JP6764187B2 - Photoelectric conversion element and manufacturing method of photoelectric conversion element - Google Patents

Photoelectric conversion element and manufacturing method of photoelectric conversion element Download PDF

Info

Publication number
JP6764187B2
JP6764187B2 JP2016180711A JP2016180711A JP6764187B2 JP 6764187 B2 JP6764187 B2 JP 6764187B2 JP 2016180711 A JP2016180711 A JP 2016180711A JP 2016180711 A JP2016180711 A JP 2016180711A JP 6764187 B2 JP6764187 B2 JP 6764187B2
Authority
JP
Japan
Prior art keywords
type
photoelectric conversion
conversion element
semiconductor layer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016180711A
Other languages
Japanese (ja)
Other versions
JP2018046196A (en
Inventor
内嗣 南
内嗣 南
俊弘 宮田
俊弘 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Original Assignee
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT) filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2016180711A priority Critical patent/JP6764187B2/en
Publication of JP2018046196A publication Critical patent/JP2018046196A/en
Application granted granted Critical
Publication of JP6764187B2 publication Critical patent/JP6764187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、光エネルギーを電気エネルギーに変換できる光電変換素子の技術に関する。 The present invention relates to a technique for a photoelectric conversion element capable of converting light energy into electrical energy.

近年、新興国の飛躍的な経済発展に伴って、地球規模でのエネルギー需要が増大してきている。その結果、石油等の化石エネルギーコストが上昇している。また、これら新興国の化石エネルギー消費の増大は地球規模でのCO排出量の増加を招き、深刻な環境破壊を引き起こしている。これらの問題解決の有力な候補としては、自然エネルギーの積極的な利用が叫ばれており、中でも太陽電池による太陽光発電への期待は極めて大きい。 In recent years, global energy demand has been increasing along with the rapid economic development of emerging countries. As a result, fossil energy costs such as petroleum are rising. In addition, the increase in fossil energy consumption in these emerging countries has led to an increase in CO 2 emissions on a global scale, causing serious environmental destruction. Active use of natural energy has been called for as a promising candidate for solving these problems, and expectations for solar power generation using solar cells are extremely high.

太陽電池には、様々な材料が用いられており、主なものとしては、単結晶シリコン、多結晶シリコン、アモルファスシリコン、銅インジウムガリウムセレン化合物(CIGS化合物)などが挙げられる。シリコンは、地殻埋蔵量は豊富であるもの、太陽電池の原料となる高純度シリコンの場合、安価な材料とは言い難い。また、CIGS化合物は、埋蔵量が少なく入手が困難なレアメタルを含んでおり、材料コストの低減にも限界がある。 Various materials are used for the solar cell, and the main ones include single crystal silicon, polycrystalline silicon, amorphous silicon, copper indium gallium selenium compound (CIGS compound) and the like. Although silicon has abundant crustal reserves, it is hard to say that it is an inexpensive material in the case of high-purity silicon, which is a raw material for solar cells. In addition, CIGS compounds contain rare metals that are difficult to obtain due to their small reserves, and there is a limit to the reduction of material costs.

そこで、主原料が極めて安価でかつ地殻埋蔵量も豊富な亜鉛や銅を用いた酸化亜鉛や亜酸化銅などの太陽電池の開発も行われている。 Therefore, solar cells such as zinc oxide and cuprous oxide using zinc and copper whose main raw materials are extremely inexpensive and whose crustal reserves are abundant are being developed.

例えば、太陽電池用の亜酸化銅(CuO)層を作製する技術については、これまでに多くの研究がなされている。しかしながら、高品質なCuO層を作製することは、1000℃程度の高温での熱酸化による方法しか事実上なかった。また、水溶液を用いる液相法により比較的低温でCuO層を作製したとする報告も存在するが、その品質は高温での熱酸化による方法で作製したCuO層と比較して大きく劣っていた。 For example, much research has been done on the technique for producing a cuprous oxide (Cu 2 O) layer for a solar cell. However, the only method for producing a high-quality Cu 2 O layer is by thermal oxidation at a high temperature of about 1000 ° C. There is also a report that the Cu 2 O layer was prepared at a relatively low temperature by the liquid phase method using an aqueous solution, but the quality is higher than that of the Cu 2 O layer prepared by the thermal oxidation method at a high temperature. It was inferior.

このような状況において、将来的にウエラブルコンピューティング用デバイスの電源として、プラスチック等のフレキシブル基板上に「曲がるCuO太陽電池」を実現するためには、低温度で高品質なCuO層を作製する技術の確立が不可欠である。低温度で高品質なCuO層を作製する技術に先立ち、本願発明者らは、高品質なCuO層を作製する上で不可欠なエピタキシャル成長基板として使用可能な、ナトリウムを添加した低抵抗率のCuOシートを既に考案している(特許文献1参照)。 In such a situation, in order to realize a "bending Cu 2 O solar cell" on a flexible substrate such as plastic as a power source for wearable computing devices in the future, high quality Cu 2 O at a low temperature is required. It is essential to establish a technique for producing layers. Prior to the technique for producing a high quality Cu 2 O layer at a low temperature, the inventors of the present application have added a low resistivity to which sodium can be used as an epitaxial growth substrate indispensable for producing a high quality Cu 2 O layer. A Cu 2 O sheet of resistivity has already been devised (see Patent Document 1).

特開2015−162650号公報Japanese Unexamined Patent Publication No. 2015-162650

このように、安価な材料からなる太陽電池は実現されつつあるものの、実用的には低温での高品質な成膜や変換効率の更なる向上が求められている。変換効率の更なる向上には、例えば、亜酸化銅のホモ接合による太陽電池を作製することが一案である。しかしながら、p形のCuO薄膜は種々考案されているが、原理的に作成が困難とされているn形のCuO薄膜については、品質的に満足なものが得られていない。 As described above, although solar cells made of inexpensive materials are being realized, practically, high-quality film formation at low temperatures and further improvement of conversion efficiency are required. In order to further improve the conversion efficiency, for example, it is a good idea to manufacture a solar cell homozygous for cuprous oxide. However, although various p-type Cu 2 O thin films have been devised, quality-satisfactory n-type Cu 2 O thin films, which are difficult to prepare in principle, have not been obtained.

本発明はこうした状況に鑑みてなされており、その目的とするところの一つは、n形またはi形の亜酸化銅を実現する新たな技術を提供することにある。 The present invention has been made in view of these circumstances, and one of the objects thereof is to provide a new technique for realizing n-type or i-type cuprous oxide.

上記課題を解決するために、本発明のある態様の光電変換素子は、多結晶のCuOを主成分とするp形の第1半導体層と、第1半導体層の上に設けられている、CuOを主成分とするn形またはi形の第2半導体層と、を備える。第2半導体層は、Mnが添加されている。 In order to solve the above problems, the photoelectric conversion element of an embodiment of the present invention is provided on a p-type first semiconductor layer containing polycrystalline Cu 2 O as a main component and a first semiconductor layer. , An n-type or i-type second semiconductor layer containing Cu 2 O as a main component. Mn is added to the second semiconductor layer.

この態様によると、亜酸化銅のホモ接合を実現できる。 According to this aspect, homozygosity of cuprous oxide can be realized.

第2半導体層の上に形成された、アルミニウムをドープされた酸化亜鉛からなる透明導電層を更に備えてもよい。これにより、従来の亜酸化銅のヘテロ接合では困難だった高い変換効率を実現できる。 A transparent conductive layer made of zinc oxide doped with aluminum, which is formed on the second semiconductor layer, may be further provided. As a result, high conversion efficiency, which was difficult with conventional heterojunction of cuprous oxide, can be realized.

本発明の別の態様は、光電変換素子の製造方法である。この方法は、多結晶のCuOを主成分とするp形の第1半導体層を準備する工程と、Mnを含む水溶液に第1半導体層を浸漬し、該第1半導体層の上にCuOを主成分とするn形またはi形の第2半導体層を形成する工程と、を含む。 Another aspect of the present invention is a method for manufacturing a photoelectric conversion element. In this method, a step of preparing a p-type first semiconductor layer containing polycrystalline Cu 2 O as a main component and a step of immersing the first semiconductor layer in an aqueous solution containing Mn and Cu on the first semiconductor layer. 2 Includes a step of forming an n-type or i-type second semiconductor layer containing O as a main component.

この態様によると、簡便に亜酸化銅のホモ接合を形成できる。 According to this aspect, homozygotes of cuprous oxide can be easily formed.

水溶液は、100℃未満であってもよい。これにより、水が蒸発しない低温で第2半導体層を形成できる。 The aqueous solution may be below 100 ° C. As a result, the second semiconductor layer can be formed at a low temperature at which water does not evaporate.

水溶液は、MnClが添加されていてもよい。また、水溶液は、MnClの濃度が1.0×10−5〜1.0×10−1[mol/l]であってもよい。これにより、第2半導体層のドナー濃度を適切な範囲にすることができる。 MnCl 2 may be added to the aqueous solution. Further, the aqueous solution may have a concentration of MnCl 2 of 1.0 × 10 -5 to 1.0 × 10 -1 [mol / l]. Thereby, the donor concentration of the second semiconductor layer can be set in an appropriate range.

第2半導体層を形成する工程は、第1半導体層を一方の電極とし、該一方の電極と他方の電極との間に電圧を印加してもよい。これにより、第2半導体層の成長速度を制御できる。 In the step of forming the second semiconductor layer, the first semiconductor layer may be used as one electrode, and a voltage may be applied between the one electrode and the other electrode. Thereby, the growth rate of the second semiconductor layer can be controlled.

一方の電極と他方の電極との間の電流密度が4.0[mA/cm]未満となるように電圧を印加してもよい。これにより、結晶性の高い亜酸化銅薄膜を形成できる。 A voltage may be applied so that the current density between one electrode and the other electrode is less than 4.0 [mA / cm 2 ]. As a result, a cuprous oxide thin film having high crystallinity can be formed.

水溶液は、硫酸銅と乳酸と水酸化ナトリウムとを混合したものであってもよい。これにより、安価な材料でCuOを主成分とするn形またはi形の第2半導体層を形成できる。 The aqueous solution may be a mixture of copper sulfate, lactic acid and sodium hydroxide. As a result, an n-type or i-type second semiconductor layer containing Cu 2 O as a main component can be formed with an inexpensive material.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。また、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。 It should be noted that any combination of the above components and the conversion of the expression of the present invention between methods, devices, systems and the like are also effective as aspects of the present invention. Further, an appropriate combination of the above-mentioned elements may be included in the scope of the invention for which protection by the patent is sought by the present patent application.

本発明によれば、亜酸化銅のホモ接合を実現できる。 According to the present invention, homozygosity of cuprous oxide can be realized.

第1の実施の形態に係る光電変換素子の構成を示す概略断面図である。It is the schematic sectional drawing which shows the structure of the photoelectric conversion element which concerns on 1st Embodiment. ECD法による成膜装置の概略図である。It is the schematic of the film forming apparatus by the ECD method. 図3(a)は、p形CuO:Naシートの表面SEM写真を示す図、図3(b)は、p形CuO薄膜/p形CuO:Naシートの表面SEM写真を示す図である。FIG. 3A is a diagram showing a surface SEM photograph of p + type Cu 2 O: Na sheet, and FIG. 3 (b) is a surface SEM of p type Cu 2 O thin film / p + type Cu 2 O: Na sheet. It is a figure which shows the photograph. 図4(a)は、p形CuO:NaシートのX線回折(XRD)パターンを示す図、図4(b)は、p形CuO薄膜/p形CuO:NaシートのX線回折(XRD)パターンを示す図、図4(c)は、p形CuO薄膜/FTO/ガラスのX線回折(XRD)パターンを示す図である。FIG. 4 (a) is a diagram showing an X-ray diffraction (XRD) pattern of a p + type Cu 2 O: Na sheet, and FIG. 4 (b) is a p type Cu 2 O thin film / p + type Cu 2 O: Na. The figure which shows the X-ray diffraction (XRD) pattern of a sheet, FIG. 4C is the figure which shows the X-ray diffraction (XRD) pattern of a p-type Cu 2 O thin film / FTO / glass. CuOの結晶構造を示した模式図である。It is a schematic diagram which showed the crystal structure of Cu 2 O. 図6(a)〜図6(c)は、p形CuO:Naシート上に異なる電流密度でp形CuO薄膜を形成した場合の表面SEM写真を示す図である。6 (a) to 6 (c) are views showing surface SEM photographs of p-type Cu 2 O thin films formed on p + -type Cu 2 O: Na sheets at different current densities. 図7(a)は、p形CuO:Naシート上に電流密度0.25[mA/cm]でp形CuO薄膜を形成した場合のX線回折パターンを示す図、図7(b)は、p形CuO:Naシート上に電流密度1.0[mA/cm]でp形CuO薄膜を形成した場合のX線回折パターンを示す図、図7(c)は、p形CuO:Naシート上に電流密度4.0[mA/cm]でp形CuO薄膜を形成した場合のX線回折パターンを示す図である。FIG. 7A is a diagram showing an X-ray diffraction pattern when a p-type Cu 2 O thin film is formed on a p + type Cu 2 O: Na sheet with a current density of 0.25 [mA / cm 2 ]. FIG. 7 (b) is a diagram showing an X-ray diffraction pattern when a p-type Cu 2 O thin film is formed on a p + type Cu 2 O: Na sheet with a current density of 1.0 [mA / cm 2 ]. FIG. (C) is a diagram showing an X-ray diffraction pattern when a p-type Cu 2 O thin film is formed on a p + type Cu 2 O: Na sheet with a current density of 4.0 [mA / cm 2 ]. 正孔密度が異なる2つのヘテロ接合太陽電池および第2の実施の形態に係るホモ接合太陽電池の外部量子効率(EQE)の波長依存性を示した図である。It is a figure which showed the wavelength dependence of the external quantum efficiency (EQE) of two heterojunction solar cells having different hole densities and the homojunction solar cell which concerns on 2nd Embodiment.

以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements are designated by the same reference numerals, and duplicate description will be omitted as appropriate.

(第1の実施の形態)
本発明者らは、Cu(銅)シートを高温で熱酸化して作製するp形多結晶CuO(亜酸化銅)シートを活性層に用いる太陽電池を研究している。CuO結晶は天然にも産し、多くの結晶成長法を用いて容易に作成できるが、導入されるCuの空孔がアクセプタとして働き、いずれの方法で作製してもp形伝導を呈し、n形CuO結晶の作成が困難であった。
(First Embodiment)
The present inventors are studying a solar cell using a p-type polycrystalline Cu 2 O (copper oxide) sheet produced by thermally oxidizing a Cu (copper) sheet at a high temperature as an active layer. Cu 2 O crystals are naturally produced and can be easily produced by using many crystal growth methods, but the pores of the introduced Cu act as acceptors and exhibit p-type conduction regardless of the method. , It was difficult to prepare n-type Cu 2 O crystals.

したがって、CuOを用いた太陽電池の研究では、p形CuOとCuO以外の他の材料で構成されたn形半導体との組合せからなるヘテロ接合が広く使用されている。最近、本発明者らが考案した技術ではp形CuOを活性層に用いるヘテロ接合太陽電池において、8.1[%]の高い変換効率を実現している。この値は、このタイプの太陽電池において実現可能な効率の理論的限界に近い。一方、エネルギーギャップが2[eV]のCuOのpn接合太陽電池では、理論的に約20[%]の変換効率が期待できる。 Therefore, Cu in the study of solar cells using 2 O, heterojunction comprising a combination of an n-type semiconductor composed of a material other than p-type Cu 2 O and Cu 2 O is widely used. Recently, the technique devised by the present inventors has realized a high conversion efficiency of 8.1 [%] in a heterojunction solar cell using p-type Cu 2 O as an active layer. This value is close to the theoretical limit of efficiency that can be achieved with this type of solar cell. On the other hand, in a Cu 2 O pn junction solar cell having an energy gap of 2 [eV], a conversion efficiency of about 20 [%] can be theoretically expected.

しかしながら、その実現にはn形CuO層の実現が重要である。そこで、太陽電池の活性層として使用できる高品質n形CuO層を実現するための第一段階として、第1の実施の形態では、新たな活性層の製造方法について説明する。この製造方法は、本願発明者らが考案した高品質p形CuOシート上に、電気化学溶液堆積(Electro Chemical deposition:ECD)法を用いて、CuO薄膜をホモエピタキシャル成長させるものである。 However, in order to realize this, it is important to realize an n-type Cu 2 O layer. Therefore, as a first step for realizing the high-quality n-type Cu 2 O layer which can be used as the active layer of the solar cell, in the first embodiment, a method for manufacturing a new active layer. In this production method, a Cu 2 O thin film is homoepitaxially grown on a high-quality p-type Cu 2 O sheet devised by the inventors of the present application by using an Electro Chemical deposition (ECD) method. ..

[光電変換素子]
図1は、第1の実施の形態に係る光電変換素子の構成を示す概略断面図である。光電変換素子10は、金属元素としてNa(ナトリウム)が添加された多結晶のCuO(亜酸化銅)からなるシート状のp形半導体基板12と、p形半導体基板12に一方の面上にエピタキシャル層として形成されたp形CuO薄膜14と、p形CuO薄膜14の上に形成された、透明導電層16と、p形半導体基板12の、p形CuO薄膜14が形成された面と反対側の面上に形成されているAu(金)からなる裏面電極18と、を備える。
[Photoelectric conversion element]
FIG. 1 is a schematic cross-sectional view showing the configuration of the photoelectric conversion element according to the first embodiment. The photoelectric conversion element 10 is a sheet-shaped p-type semiconductor substrate 12 made of polycrystalline Cu 2 O (copper oxide) to which Na (sodium) is added as a metal element, and a p-type semiconductor substrate 12 on one surface. a p-type Cu 2 O thin film 14 formed as an epitaxial layer was formed on the p-type Cu 2 O thin film 14, the transparent conductive layer 16, the p-type semiconductor substrate 12, p-type Cu 2 O thin film 14 A back surface electrode 18 made of Au (gold) formed on a surface opposite to the surface on which the is formed is provided.

本実施の形態に係るp形半導体基板12であるCuOシートは、10〜1000μmの厚みを有する。また、透明導電層16は、AZO(アルミニウムをドープした酸化亜鉛)である。 The Cu 2 O sheet, which is the p-type semiconductor substrate 12 according to the present embodiment, has a thickness of 10 to 1000 μm. The transparent conductive layer 16 is AZO (aluminum-doped zinc oxide).

[p形半導体基板の製造方法]
次に、本実施の形態に係るp形半導体基板の製造方法について説明する。はじめに、銅板(純度99.96[%])を洗浄後、約1025[℃]で酸化処理することで、基板および活性層を兼ねる多結晶のp形CuOシート(厚さ200μm)を作製する。
[Manufacturing method of p-type semiconductor substrate]
Next, a method for manufacturing the p-type semiconductor substrate according to the present embodiment will be described. First, a copper plate (purity 99.96 [%]) is washed and then oxidized at about 1025 [° C.] to prepare a polycrystalline p-type Cu 2 O sheet (thickness 200 μm) that also serves as a substrate and an active layer. To do.

次に、CuOシートを金属ハロゲン化物が存在する雰囲気で熱処理をする。金属化合物としてはNa、K、Li、Mg、Ca、Mn等の金属元素と各種ハロゲン、炭酸等の化合物が挙げられる。例えば、取扱いや入手の容易さからNaCl、NaCOやKClが好ましい。 Next, the Cu 2 O sheet is heat-treated in an atmosphere in which a metal halide is present. Examples of the metal compound include metal elements such as Na, K, Li, Mg, Ca and Mn and compounds such as various halogens and carbonic acids. For example, NaCl, Na 2 CO 3 and KCl are preferable because of their ease of handling and availability.

本実施の形態に係る熱処理工程では、雰囲気制御が可能な電気炉の内部に、CuOシートをNaCOとともに載置し、不活性ガスであるAr雰囲気で、雰囲気温度100〜1000[℃]で1〜30[h]熱処理した。なお、不活性ガスとしては、Ar以外の希ガスや窒素ガスを適宜用いてもよい。このような熱処理工程を経て多結晶のCuOからなるp形半導体基板12が形成される。 In the heat treatment step according to the present embodiment, a Cu 2 O sheet is placed together with Na 2 CO 3 inside an electric furnace capable of controlling the atmosphere, and the atmosphere temperature is 100 to 1000 [] in an Ar atmosphere which is an inert gas. The mixture was heat-treated at 1 to 30 [h]. As the inert gas, a rare gas other than Ar or a nitrogen gas may be appropriately used. Through such a heat treatment step, a p-type semiconductor substrate 12 made of polycrystalline Cu 2 O is formed.

[ECD法によるp形CuO薄膜の成膜方法]
図2は、ECD法による成膜装置の概略図である。図2に示す成膜装置20は、浴槽22に溶液24が満たされている。溶液24は、硫酸銅(CuSO:濃度0.20mol/L)と乳酸(CHCH(OH)COOH:濃度3.00mol/L)の水溶液に、水酸化ナトリウムを加えて全体のpHを12に調整してある。溶液24中には、陽極としてPtシート26、陰極としてp形半導体基板12またはFTO透明導電膜28が浸されている。
[Method of forming a p-type Cu 2 O thin film by the ECD method]
FIG. 2 is a schematic view of a film forming apparatus by the ECD method. In the film forming apparatus 20 shown in FIG. 2, the bathtub 22 is filled with the solution 24. Solution 24 is prepared by adding sodium hydroxide to an aqueous solution of copper sulfate (CuSO 4 : concentration 0.20 mol / L) and lactic acid (CH 3 CH (OH) COOH: concentration 3.00 mol / L) to adjust the overall pH to 12. It has been adjusted to. A Pt sheet 26 as an anode and a p-type semiconductor substrate 12 or an FTO transparent conductive film 28 as a cathode are immersed in the solution 24.

p形半導体基板12としては、正孔密度が1015[cm−3]のオーダーで縮退したp形CuO:Naシートが用いられる。溶液24の温度は70[℃]である。温度は温度計29により測定される。また、電流密度(J)は0.25〜4.0[mA/cm]の範囲で選択された値となるように制御部30によって制御する。制御部30は、電源32、電圧計34、および電流計36を備える。 As the p-type semiconductor substrate 12, a p + -type Cu 2 O: Na sheet having a hole density on the order of 10 15 [cm -3 ] is used. The temperature of the solution 24 is 70 [° C.]. The temperature is measured by the thermometer 29. Further, the current density (J) is controlled by the control unit 30 so as to be a value selected in the range of 0.25 to 4.0 [mA / cm 2 ]. The control unit 30 includes a power supply 32, a voltmeter 34, and an ammeter 36.

また、ECD法により作製された薄膜を活性層に使用した参考例1に係る光電変換素子(AZO/p形CuO薄膜/p形CuO:Naシート)、及び、比較例1に係る光電変換素子(AZO/p形CuO薄膜/FTO)を作製し、各素子の光起電力特性をAM1.5G(100[mW/cm])の光照射下で測定した。 Further, in the photoelectric conversion element (AZO / p-type Cu 2 O thin film / p + type Cu 2 O: Na sheet) according to Reference Example 1 in which the thin film produced by the ECD method is used as the active layer, and Comparative Example 1. The photoelectric conversion element (AZO / p-type Cu 2 O thin film / FTO) was prepared, and the photovoltaic characteristics of each element were measured under light irradiation of AM1.5G (100 [mW / cm 2 ]).

図3(a)は、p形CuO:Naシートの表面SEM写真を示す図、図3(b)は、p形CuO薄膜/p形CuO:Naシートの表面SEM写真を示す図である。図3(b)に示すように、p形CuO薄膜は、基板であるp形CuO:Naシート上に均一に成膜されていることがわかる。 FIG. 3 (a) is a diagram showing a surface SEM photograph of p + type Cu 2 O: Na sheet, and FIG. 3 (b) is a view showing a p-type Cu 2 O thin film / p + type Cu 2 O: surface SEM of Na sheet. It is a figure which shows the photograph. As shown in FIG. 3B, it can be seen that the p-type Cu 2 O thin film is uniformly formed on the p + -type Cu 2 O: Na sheet, which is a substrate.

図4(a)は、p形CuO:NaシートのX線回折(XRD)パターンを示す図、図4(b)は、p形CuO薄膜/p形CuO:NaシートのX線回折(XRD)パターンを示す図、図4(c)は、p形CuO薄膜/FTO/ガラスのX線回折(XRD)パターンを示す図である。図5は、CuOの結晶構造を示した模式図である。 FIG. 4 (a) is a diagram showing an X-ray diffraction (XRD) pattern of a p + type Cu 2 O: Na sheet, and FIG. 4 (b) is a p type Cu 2 O thin film / p + type Cu 2 O: Na. The figure which shows the X-ray diffraction (XRD) pattern of a sheet, FIG. 4C is the figure which shows the X-ray diffraction (XRD) pattern of a p-type Cu 2 O thin film / FTO / glass. FIG. 5 is a schematic view showing the crystal structure of Cu 2 O.

図4(a)に示すXRDパターンの回折ピークからわかるように、p形CuO:Naシートは、図5に示す結晶構造の(110)面に優先配向した多結晶である。また、図4(b)に示すように、p形CuO薄膜は、p形CuO:Naシートの配向性と同じ(110)面に配向した回折ピークのみが観測された。一方、図4(c)に示すように、FTO薄膜上に形成したp形CuO薄膜は特定の面方位に配向していなかった。 As can be seen from the diffraction peak of the XRD pattern shown in FIG. 4 (a), the p + form Cu 2 O: Na sheet is a polycrystal preferentially oriented toward the (110) plane of the crystal structure shown in FIG. Further, as shown in FIG. 4 (b), in the p-type Cu 2 O thin film, only the diffraction peak oriented in the (110) plane, which is the same as the orientation of the p + type Cu 2 O: Na sheet, was observed. On the other hand, as shown in FIG. 4C, the p-type Cu 2 O thin film formed on the FTO thin film was not oriented in a specific plane orientation.

図6(a)〜図6(c)は、p形CuO:Naシート上に異なる電流密度でp形CuO薄膜を形成した場合の表面SEM写真を示す図である。図7(a)は、p形CuO:Naシート上に電流密度0.25[mA/cm]でp形CuO薄膜を形成した場合のX線回折パターンを示す図、図7(b)は、p形CuO:Naシート上に電流密度1.0[mA/cm]でp形CuO薄膜を形成した場合のX線回折パターンを示す図、図7(c)は、p形CuO:Naシート上に電流密度4.0[mA/cm]でp形CuO薄膜を形成した場合のX線回折パターンを示す図である。 6 (a) to 6 (c) are views showing surface SEM photographs of p-type Cu 2 O thin films formed on p + -type Cu 2 O: Na sheets at different current densities. FIG. 7A is a diagram showing an X-ray diffraction pattern when a p-type Cu 2 O thin film is formed on a p + type Cu 2 O: Na sheet with a current density of 0.25 [mA / cm 2 ]. FIG. 7 (b) is a diagram showing an X-ray diffraction pattern when a p-type Cu 2 O thin film is formed on a p + type Cu 2 O: Na sheet with a current density of 1.0 [mA / cm 2 ]. FIG. (C) is a diagram showing an X-ray diffraction pattern when a p-type Cu 2 O thin film is formed on a p + type Cu 2 O: Na sheet with a current density of 4.0 [mA / cm 2 ].

図6(a)〜図6(c)から明らかなように、p形CuO薄膜の表面モホロジーは、電流密度Jに依存し、電流密度Jが0.25[mA/cm]及び1.0[mA/cm]の場合において特に均一なCuO薄膜が作製できた。 As is clear from FIGS. 6 (a) to 6 (c), the surface morphology of the p-type Cu 2 O thin film depends on the current density J, and the current densities J are 0.25 [mA / cm 2 ] and 1. A particularly uniform Cu 2 O thin film could be produced in the case of 0.0 [mA / cm 2 ].

このように、本実施の形態に係る活性層の製造方法は、金属元素としてNaが添加された多結晶のCuOからなる半導体基板を準備する工程と、少なくとも銅イオンを含む100℃未満のアルカリ水溶液に半導体基板を浸漬し、該半導体基板の上にCuOをエピタキシャル成長させてCuO薄膜を形成する工程と、を含む。これにより、従来より低温で高品質なCuOの活性層を作製できる。 As described above, the method for producing the active layer according to the present embodiment includes a step of preparing a semiconductor substrate made of polycrystalline Cu 2 O to which Na is added as a metal element, and a step of preparing a semiconductor substrate containing at least copper ions at a temperature of less than 100 ° C. It includes a step of immersing a semiconductor substrate in an alkaline aqueous solution and epitaxially growing Cu 2 O on the semiconductor substrate to form a Cu 2 O thin film. As a result, an active layer of Cu 2 O having a lower temperature and higher quality than before can be produced.

また、CuO薄膜膜を形成する工程は、p形半導体基板12を一方の電極とし、Ptシート26を他方の電極として、両電極間に電圧を印加することで、薄膜の成長速度を制御できる。 Further, in the step of forming the Cu 2 O thin film, the growth rate of the thin film is controlled by applying a voltage between both electrodes using the p-type semiconductor substrate 12 as one electrode and the Pt sheet 26 as the other electrode. it can.

上述のように、第1の実施の形態に係る活性層は、XRDによる評価によって、p形CuO薄膜がCuOシート上で(110)面に優先配向しており、ホモエピタキシャル成長していることが明らかとなった。また、電流密度が4.0[mA/cm]未満となるように、好ましくは電流密度が1.0[mA/cm]以下となるように、より好ましくは、電流密度を0.25[mA/cm]±0.10にすることで、結晶性の高い高品質なCuO薄膜を作製でき、このCuO薄膜を活性層とすることで優れた太陽電池を実現できた。 As described above, in the active layer according to the first embodiment, the p + type Cu 2 O thin film is preferentially oriented toward the (110) plane on the Cu 2 O sheet by the evaluation by XRD, and homoepitaxially grows. It became clear that. Further, the current density is preferably 0.25 so that the current density is less than 4.0 [mA / cm 2 ], preferably 1.0 [mA / cm 2 ] or less. By setting [mA / cm 2 ] ± 0.10, a high-quality Cu 2 O thin film with high crystallinity could be produced, and by using this Cu 2 O thin film as an active layer, an excellent solar cell could be realized. ..

(第2の実施の形態)
第1の実施の形態では、高品質なp形CuOシート基板上に、低温成膜技術である電気化学溶液堆積(ECD)法を用いてp形のCuO薄膜をホモエピタキシャル成長することで、高品質な活性層およびその活性層を備えた光電変換素子(太陽電池)を実現できることを示した。しかしながら、第1の実施の形態のCuO薄膜はp形であるため、p形CuOシート基板との間でホモ接合を実現するためには、p形CuOシート基板上にn形のCuO薄膜を形成する必要がある。
(Second Embodiment)
In the first embodiment, a p-type Cu 2 O thin film is homoepitaxially grown on a high-quality p-type Cu 2 O sheet substrate by using an electrochemical solution deposition (ECD) method, which is a low-temperature film formation technology. It was shown that a high-quality active layer and a photoelectric conversion element (solar cell) having the active layer can be realized. However, since Cu 2 O thin film according to the first embodiment is p-type, in order to achieve a homozygous between p-type Cu 2 O sheet substrate, n in the p-type Cu 2 O sheet substrate It is necessary to form a Cu 2 O thin film in the form.

[n形CuO薄膜の成膜方法]
p形半導体基板12としては、正孔密度が1015[cm−3]のオーダーで縮退したNa添加のpCuO:Naシートを用いている。pCuO:Naシートは、熱酸化して作製したp形CuOシートをNaCOとともにArガス雰囲気中で、800[℃]、30[h]の熱処理により作製された。
[Method for forming n-type Cu 2 O thin film]
As the p-type semiconductor substrate 12, a Na-added p + Cu 2 O: Na sheet having a hole density on the order of 10 15 [cm -3 ] is used. The p + Cu 2 O: Na sheet was prepared by heat-treating a p-type Cu 2 O sheet prepared by thermal oxidation together with Na 2 CO 3 in an Ar gas atmosphere at 800 [° C.] and 30 [h].

次に、第1の実施の形態で説明した成膜装置20の浴槽22に、濃度0.20[mol/l]のCuSOと、濃度3.00[mol/l]のCHCH(OH)COOHと、濃度が1.0×10−5〜1.0×10−1[mol/l]のMnClと、pHを約7.0〜12に調整するためのNaOHと、を含む水溶液を満たす。そこに、作製されたp形CuO:Naシートを陰極として浸漬し、第1の実施の形態と同様に、電気化学溶液堆積法(ECD)法によって、pCuO:Na基板上にCuO薄膜を成膜した。成膜条件は、溶液温度が70[℃]、電流密度が0.25〜4.0[mA/cm]であり、CuO薄膜の膜厚は240[nm]である。 Next, in the bathtub 22 of the film forming apparatus 20 described in the first embodiment, CuSO 4 having a concentration of 0.20 [mol / l] and CH 3 CH (OH) having a concentration of 3.00 [mol / l] ) An aqueous solution containing COOH, MnCl 2 having a concentration of 1.0 × 10 -5 to 1.0 × 10 -1 [mol / l], and NaOH for adjusting the pH to about 7.0 to 12. Meet. The prepared p-type Cu 2 O: Na sheet was immersed therein as a cathode, and the p + Cu 2 O: Na substrate was subjected to the same method as in the first embodiment by the electrochemical solution deposition method (ECD) method. A Cu 2 O thin film was formed on the surface. The film forming conditions are a solution temperature of 70 [° C.], a current density of 0.25 to 4.0 [mA / cm 2 ], and a Cu 2 O thin film film thickness of 240 [nm].

なお、溶液温度は100[℃]未満が好ましいく、50〜80[℃]程度がより好ましい。温度が高すぎると水が蒸発するため、溶解成分の濃度が安定しない。また、温度が低すぎると、溶解できずに析出する成分が多くなる。 The solution temperature is preferably less than 100 [° C.], more preferably about 50 to 80 [° C.]. If the temperature is too high, water will evaporate and the concentration of dissolved components will not be stable. Further, if the temperature is too low, a large amount of components are precipitated without being dissolved.

このようにMnを含む水溶液にp形半導体基板12を浸漬することで、Mnが添加されたCuO薄膜をp形半導体基板12上に形成できるため、簡便に亜酸化銅のホモ接合を形成できる。また、100℃未満の低温の水溶液を用いてMnが添加されたCuO薄膜を形成できるため、特殊な真空装置や加熱装置が必要なく、製造コストを飛躍的に下げられる。また、水溶液におけるMnCl濃度を適宜選択することで、CuO薄膜のドナー濃度を所望の範囲にすることができる。また、水溶液は、硫酸銅と乳酸と水酸化ナトリウムとを混合したものであるため、安価な材料でCuOを主成分とするn形またはi形の半導体薄膜を形成できる。 By immersing the p-type semiconductor substrate 12 in the aqueous solution containing Mn in this way, a Cu 2 O thin film to which Mn is added can be formed on the p-type semiconductor substrate 12, so that a homojunction of cuprous oxide can be easily formed. it can. Further, since the Cu 2 O thin film to which Mn is added can be formed by using an aqueous solution having a low temperature of less than 100 ° C., a special vacuum device or heating device is not required, and the manufacturing cost can be dramatically reduced. Further, by appropriately selecting the MnCl 2 concentration in the aqueous solution, the donor concentration of the Cu 2 O thin film can be set within a desired range. Further, since the aqueous solution is a mixture of copper sulfate, lactic acid, and sodium hydroxide, an n-type or i-type semiconductor thin film containing Cu 2 O as a main component can be formed with an inexpensive material.

次に、パルスレーザー蒸着(PLD)法を用いて、CuO薄膜の上にAZO透明電極層を、成膜温度が室温(RT)の条件で作製した。 Next, a pulsed laser vapor deposition (PLD) method was used to prepare an AZO transparent electrode layer on a Cu 2 O thin film under the condition that the film formation temperature was room temperature (RT).

各素子に対して、AM1.5G[100mW/cm]の光を照射し、25℃の条件下で素子の光起電力特性を測定した。光起電力特性は、成膜時の電流密度、pH、膜厚及びMnClの濃度等が、作製条件に大きく影響することがわかった。 Each element was irradiated with light of AM1.5G [100 mW / cm 2 ], and the photovoltaic characteristics of the element were measured under the condition of 25 ° C. As for the photovoltaic characteristics, it was found that the current density, pH, film thickness, MnCl 2 concentration, etc. at the time of film formation greatly affect the production conditions.

次に、光起電力特性のMnCl濃度依存性について説明する。図7(a)は、MnCl濃度と開放端電圧(Voc)との関係を示す図、図7(b)は、MnCl濃度と短絡電流密度(Jsc)との関係を示す図、図7(c)は、MnCl濃度と曲線因子(FF)との関係を示す図、図7(d)は、MnCl濃度と変換効率(η)との関係を示す図である。 Next, the MnCl 2 concentration dependence of the photovoltaic power characteristics will be described. FIG. 7 (a) is a diagram showing the relationship between the MnCl 2 concentration and the open-circuit voltage (Voc), and FIG. 7 (b) is a diagram showing the relationship between the MnCl 2 concentration and the short-circuit current density (Jsc). (C) is a diagram showing the relationship between the MnCl 2 concentration and the curve factor (FF), and FIG. 7 (d) is a diagram showing the relationship between the MnCl 2 concentration and the conversion efficiency (η).

図7(a)〜図7(d)に示す結果は、成膜する際の水溶液のpHを12、水溶液の温度を70[℃]、作製されるCuO薄膜の膜厚を240[nm]とした場合である。そして、MnCl濃度を0〜1.0×10−1[mol/l]の範囲で変化させた場合に得られたCuO薄膜を活性層として太陽電池を作製し、各光起電力特性を測定した。 The results shown in FIGS. 7 (a) to 7 (d) show that the pH of the aqueous solution at the time of film formation was 12, the temperature of the aqueous solution was 70 [° C.], and the film thickness of the Cu 2 O thin film to be produced was 240 [nm. ]. Then, a solar cell was produced using the Cu 2 O thin film obtained when the MnCl 2 concentration was changed in the range of 0 to 1.0 × 10 -1 [mol / l] as an active layer, and each photovoltaic characteristic. Was measured.

図7(a)に示すように、MnCl濃度の増加に伴って開放端電圧(Voc)は低下している。また、図7(b)、図7(c)に示すように、短絡電流密度(Jsc)及び極性因子(FF)は、MnCl濃度が1.0×10[mol/l/cm]以上で低下している。結果として、変換効率(η)はMnCl濃度が1.0×10−4[mol/l]で最大となり、変換効率(η)は4.21[%]、開放端電圧(Voc)は0.78[V]を実現できた。 As shown in FIG. 7A, the open end voltage (Voc) decreases as the MnCl 2 concentration increases. Further, as shown in FIGS. 7 (b) and 7 (c), the short-circuit current density (Jsc) and the polar factor (FF) have a MnCl 2 concentration of 1.0 × 10 [mol / l / cm 2 ]. It has decreased by the above. As a result, the conversion efficiency (η) is maximized when the MnCl 2 concentration is 1.0 × 10 -4 [mol / l], the conversion efficiency (η) is 4.21 [%], and the open end voltage (Voc) is 0. We were able to achieve .78 [V].

なお、MnClの代わりにInClを溶解させた水溶液を用いてECD法によりCuO薄膜を作製した場合、変換効率(η)はInCl濃度が5.0×10−4[mol/l]で最大となり、変換効率(η)は3.77[%]、開放端電圧(Voc)は0.71[V]であった。このように、水溶液にMnやInを添加することで、n形またはi形のCuO薄膜を実現できる可能性があることがわかった。特に、Mnを添加したCuO薄膜を用いることで、亜酸化銅を主成分とする変換効率が4[%]を大きく超える光電変換素子を実現できることが明らかとなった。 When a Cu 2 O thin film was prepared by the ECD method using an aqueous solution in which InCl 3 was dissolved instead of MnCl 2 , the conversion efficiency (η) was 5.0 × 10 -4 [mol / l) at an InCl 3 concentration. ], The conversion efficiency (η) was 3.77 [%], and the open end voltage (Voc) was 0.71 [V]. As described above, it has been found that there is a possibility that an n-type or i-type Cu 2 O thin film can be realized by adding Mn or In to the aqueous solution. In particular, it has been clarified that by using a Cu 2 O thin film to which Mn is added, a photoelectric conversion element containing cuprous oxide as a main component and having a conversion efficiency greatly exceeding 4 [%] can be realized.

図8は、正孔密度が異なる2つのヘテロ接合太陽電池および第2の実施の形態に係るホモ接合太陽電池の外部量子効率(EQE)の波長依存性を示した図である。第2の実施の形態に係るAZO/CuO:Mn/CuO:Na(p:1015)太陽電池のように、ECD法で形成したCuO薄膜を活性層とする素子では、図8の黒丸のスペクトルからも明らかなように、EQEが改善されている。 FIG. 8 is a diagram showing the wavelength dependence of the external quantum efficiency (EQE) of two heterojunction solar cells having different hole densities and a homojunction solar cell according to the second embodiment. In an element having a Cu 2 O thin film formed by the ECD method as an active layer, such as the AZO / Cu 2 O: Mn / Cu 2 O: Na (p: 10 15 ) solar cell according to the second embodiment, As is clear from the spectrum of the black circles in FIG. 8, EQE is improved.

また、AZO/p−CuO太陽電池及びAZO/p−CuO:Na太陽電池のEQEスペクトルと比較すると、第2の実施の形態に係るCuO:Na薄膜のホール密度は、1013[cm−3]程度と考えられる。したがって、Mnを添加することにより少なくともi形のCuO薄膜が形成されていると推測され、p−CuO薄膜との組み合わせにより、亜酸化銅のホモ接合を実現できる。 Further, as compared with the EQE spectra of the AZO / p-Cu 2 O solar cell and the AZO / p-Cu 2 O: Na solar cell, the hole density of the Cu 2 O: Na thin film according to the second embodiment is 10 It is considered to be about 13 [cm -3 ]. Therefore, it is presumed that at least i-type Cu 2 O thin film is formed by adding Mn, and homozygosity of cuprous oxide can be realized by combining with the p—Cu 2 O thin film.

このように、第2の実施の形態に係る光電変換素子は、Naが添加された多結晶のCuOからなるp形半導体基板(第1半導体層)と、p形半導体基板上にエピタキシャル層として形成された、Mnが添加されたn形またはi形のCuO薄膜(第2半導体層)と、n形またはi形のCuO薄膜の上に形成された、アルミニウムをドープされた酸化亜鉛からなる透明導電層と、を備える。n形またはi形のCuO薄膜は、80nm〜800nmの厚みが好ましい。これにより、従来のCuOのヘテロ接合では実現できない高い変換効率を実現できる。 Thus, the photoelectric conversion element according to the second embodiment includes a p-type semiconductor substrate made of Cu 2 O in polycrystalline Na was added (first semiconductor layer), an epitaxial layer on the p-type semiconductor substrate Mn-added n-type or i-type Cu 2 O thin film (second semiconductor layer) and aluminum-doped n-type or i-type Cu 2 O thin film formed on the n-type or i-type Cu 2 O thin film. A transparent conductive layer made of zinc oxide is provided. The n-type or i-type Cu 2 O thin film preferably has a thickness of 80 nm to 800 nm. As a result, high conversion efficiency that cannot be achieved by the conventional heterojunction of Cu 2 O can be realized.

以上、本発明を上述の各実施の形態を参照して説明したが、本発明は上述の各実施の形態に限定されるものではなく、各実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて各実施の形態における組合せや工程の順番を適宜組み替えることや各種の設計変更等の変形を各実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。 Although the present invention has been described above with reference to the above-described embodiments, the present invention is not limited to the above-described embodiments, and the configurations of the embodiments may be appropriately combined or substituted. Those are also included in the present invention. Further, it is also possible to appropriately rearrange the combinations and the order of processes in each embodiment based on the knowledge of those skilled in the art, and to add modifications such as various design changes to each embodiment, and such modifications. The embodiment to which is added may also be included in the scope of the present invention.

10 光電変換素子、 12 p形半導体基板、 14 CuO薄膜、 16 透明導電層、 18 裏面電極、 20 成膜装置、 22 浴槽、 24 溶液、 26 Ptシート、 28 FTO透明導電膜、 29 温度計、 30 制御部、 32 電源、 34 電圧計、 36 電流計。 10 Photoelectric conversion element, 12p type semiconductor substrate, 14 Cu 2 O thin film, 16 transparent conductive layer, 18 back electrode, 20 film forming equipment, 22 bathtub, 24 solution, 26 Pt sheet, 28 FTO transparent conductive film, 29 thermometer , 30 Control unit, 32 power supply, 34 voltmeter, 36 ammeter.

Claims (9)

多結晶のCuOを主成分とするp形の第1半導体層と、
前記第1半導体層の上に設けられている、CuOを主成分とするn形またはi形の第2半導体層と、を備え、
前記第2半導体層は、Mnが添加されていることを特徴とする光電変換素子。
A p-type first semiconductor layer containing polycrystalline Cu 2 O as a main component,
An n-type or i-type second semiconductor layer containing Cu 2 O as a main component, which is provided on the first semiconductor layer, is provided.
The second semiconductor layer is a photoelectric conversion element to which Mn is added.
前記第2半導体層の上に形成された、アルミニウムをドープされた酸化亜鉛からなる透明導電層を更に備えることを特徴とする請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, further comprising a transparent conductive layer made of zinc oxide doped with aluminum, which is formed on the second semiconductor layer. 多結晶のCuOを主成分とするp形の第1半導体層を準備する工程と、
Mnを含む水溶液に前記第1半導体層を浸漬し、該第1半導体層の上にCuOを主成分とするn形またはi形の第2半導体層を形成する工程と、
を含むことを特徴とする光電変換素子の製造方法。
A step of preparing a p-type first semiconductor layer containing polycrystalline Cu 2 O as a main component, and
A step of immersing the first semiconductor layer in an aqueous solution containing Mn to form an n-type or i-type second semiconductor layer containing Cu 2 O as a main component on the first semiconductor layer.
A method for manufacturing a photoelectric conversion element, which comprises.
前記水溶液は、100℃未満であることを特徴とする請求項3に記載の光電変換素子の製造方法。 The method for manufacturing a photoelectric conversion element according to claim 3, wherein the aqueous solution is less than 100 ° C. 前記水溶液は、MnClが添加されていることを特徴とする請求項3または4に記載の光電変換素子の製造方法。 The method for manufacturing a photoelectric conversion element according to claim 3 or 4, wherein the aqueous solution contains MnCl 2 . 前記水溶液は、MnClの濃度が1.0×10−5〜1.0×10−1[mol/l]であることを特徴とする請求項5に記載の光電変換素子の製造方法。 The method for producing a photoelectric conversion element according to claim 5, wherein the aqueous solution has a concentration of MnCl 2 of 1.0 × 10 -5 to 1.0 × 10 -1 [mol / l]. 前記第2半導体層を形成する工程は、前記第1半導体層を一方の電極とし、該一方の電極と他方の電極との間に電圧を印加することを特徴とする請求項3乃至6のいずれか1項に記載の光電変換素子の製造方法。 Any of claims 3 to 6, wherein the step of forming the second semiconductor layer uses the first semiconductor layer as one electrode and applies a voltage between the one electrode and the other electrode. The method for manufacturing a photoelectric conversion element according to item 1. 前記該一方の電極と他方の電極との間の電流密度が4.0[mA/cm]未満となるように電圧を印加することを特徴とする請求項7に記載の光電変換素子の製造方法。 The production of the photoelectric conversion element according to claim 7, wherein a voltage is applied so that the current density between the one electrode and the other electrode is less than 4.0 [mA / cm 2 ]. Method. 前記水溶液は、硫酸銅と乳酸と水酸化ナトリウムとを混合したものであることを特徴とする請求項3乃至8のいずれか1項に記載の光電変換素子の製造方法。 The method for producing a photoelectric conversion element according to any one of claims 3 to 8, wherein the aqueous solution is a mixture of copper sulfate, lactic acid, and sodium hydroxide.
JP2016180711A 2016-09-15 2016-09-15 Photoelectric conversion element and manufacturing method of photoelectric conversion element Active JP6764187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016180711A JP6764187B2 (en) 2016-09-15 2016-09-15 Photoelectric conversion element and manufacturing method of photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016180711A JP6764187B2 (en) 2016-09-15 2016-09-15 Photoelectric conversion element and manufacturing method of photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2018046196A JP2018046196A (en) 2018-03-22
JP6764187B2 true JP6764187B2 (en) 2020-09-30

Family

ID=61695179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016180711A Active JP6764187B2 (en) 2016-09-15 2016-09-15 Photoelectric conversion element and manufacturing method of photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP6764187B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11322627B2 (en) 2018-09-19 2022-05-03 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
WO2020250513A1 (en) 2019-06-13 2020-12-17 Kabushiki Kaisha Toshiba Solar cell, multijunction solar cell, solar cell module, and solar power generation system
JP7301636B2 (en) 2019-07-02 2023-07-03 株式会社東芝 Solar cells, multi-junction solar cells, solar cell modules and photovoltaic power generation systems
JP7330004B2 (en) 2019-07-26 2023-08-21 株式会社東芝 Photoelectric conversion layer, solar cell, multi-junction solar cell, solar cell module and photovoltaic power generation system
WO2021186733A1 (en) 2020-03-19 2021-09-23 株式会社 東芝 Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
CN115244715A (en) 2020-10-09 2022-10-25 株式会社东芝 Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
JP7447297B2 (en) 2020-10-09 2024-03-11 株式会社東芝 Solar cells, multijunction solar cells, solar cell modules and solar power generation systems

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2911659B2 (en) * 1991-09-24 1999-06-23 キヤノン株式会社 Photovoltaic element
JP3479375B2 (en) * 1995-03-27 2003-12-15 科学技術振興事業団 Metal oxide semiconductor device in which a pn junction is formed with a thin film transistor made of a metal oxide semiconductor such as cuprous oxide, and methods for manufacturing the same
JP2005239526A (en) * 2004-02-27 2005-09-08 Kanazawa Inst Of Technology Method for producing cuprous oxide plate, and photovoltaic device
JP2006124754A (en) * 2004-10-27 2006-05-18 Bridgestone Corp Cu2O FILM, METHOD FOR FORMING IT, AND SOLAR BATTERY
JP4803548B2 (en) * 2005-06-08 2011-10-26 地方独立行政法人 大阪市立工業研究所 Oxide thin film solar cell
WO2009008419A1 (en) * 2007-07-09 2009-01-15 Sustainable Titania Technology Inc. Reflectivity-reducing agent for substrate, and method for production of low-reflective substrate using the same
US7768003B2 (en) * 2007-09-14 2010-08-03 Board Of Regents, The University Of Texas System Formation of p-n homogeneous junctions
CN202373597U (en) * 2011-12-02 2012-08-08 刘畅 Cuprous oxide solar cell with surface self-texture structure
JP6108346B2 (en) * 2013-03-21 2017-04-05 公立大学法人 滋賀県立大学 Method for producing copper oxide thin film solar cell
JP6276610B2 (en) * 2014-02-28 2018-02-07 学校法人金沢工業大学 Method for manufacturing photoelectric conversion element and method for manufacturing p-type semiconductor layer

Also Published As

Publication number Publication date
JP2018046196A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
JP6764187B2 (en) Photoelectric conversion element and manufacturing method of photoelectric conversion element
Zakutayev Brief review of emerging photovoltaic absorbers
Wang Progress in thin film solar cells based on
Fang et al. Achievements and challenges of CdS/CdTe solar cells
US8802483B2 (en) Self-organizing nanostructured solar cells
TW201513380A (en) A high efficiency stacked solar cell
Wang et al. Sb 2 S 3 solar cells: functional layer preparation and device performance
Bai et al. Controlled growth of Cu3Se2 nanosheets array counter electrode for quantum dots sensitized solar cell through ion exchange
Pawar et al. Effect of annealing atmosphere on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films
Yang et al. Electrodeposited p-type Cu2O thin films at high pH for all-oxide solar cells with improved performance
Yussuf et al. Photovoltaic efficiencies of microwave and Cu2ZnSnS4 (CZTS) superstrate solar cells
Saha A status review on Cu2ZnSn (S, Se) 4-based thin-film solar cells
Ho et al. Preparation of CuInSe2 thin films by using various methods (a short review)
Palve et al. Chemically deposited CuInSe2 thin films and their photovoltaic properties: a review
CN104465807A (en) CZTS nanometer array thin film solar photovoltaic cell and manufacturing method thereof
Kokate et al. Photoelectrochemical properties of electrochemically deposited CdIn2S4 thin films
Wang et al. Sodium citrate complexing agent-dependent growth of n-and p-type CdTe thin films for applications in CdTe/CdS based photovoltaic devices
Ray Electrodeposition of thin films for low-cost solar cells
Chander et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: A review on high throughput processed methods
JP6650640B2 (en) Method for producing active layer and photoelectric conversion element
Battaglia et al. CuZnSnSe nanotubes and nanowires by template electrosynthesis
Chiang et al. Improving conversion efficiency of co-electrodeposited CuInSe 2 thin film solar cells with substrate and solution heating
Liu et al. Solution-processed CuIn (S, Se) 2 solar cells on transparent electrode offering 9.4% efficiency
Musa et al. Fabrication of p-Cu2O/n-Cu2O for photovoltaic applications
Morris et al. Chemical bath deposition of thin film CdSe layers for use in Se alloyed CdTe solar cells

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20161014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200908

R150 Certificate of patent or registration of utility model

Ref document number: 6764187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150