JP2018079789A - Tire ground contact simulation method, device, and program - Google Patents

Tire ground contact simulation method, device, and program Download PDF

Info

Publication number
JP2018079789A
JP2018079789A JP2016223191A JP2016223191A JP2018079789A JP 2018079789 A JP2018079789 A JP 2018079789A JP 2016223191 A JP2016223191 A JP 2016223191A JP 2016223191 A JP2016223191 A JP 2016223191A JP 2018079789 A JP2018079789 A JP 2018079789A
Authority
JP
Japan
Prior art keywords
tire
internal pressure
model
main groove
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016223191A
Other languages
Japanese (ja)
Other versions
JP6764321B2 (en
Inventor
雄治 片岡
Yuji Kataoka
雄治 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2016223191A priority Critical patent/JP6764321B2/en
Publication of JP2018079789A publication Critical patent/JP2018079789A/en
Application granted granted Critical
Publication of JP6764321B2 publication Critical patent/JP6764321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a tire ground contact simulation method which reproduces influence due to PCI treatment.SOLUTION: This method includes: a step ST1 at which a tire FEM model, which has a main groove and a land part partitioned by the main groove at a tread part, is acquired; a step ST6 at which inner pressure filling processing for applying an inner pressure in the state that a bead part is arrested and deforming the tire FEM model is executed; a step ST7 at which the tire FEM model is so corrected that a shape thereof after deformation by application of the inner pressure is changed into a shape in the natural state that the inner pressure is not applied; and a ground contact analysis processing step at which a prescribed inner pressure and a prescribed load are applied to the tire FEM model after correction thereby causing the model to contact a road surface, and a ground contact shape and a force generated in a contact area are calculated. In the inner pressure filling processing, all nodal points, which constitute a tread face of the land part, are arrested and an inner pressure is applied (ST4) in the case that there is the land part on a tire equator (ST3: YES), and all nodal points, which constitute tread faces of two land parts adjacent to both sides of the main groove, are arrested and an inner pressure is applied (ST5) in the case that there is the main groove on the tire equator CL (ST3: NO).SELECTED DRAWING: Figure 2

Description

本開示は、タイヤ接地シミュレーション方法、装置、及びプログラムに関する。   The present disclosure relates to a tire ground contact simulation method, apparatus, and program.

空気入りタイヤを、複数の有限要素に分割したFEM(Finite Element Method)モデルを用いて、タイヤの特性を予測することが行われている。タイヤモデルの外表面は、タイヤを加硫する金型の内面形状をそのまま採用することが多い。   A tire characteristic is predicted using an FEM (Finite Element Method) model obtained by dividing a pneumatic tire into a plurality of finite elements. The outer surface of a tire model often adopts the inner shape of a mold for vulcanizing the tire as it is.

実際にタイヤを製造する場合には、加硫金型から取り出された高温状態のタイヤをそのまま冷却するのではなく、タイヤの内面に内圧を負荷しつつ冷却することでタイヤの形状を安定させるポストキュアインフレーション(PCI;Post Cure Inflation)処理が行われる。したがって、タイヤの断面形状は、加硫金型の内面形状だけでなく、PCI処理の影響を受ける。   When actually manufacturing a tire, a post that stabilizes the shape of the tire by cooling it while applying internal pressure to the inner surface of the tire instead of cooling the tire in a high temperature state taken out from the vulcanization mold as it is Cure inflation (PCI; Post Cure Inflation) processing is performed. Therefore, the cross-sectional shape of the tire is influenced not only by the shape of the inner surface of the vulcanization mold but also by the PCI treatment.

そこで、特許文献1では、高温状態に対応させるために、タイヤモデルの一部の部材(例えばカーカス)の弾性定数を常温時の設定値よりも低く設定し、ビード部を拘束した状態で内圧を付与してタイヤを変形させ、変形後の形状を採用することが記載されている。   Therefore, in Patent Document 1, in order to cope with a high temperature state, the elastic constant of a part of the tire model (for example, carcass) is set lower than the set value at normal temperature, and the internal pressure is set in a state where the bead portion is constrained. It is described that the tire is deformed by applying and the shape after deformation is adopted.

特開2004−217075号公報Japanese Patent Laid-Open No. 2004-217075

しかしながら、上記文献に記載の方法では、例えばカーカス等の弾性定数を下げた状態で内圧充填してタイヤを変形させているが、PCI処理による影響が少ない部分まで変形してしまう可能性がある。この場合、実際のタイヤとは異なった形状となるので、タイヤ性能を精度よく予測できない場合がある。   However, in the method described in the above document, for example, the tire is deformed by filling with an internal pressure in a state where the elastic constant such as carcass is lowered. However, there is a possibility that the portion affected by the PCI processing may be deformed. In this case, since the actual tire has a different shape, the tire performance may not be accurately predicted.

本開示は、このような課題に着目してなされたものであって、その目的は、PCI処理による影響を適切に再現したタイヤ接地シミュレーション方法、装置及びコンピュータプログラムを提供することである。   This indication was made paying attention to such a subject, and the object is to provide the tire contact simulation method, device, and computer program which reproduced appropriately the influence by PCI processing.

本開示は、上記目的を達成するために、次のような手段を講じている。   In order to achieve the above object, the present disclosure takes the following measures.

本開示のタイヤ接地シミュレーション方法は、接地解析対象となるモデルであって、主溝及び主溝で区画された陸部をトレッド部に有するタイヤFEMモデルを取得するステップと、ビード部を拘束した状態で内圧を付与してタイヤFEMモデルを変形させる内圧充填処理を実行するステップと、内圧の付与により変形した後の形状を、内圧を付与していない自然状態の形状とするタイヤFEMモデルに修正するステップと、修正後のタイヤFEMモデルに所定内圧及び所定荷重をかけて路面に接地させ、所定境界条件の下、接地形状及び接地面に生じる力を算出する接地解析処理ステップと、を含み、前記内圧充填処理において、タイヤ赤道に陸部がある場合には、当該陸部の踏面を構成する全ての節点を拘束して内圧を付与し、タイヤ赤道に主溝がある場合には、当該主溝の両側に隣接する2つの陸部の踏面を構成する全ての節点を拘束して内圧を付与する。   The tire contact simulation method of the present disclosure is a model to be subjected to contact analysis, a step of obtaining a tire FEM model having a main groove and a land portion partitioned by the main groove in a tread portion, and a state in which a bead portion is constrained The step of executing the internal pressure filling process for deforming the tire FEM model by applying the internal pressure in step S1 and the shape after being deformed by the application of the internal pressure are corrected to the tire FEM model having a shape in a natural state where the internal pressure is not applied. And a grounding analysis processing step of applying a predetermined internal pressure and a predetermined load to the road surface by applying a predetermined internal pressure and a predetermined load to the modified tire FEM model, and calculating a grounding shape and a force generated on the grounding surface under a predetermined boundary condition, In the internal pressure filling process, if there is a land part on the tire equator, the internal pressure is applied by restraining all nodes constituting the tread of the land part. In the case where there is a main groove imparts pressure to restrain all the nodes constituting the tread of the two land portions adjacent to both sides of the main groove.

本開示のタイヤ接地シミュレーション装置は、接地解析対象となるモデルであって、主溝及び主溝で区画された陸部をトレッド部に有するタイヤFEMモデルを取得するモデル取得部と、ビード部を拘束した状態で内圧を付与してタイヤFEMモデルを変形させる内圧充填処理を実行する内圧充填処理部と、内圧の付与により変形した後の形状を、内圧を付与していない自然状態の形状とするタイヤFEMモデルに修正するモデル修正部と、修正後のタイヤFEMモデルに所定内圧及び所定荷重をかけて路面に接地させ、所定境界条件の下、接地形状及び接地面に生じる力を算出する接地解析実行部と、を備え、前記内圧充填処理において、タイヤ赤道に陸部がある場合には、当該陸部の踏面を構成する全ての節点を拘束して内圧を付与し、タイヤ赤道に主溝がある場合には、当該主溝の両側に隣接する2つの陸部の踏面を構成する全ての節点を拘束して内圧を付与する。   The tire ground contact simulation device according to the present disclosure is a model to be subjected to a ground contact analysis, and includes a model acquisition unit that acquires a tire FEM model having a main groove and a land portion partitioned by the main groove in a tread portion, and a bead portion is restrained. An internal pressure filling processing unit for executing an internal pressure filling process for deforming the tire FEM model by applying an internal pressure in a state of being applied, and a tire having a shape after being deformed by the application of the internal pressure as a shape in a natural state where no internal pressure is applied A model correction unit that corrects the FEM model, and a ground analysis that calculates a ground contact shape and a force generated on the contact surface under a predetermined boundary condition by applying a predetermined internal pressure and a predetermined load to the corrected tire FEM model to contact the road surface. In the internal pressure filling process, when there is a land portion on the tire equator, the internal pressure is applied by restraining all nodes constituting the tread of the land portion, If there is a main groove in the tire equator, it imparts pressure to restrain all the nodes constituting the tread of the two land portions adjacent to both sides of the main groove.

このようにすれば、踏面部のうち、PCIの影響が少ないセンター部は変形させず、ショルダー部からサイド部にかけてのみ変形させることができ、PCIの影響を適切に再現したタイヤモデルを得ることが可能となり、接地解析の結果を向上させることが可能となる。さらに、拘束対象となる陸部の踏面を構成する全ての節点を拘束するので、踏面の形状が不連続になることを防止できる。   In this way, the center portion of the tread portion that is less affected by PCI can be deformed only from the shoulder portion to the side portion, and a tire model that appropriately reproduces the influence of PCI can be obtained. It becomes possible, and it becomes possible to improve the result of grounding analysis. Further, since all the nodes constituting the tread of the land portion to be restrained are restrained, the shape of the tread can be prevented from becoming discontinuous.

本開示に係る装置を示すブロック図。1 is a block diagram illustrating an apparatus according to the present disclosure. 装置が実行するモデル修正処理ルーチンを示すフローチャート。The flowchart which shows the model correction process routine which an apparatus performs. 修正前のモデルを示す図。The figure which shows the model before correction. 修正後のモデルを示す図。The figure which shows the model after correction. 修正前のモデルと修正後のモデルと実タイヤの形状を示す比較図。The comparison figure which shows the model of the model before correction, the model after correction, and an actual tire. 接地解析結果を示す図。The figure which shows a grounding analysis result. 本開示の踏面の拘束例を示す図。The figure which shows the example of restraint of the tread of this indication. 本開示の踏面の拘束例を示す図。The figure which shows the example of restraint of the tread of this indication. 本開示の踏面の拘束例を示す図。The figure which shows the example of restraint of the tread of this indication.

以下、本開示の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present disclosure will be described with reference to the drawings.

[タイヤ接地シミュレーション装置(タイヤ接地解析装置)]
接地解析装置1’は、タイヤモデルの修正装置1を有し、修正後のタイヤFEMモデルに所定内圧及び所定荷重をかけて路面に接地させ、所定境界条件の下、接地形状及び接地面に生じる力(接地圧など)を算出する。
[Tire contact simulation device (tire contact analysis device)]
The ground contact analysis device 1 ′ has a tire model correction device 1, which applies a predetermined internal pressure and a predetermined load to the corrected tire FEM model to make contact with the road surface. Calculate force (such as contact pressure).

[タイヤモデルの修正装置]
装置1は、タイヤモデルを修正する。具体的に、装置1は、図1に示すように、モデル取得部10と、処理部11と、モデル修正部12と、を有する。これら各部10〜12は、CPU、メモリ、各種インターフェイス等を備えたパソコン等の情報処理装置においてCPUが予め記憶されている図示しない処理ルーチンを実行することによりソフトウェア及びハードウェアが協働して実現される。
[Tire model correction device]
The device 1 modifies the tire model. Specifically, as illustrated in FIG. 1, the device 1 includes a model acquisition unit 10, a processing unit 11, and a model correction unit 12. These units 10 to 12 are realized by cooperation of software and hardware by executing a processing routine (not shown) stored in advance by the CPU in an information processing apparatus such as a personal computer equipped with a CPU, memory, various interfaces, and the like. Is done.

装置1は、キーボードやマウス等の既知の操作部を介してユーザからの操作を受け付け、PCI処理対象のタイヤデータに関するデータ、PCI処理の条件(内圧、拘束位置)に関するデータの設定を受け付け、これらのデータをメモリに記憶する。   The apparatus 1 accepts an operation from a user via a known operation unit such as a keyboard or a mouse, accepts data regarding tire processing target tire data and data regarding PCI processing conditions (internal pressure, restraint position), Is stored in the memory.

図1に示すモデル取得部10は、タイヤFEMモデルを生成又は取得する。図3に示すように、タイヤ軸回りに回転対称な軸対称モデルであり、タイヤ子午線断面にて定義されている。モデルM0は、カーカスプライ、ビードコア、ビードフィラー、サイドウォールゴム及びトレッドゴム等のタイヤ構成部材で成形されており、変形解析するために有限要素モデルが設定されている。トレッド部3には、主溝30及び主溝30で区画された陸部31が定義されている。陸部のうち踏面を構成する全ての節点は接地候補点に設定されている。ビード部2の周辺には、リムとの接触点が定義されており、リムとの接触点は、内圧充填処理時に拘束される(図中にて三角に接続されている節点は拘束を意味する)。また、モデルM0では、インナーライナーには内圧が付与される内圧付与点が定義されている(図中にて矢印で示す節点)。モデルM0を構成する部材には部材の物性値が設定されている。   The model acquisition unit 10 illustrated in FIG. 1 generates or acquires a tire FEM model. As shown in FIG. 3, it is an axially symmetric model that is rotationally symmetric about the tire axis, and is defined by a tire meridian cross section. The model M0 is formed of tire constituent members such as a carcass ply, a bead core, a bead filler, a sidewall rubber, and a tread rubber, and a finite element model is set for deformation analysis. In the tread portion 3, a main groove 30 and a land portion 31 partitioned by the main groove 30 are defined. All nodes constituting the tread in the land are set as grounding candidate points. A contact point with the rim is defined around the bead portion 2, and the contact point with the rim is constrained during the internal pressure filling process (nodes connected to triangles in the figure mean constraining). ). Further, in the model M0, an internal pressure application point at which an internal pressure is applied is defined on the inner liner (a node indicated by an arrow in the figure). The physical properties of the members are set for the members constituting the model M0.

図1に示す内圧充填処理部11は、タイヤ赤道CLに陸部31がある場合には、当該陸部31の踏面を構成する全ての節点を拘束して内圧を付与し、タイヤ赤道CLに主溝30がある場合には、当該主溝30の両側に隣接する2つの陸部31の踏面を構成する全ての節点を拘束して内圧を付与する。図3の例では、タイヤ赤道CLに主溝30がある例であり、図中にて拘束する節点を三角に接続して示すように、タイヤ赤道CLを通る主溝30に隣接する2つの主溝30の踏面を構成する全ての節点を拘束する。図3の例は、半断面であるが、全体断面で示すと図7Aのようになり、図7Aの場合には、陸部1,2が拘束される。図7Bは、主溝が5個あり、タイヤ赤道CLを主溝30が通る例である。この場合は、陸部2と3が拘束される。図7Cは、タイヤ赤道CLに陸部がある例である。この場合は、陸部2が拘束される。   When the land portion 31 is present on the tire equator CL, the internal pressure filling processing unit 11 shown in FIG. 1 constrains all nodes constituting the tread of the land portion 31 to apply internal pressure, and mainly applies the tire equator CL to the tire equator CL. When the groove 30 is present, the internal pressure is applied by restraining all the nodes constituting the treads of the two land portions 31 adjacent to both sides of the main groove 30. The example of FIG. 3 is an example in which the main groove 30 is in the tire equator CL, and the two main grooves adjacent to the main groove 30 passing through the tire equator CL are shown in FIG. All nodes constituting the tread surface of the groove 30 are restrained. The example of FIG. 3 is a half cross section, but when shown in an overall cross section, it becomes as shown in FIG. 7A. In the case of FIG. 7A, the land portions 1 and 2 are restrained. FIG. 7B shows an example in which there are five main grooves and the main groove 30 passes through the tire equator CL. In this case, the land portions 2 and 3 are restrained. FIG. 7C is an example in which a land portion is present on the tire equator CL. In this case, the land portion 2 is restrained.

勿論、内圧充填処理では、タイヤ幅方向の最も外側になる一対の主溝30’間にある全ての陸部の踏面を拘束してもよい。図7Aの例では、陸部1と2が拘束される。図7Bの例では、陸部1,2,3,4が拘束される。図7Cの例では、陸部1,2,3が拘束される。このようにすれば、センター部の変形を抑えてショルダー部及びサイド部を変形させるので、PCIの影響を適切に再現したタイヤモデルを得ることが可能となる。   Of course, in the internal pressure filling process, all treads on the land portion between the pair of main grooves 30 ′ which are the outermost in the tire width direction may be constrained. In the example of FIG. 7A, land portions 1 and 2 are restrained. In the example of FIG. 7B, land portions 1, 2, 3, and 4 are restrained. In the example of FIG. 7C, the land portions 1, 2, and 3 are restrained. In this way, since the shoulder portion and the side portion are deformed while suppressing the deformation of the center portion, it is possible to obtain a tire model that appropriately reproduces the influence of PCI.

内圧充填処理部11は、上記拘束状態で所定の内圧を付与し、図3及び図4に示すように、タイヤFEMモデルを変形させる内圧充填処理を実行する。内圧の付与によりタイヤが変形し、変形により発生する反力と内圧と力の釣り合いが取れる状態までタイヤが変形する。   The internal pressure filling processing unit 11 applies a predetermined internal pressure in the restrained state, and executes an internal pressure filling process for deforming the tire FEM model as shown in FIGS. 3 and 4. The tire is deformed by the application of the internal pressure, and the tire is deformed to a state where the reaction force generated by the deformation, the internal pressure, and the force can be balanced.

図1に示すモデル修正部12は、図4に示すように、内圧の付与により変形した後の形状を、内圧を付与していない自然状態の形状とするタイヤFEMモデルM1に修正する。モデルM0からの節点移動により簡素に修正可能である。図5は、PCI処理をした実際のタイヤTの形状と、金型内面に基づくタイヤFEMモデルM0の形状と、タイヤFEMモデルM0にPCI処理に相当する内圧を付与して変形させたタイヤFEMモデルM1の形状とを示す図である。図5の上部の図では、ショルダー部において実タイヤTとタイヤモデルM0との差が大きく見られる。図5の下部の図では、ショルダー部において実タイヤTとタイヤモデルM1との差が少なくなっていることが分かる。   As shown in FIG. 4, the model correction unit 12 shown in FIG. 1 corrects the shape after being deformed by the application of the internal pressure into a tire FEM model M1 having a natural state shape where no internal pressure is applied. It can be simply corrected by moving the node from the model M0. FIG. 5 shows the shape of the actual tire T subjected to the PCI treatment, the shape of the tire FEM model M0 based on the inner surface of the mold, and the tire FEM model deformed by applying an internal pressure corresponding to the PCI treatment to the tire FEM model M0. It is a figure which shows the shape of M1. In the upper part of FIG. 5, a large difference between the actual tire T and the tire model M0 is seen in the shoulder portion. In the lower part of FIG. 5, it can be seen that the difference between the actual tire T and the tire model M1 is reduced in the shoulder portion.

タイヤFEMモデルM0と、本開示により修正したモデルM1とについて、図1に示す接地解析装置1’を用いてタイヤの接地形状をシミュレーションした。接地解析装置1’は、接地解析実行部13を有する。接地解析実行部13は、所定の境界条件のもと、モデルに所定内圧を加えて所定荷重をかけて仮想路面に接地させ、接地形状及び接地圧を算出する。   For the tire FEM model M0 and the model M1 modified according to the present disclosure, the ground contact shape of the tire was simulated using the ground contact analysis device 1 'shown in FIG. The ground analysis device 1 ′ has a ground analysis execution unit 13. The ground contact analysis execution unit 13 applies a predetermined internal pressure to the model under a predetermined boundary condition, applies a predetermined load to the virtual road surface, and calculates a ground shape and a ground pressure.

図6に解析結果である接地形状を示す。図6に示すように、上部が実測であり、中部がモデルM0を用いた比較例であり、下部がモデルM1を用いた実施例である。ショルダー部とセンター部の接地長比(Sh/Ce)は、実測が1.05、比較例が0.774、実施例が1.008であった。接地幅は、実測が118.7で、比較例が117.0で、実施例が118.0であった。いずれも実施例が比較例よりも実測値に近い。よって、本手法が有効であると分かる。   FIG. 6 shows the ground contact shape as an analysis result. As shown in FIG. 6, the upper part is actual measurement, the middle part is a comparative example using the model M0, and the lower part is an embodiment using the model M1. The contact length ratio (Sh / Ce) between the shoulder portion and the center portion was 1.05 for the actual measurement, 0.774 for the comparative example, and 1.008 for the example. The ground contact width was 118.7 for actual measurement, 117.0 for comparative example, and 118.0 for example. In any case, the example is closer to the actually measured value than the comparative example. Therefore, it turns out that this method is effective.

[修正方法]
上記装置1の動作について図1、2を参照しつつ説明する。
[How to fix]
The operation of the apparatus 1 will be described with reference to FIGS.

まず、ステップST1において、モデル取得部10は、主溝30及び主溝30で区画された陸部31をトレッド部3に有するタイヤFEMモデルM0を取得する。   First, in step ST <b> 1, the model acquisition unit 10 acquires a tire FEM model M <b> 0 having a main groove 30 and a land portion 31 partitioned by the main groove 30 in the tread portion 3.

次のステップST2において、内圧充填処理部11は、ビード部2を拘束する。次のステップST3において、内圧充填処理部11は、タイヤ赤道CLに陸部31があるか否かを判定し、タイヤ赤道CLに陸部31がある場合には当該陸部31の踏面を拘束する(ステップST4)。一方、タイヤ赤道CLに陸部31がなく、タイヤ赤道CLに主溝30がある場合には、当該主溝30の両側に隣接する2つの陸部31の踏面を拘束する(ステップST5)。   In next step ST <b> 2, the internal pressure filling processing unit 11 restrains the bead unit 2. In the next step ST3, the internal pressure filling processing unit 11 determines whether or not the land portion 31 is on the tire equator CL, and restrains the tread of the land portion 31 when the land portion 31 is on the tire equator CL. (Step ST4). On the other hand, when the tire equator CL does not have the land portion 31 and the tire equator CL has the main groove 30, the treads of the two land portions 31 adjacent to both sides of the main groove 30 are restrained (step ST5).

次のステップST6において、内圧充填処理部11は、所定の内圧を付与してタイヤFEMモデルM0を変形させる。   In the next step ST6, the internal pressure filling unit 11 applies a predetermined internal pressure to deform the tire FEM model M0.

次のステップST7において、モデル修正部12は、内圧の付与により変形した後の形状を、自然状態の形状とするモデルM1に修正する。   In the next step ST7, the model correction unit 12 corrects the shape after being deformed by the application of the internal pressure to a model M1 that has a natural state shape.

以上のように、本実施形態のタイヤ接地シミュレーション方法は、接地解析対象となるモデルであって、主溝30及び主溝30で区画された陸部31をトレッド部3に有するタイヤFEMモデルM0を取得するステップ(ST1)と、ビード部2を拘束した状態で内圧を付与してタイヤFEMモデルM0を変形させる内圧充填処理を実行するステップ(ST6)と、内圧の付与により変形した後の形状を、内圧を付与していない自然状態の形状とするタイヤFEMモデルM1に修正するステップ(ST7)と、修正後のタイヤFEMモデルM1に所定内圧及び所定荷重をかけて路面に接地させ、所定境界条件の下、接地形状及び接地面に生じる力を算出する接地解析処理ステップと、を含む。内圧充填処理において、タイヤ赤道CLに陸部31がある場合(ST3:YES)には、陸部31の踏面を構成する全ての節点を拘束して内圧を付与し(ST4)、タイヤ赤道CLに主溝30がある場合(ST3:NO)には、主溝30の両側に隣接する2つの陸部の踏面を構成する全ての節点を拘束して内圧を付与する(ST5)。   As described above, the tire ground contact simulation method of the present embodiment is a model to be subjected to ground contact analysis, and includes the tire FEM model M0 having the main groove 30 and the land portion 31 partitioned by the main groove 30 in the tread portion 3. A step (ST1) of acquiring, a step (ST6) of executing an internal pressure filling process for deforming the tire FEM model M0 by applying an internal pressure while the bead portion 2 is constrained, and a shape after being deformed by the application of the internal pressure. A step (ST7) of correcting the tire FEM model M1 in a natural state to which no internal pressure is applied, and applying a predetermined internal pressure and a predetermined load to the corrected tire FEM model M1 to make contact with the road surface. And a grounding analysis processing step for calculating a force generated on the grounding shape and the grounding surface. In the internal pressure filling process, when there is a land portion 31 on the tire equator CL (ST3: YES), all the nodes constituting the tread of the land portion 31 are restrained to apply internal pressure (ST4), and the tire equator CL is applied to the tire equator CL. When there is the main groove 30 (ST3: NO), all the nodes constituting the treads of the two land portions adjacent to both sides of the main groove 30 are restrained to apply the internal pressure (ST5).

本実施形態のタイヤ接地シミュレーション装置は、接地解析対象となるモデルであって、主溝30及び主溝30で区画された陸部31をトレッド部3に有するタイヤFEMモデルM0を取得するモデル取得部10と、ビード部2を拘束した状態で内圧を付与してタイヤFEMモデルM0を変形させる内圧充填処理を実行する内圧充填処理部11と、内圧の付与により変形した後の形状を、内圧を付与していない自然状態の形状とするタイヤFEMモデルM1に修正するモデル修正部12と、修正後のタイヤFEMモデルに所定内圧及び所定荷重をかけて路面に接地させ、所定境界条件の下、接地形状及び接地面に生じる力を算出する接地解析実行部13と、を備える。内圧充填処理において、タイヤ赤道CLに陸部31がある場合には、陸部31の踏面を構成する全ての節点を拘束して内圧を付与し、タイヤ赤道CLに主溝30がある場合には、主溝30の両側に隣接する2つの陸部の踏面を構成する全ての節点を拘束して内圧を付与する。   The tire contact simulation device of this embodiment is a model that is a model to be subjected to contact analysis, and acquires a tire FEM model M0 having a main groove 30 and a land portion 31 partitioned by the main groove 30 in the tread portion 3. 10 and an internal pressure filling processing unit 11 for executing an internal pressure filling process for deforming the tire FEM model M0 by applying an internal pressure in a state in which the bead part 2 is constrained, and a shape after being deformed by the application of the internal pressure. A model correction unit 12 that corrects the tire FEM model M1 in a natural state that has not been made, and a ground contact shape that is subjected to a predetermined internal pressure and a predetermined load on the corrected tire FEM model and applied to the road surface under a predetermined boundary condition And a grounding analysis execution unit 13 for calculating a force generated on the grounding surface. In the internal pressure filling process, when there is a land portion 31 on the tire equator CL, all the nodes constituting the tread surface of the land portion 31 are restrained to apply internal pressure, and when the main groove 30 is present on the tire equator CL. The inner pressure is applied by restraining all the nodes constituting the treads of the two land portions adjacent to both sides of the main groove 30.

このようにすれば、踏面部のうち、PCIの影響が少ないセンター部は変形させず、ショルダー部からサイド部にかけてのみ変形させることができ、PCIの影響を適切に再現したタイヤモデルを得ることが可能となり、接地解析の結果を向上させることが可能となる。さらに、拘束対象となる陸部の踏面を構成する全ての節点を拘束するので、踏面の形状が不連続になることを防止できる。   In this way, the center portion of the tread portion that is less affected by PCI can be deformed only from the shoulder portion to the side portion, and a tire model that appropriately reproduces the influence of PCI can be obtained. It becomes possible, and it becomes possible to improve the result of grounding analysis. Further, since all the nodes constituting the tread of the land portion to be restrained are restrained, the shape of the tread can be prevented from becoming discontinuous.

本実施形態では、内圧充填処理において、タイヤ幅方向WDの最も外側にある一対の主溝(30’、30’)間にある全ての陸部の踏面を拘束する。   In the present embodiment, in the internal pressure filling process, the treads of all the land portions between the pair of main grooves (30 ', 30') on the outermost side in the tire width direction WD are restrained.

このようにすれば、センター部の変形を抑えてショルダー部及びサイド部を変形させるので、PCIの影響を適切に再現したタイヤモデルを得ることが可能となる。   In this way, since the shoulder portion and the side portion are deformed while suppressing the deformation of the center portion, it is possible to obtain a tire model that appropriately reproduces the influence of PCI.

本実施形態のプログラムは、上記方法を構成する各ステップをコンピュータに実行させる。
これらプログラムを実行することによっても、上記方法の奏する作用効果を得ることが可能となる。言い換えると、上記方法を使用しているとも言える。
The program according to the present embodiment causes a computer to execute each step constituting the method.
By executing these programs, it is possible to obtain the operational effects of the above method. In other words, it can be said that the above method is used.

以上、本開示の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本開示の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   As mentioned above, although embodiment of this indication was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present disclosure is indicated not only by the above description of the embodiments but also by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

例えば、図1に示す各部10〜12は、所定プログラムをコンピュータのCPUで実行することで実現しているが、各部を専用メモリや専用回路で構成してもよい。   For example, each of the units 10 to 12 illustrated in FIG. 1 is realized by executing a predetermined program by a CPU of a computer, but each unit may be configured by a dedicated memory or a dedicated circuit.

上記の各実施形態で採用している構造を他の任意の実施形態に採用することは可能である。各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本開示の趣旨を逸脱しない範囲で種々変形が可能である。   The structure employed in each of the above embodiments can be employed in any other embodiment. The specific configuration of each unit is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present disclosure.

3…トレッド部
30…主溝
31…陸部
10…モデル取得部
11…内圧充填処理部
12…モデル修正部
13…接地解析実行部
DESCRIPTION OF SYMBOLS 3 ... Tread part 30 ... Main groove 31 ... Land part 10 ... Model acquisition part 11 ... Internal pressure filling process part 12 ... Model correction part 13 ... Grounding analysis execution part

Claims (5)

接地解析対象となるモデルであって、主溝及び主溝で区画された陸部をトレッド部に有するタイヤFEMモデルを取得するステップと、
ビード部を拘束した状態で内圧を付与してタイヤFEMモデルを変形させる内圧充填処理を実行するステップと、
内圧の付与により変形した後の形状を、内圧を付与していない自然状態の形状とするタイヤFEMモデルに修正するステップと、
修正後のタイヤFEMモデルに所定内圧及び所定荷重をかけて路面に接地させ、所定境界条件の下、接地形状及び接地面に生じる力を算出する接地解析処理ステップと、を含み、
前記内圧充填処理において、タイヤ赤道に陸部がある場合には、当該陸部の踏面を構成する全ての節点を拘束して内圧を付与し、タイヤ赤道に主溝がある場合には、当該主溝の両側に隣接する2つの陸部の踏面を構成する全ての節点を拘束して内圧を付与する、タイヤ接地シミュレーション方法。
Obtaining a tire FEM model which is a model to be subjected to ground contact analysis and has a main groove and a land portion partitioned by the main groove in a tread portion;
Executing an internal pressure filling process of deforming the tire FEM model by applying an internal pressure in a state where the bead portion is constrained;
Correcting the shape after being deformed by the application of internal pressure to a tire FEM model having a shape in a natural state where no internal pressure is applied;
A grounding analysis processing step for applying a predetermined internal pressure and a predetermined load to the tire FEM model after correction to contact the road surface, and calculating a grounding shape and a force generated on the grounding surface under a predetermined boundary condition,
In the internal pressure filling process, when there is a land portion on the tire equator, the internal pressure is applied by restraining all nodes constituting the tread of the land portion, and when there is a main groove on the tire equator, A tire ground contact simulation method for applying an internal pressure by restraining all the nodes constituting the treads of two land portions adjacent to both sides of a groove.
前記内圧充填処理において、タイヤ幅方向の最も外側にある一対の主溝間にある全ての陸部の踏面を構成する全ての節点を拘束する、請求項1に記載の方法。   2. The method according to claim 1, wherein in the internal pressure filling process, all nodes constituting the treads of all land portions between a pair of outermost main grooves in the tire width direction are restrained. 接地解析対象となるモデルであって、主溝及び主溝で区画された陸部をトレッド部に有するタイヤFEMモデルを取得するモデル取得部と、
ビード部を拘束した状態で内圧を付与してタイヤFEMモデルを変形させる内圧充填処理を実行する内圧充填処理部と、
内圧の付与により変形した後の形状を、内圧を付与していない自然状態の形状とするタイヤFEMモデルに修正するモデル修正部と、
修正後のタイヤFEMモデルに所定内圧及び所定荷重をかけて路面に接地させ、所定境界条件の下、接地形状及び接地面に生じる力を算出する接地解析実行部と、を備え、
前記内圧充填処理において、タイヤ赤道に陸部がある場合には、当該陸部の踏面を構成する全ての節点を拘束して内圧を付与し、タイヤ赤道に主溝がある場合には、当該主溝の両側に隣接する2つの陸部の踏面を構成する全ての節点を拘束して内圧を付与する、タイヤ接地シミュレーション装置。
A model acquisition unit for obtaining a tire FEM model having a land portion divided by a main groove and a main groove in a tread portion, which is a model to be subjected to ground contact analysis;
An internal pressure filling process unit for executing an internal pressure filling process for deforming the tire FEM model by applying an internal pressure in a state where the bead part is constrained;
A model correction unit that corrects the shape after being deformed by the application of the internal pressure into a tire FEM model having a shape in a natural state where no internal pressure is applied;
A grounding analysis execution unit that applies a predetermined internal pressure and a predetermined load to the modified tire FEM model to contact the road surface, and calculates a grounding shape and a force generated on the grounding surface under a predetermined boundary condition;
In the internal pressure filling process, when there is a land portion on the tire equator, the internal pressure is applied by restraining all nodes constituting the tread of the land portion, and when there is a main groove on the tire equator, A tire ground contact simulation device that applies internal pressure by restraining all the nodes constituting the treads of two land portions adjacent to both sides of a groove.
前記内圧充填処理において、タイヤ幅方向の最も外側にある一対の主溝間にある全ての陸部の踏面を拘束する、請求項3に記載の装置。   The apparatus according to claim 3, wherein in the internal pressure filling process, the treads of all land portions between a pair of outermost main grooves in the tire width direction are restrained. 請求項1又は2に記載の方法をコンピュータに実行させるプログラム。   The program which makes a computer perform the method of Claim 1 or 2.
JP2016223191A 2016-11-16 2016-11-16 Tire grounding simulation methods, equipment, and programs Active JP6764321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016223191A JP6764321B2 (en) 2016-11-16 2016-11-16 Tire grounding simulation methods, equipment, and programs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016223191A JP6764321B2 (en) 2016-11-16 2016-11-16 Tire grounding simulation methods, equipment, and programs

Publications (2)

Publication Number Publication Date
JP2018079789A true JP2018079789A (en) 2018-05-24
JP6764321B2 JP6764321B2 (en) 2020-09-30

Family

ID=62197469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016223191A Active JP6764321B2 (en) 2016-11-16 2016-11-16 Tire grounding simulation methods, equipment, and programs

Country Status (1)

Country Link
JP (1) JP6764321B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100208A (en) * 2018-12-20 2020-07-02 Toyo Tire株式会社 Simulation device, simulation method, and program
JP2020199918A (en) * 2019-06-11 2020-12-17 Toyo Tire株式会社 Pneumatic tire simulation device, simulation method, and program
WO2021244677A1 (en) * 2020-06-02 2021-12-09 山东玲珑轮胎股份有限公司 Method and device for optimization of tire model
CN114004121A (en) * 2021-11-03 2022-02-01 吉林大学 Multi-step static loading calculation method for tire contact patch

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210106A (en) * 2002-12-27 2004-07-29 Yokohama Rubber Co Ltd:The Tire aging change prediction method, tire characteristic prediction method, tire design method, tire manufacturing method, pneumatic tire and program
JP2004217075A (en) * 2003-01-15 2004-08-05 Yokohama Rubber Co Ltd:The Tire model producing method, tire characteristic prediction method, tire model producing device, tire characteristic prediction device, and program for executing tire model producing method
JP2010156584A (en) * 2008-12-26 2010-07-15 Yokohama Rubber Co Ltd:The Tire performance prediction method, and computer program for tire performance prediction
JP2014097730A (en) * 2012-11-14 2014-05-29 Sumitomo Rubber Ind Ltd Tire simulation method and simulation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210106A (en) * 2002-12-27 2004-07-29 Yokohama Rubber Co Ltd:The Tire aging change prediction method, tire characteristic prediction method, tire design method, tire manufacturing method, pneumatic tire and program
JP2004217075A (en) * 2003-01-15 2004-08-05 Yokohama Rubber Co Ltd:The Tire model producing method, tire characteristic prediction method, tire model producing device, tire characteristic prediction device, and program for executing tire model producing method
JP2010156584A (en) * 2008-12-26 2010-07-15 Yokohama Rubber Co Ltd:The Tire performance prediction method, and computer program for tire performance prediction
JP2014097730A (en) * 2012-11-14 2014-05-29 Sumitomo Rubber Ind Ltd Tire simulation method and simulation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100208A (en) * 2018-12-20 2020-07-02 Toyo Tire株式会社 Simulation device, simulation method, and program
JP2020199918A (en) * 2019-06-11 2020-12-17 Toyo Tire株式会社 Pneumatic tire simulation device, simulation method, and program
JP7323340B2 (en) 2019-06-11 2023-08-08 Toyo Tire株式会社 Pneumatic tire simulation device, simulation method, and program
WO2021244677A1 (en) * 2020-06-02 2021-12-09 山东玲珑轮胎股份有限公司 Method and device for optimization of tire model
CN114004121A (en) * 2021-11-03 2022-02-01 吉林大学 Multi-step static loading calculation method for tire contact patch
CN114004121B (en) * 2021-11-03 2024-04-19 吉林大学 Multistep static loading calculation method for tire grounding print

Also Published As

Publication number Publication date
JP6764321B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
JP6764321B2 (en) Tire grounding simulation methods, equipment, and programs
EP2957421B1 (en) Method for estimating shape of vulcanization-molded tire
JP2004017903A (en) Performance prediction method for tire and designing method for tire
JP2008155887A (en) Method for modeling a tire model and simulation method
EP2662792B1 (en) Method for generating tire model
JP4635668B2 (en) Tire performance prediction method, tire performance prediction computer program, and tire / wheel assembly model creation method
JP2010191612A (en) Tire model formation method and tire simulation method
JP5186856B2 (en) Tire model creation method and tire simulation method
JP6764320B2 (en) Tire model modification methods, equipment, and programs
JP5533181B2 (en) Tire simulation method
JP6933532B2 (en) Tire FEM model generation method, equipment, and program
JP6592342B2 (en) Rubber entrapping method, apparatus, and program for tire vulcanizer
JP6924666B2 (en) Tire 3D FEM model generation method, equipment, and program
JP7137461B2 (en) SIMULATION APPARATUS, SIMULATION METHOD, AND PROGRAM
JP7323340B2 (en) Pneumatic tire simulation device, simulation method, and program
JP6336358B2 (en) Tire simulation method and tire manufacturing method
JP6926759B2 (en) Simulation method for pneumatic tires
JP2020026174A (en) Tire rolling motion simulation method, system and program
JP6454221B2 (en) Tire simulation method
JP6363879B2 (en) How to create a tire model
JP2005075296A (en) Method for predicting tire performance and tire designing method
JP6991094B2 (en) Methods, systems, and programs to simulate the tire manufacturing process
JP7078502B2 (en) Tire deformation analysis method and tire deformation analysis device
JP2015018446A (en) Tire model creation method, and tire simulation method
JP2019111922A (en) Simulation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200911

R150 Certificate of patent or registration of utility model

Ref document number: 6764321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250