JP2018046196A - Photoelectric conversion device and manufacturing method of photoelectric conversion device - Google Patents

Photoelectric conversion device and manufacturing method of photoelectric conversion device Download PDF

Info

Publication number
JP2018046196A
JP2018046196A JP2016180711A JP2016180711A JP2018046196A JP 2018046196 A JP2018046196 A JP 2018046196A JP 2016180711 A JP2016180711 A JP 2016180711A JP 2016180711 A JP2016180711 A JP 2016180711A JP 2018046196 A JP2018046196 A JP 2018046196A
Authority
JP
Japan
Prior art keywords
type
photoelectric conversion
thin film
semiconductor layer
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016180711A
Other languages
Japanese (ja)
Other versions
JP6764187B2 (en
Inventor
内嗣 南
Uchitsugu Minami
内嗣 南
俊弘 宮田
Toshihiro Miyata
俊弘 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Original Assignee
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT) filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2016180711A priority Critical patent/JP6764187B2/en
Publication of JP2018046196A publication Critical patent/JP2018046196A/en
Application granted granted Critical
Publication of JP6764187B2 publication Critical patent/JP6764187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a novel technique for realizing n-type or i-type cuprous oxide.SOLUTION: A photoelectric conversion device 10 includes a sheet-like p-type semiconductor substrate 12 composed of poly crystal Cu2O (cuprous oxide) added with Na (natrium) as a metal element, a p-type Cu2O thin film 14 formed on one side of the p-type semiconductor substrate, as an epitaxial layer, a transparent conductive layer 16 formed on the p-type Cu2O thin film, and a back electrode 18 composed of Au (gold) and formed on the opposite side of the p-type semiconductor substrate to the side where the p-type Cu2O thin film is formed.SELECTED DRAWING: Figure 1

Description

本発明は、光エネルギーを電気エネルギーに変換できる光電変換素子の技術に関する。   The present invention relates to a technology of a photoelectric conversion element that can convert light energy into electric energy.

近年、新興国の飛躍的な経済発展に伴って、地球規模でのエネルギー需要が増大してきている。その結果、石油等の化石エネルギーコストが上昇している。また、これら新興国の化石エネルギー消費の増大は地球規模でのCO排出量の増加を招き、深刻な環境破壊を引き起こしている。これらの問題解決の有力な候補としては、自然エネルギーの積極的な利用が叫ばれており、中でも太陽電池による太陽光発電への期待は極めて大きい。 In recent years, energy demand on a global scale has been increasing with the rapid economic development of emerging countries. As a result, the cost of fossil energy such as oil is rising. In addition, the increase in fossil energy consumption in these emerging countries has led to an increase in CO 2 emissions on a global scale, causing serious environmental destruction. As a promising candidate for solving these problems, active use of natural energy is screamed, and in particular, expectations for solar power generation using solar cells are extremely high.

太陽電池には、様々な材料が用いられており、主なものとしては、単結晶シリコン、多結晶シリコン、アモルファスシリコン、銅インジウムガリウムセレン化合物(CIGS化合物)などが挙げられる。シリコンは、地殻埋蔵量は豊富であるもの、太陽電池の原料となる高純度シリコンの場合、安価な材料とは言い難い。また、CIGS化合物は、埋蔵量が少なく入手が困難なレアメタルを含んでおり、材料コストの低減にも限界がある。   Various materials are used for the solar cell, and main examples include single crystal silicon, polycrystalline silicon, amorphous silicon, copper indium gallium selenium compound (CIGS compound), and the like. Silicon has abundant crustal reserves, and in the case of high-purity silicon as a raw material for solar cells, it is difficult to say that it is an inexpensive material. In addition, CIGS compounds contain rare metals that are difficult to obtain due to their small reserves, and there is a limit in reducing material costs.

そこで、主原料が極めて安価でかつ地殻埋蔵量も豊富な亜鉛や銅を用いた酸化亜鉛や亜酸化銅などの太陽電池の開発も行われている。   Therefore, solar cells such as zinc oxide and cuprous oxide using zinc and copper whose main raw materials are extremely inexpensive and have abundant crustal reserves are being developed.

例えば、太陽電池用の亜酸化銅(CuO)層を作製する技術については、これまでに多くの研究がなされている。しかしながら、高品質なCuO層を作製することは、1000℃程度の高温での熱酸化による方法しか事実上なかった。また、水溶液を用いる液相法により比較的低温でCuO層を作製したとする報告も存在するが、その品質は高温での熱酸化による方法で作製したCuO層と比較して大きく劣っていた。 For example, many studies have been made on the technology for producing a cuprous oxide (Cu 2 O) layer for solar cells. However, producing a high-quality Cu 2 O layer was practically only a method using thermal oxidation at a high temperature of about 1000 ° C. In addition, although there are reports that the Cu 2 O layer was produced at a relatively low temperature by a liquid phase method using an aqueous solution, the quality is large compared to the Cu 2 O layer produced by a method by thermal oxidation at a high temperature. It was inferior.

このような状況において、将来的にウエラブルコンピューティング用デバイスの電源として、プラスチック等のフレキシブル基板上に「曲がるCuO太陽電池」を実現するためには、低温度で高品質なCuO層を作製する技術の確立が不可欠である。低温度で高品質なCuO層を作製する技術に先立ち、本願発明者らは、高品質なCuO層を作製する上で不可欠なエピタキシャル成長基板として使用可能な、ナトリウムを添加した低抵抗率のCuOシートを既に考案している(特許文献1参照)。 Under such circumstances, in order to realize a “curved Cu 2 O solar cell” on a flexible substrate such as plastic as a power source for wearable computing devices in the future, a low-temperature, high-quality Cu 2 O It is essential to establish technology for producing layers. Prior to the technology for producing a high-quality Cu 2 O layer at a low temperature, the inventors of the present application can use it as an epitaxial growth substrate indispensable for producing a high-quality Cu 2 O layer. already devised a rate of Cu 2 O sheet (see Patent Document 1).

特開2015−162650号公報Japanese Patent Laid-Open No. 2015-162650

このように、安価な材料からなる太陽電池は実現されつつあるものの、実用的には低温での高品質な成膜や変換効率の更なる向上が求められている。変換効率の更なる向上には、例えば、亜酸化銅のホモ接合による太陽電池を作製することが一案である。しかしながら、p形のCuO薄膜は種々考案されているが、原理的に作成が困難とされているn形のCuO薄膜については、品質的に満足なものが得られていない。 Thus, although solar cells made of inexpensive materials are being realized, practically, high quality film formation at low temperatures and further improvement in conversion efficiency are required. In order to further improve the conversion efficiency, for example, it is one idea to fabricate a solar cell using a cuprous oxide homojunction. However, various types of p-type Cu 2 O thin films have been devised, but n-type Cu 2 O thin films that are difficult to produce in principle have not been satisfactory in quality.

本発明はこうした状況に鑑みてなされており、その目的とするところの一つは、n形またはi形の亜酸化銅を実現する新たな技術を提供することにある。   The present invention has been made in view of such circumstances, and one of the objects thereof is to provide a new technique for realizing n-type or i-type cuprous oxide.

上記課題を解決するために、本発明のある態様の光電変換素子は、多結晶のCuOを主成分とするp形の第1半導体層と、第1半導体層の上に設けられている、CuOを主成分とするn形またはi形の第2半導体層と、を備える。第2半導体層は、Mnが添加されている。 In order to solve the above problems, a photoelectric conversion element according to an aspect of the present invention is provided on a p-type first semiconductor layer mainly containing polycrystalline Cu 2 O and the first semiconductor layer. And an n-type or i-type second semiconductor layer mainly composed of Cu 2 O. Mn is added to the second semiconductor layer.

この態様によると、亜酸化銅のホモ接合を実現できる。   According to this aspect, cuprous oxide homojunction can be realized.

第2半導体層の上に形成された、アルミニウムをドープされた酸化亜鉛からなる透明導電層を更に備えてもよい。これにより、従来の亜酸化銅のヘテロ接合では困難だった高い変換効率を実現できる。   A transparent conductive layer made of zinc oxide doped with aluminum and formed on the second semiconductor layer may be further provided. As a result, high conversion efficiency, which has been difficult with the conventional heterojunction of cuprous oxide, can be realized.

本発明の別の態様は、光電変換素子の製造方法である。この方法は、多結晶のCuOを主成分とするp形の第1半導体層を準備する工程と、Mnを含む水溶液に第1半導体層を浸漬し、該第1半導体層の上にCuOを主成分とするn形またはi形の第2半導体層を形成する工程と、を含む。 Another aspect of the present invention is a method for producing a photoelectric conversion element. This method includes a step of preparing a p-type first semiconductor layer containing polycrystalline Cu 2 O as a main component, immersing the first semiconductor layer in an aqueous solution containing Mn, and forming Cu on the first semiconductor layer. Forming an n-type or i-type second semiconductor layer containing 2 O as a main component.

この態様によると、簡便に亜酸化銅のホモ接合を形成できる。   According to this aspect, a cuprous oxide homojunction can be easily formed.

水溶液は、100℃未満であってもよい。これにより、水が蒸発しない低温で第2半導体層を形成できる。   The aqueous solution may be less than 100 ° C. Thereby, the second semiconductor layer can be formed at a low temperature at which water does not evaporate.

水溶液は、MnClが添加されていてもよい。また、水溶液は、MnClの濃度が1.0×10−5〜1.0×10−1[mol/l]であってもよい。これにより、第2半導体層のドナー濃度を適切な範囲にすることができる。 MnCl 2 may be added to the aqueous solution. The aqueous solution may have a MnCl 2 concentration of 1.0 × 10 −5 to 1.0 × 10 −1 [mol / l]. Thereby, the donor density | concentration of a 2nd semiconductor layer can be made into an appropriate range.

第2半導体層を形成する工程は、第1半導体層を一方の電極とし、該一方の電極と他方の電極との間に電圧を印加してもよい。これにより、第2半導体層の成長速度を制御できる。   In the step of forming the second semiconductor layer, the first semiconductor layer may be used as one electrode, and a voltage may be applied between the one electrode and the other electrode. Thereby, the growth rate of the second semiconductor layer can be controlled.

一方の電極と他方の電極との間の電流密度が4.0[mA/cm]未満となるように電圧を印加してもよい。これにより、結晶性の高い亜酸化銅薄膜を形成できる。 A voltage may be applied so that the current density between one electrode and the other electrode is less than 4.0 [mA / cm 2 ]. Thereby, a cuprous oxide thin film with high crystallinity can be formed.

水溶液は、硫酸銅と乳酸と水酸化ナトリウムとを混合したものであってもよい。これにより、安価な材料でCuOを主成分とするn形またはi形の第2半導体層を形成できる。 The aqueous solution may be a mixture of copper sulfate, lactic acid and sodium hydroxide. Thereby, the n-type or i-type second semiconductor layer mainly composed of Cu 2 O can be formed with an inexpensive material.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。また、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。   It should be noted that any combination of the above-described constituent elements and a representation of the present invention converted between a method, an apparatus, a system, etc. are also effective as an aspect of the present invention. A combination of the above-described elements as appropriate can also be included in the scope of the invention for which patent protection is sought by this patent application.

本発明によれば、亜酸化銅のホモ接合を実現できる。   According to the present invention, homojunction of cuprous oxide can be realized.

第1の実施の形態に係る光電変換素子の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the photoelectric conversion element which concerns on 1st Embodiment. ECD法による成膜装置の概略図である。It is the schematic of the film-forming apparatus by ECD method. 図3(a)は、p形CuO:Naシートの表面SEM写真を示す図、図3(b)は、p形CuO薄膜/p形CuO:Naシートの表面SEM写真を示す図である。3A is a view showing a surface SEM photograph of a p + -type Cu 2 O: Na sheet, and FIG. 3B is a surface SEM of a p-type Cu 2 O thin film / p + -type Cu 2 O: Na sheet. It is a figure which shows a photograph. 図4(a)は、p形CuO:NaシートのX線回折(XRD)パターンを示す図、図4(b)は、p形CuO薄膜/p形CuO:NaシートのX線回折(XRD)パターンを示す図、図4(c)は、p形CuO薄膜/FTO/ガラスのX線回折(XRD)パターンを示す図である。4A shows an X-ray diffraction (XRD) pattern of a p + -type Cu 2 O: Na sheet, and FIG. 4B shows a p-type Cu 2 O thin film / p + -type Cu 2 O: Na. It shows the X-ray diffraction (XRD) pattern of the seat, FIG. 4 (c) is a diagram showing an X-ray diffraction (XRD) pattern of the p-type Cu 2 O thin film / FTO / glass. CuOの結晶構造を示した模式図である。It is a schematic view showing the crystal structure of the Cu 2 O. 図6(a)〜図6(c)は、p形CuO:Naシート上に異なる電流密度でp形CuO薄膜を形成した場合の表面SEM写真を示す図である。FIG. 6A to FIG. 6C are diagrams showing surface SEM photographs when p-type Cu 2 O thin films are formed at different current densities on a p + -type Cu 2 O: Na sheet. 図7(a)は、p形CuO:Naシート上に電流密度0.25[mA/cm]でp形CuO薄膜を形成した場合のX線回折パターンを示す図、図7(b)は、p形CuO:Naシート上に電流密度1.0[mA/cm]でp形CuO薄膜を形成した場合のX線回折パターンを示す図、図7(c)は、p形CuO:Naシート上に電流密度4.0[mA/cm]でp形CuO薄膜を形成した場合のX線回折パターンを示す図である。FIG. 7A is a diagram showing an X-ray diffraction pattern when a p-type Cu 2 O thin film is formed on a p + -type Cu 2 O: Na sheet at a current density of 0.25 [mA / cm 2 ]. 7 (b) is a diagram showing an X-ray diffraction pattern when a p-type Cu 2 O thin film is formed at a current density of 1.0 [mA / cm 2 ] on a p + -type Cu 2 O: Na sheet, FIG. (C) is a diagram showing an X-ray diffraction pattern when a p-type Cu 2 O thin film is formed at a current density of 4.0 [mA / cm 2 ] on a p + -type Cu 2 O: Na sheet. 正孔密度が異なる2つのヘテロ接合太陽電池および第2の実施の形態に係るホモ接合太陽電池の外部量子効率(EQE)の波長依存性を示した図である。It is the figure which showed the wavelength dependence of the external quantum efficiency (EQE) of the two heterojunction solar cells from which hole density differs, and the homojunction solar cell which concerns on 2nd Embodiment.

以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate.

(第1の実施の形態)
本発明者らは、Cu(銅)シートを高温で熱酸化して作製するp形多結晶CuO(亜酸化銅)シートを活性層に用いる太陽電池を研究している。CuO結晶は天然にも産し、多くの結晶成長法を用いて容易に作成できるが、導入されるCuの空孔がアクセプタとして働き、いずれの方法で作製してもp形伝導を呈し、n形CuO結晶の作成が困難であった。
(First embodiment)
The present inventors have studied a solar cell using a p-type polycrystalline Cu 2 O (cuprous oxide) sheet prepared by thermally oxidizing a Cu (copper) sheet at a high temperature as an active layer. Cu 2 O crystals are naturally produced and can be easily created using many crystal growth methods, but the introduced Cu vacancies act as acceptors and exhibit p-type conduction no matter which method is used. It was difficult to produce n-type Cu 2 O crystals.

したがって、CuOを用いた太陽電池の研究では、p形CuOとCuO以外の他の材料で構成されたn形半導体との組合せからなるヘテロ接合が広く使用されている。最近、本発明者らが考案した技術ではp形CuOを活性層に用いるヘテロ接合太陽電池において、8.1[%]の高い変換効率を実現している。この値は、このタイプの太陽電池において実現可能な効率の理論的限界に近い。一方、エネルギーギャップが2[eV]のCuOのpn接合太陽電池では、理論的に約20[%]の変換効率が期待できる。 Therefore, in research on solar cells using Cu 2 O, heterojunctions composed of a combination of p-type Cu 2 O and an n-type semiconductor composed of other materials other than Cu 2 O are widely used. Recently, the technology devised by the present inventors has realized a high conversion efficiency of 8.1 [%] in a heterojunction solar cell using p-type Cu 2 O as an active layer. This value is close to the theoretical limit of efficiency achievable in this type of solar cell. On the other hand, in a Cu 2 O pn junction solar cell with an energy gap of 2 [eV], a conversion efficiency of about 20 [%] can be expected theoretically.

しかしながら、その実現にはn形CuO層の実現が重要である。そこで、太陽電池の活性層として使用できる高品質n形CuO層を実現するための第一段階として、第1の実施の形態では、新たな活性層の製造方法について説明する。この製造方法は、本願発明者らが考案した高品質p形CuOシート上に、電気化学溶液堆積(Electro Chemical deposition:ECD)法を用いて、CuO薄膜をホモエピタキシャル成長させるものである。 However, the realization of the n-type Cu 2 O layer is important for its realization. Therefore, as a first step for realizing a high-quality n-type Cu 2 O layer that can be used as an active layer of a solar cell, in the first embodiment, a method for manufacturing a new active layer will be described. In this manufacturing method, a Cu 2 O thin film is homoepitaxially grown on a high-quality p-type Cu 2 O sheet devised by the inventors of the present invention by using an electrochemical solution deposition (ECD) method. .

[光電変換素子]
図1は、第1の実施の形態に係る光電変換素子の構成を示す概略断面図である。光電変換素子10は、金属元素としてNa(ナトリウム)が添加された多結晶のCuO(亜酸化銅)からなるシート状のp形半導体基板12と、p形半導体基板12に一方の面上にエピタキシャル層として形成されたp形CuO薄膜14と、p形CuO薄膜14の上に形成された、透明導電層16と、p形半導体基板12の、p形CuO薄膜14が形成された面と反対側の面上に形成されているAu(金)からなる裏面電極18と、を備える。
[Photoelectric conversion element]
FIG. 1 is a schematic cross-sectional view showing the configuration of the photoelectric conversion element according to the first embodiment. The photoelectric conversion element 10 includes a sheet-shaped p-type semiconductor substrate 12 made of polycrystalline Cu 2 O (cuprous oxide) to which Na (sodium) is added as a metal element, and a p-type semiconductor substrate 12 on one surface. a p-type Cu 2 O thin film 14 formed as an epitaxial layer was formed on the p-type Cu 2 O thin film 14, the transparent conductive layer 16, the p-type semiconductor substrate 12, p-type Cu 2 O thin film 14 The back electrode 18 made of Au (gold) is formed on the surface opposite to the surface on which is formed.

本実施の形態に係るp形半導体基板12であるCuOシートは、10〜1000μmの厚みを有する。また、透明導電層16は、AZO(アルミニウムをドープした酸化亜鉛)である。 The Cu 2 O sheet that is the p-type semiconductor substrate 12 according to the present embodiment has a thickness of 10 to 1000 μm. The transparent conductive layer 16 is AZO (aluminum-doped zinc oxide).

[p形半導体基板の製造方法]
次に、本実施の形態に係るp形半導体基板の製造方法について説明する。はじめに、銅板(純度99.96[%])を洗浄後、約1025[℃]で酸化処理することで、基板および活性層を兼ねる多結晶のp形CuOシート(厚さ200μm)を作製する。
[P-type semiconductor substrate manufacturing method]
Next, a method for manufacturing a p-type semiconductor substrate according to the present embodiment will be described. First, after washing a copper plate (purity 99.96 [%]), it is oxidized at about 1025 [° C.] to produce a polycrystalline p-type Cu 2 O sheet (thickness 200 μm) that also serves as a substrate and an active layer. To do.

次に、CuOシートを金属ハロゲン化物が存在する雰囲気で熱処理をする。金属化合物としてはNa、K、Li、Mg、Ca、Mn等の金属元素と各種ハロゲン、炭酸等の化合物が挙げられる。例えば、取扱いや入手の容易さからNaCl、NaCOやKClが好ましい。 Next, the Cu 2 O sheet is heat-treated in an atmosphere in which a metal halide exists. Examples of the metal compound include metal elements such as Na, K, Li, Mg, Ca, and Mn, and compounds such as various halogens and carbonic acid. For example, NaCl, Na 2 CO 3 and KCl are preferable because of easy handling and availability.

本実施の形態に係る熱処理工程では、雰囲気制御が可能な電気炉の内部に、CuOシートをNaCOとともに載置し、不活性ガスであるAr雰囲気で、雰囲気温度100〜1000[℃]で1〜30[h]熱処理した。なお、不活性ガスとしては、Ar以外の希ガスや窒素ガスを適宜用いてもよい。このような熱処理工程を経て多結晶のCuOからなるp形半導体基板12が形成される。 In the heat treatment process according to the present embodiment, a Cu 2 O sheet is placed together with Na 2 CO 3 in an electric furnace capable of controlling the atmosphere, and an Ar atmosphere that is an inert gas has an atmosphere temperature of 100 to 1000 [ [° C.] for 1 to 30 [h]. As the inert gas, a rare gas other than Ar or nitrogen gas may be used as appropriate. A p-type semiconductor substrate 12 made of polycrystalline Cu 2 O is formed through such a heat treatment process.

[ECD法によるp形CuO薄膜の成膜方法]
図2は、ECD法による成膜装置の概略図である。図2に示す成膜装置20は、浴槽22に溶液24が満たされている。溶液24は、硫酸銅(CuSO:濃度0.20mol/L)と乳酸(CHCH(OH)COOH:濃度3.00mol/L)の水溶液に、水酸化ナトリウムを加えて全体のpHを12に調整してある。溶液24中には、陽極としてPtシート26、陰極としてp形半導体基板12またはFTO透明導電膜28が浸されている。
[Method of depositing p-type Cu 2 O thin film by ECD method]
FIG. 2 is a schematic view of a film forming apparatus using the ECD method. In the film forming apparatus 20 illustrated in FIG. 2, a solution 24 is filled in a bathtub 22. The solution 24 was prepared by adding sodium hydroxide to an aqueous solution of copper sulfate (CuSO 4 : concentration 0.20 mol / L) and lactic acid (CH 3 CH (OH) COOH: concentration 3.00 mol / L) to adjust the total pH to 12. It has been adjusted to. In the solution 24, a Pt sheet 26 is immersed as an anode, and the p-type semiconductor substrate 12 or the FTO transparent conductive film 28 is immersed as a cathode.

p形半導体基板12としては、正孔密度が1015[cm−3]のオーダーで縮退したp形CuO:Naシートが用いられる。溶液24の温度は70[℃]である。温度は温度計29により測定される。また、電流密度(J)は0.25〜4.0[mA/cm]の範囲で選択された値となるように制御部30によって制御する。制御部30は、電源32、電圧計34、および電流計36を備える。 As the p-type semiconductor substrate 12, a p + -type Cu 2 O: Na sheet having a hole density degenerated in the order of 10 15 [cm −3 ] is used. The temperature of the solution 24 is 70 [° C.]. The temperature is measured by a thermometer 29. Further, the current density (J) is controlled by the control unit 30 so as to be a value selected in the range of 0.25 to 4.0 [mA / cm 2 ]. The control unit 30 includes a power source 32, a voltmeter 34, and an ammeter 36.

また、ECD法により作製された薄膜を活性層に使用した参考例1に係る光電変換素子(AZO/p形CuO薄膜/p形CuO:Naシート)、及び、比較例1に係る光電変換素子(AZO/p形CuO薄膜/FTO)を作製し、各素子の光起電力特性をAM1.5G(100[mW/cm])の光照射下で測定した。 Further, in the photoelectric conversion element (AZO / p-type Cu 2 O thin film / p + -type Cu 2 O: Na sheet) according to Reference Example 1 using a thin film produced by the ECD method as an active layer, and Comparative Example 1 a photoelectric conversion element (AZO / p-type Cu 2 O thin film / FTO) were prepared according, to measure the photovoltaic characteristics of the element under light irradiation AM1.5G (100 [mW / cm 2 ]).

図3(a)は、p形CuO:Naシートの表面SEM写真を示す図、図3(b)は、p形CuO薄膜/p形CuO:Naシートの表面SEM写真を示す図である。図3(b)に示すように、p形CuO薄膜は、基板であるp形CuO:Naシート上に均一に成膜されていることがわかる。 3A is a view showing a surface SEM photograph of a p + -type Cu 2 O: Na sheet, and FIG. 3B is a surface SEM of a p-type Cu 2 O thin film / p + -type Cu 2 O: Na sheet. It is a figure which shows a photograph. As shown in FIG. 3B, it can be seen that the p-type Cu 2 O thin film is uniformly formed on the p + -type Cu 2 O: Na sheet as the substrate.

図4(a)は、p形CuO:NaシートのX線回折(XRD)パターンを示す図、図4(b)は、p形CuO薄膜/p形CuO:NaシートのX線回折(XRD)パターンを示す図、図4(c)は、p形CuO薄膜/FTO/ガラスのX線回折(XRD)パターンを示す図である。図5は、CuOの結晶構造を示した模式図である。 4A shows an X-ray diffraction (XRD) pattern of a p + -type Cu 2 O: Na sheet, and FIG. 4B shows a p-type Cu 2 O thin film / p + -type Cu 2 O: Na. It shows the X-ray diffraction (XRD) pattern of the seat, FIG. 4 (c) is a diagram showing an X-ray diffraction (XRD) pattern of the p-type Cu 2 O thin film / FTO / glass. FIG. 5 is a schematic diagram showing the crystal structure of Cu 2 O.

図4(a)に示すXRDパターンの回折ピークからわかるように、p形CuO:Naシートは、図5に示す結晶構造の(110)面に優先配向した多結晶である。また、図4(b)に示すように、p形CuO薄膜は、p形CuO:Naシートの配向性と同じ(110)面に配向した回折ピークのみが観測された。一方、図4(c)に示すように、FTO薄膜上に形成したp形CuO薄膜は特定の面方位に配向していなかった。 As can be seen from the diffraction peak of the XRD pattern shown in FIG. 4A, the p + -type Cu 2 O: Na sheet is a polycrystal preferentially oriented on the (110) plane of the crystal structure shown in FIG. Further, as shown in FIG. 4B, only the diffraction peak oriented in the (110) plane, which is the same as the orientation of the p + -type Cu 2 O: Na sheet, was observed in the p-type Cu 2 O thin film. On the other hand, as shown in FIG. 4C, the p-type Cu 2 O thin film formed on the FTO thin film was not oriented in a specific plane orientation.

図6(a)〜図6(c)は、p形CuO:Naシート上に異なる電流密度でp形CuO薄膜を形成した場合の表面SEM写真を示す図である。図7(a)は、p形CuO:Naシート上に電流密度0.25[mA/cm]でp形CuO薄膜を形成した場合のX線回折パターンを示す図、図7(b)は、p形CuO:Naシート上に電流密度1.0[mA/cm]でp形CuO薄膜を形成した場合のX線回折パターンを示す図、図7(c)は、p形CuO:Naシート上に電流密度4.0[mA/cm]でp形CuO薄膜を形成した場合のX線回折パターンを示す図である。 FIG. 6A to FIG. 6C are diagrams showing surface SEM photographs when p-type Cu 2 O thin films are formed at different current densities on a p + -type Cu 2 O: Na sheet. FIG. 7A is a diagram showing an X-ray diffraction pattern when a p-type Cu 2 O thin film is formed on a p + -type Cu 2 O: Na sheet at a current density of 0.25 [mA / cm 2 ]. 7 (b) is a diagram showing an X-ray diffraction pattern when a p-type Cu 2 O thin film is formed at a current density of 1.0 [mA / cm 2 ] on a p + -type Cu 2 O: Na sheet, FIG. (C) is a diagram showing an X-ray diffraction pattern when a p-type Cu 2 O thin film is formed at a current density of 4.0 [mA / cm 2 ] on a p + -type Cu 2 O: Na sheet.

図6(a)〜図6(c)から明らかなように、p形CuO薄膜の表面モホロジーは、電流密度Jに依存し、電流密度Jが0.25[mA/cm]及び1.0[mA/cm]の場合において特に均一なCuO薄膜が作製できた。 As is apparent from FIGS. 6A to 6C, the surface morphology of the p-type Cu 2 O thin film depends on the current density J, and the current density J is 0.25 [mA / cm 2 ] and 1 In the case of 0.0 [mA / cm 2 ], a particularly uniform Cu 2 O thin film could be produced.

このように、本実施の形態に係る活性層の製造方法は、金属元素としてNaが添加された多結晶のCuOからなる半導体基板を準備する工程と、少なくとも銅イオンを含む100℃未満のアルカリ水溶液に半導体基板を浸漬し、該半導体基板の上にCuOをエピタキシャル成長させてCuO薄膜を形成する工程と、を含む。これにより、従来より低温で高品質なCuOの活性層を作製できる。 Thus, the manufacturing method of the active layer according to the present embodiment includes a step of preparing a semiconductor substrate made of polycrystalline Cu 2 O to which Na is added as a metal element, and a temperature of less than 100 ° C. containing at least copper ions. Immersing the semiconductor substrate in an alkaline aqueous solution, and epitaxially growing Cu 2 O on the semiconductor substrate to form a Cu 2 O thin film. As a result, a high-quality Cu 2 O active layer can be produced at a lower temperature than in the past.

また、CuO薄膜膜を形成する工程は、p形半導体基板12を一方の電極とし、Ptシート26を他方の電極として、両電極間に電圧を印加することで、薄膜の成長速度を制御できる。 In addition, in the process of forming the Cu 2 O thin film, the growth rate of the thin film is controlled by applying a voltage between both electrodes using the p-type semiconductor substrate 12 as one electrode and the Pt sheet 26 as the other electrode. it can.

上述のように、第1の実施の形態に係る活性層は、XRDによる評価によって、p形CuO薄膜がCuOシート上で(110)面に優先配向しており、ホモエピタキシャル成長していることが明らかとなった。また、電流密度が4.0[mA/cm]未満となるように、好ましくは電流密度が1.0[mA/cm]以下となるように、より好ましくは、電流密度を0.25[mA/cm]±0.10にすることで、結晶性の高い高品質なCuO薄膜を作製でき、このCuO薄膜を活性層とすることで優れた太陽電池を実現できた。 As described above, in the active layer according to the first embodiment, the p + -type Cu 2 O thin film is preferentially oriented in the (110) plane on the Cu 2 O sheet by XRD evaluation, and is homoepitaxially grown. It became clear that. The current density is preferably less than 4.0 [mA / cm 2 ], more preferably the current density is 1.0 [mA / cm 2 ] or less, and more preferably the current density is 0.25. By setting [mA / cm 2 ] ± 0.10, a high-quality Cu 2 O thin film with high crystallinity could be produced, and an excellent solar cell could be realized by using this Cu 2 O thin film as an active layer. .

(第2の実施の形態)
第1の実施の形態では、高品質なp形CuOシート基板上に、低温成膜技術である電気化学溶液堆積(ECD)法を用いてp形のCuO薄膜をホモエピタキシャル成長することで、高品質な活性層およびその活性層を備えた光電変換素子(太陽電池)を実現できることを示した。しかしながら、第1の実施の形態のCuO薄膜はp形であるため、p形CuOシート基板との間でホモ接合を実現するためには、p形CuOシート基板上にn形のCuO薄膜を形成する必要がある。
(Second Embodiment)
In the first embodiment, a p-type Cu 2 O thin film is homoepitaxially grown on a high-quality p-type Cu 2 O sheet substrate by using an electrochemical solution deposition (ECD) method that is a low-temperature film formation technique. Thus, it was shown that a high-quality active layer and a photoelectric conversion element (solar cell) including the active layer can be realized. However, since Cu 2 O thin film according to the first embodiment is p-type, in order to achieve a homozygous between p-type Cu 2 O sheet substrate, n in the p-type Cu 2 O sheet substrate It is necessary to form a shaped Cu 2 O thin film.

[n形CuO薄膜の成膜方法]
p形半導体基板12としては、正孔密度が1015[cm−3]のオーダーで縮退したNa添加のpCuO:Naシートを用いている。pCuO:Naシートは、熱酸化して作製したp形CuOシートをNaCOとともにArガス雰囲気中で、800[℃]、30[h]の熱処理により作製された。
[Method of depositing n-type Cu 2 O thin film]
As the p-type semiconductor substrate 12, a Na-added p + Cu 2 O: Na sheet with a hole density degenerated in the order of 10 15 [cm −3 ] is used. The p + Cu 2 O: Na sheet was prepared by heat treatment of 800 [° C.] and 30 [h] in a Ar gas atmosphere together with Na 2 CO 3 on a p-type Cu 2 O sheet prepared by thermal oxidation.

次に、第1の実施の形態で説明した成膜装置20の浴槽22に、濃度0.20[mol/l]のCuSOと、濃度3.00[mol/l]のCHCH(OH)COOHと、濃度が1.0×10−5〜1.0×10−1[mol/l]のMnClと、pHを約7.0〜12に調整するためのNaOHと、を含む水溶液を満たす。そこに、作製されたp形CuO:Naシートを陰極として浸漬し、第1の実施の形態と同様に、電気化学溶液堆積法(ECD)法によって、pCuO:Na基板上にCuO薄膜を成膜した。成膜条件は、溶液温度が70[℃]、電流密度が0.25〜4.0[mA/cm]であり、CuO薄膜の膜厚は240[nm]である。 Next, CuSO 4 having a concentration of 0.20 [mol / l] and CH 3 CH (OH) having a concentration of 3.00 [mol / l] are added to the bathtub 22 of the film forming apparatus 20 described in the first embodiment. ) An aqueous solution containing COOH, MnCl 2 having a concentration of 1.0 × 10 −5 to 1.0 × 10 −1 [mol / l], and NaOH for adjusting the pH to about 7.0 to 12. Meet. The produced p-type Cu 2 O: Na sheet was immersed as a cathode, and the p + Cu 2 O: Na substrate was formed by an electrochemical solution deposition (ECD) method as in the first embodiment. A Cu 2 O thin film was formed on the film. The film forming conditions are such that the solution temperature is 70 [° C.], the current density is 0.25 to 4.0 [mA / cm 2 ], and the film thickness of the Cu 2 O thin film is 240 [nm].

なお、溶液温度は100[℃]未満が好ましいく、50〜80[℃]程度がより好ましい。温度が高すぎると水が蒸発するため、溶解成分の濃度が安定しない。また、温度が低すぎると、溶解できずに析出する成分が多くなる。   The solution temperature is preferably less than 100 [° C.], more preferably about 50 to 80 [° C.]. If the temperature is too high, water evaporates, so the concentration of dissolved components is not stable. Moreover, when temperature is too low, the component which cannot be melt | dissolved but precipitates will increase.

このようにMnを含む水溶液にp形半導体基板12を浸漬することで、Mnが添加されたCuO薄膜をp形半導体基板12上に形成できるため、簡便に亜酸化銅のホモ接合を形成できる。また、100℃未満の低温の水溶液を用いてMnが添加されたCuO薄膜を形成できるため、特殊な真空装置や加熱装置が必要なく、製造コストを飛躍的に下げられる。また、水溶液におけるMnCl濃度を適宜選択することで、CuO薄膜のドナー濃度を所望の範囲にすることができる。また、水溶液は、硫酸銅と乳酸と水酸化ナトリウムとを混合したものであるため、安価な材料でCuOを主成分とするn形またはi形の半導体薄膜を形成できる。 By immersing the p-type semiconductor substrate 12 in an aqueous solution containing Mn in this way, a Cu 2 O thin film to which Mn has been added can be formed on the p-type semiconductor substrate 12, so that a homojunction of cuprous oxide can be easily formed. it can. In addition, since a Cu 2 O thin film to which Mn is added can be formed using a low temperature aqueous solution of less than 100 ° C., a special vacuum apparatus or heating apparatus is not required, and the manufacturing cost can be drastically reduced. Further, by appropriately selecting the MnCl 2 concentration in the aqueous solution, a donor concentration of Cu 2 O thin film can be within a desired range. In addition, since the aqueous solution is a mixture of copper sulfate, lactic acid, and sodium hydroxide, an n-type or i-type semiconductor thin film mainly composed of Cu 2 O can be formed using an inexpensive material.

次に、パルスレーザー蒸着(PLD)法を用いて、CuO薄膜の上にAZO透明電極層を、成膜温度が室温(RT)の条件で作製した。 Next, an AZO transparent electrode layer was formed on the Cu 2 O thin film using a pulsed laser deposition (PLD) method at a film forming temperature of room temperature (RT).

各素子に対して、AM1.5G[100mW/cm]の光を照射し、25℃の条件下で素子の光起電力特性を測定した。光起電力特性は、成膜時の電流密度、pH、膜厚及びMnClの濃度等が、作製条件に大きく影響することがわかった。 Each element was irradiated with AM1.5G [100 mW / cm 2 ] light, and the photovoltaic characteristics of the element were measured under the condition of 25 ° C. As for the photovoltaic characteristics, it was found that the current density at the time of film formation, pH, film thickness, MnCl 2 concentration, etc. greatly affected the production conditions.

次に、光起電力特性のMnCl濃度依存性について説明する。図7(a)は、MnCl濃度と開放端電圧(Voc)との関係を示す図、図7(b)は、MnCl濃度と短絡電流密度(Jsc)との関係を示す図、図7(c)は、MnCl濃度と曲線因子(FF)との関係を示す図、図7(d)は、MnCl濃度と変換効率(η)との関係を示す図である。 Next, the dependency of photovoltaic characteristics on MnCl 2 concentration will be described. 7A is a diagram showing the relationship between the MnCl 2 concentration and the open circuit voltage (Voc), FIG. 7B is a diagram showing the relationship between the MnCl 2 concentration and the short-circuit current density (Jsc), and FIG. (c) is a diagram showing the relationship between MnCl 2 concentration and the fill factor (FF), FIG. 7 (d) is a diagram showing the relationship between MnCl 2 concentration and the conversion efficiency (eta).

図7(a)〜図7(d)に示す結果は、成膜する際の水溶液のpHを12、水溶液の温度を70[℃]、作製されるCuO薄膜の膜厚を240[nm]とした場合である。そして、MnCl濃度を0〜1.0×10−1[mol/l]の範囲で変化させた場合に得られたCuO薄膜を活性層として太陽電池を作製し、各光起電力特性を測定した。 The results shown in FIGS. 7A to 7D are as follows. The pH of the aqueous solution during film formation is 12, the temperature of the aqueous solution is 70 ° C., and the thickness of the Cu 2 O thin film to be produced is 240 nm. ]. Then, to prepare a solar cell of Cu 2 O thin film obtained in the case of changing the MnCl 2 concentration in the range of 0~1.0 × 10 -1 [mol / l ] as an active layer, the photovoltaic characteristics Was measured.

図7(a)に示すように、MnCl濃度の増加に伴って開放端電圧(Voc)は低下している。また、図7(b)、図7(c)に示すように、短絡電流密度(Jsc)及び極性因子(FF)は、MnCl濃度が1.0×10[mol/l/cm]以上で低下している。結果として、変換効率(η)はMnCl濃度が1.0×10−4[mol/l]で最大となり、変換効率(η)は4.21[%]、開放端電圧(Voc)は0.78[V]を実現できた。 As shown in FIG. 7A, the open-circuit voltage (Voc) decreases as the MnCl 2 concentration increases. Further, FIG. 7 (b), the as shown in FIG. 7 (c), short-circuit current density (Jsc) and the polarity factor (FF) is, MnCl 2 concentration of 1.0 × 10 - [mol / l / cm 2] That's it. As a result, the conversion efficiency (η) becomes maximum when the MnCl 2 concentration is 1.0 × 10 −4 [mol / l], the conversion efficiency (η) is 4.21 [%], and the open-circuit voltage (Voc) is 0. .78 [V] could be realized.

なお、MnClの代わりにInClを溶解させた水溶液を用いてECD法によりCuO薄膜を作製した場合、変換効率(η)はInCl濃度が5.0×10−4[mol/l]で最大となり、変換効率(η)は3.77[%]、開放端電圧(Voc)は0.71[V]であった。このように、水溶液にMnやInを添加することで、n形またはi形のCuO薄膜を実現できる可能性があることがわかった。特に、Mnを添加したCuO薄膜を用いることで、亜酸化銅を主成分とする変換効率が4[%]を大きく超える光電変換素子を実現できることが明らかとなった。 When a Cu 2 O thin film was prepared by an ECD method using an aqueous solution in which InCl 3 was dissolved instead of MnCl 2 , the conversion efficiency (η) was such that the concentration of InCl 3 was 5.0 × 10 −4 [mol / l. ], The conversion efficiency (η) was 3.77 [%], and the open circuit voltage (Voc) was 0.71 [V]. Thus, it was found that there is a possibility that an n-type or i-type Cu 2 O thin film can be realized by adding Mn or In to the aqueous solution. In particular, it has been clarified that by using a Cu 2 O thin film to which Mn is added, a photoelectric conversion element having a conversion efficiency whose main component is cuprous oxide greatly exceeds 4% can be realized.

図8は、正孔密度が異なる2つのヘテロ接合太陽電池および第2の実施の形態に係るホモ接合太陽電池の外部量子効率(EQE)の波長依存性を示した図である。第2の実施の形態に係るAZO/CuO:Mn/CuO:Na(p:1015)太陽電池のように、ECD法で形成したCuO薄膜を活性層とする素子では、図8の黒丸のスペクトルからも明らかなように、EQEが改善されている。 FIG. 8 is a diagram showing the wavelength dependence of the external quantum efficiency (EQE) of two heterojunction solar cells having different hole densities and the homojunction solar cell according to the second embodiment. In an element using a Cu 2 O thin film formed by the ECD method as an active layer, such as an AZO / Cu 2 O: Mn / Cu 2 O: Na (p: 10 15 ) solar cell according to the second embodiment, As is apparent from the black circle spectrum of FIG. 8, the EQE is improved.

また、AZO/p−CuO太陽電池及びAZO/p−CuO:Na太陽電池のEQEスペクトルと比較すると、第2の実施の形態に係るCuO:Na薄膜のホール密度は、1013[cm−3]程度と考えられる。したがって、Mnを添加することにより少なくともi形のCuO薄膜が形成されていると推測され、p−CuO薄膜との組み合わせにより、亜酸化銅のホモ接合を実現できる。 In addition, the hole density of the Cu 2 O: Na thin film according to the second embodiment is 10 as compared with the EQE spectra of the AZO / p-Cu 2 O solar cell and the AZO / p-Cu 2 O: Na solar cell. It is considered to be about 13 [cm −3 ]. Therefore, it is presumed that at least an i-type Cu 2 O thin film is formed by adding Mn, and a cuprous oxide homojunction can be realized by combination with a p-Cu 2 O thin film.

このように、第2の実施の形態に係る光電変換素子は、Naが添加された多結晶のCuOからなるp形半導体基板(第1半導体層)と、p形半導体基板上にエピタキシャル層として形成された、Mnが添加されたn形またはi形のCuO薄膜(第2半導体層)と、n形またはi形のCuO薄膜の上に形成された、アルミニウムをドープされた酸化亜鉛からなる透明導電層と、を備える。n形またはi形のCuO薄膜は、80nm〜800nmの厚みが好ましい。これにより、従来のCuOのヘテロ接合では実現できない高い変換効率を実現できる。 Thus, the photoelectric conversion element according to the second embodiment includes a p-type semiconductor substrate (first semiconductor layer) made of polycrystalline Cu 2 O to which Na is added, and an epitaxial layer on the p-type semiconductor substrate. Mn-doped n-type or i-type Cu 2 O thin film (second semiconductor layer) and an n-type or i-type Cu 2 O thin film formed on and doped with aluminum A transparent conductive layer made of zinc oxide. The n-type or i-type Cu 2 O thin film preferably has a thickness of 80 nm to 800 nm. Thereby, high conversion efficiency which cannot be realized by the conventional heterojunction of Cu 2 O can be realized.

以上、本発明を上述の各実施の形態を参照して説明したが、本発明は上述の各実施の形態に限定されるものではなく、各実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて各実施の形態における組合せや工程の順番を適宜組み替えることや各種の設計変更等の変形を各実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。   As described above, the present invention has been described with reference to the above-described embodiments. However, the present invention is not limited to the above-described embodiments, and the configurations of the embodiments are appropriately combined or replaced. Those are also included in the present invention. Further, it is possible to appropriately change the combinations and the order of the steps in each embodiment based on the knowledge of those skilled in the art and to add various modifications such as various design changes to each embodiment. Embodiments to which is added can also be included in the scope of the present invention.

10 光電変換素子、 12 p形半導体基板、 14 CuO薄膜、 16 透明導電層、 18 裏面電極、 20 成膜装置、 22 浴槽、 24 溶液、 26 Ptシート、 28 FTO透明導電膜、 29 温度計、 30 制御部、 32 電源、 34 電圧計、 36 電流計。 10 photoelectric conversion element, 12 p-type semiconductor substrate, 14 Cu 2 O thin film, 16 transparent conductive layer, 18 rear surface electrode, 20 film forming device, 22 bath, 24 the solution, 26 Pt sheet, 28 FTO transparent conductive film, 29 a thermometer 30 control units, 32 power supplies, 34 voltmeters, 36 ammeters.

Claims (9)

多結晶のCuOを主成分とするp形の第1半導体層と、
前記第1半導体層の上に設けられている、CuOを主成分とするn形またはi形の第2半導体層と、を備え、
前記第2半導体層は、Mnが添加されていることを特徴とする光電変換素子。
A p-type first semiconductor layer mainly composed of polycrystalline Cu 2 O;
An n-type or i-type second semiconductor layer mainly composed of Cu 2 O provided on the first semiconductor layer,
Mn is added to the said 2nd semiconductor layer, The photoelectric conversion element characterized by the above-mentioned.
前記第2半導体層の上に形成された、アルミニウムをドープされた酸化亜鉛からなる透明導電層を更に備えることを特徴とする請求項1に記載の光電変換素子。   The photoelectric conversion element according to claim 1, further comprising a transparent conductive layer made of zinc oxide doped with aluminum and formed on the second semiconductor layer. 多結晶のCuOを主成分とするp形の第1半導体層を準備する工程と、
Mnを含む水溶液に前記第1半導体層を浸漬し、該第1半導体層の上にCuOを主成分とするn形またはi形の第2半導体層を形成する工程と、
を含むことを特徴とする光電変換素子の製造方法。
Preparing a p-type first semiconductor layer mainly composed of polycrystalline Cu 2 O;
Immersing the first semiconductor layer in an aqueous solution containing Mn, and forming an n-type or i-type second semiconductor layer mainly composed of Cu 2 O on the first semiconductor layer;
The manufacturing method of the photoelectric conversion element characterized by including.
前記水溶液は、100℃未満であることを特徴とする請求項3に記載の光電変換素子の製造方法。   The said aqueous solution is less than 100 degreeC, The manufacturing method of the photoelectric conversion element of Claim 3 characterized by the above-mentioned. 前記水溶液は、MnClが添加されていることを特徴とする請求項3または4に記載の光電変換素子の製造方法。 The method for producing a photoelectric conversion element according to claim 3, wherein MnCl 2 is added to the aqueous solution. 前記水溶液は、MnClの濃度が1.0×10−5〜1.0×10−1[mol/l]であることを特徴とする請求項5に記載の光電変換素子の製造方法。 The method for producing a photoelectric conversion element according to claim 5, wherein the aqueous solution has a MnCl 2 concentration of 1.0 × 10 −5 to 1.0 × 10 −1 [mol / l]. 前記第2半導体層を形成する工程は、前記第1半導体層を一方の電極とし、該一方の電極と他方の電極との間に電圧を印加することを特徴とする請求項3乃至6のいずれか1項に記載の光電変換素子の製造方法。   7. The step of forming the second semiconductor layer includes using the first semiconductor layer as one electrode and applying a voltage between the one electrode and the other electrode. The manufacturing method of the photoelectric conversion element of Claim 1. 前記該一方の電極と他方の電極との間の電流密度が4.0[mA/cm]未満となるように電圧を印加することを特徴とする請求項7に記載の光電変換素子の製造方法。 8. The process for producing a photoelectric conversion element according to claim 7, wherein a voltage is applied so that a current density between the one electrode and the other electrode is less than 4.0 [mA / cm 2 ]. Method. 前記水溶液は、硫酸銅と乳酸と水酸化ナトリウムとを混合したものであることを特徴とする請求項3乃至8のいずれか1項に記載の光電変換素子の製造方法。   The method for producing a photoelectric conversion device according to any one of claims 3 to 8, wherein the aqueous solution is a mixture of copper sulfate, lactic acid, and sodium hydroxide.
JP2016180711A 2016-09-15 2016-09-15 Photoelectric conversion element and manufacturing method of photoelectric conversion element Active JP6764187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016180711A JP6764187B2 (en) 2016-09-15 2016-09-15 Photoelectric conversion element and manufacturing method of photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016180711A JP6764187B2 (en) 2016-09-15 2016-09-15 Photoelectric conversion element and manufacturing method of photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2018046196A true JP2018046196A (en) 2018-03-22
JP6764187B2 JP6764187B2 (en) 2020-09-30

Family

ID=61695179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016180711A Active JP6764187B2 (en) 2016-09-15 2016-09-15 Photoelectric conversion element and manufacturing method of photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP6764187B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250513A1 (en) 2019-06-13 2020-12-17 Kabushiki Kaisha Toshiba Solar cell, multijunction solar cell, solar cell module, and solar power generation system
WO2021002062A1 (en) 2019-07-02 2021-01-07 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar photovoltaic power generation system
WO2021019819A1 (en) 2019-07-26 2021-02-04 Kabushiki Kaisha Toshiba Photoelectric conversion layer, solar cell, multi-junction solar cell, solar cell module, and photovoltaic power system
WO2022074852A1 (en) 2020-10-09 2022-04-14 株式会社 東芝 Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
US11322627B2 (en) 2018-09-19 2022-05-03 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
US11888076B2 (en) 2020-03-19 2024-01-30 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
US11901474B2 (en) 2020-10-09 2024-02-13 Kabusaires Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582813A (en) * 1991-09-24 1993-04-02 Canon Inc Photovoltaic element
JPH08264794A (en) * 1995-03-27 1996-10-11 Res Dev Corp Of Japan Metal oxide semiconductor device forming a pn junction with a thin film transistor of metal oxide semiconductor of copper suboxide and manufacture thereof
JP2005239526A (en) * 2004-02-27 2005-09-08 Kanazawa Inst Of Technology Method for producing cuprous oxide plate, and photovoltaic device
JP2006124754A (en) * 2004-10-27 2006-05-18 Bridgestone Corp Cu2O FILM, METHOD FOR FORMING IT, AND SOLAR BATTERY
JP2007019460A (en) * 2005-06-08 2007-01-25 Masanobu Isaki Oxide thin film solar cell
WO2009008419A1 (en) * 2007-07-09 2009-01-15 Sustainable Titania Technology Inc. Reflectivity-reducing agent for substrate, and method for production of low-reflective substrate using the same
US20090072231A1 (en) * 2007-09-14 2009-03-19 Board Of Regents, The University Of Texas System Formation of p-n homogeneous junctions
CN202373597U (en) * 2011-12-02 2012-08-08 刘畅 Cuprous oxide solar cell with surface self-texture structure
JP2014183244A (en) * 2013-03-21 2014-09-29 Univ Of Shiga Prefecture Process of manufacturing cuprate thin film solar cell
JP2015162650A (en) * 2014-02-28 2015-09-07 学校法人金沢工業大学 Method of manufacturing photoelectric conversion element, method of manufacturing p-type semiconductor layer, and p-type semiconductor layer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582813A (en) * 1991-09-24 1993-04-02 Canon Inc Photovoltaic element
JPH08264794A (en) * 1995-03-27 1996-10-11 Res Dev Corp Of Japan Metal oxide semiconductor device forming a pn junction with a thin film transistor of metal oxide semiconductor of copper suboxide and manufacture thereof
JP2005239526A (en) * 2004-02-27 2005-09-08 Kanazawa Inst Of Technology Method for producing cuprous oxide plate, and photovoltaic device
JP2006124754A (en) * 2004-10-27 2006-05-18 Bridgestone Corp Cu2O FILM, METHOD FOR FORMING IT, AND SOLAR BATTERY
JP2007019460A (en) * 2005-06-08 2007-01-25 Masanobu Isaki Oxide thin film solar cell
WO2009008419A1 (en) * 2007-07-09 2009-01-15 Sustainable Titania Technology Inc. Reflectivity-reducing agent for substrate, and method for production of low-reflective substrate using the same
US20090072231A1 (en) * 2007-09-14 2009-03-19 Board Of Regents, The University Of Texas System Formation of p-n homogeneous junctions
CN202373597U (en) * 2011-12-02 2012-08-08 刘畅 Cuprous oxide solar cell with surface self-texture structure
JP2014183244A (en) * 2013-03-21 2014-09-29 Univ Of Shiga Prefecture Process of manufacturing cuprate thin film solar cell
JP2015162650A (en) * 2014-02-28 2015-09-07 学校法人金沢工業大学 Method of manufacturing photoelectric conversion element, method of manufacturing p-type semiconductor layer, and p-type semiconductor layer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L. WANG ET AL.: "P-n junction from solution: Cuprous oxide p-n homojunction by electrodeposition", 2008 33RD IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, JPN6020031616, 12 May 2009 (2009-05-12), US, ISSN: 0004334692 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11322627B2 (en) 2018-09-19 2022-05-03 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
WO2020250513A1 (en) 2019-06-13 2020-12-17 Kabushiki Kaisha Toshiba Solar cell, multijunction solar cell, solar cell module, and solar power generation system
WO2021002062A1 (en) 2019-07-02 2021-01-07 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar photovoltaic power generation system
JP2021009957A (en) * 2019-07-02 2021-01-28 株式会社東芝 Solar cell, multi-junction solar cell, solar cell module and photovoltaic power generation system
US11581444B2 (en) 2019-07-02 2023-02-14 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar photovoltaic power generation system
JP7301636B2 (en) 2019-07-02 2023-07-03 株式会社東芝 Solar cells, multi-junction solar cells, solar cell modules and photovoltaic power generation systems
WO2021019819A1 (en) 2019-07-26 2021-02-04 Kabushiki Kaisha Toshiba Photoelectric conversion layer, solar cell, multi-junction solar cell, solar cell module, and photovoltaic power system
US11626528B2 (en) 2019-07-26 2023-04-11 Kabushiki Kaisha Toshiba Photoelectric conversion layer, solar cell, multi-junction solar cell, solar cell module, and photovoltaic power system
US11888076B2 (en) 2020-03-19 2024-01-30 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
WO2022074852A1 (en) 2020-10-09 2022-04-14 株式会社 東芝 Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
US11901474B2 (en) 2020-10-09 2024-02-13 Kabusaires Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system

Also Published As

Publication number Publication date
JP6764187B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
JP6764187B2 (en) Photoelectric conversion element and manufacturing method of photoelectric conversion element
Kondrotas et al. Sb2S3 solar cells
Zakutayev Brief review of emerging photovoltaic absorbers
Wang Progress in thin film solar cells based on
US7560641B2 (en) Thin film solar cell configuration and fabrication method
CA2239786C (en) Preparation of cuxinygazsen (x=0-2, y=0-2, z=0-2, n=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells
Bhattacharya et al. Thin-film CuIn 1− x Ga x Se 2 photovoltaic cells from solution-based precursor layers
US8802483B2 (en) Self-organizing nanostructured solar cells
Wang et al. Sb 2 S 3 solar cells: functional layer preparation and device performance
Bai et al. Controlled growth of Cu3Se2 nanosheets array counter electrode for quantum dots sensitized solar cell through ion exchange
Yussuf et al. Photovoltaic efficiencies of microwave and Cu2ZnSnS4 (CZTS) superstrate solar cells
Saha A status review on Cu2ZnSn (S, Se) 4-based thin-film solar cells
Palve et al. Chemically deposited CuInSe2 thin films and their photovoltaic properties: a review
Ho et al. Preparation of CuInSe2 thin films by using various methods (a short review)
Kokate et al. Photoelectrochemical properties of electrochemically deposited CdIn2S4 thin films
CN104465807A (en) CZTS nanometer array thin film solar photovoltaic cell and manufacturing method thereof
Shilpa et al. Recent advances in the development of high efficiency quantum dot sensitized solar cells (QDSSCs): A review
Wang et al. Sodium citrate complexing agent-dependent growth of n-and p-type CdTe thin films for applications in CdTe/CdS based photovoltaic devices
KR20090004262A (en) Fabricating method of cigs solar cell
Ray Electrodeposition of thin films for low-cost solar cells
Lee et al. Structural regulation of electrochemically deposited copper layers for fabrication of thin film solar cells with a CuInS2 photoabsorber
CA2284826C (en) Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells
Battaglia et al. CuZnSnSe nanotubes and nanowires by template electrosynthesis
JP6650640B2 (en) Method for producing active layer and photoelectric conversion element
Tanushevski et al. Structural and optical properties of CdTe thin films obtained by electrodeposition

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20161014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200908

R150 Certificate of patent or registration of utility model

Ref document number: 6764187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150