JP6764321B2 - Tire grounding simulation methods, equipment, and programs - Google Patents

Tire grounding simulation methods, equipment, and programs Download PDF

Info

Publication number
JP6764321B2
JP6764321B2 JP2016223191A JP2016223191A JP6764321B2 JP 6764321 B2 JP6764321 B2 JP 6764321B2 JP 2016223191 A JP2016223191 A JP 2016223191A JP 2016223191 A JP2016223191 A JP 2016223191A JP 6764321 B2 JP6764321 B2 JP 6764321B2
Authority
JP
Japan
Prior art keywords
internal pressure
tire
model
restrained
main groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016223191A
Other languages
Japanese (ja)
Other versions
JP2018079789A (en
Inventor
雄治 片岡
雄治 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Priority to JP2016223191A priority Critical patent/JP6764321B2/en
Publication of JP2018079789A publication Critical patent/JP2018079789A/en
Application granted granted Critical
Publication of JP6764321B2 publication Critical patent/JP6764321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本開示は、タイヤ接地シミュレーション方法、装置、及びプログラムに関する。 The present disclosure relates to tire ground contact simulation methods, devices, and programs.

空気入りタイヤを、複数の有限要素に分割したFEM(Finite Element Method)モデルを用いて、タイヤの特性を予測することが行われている。タイヤモデルの外表面は、タイヤを加硫する金型の内面形状をそのまま採用することが多い。 A tire characteristic is predicted by using a FEM (Finite Element Method) model in which a pneumatic tire is divided into a plurality of finite elements. For the outer surface of the tire model, the inner surface shape of the mold for vulcanizing the tire is often adopted as it is.

実際にタイヤを製造する場合には、加硫金型から取り出された高温状態のタイヤをそのまま冷却するのではなく、タイヤの内面に内圧を負荷しつつ冷却することでタイヤの形状を安定させるポストキュアインフレーション(PCI;Post Cure Inflation)処理が行われる。したがって、タイヤの断面形状は、加硫金型の内面形状だけでなく、PCI処理の影響を受ける。 When actually manufacturing a tire, the post that stabilizes the shape of the tire by cooling the tire in a high temperature state taken out from the vulcanization mold while applying internal pressure to the inner surface of the tire instead of cooling it as it is. Cure inflation (PCI; Post Cure Inflation) processing is performed. Therefore, the cross-sectional shape of the tire is affected not only by the inner surface shape of the vulcanization die but also by the PCI treatment.

そこで、特許文献1では、高温状態に対応させるために、タイヤモデルの一部の部材(例えばカーカス)の弾性定数を常温時の設定値よりも低く設定し、ビード部を拘束した状態で内圧を付与してタイヤを変形させ、変形後の形状を採用することが記載されている。 Therefore, in Patent Document 1, in order to cope with a high temperature state, the elastic constant of some members (for example, carcass) of the tire model is set lower than the set value at room temperature, and the internal pressure is applied while the bead portion is restrained. It is described that the tire is given to deform the tire and the deformed shape is adopted.

特開2004−217075号公報Japanese Unexamined Patent Publication No. 2004-217705

しかしながら、上記文献に記載の方法では、例えばカーカス等の弾性定数を下げた状態で内圧充填してタイヤを変形させているが、PCI処理による影響が少ない部分まで変形してしまう可能性がある。この場合、実際のタイヤとは異なった形状となるので、タイヤ性能を精度よく予測できない場合がある。 However, in the method described in the above document, for example, the tire is deformed by filling with internal pressure in a state where the elastic constant such as carcass is lowered, but there is a possibility that the tire is deformed to a portion where the influence of PCI treatment is small. In this case, the shape of the tire is different from that of the actual tire, so that the tire performance may not be accurately predicted.

本開示は、このような課題に着目してなされたものであって、その目的は、PCI処理による影響を適切に再現したタイヤ接地シミュレーション方法、装置及びコンピュータプログラムを提供することである。 The present disclosure has focused on such issues, and an object of the present disclosure is to provide a tire ground contact simulation method, an apparatus, and a computer program that appropriately reproduce the influence of PCI processing.

本開示は、上記目的を達成するために、次のような手段を講じている。 The present disclosure takes the following measures to achieve the above object.

本開示のタイヤ接地シミュレーション方法は、接地解析対象となるモデルであって、主溝及び主溝で区画された陸部をトレッド部に有するタイヤFEMモデルを取得するステップと、ビード部を拘束した状態で内圧を付与してタイヤFEMモデルを変形させる内圧充填処理を実行するステップと、内圧の付与により変形した後の形状を、内圧を付与していない自然状態の形状とするタイヤFEMモデルに修正するステップと、修正後のタイヤFEMモデルに所定内圧及び所定荷重をかけて路面に接地させ、所定境界条件の下、接地形状及び接地面に生じる力を算出する接地解析処理ステップと、を含み、前記内圧充填処理において、タイヤ赤道に陸部がある場合には、当該陸部の踏面を構成する全ての節点を拘束して内圧を付与し、タイヤ赤道に主溝がある場合には、当該主溝の両側に隣接する2つの陸部の踏面を構成する全ての節点を拘束して内圧を付与する。 The tire contact patch simulation method of the present disclosure is a model to be subjected to ground contact analysis, and includes a step of acquiring a tire FEM model having a main groove and a land portion divided by the main groove in the tread portion, and a state in which the bead portion is restrained. The step of executing the internal pressure filling process of applying the internal pressure to deform the tire FEM model and the shape after being deformed by applying the internal pressure are modified to the tire FEM model having the shape in the natural state without applying the internal pressure. A step and a ground analysis processing step of applying a predetermined internal pressure and a predetermined load to the modified tire FEM model to ground the road surface and calculating the ground contact shape and the force generated on the ground surface under a predetermined boundary condition are included. In the internal pressure filling process, when there is a land part on the tire equatorial line, all the nodes constituting the tread of the land part are restrained to apply internal pressure, and when the tire equatorial line has a main groove, the main groove is applied. Internal pressure is applied by restraining all the nodes that make up the treads of the two land adjacent to each other.

本開示のタイヤ接地シミュレーション装置は、接地解析対象となるモデルであって、主溝及び主溝で区画された陸部をトレッド部に有するタイヤFEMモデルを取得するモデル取得部と、ビード部を拘束した状態で内圧を付与してタイヤFEMモデルを変形させる内圧充填処理を実行する内圧充填処理部と、内圧の付与により変形した後の形状を、内圧を付与していない自然状態の形状とするタイヤFEMモデルに修正するモデル修正部と、修正後のタイヤFEMモデルに所定内圧及び所定荷重をかけて路面に接地させ、所定境界条件の下、接地形状及び接地面に生じる力を算出する接地解析実行部と、を備え、前記内圧充填処理において、タイヤ赤道に陸部がある場合には、当該陸部の踏面を構成する全ての節点を拘束して内圧を付与し、タイヤ赤道に主溝がある場合には、当該主溝の両側に隣接する2つの陸部の踏面を構成する全ての節点を拘束して内圧を付与する。 The tire ground contact simulation device of the present disclosure is a model to be grounded analysis, and restrains a model acquisition unit that acquires a tire FEM model having a main groove and a land portion divided by the main groove in the tread portion, and a bead portion. A tire that has an internal pressure filling process that executes an internal pressure filling process that deforms the tire FEM model by applying internal pressure in the state of the tire, and a tire that has a shape after being deformed by applying internal pressure in a natural state without applying internal pressure. Execution of ground contact analysis to calculate the ground contact shape and the force generated on the ground contact surface under the predetermined boundary conditions by applying a predetermined internal pressure and a predetermined load to the model correction part to be modified to the FEM model and the modified tire FEM model to ground the road surface. If there is a land part on the tire equatorial line in the internal pressure filling process, all the nodes constituting the tread of the land part are restrained to apply the internal pressure, and the tire equatorial line has a main groove. In this case, internal pressure is applied by restraining all the nodes constituting the treads of the two land areas adjacent to both sides of the main groove.

このようにすれば、踏面部のうち、PCIの影響が少ないセンター部は変形させず、ショルダー部からサイド部にかけてのみ変形させることができ、PCIの影響を適切に再現したタイヤモデルを得ることが可能となり、接地解析の結果を向上させることが可能となる。さらに、拘束対象となる陸部の踏面を構成する全ての節点を拘束するので、踏面の形状が不連続になることを防止できる。 In this way, of the treads, the center portion, which is less affected by PCI, can be deformed only from the shoulder portion to the side portion, and a tire model that appropriately reproduces the influence of PCI can be obtained. This makes it possible to improve the results of grounding analysis. Further, since all the nodes constituting the tread of the land to be restrained are restrained, it is possible to prevent the shape of the tread from becoming discontinuous.

本開示に係る装置を示すブロック図。The block diagram which shows the apparatus which concerns on this disclosure. 装置が実行するモデル修正処理ルーチンを示すフローチャート。A flowchart showing a model modification processing routine executed by the device. 修正前のモデルを示す図。The figure which shows the model before modification. 修正後のモデルを示す図。The figure which shows the model after modification. 修正前のモデルと修正後のモデルと実タイヤの形状を示す比較図。A comparison diagram showing the shape of the model before modification, the model after modification, and the actual tire. 接地解析結果を示す図。The figure which shows the grounding analysis result. 本開示の踏面の拘束例を示す図。The figure which shows the restraint example of the tread of this disclosure. 本開示の踏面の拘束例を示す図。The figure which shows the restraint example of the tread of this disclosure. 本開示の踏面の拘束例を示す図。The figure which shows the restraint example of the tread of this disclosure.

以下、本開示の一実施形態を、図面を参照して説明する。 Hereinafter, one embodiment of the present disclosure will be described with reference to the drawings.

[タイヤ接地シミュレーション装置(タイヤ接地解析装置)]
接地解析装置1’は、タイヤモデルの修正装置1を有し、修正後のタイヤFEMモデルに所定内圧及び所定荷重をかけて路面に接地させ、所定境界条件の下、接地形状及び接地面に生じる力(接地圧など)を算出する。
[Tire ground contact simulation device (tire ground contact analysis device)]
The ground contact analysis device 1'has a tire model correction device 1, and applies a predetermined internal pressure and a predetermined load to the modified tire FEM model to ground the road surface, and occurs on the ground contact shape and the ground contact surface under predetermined boundary conditions. Calculate the force (ground pressure, etc.).

[タイヤモデルの修正装置]
装置1は、タイヤモデルを修正する。具体的に、装置1は、図1に示すように、モデル取得部10と、処理部11と、モデル修正部12と、を有する。これら各部10〜12は、CPU、メモリ、各種インターフェイス等を備えたパソコン等の情報処理装置においてCPUが予め記憶されている図示しない処理ルーチンを実行することによりソフトウェア及びハードウェアが協働して実現される。
[Tire model correction device]
Device 1 modifies the tire model. Specifically, as shown in FIG. 1, the device 1 has a model acquisition unit 10, a processing unit 11, and a model correction unit 12. Each of these parts 10 to 12 is realized in cooperation with software and hardware by executing a processing routine (not shown) in which the CPU is stored in advance in an information processing device such as a personal computer equipped with a CPU, memory, various interfaces, and the like. Will be done.

装置1は、キーボードやマウス等の既知の操作部を介してユーザからの操作を受け付け、PCI処理対象のタイヤデータに関するデータ、PCI処理の条件(内圧、拘束位置)に関するデータの設定を受け付け、これらのデータをメモリに記憶する。 The device 1 receives an operation from a user via a known operation unit such as a keyboard or a mouse, and receives data on tire data to be PCI processed and data on PCI processing conditions (internal pressure, restraint position), and these are received. Data is stored in the memory.

図1に示すモデル取得部10は、タイヤFEMモデルを生成又は取得する。図3に示すように、タイヤ軸回りに回転対称な軸対称モデルであり、タイヤ子午線断面にて定義されている。モデルM0は、カーカスプライ、ビードコア、ビードフィラー、サイドウォールゴム及びトレッドゴム等のタイヤ構成部材で成形されており、変形解析するために有限要素モデルが設定されている。トレッド部3には、主溝30及び主溝30で区画された陸部31が定義されている。陸部のうち踏面を構成する全ての節点は接地候補点に設定されている。ビード部2の周辺には、リムとの接触点が定義されており、リムとの接触点は、内圧充填処理時に拘束される(図中にて三角に接続されている節点は拘束を意味する)。また、モデルM0では、インナーライナーには内圧が付与される内圧付与点が定義されている(図中にて矢印で示す節点)。モデルM0を構成する部材には部材の物性値が設定されている。 The model acquisition unit 10 shown in FIG. 1 generates or acquires a tire FEM model. As shown in FIG. 3, it is an axisymmetric model that is rotationally symmetric around the tire axis and is defined by the tire meridian cross section. The model M0 is formed of tire components such as carcass ply, bead core, bead filler, sidewall rubber and tread rubber, and a finite element model is set for deformation analysis. The tread portion 3 is defined as a main groove 30 and a land portion 31 partitioned by the main groove 30. All the nodes that make up the tread in the land area are set as ground contact candidate points. A contact point with the rim is defined around the bead portion 2, and the contact point with the rim is constrained during the internal pressure filling process (nodes connected in a triangle in the figure mean restraint). ). Further, in the model M0, an internal pressure applying point to which the internal pressure is applied is defined for the inner liner (nodes indicated by arrows in the figure). Physical property values of the members are set for the members constituting the model M0.

図1に示す内圧充填処理部11は、タイヤ赤道CLに陸部31がある場合には、当該陸部31の踏面を構成する全ての節点を拘束して内圧を付与し、タイヤ赤道CLに主溝30がある場合には、当該主溝30の両側に隣接する2つの陸部31の踏面を構成する全ての節点を拘束して内圧を付与する。図3の例では、タイヤ赤道CLに主溝30がある例であり、図中にて拘束する節点を三角に接続して示すように、タイヤ赤道CLを通る主溝30に隣接する2つの主溝30の踏面を構成する全ての節点を拘束する。図3の例は、半断面であるが、全体断面で示すと図7Aのようになり、図7Aの場合には、陸部1,2が拘束される。図7Bは、主溝が5個あり、タイヤ赤道CLを主溝30が通る例である。この場合は、陸部2と3が拘束される。図7Cは、タイヤ赤道CLに陸部がある例である。この場合は、陸部2が拘束される。 When the tire equatorial CL has a land portion 31, the internal pressure filling processing unit 11 shown in FIG. 1 restrains all the nodes constituting the tread surface of the land portion 31 to apply the internal pressure, and mainly applies the internal pressure to the tire equatorial CL. When there is a groove 30, internal pressure is applied by restraining all the nodes constituting the treads of the two land portions 31 adjacent to both sides of the main groove 30. In the example of FIG. 3, there is a main groove 30 in the tire equator CL, and as shown by connecting the nodes to be restrained in the figure in a triangular shape, two main grooves 30 adjacent to the main groove 30 passing through the tire equator CL are shown. All nodes constituting the tread of the groove 30 are restrained. The example of FIG. 3 has a half cross section, but the entire cross section is as shown in FIG. 7A. In the case of FIG. 7A, the land portions 1 and 2 are restrained. FIG. 7B shows an example in which there are five main grooves and the main groove 30 passes through the tire equator CL. In this case, the land parts 2 and 3 are restrained. FIG. 7C is an example in which the tire equator CL has a land portion. In this case, the land portion 2 is restrained.

勿論、内圧充填処理では、タイヤ幅方向の最も外側になる一対の主溝30’間にある全ての陸部の踏面を拘束してもよい。図7Aの例では、陸部1と2が拘束される。図7Bの例では、陸部1,2,3,4が拘束される。図7Cの例では、陸部1,2,3が拘束される。このようにすれば、センター部の変形を抑えてショルダー部及びサイド部を変形させるので、PCIの影響を適切に再現したタイヤモデルを得ることが可能となる。 Of course, in the internal pressure filling process, all the tread surfaces of the land portion between the pair of main grooves 30'that are the outermost in the tire width direction may be restrained. In the example of FIG. 7A, land parts 1 and 2 are constrained. In the example of FIG. 7B, the land portions 1, 2, 3 and 4 are restrained. In the example of FIG. 7C, the land parts 1, 2 and 3 are restrained. By doing so, since the deformation of the center portion is suppressed and the shoulder portion and the side portion are deformed, it is possible to obtain a tire model that appropriately reproduces the influence of PCI.

内圧充填処理部11は、上記拘束状態で所定の内圧を付与し、図3及び図4に示すように、タイヤFEMモデルを変形させる内圧充填処理を実行する。内圧の付与によりタイヤが変形し、変形により発生する反力と内圧と力の釣り合いが取れる状態までタイヤが変形する。 The internal pressure filling processing unit 11 applies a predetermined internal pressure in the restrained state, and executes the internal pressure filling processing that deforms the tire FEM model as shown in FIGS. 3 and 4. The tire is deformed by applying the internal pressure, and the tire is deformed to a state where the reaction force generated by the deformation and the internal pressure and the force can be balanced.

図1に示すモデル修正部12は、図4に示すように、内圧の付与により変形した後の形状を、内圧を付与していない自然状態の形状とするタイヤFEMモデルM1に修正する。モデルM0からの節点移動により簡素に修正可能である。図5は、PCI処理をした実際のタイヤTの形状と、金型内面に基づくタイヤFEMモデルM0の形状と、タイヤFEMモデルM0にPCI処理に相当する内圧を付与して変形させたタイヤFEMモデルM1の形状とを示す図である。図5の上部の図では、ショルダー部において実タイヤTとタイヤモデルM0との差が大きく見られる。図5の下部の図では、ショルダー部において実タイヤTとタイヤモデルM1との差が少なくなっていることが分かる。 As shown in FIG. 4, the model correction unit 12 shown in FIG. 1 corrects the shape after being deformed by applying the internal pressure to the tire FEM model M1 having a shape in a natural state without applying the internal pressure. It can be easily modified by moving the node from the model M0. FIG. 5 shows the actual shape of the tire T subjected to the PCI treatment, the shape of the tire FEM model M0 based on the inner surface of the mold, and the tire FEM model obtained by applying an internal pressure corresponding to the PCI treatment to the tire FEM model M0 and deforming the tire FEM model M0. It is a figure which shows the shape of M1. In the upper part of FIG. 5, a large difference between the actual tire T and the tire model M0 can be seen in the shoulder portion. In the lower part of FIG. 5, it can be seen that the difference between the actual tire T and the tire model M1 is small at the shoulder portion.

タイヤFEMモデルM0と、本開示により修正したモデルM1とについて、図1に示す接地解析装置1’を用いてタイヤの接地形状をシミュレーションした。接地解析装置1’は、接地解析実行部13を有する。接地解析実行部13は、所定の境界条件のもと、モデルに所定内圧を加えて所定荷重をかけて仮想路面に接地させ、接地形状及び接地圧を算出する。 For the tire FEM model M0 and the model M1 modified by the present disclosure, the ground contact shape of the tire was simulated using the ground contact analysis device 1'shown in FIG. The ground analysis device 1'has a ground analysis execution unit 13. Under a predetermined boundary condition, the grounding analysis execution unit 13 applies a predetermined internal pressure to the model to apply a predetermined load to ground the virtual road surface, and calculates the grounding shape and the grounding pressure.

図6に解析結果である接地形状を示す。図6に示すように、上部が実測であり、中部がモデルM0を用いた比較例であり、下部がモデルM1を用いた実施例である。ショルダー部とセンター部の接地長比(Sh/Ce)は、実測が1.05、比較例が0.774、実施例が1.008であった。接地幅は、実測が118.7で、比較例が117.0で、実施例が118.0であった。いずれも実施例が比較例よりも実測値に近い。よって、本手法が有効であると分かる。 FIG. 6 shows the ground contact shape which is the analysis result. As shown in FIG. 6, the upper part is an actual measurement, the middle part is a comparative example using the model M0, and the lower part is an example using the model M1. The ground contact length ratio (Sh / Ce) of the shoulder portion and the center portion was 1.05 in the actual measurement, 0.774 in the comparative example, and 1.008 in the example. The ground contact width was 118.7 in the actual measurement, 117.0 in the comparative example, and 118.0 in the example. In each case, the examples are closer to the measured values than the comparative examples. Therefore, it can be seen that this method is effective.

[修正方法]
上記装置1の動作について図1、2を参照しつつ説明する。
[How to fix]
The operation of the device 1 will be described with reference to FIGS. 1 and 2.

まず、ステップST1において、モデル取得部10は、主溝30及び主溝30で区画された陸部31をトレッド部3に有するタイヤFEMモデルM0を取得する。 First, in step ST1, the model acquisition unit 10 acquires the tire FEM model M0 having the main groove 30 and the land portion 31 partitioned by the main groove 30 in the tread portion 3.

次のステップST2において、内圧充填処理部11は、ビード部2を拘束する。次のステップST3において、内圧充填処理部11は、タイヤ赤道CLに陸部31があるか否かを判定し、タイヤ赤道CLに陸部31がある場合には当該陸部31の踏面を拘束する(ステップST4)。一方、タイヤ赤道CLに陸部31がなく、タイヤ赤道CLに主溝30がある場合には、当該主溝30の両側に隣接する2つの陸部31の踏面を拘束する(ステップST5)。 In the next step ST2, the internal pressure filling processing unit 11 restrains the bead unit 2. In the next step ST3, the internal pressure filling processing unit 11 determines whether or not the tire equator CL has the land portion 31, and if the tire equator CL has the land portion 31, restrains the tread surface of the land portion 31. (Step ST4). On the other hand, when the tire equator CL does not have the land portion 31 and the tire equator CL has the main groove 30, the treads of the two land portions 31 adjacent to both sides of the main groove 30 are restrained (step ST5).

次のステップST6において、内圧充填処理部11は、所定の内圧を付与してタイヤFEMモデルM0を変形させる。 In the next step ST6, the internal pressure filling processing unit 11 applies a predetermined internal pressure to deform the tire FEM model M0.

次のステップST7において、モデル修正部12は、内圧の付与により変形した後の形状を、自然状態の形状とするモデルM1に修正する。 In the next step ST7, the model correction unit 12 corrects the shape after being deformed by applying the internal pressure to the model M1 having the shape in the natural state.

以上のように、本実施形態のタイヤ接地シミュレーション方法は、接地解析対象となるモデルであって、主溝30及び主溝30で区画された陸部31をトレッド部3に有するタイヤFEMモデルM0を取得するステップ(ST1)と、ビード部2を拘束した状態で内圧を付与してタイヤFEMモデルM0を変形させる内圧充填処理を実行するステップ(ST6)と、内圧の付与により変形した後の形状を、内圧を付与していない自然状態の形状とするタイヤFEMモデルM1に修正するステップ(ST7)と、修正後のタイヤFEMモデルM1に所定内圧及び所定荷重をかけて路面に接地させ、所定境界条件の下、接地形状及び接地面に生じる力を算出する接地解析処理ステップと、を含む。内圧充填処理において、タイヤ赤道CLに陸部31がある場合(ST3:YES)には、陸部31の踏面を構成する全ての節点を拘束して内圧を付与し(ST4)、タイヤ赤道CLに主溝30がある場合(ST3:NO)には、主溝30の両側に隣接する2つの陸部の踏面を構成する全ての節点を拘束して内圧を付与する(ST5)。 As described above, the tire contact patch simulation method of the present embodiment is a model to be grounded analysis, and is a tire FEM model M0 having a main groove 30 and a land portion 31 partitioned by the main groove 30 in the tread portion 3. The step to acquire (ST1), the step to execute the internal pressure filling process of applying the internal pressure while the bead portion 2 is restrained to deform the tire FEM model M0 (ST6), and the shape after being deformed by applying the internal pressure. The step (ST7) of modifying the tire FEM model M1 to have a shape in a natural state to which no internal pressure is applied, and the modified tire FEM model M1 is grounded on the road surface by applying a predetermined internal pressure and a predetermined load to obtain a predetermined boundary condition. Underneath, it includes a tread analysis processing step to calculate the tread shape and the force generated on the tread surface. In the internal pressure filling process, when the tire equatorial CL has a land portion 31 (ST3: YES), all the nodes constituting the tread of the land portion 31 are restrained to apply the internal pressure (ST4), and the tire equatorial CL is subjected to the internal pressure filling process. When there is a main groove 30 (ST3: NO), internal pressure is applied by restraining all the nodes constituting the treads of the two land portions adjacent to both sides of the main groove 30 (ST5).

本実施形態のタイヤ接地シミュレーション装置は、接地解析対象となるモデルであって、主溝30及び主溝30で区画された陸部31をトレッド部3に有するタイヤFEMモデルM0を取得するモデル取得部10と、ビード部2を拘束した状態で内圧を付与してタイヤFEMモデルM0を変形させる内圧充填処理を実行する内圧充填処理部11と、内圧の付与により変形した後の形状を、内圧を付与していない自然状態の形状とするタイヤFEMモデルM1に修正するモデル修正部12と、修正後のタイヤFEMモデルに所定内圧及び所定荷重をかけて路面に接地させ、所定境界条件の下、接地形状及び接地面に生じる力を算出する接地解析実行部13と、を備える。内圧充填処理において、タイヤ赤道CLに陸部31がある場合には、陸部31の踏面を構成する全ての節点を拘束して内圧を付与し、タイヤ赤道CLに主溝30がある場合には、主溝30の両側に隣接する2つの陸部の踏面を構成する全ての節点を拘束して内圧を付与する。 The tire contact patch simulation device of the present embodiment is a model to be grounded analysis, and is a model acquisition unit that acquires a tire FEM model M0 having a main groove 30 and a land portion 31 partitioned by the main groove 30 in the tread portion 3. The internal pressure is applied to the internal pressure filling processing unit 11 that executes the internal pressure filling process that deforms the tire FEM model M0 by applying the internal pressure while the bead portion 2 is restrained, and the shape after being deformed by applying the internal pressure. The model modification unit 12 that modifies the tire FEM model M1 that has not been made into a natural shape, and the modified tire FEM model are grounded on the road surface by applying a predetermined internal pressure and a predetermined load, and the ground contact shape is provided under predetermined boundary conditions. And a ground analysis execution unit 13 for calculating the force generated on the ground surface. In the internal pressure filling process, when the tire equatorial CL has a land portion 31, internal pressure is applied by restraining all the nodes constituting the tread of the land portion 31, and when the tire equatorial CL has a main groove 30, the tire equatorial CL has a main groove 30. , All the nodes constituting the treads of the two land portions adjacent to both sides of the main groove 30 are restrained and internal pressure is applied.

このようにすれば、踏面部のうち、PCIの影響が少ないセンター部は変形させず、ショルダー部からサイド部にかけてのみ変形させることができ、PCIの影響を適切に再現したタイヤモデルを得ることが可能となり、接地解析の結果を向上させることが可能となる。さらに、拘束対象となる陸部の踏面を構成する全ての節点を拘束するので、踏面の形状が不連続になることを防止できる。 In this way, of the treads, the center portion, which is less affected by PCI, can be deformed only from the shoulder portion to the side portion, and a tire model that appropriately reproduces the influence of PCI can be obtained. This makes it possible to improve the results of grounding analysis. Further, since all the nodes constituting the tread of the land to be restrained are restrained, it is possible to prevent the shape of the tread from becoming discontinuous.

本実施形態では、内圧充填処理において、タイヤ幅方向WDの最も外側にある一対の主溝(30’、30’)間にある全ての陸部の踏面を拘束する。 In the present embodiment, in the internal pressure filling process, all the treads of the land portion between the pair of main grooves (30', 30') on the outermost side in the tire width direction WD are restrained.

このようにすれば、センター部の変形を抑えてショルダー部及びサイド部を変形させるので、PCIの影響を適切に再現したタイヤモデルを得ることが可能となる。 By doing so, since the deformation of the center portion is suppressed and the shoulder portion and the side portion are deformed, it is possible to obtain a tire model that appropriately reproduces the influence of PCI.

本実施形態のプログラムは、上記方法を構成する各ステップをコンピュータに実行させる。
これらプログラムを実行することによっても、上記方法の奏する作用効果を得ることが可能となる。言い換えると、上記方法を使用しているとも言える。
The program of this embodiment causes a computer to execute each step constituting the above method.
By executing these programs, it is possible to obtain the effects of the above method. In other words, it can be said that the above method is used.

以上、本開示の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本開示の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 Although the embodiments of the present disclosure have been described above with reference to the drawings, it should be considered that the specific configuration is not limited to these embodiments. The scope of the present disclosure is shown not only by the description of the embodiment described above but also by the scope of claims, and further includes all modifications within the meaning and scope equivalent to the scope of claims.

例えば、図1に示す各部10〜12は、所定プログラムをコンピュータのCPUで実行することで実現しているが、各部を専用メモリや専用回路で構成してもよい。 For example, although the parts 10 to 12 shown in FIG. 1 are realized by executing a predetermined program on the CPU of the computer, each part may be configured by a dedicated memory or a dedicated circuit.

上記の各実施形態で採用している構造を他の任意の実施形態に採用することは可能である。各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本開示の趣旨を逸脱しない範囲で種々変形が可能である。 It is possible to adopt the structure adopted in each of the above embodiments in any other embodiment. The specific configuration of each part is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present disclosure.

3…トレッド部
30…主溝
31…陸部
10…モデル取得部
11…内圧充填処理部
12…モデル修正部
13…接地解析実行部
3 ... Tread part 30 ... Main groove 31 ... Land part 10 ... Model acquisition part 11 ... Internal pressure filling processing part 12 ... Model correction part 13 ... Grounding analysis execution part

Claims (5)

接地解析対象となるモデルであって、主溝及び主溝で区画された陸部をトレッド部に有するタイヤFEMモデルを取得するステップと、
ビード部を拘束した状態で内圧を付与してタイヤFEMモデルを変形させる内圧充填処理を実行するステップと、
内圧の付与により変形した後の形状を、内圧を付与していない自然状態の形状とするタイヤFEMモデルに修正するステップと、
修正後のタイヤFEMモデルに所定内圧及び所定荷重をかけて路面に接地させ、所定境界条件の下、接地形状及び接地面に生じる力を算出する接地解析処理ステップと、を含み、
前記内圧充填処理において、タイヤ赤道に陸部がある場合には、当該陸部の踏面を構成する全ての節点を拘束して内圧を付与し、タイヤ赤道に主溝がある場合には、当該主溝の両側に隣接する2つの陸部の踏面を構成する全ての節点を拘束して内圧を付与する、タイヤ接地シミュレーション方法。
A step of acquiring a tire FEM model that is a model to be grounded and has a main groove and a land portion divided by the main groove in the tread portion.
A step of executing an internal pressure filling process that deforms the tire FEM model by applying internal pressure while the bead portion is restrained, and
A step to modify the shape after being deformed by applying internal pressure to a tire FEM model that has a natural shape without applying internal pressure.
Includes a ground contact analysis process step in which the modified tire FEM model is grounded on the road surface by applying a predetermined internal pressure and a predetermined load, and the ground contact shape and the force generated on the ground contact surface are calculated under predetermined boundary conditions.
In the internal pressure filling process, when the tire equator has a land portion, all the nodes constituting the tread of the land portion are restrained to apply the internal pressure, and when the tire equator has a main groove, the main groove is applied. A tire ground contact simulation method in which all the nodes constituting the treads of two land adjacent to both sides of a groove are restrained and internal pressure is applied.
前記内圧充填処理において、タイヤ幅方向の最も外側にある一対の主溝間にある全ての陸部の踏面を構成する全ての節点を拘束する、請求項1に記載の方法。 The method according to claim 1, wherein in the internal pressure filling process, all the nodes constituting the treads of all the land portions between the pair of main grooves on the outermost side in the tire width direction are restrained. 接地解析対象となるモデルであって、主溝及び主溝で区画された陸部をトレッド部に有するタイヤFEMモデルを取得するモデル取得部と、
ビード部を拘束した状態で内圧を付与してタイヤFEMモデルを変形させる内圧充填処理を実行する内圧充填処理部と、
内圧の付与により変形した後の形状を、内圧を付与していない自然状態の形状とするタイヤFEMモデルに修正するモデル修正部と、
修正後のタイヤFEMモデルに所定内圧及び所定荷重をかけて路面に接地させ、所定境界条件の下、接地形状及び接地面に生じる力を算出する接地解析実行部と、を備え、
前記内圧充填処理において、タイヤ赤道に陸部がある場合には、当該陸部の踏面を構成する全ての節点を拘束して内圧を付与し、タイヤ赤道に主溝がある場合には、当該主溝の両側に隣接する2つの陸部の踏面を構成する全ての節点を拘束して内圧を付与する、タイヤ接地シミュレーション装置。
A model acquisition unit that acquires a tire FEM model that is a model to be grounded and has a main groove and a land portion divided by the main groove in the tread portion.
An internal pressure filling process that executes an internal pressure filling process that deforms the tire FEM model by applying internal pressure while the bead portion is restrained.
A model correction part that corrects the shape after being deformed by applying internal pressure to a tire FEM model that has a natural shape without internal pressure applied.
The modified tire FEM model is provided with a ground contact analysis execution unit that applies a predetermined internal pressure and a predetermined load to the road surface and calculates the ground contact shape and the force generated on the ground contact surface under predetermined boundary conditions.
In the internal pressure filling process, when the tire equator has a land portion, all the nodes constituting the tread of the land portion are restrained to apply the internal pressure, and when the tire equator has a main groove, the main groove is applied. A tire ground contact simulation device that restrains all nodes constituting two land treads adjacent to both sides of a groove and applies internal pressure.
前記内圧充填処理において、タイヤ幅方向の最も外側にある一対の主溝間にある全ての陸部の踏面を拘束する、請求項3に記載の装置。 The device according to claim 3, wherein in the internal pressure filling process, all the tread surfaces of the land portion between the pair of main grooves on the outermost side in the tire width direction are restrained. 請求項1又は2に記載の方法をコンピュータに実行させるプログラム。 A program that causes a computer to execute the method according to claim 1 or 2.
JP2016223191A 2016-11-16 2016-11-16 Tire grounding simulation methods, equipment, and programs Active JP6764321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016223191A JP6764321B2 (en) 2016-11-16 2016-11-16 Tire grounding simulation methods, equipment, and programs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016223191A JP6764321B2 (en) 2016-11-16 2016-11-16 Tire grounding simulation methods, equipment, and programs

Publications (2)

Publication Number Publication Date
JP2018079789A JP2018079789A (en) 2018-05-24
JP6764321B2 true JP6764321B2 (en) 2020-09-30

Family

ID=62197469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016223191A Active JP6764321B2 (en) 2016-11-16 2016-11-16 Tire grounding simulation methods, equipment, and programs

Country Status (1)

Country Link
JP (1) JP6764321B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7137461B2 (en) * 2018-12-20 2022-09-14 Toyo Tire株式会社 SIMULATION APPARATUS, SIMULATION METHOD, AND PROGRAM
JP7323340B2 (en) * 2019-06-11 2023-08-08 Toyo Tire株式会社 Pneumatic tire simulation device, simulation method, and program
CN111914441B (en) * 2020-06-02 2022-11-29 山东玲珑轮胎股份有限公司 Optimization method and equipment of tire model
CN114004121B (en) * 2021-11-03 2024-04-19 吉林大学 Multistep static loading calculation method for tire grounding print

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4285991B2 (en) * 2002-12-27 2009-06-24 横浜ゴム株式会社 Tire temporal change prediction method, tire characteristic prediction method, tire design method, tire manufacturing method, and program
JP4278991B2 (en) * 2003-01-15 2009-06-17 横浜ゴム株式会社 Tire model creation method, tire characteristic prediction method, tire model creation device, tire characteristic prediction device, and tire model creation method
JP5572946B2 (en) * 2008-12-26 2014-08-20 横浜ゴム株式会社 Tire performance prediction method and tire performance prediction computer program
JP5629299B2 (en) * 2012-11-14 2014-11-19 住友ゴム工業株式会社 Tire simulation method and simulation apparatus

Also Published As

Publication number Publication date
JP2018079789A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6764321B2 (en) Tire grounding simulation methods, equipment, and programs
US20150367694A1 (en) Method for estimating shape of vulcanization-molded tire
JP4264102B2 (en) How to create a tire model
JP5297223B2 (en) Tire model creation method and tire simulation method
JP2004017903A (en) Performance prediction method for tire and designing method for tire
JP4635668B2 (en) Tire performance prediction method, tire performance prediction computer program, and tire / wheel assembly model creation method
JP5564069B2 (en) How to create a tire model
JP6764320B2 (en) Tire model modification methods, equipment, and programs
JP2009078618A (en) Production method of tire model, and simulation method of tire
JP5533181B2 (en) Tire simulation method
JP4452085B2 (en) Tire simulation method and tire manufacturing method
JP6933532B2 (en) Tire FEM model generation method, equipment, and program
JP6159201B2 (en) Tire surrounding space model generating apparatus, method, and computer program
JP6924666B2 (en) Tire 3D FEM model generation method, equipment, and program
JP6592342B2 (en) Rubber entrapping method, apparatus, and program for tire vulcanizer
JP6336358B2 (en) Tire simulation method and tire manufacturing method
JP6926759B2 (en) Simulation method for pneumatic tires
JP6454221B2 (en) Tire simulation method
JP7323340B2 (en) Pneumatic tire simulation device, simulation method, and program
JP7137461B2 (en) SIMULATION APPARATUS, SIMULATION METHOD, AND PROGRAM
JP2020026174A (en) Tire rolling motion simulation method, system and program
JP6699396B2 (en) Tire temperature simulation method
JP6363879B2 (en) How to create a tire model
JP2005075296A (en) Method for predicting tire performance and tire designing method
JP6159181B2 (en) Tire model creation method and tire simulation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200911

R150 Certificate of patent or registration of utility model

Ref document number: 6764321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250