JP6762009B2 - Body fluid viscosity measuring device - Google Patents

Body fluid viscosity measuring device Download PDF

Info

Publication number
JP6762009B2
JP6762009B2 JP2016159498A JP2016159498A JP6762009B2 JP 6762009 B2 JP6762009 B2 JP 6762009B2 JP 2016159498 A JP2016159498 A JP 2016159498A JP 2016159498 A JP2016159498 A JP 2016159498A JP 6762009 B2 JP6762009 B2 JP 6762009B2
Authority
JP
Japan
Prior art keywords
body fluid
viscosity
flow path
measuring device
conductive portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016159498A
Other languages
Japanese (ja)
Other versions
JP2018028451A (en
Inventor
憲児 坂本
憲児 坂本
孝一朗 小林
孝一朗 小林
宏毅 大野
宏毅 大野
教孝 徳井
教孝 徳井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
University of Occupational and Environmental Health Japan
Original Assignee
Kyushu Institute of Technology NUC
University of Occupational and Environmental Health Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, University of Occupational and Environmental Health Japan filed Critical Kyushu Institute of Technology NUC
Priority to JP2016159498A priority Critical patent/JP6762009B2/en
Publication of JP2018028451A publication Critical patent/JP2018028451A/en
Application granted granted Critical
Publication of JP6762009B2 publication Critical patent/JP6762009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、体液の粘性を計測する体液粘性測定装置に関する。 The present invention relates to a body fluid viscosity measuring device for measuring the viscosity of a body fluid.

体液の粘性を計測することは、健康状態を知る上で有効である。例えば、人の場合、脱水状態になっていたり、心筋梗塞や脳梗塞等を患っていたりすると、血液の粘性が上昇することが確認されている。また、血液粘度が上昇すると糖尿病発症のリスクが大きくなることが知られている。
体液の粘性の計測には様々な方法があり、その具体例が例えば特許文献1に記載されている。特許文献1には、基準粘度を有する基準流体と粘度を測定しようとする測定対象流体とを管の両側からそれぞれ注入し、管に一定間隔で連結された複数のカウンティングチャンネルのうち、測定対象流体が流れ込んだ数によって、測定対象流体の粘性を計測する方法が開示されている。
Measuring the viscosity of body fluids is effective in knowing the state of health. For example, in the case of humans, it has been confirmed that the viscosity of blood increases when dehydrated or suffering from myocardial infarction or cerebral infarction. It is also known that the risk of developing diabetes increases as the blood viscosity increases.
There are various methods for measuring the viscosity of body fluids, and specific examples thereof are described in, for example, Patent Document 1. In Patent Document 1, a reference fluid having a reference viscosity and a measurement target fluid for which the viscosity is to be measured are injected from both sides of the pipe, and among a plurality of counting channels connected to the pipe at regular intervals, the measurement target fluid A method of measuring the viscosity of the fluid to be measured by the number of flowing fluids is disclosed.

特表2013−520676号公報Japanese Patent Application Laid-Open No. 2013-520676

しかしながら、特許文献1に記載の方法では、計測精度がカウンティングチャンネルの配置ピッチに依存するという課題があった。
本発明は、かかる事情に鑑みてなされるもので、計測精度が構造に依存するのを抑制した上で体液の粘性を計測可能な体液粘性測定装置を提供することを目的とする。
However, the method described in Patent Document 1 has a problem that the measurement accuracy depends on the arrangement pitch of the counting channel.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a body fluid viscosity measuring device capable of measuring the viscosity of a body fluid while suppressing the measurement accuracy from depending on the structure.

前記目的に沿う本発明に係る体液粘性測定装置は、流路を流れる体液の粘性を計測する体液粘性測定装置であって、前記流路に設けられ、外部の電源に接続される第1の導電部と、前記流路に設けられ、該流路内の前記体液を介して前記第1の導電部に電気的に接続される第2の導電部と、前記第2の導電部に接続された出力端子から出力される電気信号が所定の時間長当たりに予め定められた値以上上昇するタイミングの間隔から前記体液の粘性を算出する演算手段とを備え、前記第1、第2の導電部は、合わせて少なくとも3つあって、それぞれ前記体液の流れに沿って前記流路の異なる位置に配されている。 The body fluid viscosity measuring device according to the present invention according to the above object is a body fluid viscosity measuring device for measuring the viscosity of a body fluid flowing through a flow path, and is a first conductive device provided in the flow path and connected to an external power source. A second conductive portion provided in the flow path and electrically connected to the first conductive portion via the body fluid in the flow path, and a second conductive portion connected to the second conductive portion. The first and second conductive portions include a calculation means for calculating the viscosity of the body fluid from a timing interval at which an electric signal output from the output terminal rises by a predetermined value or more per predetermined time length. , At least three in total, each of which is arranged at a different position in the flow path along the flow of the body fluid.

本発明に係る体液粘性測定装置において、前記演算手段は、更に前記出力端子から出力される電気信号の大きさから前記体液の電気伝導性及び粘性を算出するのが好ましい。 In the body fluid viscosity measuring device according to the present invention, it is preferable that the calculation means further calculates the electrical conductivity and viscosity of the body fluid from the magnitude of the electric signal output from the output terminal.

本発明に係る体液粘性測定装置において、前記第1、第2の導電部は、前記体液の流れに沿って交互に配置されているのが好ましい。 In the body fluid viscosity measuring device according to the present invention, it is preferable that the first and second conductive portions are alternately arranged along the flow of the body fluid.

本発明に係る体液粘性測定装置において、前記第1、第2の導電部の配置ピッチは一定であるのが好ましい。 In the body fluid viscosity measuring apparatus according to the present invention, it is preferable that the arrangement pitch of the first and second conductive portions is constant.

本発明に係る体液粘性測定装置において、前記流路の幅は、前記体液が毛細管現象によって流れる大きさであるのが好ましい。 In the body fluid viscosity measuring device according to the present invention, the width of the flow path is preferably the size at which the body fluid flows due to the capillary phenomenon.

本発明に係る体液粘性測定装置において、前記第2の導電部は複数あって、該複数の第2の導電部は一つの前記出力端子に接続されるのが好ましい。 In the body fluid viscosity measuring device according to the present invention, it is preferable that there are a plurality of the second conductive portions, and the plurality of second conductive portions are connected to one output terminal.

本発明に係る体液粘性測定装置において、前記第2の導電部は複数あって、該複数の第2の導電部はその電気的状態がそれぞれ独立に監視され、各該第2の導電部に前記体液が接触した瞬間の時刻が記録されるのが好ましい。 In the body fluid viscosity measuring device according to the present invention, there are a plurality of the second conductive portions, and the electrical states of the plurality of second conductive portions are independently monitored, and each of the second conductive portions has the said. It is preferable that the time at the moment of contact with the body fluid is recorded.

本発明に係る体液粘性測定装置において、前記流路の前記第1、第2の導電部の配置領域の下流側で、前記体液に試薬液を合流させて、該体液及び該試薬液の混合液の粘性を所定の値に調整する液供給機構と、前記混合液の電気伝導率及び電解質濃度を計測する濃度導出手段とを更に備えるのが好ましい。 In the body fluid viscosity measuring apparatus according to the present invention, the reagent solution is merged with the body fluid on the downstream side of the arrangement region of the first and second conductive portions of the flow path, and the body fluid and the reagent solution are mixed. It is preferable to further provide a liquid supply mechanism for adjusting the viscosity of the mixture to a predetermined value, and a concentration deriving means for measuring the electric conductivity and the electrolyte concentration of the mixed liquid.

本発明に係る体液粘性測定装置において、前記演算手段は、前記濃度導出手段が計測した前記混合液の電解質濃度を用いて前記体液の粘性を算出するのが好ましい。 In the body fluid viscosity measuring device according to the present invention, it is preferable that the calculation means calculates the viscosity of the body fluid by using the electrolyte concentration of the mixed solution measured by the concentration deriving means.

本発明に係る体液粘性測定装置において、それぞれ、前記流路、合わせて少なくとも3つの前記第1、第2の導電部及び前記出力端子を有する電極ユニットP、Qが設けられ、該電極ユニットPの該流路の出側は、該電極ユニットQの該流路の入り側に、前記体液から特定の物質を取り除くトラップを介して接続され、前記演算手段は、前記電極ユニットP、Qを流れる前記体液の粘性をそれぞれ算出してもよい。 In the body fluid viscosity measuring device according to the present invention, electrode units P and Q having the flow path, at least three of the first and second conductive portions and the output terminal, respectively, are provided, and the electrode unit P is provided. The exit side of the flow path is connected to the entry side of the flow path of the electrode unit Q via a trap that removes a specific substance from the body fluid, and the calculation means flows through the electrode units P and Q. The viscosity of each body fluid may be calculated.

本発明に係る体液粘性測定装置において、前記流路及び合わせて少なくとも3つの前記第1、第2の導電部を有するチップと、前記チップが装着される被装着体とが設けられ、前記被装着体には、装着された前記チップの前記第1の導電部を前記電源に接続する第1の回路と、装着された該チップの前記第2の導電部を前記出力端子に接続する第2の回路とが設けられていてもよい。 In the body fluid viscosity measuring device according to the present invention, a chip having the flow path and at least three of the first and second conductive portions in total, and a mounted body to which the chip is mounted are provided, and the mounted body is provided. The body has a first circuit for connecting the first conductive portion of the mounted chip to the power supply, and a second circuit for connecting the second conductive portion of the mounted chip to the output terminal. A circuit may be provided.

本発明に係る体液粘性測定装置において、前記流路、合わせて少なくとも3つの前記第1、第2の導電部及び前記出力端子を有する電極ユニットRと、前記電極ユニットRと同じ構造の電極ユニットSとが設けられ、前記演算手段は、粘性が判明している標準サンプル液を前記電極ユニットSの流路に流して算出した前記標準サンプル液の粘性を基に、前記体液を前記電極ユニットRの前記流路に流して算出した前記体液の粘性を補正してもよい。 In the body fluid viscosity measuring device according to the present invention, the electrode unit R having the first and second conductive portions and the output terminal having at least three in total, and the electrode unit S having the same structure as the electrode unit R. Based on the viscosity of the standard sample solution calculated by flowing a standard sample solution whose viscosity is known to flow through the flow path of the electrode unit S, the calculation means applies the body fluid to the electrode unit R. The viscosity of the body fluid calculated by flowing through the flow path may be corrected.

本発明に係る体液粘性測定装置において、前記流路、合わせて少なくとも3つの前記第1、第2の導電部及び前記出力端子を有する電極ユニットR’と、前記電極ユニットR’と同じ構造の電極ユニットS’と、前記電極ユニットS’の流路に、前記体液の粘性を変化させる粘性調整液を供給する液供給手段とが設けられ、前記演算手段は、前記電極ユニットR’の流路を流れる前記体液の粘性及び前記電極ユニットS’の流路を流れる前記粘性調整液及び前記体液の混合液の粘性をそれぞれ算出するようにしてもよい。 In the body fluid viscosity measuring device according to the present invention, the electrode unit R'having the flow path, the first and second conductive portions and the output terminal in total, and an electrode having the same structure as the electrode unit R' A liquid supply means for supplying a viscosity adjusting liquid for changing the viscosity of the body liquid is provided in the flow path of the unit S'and the electrode unit S', and the calculation means passes through the flow path of the electrode unit R'. The viscosity of the flowing body liquid and the viscosity of the viscosity adjusting liquid flowing through the flow path of the electrode unit S'and the viscosity of the mixed liquid of the body liquid may be calculated respectively.

本発明に係る体液粘性測定装置は、流路に設けられた第1の導電部と、流路に設けられ、流路内の体液を介して第1の導電部に電気的に接続される第2の導電部と、第2の導電部に接続された出力端子から出力される電気信号が所定の時間長当たりに予め定められた値以上上昇するタイミングの間隔から体液の粘性を算出する演算手段とを備え、第1、第2の導電部が、合わせて少なくとも3つあって、それぞれ体液の流れに沿って流路の異なる位置で体液に接触するので、計測精度が構造に依存するのを抑制して、粘性を計測することが可能である。 The body fluid viscosity measuring device according to the present invention has a first conductive portion provided in the flow path and a first conductive portion provided in the flow path and electrically connected to the first conductive portion via the body fluid in the flow path. A calculation means for calculating the viscosity of body fluid from the interval at which the electrical signal output from the second conductive portion and the output terminal connected to the second conductive portion rises by a predetermined value or more per predetermined time length. There are at least three first and second conductive parts in total, and each of them comes into contact with the body fluid at different positions in the flow path along the flow of the body fluid, so that the measurement accuracy depends on the structure. It is possible to suppress and measure the viscosity.

本発明の一実施の形態に係る体液粘性測定装置の説明図である。It is explanatory drawing of the body fluid viscosity measuring apparatus which concerns on one Embodiment of this invention. 同体液粘性測定装置の電極ユニットの説明図である。It is explanatory drawing of the electrode unit of the body fluid viscosity measuring apparatus. (A)、(B)、(C)はそれぞれ、同体液粘性測定装置のチップの部分断面図及び第1、第2の変形例に係るチップの部分断面図である。(A), (B), and (C) are a partial cross-sectional view of the chip of the body fluid viscosity measuring device and a partial cross-sectional view of the chip according to the first and second modifications, respectively. 複数の電極ユニットとトラップの接続を示す説明図である。It is explanatory drawing which shows the connection of a plurality of electrode units and a trap. 複数の電極ユニットと液供給機構の接続を示す説明図である。It is explanatory drawing which shows the connection of a plurality of electrode units and a liquid supply mechanism. 試薬液を体液に合流させる電極ユニットの構成を示す説明図である。It is explanatory drawing which shows the structure of the electrode unit which merges a reagent solution with a body fluid. 標準サンプル液を利用して電気伝導率及び粘性を補正するために使用される電極ユニットR、Sを示す説明図である。It is explanatory drawing which shows the electrode unit R, S used for correcting the electric conductivity and viscosity using a standard sample liquid. 体液の粘性及び粘性調整液と体液の混合液の粘性を計測するために用いられる電極ユニットR’、S’を示す説明図である。It is explanatory drawing which shows the electrode unit R', S'used for measuring the viscosity of a body fluid and the viscosity of a mixture liquid of a viscosity adjusting liquid and a body fluid. 時間の経過による出力電流値の変化を示すグラフである。It is a graph which shows the change of the output current value with the passage of time. 図9のグラフの一部を拡大したグラフである。It is a graph which enlarged a part of the graph of FIG. 第2の導電部にシングルチップマイコンを接続する例を示す説明図である。It is explanatory drawing which shows the example of connecting the single chip microcomputer to the 2nd conductive part. シングルチップマイコンで生成されるデジタル信号の変化を示す説明図である。It is explanatory drawing which shows the change of the digital signal generated by a single chip microcomputer.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1、図2、図3(A)に示すように、本発明の一実施の形態に係る体液粘性測定装置10は、流路11を流れる体液Fの粘性を計測する装置であって、流路11に設けられ、外部の交流電源(外部の電源の一例)Vに入力端子40を介して接続される第1の導電部12、13、14、流路11に設けられた第2の導電部15、16、17、18、及び、第2の導電部15、16、17、18に接続された出力端子19から出力されている電気信号が単位時間当たりに予め定められた値以上上昇するタイミングの間隔から、体液Fの粘性を算出する演算手段44を有している。以下、詳細に説明する。
Subsequently, an embodiment embodying the present invention will be described with reference to the attached drawings, and the present invention will be understood.
As shown in FIGS. 1, 2, and 3 (A), the body fluid viscosity measuring device 10 according to the embodiment of the present invention is a device for measuring the viscosity of the body fluid F flowing through the flow path 11, and is a flow device. The first conductive portions 12, 13, 14 provided on the road 11 and connected to the external AC power source (an example of the external power source) V via the input terminal 40, and the second conductive portion provided in the flow path 11. The electric signal output from the output terminals 19 connected to the parts 15, 16, 17, 18 and the second conductive parts 15, 16, 17, 18 rises by a predetermined value or more per unit time. It has a calculation means 44 for calculating the viscosity of the body fluid F from the timing interval. The details will be described below.

粘性の計測対象である体液Fは、電解質溶液であり、例えば、人の血液、髄液、汗、唾液、涙である。
体液粘性測定装置10は、図1、図2に示すように、交流電源Vにスイッチ20を介して接続される電極ユニット21を備えている。電極ユニット21は、図1、図2、図3(A)に示すように、流路11が設けられ、第1の導電部12、13、14及び第2の導電部15、16、17、18を具備するチップ22と、チップ22が装着される被装着体23を有している。
The body fluid F whose viscosity is to be measured is an electrolyte solution, for example, human blood, cerebrospinal fluid, sweat, saliva, and tears.
As shown in FIGS. 1 and 2, the body fluid viscosity measuring device 10 includes an electrode unit 21 connected to the AC power supply V via a switch 20. As shown in FIGS. 1, 2, and 3 (A), the electrode unit 21 is provided with a flow path 11, and the first conductive portions 12, 13, 14 and the second conductive portions 15, 16, 17, It has a chip 22 including 18, and an attached body 23 on which the chip 22 is mounted.

チップ22は、図2、図3(A)に示すように、前後に長い矩形状の板材24及び上側に板材24が固定された前後に長い板状のベース部材25を備えている。
板材24には、底面側に板材24の長手方向に沿って凹部26が形成され、板材24の上面から凹部26の一側にかけて形成された開口部27及び板材24の上面から凹部26の他側にかけて形成された開口部28が設けられている。本実施の形態では、開口部27が体液Fの導入口、開口部28が体液Fの排出口であるが、開口部28を体液Fの導入口、開口部27を体液Fの排出口として利用してもよい。
As shown in FIGS. 2 and 3A, the chip 22 includes a front and rear long rectangular plate member 24 and a front and rear long plate-shaped base member 25 to which the plate member 24 is fixed on the upper side.
In the plate material 24, a recess 26 is formed on the bottom surface side along the longitudinal direction of the plate material 24, and the opening 27 formed from the upper surface of the plate material 24 to one side of the recess 26 and the other side of the recess 26 from the upper surface of the plate material 24. An opening 28 formed over the surface is provided. In the present embodiment, the opening 27 is the introduction port for the body fluid F and the opening 28 is the discharge port for the body fluid F. However, the opening 28 is used as the introduction port for the body fluid F and the opening 27 is used as the discharge port for the body fluid F. You may.

チップ22の流路11は、板材24の底面をベース部材25の上面に接触させて固定することで板材24の凹部26の開口がベース部材25の上面で塞がれて形成されている。流路11は親水性を有し、流路11の幅は、体液Fが毛細管現象によって流路11内を移動できる大きさであり、例えば、10μm〜500μmの範囲である。そのため、開口部27から体液Fが導入されると、体液Fが毛細管現象によって流路11内を開口部27側(一側)から開口部28側(他側)に進行し、流路11内には一側から他側に向かって流れが生じる。 The flow path 11 of the chip 22 is formed by contacting the bottom surface of the plate member 24 with the upper surface of the base member 25 and fixing the flow path 11 so that the opening of the recess 26 of the plate member 24 is closed by the upper surface of the base member 25. The flow path 11 is hydrophilic, and the width of the flow path 11 is such that the body fluid F can move in the flow path 11 due to the capillary phenomenon, for example, in the range of 10 μm to 500 μm. Therefore, when the body fluid F is introduced from the opening 27, the body fluid F advances in the flow path 11 from the opening 27 side (one side) to the opening 28 side (the other side) due to the capillary phenomenon, and enters the flow path 11. Flow occurs from one side to the other.

本実施の形態では、シルウェット(Silwet)を含有したPDMS(ジメチルポリシロキサン)によって板材24を形成し、流路11の親水性を確保しているが、親水性処理は、これに限定されるものではない。 In the present embodiment, the plate material 24 is formed of PDMS (dimethylpolysiloxane) containing Siluet to ensure the hydrophilicity of the flow path 11, but the hydrophilic treatment is limited to this. It's not a thing.

ベース部材25の上面には、第1の導電部12、13、14をそれぞれ有する導線32、33、34及び第2の導電部15、16、17、18をそれぞれ有する導線35、36、37、38が設けられている。なお、本実施の形態では、ベース部材25がガラスによって形成されているが、これに限定されない。 On the upper surface of the base member 25, the conductors 32, 33, 34 having the first conductive portions 12, 13 and 14, respectively, and the conductors 35, 36, 37 having the second conductive portions 15, 16, 17, 18 respectively. 38 is provided. In the present embodiment, the base member 25 is made of glass, but the present invention is not limited to this.

そして、導線35(導線32〜34、36〜38についても同じ)は、図2、図3(A)に示すように、第2の導電部15(導線32〜34、36〜38については、それぞれ第1の導電部12〜14及び第2の導電部16〜18)が流路11内に配されていればよく、本実施の形態のように、ベース部材25の左端から右端に渡って、導線35全体が、ベース部材25の上面に密着している必要はない。
例えば、図3(B)に示すように、第2の導電部15を流路11の上側に固定して、ベース部材25から離れるように導線35を配線してもよいし、図3(C)に示すように、一端が流路11内に配されるように導線35を配線してもよい。これらは、導線32〜34、36〜38についても同じである。
Then, as shown in FIGS. 2 and 3 (A), the conductor 35 (the same applies to the conductors 32 to 34 and 36 to 38) has a second conductive portion 15 (the conductors 32 to 34 and 36 to 38). The first conductive portions 12 to 14 and the second conductive portions 16 to 18) need only be arranged in the flow path 11, respectively, and as in the present embodiment, from the left end to the right end of the base member 25. The entire conductor 35 does not have to be in close contact with the upper surface of the base member 25.
For example, as shown in FIG. 3 (B), the second conductive portion 15 may be fixed to the upper side of the flow path 11 and the conducting wire 35 may be wired so as to be separated from the base member 25, or FIG. 3 (C). ), The conductor 35 may be wired so that one end is arranged in the flow path 11. These are the same for the conductors 32 to 34 and 36 to 38.

流路11においては、図1、図2に示すように、体液Fの流れに沿って、第2の導電部15、第1の導電部12、第2の導電部16、第1の導電部13、第2の導電部17、第1の導電部14及び第2の導電部18が順に並べられている(即ち、第1の導電部及び第2の導電部は体液の流れに沿って交互に配置されている)。
従って、開口部27に導入された体液Fは、流路11内を進みながら、第2の導電部15、第1の導電部12、第2の導電部16、第1の導電部13、第2の導電部17、第1の導電部14及び第2の導電部18に順に接触し、第1の導電部12、13、14及び第2の導電部15、16、17、18は、体液Fの流れに沿って流路11の異なる位置で体液Fに接触する。
In the flow path 11, as shown in FIGS. 1 and 2, the second conductive portion 15, the first conductive portion 12, the second conductive portion 16, and the first conductive portion are along the flow of the body fluid F. 13, the second conductive portion 17, the first conductive portion 14, and the second conductive portion 18 are arranged in order (that is, the first conductive portion and the second conductive portion are alternately arranged along the flow of the body fluid. Is located in).
Therefore, the body fluid F introduced into the opening 27 travels through the flow path 11, the second conductive portion 15, the first conductive portion 12, the second conductive portion 16, the first conductive portion 13, and the first conductive portion 13. The conductive portion 17, the first conductive portion 14, and the second conductive portion 18 are contacted in this order, and the first conductive portions 12, 13, 14 and the second conductive portions 15, 16, 17, and 18 are body fluids. It comes into contact with the body fluid F at different positions in the flow path 11 along the flow of F.

また、第2の導電部15、第1の導電部12、第2の導電部16、第1の導電部13、第2の導電部17、第1の導電部14及び第2の導電部18の配置ピッチは一定である。よって、開口部27から導入された体液Fは、一定(実質的に一定)の時間間隔で、第2の導電部15、第1の導電部12、第2の導電部16、第1の導電部13、第2の導電部17、第1の導電部14及び第2の導電部18に順に到達する。 Further, the second conductive portion 15, the first conductive portion 12, the second conductive portion 16, the first conductive portion 13, the second conductive portion 17, the first conductive portion 14, and the second conductive portion 18 The arrangement pitch of is constant. Therefore, the body fluid F introduced from the opening 27 has a second conductive portion 15, a first conductive portion 12, a second conductive portion 16, and a first conductive portion at regular (substantially constant) time intervals. It reaches the portion 13, the second conductive portion 17, the first conductive portion 14, and the second conductive portion 18 in this order.

体液Fは電気伝導性を有するため、開口部27から導入された体液Fが第2の導電部15を通過して第1の導電部12まで達し、流路11の開口部27から第1の導電部12までの領域全体に体液Fが存在する状態になった際、第2の導電部15は、流路11内の体液Fを介して、第1の導電部12に電気的に接続される。その後、体液Fが第2の導電部16まで達した際には、第2の導電部16が、体液Fを介して、第1の導電部12及び第2の導電部15に電気的に接続される。そして、体液Fが第2の導電部18まで達した際には、全ての第1の導電部12、13、14及び第2の導電部15、16、17、18が、体液Fを介して電気的に接続される。 Since the body fluid F has electrical conductivity, the body fluid F introduced from the opening 27 passes through the second conductive portion 15 and reaches the first conductive portion 12, and the opening 27 to the first of the flow path 11 When the body fluid F is present in the entire region up to the conductive portion 12, the second conductive portion 15 is electrically connected to the first conductive portion 12 via the body fluid F in the flow path 11. To. After that, when the body fluid F reaches the second conductive portion 16, the second conductive portion 16 is electrically connected to the first conductive portion 12 and the second conductive portion 15 via the body fluid F. Will be done. Then, when the body fluid F reaches the second conductive portion 18, all the first conductive portions 12, 13, 14 and the second conductive portions 15, 16, 17, 18 pass through the body fluid F. It is electrically connected.

被装着体23は、図1、図2に示すように、内側にチップ22が嵌め込まれる枠部39を備えている。枠部39には、交流電源Vに接続される入力端子40と、入力端子40から3つに枝分かれした導線を有する回路41(第1の回路)が、左側に設けられ、出力端子19と、出力端子19から4つに枝分かれした導線を有する回路42(第2の回路)が、右側に設けられている。
枠部39の内側にチップ22が嵌め込まれる(即ち、被装着体23に、チップ22が装着される)ことによって、チップ22は、第1の導電部12、13、14が回路41を介して入力端子40に接続され、第2の導電部15、16、17、18が回路42を介して出力端子19に接続される。
As shown in FIGS. 1 and 2, the mounted body 23 includes a frame portion 39 into which the chip 22 is fitted. The frame portion 39 is provided with an input terminal 40 connected to the AC power supply V and a circuit 41 (first circuit) having a lead wire branched into three from the input terminal 40 on the left side, and the output terminal 19 and the frame portion 39. A circuit 42 (second circuit) having a lead wire branched into four from the output terminal 19 is provided on the right side.
By fitting the chip 22 inside the frame portion 39 (that is, the chip 22 is mounted on the mounted body 23), the first conductive portions 12, 13 and 14 of the chip 22 are inserted through the circuit 41. It is connected to the input terminal 40, and the second conductive portions 15, 16, 17, and 18 are connected to the output terminal 19 via the circuit 42.

即ち、複数の第2の導電部15、16、17、18は回路42に接続され、回路42は第2の導電部15、16、17、18を一つの出力端子19に接続する。以下、特に記さない限り、チップ22は被装着体23に装着されているものとする。
出力端子19には、図1に示すように、スイッチ43を介して、演算手段44が接続されている。スイッチ43は、図1に示すように、演算手段44の接続先を、電極ユニット21の出力端子19から、較正(校正)用の基準抵抗44aに切り替えることができる。
That is, the plurality of second conductive portions 15, 16, 17, and 18 are connected to the circuit 42, and the circuit 42 connects the second conductive portions 15, 16, 17, and 18 to one output terminal 19. Hereinafter, unless otherwise specified, it is assumed that the chip 22 is mounted on the mounted body 23.
As shown in FIG. 1, a calculation means 44 is connected to the output terminal 19 via a switch 43. As shown in FIG. 1, the switch 43 can switch the connection destination of the arithmetic means 44 from the output terminal 19 of the electrode unit 21 to the reference resistor 44a for calibration (calibration).

演算手段44は、時計機能及び出力端子19から出力されている電流(電気信号の一例)の値を計測する機能を有し、計測した電流値を時刻情報に関連付けることができる。
開口部27に導入され流路11を進む体液Fの先頭部が開口部28に向かって進むのに従って、体液Fの先頭部は、第2の導電部15、第1の導電部12、第2の導電部16、第1の導電部13、第2の導電部17、第1の導電部14及び第2の導電部18を順に通過し、出力端子19から出力されている電流値(以下、単に「出力電流値」とも言う)は段階的に上昇する。出力電流値の段階的な上昇は、体液Fの先頭部が第1の導電部12に到達してから開始する。
The calculation means 44 has a clock function and a function of measuring the value of the current (an example of an electric signal) output from the output terminal 19, and can associate the measured current value with the time information.
As the head portion of the body fluid F introduced into the opening 27 and traveling through the flow path 11 advances toward the opening 28, the head portion of the body fluid F becomes the second conductive portion 15, the first conductive portion 12, and the second. The current value (hereinafter, hereinafter, the current value) that has passed through the conductive portion 16, the first conductive portion 13, the second conductive portion 17, the first conductive portion 14, and the second conductive portion 18 in this order, and is output from the output terminal 19. (Simply referred to as "output current value") gradually increases. The stepwise increase in the output current value starts after the head portion of the body fluid F reaches the first conductive portion 12.

演算手段44は、出力電流値が所定の時間長(本実施の形態では、0.5〜3秒間)当たりに予め定められた値以上上昇する時刻を検出して、出力電流値の段階的な上昇が生じたタイミングを検知できるように設計されている。演算手段44には、以下の値が予め登録されている。 The calculation means 44 detects a time when the output current value rises by a predetermined value or more per predetermined time length (0.5 to 3 seconds in the present embodiment), and gradually increases the output current value. It is designed to detect the timing of the rise. The following values are registered in advance in the calculation means 44.

登録されている値:第2の導電部15から第1の導電部12までの距離、第1の導電部12から第2の導電部16までの距離、第2の導電部16から第1の導電部13までの距離、第1の導電部13から第2の導電部17までの距離、第2の導電部17から第1の導電部14までの距離、第1の導電部14から第2の導電部18までの距離 Registered values: the distance from the second conductive portion 15 to the first conductive portion 12, the distance from the first conductive portion 12 to the second conductive portion 16, the distance from the second conductive portion 16 to the first conductive portion 16. The distance to the conductive portion 13, the distance from the first conductive portion 13 to the second conductive portion 17, the distance from the second conductive portion 17 to the first conductive portion 14, and the distance from the first conductive portion 14 to the second Distance to the conductive part 18 of

流路が毛細管である場合(つまり流路の断面が円形である場合)は、流路内を移動する流体の運動方程式は容易に解くことができ、Washburnの式として知られる周知の結果が得られる。直径Dの毛細管中を移動する、粘性率η、表面張力γの流体の場合、Washburnの式は以下の式(1)のように表される。 When the flow path is a capillary (ie, the cross section of the flow path is circular), the equation of motion of the fluid moving in the flow path can be easily solved, resulting in the well-known result known as the Washburn equation. Be done. In the case of a fluid having a viscosity η and a surface tension γ that moves in a capillary tube having a diameter D, the Washburn equation is expressed as the following equation (1).

Figure 0006762009
Figure 0006762009

ここで、Lは流体の毛細管中への侵入距離、tは流体が毛細管中に侵入を始めてからの時間、θは接触角である。 Here, L is the invasion distance of the fluid into the capillary, t is the time from when the fluid starts invading the capillary, and θ is the contact angle.

一方、本発明のように、流路の断面が円形ではなく矩形である場合は、1)流体の運動が軸対称でないことに加え、2)流体の接する4つの面の接触角がすべて同じとみなすことができない等の理由で、流体の運動を解析的に解くことは困難である。しかし、式(1)からの類推で、流体の侵入距離Lと侵入時間tの間に、以下の式(2)の関係が成り立つことが容易に推測され、これは実験的に確認することができる。 On the other hand, when the cross section of the flow path is rectangular instead of circular as in the present invention, 1) the motion of the fluid is not axisymmetric, and 2) the contact angles of the four surfaces in contact with the fluid are all the same. It is difficult to analytically solve the motion of a fluid because it cannot be regarded. However, by analogy with the equation (1), it is easily estimated that the relationship of the following equation (2) holds between the invasion distance L of the fluid and the invasion time t, which can be confirmed experimentally. it can.

Figure 0006762009
Figure 0006762009

ここで、Cは、流路の幾何学的形状(幅と高さ)及び流路内表面の性質(それぞれの面の接触角)によって決まる流路固有の定数である。定数Cの値は、粘性率η及び表面張力γの判明している体液類似の電解質溶液(基準溶液)の流動を記録することによって決定することができる。 Here, C is a constant unique to the flow path, which is determined by the geometric shape (width and height) of the flow path and the properties of the inner surface of the flow path (contact angle of each surface). The value of the constant C can be determined by recording the flow of a body fluid-like electrolyte solution (reference solution) having a known viscosity η and surface tension γ.

演算手段44は、体液Fの先頭部が第1の導電部12から第2の導電部16まで移動することによって、出力電流値の1回目の段階的な上昇タイミングと出力電流値の2回目の段階的な上昇タイミングの時間間隔を検出し、検出した時間間隔及び第1の導電部12から第2の導電部16までの距離を、上述した式のt及びLにそれぞれ代入し、体液Fの粘性を算出する。 In the calculation means 44, the head portion of the body fluid F moves from the first conductive portion 12 to the second conductive portion 16, so that the first stepwise increase timing of the output current value and the second output current value are obtained. The time interval of the stepwise ascending timing is detected, and the detected time interval and the distance from the first conductive portion 12 to the second conductive portion 16 are substituted into t and L of the above equation, respectively, to form the body fluid F. Calculate the viscosity.

演算手段44は、同様の手順で、体液Fの先頭部の第2の導電部16から第1の導電部13までの移動、体液Fの第1の導電部13から第2の導電部17までの移動、体液Fの第2の導電部17から第1の導電部14までの移動、及び、体液Fの第1の導電部14から第2の導電部18までの移動によって、それぞれ体液Fの粘性を算出する。 In the same procedure, the calculation means 44 moves the head portion of the body fluid F from the second conductive portion 16 to the first conductive portion 13, and moves the body fluid F from the first conductive portion 13 to the second conductive portion 17. By the movement of the body fluid F from the second conductive portion 17 to the first conductive portion 14, and the movement of the body fluid F from the first conductive portion 14 to the second conductive portion 18, each of the body fluid F Calculate the viscosity.

よって、演算手段44は、出力電流値が所定の時間長当たりに予め定められた値以上上昇するタイミングの間隔から体液Fの粘性を算出することとなる。「出力電流値が所定の時間長当たりに予め定められた値以上上昇するタイミング」としているのは、体液Fの先頭部が第1の導電部12、第2の導電部16、第1の導電部13、第2の導電部17、第1の導電部14又は第2の導電部18を通過していないタイミングでも、出力電流値が多少上下することがあることから、体液Fの先頭部が第1の導電部12、第2の導電部16、第1の導電部13、第2の導電部17、第1の導電部14又は第2の導電部18を通過したタイミングを確実に検出するためである。 Therefore, the calculation means 44 calculates the viscosity of the body fluid F from the interval of the timing at which the output current value rises by a predetermined value or more per predetermined time length. The "timing at which the output current value rises by a predetermined value or more per predetermined time length" is defined as the first conductive portion 12, the second conductive portion 16, and the first conductive portion at the head portion of the body fluid F. Since the output current value may fluctuate slightly even at the timing when the portion 13, the second conductive portion 17, the first conductive portion 14, or the second conductive portion 18 is not passed, the leading portion of the body fluid F is The timing of passing through the first conductive portion 12, the second conductive portion 16, the first conductive portion 13, the second conductive portion 17, the first conductive portion 14, or the second conductive portion 18 is reliably detected. Because.

本実施の形態では、開口部27から導入された体液Fが第2の導電部18まで移動する間に、体液Fの粘性を5回計測することができる。体系Fの粘性を計測するためには、少なくとも2回の出力電流値の段階的な上昇を要することから、第1、第2の導電部は、合わせて少なくとも3つあって、それぞれが流路の流れに沿って異なる位置に配されていることが必要である。 In the present embodiment, the viscosity of the body fluid F can be measured five times while the body fluid F introduced from the opening 27 moves to the second conductive portion 18. Since it is necessary to gradually increase the output current value at least twice in order to measure the viscosity of the system F, there are at least three first and second conductive portions in total, and each of them is a flow path. It is necessary that they are arranged in different positions along the flow of.

また、演算手段44は、出力電流値が段階的に上昇するタイミングの時間間隔から体液Fの粘性を算出するのに加え、出力電流値の大きさからも体液Fの粘性を算出可能である。以下、出力電流値の大きさから体液Fの粘性を算出する方法を説明する。
演算手段44は、体液Fの先頭部が、第1の導電部12、第2の導電部16、第1の導電部13、第2の導電部17、第1の導電部14及び第2の導電部18を通過するごとに変化する出力電流値の大きさから、入力端子40、出力端子19間のインピーダンス(本実施の形態では、合成抵抗値)を求める。
Further, the calculation means 44 can calculate the viscosity of the body fluid F from the magnitude of the output current value in addition to calculating the viscosity of the body fluid F from the time interval of the timing at which the output current value gradually increases. Hereinafter, a method of calculating the viscosity of the body fluid F from the magnitude of the output current value will be described.
In the calculation means 44, the head portion of the body liquid F is a first conductive portion 12, a second conductive portion 16, a first conductive portion 13, a second conductive portion 17, a first conductive portion 14, and a second conductive portion. The impedance between the input terminal 40 and the output terminal 19 (combined resistance value in the present embodiment) is obtained from the magnitude of the output current value that changes each time the conductor passes through the conductive portion 18.

そして演算手段44は、求めたインピーダンスを基にして体液Fの電気伝導率(電気伝導性)及び粘性を導出する。入力端子40、出力端子19間のインピーダンスは、体液Fの電気伝導率によって決定されること、並びに、体液Fの電気伝導率と体液Fの粘性の間に直接的な相関関係があることは周知である(電気伝導率と粘性の間に相関関係があることは、例えば、Walden則によって知られている)。 Then, the calculation means 44 derives the electric conductivity (electrical conductivity) and viscosity of the body fluid F based on the obtained impedance. It is well known that the impedance between the input terminal 40 and the output terminal 19 is determined by the electric conductivity of the body fluid F, and that there is a direct correlation between the electric conductivity of the body fluid F and the viscosity of the body fluid F. (It is known, for example, by Walden's law) that there is a correlation between electrical conductivity and viscosity).

よって、演算手段44は、入力端子40、出力端子19間のインピーダンスから体液Fの電気伝導率及び粘性を求めることが可能である。なお、入力端子40、出力端子19間のインピーダンスは、出力電流値が段階的に大きくなるのに応じて段階的に小さくなる。
演算手段44による体液Fの粘性の導出には、出力電流値が段階的に上昇するタイミングからなされるもの(流体力学的観点による計測)と、出力電流値の大きさからなされるもの(電気伝導率を基にした計測)があり、状況に応じて、正確な値を選択可能である。
例えば、血液の凝固を抑制する抗凝固剤を血液に混合した場合には、電気伝導率に影響が出るため、流体力学的観点による計測値を選択することが考えられる。
Therefore, the calculation means 44 can obtain the electric conductivity and viscosity of the body fluid F from the impedance between the input terminal 40 and the output terminal 19. The impedance between the input terminal 40 and the output terminal 19 gradually decreases as the output current value increases stepwise.
Derivation of the viscosity of body fluid F by the calculation means 44 is performed from the timing at which the output current value gradually increases (measurement from a hydrodynamic point of view) and from the magnitude of the output current value (electrical conductivity). There is a rate-based measurement), and an accurate value can be selected according to the situation.
For example, when an anticoagulant that suppresses blood coagulation is mixed with blood, the electrical conductivity is affected, so it is conceivable to select a measured value from a hydrodynamic point of view.

ここで、演算手段44は、出力電流値が段階的に上昇するたびに、流体力学的観点による体液Fの算出と、電気伝導率を基にした粘性の算出を行う。よって、所定量(第1の導電部12、13、14及び第2の導電部15、16、17、18の全てが流路11内の体液Fで電気的に接続される量)の体液Fを開口部27から導入することによって、演算手段44は、体液Fについて、流体力学的観点並びに電気伝導的観点の2種類の測定方法で粘性をそれぞれ複数回算出可能である。 Here, the calculation means 44 calculates the body fluid F from the hydrodynamic point of view and calculates the viscosity based on the electric conductivity each time the output current value increases stepwise. Therefore, a predetermined amount of body fluid F (the amount in which all of the first conductive portions 12, 13, 14 and the second conductive portions 15, 16, 17, 18 are electrically connected by the body fluid F in the flow path 11) By introducing the body fluid F from the opening 27, the calculation means 44 can calculate the viscosity of the body fluid F a plurality of times, respectively, by two kinds of measurement methods from the hydrodynamic viewpoint and the electrical conduction viewpoint.

そして、演算手段44は、異なる測定方法で算出した複数の粘性値(本実施の形態では粘性係数)を基に、体液Fの最終的な粘性値を得る。例えば、算出した複数の粘性値の平均を最終的な粘性値にすることや、2つの測定方法のうち、粘性の各測定値にばらつきが小さい方を選択して最終的な粘性値を得ることができる。本実施の形態では、開口部27から導入された体液Fが第2の導電部18に到達するまで、出力電流値が段階的に6回上昇することから、演算手段44は、流体力学的観点からの粘性の計測を5回行い、体液Fの電気伝導率の値からの粘性の計測を6回行うこととなる。 Then, the calculation means 44 obtains the final viscosity value of the body fluid F based on a plurality of viscosity values (viscosity coefficients in the present embodiment) calculated by different measurement methods. For example, the average of a plurality of calculated viscosity values is used as the final viscosity value, or the one having the smaller variation in each measurement value of viscosity is selected from the two measurement methods to obtain the final viscosity value. Can be done. In the present embodiment, the output current value increases stepwise 6 times until the body fluid F introduced from the opening 27 reaches the second conductive portion 18, so that the calculation means 44 is a hydrodynamic viewpoint. The viscosity from the body fluid F will be measured 5 times, and the viscosity from the value of the electrical conductivity of the body fluid F will be measured 6 times.

また、算出された各粘性値に所定以上の差異が生じた場合や、出力電流値が所定の時間間隔で段階的に上昇しない場合、演算手段44は、異常ありを意味する信号を出力するように設計されている。
本実施の形態では、図1に示すように、演算手段44が主として2つの電気回路45、46によって構成されているが、電気回路の数は2つである必要はない。
また、本実施の形態では、第1の導電部12、13、14及び第2の導電部15、16、17、18が合わせて7つであるが、第1、第2導電部は合わせて少なくとも3つあればよい。
Further, when there is a difference of more than a predetermined value in each of the calculated viscosity values, or when the output current value does not gradually increase at a predetermined time interval, the calculation means 44 outputs a signal indicating that there is an abnormality. Is designed for.
In the present embodiment, as shown in FIG. 1, the arithmetic means 44 is mainly composed of two electric circuits 45 and 46, but the number of electric circuits does not have to be two.
Further, in the present embodiment, the first conductive portions 12, 13, 14 and the second conductive portions 15, 16, 17, and 18 are seven in total, but the first and second conductive portions are combined. At least three are required.

また、本実施の形態においては、電極ユニット21が1つのみであったが、図4に示すように、2つの電極ユニット48、49(電極ユニットP、Q)を設けることも可能である。電極ユニット48、49はそれぞれ、基本的に電極ユニット21と同じ構造を備え、流路11、及び合わせて7つ(即ち、合わせて少なくとも3つ)の第1の導電部12、13、14及び第2の導電部15、16、17、18、及び出力端子19を有している。 Further, in the present embodiment, there is only one electrode unit 21, but as shown in FIG. 4, two electrode units 48 and 49 (electrode units P and Q) can be provided. The electrode units 48 and 49 each have basically the same structure as the electrode unit 21, and the flow path 11 and a total of seven (that is, at least three in total) first conductive portions 12, 13, 14 and It has a second conductive portion 15, 16, 17, 18, and an output terminal 19.

電極ユニット48の流路11の出側(他側)は、電極ユニット49の流路11の入り側(一側)に、体液Fから特定の物質(例えば、体液Fが血液の場合、特定の物質は血球)を取り除くトラップ50を介して接続されている。なお、電極ユニット48、49において、電極ユニット21と同様の構成については同じ符号を付して詳しい説明を省略する(以下同じ)。 The exit side (other side) of the flow path 11 of the electrode unit 48 is on the entry side (one side) of the flow path 11 of the electrode unit 49, and is a specific substance from the body fluid F (for example, when the body fluid F is blood, a specific substance). The material is connected via a trap 50 that removes blood cells). In the electrode units 48 and 49, the same reference numerals are given to the same configurations as those of the electrode units 21, and detailed description thereof will be omitted (the same applies hereinafter).

従って、電極ユニット48の開口部27から導入された体液Fは、電極ユニット48の流路11を通過し、トラップ50で特定の物質が取り除かれた後、電極ユニット49の流路11を流れる。そのため、図示しない演算手段は、電極ユニット48の出力端子19からの出力電流値を基に、特定の物質が取り除かれていない体液Fの電気伝導率及び粘性を算出(粘性については2つの測定方法で算出、以下同じ)し、電極ユニット49の出力端子19からの出力電流値を基に、特定の物質が取り除かれた体液F(例えば、血球が除去された血漿を含む血液)の電気伝導率及び粘性を算出する。 Therefore, the body fluid F introduced from the opening 27 of the electrode unit 48 passes through the flow path 11 of the electrode unit 48, and after the specific substance is removed by the trap 50, flows through the flow path 11 of the electrode unit 49. Therefore, a calculation means (not shown) calculates the electrical conductivity and viscosity of the body fluid F from which the specific substance has not been removed based on the output current value from the output terminal 19 of the electrode unit 48 (two measurement methods for viscosity). The electrical conductivity of body fluid F (for example, blood containing plasma from which blood cells have been removed) from which a specific substance has been removed is based on the output current value from the output terminal 19 of the electrode unit 49. And the viscosity is calculated.

また、図5に示すように、流路11の第1の導電部12、13、14及び第2の導電部15、16、17、18の配置領域の下流側で、体液Fに試薬液を合流させて、体液F及び試薬液の混合液の粘性を所定の値に調整する液供給機構52を設けてもよい。
図5に示す例では、電極ユニット49の下流側に、電極ユニット49の流路11の出側に流路11の入り側が接続された電極ユニット51が設けられ、電極ユニット49の流路11と電極ユニット51の流路11の接続領域に、液供給機構52が管を介して連結されている。
Further, as shown in FIG. 5, a reagent solution is added to the body fluid F on the downstream side of the arrangement regions of the first conductive portions 12, 13, 14 and the second conductive portions 15, 16, 17, and 18 of the flow path 11. A liquid supply mechanism 52 that merges and adjusts the viscosity of the mixed solution of the body fluid F and the reagent solution to a predetermined value may be provided.
In the example shown in FIG. 5, an electrode unit 51 is provided on the downstream side of the electrode unit 49 with the entrance side of the flow path 11 connected to the exit side of the flow path 11 of the electrode unit 49, and the flow path 11 of the electrode unit 49 A liquid supply mechanism 52 is connected to the connection region of the flow path 11 of the electrode unit 51 via a pipe.

電極ユニット51は、基本的に電極ユニット21と同じ構造を備え、液供給機構52は、例えば、ポンプ及び電磁弁を有して構成可能である。
液供給機構52は、例えば、体積比で体液Fの略20倍の蒸留水(試薬液の一例、以下、単に「水」とも言う)を、電極ユニット49、51の間で、体液Fに合流させて、体液F及び水の混合液の粘性率を水と同レベルにする。電極ユニット51の出力端子19には、出力端子19からの出力電流値を基に電極ユニット51の流路11を流れる混合液の電気伝導率及び混合液の電解質濃度を計測する図示しない濃度導出手段が接続されている。濃度導出手段は、例えば、ソフトウェアプログラムがインストールされた電子計算機によって構成可能である。
The electrode unit 51 has basically the same structure as the electrode unit 21, and the liquid supply mechanism 52 can be configured to include, for example, a pump and a solenoid valve.
The liquid supply mechanism 52, for example, joins distilled water (an example of a reagent solution, hereinafter simply referred to as “water”), which is approximately 20 times the volume ratio of the body fluid F, into the body fluid F between the electrode units 49 and 51. The viscosity of the mixture of body fluid F and water is set to the same level as that of water. At the output terminal 19 of the electrode unit 51, a concentration deriving means (not shown) for measuring the electric conductivity of the mixed solution flowing through the flow path 11 of the electrode unit 51 and the electrolyte concentration of the mixed solution based on the output current value from the output terminal 19. Is connected. The concentration deriving means can be configured by, for example, a computer in which a software program is installed.

試薬液を体液Fに合流させる構成は、直列接続した2つの電極ユニットの間に液体供給機構を設けるものに限定されない。例えば、図6に示すように、2つの電極ユニット55、56を設け、電極ユニット55、56の各流路11に共通する一つの開口部27から導入された体液Fが電極ユニット55、56の各開口部28に向かって送られるようにし、開口部27と電極ユニット55の間に電極ユニット55の流路11に送られる体液Fに試薬液を合流させる液供給機構52を設けるようにしてもよい。 The configuration in which the reagent solution is merged with the body fluid F is not limited to the one in which the liquid supply mechanism is provided between the two electrode units connected in series. For example, as shown in FIG. 6, two electrode units 55 and 56 are provided, and the body fluid F introduced from one opening 27 common to each flow path 11 of the electrode units 55 and 56 is the electrode units 55 and 56. Even if the liquid supply mechanism 52 is provided between the opening 27 and the electrode unit 55 so as to be fed toward each opening 28 and the reagent liquid is merged with the body fluid F sent to the flow path 11 of the electrode unit 55. Good.

演算手段は、濃度導出手段から、濃度導出手段が計測した電気伝導率及び電解質濃度を取得可能であり、濃度導出手段が計測した混合液の電気伝導率又は混合液の電解質濃度を用いて体液Fの粘性を算出する。
ここで、インピーダンスを基に体液の粘性を算出する計算式には、その体液の電解質濃度が必要である。この点、体液の電解質濃度の値は体液の種類ごとに一定範囲であり、ばらつきが小さい。よって、計算式に電解質濃度の予め定められた値を代入すれば、電解質濃度を計測せずとも、対象とする体液の粘性を算出することができる。但し、電解質濃度をより正確に算出する観点においては、計測した電解質濃度を計算式に代入して粘性を算出するのが好ましい。
The calculation means can obtain the electric conductivity and the electrolyte concentration measured by the concentration derivation means from the concentration derivation means, and the body fluid F is used by the electric conductivity of the mixed solution or the electrolyte concentration of the mixed solution measured by the concentration derivation means. Calculate the viscosity of.
Here, the calculation formula for calculating the viscosity of a body fluid based on impedance requires the electrolyte concentration of the body fluid. In this respect, the value of the electrolyte concentration of the body fluid is within a certain range for each type of body fluid, and the variation is small. Therefore, by substituting a predetermined value of the electrolyte concentration into the calculation formula, the viscosity of the target body fluid can be calculated without measuring the electrolyte concentration. However, from the viewpoint of more accurately calculating the electrolyte concentration, it is preferable to substitute the measured electrolyte concentration into the calculation formula to calculate the viscosity.

また、図7に示すように、電極ユニット21と同じ構造の2つの電極ユニット53、54(電極ユニットR、S)を設け、電極ユニット53の流路11に体液Fを流し、電極ユニット54の流路11に粘性が判明している標準サンプル液を流して、算出した体液Fの粘性を補正することもできる。
演算手段は、電極ユニット54の流路11に流した標準サンプル液の粘性及び電極ユニット53の流路11に流した体液Fの粘性をそれぞれ算出し、算出した標準サンプル液の粘性(具体的には、算出した標準サンプル液の粘性と、粘性が判明していた標準サンプル液の粘性の差)を基に、算出した体液Fの粘性を補正する。計測時の温度など環境の違いにより、算出される体液Fの粘性には多少の誤差が生じることが考えられるため、標準サンプル液の粘性を基に、算出した体液Fの粘性を補正するのは、より正確な粘性を得る上で好適である。更に、例えばサーミスター素子などの温度測定手段を電極ユニット上に設置して計測時の温度を記録し、より正確を期すこともできる。
Further, as shown in FIG. 7, two electrode units 53 and 54 (electrode units R and S) having the same structure as the electrode unit 21 are provided, and the body fluid F is allowed to flow through the flow path 11 of the electrode unit 53 to form the electrode unit 54. It is also possible to correct the calculated viscosity of the body fluid F by flowing a standard sample solution having a known viscosity through the flow path 11.
The calculation means calculates the viscosity of the standard sample solution flowing through the flow path 11 of the electrode unit 54 and the viscosity of the body fluid F flowing through the flow path 11 of the electrode unit 53, respectively, and calculates the viscosity of the standard sample solution (specifically). Corrects the calculated viscosity of the body fluid F based on the calculated viscosity of the standard sample solution and the difference in viscosity of the standard sample solution whose viscosity has been found). Since it is possible that the calculated viscosity of body fluid F may have some errors due to differences in the environment such as the temperature at the time of measurement, it is necessary to correct the calculated viscosity of body fluid F based on the viscosity of the standard sample solution. , Suitable for obtaining more accurate viscosity. Further, it is also possible to install a temperature measuring means such as a thermistor element on the electrode unit to record the temperature at the time of measurement to ensure more accuracy.

更に、図8に示すように、電極ユニット21と同じ構造の2つの電極ユニット58、59(電極ユニットR’、S’)及び電極ユニット59の流路11に体液Fの粘性を変化させる粘性調整液(例えば、凝固刺激試薬)を供給する液供給手段60を設け、演算手段が、電極ユニット58の流路11を流れる体液Fの粘性及び電極ユニット59の流路11を流れる粘性調整液及び体液の混合液の粘性をそれぞれ算出するようにしてもよい。これによって、例えば、粘性調整液が血液(体液Fの一例)を凝固する効果を容易に計測することが可能である。 Further, as shown in FIG. 8, the viscosity adjustment that changes the viscosity of the body liquid F in the flow paths 11 of the two electrode units 58, 59 (electrode units R', S') and the electrode unit 59 having the same structure as the electrode unit 21. A liquid supply means 60 for supplying a liquid (for example, a coagulation stimulating reagent) is provided, and the calculation means are the viscosity of the body liquid F flowing through the flow path 11 of the electrode unit 58 and the viscosity adjusting liquid and the body liquid flowing through the flow path 11 of the electrode unit 59. The viscosity of each of the mixed solutions of the above may be calculated. Thereby, for example, the effect of the viscosity adjusting solution on coagulating blood (an example of body fluid F) can be easily measured.

次に、本発明の作用効果を確認するために行った実験について説明する。
本実験においては、合わせて7つの第1、第2の導電部を有する電極ユニットを採用し、流路にショ糖を加えて粘度を上げた食塩水(以下、単に「食塩水」とも言う)を流した。図9、図10に、計測された出力電流の時間軸に対する推移を示す。なお、図10のグラフは、図9のグラフの一部を拡大したものであり、図10には、段階的に上昇する出力電流それぞれに対応する合成抵抗の値を記している。
図9、図10より、段階的に上昇する出力電流の各上昇値が略同じであること、並びに、出力電流が5〜6秒間隔で段階的に上昇したことが確認できた。その結果、段階的に上昇する出力電流それぞれから電気伝導率及び粘性を算出できることが分かる。
なお、図9において、Dは食塩水を導入した時点を示し、Wは流路に水を流して食塩水を洗い流した時点を示す。
Next, an experiment conducted to confirm the action and effect of the present invention will be described.
In this experiment, an electrode unit having a total of seven first and second conductive parts was adopted, and sucrose was added to the flow path to increase the viscosity of the saline solution (hereinafter, also simply referred to as "saline solution"). Shed. 9 and 10 show the transition of the measured output current with respect to the time axis. The graph of FIG. 10 is an enlargement of a part of the graph of FIG. 9, and FIG. 10 shows the value of the combined resistance corresponding to each of the output currents that gradually increase.
From FIGS. 9 and 10, it was confirmed that the respective increase values of the output current gradually increasing were substantially the same, and that the output current gradually increased at intervals of 5 to 6 seconds. As a result, it can be seen that the electric conductivity and the viscosity can be calculated from each of the output currents that gradually increase.
In FIG. 9, D indicates the time when the saline solution was introduced, and W indicates the time when the saline solution was washed away by flowing water through the flow path.

以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、体液の粘性の計測は流体力学的観点からのみでもよい。その場合、電流の大きさを定量的に記録する必要はなく、体液が第2の導電部に到達した時刻(体液が第2の導電部に接触した瞬間の時刻)のみを正確に記録すればよい。つまり、電流値をアナログ値として記録する必要はなく、デジタル値として記録すればよいこととなるので、図11に示すように、シングルチップマイコン61を用いた簡素な構成にすることができる。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions that do not deviate from the gist are within the scope of the present invention.
For example, the viscosity of a body fluid may be measured only from a hydrodynamic point of view. In that case, it is not necessary to quantitatively record the magnitude of the current, and only the time when the body fluid reaches the second conductive part (the time when the body fluid comes into contact with the second conductive part) can be accurately recorded. Good. That is, it is not necessary to record the current value as an analog value, but it is sufficient to record it as a digital value. Therefore, as shown in FIG. 11, a simple configuration using the single-chip microcomputer 61 can be achieved.

図11に示す例では、複数の導電部15、16、17、18(第2の導電部)がそれぞれ独立してシングルチップマイコン61の4つのチャンネル(入力端子)に接続されている。シングルチップマイコン61は、標準的に装備しているインプットキャプチヤー機能によって、導電部15、16、17、18の電気的状態をそれぞれ独立に監視し、4つのチャンネルの電圧値が変化したタイミング、即ち体液Fが導電部15、16、17、18に到達したタイミングの時刻を読み取って記録する。図12に示すt0、t1、t2、t3はそれぞれ体液Fの先頭部が導電部15、16、17、18に到達したタイミングを意味し、各チャンネルに対応するデジタル値はt0、t1、t2、t3で非連続的に上昇する。体液Fの粘性は、t0、t1の時間間隔、t1、t2の時間間隔、t2、t3の時間間隔を基に計測される。
そして、第1の導電部に交流電源を接続する代わりに、図11に示すように、直流電源Eを接続するようにしてもよい。
In the example shown in FIG. 11, a plurality of conductive portions 15, 16, 17, and 18 (second conductive portions) are independently connected to four channels (input terminals) of the single-chip microcomputer 61. The single-chip microcomputer 61 independently monitors the electrical states of the conductive parts 15, 16, 17, and 18 by the input capture function provided as standard, and the timing when the voltage values of the four channels change. That is, the time at which the body fluid F reaches the conductive portions 15, 16, 17, and 18 is read and recorded. T0, t1, t2, and t3 shown in FIG. 12 mean the timing when the head portion of the body fluid F reaches the conductive portions 15, 16, 17, and 18, respectively, and the digital values corresponding to each channel are t0, t1, t2, respectively. It rises discontinuously at t3. The viscosity of the body fluid F is measured based on the time interval of t0 and t1, the time interval of t1 and t2, and the time interval of t2 and t3.
Then, instead of connecting the AC power supply to the first conductive portion, the DC power supply E may be connected as shown in FIG.

また、体液が毛細管現象によって進む流路の代わりに、体液がポンプあるいは重力によって進む流路を採用してもよい。但し、毛細管現象によって体液が進行する流路を採用した場合、粘性を計測するために要する体液の量を少なくすることができる。
そして、本実施の形態では交流電源から入力端子に与えられる交流電圧の周波数が単一で一定であるが、入力端子に周波数が異なる複数の交流電圧を与えることもできる。入力端子に周波数が異なる交流電圧を与える場合、演算手段は、電気伝導率から粘性を算出するのに当たり、各周波数のインピーダンスを求めて体液の粘性を算出することとなる。
Further, instead of the flow path through which the body fluid travels due to the capillary phenomenon, a flow path through which the body fluid travels by a pump or gravity may be adopted. However, when a flow path through which the body fluid travels due to the capillary phenomenon is adopted, the amount of the body fluid required for measuring the viscosity can be reduced.
In the present embodiment, the frequency of the AC voltage applied from the AC power supply to the input terminal is single and constant, but a plurality of AC voltages having different frequencies can be applied to the input terminal. When AC voltages having different frequencies are applied to the input terminals, the calculation means calculates the viscosity of the body fluid by obtaining the impedance of each frequency when calculating the viscosity from the electric conductivity.

また、第1、第2の導電部が体液の流れに沿って交互に配置されている必要はない。更に、第1、第2の導電部の配置ピッチは一定でなくてもよい。
更に、第2の導電部が複数個ある場合、複数の第2の導電部を、一つの出力端子に接続する必要はなく、それぞれ別個の出力端子に接続してもよい。
Further, it is not necessary that the first and second conductive portions are alternately arranged along the flow of the body fluid. Further, the arrangement pitch of the first and second conductive portions does not have to be constant.
Further, when there are a plurality of second conductive portions, it is not necessary to connect the plurality of second conductive portions to one output terminal, and they may be connected to separate output terminals.

10:体液粘性測定装置、11:流路、12〜14:第1の導電部、15〜18:第2の導電部、19:出力端子、20:スイッチ、21:電極ユニット、22:チップ、23:被装着体、24:板材、25:ベース部材、26:凹部、27、28:開口部、32〜38:導線、39:枠部、40:入力端子、41、42:回路、43:スイッチ、44:演算手段、44a:基準抵抗、45、46:電気回路、48、49:電極ユニット、50:トラップ、51:電極ユニット、52:液供給機構、53、54、55、56、58、59:電極ユニット、60:液供給手段、61:シングルチップマイコン、E:直流電源、F:体液、V:交流電源 10: Body fluid viscosity measuring device, 11: Flow path, 12-14: First conductive part, 15-18: Second conductive part, 19: Output terminal, 20: Switch, 21: Electrode unit, 22: Chip, 23: Attached body, 24: Plate material, 25: Base member, 26: Recess, 27, 28: Opening, 32 to 38: Conductor, 39: Frame, 40: Input terminal, 41, 42: Circuit, 43: Switch, 44: Computational means, 44a: Reference resistance, 45, 46: Electric circuit, 48, 49: Electrode unit, 50: Trap, 51: Electrode unit, 52: Liquid supply mechanism, 53, 54, 55, 56, 58 , 59: Electrode unit, 60: Liquid supply means, 61: Single chip microcomputer, E: DC power supply, F: Body liquid, V: AC power supply

Claims (13)

流路を流れる体液の粘性を計測する体液粘性測定装置であって、
前記流路に設けられ、外部の電源に接続される第1の導電部と、
前記流路に設けられ、該流路内の前記体液を介して前記第1の導電部に電気的に接続される第2の導電部と、
前記第2の導電部に接続された出力端子から出力される電気信号が所定の時間長当たりに予め定められた値以上上昇するタイミングの間隔から前記体液の粘性を算出する演算手段とを備え、
前記第1、第2の導電部は、合わせて少なくとも3つあって、それぞれ前記体液の流れに沿って前記流路の異なる位置に配されていることを特徴とする体液粘性測定装置。
A body fluid viscosity measuring device that measures the viscosity of body fluid flowing through a flow path.
A first conductive portion provided in the flow path and connected to an external power source,
A second conductive portion provided in the flow path and electrically connected to the first conductive portion via the body fluid in the flow path, and a second conductive portion.
It is provided with a calculation means for calculating the viscosity of the body fluid from the interval at which the electric signal output from the output terminal connected to the second conductive portion rises by a predetermined value or more per predetermined time length.
A body fluid viscosity measuring device, characterized in that there are at least three conductive portions in total, and the first and second conductive portions are arranged at different positions in the flow path along the flow of the body fluid.
請求項1記載の体液粘性測定装置において、前記演算手段は、更に前記出力端子から出力される電気信号の大きさから前記体液の電気伝導性及び粘性を算出することを特徴とする体液粘性測定装置。 In the body fluid viscosity measuring device according to claim 1, the calculation means further calculates the electrical conductivity and viscosity of the body fluid from the magnitude of the electric signal output from the output terminal. .. 請求項1又は2記載の体液粘性測定装置において、前記第1、第2の導電部は、前記体液の流れに沿って交互に配置されていることを特徴とする体液粘性測定装置。 The body fluid viscosity measuring device according to claim 1 or 2, wherein the first and second conductive portions are alternately arranged along the flow of the body fluid. 請求項1〜3のいずれか1項に記載の体液粘性測定装置において、前記第1、第2の導電部の配置ピッチは一定であることを特徴とする体液粘性測定装置。 The body fluid viscosity measuring device according to any one of claims 1 to 3, wherein the arrangement pitch of the first and second conductive portions is constant. 請求項1〜4のいずれか1項に記載の体液粘性測定装置において、前記流路の幅は、前記体液が毛細管現象によって流れる大きさであることを特徴とする体液粘性測定装置。 The body fluid viscosity measuring device according to any one of claims 1 to 4, wherein the width of the flow path is such that the body fluid flows by a capillary phenomenon. 請求項1〜5のいずれか1項に記載の体液粘性測定装置において、前記第2の導電部は複数あって、該複数の第2の導電部は一つの前記出力端子に接続されることを特徴とする体液粘性測定装置。 In the body fluid viscosity measuring device according to any one of claims 1 to 5, there are a plurality of the second conductive portions, and the plurality of second conductive portions are connected to one output terminal. A featured body fluid viscosity measuring device. 請求項1〜5のいずれか1項に記載の体液粘性測定装置において、前記第2の導電部は複数あって、該複数の第2の導電部はその電気的状態がそれぞれ独立に監視され、各該第2の導電部に前記体液が接触した瞬間の時刻が記録されることを特徴とする体液粘性測定装置。 In the body fluid viscosity measuring apparatus according to any one of claims 1 to 5, there are a plurality of the second conductive portions, and the electrical states of the plurality of second conductive portions are independently monitored. A body fluid viscosity measuring device, characterized in that the time at the moment when the body fluid comes into contact with each of the second conductive portions is recorded. 請求項1〜7のいずれか1項に記載の体液粘性測定装置において、前記流路の前記第1、第2の導電部の配置領域の下流側で、前記体液に試薬液を合流させて、該体液及び該試薬液の混合液の粘性を所定の値に調整する液供給機構と、前記混合液の電気伝導率及び電解質濃度を計測する濃度導出手段とを更に備えることを特徴とする体液粘性測定装置。 In the body fluid viscosity measuring apparatus according to any one of claims 1 to 7, the reagent solution is merged with the body fluid on the downstream side of the arrangement region of the first and second conductive portions of the flow path. The body fluid viscosity is further provided with a liquid supply mechanism for adjusting the viscosity of the mixture of the body fluid and the reagent solution to a predetermined value, and a concentration derivation means for measuring the electric conductivity and the electrolyte concentration of the mixture. measuring device. 請求項8記載の体液粘性測定装置において、前記演算手段は、前記濃度導出手段が計測した前記混合液の電解質濃度を用いて前記体液の粘性を算出することを特徴とする体液粘性測定装置。 The body fluid viscosity measuring device according to claim 8, wherein the calculation means calculates the viscosity of the body fluid using the electrolyte concentration of the mixed solution measured by the concentration deriving means. 請求項1〜9のいずれか1項に記載の体液粘性測定装置において、それぞれ、前記流路、合わせて少なくとも3つの前記第1、第2の導電部及び前記出力端子を有する電極ユニットP、Qが設けられ、該電極ユニットPの該流路の出側は、該電極ユニットQの該流路の入り側に、前記体液から特定の物質を取り除くトラップを介して接続され、前記演算手段は、前記電極ユニットP、Qを流れる前記体液の粘性をそれぞれ算出することを特徴とする体液粘性測定装置。 In the body fluid viscosity measuring apparatus according to any one of claims 1 to 9, electrode units P and Q having the flow path, the first and second conductive portions in total, and the output terminal, respectively. Is provided, the outlet side of the flow path of the electrode unit P is connected to the entry side of the flow path of the electrode unit Q via a trap for removing a specific substance from the body fluid, and the calculation means is A body fluid viscosity measuring device for calculating the viscosity of the body fluid flowing through the electrode units P and Q, respectively. 請求項1〜9のいずれか1項に記載の体液粘性測定装置において、前記流路及び合わせて少なくとも3つの前記第1、第2の導電部を有するチップと、前記チップが装着される被装着体とが設けられ、前記被装着体には、装着された前記チップの前記第1の導電部を前記電源に接続する第1の回路と、装着された該チップの前記第2の導電部を前記出力端子に接続する第2の回路とが設けられていることを特徴とする体液粘性測定装置。 In the body fluid viscosity measuring device according to any one of claims 1 to 9, a chip having the flow path and at least three of the first and second conductive portions in total, and a chip to which the chip is mounted are mounted. A body is provided, and the mounted body is provided with a first circuit for connecting the first conductive portion of the mounted chip to the power supply, and the second conductive portion of the mounted chip. A body fluid viscosity measuring device characterized in that a second circuit connected to the output terminal is provided. 請求項1〜9のいずれか1項に記載の体液粘性測定装置において、前記流路、合わせて少なくとも3つの前記第1、第2の導電部及び前記出力端子を有する電極ユニットRと、前記電極ユニットRと同じ構造の電極ユニットSとが設けられ、前記演算手段は、粘性が判明している標準サンプル液を前記電極ユニットSの流路に流して算出した前記標準サンプル液の粘性を基に、前記体液を前記電極ユニットRの前記流路に流して算出した前記体液の粘性を補正することを特徴とする体液粘性測定装置。 In the body fluid viscosity measuring apparatus according to any one of claims 1 to 9, an electrode unit R having at least three first and second conductive portions and an output terminal in total, and the electrode. An electrode unit S having the same structure as the unit R is provided, and the calculation means is based on the viscosity of the standard sample fluid calculated by flowing a standard sample fluid having a known viscosity through the flow path of the electrode unit S. , A body fluid viscosity measuring device, characterized in that the viscosity of the body fluid calculated by flowing the body fluid through the flow path of the electrode unit R is corrected. 請求項1〜9のいずれか1項に記載の体液粘性測定装置において、前記流路、合わせて少なくとも3つの前記第1、第2の導電部及び前記出力端子を有する電極ユニットR’と、前記電極ユニットR’と同じ構造の電極ユニットS’と、前記電極ユニットS’の流路に、前記体液の粘性を変化させる粘性調整液を供給する液供給手段とが設けられ、前記演算手段は、前記電極ユニットR’の流路を流れる前記体液の粘性及び前記電極ユニットS’の流路を流れる前記粘性調整液及び前記体液の混合液の粘性をそれぞれ算出することを特徴とする体液粘性測定装置。 In the body fluid viscosity measuring apparatus according to any one of claims 1 to 9, the electrode unit R'having the flow path, at least three of the first and second conductive portions and the output terminal, and the said. An electrode unit S'having the same structure as the electrode unit R'and a liquid supply means for supplying a viscosity adjusting liquid for changing the viscosity of the body liquid are provided in the flow path of the electrode unit S'. A body fluid viscosity measuring device for calculating the viscosity of the body fluid flowing through the flow path of the electrode unit R'and the viscosity of the viscosity adjusting liquid and the mixed liquid of the body fluid flowing through the flow path of the electrode unit S', respectively. ..
JP2016159498A 2016-08-16 2016-08-16 Body fluid viscosity measuring device Active JP6762009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016159498A JP6762009B2 (en) 2016-08-16 2016-08-16 Body fluid viscosity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016159498A JP6762009B2 (en) 2016-08-16 2016-08-16 Body fluid viscosity measuring device

Publications (2)

Publication Number Publication Date
JP2018028451A JP2018028451A (en) 2018-02-22
JP6762009B2 true JP6762009B2 (en) 2020-09-30

Family

ID=61248781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016159498A Active JP6762009B2 (en) 2016-08-16 2016-08-16 Body fluid viscosity measuring device

Country Status (1)

Country Link
JP (1) JP6762009B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108328563B (en) * 2018-03-27 2024-03-08 苏州原位芯片科技有限责任公司 MEMS chip for measuring viscosity of liquid and measuring method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447440A (en) * 1993-10-28 1995-09-05 I-Stat Corporation Apparatus for assaying viscosity changes in fluid samples and method of conducting same
JPH09257681A (en) * 1996-03-21 1997-10-03 Fujikura Rubber Ltd Method and apparatus for measurement of viscosity of electroviscous fluid
US7144495B2 (en) * 2000-12-13 2006-12-05 Lifescan, Inc. Electrochemical test strip with an integrated micro-needle and associated methods
EP1754036B1 (en) * 2004-03-11 2022-02-16 RheoSense, Inc. Micro slit viscometer with monolithically integrated pressure sesonrs
US7344679B2 (en) * 2005-10-14 2008-03-18 International Business Machines Corporation Method and apparatus for point of care osmolarity testing

Also Published As

Publication number Publication date
JP2018028451A (en) 2018-02-22

Similar Documents

Publication Publication Date Title
CN101198867B (en) Methods and devices for controlling the impact of short circuit faults on co-planar electrochemical sensors
JP2018510329A5 (en)
US10254142B2 (en) Flow sensor for determining an air bubble, particularly in a catheter, and corresponding method
JP4825976B2 (en) pH detector
JP6692077B2 (en) Body fluid viscosity measurement device
JP2005315886A (en) Chemical-sensing device
JP6762009B2 (en) Body fluid viscosity measuring device
JP5892135B2 (en) Gas concentration detector
KR102007585B1 (en) Electrode arrangements for electrochemical test elements and methods of use thereof
JP5156867B1 (en) Method and apparatus for measuring electrical resistivity of concrete
JP3911259B2 (en) Fine particle counting device in liquid
RU2674128C1 (en) Measuring nozzle for measuring shear viscosity of polymer melts
WO2020163099A3 (en) Measurement techniques for semiconductor nanowire-based sensors and related methods
JP2005055446A (en) Method of detecting gas bubbles in liquid
KR101613587B1 (en) Method and apparatus for measuring hematocrit of blood
CN110114661A (en) Gas sensor
KR100844532B1 (en) Erythrocyte sedimentation rate log
JP7205056B2 (en) particle detector
TWI588488B (en) Electrochemical test strip and electrochemical test method
TWI425211B (en) Electrochemical test strip and electrochemical test method
JP2017538942A5 (en)
NL2010555C2 (en) DEVICE FOR DETERMINING A MASSADE OF A FLUID IN A CANAL.
US9719825B2 (en) Multiphase flow measurement
KR101308116B1 (en) Measerement device for deformation of red blood cell
JP2005098818A (en) Ion detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R150 Certificate of patent or registration of utility model

Ref document number: 6762009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250