽出し、有機相を合併して減圧濃縮乾燥で淡黄色オイル状物を得た。カラム分離し、白色固体(26g,収率90%)を得た。   In a nitrogen gas atmosphere, the intermediate compound (31 g, 50 mmol) and THF (500 mL) were added to a 1 L three-necked flask equipped with mechanical stirring, a low-temperature thermometer, and a constant pressure funnel, and the temperature was reduced to −80 ° C. or lower with liquid nitrogen. The temperature was lowered, 2.4 M n-butyllithium (23 mL, 55 mmol) was added dropwise, the temperature was controlled so as not to exceed −80 ° C., and after completion of the addition, the temperature was kept at −80 ° C. or lower for 15 min, and triisopropyl boronate was added. (14.2 g, 75 mmol) was added dropwise, and after completion of the dropwise addition, the temperature was controlled to −80 ° C. or lower for 1 h, the temperature was raised to room temperature, the reaction was continued at room temperature for 5 h, and the reaction solution was added with concentrated hydrochloric acid (100 mL). It is put into a dilute acid prepared with water (1 L), stirred to precipitate the upper organic phase, the aqueous phase is extracted once with dichloromethane (600 mL), and the organic phases are combined and dried under reduced pressure. In a pale yellow oily matter. Column separation was performed to obtain a white solid (26 g, yield 90%).

窒素ガス雰囲気下、中間体ボロン酸(5.78g,10mmol)と、2−クロロ−4−フェニルキナゾリン(2.4g,10mmol)と、Pd(PPh(0.58g,0.5mmol)と、NaCO (5.3g,50mmol)と、トルエン(60mL)と、EtOH(20mL)とを混合し、該混合物に蒸留水を20mL加え、110℃で2時間撹拌して反応させた。反応完成後、反応系を蒸留水で洗浄してから、酢酸エチル(100mL)で3回抽出し、得られた有機相を合併して有機相をMgSOで乾燥させ、回転蒸発により溶剤を除去し、最後に溶剤が除去された残留物をカラム分離し、黄色固体化合物D−37(6.2g,84%)を得た。 Under a nitrogen gas atmosphere, intermediate boronic acid (5.78 g, 10 mmol), 2-chloro-4-phenylquinazoline (2.4 g, 10 mmol), and Pd (PPh 3 ) 4 (0.58 g, 0.5 mmol) , Na 2 CO 3 (5.3 g, 50 mmol), toluene (60 mL), and EtOH (20 mL) were mixed, 20 mL of distilled water was added to the mixture, and the mixture was stirred at 110 ° C. for 2 hours to be reacted. . After completion of the reaction, the reaction system is washed with distilled water, extracted three times with ethyl acetate (100 mL), the resulting organic phases are combined, the organic phase is dried over MgSO 4 , and the solvent is removed by rotary evaporation. Finally, the residue from which the solvent was removed was subjected to column separation to obtain a yellow solid compound D-37 (6.2 g, 84%).

D−37のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.49 (d, J = 65.0 Hz, 6H), 8.40 (s, 1H), 8.19 - 7.89 (m, 7H), 7.89 - 7.73 (m, 7H), 7.63 (d, J = 15.0 Hz, 11H), 7.60 - 7.45 (m, 19H), 7.33 (s, 2H), 7.16 (s, 2H), 7.11 (s, 3H).
NMR spectrum data of D-37:
1 H NMR (500 MHz, Chloroform) δ 8.49 (d, J = 65.0 Hz, 6H), 8.40 (s, 1H), 8.19-7.89 (m, 7H), 7.89-7.73 (m, 7H), 7.63 (d , J = 15.0 Hz, 11H), 7.60-7.45 (m, 19H), 7.33 (s, 2H), 7.16 (s, 2H), 7.11 (s, 3H).

合成実施例122.化合物D−38の合成
2−クロロ−4−フェニルキナゾリンを等当量の2−(4−ブロモフェニル)−5−フェニル−1,3,4−オキサジアゾールに変えた以外、合成実施例120における化合物D−37の合成と同じの合成方法を用い、反応させて黄色固体である化合物D−38(6.11g,収率81%)を得た。
Synthesis Example 122. Synthesis of Compound D-38 In Synthesis Example 120, except that 2-chloro-4-phenylquinazoline was replaced with an equivalent equivalent of 2- (4-bromophenyl) -5-phenyl-1,3,4-oxadiazole. Compound D-38 (6.11 g, yield 81%) was obtained as a yellow solid by reaction using the same synthesis method as that for compound D-37.

合成実施例123.化合物D−39の合成
第1のステップの反応における中間体M10を等当量の中間体M9に変え、第3のステップの反応における2−クロロ−4−フェニルキナゾリンを等当量の2−(3−ブロモフェニル)−4,6−ジフェニル−1,3,5−トリアジンに変えた以外、合成実施例120における化合物D−37の合成と同じの合成方法を用い、反応させて黄色固体である化合物D−39(7.58g,収率90%)を得た。
Synthesis Example 123. Synthesis of Compound D-39 Intermediate M10 in the first step reaction was changed to an equivalent equivalent of intermediate M9, and 2-chloro-4-phenylquinazoline in the third step reaction was converted to an equivalent equivalent of 2- (3- Compound D which is a yellow solid by reaction using the same synthesis method as the synthesis of Compound D-37 in Synthesis Example 120 except that it is changed to bromophenyl) -4,6-diphenyl-1,3,5-triazine -39 (7.58 g, 90% yield) was obtained.

D−39のNMRスペクトルデータ:
1H NMR (500 MHz, Chloroform) δ 8.54 (s, 6H), 8.52 - 8.33 (m, 24H), 8.09 (s, 5H), 7.69 (s, 3H), 7.63 - 7.55 (m, 23H), 7.50 (d, J = 10.0 Hz, 34H), 7.32 (s, 4H), 7.24 (d, J = 85.0 Hz, 10H), 7.36 - 6.89 (m, 19H).
NMR spectrum data of D-39:
1 H NMR (500 MHz, Chloroform) δ 8.54 (s, 6H), 8.52-8.33 (m, 24H), 8.09 (s, 5H), 7.69 (s, 3H), 7.63-7.55 (m, 23H), 7.50 (d, J = 10.0 Hz, 34H), 7.32 (s, 4H), 7.24 (d, J = 85.0 Hz, 10H), 7.36-6.89 (m, 19H).

本発明による具体的な合成実施例における化合物の分析検出データを下記の表1に示す。   The analytical detection data of the compounds in specific synthesis examples according to the present invention are shown in Table 1 below.

表1:

Figure 2018523638
Table 1:
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

素子実施例
以下の素子構造を応用してOLED素子評価を行う。ITO/HIL/HTL/EML/ETL/LiF/Al(上記略称はそれぞれ、ITO陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/LiFおよびAlの負極に対応し、上記略称の意味は以下においても同じである)、素子中の各機能層に用いられた材料の構造式(全ての材料は百霊威試薬から購入;純度>99.9%)を下記に示す。
Element Example An OLED element is evaluated by applying the following element structure. ITO / HIL / HTL / EML / ETL / LiF / Al (the above abbreviations correspond to ITO anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / LiF and Al negative electrode, respectively) The meanings of the above abbreviations are the same in the following), and the structural formulas of the materials used for each functional layer in the device (all materials are purchased from Hyakurei Reagent; purity> 99.9%) are as follows: Show.

Figure 2018523638
Figure 2018523638

Figure 2018523638
Figure 2018523638

素子実施例1.本発明による化合物を正孔注入材料とする例
ITO(150nm)透明導電層が塗布されたガラス板を商用洗浄剤に超音波処理し、脱イオン水で洗浄し、アセトン:エタノール混合溶剤(体積比1:1)に超声波でオイルを除去し、水分が完全に除去されるまで清潔環境でベークし、紫外光及びオゾンで洗浄し、Satella(ULVAC)の低エネカチオンビームを用いて表面を衝突した。
Element Example 1 Example using the compound according to the present invention as a hole injection material A glass plate coated with an ITO (150 nm) transparent conductive layer is sonicated into a commercial detergent, washed with deionized water, and mixed with acetone: ethanol (volume ratio). 1: 1) Ultrasonic waves removed oil, baked in a clean environment until moisture was completely removed, washed with UV light and ozone, and collided with a surface using a low energy cation beam from Satella (ULVAC) .

上記陽極付きガラス基板を真空腔内に配置し、1×10−5〜9×10−3Paになるまで真空引きする。上記陽極層膜上に化合物C−1を真空蒸着して、厚さ60nmの正孔注入層を形成した。正孔注入層上に化合物NPBを真空蒸着して、厚さ20nmの正孔輸送層を形成し、蒸着速度が0.1nm/sである。 The said glass substrate with an anode is arrange | positioned in a vacuum cavity, and it evacuates until it becomes 1 * 10 < -5 > -9 * 10 < -3 > Pa. Compound C-1 was vacuum-deposited on the anode layer film to form a hole injection layer having a thickness of 60 nm. The compound NPB is vacuum-deposited on the hole injection layer to form a 20 nm-thick hole transport layer, and the deposition rate is 0.1 nm / s.

上記正孔輸送層上にエレクトロルミネッセンス層を形成し、具体的な操作は以下のとおりである。発光層ホストとしてのCBP[4,4’−N、N’−ジカルバゾール−ビフェニル]を真空蒸着装置の小室に配置し、ドーパントとしての(piq)Ir(acac)[ジ−(1−フェニルイソキノリニル)アセチルアセトネートイリジウム(III)]を真空蒸着装置の他の小室に配置し、2種の材料を異なる速度で同時に蒸発させ、(piq)Ir(acac)の濃度が4%であり、蒸着総膜厚さが30nmである。 An electroluminescence layer is formed on the hole transport layer, and a specific operation is as follows. CBP [4,4′-N, N′-dicarbazole-biphenyl] as a light emitting layer host is placed in a small chamber of a vacuum deposition apparatus, and (piq) 2 Ir (acac) [di- (1-phenyl) as a dopant. Isoquinolinyl) acetylacetonate iridium (III)] is placed in the other chamber of the vacuum deposition apparatus, the two materials are evaporated simultaneously at different rates, and the concentration of (piq) 2 Ir (acac) is 4% The total thickness of the deposited film is 30 nm.

発光層上にBphenを真空蒸着して膜厚20nmの電子輸送層を形成し、その蒸着速度が0.1nm/sである。   Bphen is vacuum-deposited on the light emitting layer to form an electron transport layer having a thickness of 20 nm, and the deposition rate is 0.1 nm / s.

電子輸送層上に、0.5nmのLiFを電子注入層として、厚さ150nmのAl層を素子の陰極として真空蒸着する。   On the electron transport layer, 0.5 nm LiF is used as an electron injection layer, and a 150 nm thick Al layer is vacuum deposited as a device cathode.

素子実施例2.本発明による化合物を正孔注入材料とする例
化合物C−1を化合物C−3に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 2 Example of using compound according to the present invention as hole injection material An organic electroluminescence device was produced in the same manner as in Example 1 except that Compound C-1 was changed to Compound C-3.

素子実施例3.本発明による化合物を正孔注入材料とする例
化合物C−1を化合物C−4に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 3 Example of using compound according to the present invention as hole injection material An organic electroluminescence device was produced in the same manner as in Example 1 except that Compound C-1 was changed to Compound C-4.

素子実施例4.本発明による化合物を正孔注入材料とする例
化合物C−1を化合物C−11に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 4 Example of using compound according to the present invention as hole injection material An organic electroluminescence device was produced in the same manner as in Example 1 except that Compound C-1 was changed to Compound C-11.

素子実施例5.本発明による化合物を正孔注入材料とする例
化合物C−1を化合物C−12に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 5 Example of using compound according to the present invention as hole injection material An organic electroluminescence device was produced in the same manner as in Example 1 except that Compound C-1 was changed to Compound C-12.

素子実施例6.本発明による化合物を正孔注入材料とする例
化合物C−1を化合物C−13に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 6 Example of using compound according to the present invention as hole injection material An organic electroluminescence device was produced in the same manner as in Example 1 except that Compound C-1 was changed to Compound C-13.

素子実施例7.本発明による化合物を正孔注入材料とする例
化合物C−1を化合物C−15に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 7 Example of using compound according to the present invention as hole injection material An organic electroluminescence device was produced in the same manner as in Example 1 except that Compound C-1 was changed to Compound C-15.

素子実施例8.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−1に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 8 Example of using compound according to the present invention as a hole transport material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-1. .

素子実施例9.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−3に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 9 Example using compound according to the present invention as a hole transport material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-3. .

素子実施例10.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−4に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 10 Example of using the compound according to the present invention as a hole transport material An organic electroluminescence device was produced using the same method as in Example 1, except that Compound C-1 was changed to 2-TNATA and NPB was changed to Compound B-4. .

素子実施例11.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−6に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 11 Example of using the compound according to the present invention as a hole transport material An organic electroluminescence device was produced in the same manner as in Example 1 except that Compound C-1 was changed to 2-TNATA and NPB was changed to Compound B-6. .

素子実施例12.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−9に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 12 Example of using compound according to the present invention as a hole transport material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-9. .

素子実施例13.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−10に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 13 Example of using the compound according to the present invention as a hole transport material An organic electroluminescence device was produced in the same manner as in Example 1 except that Compound C-1 was changed to 2-TNATA and NPB was changed to Compound B-10. .

素子実施例14.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−12に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 14 Example using compound according to the present invention as a hole transport material An organic electroluminescence device was produced using the same method as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-12. .

素子実施例15.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−13に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 15 Example using compound according to the present invention as a hole transport material An organic electroluminescence device was produced in the same manner as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-13. .

素子実施例16.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−17に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 16 Example using compound according to the present invention as a hole transport material An organic electroluminescence device was produced in the same manner as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-17. .

素子実施例17.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−18に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 17 Example of using compound according to the present invention as a hole transport material An organic electroluminescence device was produced using the same method as in Example 1 except that Compound C-1 was changed to 2-TNATA and NPB was changed to Compound B-18. .

素子実施例18.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−21に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 18 Example of using the compound according to the present invention as a hole transport material An organic electroluminescence device was produced using the same method as in Example 1 except that Compound C-1 was changed to 2-TNATA and NPB was changed to Compound B-21. .

素子実施例19.本発明による化合物を正孔輸送材料とする例
化合物C−1を2−TNATAに変え、NPBを化合物B−30に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 19 Example using compound according to the present invention as a hole transport material An organic electroluminescence device was produced in the same manner as in Example 1 except that compound C-1 was changed to 2-TNATA and NPB was changed to compound B-30. .

素子実施例20.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物A−1に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Device Example 20 Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced in the same manner as in Example 1 except that Compound C-1 was changed to 2-TNATA and CBP was changed to Compound A-1. .

素子実施例21.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物A−4に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Device Example 21. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced in the same manner as in Example 1 except that Compound C-1 was changed to 2-TNATA and CBP was changed to Compound A-4. .

素子実施例22.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物A−6に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 22 Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced in the same manner as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound A-6. .

素子実施例23.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物A−9に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 23. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced in the same manner as in Example 1 except that Compound C-1 was changed to 2-TNATA and CBP was changed to Compound A-9. .

素子実施例24.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物A−14に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 24. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced in the same manner as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound A-14. .

素子実施例25.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物A−21に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 25. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced in the same manner as in Example 1 except that Compound C-1 was changed to 2-TNATA and CBP was changed to Compound A-21. .

素子実施例26.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物D−4に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 26. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced in the same manner as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound D-4. .

素子実施例27.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物D−6に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 27. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced in the same manner as in Example 1 except that Compound C-1 was changed to 2-TNATA and CBP was changed to Compound D-6. .

素子実施例28.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物D−10に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 28. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced in the same manner as in Example 1 except that Compound C-1 was changed to 2-TNATA and CBP was changed to Compound D-10. .

素子実施例29.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物D−25に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 29. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced in the same manner as in Example 1 except that Compound C-1 was changed to 2-TNATA and CBP was changed to Compound D-25. .

素子実施例30.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物D−27に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 30. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced in the same manner as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound D-27. .

素子実施例31.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物D−33に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Device Example 31. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced in the same manner as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound D-33. .

素子実施例32.本発明による化合物を赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物D−37に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 32. Example of using the compound according to the present invention as a red phosphorescent host material An organic electroluminescence device was produced in the same manner as in Example 1 except that compound C-1 was changed to 2-TNATA and CBP was changed to compound D-37. .

素子実施例33.本発明による化合物をそれぞれ、正孔注入材料、正孔輸送材料及び赤色燐光ホスト材料とする例
化合物C−1をC−10に変え、NPBを化合物B−8に変え、CBPを化合物D−25に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 33. Examples in which the compound according to the present invention is a hole injection material, a hole transport material and a red phosphorescent host material, respectively. Compound C-1 is changed to C-10, NPB is changed to compound B-8, and CBP is changed to compound D-25. An organic electroluminescence element was manufactured using the same method as in Example 1 except that the above was changed.

素子実施例34.本発明による化合物をそれぞれ、正孔注入材料、正孔輸送材料及び赤色燐光ホスト材料とする例
化合物C−1をC−13に変え、NPBを化合物B−6に変え、CBPを化合物D−37に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 34. Examples in which the compound according to the present invention is a hole injecting material, a hole transporting material and a red phosphorescent host material, respectively. Compound C-1 is changed to C-13, NPB is changed to compound B-6, and CBP is changed to compound D-37. An organic electroluminescence element was manufactured using the same method as in Example 1 except that the above was changed.

素子実施例35.本発明による化合物をそれぞれ、正孔注入材料、正孔輸送材料及び赤色燐光ホスト材料とする例
化合物C−1をC−3に変え、NPBを化合物B−30に変え、CBPを化合物D−4に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 35. Examples in which the compound according to the present invention is a hole injection material, a hole transport material and a red phosphorescent host material, respectively. Compound C-1 is changed to C-3, NPB is changed to compound B-30, and CBP is changed to compound D-4. An organic electroluminescence element was manufactured using the same method as in Example 1 except that the above was changed.

素子実施例36.本発明による化合物を緑色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、CBPを化合物D−32に変え、(piq)Ir(acac)をIr(ppy)に変え、ドーピング濃度を10%に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 36. Example in which the compound according to the present invention is a green phosphorescent host material Compound C-1 is changed to 2-TNATA, CBP is changed to Compound D-32, (piq) 2 Ir (acac) is changed to Ir (ppy) 3 and doping An organic electroluminescence device was manufactured using the same method as in Example 1 except that the concentration was changed to 10%.

素子実施例37.本発明による化合物を緑色燐光ホスト材料とする例
化合物D−32をD−39に変えた以外、実施例26と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 37. Example using the compound according to the present invention as a green phosphorescent host material An organic electroluminescence device was produced in the same manner as in Example 26 except that the compound D-32 was changed to D-39.

素子実施例38.本発明による化合物をそれぞれ、正孔注入材料、正孔輸送材料及び緑色燐光ホスト材料とする例
化合物C−1をC−3に変え、NPBを化合物B−8に変え、CBPを化合物D−32に変え、(piq)Ir(acac)をIr(ppy)に変え、ドーピング濃度を10%に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 38. Examples in which the compound according to the present invention is a hole injection material, a hole transport material and a green phosphorescent host material, respectively. Compound C-1 is changed to C-3, NPB is changed to Compound B-8, and CBP is changed to Compound D-32. The organic electroluminescence device was manufactured using the same method as in Example 1 except that (piq) 2 Ir (acac) was changed to Ir (ppy) 3 and the doping concentration was changed to 10%.

素子実施例39.本発明による化合物をそれぞれ、正孔注入材料、正孔輸送材料及び緑色燐光ホスト材料とする例
化合物C−1をC−11に変え、NPBを化合物B−30に変え、CBPを化合物D−39に変え、(piq)Ir(acac)をIr(ppy)に変え、ドーピング濃度を10%に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Element Example 39. Examples in which the compound according to the present invention is a hole injecting material, a hole transporting material and a green phosphorescent host material, respectively Compound C-1 is changed to C-11, NPB is changed to Compound B-30, and CBP is changed to Compound D-39 The organic electroluminescence device was manufactured using the same method as in Example 1 except that (piq) 2 Ir (acac) was changed to Ir (ppy) 3 and the doping concentration was changed to 10%.

比較実施例1.2−TNATAを正孔注入材料とし、NPBを正孔輸送材料とし、CBPを赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Comparative Example 1.2 Example using TNATA as hole injection material, NPB as hole transport material, and CBP as red phosphorescent host material Same as Example 1 except that Compound C-1 was changed to 2-TNATA An organic electroluminescence device was manufactured using the method.

比較実施例2.2−TNATAを正孔注入材料とし、NPBを正孔輸送材料とし、CBPを赤色燐光ホスト材料とする例
化合物C−1を2−TNATAに変え、(piq)Ir(acac)をIr(ppy)に変え、ドーピング濃度を10%に変えた以外、実施例1と同じ方法を用いて有機エレクトロルミネッセンス素子を製造した。
Comparative Example 2.2 Example Using TNATA as a Hole Injection Material, NPB as a Hole Transport Material, and CBP as a Red Phosphorescent Host Material Compound C-1 is changed to 2-TNATA, and (piq) 2 Ir (acac ) Was changed to Ir (ppy) 3 and the doping concentration was changed to 10%, and an organic electroluminescence device was produced using the same method as in Example 1.

テスト実施例1
赤光素子の輝度1000cd/mで、Keithley 2602数字源表輝度計(北京師範大学光電機器場製)を用い、実施例1〜25および比較例1において製造された有機エレクトロルミネッセンス素子の駆動電圧及び電流効率をテストし、その結果を表2に示す。
Test Example 1
Driving voltage of the organic electroluminescence device manufactured in Examples 1 to 25 and Comparative Example 1 using a Keithley 2602 number source table luminance meter (manufactured by Beijing Normal University photoelectric device field) with a luminance of the red light device of 1000 cd / m 2 The current efficiency was tested and the results are shown in Table 2.

テスト実施例2
緑光素子の輝度2000cd/mで、Keithley 2602数字源表輝度計(北京師範大学光電機械場製)を用い、実施例26〜27および比較例2において製造された有機エレクトロルミネッセンス素子の駆動電圧及び電流効率をテストし、その結果を表2に示す。
Test example 2
The driving voltage of the organic electroluminescence elements manufactured in Examples 26 to 27 and Comparative Example 2 using a Keithley 2602 number source table luminance meter (manufactured by Beijing Normal University Photoelectric Mechanical Field) with a luminance of the green light element of 2000 cd / m 2 and The current efficiency was tested and the results are shown in Table 2.

表2:

Figure 2018523638
Table 2:
Figure 2018523638

表1における素子実施例1〜7及び比較実施例1は、有機エレクトロルミネッセンス素子構造における他の材料が同一である場合、比較素子実施例1における2−TNATAの代わりに、本発明によるCシリーズ化合物を正孔注入材料とする。Cシリーズ化合物の好ましいアリールアミン類置換基は母核のHOMO準位を向上させ、シングルキャリア性能を向上させる。その素子性能には、より低い駆動電圧及び比較的に高い電流効率が得られたとともに、発光素子の発光効率が向上されたことは、本発明による材料がより効率的な正孔注入性を有することを示した。   In device examples 1 to 7 and comparative example 1 in Table 1, when other materials in the organic electroluminescence device structure are the same, instead of 2-TNATA in comparative device example 1, C series compound according to the present invention Is a hole injection material. Preferred arylamine substituents of C series compounds improve the HOMO level of the parent nucleus and improve single carrier performance. In the device performance, a lower driving voltage and a relatively high current efficiency were obtained, and the light emission efficiency of the light emitting device was improved. The material according to the present invention has a more efficient hole injection property. Showed that.

素子実施例8−19及び比較実施例1は、有機エレクトロルミネッセンス素子構造における他の材料が同一である場合、比較素子実施例1におけるNPBの代わりに、本発明によるBシリーズ化合物を正孔輸送材料とする。Bシリーズ化合物は、カルバゾリル基、ジベンゾフラニル基、ジベンゾチエニル基などの置換基が好ましく、母核のHOMO準位をやや向上させ、ホスト準位とより整合させ、より高い三重項準位に対して励起子阻止層の作用を同時に働かせ、シングルキャリアの注入・輸送性を向上させ、比較的に強い正孔輸送性を有し、より高い電流効率及び比較的に低い駆動電圧を得、同様の素子構造において、発光素子の発光効率を向上させた。   In device example 8-19 and comparative example 1, when other materials in the organic electroluminescence device structure are the same, the B series compound according to the present invention is replaced with a hole transport material instead of NPB in comparative device example 1. And The B series compound is preferably a substituent such as a carbazolyl group, a dibenzofuranyl group, a dibenzothienyl group, etc., which slightly improves the HOMO level of the mother nucleus, is more consistent with the host level, and has a higher triplet level. The exciton blocking layer works at the same time to improve single carrier injection and transport, have a relatively strong hole transport, obtain higher current efficiency and lower drive voltage, In the element structure, the light emission efficiency of the light emitting element is improved.

素子実施例20−32及び比較素子実施例1は、有機エレクトロルミネッセンス素子構造における他の材料が同一である場合、比較素子実施例1におけるCBPの代わりに、本発明によるA、Dシリーズ化合物を赤色ホスト材料とする。Aシリーズ化合物における中性アリール基は母核への影響が少なく、そのシングルキャリアの性能が良好であり、その素子がより低い電圧及びより高い電流効率を有する。Dシリーズ化合物はピリジル基、フェニルピリジル基、キノリニル基等の電子吸引性を有する置換基が好ましく、そのダブルキャリアの性能が良好で、複合領域が広く、素子の動作電圧をさらに低下させ、より高い電流効率を有することは、本発明による材料の優れたキャリア輸送平衡性および準位整合性を示した。   In the device examples 20-32 and the comparative device example 1, when the other materials in the organic electroluminescence device structure are the same, instead of the CBP in the comparative device example 1, the A and D series compounds according to the present invention are red. Use as host material. The neutral aryl group in the A series compound has little influence on the mother nucleus, the performance of the single carrier is good, and the device has lower voltage and higher current efficiency. The D series compound is preferably a substituent having an electron-withdrawing property such as a pyridyl group, a phenylpyridyl group, a quinolinyl group, the performance of the double carrier is good, the composite region is wide, the operating voltage of the device is further lowered, and the higher Having current efficiency showed excellent carrier transport equilibrium and level matching of the material according to the present invention.

素子実施例36/37及び比較素子実施例2は、有機エレクトロルミネッセンス素子構造における他の材料が同一である場合、比較素子実施例2におけるCBPの代わりに、本発明によるD−32、D−39化合物を緑光ホスト材料とする。実施例36/37による素子は、電流効率が30cd/Aから40cd/Aまで向上し、十分に顕著な向上効果を有するとともに、動作電圧も大幅に低下させる。素子実施例33−35及び比較素子実施例1は、有機エレクトロルミネッセンス素子構造における他の材料が同一である場合、本発明による異なる類型の材料をそれぞれ同時に選択して、2−TNATAの代わりにC−10、C−13、C−3を用い、NPBの代わりにB−8、B−6、B−30を用い、CBPの代わりにD−25、D−37、D−4を用い、赤色素子において有機エレクトロルミネッセンス素子の動作電圧を明らかに低下させ、電流効率を向上させた。緑光素子38、39においても、電圧の低下及び効率の向上という効果を働き、本発明による化合物の優位性を示した。   In the device example 36/37 and the comparative device example 2, when other materials in the organic electroluminescence device structure are the same, instead of the CBP in the comparative device example 2, the D-32 and D-39 according to the present invention are used. The compound is a green light host material. In the device according to Example 36/37, the current efficiency is improved from 30 cd / A to 40 cd / A, and there is a sufficiently remarkable improvement effect, and the operating voltage is also greatly reduced. Device Examples 33-35 and Comparative Device Example 1 were prepared by selecting different types of materials according to the present invention at the same time when the other materials in the organic electroluminescence device structure were the same, -10, C-13, C-3, B-8, B-6, B-30 instead of NPB, D-25, D-37, D-4 instead of CBP, red In the device, the operating voltage of the organic electroluminescence device was obviously reduced, and the current efficiency was improved. The green light elements 38 and 39 also have the effect of lowering the voltage and improving the efficiency, and show the superiority of the compound according to the present invention.

以上は、本発明の好ましい実施形態を詳細に説明したが、本発明は、上記実施形態における具体的な内容に限定されるものではなく、本発明の技術構想範囲内において、本発明の技術案に対して多種の簡単な変形を行ってもよく、これら簡単な変形はいずれも本発明の保護範囲に属する。   The preferred embodiments of the present invention have been described above in detail. However, the present invention is not limited to the specific contents in the above embodiments, and the technical solution of the present invention is within the technical concept of the present invention. However, various simple modifications may be made, and these simple modifications are all within the protection scope of the present invention.

Claims (17)

下記の一般式(I)で表されるベンゾシクロオクタテトラエノジインドール構造を有する化合物。
Figure 2018523638
(上記式(I)中、環Aは
Figure 2018523638
であり、破線は継ぎ位置であり、
Arは、水素、C〜C30のアリールアミノ基又はヘテロアリールアミノ基、置換もしくは無置換のC〜C30のアリール基、または置換もしくは無置換のC〜C30のヘテロアリール基であり、2つのArは同一でも異なっていてもよく、
〜R12はそれぞれ独立に、水素、ハロゲン、C〜C30のアリールアミノ基又はヘテロアリールアミノ基、置換もしくは無置換のC〜C30のアルキル基、置換もしくは無置換のC〜C30のアルケニル基、置換もしくは無置換のC〜C30のアルキニル基、置換もしくは無置換のC〜C30のシクロアルキル基、置換もしくは無置換のC〜C30のヘテロシクロアルキル基、置換もしくは無置換のC〜C30のアリール基、または置換もしくは無置換のC〜C30のヘテロアリール基であり、あるいは、R〜R及び/又はR〜Rは環を形成していてもよい。)
A compound having a benzocyclooctatetraenodiindole structure represented by the following general formula (I).
Figure 2018523638
(In the above formula (I), ring A is
Figure 2018523638
The broken line is the splice position,
Ar is selected from hydrogen, arylamino group or heteroarylamino group C 6 -C 30, a substituted or unsubstituted C 6 -C 30 aryl group or a substituted or unsubstituted C 2 -C 30 heteroaryl group, And the two Ars may be the same or different,
R 1 to R 12 are each independently hydrogen, halogen, a C 6 to C 30 arylamino group or a heteroarylamino group, a substituted or unsubstituted C 1 to C 30 alkyl group, a substituted or unsubstituted C 2. alkenyl group -C 30, a substituted or unsubstituted C 2 -C 30 alkynyl group, a substituted or unsubstituted C 3 -C 30 cycloalkyl group, a substituted or C 2 -C 30 unsubstituted heterocycloalkyl group, a substituted or unsubstituted C 6 -C 30 aryl group or a substituted or unsubstituted C 2 -C 30 heteroaryl group, or, R 1 to R 4 and / or R 5 to R 8 is A ring may be formed. )
〜R12はそれぞれ独立に、水素、置換もしくは無置換のC〜C30のアリール基、置換もしくは無置換のC〜C30のヘテロアリール基、C〜C30のアリールアミノ基又はヘテロアリールアミノ基である、ことを特徴とする請求項1に記載の化合物。 R 1 to R 12 are each independently hydrogen, a substituted or unsubstituted C 6 to C 30 aryl group, a substituted or unsubstituted C 2 to C 30 heteroaryl group, or a C 6 to C 30 arylamino group. Or it is a heteroarylamino group, The compound of Claim 1 characterized by the above-mentioned. Ar、R〜R12はそれぞれ独立に、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントリル基、フェナントリル基、インデニル基、フルオレニル基およびその誘導体、フルオランテニル基、トリフェニレン基、ピレニル基、ペリレニル基、クリセニル基、ナフタセニル基、フラニル基、チエニル基、ピロリル基、ベンゾフラニル基、ベンゾチエニル基、イソベンゾフラニル基、インドリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基及びこれら誘導体、ベンゾジオキソリル基、ピリジル基、フェニルピリジル基、キノリニル基、置換キノリニル基、キナゾリニル基、置換キナゾリニル基、キノキサリニル基、置換キノキサリニル基、ピリミジニル基、置換ピリミジニル基、o−フェナントロリニル基、トリアジニル基、置換トリアジニル基、ベンゾイミダゾリル基、オキサゾリル基、ジフェニルアミノ基、フェニルナフチルアミノ基、4−トリフェニルアミノ基、3−トリフェニルアミノ基、4−[N−フェニル−N−(ジベンゾフラン−3−イル)]フェニルアミノ基、4−[N−フェニル−N−(ジベンゾチオフェン−3−イル)]フェニルアミノ基からなる群から選ばれる1種以上の基が単結合または縮合によって接続した組み合わせであり、R〜R及び/又はR〜Rはそれぞれ環を形成していてもよい、ことを特徴とする請求項1に記載の化合物。 Ar and R 1 to R 12 are each independently a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an indenyl group, a fluorenyl group and derivatives thereof, a fluoranthenyl group, a triphenylene group, and a pyrenyl group. Perylenyl group, chrysenyl group, naphthacenyl group, furanyl group, thienyl group, pyrrolyl group, benzofuranyl group, benzothienyl group, isobenzofuranyl group, indolyl group, dibenzofuranyl group, dibenzothienyl group, carbazolyl group and derivatives thereof, Benzodioxolyl group, pyridyl group, phenylpyridyl group, quinolinyl group, substituted quinolinyl group, quinazolinyl group, substituted quinazolinyl group, quinoxalinyl group, substituted quinoxalinyl group, pyrimidinyl group, substituted pyrimidinyl group, o-phenanthrolinyl group Triazinyl group, substituted triazinyl group, benzimidazolyl group, oxazolyl group, diphenylamino group, phenylnaphthylamino group, 4-triphenylamino group, 3-triphenylamino group, 4- [N-phenyl-N- (dibenzofuran-3- Yl)] phenylamino group, a combination of one or more groups selected from the group consisting of 4- [N-phenyl-N- (dibenzothiophen-3-yl)] phenylamino group connected by a single bond or condensation. R < 1 > -R < 4 > and / or R < 5 > -R < 8 > may each form the ring, The compound of Claim 1 characterized by the above-mentioned. 下記の一般式(II)で表される構造を有する請求項1に記載の化合物。
Figure 2018523638
(上記式(II)中、Ar、Arは同一でも異なっていてもよく、それぞれ独立的にC〜C10アルキル基、置換もしくは無置換のC〜C30のアリール基、または置換もしくは無置換のC〜C30のヘテロアリール基であり、
上記式(II)中、R〜R12は同一でも異なっていてもよく、それぞれ独立に水素、ハロゲン、置換もしくは無置換のC〜C30のアルキル基、置換もしくは無置換のC〜C30のアルケニル基、置換もしくは無置換のC〜C30のアルキニル基、置換もしくは無置換のC〜C30のシクロアルキル基、置換もしくは無置換のC〜C30のヘテロシクロアルキル基、置換もしくは無置換のC〜C30のアリール基、または置換もしくは無置換のC〜C30のヘテロアリール基であり、あるいは、R〜Rが同一でも異なっていてもよく、隣接する基は互いに環を形成していてもよく、R〜Rは同一でも異なっていてもよく、隣接する基は互いに環を形成していてもよく、R〜R12は同一でも異なっていてもよく、隣接する基は互いに環を形成していてもよい。)
The compound of Claim 1 which has a structure represented by the following general formula (II).
Figure 2018523638
(In the above formula (II), Ar 1 and Ar 2 may be the same or different and are each independently a C 1 -C 10 alkyl group, a substituted or unsubstituted C 6 -C 30 aryl group, or a substituted group. or heteroaryl group C 2 -C 30 unsubstituted,
In the above formula (II), R 1 to R 12 may be the same or different and each independently represents hydrogen, halogen, a substituted or unsubstituted C 1 to C 30 alkyl group, a substituted or unsubstituted C 2 to C 30 alkenyl group, substituted or unsubstituted C 2 to C 30 alkynyl group, substituted or unsubstituted C 3 to C 30 cycloalkyl group, substituted or unsubstituted C 2 to C 30 heterocycloalkyl group , A substituted or unsubstituted C 6 -C 30 aryl group, or a substituted or unsubstituted C 2 -C 30 heteroaryl group, or R 1 -R 4 may be the same or different and adjacent to each other radicals, taken together, may form a ring, R 5 to R 8 may be the same or different, adjacent groups, taken together, may form a ring, R 9 to R 12 are the same May be different, adjacent groups may be taken together, form a ring. )
下記の一般式(III)で表される構造を有する請求項1に記載の化合物。
Figure 2018523638
(上記式(III)中、Ar、Arは同一でも異なっていてもよく、それぞれ独立的にC〜C10アルキル基、置換もしくは無置換のC〜C30のアリール基、または置換もしくは無置換のC〜C30のヘテロアリール基であり、
上記式(III)中、R13〜R24は同一でも異なっていてもよく、それぞれ独立に水素、ハロゲン、置換もしくは無置換のC〜C30のアルキル基、置換もしくは無置換のC〜C30のアルケニル基、置換もしくは無置換のC〜C30のアルキニル基、置換もしくは無置換のC〜C30のシクロアルキル基、置換もしくは無置換のC〜C30のヘテロシクロアルキル基、置換もしくは無置換のC〜C30のアリール基、または置換もしくは無置換のC〜C30のヘテロアリール基であり、あるいは、R13〜R16が同一でも異なっていてもよく、隣接する基は互いに環を形成していてもよく、R17〜R20は同一でも異なっていてもよく、隣接する基は互いに環を形成していてもよく、R21〜R24は同一でも異なっていてもよく、隣接する基は互いに環を形成していてもよい。)
The compound of Claim 1 which has a structure represented by the following general formula (III).
Figure 2018523638
(In the above formula (III), Ar 3 and Ar 4 may be the same or different and each independently represents a C 1 to C 10 alkyl group, a substituted or unsubstituted C 6 to C 30 aryl group, or a substituted group. or heteroaryl group C 2 -C 30 unsubstituted,
In the above formula (III), R 13 to R 24 may be the same or different and each independently represents hydrogen, halogen, a substituted or unsubstituted C 1 to C 30 alkyl group, a substituted or unsubstituted C 2 to C 30 alkenyl group, substituted or unsubstituted C 2 to C 30 alkynyl group, substituted or unsubstituted C 3 to C 30 cycloalkyl group, substituted or unsubstituted C 2 to C 30 heterocycloalkyl group , A substituted or unsubstituted C 6 to C 30 aryl group, or a substituted or unsubstituted C 2 to C 30 heteroaryl group, or R 13 to R 16 may be the same or different and adjacent to each other radicals, taken together, may form a ring, R 17 to R 20 may be the same or different, may form a contiguous group of one another ring, R 21 to R 4 may be the same or different, adjacent groups may be taken together, form a ring. )
Ar、R〜R12は、水素、またはフェニル基、トリル基、ビフェニル基、ナフチル基、フェナントリル基、トリフェニレン基、フルオランテニル基、クリセニル基、フルオレニル基、インデノフルオレニル基からなる群より選ばれた基である、ことを特徴とする請求項1に記載の化合物。 Ar, R 1 to R 12 are hydrogen or a group consisting of phenyl group, tolyl group, biphenyl group, naphthyl group, phenanthryl group, triphenylene group, fluoranthenyl group, chrysenyl group, fluorenyl group, indenofluorenyl group The compound according to claim 1, wherein the compound is a more selected group. 下記のA−1〜A−24化合物から選ばれた請求項6に記載の化合物。
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
The compound of Claim 6 selected from the following A-1 to A-24 compound.
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Ar、R〜R12は水素、またはカルバゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、インドロカルバゾリル基、ベンゾフラノカルバゾリル基、ベンゾチエノカルバゾリル基からなる群より選ばれた基である、ことを特徴とする請求項1に記載の化合物。 Ar and R 1 to R 12 are selected from the group consisting of hydrogen or carbazolyl group, dibenzofuranyl group, dibenzothienyl group, indolocarbazolyl group, benzofuranocarbazolyl group, and benzothienocarbazolyl group The compound according to claim 1, which is a group. 下記のB−1〜B−31化合物から選ばれた請求項8に記載の化合物。
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
The compound according to claim 8, which is selected from the following B-1 to B-31 compounds.
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Ar、R〜R12は水素、またはC〜C30のアリールアミノ基又はヘテロアリールアミノ基である、ことを特徴とする請求項1に記載の化合物。 The compound according to claim 1, wherein Ar, R 1 to R 12 are hydrogen, or a C 6 to C 30 arylamino group or heteroarylamino group. 下記のC−1〜C−15化合物から選ばれた請求項10に記載の化合物。
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
The compound according to claim 10, which is selected from the following C-1 to C-15 compounds.
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Ar、R〜R12は水素、またはピリジル基、フェニルピリジル基、キノリニル基、置換キノリニル基、キナゾリニル基、置換キナゾリニル基、キノキサリニル基、置換キノキサリニル基、ピリミジニル基、置換ピリミジニル基、o−フェナントロリニル基、トリアジニル基、置換トリアジニル基、ベンゾイミダゾリル基、オキサゾリル基からなる群より選ばれた基である、ことを特徴とする請求項1に記載の化合物。 Ar and R 1 to R 12 are hydrogen or pyridyl group, phenylpyridyl group, quinolinyl group, substituted quinolinyl group, quinazolinyl group, substituted quinazolinyl group, quinoxalinyl group, substituted quinoxalinyl group, pyrimidinyl group, substituted pyrimidinyl group, o-phenanthate The compound according to claim 1, which is a group selected from the group consisting of a rolinyl group, a triazinyl group, a substituted triazinyl group, a benzimidazolyl group, and an oxazolyl group. 下記のD−1〜D−39化合物から選ばれた請求項12に記載の化合物。
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
The compound according to claim 12, selected from the following D-1 to D-39 compounds.
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
Figure 2018523638
第1の電極と、第2の電極と、前記第1の電極と第2の電極との間に介在する1層以上の有機層とを備える有機エレクトロルミネッセンス素子であって、
前記有機層は、請求項1〜13のいずれか一項に記載の化合物を含む、ことを特徴とする有機エレクトロルミネッセンス素子。
An organic electroluminescence device comprising a first electrode, a second electrode, and one or more organic layers interposed between the first electrode and the second electrode,
The said organic layer contains the compound as described in any one of Claims 1-13, The organic electroluminescent element characterized by the above-mentioned.
前記有機層は正孔注入層を含み、前記正孔注入層は請求項1〜13のいずれか一項に記載の化合物を含む、請求項14に記載の有機エレクトロルミネッセンス素子。   The organic electroluminescence device according to claim 14, wherein the organic layer includes a hole injection layer, and the hole injection layer includes the compound according to claim 1. 前記有機層は正孔輸送層を含み、前記正孔輸送層は請求項1〜13のいずれか一項に記載の化合物を含む、請求項14に記載の有機エレクトロルミネッセンス素子。   The organic electroluminescence device according to claim 14, wherein the organic layer includes a hole transport layer, and the hole transport layer includes the compound according to any one of claims 1 to 13. 前記有機層は発光層を含み、前記発光層は請求項1〜13のいずれか一項に記載の化合物を含む、請求項14に記載の有機エレクトロルミネッセンス素子。   The organic electroluminescent device according to claim 14, wherein the organic layer includes a light emitting layer, and the light emitting layer includes the compound according to any one of claims 1 to 13.
JP2017568412A 2015-08-04 2016-08-03 Compound and organic electroluminescence devices Active JP6765389B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201510472766.4 2015-08-04
CN201510472766.4A CN106433614B (en) 2015-08-04 2015-08-04 Organic electroluminescent compound, application thereof and organic electroluminescent device
CN201510472703.9A CN106432242B (en) 2015-08-04 2015-08-04 A kind of organic electroluminescent compounds and application thereof and organic electroluminescence device
CN201510472703.9 2015-08-04
PCT/CN2016/093026 WO2017020831A1 (en) 2015-08-04 2016-08-03 Compound and organic light-emitting device

Publications (2)

Publication Number Publication Date
JP2018523638A true JP2018523638A (en) 2018-08-23
JP6765389B2 JP6765389B2 (en) 2020-10-07

Family

ID=57942431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017568412A Active JP6765389B2 (en) 2015-08-04 2016-08-03 Compound and organic electroluminescence devices

Country Status (3)

Country Link
JP (1) JP6765389B2 (en)
KR (1) KR102592175B1 (en)
WO (1) WO2017020831A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112876464A (en) * 2021-02-08 2021-06-01 北京燕化集联光电技术有限公司 Organic material with heterocyclic structure and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167884A (en) * 1999-12-13 2001-06-22 Nec Corp Organic electroluminescent element
JP2005174915A (en) * 2003-11-21 2005-06-30 Fuji Photo Film Co Ltd Organic electroluminescent element
JP2006104133A (en) * 2004-10-06 2006-04-20 Ihara Chem Ind Co Ltd Indole tetramer and method for producing the same
KR20110041726A (en) * 2009-10-16 2011-04-22 에스에프씨 주식회사 Aromatic compound and organic electroluminescent device using the same
CN103880850A (en) * 2014-03-05 2014-06-25 南京邮电大学 Tetramer indole derivative material and preparation method and application thereof
CN104513247A (en) * 2013-09-30 2015-04-15 北京鼎材科技有限公司 Benzo [c] benzo [3,4] carbazol derivatives and uses
CN104513246A (en) * 2013-09-30 2015-04-15 北京鼎材科技有限公司 Anthra bicarbazole derivative and applications thereof
CN104513662A (en) * 2013-09-30 2015-04-15 北京鼎材科技有限公司 Organic light-emitting material and application thereof
CN104673276A (en) * 2014-12-31 2015-06-03 北京鼎材科技有限公司 Organic luminescent material and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010114267A2 (en) * 2009-03-30 2010-10-07 덕산하이메탈(주) Organic electronic device, compounds for same, and terminal
KR20100137188A (en) * 2009-06-22 2010-12-30 다우어드밴스드디스플레이머티리얼 유한회사 Novel organic electroluminescent compounds and organic electroluminescent device using the same
CN104513206B (en) * 2013-09-30 2019-07-19 北京鼎材科技有限公司 A kind of dianthranide radical derivative and its application
KR102372950B1 (en) * 2014-05-02 2022-03-14 롬엔드하스전자재료코리아유한회사 Organic Electroluminescent Compounds and Organic Electroluminescent Device Comprising the Same
KR20140130637A (en) * 2014-09-02 2014-11-11 롬엔드하스전자재료코리아유한회사 Novel organic electroluminescent compounds and organic electroluminescent device using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167884A (en) * 1999-12-13 2001-06-22 Nec Corp Organic electroluminescent element
JP2005174915A (en) * 2003-11-21 2005-06-30 Fuji Photo Film Co Ltd Organic electroluminescent element
JP2006104133A (en) * 2004-10-06 2006-04-20 Ihara Chem Ind Co Ltd Indole tetramer and method for producing the same
KR20110041726A (en) * 2009-10-16 2011-04-22 에스에프씨 주식회사 Aromatic compound and organic electroluminescent device using the same
CN104513247A (en) * 2013-09-30 2015-04-15 北京鼎材科技有限公司 Benzo [c] benzo [3,4] carbazol derivatives and uses
CN104513246A (en) * 2013-09-30 2015-04-15 北京鼎材科技有限公司 Anthra bicarbazole derivative and applications thereof
CN104513662A (en) * 2013-09-30 2015-04-15 北京鼎材科技有限公司 Organic light-emitting material and application thereof
CN103880850A (en) * 2014-03-05 2014-06-25 南京邮电大学 Tetramer indole derivative material and preparation method and application thereof
CN104673276A (en) * 2014-12-31 2015-06-03 北京鼎材科技有限公司 Organic luminescent material and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIBATA, TAKANORI; FUJIMOTO, MASAKO; OTANI, TAKASHI: "Synthesis of macrocyclic heteroarylenes by consecutive inter- and intramolecular cycloadditions o", TETRAHEDRON, vol. 70(45), JPN6020019443, 2014, pages 8453 - 8461, ISSN: 0004281070 *

Also Published As

Publication number Publication date
KR102592175B1 (en) 2023-10-19
JP6765389B2 (en) 2020-10-07
KR20180032527A (en) 2018-03-30
WO2017020831A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
CN109251176B (en) Organic electroluminescent device
CN106688119B (en) Organic electroluminescence device
WO2020071478A1 (en) Novel compound and organic electroluminescent element material containing same
WO2019240251A1 (en) Organic electroluminescent element and electronic equipment using same
WO2020116562A1 (en) Organic electroluminescence element and electronic device
WO2010122799A1 (en) Aromatic amine derivative and organic electroluminescent element comprising same
KR101939182B1 (en) Compound and organic electronic device comprising the same
CN112585145A (en) Polycyclic compound and organic light emitting device including the same
CN115417861B (en) Electron transport material, preparation method thereof, organic electroluminescent device comprising electron transport material and application of organic electroluminescent device
TWI719291B (en) Compound and organic electronic device using the same
TWI641598B (en) Compound and organic electronic device using the same
CN114394929B (en) Carbazole-based triarylamine derivative and organic electroluminescent device thereof
JP7402831B2 (en) Organic electroluminescent compound and organic electroluminescent device containing the same
CN107840834B (en) Benzopyrene compound and application thereof
JP2017533884A (en) Nitrogen-containing polycyclic compound and organic light-emitting device using the same
CN108727389B (en) Pyrene derivative and application thereof in organic luminescent material
CN111377905A (en) Organic electroluminescent material and device
CN111303113B (en) Organic compound, electronic device, and electronic apparatus
CN107778309B (en) Quinoline derivative and application thereof
CN112759524A (en) Aromatic amine derivative and organic electroluminescent device thereof
JP7383299B2 (en) Heterocyclic compounds and organic light-emitting devices containing them
JP6765389B2 (en) Compound and organic electroluminescence devices
CN109836421B (en) A compound of general formula and its application
CN114933571A (en) Organic compound, electronic element, and electronic device
TW201821415A (en) Compound and organic electronic device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R150 Certificate of patent or registration of utility model

Ref document number: 6765389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250