JP2014183244A - Process of manufacturing cuprate thin film solar cell - Google Patents

Process of manufacturing cuprate thin film solar cell Download PDF

Info

Publication number
JP2014183244A
JP2014183244A JP2013057569A JP2013057569A JP2014183244A JP 2014183244 A JP2014183244 A JP 2014183244A JP 2013057569 A JP2013057569 A JP 2013057569A JP 2013057569 A JP2013057569 A JP 2013057569A JP 2014183244 A JP2014183244 A JP 2014183244A
Authority
JP
Japan
Prior art keywords
semiconductor layer
type semiconductor
solar cell
thin film
film solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013057569A
Other languages
Japanese (ja)
Other versions
JP6108346B2 (en
Inventor
Takeo Oku
健夫 奥
Kazuya Fujimoto
和也 藤本
Takeshi Akiyama
毅 秋山
Atsushi Suzuki
厚志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shiga Prefecture
Original Assignee
University of Shiga Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shiga Prefecture filed Critical University of Shiga Prefecture
Priority to JP2013057569A priority Critical patent/JP6108346B2/en
Publication of JP2014183244A publication Critical patent/JP2014183244A/en
Application granted granted Critical
Publication of JP6108346B2 publication Critical patent/JP6108346B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process of manufacturing a cuprate thin film solar cell having light conversion efficiency higher than those of the conventional cuprate thin film solar cells.SOLUTION: A cuprate thin film solar cell 10 has a structure in which a first electrode 14, an n-type semiconductor layer 16, a p-type semiconductor layer 18, and a second electrode 20 are laminated on a substrate 12 in this order. The p-type semiconductor layer 18 is formed on the n-type semiconductor layer 16 by electrocrystallization. An alkaline solution containing a soluble copper salt is used for the electrocrystallization. PH of the alkaline solution is adjusted by LiOH.

Description

本発明はヘテロ接合型の銅酸化物薄膜太陽電池の製造方法に関するものである。   The present invention relates to a method for producing a heterojunction copper oxide thin film solar cell.

近年、化石燃料に代わる新エネルギーとして、ほとんど無尽蔵でクリーンな太陽光を電気に変えることができる太陽電池が注目されている。シリコン系の太陽電池が主流であるが、材料面や製造プロセス面から高価格である。太陽電池の普及のためには、低価格化が必要不可欠となっている。   In recent years, solar cells that can convert almost inexhaustible and clean sunlight into electricity have attracted attention as a new energy alternative to fossil fuels. Silicon-based solar cells are the mainstream, but they are expensive in terms of materials and manufacturing processes. For the spread of solar cells, it is indispensable to reduce the price.

そこで、安価で簡単に太陽電池を製造するために、シリコン系以外の太陽電池の開発も盛んにおこなわれている。例えば、下記の特許文献1には、酸化物半導体を使用した太陽電池が開示されている。酸化物半導体は、シリコン系の太陽電池に比べて、製造が簡単であり、安価である。さらに、酸化物半導体は、直接遷移半導体であり、光吸収スペクトルが大きい利点がある。例えば、銅酸化物半導体は、バンドギャップが太陽光のスペクトルに近く理想的であり、CuOであれば1.5eV、CuOであれば2.1eVである(図5参照)。図5は、電極にITOとAuを使用している。このため、太陽電池に適しており、バンドギャップの大きいCuO系太陽電池が注目されている。特許文献1には、NaOHでpHを12.5に調整し、電析によってCuOを形成することが開示されている。 Therefore, in order to easily and inexpensively manufacture solar cells, solar cells other than silicon-based solar cells have been actively developed. For example, Patent Document 1 below discloses a solar cell using an oxide semiconductor. An oxide semiconductor is easier to manufacture and less expensive than a silicon-based solar cell. Further, an oxide semiconductor is a direct transition semiconductor and has an advantage of a large light absorption spectrum. For example, a copper oxide semiconductor has an ideal band gap close to the spectrum of sunlight, and is 1.5 eV for CuO and 2.1 eV for Cu 2 O (see FIG. 5). In FIG. 5, ITO and Au are used for the electrodes. Therefore, suitable for solar cell, larger Cu 2 O-based solar cell bandgap has attracted attention. Patent Document 1 discloses that the pH is adjusted to 12.5 with NaOH and Cu 2 O is formed by electrodeposition.

しかし、銅酸化物半導体を使用した太陽電池は、シリコン系の太陽電池に比べて変換効率が低く、変換効率を高めることが求められる。   However, a solar cell using a copper oxide semiconductor has a lower conversion efficiency than a silicon-based solar cell, and is required to increase the conversion efficiency.

特開2007−19460号公報JP 2007-19460 A

本発明の目的は、従来の銅酸化物薄膜太陽電池に比べて光変換効率の高い銅酸化物薄膜太陽電池の製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of a copper oxide thin film solar cell with high photoconversion efficiency compared with the conventional copper oxide thin film solar cell.

本発明の銅酸化物薄膜太陽電池の製造方法は、基板を準備する工程と、前記基板の一面上に第1電極を形成する工程と、前記第1電極の上にn型半導体層を形成する工程と、前記n型半導体層の上にp型半導体層を形成する工程と、前記p型半導体層の上に第2電極を形成する工程とを含む。前記p型半導体層を形成する工程が、水溶性銅塩を含むアルカリ性水溶液に対し、水酸化リチウムを用いてpHを調整する工程と、前記pHを調整されたアルカリ性水溶液の中で、前記n型半導体層の上に電析によってp型半導体層を形成する工程とを含む。   The method for manufacturing a copper oxide thin film solar cell of the present invention includes a step of preparing a substrate, a step of forming a first electrode on one surface of the substrate, and an n-type semiconductor layer on the first electrode. A step, a step of forming a p-type semiconductor layer on the n-type semiconductor layer, and a step of forming a second electrode on the p-type semiconductor layer. The step of forming the p-type semiconductor layer includes adjusting the pH using lithium hydroxide with respect to an alkaline aqueous solution containing a water-soluble copper salt, and the n-type in the alkaline aqueous solution adjusted to the pH. Forming a p-type semiconductor layer on the semiconductor layer by electrodeposition.

前記pHを調整する工程によって、アルカリ性水溶液のpHを10〜14、好ましくは12.5にする。前記p型半導体層を形成する工程によって、CuO層を形成する。前記n型半導体層を形成する工程は、電析によってZnO層を形成する。 By the step of adjusting the pH, the pH of the alkaline aqueous solution is adjusted to 10 to 14, preferably 12.5. A Cu 2 O layer is formed by the step of forming the p-type semiconductor layer. In the step of forming the n-type semiconductor layer, a ZnO layer is formed by electrodeposition.

本発明によると、電析をおこなうためのアルカリ水溶液のpHの調整剤として水酸化リチウムを使用することによって、pHの調整剤として水酸化カリウムや水酸化ナトリウムを使用するよりも変換効率の良い太陽電池を製造することができる。   According to the present invention, by using lithium hydroxide as a pH adjuster of an alkaline aqueous solution for electrodeposition, the solar has better conversion efficiency than using potassium hydroxide or sodium hydroxide as a pH adjuster. A battery can be manufactured.

銅酸化物薄膜太陽電池の構成を模式的に示す図である。It is a figure which shows typically the structure of a copper oxide thin film solar cell. LiOHでpH調整をおこなって製造した銅酸化物薄膜太陽電池のX線回折パターンのグラフである。It is a graph of the X-ray-diffraction pattern of the copper oxide thin film solar cell manufactured by performing pH adjustment with LiOH. 3種類のpH調整剤の違いによる電圧−電流密度特性の違いを示すグラフである。It is a graph which shows the difference in the voltage-current density characteristic by the difference in three types of pH adjusters. 3種類のpH調整剤の違いによる分光感度特性の違いを示すグラフである。It is a graph which shows the difference in the spectral sensitivity characteristic by the difference in three types of pH adjusters. CuOをp型半導体層に使用した銅酸化物薄膜太陽電池のエネルギーバンドの図である。The Cu 2 O is a diagram of the energy band of the copper oxide thin film solar cell using the p-type semiconductor layer.

本発明の銅酸化物薄膜太陽電池の製造方法について図面を使用して説明する。   The manufacturing method of the copper oxide thin film solar cell of this invention is demonstrated using drawing.

図1に示す銅酸化物薄膜太陽電池10は、基板12の上に第1電極14、n型半導体層16、p型半導体層18および第2電極20が順番に積層された構造である。   A copper oxide thin film solar cell 10 shown in FIG. 1 has a structure in which a first electrode 14, an n-type semiconductor layer 16, a p-type semiconductor layer 18, and a second electrode 20 are sequentially stacked on a substrate 12.

基板12は、ガラスや樹脂でできた透明基板である。基板12の一面上に第1電極14が形成され、他面が光入射面となる。他面に反射防止膜を設けて、n型半導体層16とp型半導体層18の接合部への光の入射効率を高めても良い。基板12はフレキシブルなものであっても良い。   The substrate 12 is a transparent substrate made of glass or resin. The first electrode 14 is formed on one surface of the substrate 12, and the other surface is a light incident surface. An antireflection film may be provided on the other surface to increase the efficiency of light incident on the junction between the n-type semiconductor layer 16 and the p-type semiconductor layer 18. The substrate 12 may be flexible.

第1電極14は、FTO(fluorine doped tin oxide)やITO(indium tin oxide)などの透明電極である。第1電極14が陰極となる。1枚の基板12に対して、第1電極14は1つであっても良いし、複数に分割されていても良い。なお、FTOはITOに比べて耐温度性が良い。   The first electrode 14 is a transparent electrode such as FTO (fluorine doped tin oxide) or ITO (indium tin oxide). The first electrode 14 becomes a cathode. The number of the first electrodes 14 may be one for a single substrate 12, or a plurality of the first electrodes 14 may be divided. FTO has better temperature resistance than ITO.

n型半導体層16は、光をp型半導体層18との接合面まで到達させることができ、n型半導体の特性を有するものであれば良い。例えばn型半導体層16はZnOの層である。電析によって形成することができる。   The n-type semiconductor layer 16 may be any material as long as it can reach the junction surface with the p-type semiconductor layer 18 and has the characteristics of an n-type semiconductor. For example, the n-type semiconductor layer 16 is a ZnO layer. It can be formed by electrodeposition.

p型半導体層18は、銅酸化物半導体を使用する。銅酸化物半導体として、CuOやCuOが挙げられるが、バンドギャップの大きいCuO(バンドギャップ2.1eV)を使用するのが好ましい。n型半導体層16とp型半導体層18とはヘテロ接合になる。 The p-type semiconductor layer 18 uses a copper oxide semiconductor. Examples of the copper oxide semiconductor include CuO and Cu 2 O, but Cu 2 O (band gap 2.1 eV) having a large band gap is preferably used. The n-type semiconductor layer 16 and the p-type semiconductor layer 18 form a heterojunction.

p型半導体層18は電析によってn型半導体層16の上に形成する。電析のために水溶性銅塩を含むアルカリ性溶液を使用する。水溶性銅塩としては、キレート錯体を形成できる2価の銅塩を使用することができる。例えば水溶性銅塩として、硫酸銅、塩化銅、硝酸銅、酢酸銅などが挙げられる。このアルカリ性溶液の水酸化物の沈殿を抑制するために錯化剤を配合する。錯化剤としては、銅(II)イオンとキレート錯体を形成できる化合物を使用することができ、乳酸、エチレンジアミン四酢酸(EDTA)、クエン酸、酒石酸、グリコール酸、リンゴ酸などのヒドロキシカルボン酸が挙げられる。   The p-type semiconductor layer 18 is formed on the n-type semiconductor layer 16 by electrodeposition. An alkaline solution containing a water-soluble copper salt is used for electrodeposition. As the water-soluble copper salt, a divalent copper salt capable of forming a chelate complex can be used. Examples of water-soluble copper salts include copper sulfate, copper chloride, copper nitrate, and copper acetate. A complexing agent is blended in order to suppress the precipitation of hydroxide in the alkaline solution. As the complexing agent, a compound capable of forming a chelate complex with a copper (II) ion can be used, and hydroxycarboxylic acids such as lactic acid, ethylenediaminetetraacetic acid (EDTA), citric acid, tartaric acid, glycolic acid, malic acid and the like can be used. Can be mentioned.

アルカリ性水溶液は、LiOHによってpHを調整する。LiOHでpHを調節することによって、従来のKOHやNaOHでpHを調節するよりも変換効率の良い太陽電池を製造することができる。pHは、10〜14であり、好ましくは12.5である。pHを12.5にすることによって、CuOを(111)配向にすることができる。pHが9.0になるとCuOが(200)配向になるため、変換効率が落ち、好ましくない。 The pH of the alkaline aqueous solution is adjusted with LiOH. By adjusting the pH with LiOH, it is possible to produce a solar cell with better conversion efficiency than when adjusting the pH with conventional KOH or NaOH. The pH is 10-14, preferably 12.5. By making the pH 12.5, Cu 2 O can be (111) oriented. When the pH is 9.0, Cu 2 O is in the (200) orientation, which is not preferable because the conversion efficiency decreases.

第2電極20は、Auなどの導電性の金属である。真空蒸着などで形成することができる。第2電極20が陽極になる。第2電極20は複数に分割されていても良い。   The second electrode 20 is a conductive metal such as Au. It can be formed by vacuum deposition or the like. The second electrode 20 becomes an anode. The second electrode 20 may be divided into a plurality of parts.

次に、上述した銅酸化物薄膜太陽電池10の製造方法について説明する。(1)ガラスなどの基板12を準備する。この準備には、基板12を所望形状に切断したり、洗浄したりすることを含む。   Next, the manufacturing method of the copper oxide thin film solar cell 10 mentioned above is demonstrated. (1) A substrate 12 such as glass is prepared. This preparation includes cutting or cleaning the substrate 12 into a desired shape.

(2)基板12の上に第1電極14を形成する。第1電極14としてFTOを用いるのであれば、CVD(chemical vapor deposition)やスプレー熱分解法などで形成することができる。なお、基板12にFTOを成膜したものを準備してもよい。   (2) The first electrode 14 is formed on the substrate 12. If FTO is used as the first electrode 14, it can be formed by CVD (chemical vapor deposition) or spray pyrolysis. Note that an FTO film formed on the substrate 12 may be prepared.

(3)第1電極14の上にn型半導体層16を形成する。例えば電析によってZnOの層を形成する。電析のための溶液は、蒸留水の中に硝酸亜鉛六水和物を溶解させた溶液を使用できる。また、ZnOをスパッタリングによって形成しても良い。   (3) The n-type semiconductor layer 16 is formed on the first electrode 14. For example, a ZnO layer is formed by electrodeposition. As a solution for electrodeposition, a solution in which zinc nitrate hexahydrate is dissolved in distilled water can be used. Further, ZnO may be formed by sputtering.

(4)n型半導体層16の上にp型半導体層18を形成する。p型半導体層18は電析によってCuOの層を形成する。電析のための溶液は、上述したアルカリ水溶液を使用する。アルカリ水溶液は、LiOHでpHを調整する。 (4) A p-type semiconductor layer 18 is formed on the n-type semiconductor layer 16. The p-type semiconductor layer 18 forms a Cu 2 O layer by electrodeposition. The alkaline aqueous solution mentioned above is used for the solution for electrodeposition. The pH of the alkaline aqueous solution is adjusted with LiOH.

電析は、3電極法を用いる。作用電極を第1電極14、参照電極をAg/AgClの電極、対電極をPtの電極を使用する。   Electrodeposition uses a three-electrode method. The working electrode is the first electrode 14, the reference electrode is an Ag / AgCl electrode, and the counter electrode is a Pt electrode.

(5)p型半導体層18の上に第2電極20を形成する。例えば、Auを真空蒸着で形成し、第2電極20とする。真空蒸着以外に、金属材料を塗布し、焼成して形成しても良い。   (5) The second electrode 20 is formed on the p-type semiconductor layer 18. For example, Au is formed by vacuum evaporation to form the second electrode 20. In addition to vacuum deposition, a metal material may be applied and baked.

実施例
FTOが成膜されたガラス基板を超音波洗浄した。蒸留水に0.08MのZnNOを溶解させ、電析によりZnOを成膜した。その際にpHの調整はおこなわず、pHは5.4であった。電析は、電流密度5mA/cm、電気量1.5C/cm、温度65℃であった。ZnOの膜厚は1.0μmであった。
Example A glass substrate on which an FTO film was formed was subjected to ultrasonic cleaning. 0.08M ZnNO 3 was dissolved in distilled water, and ZnO was deposited by electrodeposition. At that time, the pH was not adjusted, and the pH was 5.4. Electrodeposition had a current density of 5 mA / cm 2 , an amount of electricity of 1.5 C / cm 2 , and a temperature of 65 ° C. The film thickness of ZnO was 1.0 μm.

ZnOの上に電析によりCuOを成膜した。電析液は、0.4MのCuSOと0.3MのL乳酸を蒸留水に溶解させ、2.0MのLiOHでpHを12.5にした。電析は、電流密度−1.5mA/cm、電気量4.0C/cm、温度65℃であった。CuOの膜厚は4.0μmであった。 Cu 2 O was deposited on the ZnO by electrodeposition. As the electrodeposition solution, 0.4 M CuSO 4 and 0.3 M L lactic acid were dissolved in distilled water, and the pH was adjusted to 12.5 with 2.0 M LiOH. Electrodeposition a current density -1.5mA / cm 2, amount of electricity 4.0C / cm 2, at a temperature of 65 ° C.. The film thickness of Cu 2 O was 4.0 μm.

電析によって成膜されたCuOの上に、蒸着によってAuを成膜し、140℃、20分で熱処理した。 Au was formed into a film by vapor deposition on Cu 2 O formed by electrodeposition, and heat-treated at 140 ° C. for 20 minutes.

製作した銅酸化物薄膜太陽電池10のX線解析パターンは図2のようになっており、(111)配向のp型半導体層18が得られていた。結晶性が良く、成膜したときにCuOにならない銅が少ない。 The X-ray analysis pattern of the manufactured copper oxide thin film solar cell 10 is as shown in FIG. 2, and a (111) -oriented p-type semiconductor layer 18 was obtained. The crystallinity is good, and there is little copper that does not become Cu 2 O when deposited.

比較例
上記の実施例はpHの調整をLiOHでおこなったが、比較例としてLiOHの代わりにNaOHまたはKOHを使用してpHを12.5にした。NaOHまたはKOHは2.0Mであった。このpH調整以外は実施例と同じ条件で銅酸化物薄膜太陽電池を製造した。以下、実施例と比較例で挙げたpH調整剤の異なる3種類の銅酸化物薄膜太陽電池の特性の違いについて説明する。
Comparative Example In the above examples, the pH was adjusted with LiOH. As a comparative example, the pH was adjusted to 12.5 using NaOH or KOH instead of LiOH. NaOH or KOH was 2.0M. Except for this pH adjustment, a copper oxide thin film solar cell was produced under the same conditions as in the Examples. Hereinafter, the difference in the characteristics of three types of copper oxide thin film solar cells having different pH adjusters mentioned in Examples and Comparative Examples will be described.

電圧―電流特性は図3のようになり、LiOHでpH調整した銅酸化物薄膜太陽電池が最も良い特性になり、KOHでpH調整した銅酸化物薄膜太陽電池が最も悪い特性になった。表1に各太陽電池の特性評価を示す。表1は株式会社三永電機製作所製のソーラーシュミレーターで求めている。光電変換効率が1.4%になるなど、各特性においてLiOHでpH調整した銅酸化物薄膜太陽電池が最も良い特性になっている。   The voltage-current characteristics are as shown in FIG. 3, and the copper oxide thin film solar cell adjusted in pH with LiOH has the best characteristics, and the copper oxide thin film solar cell adjusted in pH with KOH has the worst characteristics. Table 1 shows the characteristic evaluation of each solar cell. Table 1 is obtained with a solar simulator manufactured by Mitsunaga Electric Co., Ltd. A copper oxide thin film solar cell whose pH has been adjusted with LiOH is the best characteristic, such as a photoelectric conversion efficiency of 1.4%.

Figure 2014183244
Figure 2014183244

図4に分光感度特性を示すが、LiOHでpH調整した銅酸化物薄膜太陽電池のみが50%を超え、LiOHでpH調整した銅酸化物薄膜太陽電池が最も良い特性になった。また、LiOHでpH調整した銅酸化物薄膜太陽電池のCuOの成膜速度は、KOHやNaOHでpH調整した銅酸化物薄膜太陽電池のCuOの成膜速度よりも約1.6倍速かった。 Although the spectral sensitivity characteristics are shown in FIG. 4, only the copper oxide thin film solar cell whose pH was adjusted with LiOH exceeded 50%, and the copper oxide thin film solar cell whose pH was adjusted with LiOH was the best. Moreover, the film formation rate of Cu 2 O of the copper oxide thin film solar cell whose pH is adjusted with LiOH is about 1.6 higher than the film formation rate of Cu 2 O of the copper oxide thin film solar cell whose pH is adjusted with KOH or NaOH. It was twice as fast.

以上のように、p型半導体層18を電析によって形成する際、溶液のpHをLiOHで調整することによって、従来よりも変換効率の良い銅酸化物薄膜太陽電池10を製造することができる。   As described above, when the p-type semiconductor layer 18 is formed by electrodeposition, by adjusting the pH of the solution with LiOH, it is possible to manufacture the copper oxide thin film solar cell 10 having better conversion efficiency than conventional ones.

その他、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づき種々の改良、修正、変更を加えた態様で実施できるものである。   In addition, the present invention can be carried out in a mode in which various improvements, modifications, and changes are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention.

10:銅酸化物薄膜太陽電池
12:基板
14:第1電極
16:n型半導体層
18:p型半導体層
20:第2電極
10: Copper oxide thin film solar cell 12: Substrate 14: First electrode 16: n-type semiconductor layer 18: p-type semiconductor layer 20: second electrode

Claims (4)

基板を準備する工程と、
前記基板の一面上に第1電極を形成する工程と、
前記第1電極の上にn型半導体層を形成する工程と、
前記n型半導体層の上にp型半導体層を形成する工程と、
前記p型半導体層の上に第2電極を形成する工程と、
を含む銅酸化物薄膜太陽電池の製造方法であって、
前記p型半導体層を形成する工程が、
水溶性銅塩を含むアルカリ性水溶液に対し、水酸化リチウムを用いてpHを調整する工程と、
前記pHを調整されたアルカリ性水溶液の中で、前記n型半導体層の上に電析によってp型半導体層を形成する工程と、
を含む銅酸化物薄膜太陽電池の製造方法。
Preparing a substrate;
Forming a first electrode on one surface of the substrate;
Forming an n-type semiconductor layer on the first electrode;
Forming a p-type semiconductor layer on the n-type semiconductor layer;
Forming a second electrode on the p-type semiconductor layer;
A method for producing a copper oxide thin film solar cell comprising:
Forming the p-type semiconductor layer comprises:
For an alkaline aqueous solution containing a water-soluble copper salt, adjusting the pH using lithium hydroxide,
Forming a p-type semiconductor layer by electrodeposition on the n-type semiconductor layer in an alkaline aqueous solution adjusted in pH;
The manufacturing method of the copper oxide thin film solar cell containing this.
前記pHを調整する工程によって、アルカリ性水溶液のpHを10〜14にする請求項1の銅酸化物薄膜太陽電池の製造方法。 The manufacturing method of the copper oxide thin film solar cell of Claim 1 which makes pH of alkaline aqueous solution 10-14 by the process of adjusting the said pH. 前記p型半導体層を形成する工程によって、CuO層を形成する請求項1または2の銅酸化物薄膜太陽電池の製造方法。 Wherein the step of forming a p-type semiconductor layer, the manufacturing method of the copper oxide thin film solar cell according to claim 1 or 2 to form a Cu 2 O layer. 前記n型半導体層を形成する工程は、電析によってZnO層を形成する請求項1から3のいずれかの薄膜太陽電池の製造方法。 The method for producing a thin-film solar cell according to claim 1, wherein the step of forming the n-type semiconductor layer forms a ZnO layer by electrodeposition.
JP2013057569A 2013-03-21 2013-03-21 Method for producing copper oxide thin film solar cell Expired - Fee Related JP6108346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013057569A JP6108346B2 (en) 2013-03-21 2013-03-21 Method for producing copper oxide thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013057569A JP6108346B2 (en) 2013-03-21 2013-03-21 Method for producing copper oxide thin film solar cell

Publications (2)

Publication Number Publication Date
JP2014183244A true JP2014183244A (en) 2014-09-29
JP6108346B2 JP6108346B2 (en) 2017-04-05

Family

ID=51701649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013057569A Expired - Fee Related JP6108346B2 (en) 2013-03-21 2013-03-21 Method for producing copper oxide thin film solar cell

Country Status (1)

Country Link
JP (1) JP6108346B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993004A (en) * 2015-06-02 2015-10-21 浙江大学 Cuprous oxide based heterojunction solar cell and preparation method thereof
JP2018046196A (en) * 2016-09-15 2018-03-22 学校法人金沢工業大学 Photoelectric conversion device and manufacturing method of photoelectric conversion device
WO2019146120A1 (en) * 2018-01-29 2019-08-01 株式会社 東芝 Solar cell, multijunction solar cell, solar cell module, and photovoltaic power generation system
WO2019146119A1 (en) * 2018-01-29 2019-08-01 株式会社 東芝 Solar cell, multi-junction solar cell, solar cell module and solar power system
JP2020053669A (en) * 2018-09-19 2020-04-02 株式会社東芝 Solar cell, multi-junction type solar cell, solar cell module and photovoltaic power generation system
WO2020204019A1 (en) * 2019-04-03 2020-10-08 株式会社タムラ製作所 Schottky diode
JP2021082847A (en) * 2016-09-23 2021-05-27 株式会社東芝 Solar cell module and solar power generation system
JP2021132233A (en) * 2016-09-21 2021-09-09 株式会社東芝 Solar cell module and solar power generation system
JP7052114B1 (en) 2021-03-24 2022-04-11 株式会社東芝 Manufacturing method of laminated thin film for solar cells and manufacturing method of solar cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308620A (en) * 2001-04-05 2002-10-23 Titan Kogyo Kk Method for producing copper suboxide
JP2003258278A (en) * 2002-03-04 2003-09-12 Canon Inc Photoelectric conversion device and manufacturing method thereof
US20060130890A1 (en) * 2004-12-20 2006-06-22 Palo Alto Research Center Incorporated. Heterojunction photovoltaic cell
JP2007019460A (en) * 2005-06-08 2007-01-25 Masanobu Isaki Oxide thin film solar cell
US20100278720A1 (en) * 2009-05-04 2010-11-04 Wong Stanislaus S Methods of Making Binary Metal Oxide Nanostructures and Methods of Controlling Morphology of Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308620A (en) * 2001-04-05 2002-10-23 Titan Kogyo Kk Method for producing copper suboxide
JP2003258278A (en) * 2002-03-04 2003-09-12 Canon Inc Photoelectric conversion device and manufacturing method thereof
US20060130890A1 (en) * 2004-12-20 2006-06-22 Palo Alto Research Center Incorporated. Heterojunction photovoltaic cell
JP2007019460A (en) * 2005-06-08 2007-01-25 Masanobu Isaki Oxide thin film solar cell
US20100278720A1 (en) * 2009-05-04 2010-11-04 Wong Stanislaus S Methods of Making Binary Metal Oxide Nanostructures and Methods of Controlling Morphology of Same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993004A (en) * 2015-06-02 2015-10-21 浙江大学 Cuprous oxide based heterojunction solar cell and preparation method thereof
JP2018046196A (en) * 2016-09-15 2018-03-22 学校法人金沢工業大学 Photoelectric conversion device and manufacturing method of photoelectric conversion device
JP2021132233A (en) * 2016-09-21 2021-09-09 株式会社東芝 Solar cell module and solar power generation system
JP2021082847A (en) * 2016-09-23 2021-05-27 株式会社東芝 Solar cell module and solar power generation system
US11557688B2 (en) 2018-01-29 2023-01-17 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
WO2019146120A1 (en) * 2018-01-29 2019-08-01 株式会社 東芝 Solar cell, multijunction solar cell, solar cell module, and photovoltaic power generation system
WO2019146119A1 (en) * 2018-01-29 2019-08-01 株式会社 東芝 Solar cell, multi-junction solar cell, solar cell module and solar power system
JPWO2019146120A1 (en) * 2018-01-29 2020-02-06 株式会社東芝 Solar cell, multi-junction solar cell, solar cell module and solar power generation system
JPWO2019146119A1 (en) * 2018-01-29 2020-02-06 株式会社東芝 Solar cell, multi-junction solar cell, solar cell module and solar power generation system
US11563132B2 (en) 2018-01-29 2023-01-24 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and photovoltaic system
JP2020053669A (en) * 2018-09-19 2020-04-02 株式会社東芝 Solar cell, multi-junction type solar cell, solar cell module and photovoltaic power generation system
JP7273537B2 (en) 2018-09-19 2023-05-15 株式会社東芝 Solar cells, multi-junction solar cells, solar cell modules and photovoltaic power generation systems
JP2020170787A (en) * 2019-04-03 2020-10-15 株式会社タムラ製作所 Schottky diode
WO2020204019A1 (en) * 2019-04-03 2020-10-08 株式会社タムラ製作所 Schottky diode
JP7385857B2 (en) 2019-04-03 2023-11-24 株式会社タムラ製作所 schottky diode
JP2022148125A (en) * 2021-03-24 2022-10-06 株式会社東芝 Manufacturing method of laminated thin film for solar cell and manufacturing method of solar cell
JP7052114B1 (en) 2021-03-24 2022-04-11 株式会社東芝 Manufacturing method of laminated thin film for solar cells and manufacturing method of solar cells

Also Published As

Publication number Publication date
JP6108346B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP6108346B2 (en) Method for producing copper oxide thin film solar cell
US9564593B2 (en) Solar cells comprising 2d-perovskites
JP5928612B2 (en) Compound semiconductor solar cell
JP2010087105A (en) Solar battery
CN102214734A (en) Method for manufacturing zinc oxide/cuprous oxide thin film solar cell
Georgieva et al. Low cost solar cells based on cuprous oxide
JP5278418B2 (en) P-type semiconductor and photoelectric device
KR101848853B1 (en) Semi-transparent CIGS solar cells and method of manufacture the same and BIPV module comprising the same
JP5641981B2 (en) Photoelectric conversion element that can be manufactured by a method suitable for mass production
WO2012172999A1 (en) Czts thin film solar cell and manufacturing method thereof
KR101036165B1 (en) Method for fabricating chalcogenide solar cell
JP5583060B2 (en) Zinc-containing photoelectric conversion element that can be manufactured by a method suitable for mass production
JP2014022569A (en) Photoelectric conversion element and manufacturing method therefor
US9287421B2 (en) Solar cell module and method of fabricating the same
US20170373213A1 (en) Photovoltaic devices with improved n-type partner and methods for making the same
RU204768U1 (en) Multilayer solar cell based on metal oxides Cu2O, ZnO
JP5964683B2 (en) Method for manufacturing photoelectric conversion device
KR101481912B1 (en) Solar cell and manufacturing method thereof
Ge et al. Co-electroplated kesterite bifacial thin film solar cells
JP5842991B2 (en) Compound semiconductor solar cell
KR20180085162A (en) CIGS thin solar cell and the fabricating method thereof
US20160163887A1 (en) Silicon substrate for solar cell and manufacturing method therefor
KR20130072624A (en) Composition for buffer layer of solar cell and solar cell prepared using the same
JP2021180277A (en) Perovskite solar cell and manufacturing method of the solar cell
JP5944261B2 (en) Method for manufacturing photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170228

R150 Certificate of patent or registration of utility model

Ref document number: 6108346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees