JP6761576B2 - Bending mold and bending method and manufacturing method of wasteland for turbine blades - Google Patents

Bending mold and bending method and manufacturing method of wasteland for turbine blades Download PDF

Info

Publication number
JP6761576B2
JP6761576B2 JP2016192296A JP2016192296A JP6761576B2 JP 6761576 B2 JP6761576 B2 JP 6761576B2 JP 2016192296 A JP2016192296 A JP 2016192296A JP 2016192296 A JP2016192296 A JP 2016192296A JP 6761576 B2 JP6761576 B2 JP 6761576B2
Authority
JP
Japan
Prior art keywords
forging
hot forging
turbine blades
bending
pressing portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016192296A
Other languages
Japanese (ja)
Other versions
JP2018051611A (en
Inventor
尚史 光永
尚史 光永
聡志 古曵
聡志 古曵
福井 毅
毅 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016192296A priority Critical patent/JP6761576B2/en
Publication of JP2018051611A publication Critical patent/JP2018051611A/en
Application granted granted Critical
Publication of JP6761576B2 publication Critical patent/JP6761576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)

Description

本発明は、ラジアル鍛造機を用いたタービンブレード用熱間鍛造材の曲り取り用金型及び曲り取り方法並びにタービンブレード用荒地の製造方法に関するものである。 The present invention relates to a die and a method for bending a hot forging material for a turbine blade using a radial forging machine, and a method for manufacturing a wasteland for a turbine blade.

例えば、タービンブレードを製造するにあたっては、丸棒状の熱間鍛造素材を所望の直径まで鍛伸して、更に、続く型打ち鍛造でニアネットシェイプのタービンブレード素材となるように、タービンブレードの根部や翼部となる部分の体積を確保すべく、所望の丸棒形状の荒地を成形する。この荒地の形状については、例えば、特開昭63−238942号公報(特許文献1)の図2に、根部となる部分が太く(体積が大きく)、翼部先端に向けて次第に細くなる形状の荒地が示されている。
この荒地の具体的な製造方法としては、例えば、丸棒状の熱間鍛造素材を所望の直径までラジアル鍛造を行って長尺の丸棒材とし、所定の寸法に切断し、更に別な自由鍛造装置で所望の荒地形状に鍛造される。
For example, in manufacturing a turbine blade, a round bar-shaped hot forging material is forged to a desired diameter, and then the root of the turbine blade is formed so that it becomes a near-net-shaped turbine blade material in the subsequent stamping forging. A desired round bar-shaped wasteland is formed in order to secure the volume of the portion to be the blade or the wing. Regarding the shape of this wasteland, for example, in FIG. 2 of JP-A-63-238942 (Patent Document 1), the root portion is thick (large in volume) and gradually becomes thinner toward the tip of the wing portion. Wasteland is shown.
As a specific manufacturing method of this wasteland, for example, a round bar-shaped hot forging material is radial forged to a desired diameter to obtain a long round bar, cut to a predetermined size, and further free forged. The device forges into the desired wasteland shape.

タービンブレードを型打ち鍛造する場合、根部、翼部となる部分や、ボス部と呼ばれる突起がタービンブレードの翼部内に設けられることもあり、タービンブレード用の荒地では、体積と寸法の調整が重要となる。もし、体積や寸法の調整が不十分であると、型打ち鍛造時の型彫り面内に十分に荒地が満肉せず、型打ち鍛造後のニアネットシェイプのタービンブレード素材の一部が欠寸する問題が生じる。また、タービンブレードの材質はニッケル基の超耐熱合金や、チタン合金等の高価な合金であるため、型打ち鍛造後のニアネットシェイプのタービンブレード素材の一部が欠寸するような不良が起きると、その損失は小さくはない。
そのため、荒地の製造時に「せぎり」と呼ばれる加工溝を設けて、型打ち鍛造時の型彫り面内に十分満肉するように荒地成形時に加工を行うことが好ましい。しかしながら例えば、特開昭60−250843号公報(特許文献2)に示されるように、せぎりの形成は特別な治具を用意してプレス装置で順次丸棒状の素材に加工溝を設けることになる。
そして、せぎり後の鍛造素材は、再び別な鍛造装置で所定の荒地形状とすべく、鍛造素材を伸長する(以下、鍛伸と言う)熱間鍛造が行われる。
When stamping and forging turbine blades, roots, blades, and protrusions called bosses may be provided inside the turbine blade blades, so it is important to adjust the volume and dimensions in rough terrain for turbine blades. It becomes. If the volume and dimensions are not adjusted sufficiently, the rough ground will not be sufficiently filled in the carved surface during stamping and forging, and a part of the near net-shaped turbine blade material after stamping and forging will be missing. There is a problem of size. In addition, since the material of the turbine blade is an expensive alloy such as a nickel-based super heat-resistant alloy or a titanium alloy, defects such as a part of the near-net-shaped turbine blade material after stamping and forging may be missing. And the loss is not small.
Therefore, it is preferable to provide a processing groove called "segiri" at the time of manufacturing the wasteland and perform the processing at the time of roughland molding so that the inside of the die carved surface at the time of stamping forging is sufficiently filled. However, for example, as shown in Japanese Patent Application Laid-Open No. 60-250843 (Patent Document 2), in order to form the shavings, a special jig is prepared and a processing groove is sequentially provided in the round bar-shaped material by a press device. Become.
Then, the forged material after the forging is hot-forged by stretching the forging material (hereinafter referred to as forging) so that the forged material has a predetermined wasteland shape again by another forging device.

特開昭63−238942号公報Japanese Unexamined Patent Publication No. 63-238942 特開昭60−250843号公報Japanese Unexamined Patent Publication No. 60-250843

特許文献2で示されるように、従来はせぎりを行う治具のみが改良されているだけであり、せぎり後に行われる鍛伸や曲り取りに好適な金型の提案は見当たらない。また、タービンブレードに用いられる合金は、チタン合金やニッケル基超耐熱合金といった、難加工性材料であり、高価な合金元素を多量に含むものである。前記のように、タービンブレード用の荒地は大径部と小径部とを併せ持った特殊な形状である。このタービンブレードは今後ますます大型化が予想され、荒地の形状が不均一でると、その後のブレード状の鍛造の際に欠肉等の形状不良の原因となり、形状不良が生じるとその損失も大きくなる。
本発明の目的は、タービンブレードに使用される難加工性材料であっても、ラジアル鍛造機を用いて容易に形状矯正が可能な曲り取り用金型と曲り取り方法並びにタービンブレード用荒地の製造方法を提供することである。
As shown in Patent Document 2, conventionally, only the jig for performing the cutting has been improved, and there is no proposal for a mold suitable for forging and bending performed after the cutting. Further, the alloy used for the turbine blade is a difficult-to-process material such as a titanium alloy or a nickel-based super heat-resistant alloy, and contains a large amount of expensive alloying elements. As described above, the wasteland for turbine blades has a special shape having both a large diameter portion and a small diameter portion. This turbine blade is expected to become larger and larger in the future, and if the shape of the wasteland is uneven, it will cause shape defects such as lack of meat during subsequent blade-shaped forging, and if shape defects occur, the loss will be large. Become.
An object of the present invention is to manufacture a bending die and a bending method, and a wasteland for a turbine blade, which can easily correct the shape of a difficult-to-process material used for a turbine blade by using a radial forging machine. To provide a method.

本発明は上述した課題に鑑みてなされたものである。
すなわち本発明は、棒状に成形されたタービンブレード用熱間鍛造材をラジアル鍛造により形状矯正するための曲り取り用金型であって、
前記曲り取り用金型は、前記タービンブレード用熱間鍛造材の曲りを矯正する押圧部を有し、
前記タービンブレード用熱間鍛造材は外径の異なる大径部と小径部とを有し、
前記押圧部は、前記タービンブレード用熱間鍛造材の前記大径部と前記小径部とを同時に押圧する第一押圧部と第二押圧部とを有し、
前記第一押圧部と第二押圧部とは、前記タービンブレード用熱間鍛造材の外周面を周方向に沿って取り囲むように形成されている曲り取り用金型である。
また本発明は、ラジアル鍛造機を用いて、タービンブレード用熱間鍛造材の中心軸に向かって対向配置された一対の曲り取り用金型により、前記タービンブレード用熱間鍛造材の曲り取りを行う曲り取り方法であって、
前記曲り取り用金型は、前記タービンブレード用熱間鍛造材の曲りを矯正する押圧部を有し、
前記タービンブレード用熱間鍛造材は外径の異なる大径部と小径部とを有し、
前記押圧部は、前記タービンブレード用熱間鍛造材の前記大径部と前記小径部とを同時に押圧する第一押圧部と第二押圧部とを有し、
前記第一押圧部と第二押圧部とは、前記タービンブレード用熱間鍛造材の外周面を周方向に沿って取り囲むように形成されていることを特徴とする曲り取り方法である。
好ましくは、前記棒状に成形されたタービンブレード用熱間鍛造材がニッケル基超耐熱合金またはチタン合金である。
また本発明は、熱間鍛造によって棒状のタービンブレード用熱間鍛造材を得る第1の工程と、
ラジアル鍛造機を用いて、前記タービンブレード用熱間鍛造材の中心軸に向かって対向配置された一対の曲り取り用金型により、前記タービンブレード用熱間鍛造材の曲り取りを行う第2の工程とを有するタービンブレード用荒地の製造方法であって、
前記曲り取り用金型は、前記タービンブレード用熱間鍛造材の曲りを矯正する押圧部を有し、
前記タービンブレード用熱間鍛造材は外径の異なる大径部と小径部とを有し、
前記押圧部は、前記タービンブレード用熱間鍛造材の前記大径部と前記小径部とを同時に押圧する第一押圧部と第二押圧部とを有し、
前記第一押圧部と第二押圧部とは、前記タービンブレード用熱間鍛造材の外周面を周方向に沿って取り囲むように形成されていることを特徴とするタービンブレード用荒地の製造方法である。
The present invention has been made in view of the above-mentioned problems.
That is, the present invention is a bending die for correcting the shape of a rod-shaped hot forging material for turbine blades by radial forging.
The bending die has a pressing portion for correcting the bending of the hot forging material for turbine blades.
The hot forging material for turbine blades has a large diameter portion and a small diameter portion having different outer diameters.
The pressing portion has a first pressing portion and a second pressing portion that simultaneously press the large diameter portion and the small diameter portion of the hot forging material for turbine blades.
The first pressing portion and the second pressing portion are bending dies formed so as to surround the outer peripheral surface of the hot forging material for turbine blades along the circumferential direction.
Further, in the present invention, the radial forging machine is used to bend the hot forging material for turbine blades by using a pair of bending dies arranged to face each other toward the central axis of the hot forging material for turbine blades. It ’s a way to bend
The bending die has a pressing portion for correcting the bending of the hot forging material for turbine blades.
The hot forging material for turbine blades has a large diameter portion and a small diameter portion having different outer diameters.
The pressing portion has a first pressing portion and a second pressing portion that simultaneously press the large diameter portion and the small diameter portion of the hot forging material for turbine blades.
The first pressing portion and the second pressing portion are a bending method characterized in that they are formed so as to surround the outer peripheral surface of the hot forging material for turbine blades along the circumferential direction.
Preferably, the rod-shaped hot forging material for turbine blades is a nickel-based superheat-resistant alloy or a titanium alloy.
The present invention also includes a first step of obtaining a rod-shaped hot forging material for a turbine blade by hot forging.
A second method for bending the hot forging material for turbine blades by using a radial forging machine and using a pair of bending dies arranged to face each other toward the central axis of the hot forging material for turbine blades. It is a method of manufacturing a wasteland for a turbine blade having a process.
The bending die has a pressing portion for correcting the bending of the hot forging material for turbine blades.
The hot forging material for turbine blades has a large diameter portion and a small diameter portion having different outer diameters.
The pressing portion has a first pressing portion and a second pressing portion that simultaneously press the large diameter portion and the small diameter portion of the hot forging material for turbine blades.
The first pressing portion and the second pressing portion are a method for manufacturing a wasteland for turbine blades, characterized in that the outer peripheral surface of the hot forging material for turbine blades is formed so as to surround the outer peripheral surface along the circumferential direction. is there.

本発明によれば、タービンブレード等に使用される難加工性材であっても、ラジアル鍛造機を用いて容易に熱間鍛造材の形状矯正を行うことができる。 According to the present invention, even if it is a difficult-to-process material used for a turbine blade or the like, the shape of the hot forged material can be easily corrected by using a radial forging machine.

熱間鍛造用金型の一例を示す模式図である。It is a schematic diagram which shows an example of a die for hot forging. 熱間鍛造用金型の一例を示す模式図である。It is a schematic diagram which shows an example of a die for hot forging. 伸長部の一例を示す模式図である。It is a schematic diagram which shows an example of the extension part. ラジアル鍛造機の模式図である。It is a schematic diagram of a radial forging machine. 荒地の形状の一例を示す模式図である。It is a schematic diagram which shows an example of the shape of a wasteland. 熱間鍛造を行ったときの鍛造素材を押圧する場所の一例を示す模式図である。It is a schematic diagram which shows an example of the place which presses the forging material at the time of performing hot forging. 熱間鍛造を行ったときの鍛造素材を押圧する場所の一例を示す模式図である。It is a schematic diagram which shows an example of the place which presses the forging material at the time of performing hot forging. 伸長部の一例を示す模式図である。It is a schematic diagram which shows an example of the extension part. 本発明に用いる熱間鍛造用金型の一例を示す模式図である。It is a schematic diagram which shows an example of the hot forging die used in this invention. 本発明に用いる曲り取り金型の一例を示す模式図である。It is a schematic diagram which shows an example of the bending die used in this invention. 熱間鍛造用金型を用いて本発明に係る曲り取りを行うときの一例を示す模式図である。It is a schematic diagram which shows an example at the time of performing the bending which concerns on this invention using the hot forging die.

本発明は、対向する2方向から押圧するラジアル鍛造機を用いたタービンブレード用素材の荒地成形に関連するものである。以下に荒地成形ついて説明する。説明の順序は、タービンブレード用の荒地を作製する場合の工程の順に、せぎり加工、鍛伸加工、曲り取りの順に行う。
先ず、せぎり加工に用いる金型について説明する。この金型の特徴は、一つの金型にせぎり粗加工部とせぎり仕上げ加工部を有するものであること、また、別な特徴は、せぎり粗加工部とせぎり仕上げ加工部を鍛造素材の周方向に並べて配置したことである。
図1はせぎり用熱間鍛造用金型1の正面図とその断面図である。「正面」とは、鍛造素材を鍛造する場合に鍛造素材が伸長する方向(長手方向)から見たときのものであり、「断面」とは正面図に示す位置にて、上記の長手方向(鍛造素材が伸長する方向)に垂直な方向から見たときのものである。なお、以下に説明する「せぎり用」及び「鍛伸用」の熱間鍛造用金型及び「曲り取り」金型においても「正面」、「断面」は前記と同じ方向から見たときの形態を示すものである。
せぎり用熱間鍛造用金型1は、図1の正面図及び図4右図(鍛造素材が伸長する方向から見たときの図)に示すように、鍛造素材を押圧してせぎり加工するせぎり用押圧部2(せぎり部5)が鍛造素材を鍛造する場合に鍛造素材の外周面を周方向に取り囲むように形成されている。せぎり加工する押圧部2は、図1の正面図のように、円弧状に窪んだ底部からその両側の押圧部同士の間隔が広がっていくような形状となっている。このような形状も「鍛造素材の外周面を周方向に取り囲むように」の範疇とする。
The present invention relates to wasteland forming of a material for turbine blades using a radial forging machine that presses from two opposite directions. Wasteland molding will be described below. The order of the description is the order of the steps for producing the wasteland for the turbine blades, in the order of cutting, forging, and bending.
First, the mold used for the cutting process will be described. The feature of this die is that one die has a roughened and finished roughened part, and another feature is that the roughened and finished roughened part is formed around the forged material. It was arranged side by side in the direction.
FIG. 1 is a front view and a cross-sectional view of the hot forging die 1 for cutting. The "front" is when the forged material is forged and is viewed from the direction in which the forged material extends (longitudinal direction), and the "cross section" is the position shown in the front view in the above-mentioned longitudinal direction (longitudinal direction). This is when viewed from the direction perpendicular to the direction in which the forged material extends). It should be noted that the "front" and "cross section" of the "forging" and "forging" hot forging dies and "curving" dies described below are also when viewed from the same direction as described above. It shows the morphology.
As shown in the front view of FIG. 1 and the right figure of FIG. 4 (the view when the forging material is viewed from the extending direction), the hot forging die 1 for shaving is forged by pressing the forging material. The squeeze pressing portion 2 (squeeze portion 5) is formed so as to surround the outer peripheral surface of the forged material in the circumferential direction when the forged material is forged. As shown in the front view of FIG. 1, the pressing portion 2 to be squeezed has a shape such that the distance between the pressing portions on both sides thereof increases from the bottom portion recessed in an arc shape. Such a shape is also included in the category of "surrounding the outer peripheral surface of the forged material in the circumferential direction".

また、前記のせぎり加工するせぎり用押圧部(略半円状押圧部と言うことがある)2がせぎり部5となり、前記押圧部はせぎり粗加工部3とせぎり仕上げ加工部4とを有し、せぎり粗加工部とせぎり仕上げ加工部とは連続して形成されている。図1には、せぎり用熱間鍛造用金型1のせぎり仕上げ加工部断面図(A−A断面図)、せぎり粗加工部断面図(C−C断面図)及び前記せぎり仕上げ加工部とせぎり粗加工部の間に位置する部分の断面図(B−B断面図)を示している。図1の断面図に示すように、せぎり用押圧部は断面が略半円状の凸形状を有しており、C−C断面図で示す位置からB−B断面図で示す位置までは、押圧部の曲率半径が徐々に大きくなって行き、B−B断面図からA−A断面図で示す位置(底部)までの曲率半径はほぼ同じとなるようにしている。なお、「せぎり仕上げ加工部」とは、前記のA−A断面図で示す位置(底部)を含んで、同じ曲率半径とするようにした場所をせぎり仕上げ加工部とする。そして、前述のせぎり粗加工部及びせぎり仕上げ加工部の稜線部分9が連続的に形成され、鍛造素材の外周面の周方向を取り囲むように形成されている。この稜線とは、押圧部の略半円状の凸状部の頂点を連続的に結んだ線のことである。この仕上げ加工部、粗加工部は鍛造素材を押圧することができるように凸形状となっている。 Further, the squeezing pressing portion (sometimes referred to as a substantially semicircular pressing portion) 2 to be squeezed becomes the shaving portion 5, and the pressing portion is the shaving roughing processing portion 3 and the shaving finishing processing portion 4. The rough-cut portion and the finish-cut portion are continuously formed. FIG. 1 shows a cross-sectional view (AA cross-sectional view) of a hot forging die 1 for shaving, a cross-sectional view of a rough-cut part (CC cross-sectional view), and the shaving finishing process. A cross-sectional view (BB cross-sectional view) of a portion located between the portion and the roughened portion is shown. As shown in the cross-sectional view of FIG. 1, the squeezing pressing portion has a convex shape having a substantially semicircular cross section, from the position shown in the CC cross-sectional view to the position shown in the BB cross-sectional view. , The radius of curvature of the pressing portion gradually increases, and the radius of curvature from the BB cross-sectional view to the position (bottom) shown in the AA cross-sectional view is made to be substantially the same. In addition, the "cutting finish processing part" includes a position (bottom part) shown in the above-mentioned AA cross-sectional view, and a place having the same radius of curvature is defined as a cutting finish processing part. Then, the ridgeline portion 9 of the above-mentioned roughened and finished portion is continuously formed, and is formed so as to surround the circumferential direction of the outer peripheral surface of the forged material. This ridge line is a line that continuously connects the vertices of the substantially semicircular convex portion of the pressing portion. The finish processing portion and the rough processing portion have a convex shape so that the forged material can be pressed.

せぎり用熱間鍛造用金型1において、せぎり仕上げ加工部4の略半円状の凸形状の曲率半径は、せぎり粗加工部3の略半円状の凸形状の曲率半径よりも10mm以上大きいことが好ましい。これは、鍛造素材が大型のタービンブレード用の荒地に加工するものであり、せぎり粗加工部よりもせぎり仕上げ加工部の接触面積を広げておく方が、大型(長尺)のタービンブレード用荒地形状に成形するのに好都合であるためである。また、別な理由として、せぎり仕上げ加工部の略半円状の凸形状の曲率半径が大きいと幅の広い加工溝の形成が容易となる。せぎりの鍛造後に行う鍛造素材の伸長を行う鍛造時にせぎりを行った場所のかぶり疵防止のために、せぎりで形成する加工溝の幅を広げておく方が望ましいためである。何れも、せぎり仕上げ加工部とせぎり粗加工部との曲率半径の差が10mm未満では、十分にその効果が得られない場合があるため、せぎり仕上げ加工部4の略半円状の凸形状の曲率半径は、せぎり粗加工部の略半円状の凸形状の曲率半径よりも10mm以上大きいものとすることが好ましい。15mm以上の差をもって形成するのがより好ましい。 In the hot forging die 1 for cutting, the radius of curvature of the substantially semicircular convex shape of the cutting finishing portion 4 is larger than the radius of curvature of the substantially semicircular convex shape of the cutting rough processing portion 3. It is preferably larger than 10 mm. This is because the forged material is processed into a wasteland for large turbine blades, and it is better to increase the contact area of the shaving finish processing part than for the shaving rough processing part for large (long) turbine blades. This is because it is convenient for molding into a wasteland shape. Further, as another reason, if the radius of curvature of the substantially semicircular convex shape of the shaving finish processed portion is large, it becomes easy to form a wide processed groove. This is because it is desirable to widen the width of the processing groove formed by the forging in order to prevent fog flaws at the place where the forging was performed during forging, in which the forged material is stretched after the forging of the forging. In either case, if the difference in radius of curvature between the shaving finish processing portion and the shaving rough processing portion is less than 10 mm, the effect may not be sufficiently obtained. Therefore, the substantially semicircular protrusion of the shaving finish processing portion 4 The radius of curvature of the shape is preferably 10 mm or more larger than the radius of curvature of the substantially semicircular convex shape of the roughened portion. It is more preferable to form with a difference of 15 mm or more.

図1に示すせぎり用熱間鍛造用金型1は2つで一対となり、例えば、図4に示すように熱間鍛造用金型1が鍛造素材21を挟み込むように前記鍛造素材の中心軸に向かって対向配置され、且つ、一対の2つの熱間鍛造用金型1が協動してせぎり加工を行う。
具体的には、図1で示すせぎり用熱間鍛造用金型が2つ1組(一対)となって、鍛造素材(図1では図示せず)を挟み込む凸形状の略半円状押圧部2を有しており、このせぎり用押圧部2で鍛造素材を挟み込むように押圧する。ラジアル鍛造機に備えられた把持機構により、鍛造素材は把持されると共に鍛造素材の間欠的な回転が行われることになる。せぎり加工開始段階では、C−C断面図からB−B断面図で示す凸状形状のせぎり粗加工部先端の稜線部分から鍛造素材にせぎり加工が開始され、次第にB−B断面図からA−A断面図で示す凸形状の仕上げ加工部でせぎり加工が順次行えるよう、凸形状のせぎり用押圧部が連続して形成されている。また、その稜線部分が前記鍛造素材の外周面を周方向に取り囲むように連続的に形成されることで、協働する2つの熱間鍛造用金型の押圧部に鍛造素材を挟み込みつつせぎり加工が行えるものである。
The two hot forging dies 1 for shaving shown in FIG. 1 form a pair. For example, as shown in FIG. 4, the central shaft of the forging material is such that the hot forging dies 1 sandwich the forging material 21. A pair of two hot forging dies 1 cooperate with each other to perform shaving.
Specifically, the hot forging dies for forging shown in FIG. 1 form a pair (pair), and a convex semicircular pressing that sandwiches the forging material (not shown in FIG. 1). It has a portion 2 and presses the forged material so as to be sandwiched between the pressing portion 2 for cutting. The forging material is gripped and the forging material is intermittently rotated by the gripping mechanism provided in the radial forging machine. At the start of shaving, the forged material is squeezed from the ridgeline at the tip of the convex roughened portion shown in the BB cross section from the CC cross section, and gradually A from the BB cross section. -A The convex ridge pressing portion is continuously formed so that the ridge processing can be sequentially performed on the convex finish processing portion shown in the cross-sectional view. Further, the ridge line portion is continuously formed so as to surround the outer peripheral surface of the forging material in the circumferential direction, so that the forging material is sandwiched between the pressing portions of the two cooperating hot forging dies. It can be processed.

前記のせぎり加工を詳細に説明すると、鍛造素材にせぎり粗加工部から鍛造を開始するときに、難加工性の鍛造素材であっても所定の深さの溝が形成可能なように、鍛造の初期段階では接触面積を少なくしたせぎり粗加工部にて効率よく溝加工が行えるようにしたものである。そして、鍛造が進んで行くと、押圧箇所が次第にせぎり仕上げ加工部に向かい、溝の幅を広げると共に、せぎりの形状を整えていく。もっとも、せぎり仕上げ加工部での熱間鍛造であっても、せぎりの深さに到達しない場合も考えられるため、せぎり仕上げ加工部も断面が略半円状の押圧部を形成して、できる限り接触面積を小さくすることで効率よくせぎり形状を整えるものである。
つまり、本発明で用いるタービンブレード用熱間鍛造材とするためのせぎり加工では、最初に曲率半径の小さなせぎり粗加工部3で効率よく溝加工を行い、その後、せぎり粗加工部3の曲率半径よりも大きい曲率半径を有するせぎり仕上げ加工部4でせぎりの最終形状に効率よく成形していくものである。そのため、せぎり粗加工部3では略半円状の押圧部から次第に曲率半径が大きくなる徐変部を形成しておき、せぎり仕上げ加工部4でせぎりの最終形状に成形することになる。
なお、実際の押圧部は、例えば肉盛溶接などで略半円状の凸部を形成したり、その後に手作業で形状を機械加工したりする場合もあるため、必ずしも同一曲率半径の凸部が形成されない場合がある。そのため、上記でいう「略半円状」とは、肉盛溶接や機械加工による誤差を含み、曲率を持った凸状のものであれば良く、その曲率半径はおおよその形状から求めれば良い。例えば、曲率半径は凸部を構成する曲面部分の、鍛造素材長手方向の幅と、鍛造長手方向に垂直な方向の曲面部分の高さから求めることができる。また、鍛造素材を押圧する部分が曲率を持った凸状であればよく、その押圧する部分の曲率半径を上述のように構成すればよい。
Explaining the above-mentioned forging in detail, when forging is started from the rough-processed portion of the forged material, the forging is performed so that a groove having a predetermined depth can be formed even if the forged material is difficult to process. At the initial stage, the groove processing can be efficiently performed in the roughed portion where the contact area is reduced. Then, as the forging progresses, the pressed portion gradually moves toward the finishing portion, widens the width of the groove, and adjusts the shape of the forging. However, even in the case of hot forging in the shaving finish processing part, it is possible that the depth of the shaving is not reached. Therefore, the shaving finishing processing part also forms a pressing part having a substantially semicircular cross section. By making the contact area as small as possible, the shape of the forging is efficiently adjusted.
That is, in the shaving process for using the hot forging material for turbine blades used in the present invention, first, the shaving rough processing section 3 having a small radius of curvature is efficiently grooved, and then the shaving rough machining section 3 The forging portion 4 having a radius of curvature larger than the radius of curvature efficiently forms the final shape of the forging. Therefore, a gradual change portion in which the radius of curvature gradually increases is formed from the substantially semicircular pressing portion in the shaving rough processing portion 3, and the shaving finishing processing portion 4 forms the final shape of the shaving. ..
It should be noted that the actual pressing portion may form a substantially semicircular convex portion by, for example, overlay welding, or the shape may be manually machined after that, so that the convex portion having the same radius of curvature is not necessarily present. May not be formed. Therefore, the above-mentioned "substantially semicircular shape" may be a convex shape having a curvature including an error due to overlay welding or machining, and the radius of curvature may be obtained from an approximate shape. For example, the radius of curvature can be obtained from the width of the curved surface portion forming the convex portion in the longitudinal direction of the forging material and the height of the curved surface portion in the direction perpendicular to the longitudinal direction of the forging. Further, the portion that presses the forging material may be convex with a curvature, and the radius of curvature of the pressing portion may be configured as described above.

この形状を有するせぎり加工用の熱間鍛造用金型1で鍛造素材を熱間鍛造すると、熱間鍛造用金型に形成された凸形状のせぎり粗加工部から鍛造素材に接触していき、次第に押圧箇所がせぎり仕上げ加工部に移動してせぎりに必要な溝を順次形成することができる。なお、本発明で言う「せぎり仕上げ加工部はせぎり粗加工部よりも曲率半径が大きい凸形状」とは、上記の各断面図の形状を指す。つまり、鍛造素材を鍛造する場合に鍛造素材の長手方向に相当する方向に垂直な方向から見たときの断面である。 When the forging material is hot forged with the hot forging die 1 for hot forging having this shape, the convex roughened portion formed in the hot forging die comes into contact with the forging material. , The pressed portion gradually moves to the forging finished portion, and the groove required for forging can be sequentially formed. In the present invention, the "convex shape in which the shaving finish processing portion has a larger radius of curvature than the shaving rough processing portion" refers to the shape of each of the above cross-sectional views. That is, when the forged material is forged, it is a cross section when viewed from a direction perpendicular to the direction corresponding to the longitudinal direction of the forged material.

上述の熱間鍛造用金型1はせぎり加工用に好適である。なお、図2(図1と同様の箇所には同じ符号を用いた)に示す別の例のせぎり加工用の熱間鍛造用金型のようにせぎり加工用の略半円状押圧部2を鍛造素材を鍛造する場合に鍛造素材の長手方向に相当する方向に沿って複数個形成しても良い。これは、例えば、2ヶ所同時にせぎり加工による加工溝を形成する場合、1つの金型に複数個のせぎり加工用のせぎり用押圧部2を形成しておく方が、生産性向上に有利であるからである。特に、タービンブレードに用いられる合金の材質は難加工性材であることから、熱間鍛造が可能な温度域内でできるだけ短時間で鍛造を終了させることが好ましいためである。この複数個所への同時せぎり加工は、タービンブレードの翼部に設けられるボス部となる部分に対して用いるのが有効である。
なお、この複数個所同時せぎり鍛造が可能となるのも、上述のように熱間鍛造用金型に形成する押圧部の接触面積が、小さな面積から次第に大きな面積となるようにして、それをラジアル鍛造機と組み合せて初めて実現できたものである。
この図2に示す構造の熱間鍛造用金型においても、E−E断面図で示す位置(底部)を含んで、同じ曲率半径を有する場所(F−F断面図の位置からE−E断面図の位置まで)をせぎり仕上げ加工部とする。
The above-mentioned hot forging die 1 is suitable for cutting. In addition, like the hot forging die for hot forging of another example shown in FIG. 2 (the same reference numerals are used for the same parts as in FIG. 1), the substantially semicircular pressing portion 2 for cutting is provided. When forging a forged material, a plurality of forged materials may be formed along a direction corresponding to the longitudinal direction of the forged material. For example, when forming a machining groove by cutting at two places at the same time, it is advantageous to form a plurality of cutting pressing portions 2 for cutting in one mold, which is advantageous for improving productivity. Because there is. In particular, since the alloy material used for the turbine blade is a difficult-to-process material, it is preferable to finish the forging in the shortest possible time within the temperature range where hot forging is possible. It is effective to use this simultaneous cutting to a plurality of places for a portion to be a boss portion provided on the blade portion of the turbine blade.
It should be noted that the reason why the simultaneous forging at a plurality of places is possible is that the contact area of the pressing portion formed in the hot forging die is gradually increased from a small area as described above. This was only possible in combination with a radial forging machine.
Also in the hot forging die having the structure shown in FIG. 2, a place having the same radius of curvature (from the position of the FF cross section to the EE cross section) including the position (bottom) shown in the EE cross section. (Up to the position shown in the figure) is used as the finishing part.

上記のせぎり鍛造終了後には鍛造素材を伸長して所定のタービンブレード用熱間鍛造材(荒地)形状とする。図3に鍛伸加工用の熱間鍛造用金型11を示す。
この伸長(鍛伸)する場合においても、対向する2方向から押圧するラジアル鍛造機を用いるものである。基本的な構成は前記のせぎり加工に適した熱間鍛造用金型と同じであり、この金型の特徴も前述したせぎり用の熱間鍛造用金型と同様、一つの金型に鍛伸粗加工部と鍛伸仕上げ加工部を有するものであること、また、別な特徴は、鍛伸粗加工部と鍛伸仕上げ加工部を鍛造素材の周方向に並べて配置したことである。鍛伸用の熱間鍛造用金型11についても、2つで1組(一対)となる。
鍛伸加工用の熱間鍛造用金型11は、図3の正面図及び図4右図(鍛造素材が伸長する方向から見たときの図)に示すように、鍛造素材を押圧して伸長する鍛伸加工する鍛伸用押圧部12(伸長部7)が鍛造素材の外周面を周方向に取り囲むように形成されている。鍛伸加工する鍛伸用押圧部12は、図3の正面図のように、円弧状に窪んだ底部からその両側の押圧部同士の間隔が広がっていくような形状となっている。
また、前記の鍛伸用押圧部(略台形状押圧部と言うことがある)12が伸長部7となり、前記押圧部は鍛伸粗加工部と鍛伸仕上げ加工部とを有し、鍛伸粗加工部と鍛伸仕上げ加工部とは連続して形成されている。図3の断面図には、鍛伸加工用熱間鍛造用金型11の鍛伸仕上げ加工部断面図(D−D断面図)、鍛伸粗加工面断面図(F−F断面図)及び前記鍛伸仕上げ加工部と鍛伸粗加工部の間に位置する断面図(E−E断面図)を示している。図3の断面図に示すように、鍛伸用押圧部の断面形状が略台形状の凸形状であり、鍛伸用押圧部の作業面(押圧面)は、その断面形状において略平坦状となっている。また、鍛伸用押圧部の作業面(押圧面)は、全体として湾曲した形状となっている。
そして、F−F断面図で示す位置の面幅W1からE−E断面図で示す位置の面幅W2までは、その幅(鍛造素材の長手方向における幅)が徐々に広がって行き、E−E断面図からD−D断面図で示す位置(底部)までの押圧面の幅はほぼ同じとしている。なお、本発明で言う「鍛伸仕上げ加工部」とは、前記のD−D断面図で示す位置(底部)を含んで、同じ押圧面の幅を有する場所を鍛伸仕上げ加工部とする。そして、前述の鍛伸粗加工部及び鍛伸仕上げ加工部とが連続的に形成され、鍛造素材の外周面の周方向を取り囲むように形成されている。この鍛伸仕上げ加工部、鍛伸粗加工部は鍛造素材を押圧することができるように凸形状となっている。また、後述するように、凸状の押圧部の一部に凹部を設けても良い。
After the above-mentioned forging is completed, the forging material is stretched to form a predetermined hot forging material (rough ground) shape for turbine blades. FIG. 3 shows a hot forging die 11 for forging.
Even in the case of this stretching (forging), a radial forging machine that presses from two opposite directions is used. The basic configuration is the same as the hot forging die suitable for cutting, and the characteristics of this die are also forged into one die, similar to the hot forging die for cutting described above. It has a roughing and forging finishing part, and another feature is that the roughening and forging part and the forging and finishing part are arranged side by side in the circumferential direction of the forging material. The hot forging dies 11 for forging also form a set (pair) of two.
The hot forging die 11 for forging is stretched by pressing the forging material as shown in the front view of FIG. 3 and the right view of FIG. 4 (viewed from the direction in which the forging material is stretched). The forging pressing portion 12 (extending portion 7) to be forged is formed so as to surround the outer peripheral surface of the forging material in the circumferential direction. As shown in the front view of FIG. 3, the forging pressing portion 12 to be forged has a shape such that the distance between the pressing portions on both sides thereof increases from the bottom portion recessed in an arc shape.
Further, the forging and stretching pressing portion (sometimes referred to as a substantially trapezoidal pressing portion) 12 serves as an extending portion 7, and the pressing portion has a forging roughing processing portion and a forging finish processing portion, and forging and stretching. The roughed portion and the forged finish processed portion are continuously formed. The cross-sectional view of FIG. 3 includes a cross-sectional view of a forged finish-processed portion (DD cross-sectional view) of a hot forging die 11 for forging, a cross-sectional view of a rough-forged surface (FF cross-sectional view), and A cross-sectional view (EE cross-sectional view) located between the forging finish processing portion and the forging rough processing portion is shown. As shown in the cross-sectional view of FIG. 3, the cross-sectional shape of the forging pressing portion is a substantially trapezoidal convex shape, and the working surface (pressing surface) of the forging pressing portion is substantially flat in its cross-sectional shape. It has become. Further, the working surface (pressing surface) of the forging pressing portion has a curved shape as a whole.
Then, from the surface width W1 at the position shown in the FF sectional view to the surface width W2 at the position shown in the EE sectional view, the width (width in the longitudinal direction of the forged material) gradually increases, and E- The width of the pressing surface from the E sectional view to the position (bottom) shown in the DD sectional view is almost the same. The "forging finish processing portion" referred to in the present invention is defined as a forging finish processing portion including a position (bottom portion) shown in the DD cross-sectional view and having the same width of the pressing surface. Then, the forged roughing processed portion and the forging finishing processed portion described above are continuously formed, and are formed so as to surround the circumferential direction of the outer peripheral surface of the forging material. The forged finish processed portion and the forged rough processed portion have a convex shape so that the forged material can be pressed. Further, as will be described later, a concave portion may be provided in a part of the convex pressing portion.

鍛伸用の熱間鍛造用金型11において、特定の幅を有する平坦状の鍛伸用押圧部も、鍛造の初期段階では接触面積を少なくして効率よく鍛伸して行き、その後、所定の形状に整えることが容易なように、鍛伸粗加工部13に形成された略平坦状の鍛伸用押圧部の面幅を狭くしておき、鍛伸仕上げ加工部14に形成された鍛伸用押圧部の面幅は前記鍛伸粗加工部13よりも広くする。
前記のように、鍛伸用の熱間鍛造用金型11は、鍛造素材を長手方向に伸長しつつ、形状を整えるものであるため、その鍛伸用押圧部は平坦状となる。この平坦状の鍛伸用押圧部の鍛造素材を鍛造する場合の鍛造素材の中心軸方向における幅(鍛造素材を鍛造する場合の鍛造素材の長手方向における幅)に相当する方向の幅を過度に広げると鍛造に要する圧力が大きくなってしまうことがある。そのため、1度の打撃で効率よく鍛伸できるように平坦状の鍛伸用押圧部の幅は接触面積を考慮し、鍛造機に適した幅を選択することが好ましい。
また、鍛伸仕上げ加工部14の押圧部の幅は、鍛伸粗加工部13の押圧部の幅よりも10mm以上広いことが好ましい。これは、接触面積の差を大きくすることで、鍛伸初期の加工量を大きくし、鍛伸後期で所定の形状に精度よく仕上げることが可能となるためである。鍛伸仕上げ加工部と鍛伸粗加工部との幅の差が10mm未満では、十分にその効果が得られない場合があるため、その差を10mm以上とすることが好ましい。15mm以上の差をもって形成するのがより好ましい。
なお、実際の鍛伸用押圧部は、例えば肉盛溶接などで補修を行ったり、その後に手作業で形状を機械加工したりする場合もあるため、必ずしも凹凸が殆ど無い平坦形状とならない場合がある。そのため、「平坦」とは、肉盛溶接や機械加工による誤差を含み、過剰な凹凸がないものであれば良い。少なくとも長手方向には湾曲しておらず、長手方向に平行であり、その形状はおおよその形状から求めれば良い。
In the hot forging die 11 for forging, the flat forging pressing portion having a specific width is also efficiently forged by reducing the contact area at the initial stage of forging, and then predetermined. The surface width of the substantially flat forging pressing portion formed in the forging roughing processing portion 13 is narrowed so that the shape can be easily adjusted to the above shape, and the forging formed in the forging finishing processing portion 14 is performed. The surface width of the stretching pressing portion is made wider than that of the forging and roughing processing portion 13.
As described above, since the hot forging die 11 for forging is for adjusting the shape while extending the forging material in the longitudinal direction, the forging pressing portion is flat. The width in the direction corresponding to the width in the central axis direction of the forging material when forging the forging material of the flat forging pressing portion (the width in the longitudinal direction of the forging material when forging the forging material) is excessively set. When unfolded, the pressure required for forging may increase. Therefore, it is preferable to select a width suitable for the forging machine in consideration of the contact area for the width of the flat forging pressing portion so that it can be forged efficiently with one striking.
Further, the width of the pressing portion of the forging finish processing portion 14 is preferably 10 mm or more wider than the width of the pressing portion of the forging rough processing portion 13. This is because by increasing the difference in contact area, it is possible to increase the amount of processing in the initial stage of forging and to accurately finish the shape into a predetermined shape in the later stage of forging. If the difference in width between the forged finish processed portion and the forged rough processed portion is less than 10 mm, the effect may not be sufficiently obtained. Therefore, the difference is preferably 10 mm or more. It is more preferable to form with a difference of 15 mm or more.
It should be noted that the actual pressing part for forging may not always have a flat shape with almost no unevenness because it may be repaired by overlay welding or the like and then the shape may be manually machined. is there. Therefore, "flat" may be any one that includes errors due to overlay welding and machining and does not have excessive unevenness. At least, it is not curved in the longitudinal direction and is parallel to the longitudinal direction, and the shape may be obtained from an approximate shape.

図3に示す鍛伸用の熱間鍛造用金型11は2つで一対となり、例えば、図4に示すように熱間鍛造用金型11が鍛造素材21を挟み込むように前記鍛造素材の中心軸に向かって対向配置され、且つ、一対の2つの熱間鍛造用金型11が協働して鍛伸加工を行う。
具体的には、図3で示す鍛伸用の熱間鍛造用金型が2つ1組(一対)となって、鍛造素材(図1では図示せず)を挟み込む凸形状の略台形状押圧部12を有しており、この鍛伸用押圧部で鍛造素材を挟み込むように押圧する。鍛造素材の鍛伸は、1組の鍛伸用の熱間鍛造用金型11が協働して鍛造素材(図示せず)の直径を細くするように、ラジアル鍛造機に備えられた把持機構により鍛造素材は把持されると共に、鍛造素材の回転が行われることになる。また、この鍛造素材の間欠的な回転と、把持された鍛造素材はその長手方向に移動して行き、鍛造素材の長手方向に伸長させる。
鍛伸加工開始段階では、F−F断面図からE−E断面図で示す凸状形状の押圧部により鍛造素材の鍛伸加工が開始され、次第にE−E断面図からD−D断面図で示す凸形状の仕上げ加工部で鍛伸加工が順次行えるよう、凸形状の押圧部が連続して形成されている。また、その作業面が平坦状で凸形状の押圧部が前記鍛造素材の外周面を周方向に取り囲むように連続的に形成されることで、協働する2つの熱間鍛造用金型の押圧部に鍛造素材を挟み込みことで鍛造素材の直径を小さくし、鍛造素材を長手方向に移動することで鍛造素材の長手方向も伸長させることができる。
The two hot forging dies 11 for forging shown in FIG. 3 form a pair. For example, as shown in FIG. 4, the center of the forging material is such that the hot forging dies 11 sandwich the forging material 21. Two pairs of hot forging dies 11 are arranged so as to face each other toward the shaft, and forging is performed in cooperation with each other.
Specifically, the hot forging dies for forging shown in FIG. 3 form a pair (pair), and press the convex substantially trapezoidal shape that sandwiches the forging material (not shown in FIG. 1). It has a portion 12, and the forging material is pressed so as to be sandwiched between the forging and stretching pressing portions. Forging of the forging material is performed by a gripping mechanism provided in the radial forging machine so that a set of hot forging dies 11 for forging work together to reduce the diameter of the forging material (not shown). As a result, the forged material is gripped and the forged material is rotated. Further, the intermittent rotation of the forging material and the gripped forging material move in the longitudinal direction thereof and extend in the longitudinal direction of the forging material.
At the start stage of forging, forging of the forging material is started by the convex pressing portion shown in the EE cross-sectional view from the FE cross-sectional view, and gradually from the EE cross-sectional view to the DD cross-sectional view. The convex pressing portion is continuously formed so that the forging process can be sequentially performed in the convex finishing processed portion shown. Further, the work surface is flat and the convex pressing portion is continuously formed so as to surround the outer peripheral surface of the forging material in the circumferential direction, thereby pressing the two cooperating hot forging dies. By sandwiching the forging material in the portion, the diameter of the forging material can be reduced, and by moving the forging material in the longitudinal direction, the longitudinal direction of the forging material can also be extended.

また、鍛伸用の熱間鍛造用金型においては、図9に示すように仕上げ加工部14に連続する箇所に逃げ面が成形されていることが好ましい。この逃げ面の傾斜θは15°〜35°の傾きを持っているのが好ましい。逃げ面は鍛造素材の送られてくる側に形成される面である。逃げ面は鍛造時に鍛造素材に転写され、次に行う鍛造時に転写された箇所(図9中の(A部))を鍛造することとなる。そのことによって鍛造素材にかぶり疵の発生を防止することができる。なお、図3は仕上げ加工部の両側に逃げ面が形成されている。この構造を持った熱間鍛造用金型を用いると、鍛造素材を往復させながら鍛伸することができる。例えば一方の方向のみから鍛造を行う場合は図9に示すように、鍛造素材が送られてくる側のみに、逃げ面を形成すれば良い。 Further, in the hot forging die for forging, it is preferable that a flank surface is formed at a portion continuous with the finishing processed portion 14 as shown in FIG. The inclination θ of the flank preferably has an inclination of 15 ° to 35 °. The flank is the surface formed on the side where the forged material is sent. The flank is transferred to the forging material at the time of forging, and the portion transferred at the time of the next forging ((part A) in FIG. 9) is forged. As a result, it is possible to prevent the forged material from being fogged. In FIG. 3, flanks are formed on both sides of the finished portion. When a hot forging die having this structure is used, the forging material can be forged while reciprocating. For example, when forging is performed from only one direction, as shown in FIG. 9, the flank surface may be formed only on the side to which the forged material is sent.

この形状を有する鍛伸加工用の熱間鍛造用金型11で鍛造素材を熱間鍛造すると、熱間鍛造用金型に形成された凸形状の粗加工部から鍛造素材に接触していき、鍛造素材を順次伸長しつつその直径を細く形成することができる。なお、「仕上げ加工部は、前記鍛造素材の中心軸方向に相当する方向の幅が、前記粗加工部における幅よりも広い凸形状」とは、上記の各断面図の形状を指す。つまり、前記鍛造素材を鍛造する場合の鍛造素材の長手方向に垂直な方向から見たときの断面である。
このせぎり加工と鍛伸加工とを行い、鍛造工程を終了させ、外径の異なる大径部と小径部とをそれぞれ1ヶ所以上形成してタービンブレード用熱間鍛造材とすることができる。
When the forging material is hot forged with the hot forging die 11 for forging having this shape, the convex rough-processed portion formed on the hot forging die comes into contact with the forging material. The forged material can be sequentially elongated and its diameter can be reduced. The "convex shape in which the width of the finishing processed portion in the direction corresponding to the central axis direction of the forged material is wider than the width of the rough processed portion" refers to the shape of each of the above cross-sectional views. That is, it is a cross section when viewed from a direction perpendicular to the longitudinal direction of the forged material when the forged material is forged.
The forging process and the forging process are performed to complete the forging process, and one or more large diameter portions and small diameter portions having different outer diameters can be formed at one or more locations to obtain a hot forging material for turbine blades.

次に、前記の鍛造工程の後、熱間鍛造材の中心軸に向かって対向配置された一対の曲り取り用金型により、熱間鍛造材の曲り取りを行う曲り取り工程について説明する。
上述したように、タービンブレードの材質はニッケル基の超耐熱合金や、チタン合金等の高価な合金であるため、熱間型打ち鍛造に用いられる熱間鍛造材の形状はできるだけ形状のばらつきが無い方が良い。素材形状にばらつきがあると、熱間型打鍛造時に欠肉等の不良が発生しやすくなるためである。そのため、形状のばらつきを低減させるために曲り取り(形状矯正)を行う。曲り取りを行う熱間鍛造材は、前記のせぎり加工と鍛伸を行った後の図5に示すように外径の異なる大径部23と小径部24とをそれぞれ1ヶ所以上形成されたものである。このうち、特に曲りが発生しやすい場所は、例えば、図5の両端部の大径部とそれに隣り合う小径部の間に位置する、せぎり加工を行った場所(首部25)である。
そのため、この曲り取り工程に用いる曲り取り用金型(熱間鍛造用金型)31としては、例えば、図10に示すように、熱間鍛造材の大径部と小径部とを同時に押圧する第一押圧部32と第二押圧部33とを有し、前記各押圧部は、前記熱間鍛造材の外周面を周方向に沿って取り囲むように形成されている形状のものである。なお、第一押圧部32は大径部の形状を矯正する部分であり、第二押圧部33は小径部の形状を矯正する部分であり、第一押圧部32と第二押圧部33との間の第三押圧部34は首部25の形状を矯正する部分である。
前記の本発明で用いる第一押圧部32と第二押圧部33とは、押圧するタービンブレード用熱間鍛造材の外周面に略同一形状の部分を有する。略同一形状とする部分は、各押圧部の底部35(図10のA−A断面を示す直線が通る場所に相当)の周辺である。なお、第三押圧部も前記第一、第二押圧部同様に押圧する鍛造材の外周面に略同一形状の部分を形成しておくのが好ましい。
Next, after the forging step, the bending step of bending the hot forging material by a pair of bending dies arranged to face each other toward the central axis of the hot forging material will be described.
As described above, since the material of the turbine blade is an expensive alloy such as a nickel-based super heat-resistant alloy or a titanium alloy, the shape of the hot forging material used for hot die forging does not vary as much as possible. Better. This is because if the material shape varies, defects such as lack of meat are likely to occur during hot die-forging. Therefore, bending (shape correction) is performed in order to reduce the variation in shape. The hot forging material to be bent is formed by forming one or more large diameter portions 23 and small diameter portions 24 having different outer diameters as shown in FIG. 5 after the above-mentioned cutting and forging. Is. Of these, the place where bending is particularly likely to occur is, for example, a place (neck 25) where the cutting process is performed, which is located between the large diameter portion at both ends of FIG. 5 and the small diameter portion adjacent thereto.
Therefore, as the bending die (hot forging die) 31 used in this bending process, for example, as shown in FIG. 10, the large diameter portion and the small diameter portion of the hot forging material are pressed at the same time. It has a first pressing portion 32 and a second pressing portion 33, and each pressing portion has a shape formed so as to surround the outer peripheral surface of the hot forged material along the circumferential direction. The first pressing portion 32 is a portion for correcting the shape of the large diameter portion, the second pressing portion 33 is a portion for correcting the shape of the small diameter portion, and the first pressing portion 32 and the second pressing portion 33 The third pressing portion 34 in between is a portion that corrects the shape of the neck portion 25.
The first pressing portion 32 and the second pressing portion 33 used in the present invention have substantially the same shape on the outer peripheral surface of the hot forging material for turbine blades to be pressed. The portion having substantially the same shape is around the bottom portion 35 of each pressing portion (corresponding to the place where the straight line showing the AA cross section of FIG. 10 passes). It is preferable that the third pressing portion also has substantially the same shape on the outer peripheral surface of the forging material to be pressed in the same manner as the first and second pressing portions.

前記の曲り取り工程に用いる曲り取り用金型31を用いた曲り取りは、例えば、図11の矢印で示すように、鍛造材を間欠回転させながら鍛造材の小径部から曲り取りを開始して、順次曲りを取りを行い、最終段階では大径部と小径部とを同時に熱間鍛造用金型31で押圧しつつ形状を矯正する。最終段階の曲り取り(形状矯正)時は、鍛造材の移動は行わず、間欠回転のみで最終形状に成形して荒地とする。なお、この曲り取り工程は、鍛造材を更に鍛伸するような加工ではない。勿論、不可避的に鍛造材が鍛伸される場合もある。 In the bending using the bending die 31 used in the bending step, for example, as shown by the arrow in FIG. 11, the bending is started from the small diameter portion of the forging material while the forging material is intermittently rotated. In the final stage, the large-diameter portion and the small-diameter portion are simultaneously pressed by the hot forging die 31 to correct the shape. At the final stage of bending (shape correction), the forged material is not moved and is formed into a final shape only by intermittent rotation to make a wasteland. It should be noted that this bending process is not a process for further forging the forged material. Of course, the forged material may be forged inevitably.

次に、一例として、50インチのタービンブレード用の荒地の熱間鍛造方法について説明する。
図4はラジアル鍛造機の一例を示す模式図である。ラジアル鍛造機には図1で示す熱間鍛造用金型1が取り付けられている。熱間鍛造用金型1は、鍛造素材21を挟み込んで鍛造するために鍛造素材の対面にそれぞれ1つずつ設けられている。図4では既に鍛造素材21がラジアル鍛造機に把持されているが、鍛造素材は加熱炉(図示せず)にて所定の熱間鍛造温度に加熱され、ラジアル鍛造機に取り付けられたものである。
加熱温度は鍛造素材の材質によって異なり、例えば、ニッケル基超耐熱合金であれば950〜1150℃であり、チタン合金であれば800〜1000℃である。この他、析出強化型ステンレス鋼では900〜1200℃である。また、鍛造素材の形状は棒状である。棒状の鍛造素材は、鍛造装置やプレス装置で所定の形状に整えたものであれば良く、もし、丸棒状であれば、その直径はせぎりが行える熱間鍛造用金型1の粗加工部同士の間隔と同等程度であることが好ましい。
そして、前述の鍛造素材のうち、所定の丸棒状鍛造素材をラジアル鍛造機に取り付けを行う。
Next, as an example, a hot forging method for wasteland for a 50-inch turbine blade will be described.
FIG. 4 is a schematic view showing an example of a radial forging machine. The hot forging die 1 shown in FIG. 1 is attached to the radial forging machine. One hot forging die 1 is provided on each side of the forging material in order to sandwich and forge the forging material 21. In FIG. 4, the forging material 21 is already gripped by the radial forging machine, but the forging material is heated to a predetermined hot forging temperature in a heating furnace (not shown) and attached to the radial forging machine. ..
The heating temperature varies depending on the material of the forged material, and is, for example, 950 to 1150 ° C. for a nickel-based superheat-resistant alloy and 800 to 1000 ° C. for a titanium alloy. In addition, the temperature is 900 to 1200 ° C. for precipitation reinforced stainless steel. The shape of the forged material is rod-shaped. The rod-shaped forging material may be a rod-shaped forging material that has been adjusted to a predetermined shape by a forging device or a pressing device, and if it is a round bar-shaped material, the roughing portion of the hot forging die 1 whose diameter can be cut. It is preferable that the distance between the two is about the same.
Then, among the above-mentioned forging materials, a predetermined round bar-shaped forging material is attached to the radial forging machine.

熱間鍛造は、加熱された鍛造素材21を回転させつつ、前記鍛造素材の中心軸に向かって対向配置された2つの熱間鍛造用金型1を1組(一対)とし、各押圧部で鍛造素材を押圧することにより、鍛造素材にせぎり加工を行う。なお、以下の説明において、粗加工部を用いた鍛造は粗加工鍛造であり、仕上げ加工部を用いた鍛造は仕上げ鍛造である。
せぎり加工を行う熱間鍛造用金型の形状は図1に示すものである。このせぎり加工時は、先ずせぎり加工用の熱間鍛造用金型1のせぎり粗加工部3から熱間鍛造が開始される。本発明で用いる熱間鍛造用金型1は、せぎり仕上げ加工部4の両側には、かかるせぎり仕上げ加工部4の底部に向かって傾斜したせぎり粗加工部3を有し、せぎり仕上げ加工部4からせぎり粗加工部3に向かってせぎり粗加工部同士の間隔が広がって行き、2つの熱間鍛造用金型1が鍛造素材の外周面を押圧したときに、連続して形成された略半円状の凸形状の略半円状押圧部によって所定の形状に成形できるようにするものである。また、最初に行うせぎり加工は、鍛造素材はその場で間欠回転する(鍛造素材の長手方向の移動は行わない)。
このせぎり加工時の加工方法としては2通りの方法がある。1つ目の方法として、せぎり加工終了後の形状重視の方法から説明する。
一対の熱間鍛造金型を用いて、対向する2方向からの熱間鍛造(せぎり加工)が開始されると、図6(A)に示すように、先ず、せぎり粗加工部3から鍛造素材の所定の位置の押圧が開始される。粗加工時の鍛造素材21と熱間鍛造用金型の接触(鍛造)位置を矢印で示している。そうすると、対向する2方向からの熱間鍛造でありながら、鍛造初期は協働して鍛造する2つ熱間鍛造用金型に形成されたせぎり粗加工部3が押圧を開始することから、鍛造開始時に鍛造素材を押圧している箇所は一対の熱間鍛造金型を合わせて4ヶ所である。この4ヶ所が同時にせぎり加工を開始すると、接触面積が小さいため効率よく溝加工を行っていく。そして、押圧箇所が順次せぎり仕上げ加工部に向かい、一対の熱間鍛造用金型に形成されたせぎり仕上げ加工部4で所定の形状に整えられていくことになる。仕上げ加工の最終段階では、図6(B)で示すように、鍛造素材21をせぎり仕上げ加工部4の底部で熱間鍛造を行うときは押圧箇所は一対の熱間鍛造金型を合わせて2ヶ所である。つまり、せぎり加工の初期段階では一対の熱間鍛造用金型を用いて4ヶ所の鍛造(せぎり加工)を行い、最後の形状調整時は一対の熱間鍛造用金型を用いて2ヶ所の鍛造により、形状を整えることができる。また、せぎり粗加工部3よりも曲率半径が大きい凸形状のせぎり仕上げ加工部4で最終形状に効率よく成形することができる。しかも、矢印で示した仕上げ加工部の底部の形状で最終的な形状に整えることが可能であるため、最終仕上げ形状を重視する場合には好都合である。
In the hot forging, while rotating the heated forging material 21, two hot forging dies 1 arranged to face each other toward the central axis of the forging material are made into one set (pair), and each pressing portion is used. By pressing the forged material, the forged material is squeezed. In the following description, forging using the roughing portion is roughing forging, and forging using the finishing portion is finish forging.
The shape of the hot forging die for shaving is shown in FIG. At the time of this cutting, hot forging is first started from the roughing portion 3 of the hot forging die 1 for cutting. The hot forging die 1 used in the present invention has a shaving rough processing portion 3 inclined toward the bottom of the shaving finishing processing portion 4 on both sides of the shaving finishing processing portion 4. When the gap between the roughing parts is widened from the finishing part 4 toward the roughing part 3, and the two hot forging dies 1 press the outer peripheral surface of the forging material, they are continuous. It is possible to form a predetermined shape by a substantially semicircular convex pressing portion having a substantially semicircular shape. In addition, the forged material is intermittently rotated on the spot in the first cutting process (the forged material is not moved in the longitudinal direction).
There are two processing methods at the time of this cutting. As the first method, a method of emphasizing the shape after finishing the cutting process will be described.
When hot forging (grinding) is started from two opposite directions using a pair of hot forging dies, first, as shown in FIG. 6 (A), the rough forging portion 3 is used. Pressing of the forged material at a predetermined position is started. The contact (forging) position between the forging material 21 and the hot forging die during roughing is indicated by an arrow. Then, although hot forging is performed from two opposite directions, the rough forging portion 3 formed in the two hot forging dies that are forged in cooperation at the initial stage of forging starts pressing. There are four places where the forging material is pressed at the start, including a pair of hot forging dies. When these four locations start the cutting process at the same time, the groove processing is performed efficiently because the contact area is small. Then, the pressed portions are sequentially directed to the shaving finish processing portion, and the shaving finishing processing portion 4 formed in the pair of hot forging dies is adjusted to a predetermined shape. At the final stage of the finishing process, as shown in FIG. 6 (B), when the forging material 21 is hot-forged at the bottom of the finishing processing section 4, the pressing points are a pair of hot forging dies. There are two places. In other words, at the initial stage of shaving, forging (forging) is performed at four locations using a pair of hot forging dies, and at the final shape adjustment, using a pair of hot forging dies 2 The shape can be adjusted by forging in several places. In addition, the convex finishing processing portion 4 having a radius of curvature larger than that of the rough processing portion 3 can efficiently form the final shape. Moreover, since the shape of the bottom of the finishing portion indicated by the arrow can be adjusted to the final shape, it is convenient when the final finishing shape is emphasized.

もう一つの方法は、加工時間を短時間とする場合に適用する方法である。
一対の熱間鍛造金型を用いて、対向する2方向からの熱間鍛造が開始されると、図7(A)に示すように、先ず、せぎり粗加工部3から鍛造素材の所定の位置の押圧が開始される。粗加工時の鍛造素材21と熱間鍛造用金型の接触(鍛造)位置を矢印で示している。そうすると、対向する2方向からの熱間鍛造でありながら、鍛造初期は協働して鍛造する2つ熱間鍛造用金型に形成されたせぎり粗加工部3が押圧を開始することから、鍛造開始時に鍛造素材を押圧している箇所は一対の熱間鍛造金型を合わせて4ヶ所である。この4ヶ所が同時にせぎり加工を開始すると、接触面積が小さいため効率よく溝加工を行っていく。そして、順次仕上げ加工部に向かって熱間鍛造を行い、一対の熱間鍛造用金型に形成されたせぎり仕上げ加工部4で所定の形状に整えられていくことになる。
前述のように、B−B断面図からA−A断面図で示す位置(底部)までの曲率半径はほぼ同じとしていることから、せぎり仕上げ加工部4の底部まで使用する仕上げ加工は行わず、図7(B)に示すように、仕上げ加工時も押圧する箇所を4ヶ所として仕上げ加工を終了させる。この場合であっても、せぎり粗加工部3よりも曲率半径が大きい凸形状のせぎり仕上げ加工部4で最終形状に効率よく成形することができ、且つ、押圧箇所を4ヶ所とすることで短時間でせぎり加工が行える。そのため、鍛造時間を短時間としたい場合には好都合である。
なお、この鍛造時間重視の方法を用いる場合、せぎり仕上げ加工部の底部(A−A断面図で示す位置)の曲率半径(図7で示す鍛造素材の長手方向に垂直方向から見たときの曲率半径)をせぎり加工した後の鍛造素材の直径の曲率半径よりも小さくすることが重要である。但し、せぎり仕上げ加工部の底部は湾曲した形状としておき、熱間鍛造時に過度な応力集中を避けるようにすると良い。
The other method is a method applied when the processing time is short.
When hot forging is started from two opposite directions using a pair of hot forging dies, first, as shown in FIG. 7 (A), a predetermined forging material is first determined from the roughened portion 3. Position pressing is started. The contact (forging) position between the forging material 21 and the hot forging die during roughing is indicated by an arrow. Then, although hot forging is performed from two opposite directions, the rough forging portion 3 formed in the two hot forging dies that are forged in cooperation at the initial stage of forging starts pressing. There are four places where the forging material is pressed at the start, including a pair of hot forging dies. When these four locations start the cutting process at the same time, the groove processing is performed efficiently because the contact area is small. Then, hot forging is sequentially performed toward the finishing processing portion, and the shaving finishing processing portion 4 formed in the pair of hot forging dies is adjusted to a predetermined shape.
As described above, since the radius of curvature from the BB cross-sectional view to the position (bottom) shown in the AA cross-sectional view is almost the same, the finishing process to be used up to the bottom of the shaving finishing processing section 4 is not performed. , As shown in FIG. 7B, the finishing process is completed with four points to be pressed during the finishing process. Even in this case, it is possible to efficiently form the final shape in the convex finish processing portion 4 having a radius of curvature larger than that of the rough processing portion 3, and by setting the number of pressing points to four. Curvature processing can be performed in a short time. Therefore, it is convenient when the forging time is desired to be short.
When this method of emphasizing the forging time is used, the radius of curvature of the bottom portion (position shown in the AA cross-sectional view) of the forging finish processing portion (when viewed from the direction perpendicular to the longitudinal direction of the forged material shown in FIG. 7). It is important that the radius of curvature) be smaller than the radius of curvature of the diameter of the forged material after it has been trimmed. However, it is advisable to keep the bottom of the shaving finish processed portion in a curved shape so as to avoid excessive stress concentration during hot forging.

前記のせぎり加工が終了すると、熱間鍛造用金型1を鍛伸用押圧部を有する熱間鍛造用金型11に交換する。この熱間鍛造用金型の交換時においては、鍛造素材を再度所定の鍛造温度に再加熱することができる。
交換した熱間鍛造用金型11は、前記鍛造素材を伸長する鍛伸用押圧部を有する伸長部7が設けられている。鍛伸用押圧部は、図3に示す形状を有するものである。この鍛伸用押圧部を有する熱間鍛造用金型11の、鍛造素材の長手方向から見た押圧部の形状も、図6(A)に示す前記せぎり加工を行った熱間鍛造用金型1と同様であるため、対向する2方向からの熱間鍛造が開始されると、先ず、鍛伸粗加工部13から鍛造素材の所定の位置の押圧が開始される。そうすると、対向する2方向からの熱間鍛造でありながら、鍛伸(鍛造)初期は協働して鍛造する2つ(一対)の熱間鍛造用金型に形成された鍛伸粗加工部13が押圧を開始することから、鍛造開始時に鍛造素材を押圧している箇所は一対の熱間鍛造金型を合わせて4ヶ所である。この4ヶ所が同時に鍛伸を開始すると、接触面積が小さいため効率よく鍛造素材を伸長していく。そして、鍛造素材はラジアル鍛造機によって間欠回転しつつ鍛造素材の長手方向に順次移動されて、押圧箇所が順次鍛伸仕上げ加工部に向かうように熱間鍛造を行い、一対の熱間鍛造用金型に形成された鍛伸仕上げ加工部で所定のタービンブレード用熱間鍛造材の形状に整えられていくことになる。
つまり、仕上げ加工の最終段階では、図6(B)で示すように、鍛伸仕上げ加工部14で熱間鍛造を行うときは押圧箇所は一対の熱間鍛造金型を合わせて2ヶ所である。この鍛伸仕上げ加工部の底部の形状で最終的な形状に整える方法は、最終仕上げ形状を重視する場合には好都合である。
また、この鍛伸用押圧部による熱間鍛造においても、熱間鍛造時間を短時間にするには図7のように、熱間鍛造初期から熱間鍛造の最終段階まで押圧箇所を4ヶ所とすることで短時間で鍛造素材を伸長することができる。
When the cutting process is completed, the hot forging die 1 is replaced with a hot forging die 11 having a forging pressing portion. When the hot forging die is replaced, the forging material can be reheated to a predetermined forging temperature.
The replaced hot forging die 11 is provided with an extension portion 7 having a forging pressing portion for extending the forging material. The forging pressing portion has the shape shown in FIG. The shape of the pressing portion of the hot forging die 11 having the forging pressing portion as seen from the longitudinal direction of the forging material is also the shape of the hot forging die subjected to the cutting process shown in FIG. 6 (A). Since it is the same as the die 1, when hot forging is started from two opposing directions, first, the forging roughing processing portion 13 starts pressing the forging material at a predetermined position. Then, although the hot forging is performed from two opposite directions, the forging rough processing portion 13 formed on the two (pair) hot forging dies that are forged in cooperation at the initial stage of forging (forging). Starts pressing, so there are four locations where the forging material is pressed at the start of forging, including a pair of hot forging dies. When these four locations start forging at the same time, the forged material is efficiently stretched because the contact area is small. Then, the forging material is sequentially moved in the longitudinal direction of the forging material while intermittently rotating by the radial forging machine, and hot forging is performed so that the pressing points are sequentially directed to the forging finish processing portion, and a pair of hot forging dies. The forged finish processed portion formed in the mold is adjusted to the shape of a predetermined hot forging material for turbine blades.
That is, at the final stage of the finishing process, as shown in FIG. 6B, when the forging finishing processing section 14 performs hot forging, there are two pressing points including the pair of hot forging dies. .. This method of adjusting the shape of the bottom of the forged finish processed portion to the final shape is convenient when the final finish shape is emphasized.
Further, even in the hot forging by the forging pressing portion, in order to shorten the hot forging time, as shown in FIG. 7, four pressing points are provided from the initial stage of the hot forging to the final stage of the hot forging. By doing so, the forged material can be stretched in a short time.

また、前記の鍛伸用押圧部を有する熱間鍛造用金型において、図8に示す形状とすることができる。図8(図3と同様の箇所には同じ符号を用いた)に示す熱間鍛造用金型11は、その仕上げ加工部14の幅(鍛造素材を鍛造する場合の鍛造素材の長手方向における幅)内の底部から鍛伸粗加工部に向かって凹部8が形成され、前記凹部8により、前記鍛伸仕上げ加工部の押圧部が鍛造素材の長手方向で2ヶ所に分かれている。凹部は鍛伸仕上げ加工部14の幅内に1つ以上形成し、仕上げ加工部の押圧部を2つ以上に分けることで鍛伸時の鍛造用素材の曲りをより確実に防止することができる。図8に示す熱間鍛造用金型を用いて熱間鍛造していくと、A−A断面で示す鍛伸仕上げ加工部の底部にて最終段階の鍛造が行える。鍛造用素材が押圧された瞬間においては、鍛伸仕上げ加工部によって押圧されている部分と、その鍛伸仕上げ加工部によって押圧されている部分に隣り合う押圧されいない部分が生じている。押圧された部分の肉が押圧されていない部分に流れ、その肉が流れることにより、僅かであるが鍛造用素材の断面が楕円となることがある。楕円となった鍛造素材は鍛造中に曲りを生じやすくなる。しかし、図8の熱間鍛造用金型の構造によれば、凹部によって押圧部(仕上げ加工部)が分けられていることから、最初に押圧した場所がラジアル鍛造によって鍛造素材が間欠的に回転して、次の押圧部によって仕上げ鍛造される。このとき、図8の構造では、合計4ヶ所で押圧されているため、上述のとおり次の押圧部によって楕円を矯正しつつ曲りも矯正できるものである。なお、凹部の形成箇所は仕上げ加工部の底部(図8のA−Aで示す直線が接している箇所)を含むように形成することで曲り防止の効果を最大限発揮できる。 Further, in the hot forging die having the forging pressing portion, the shape shown in FIG. 8 can be obtained. The hot forging die 11 shown in FIG. 8 (the same reference numerals are used for the same parts as those in FIG. 3) is the width of the finishing portion 14 (the width in the longitudinal direction of the forging material when the forging material is forged). A recess 8 is formed from the bottom of the) toward the forged roughing processed portion, and the pressing portion of the forged finishing processed portion is divided into two places in the longitudinal direction of the forging material by the recess 8. By forming one or more recesses within the width of the forging finish processing portion 14 and dividing the pressing portion of the finish processing portion into two or more, it is possible to more reliably prevent bending of the forging material during forging. .. When hot forging is carried out using the hot forging die shown in FIG. 8, the final stage forging can be performed at the bottom of the forging finish processing portion shown in the AA cross section. At the moment when the forging material is pressed, there is a portion pressed by the forging finish processing portion and a non-pressed portion adjacent to the portion pressed by the forging finishing processing portion. The flesh of the pressed portion flows to the unpressed portion, and the flesh flows, so that the cross section of the forging material may be slightly elliptical. The elliptical forged material is likely to bend during forging. However, according to the structure of the hot forging die of FIG. 8, since the pressing portion (finishing portion) is divided by the recess, the forging material is intermittently rotated by radial forging at the first pressed portion. Then, finish forging is performed by the next pressing portion. At this time, in the structure of FIG. 8, since the pressing is performed at a total of four places, the ellipse can be corrected and the bending can be corrected by the following pressing portions as described above. It should be noted that the effect of preventing bending can be maximized by forming the recessed portion so as to include the bottom portion of the finished portion (the portion where the straight line shown by AA in FIG. 8 is in contact).

上記のせぎり加工と鍛伸加工を施して得られたタービンブレード用熱間鍛造材に対して、曲り取り(形状矯正)を行う。曲り取り(形状矯正)は、図10に示すように、タービンブレード用熱間鍛造材の大径部と小径部とを同時に押圧する第一押圧部と第二押圧部とを有し、前記各押圧部は、前記鍛造材の外周面を周方向に沿って取り囲むように形成されている形状のものである。前記の第一押圧部と第二押圧部とは、押圧するタービンブレード用熱間鍛造材の外周面に略同一形状の押圧面として、曲り取り(形状矯正)を行って、曲りの少ない荒地を再現性良く得ることができる。
このようにして、せぎりから鍛伸、そして曲り取りへと同じラジアル鍛造機を用いて連続して鍛造素材を所定の荒地形状に熱間鍛造を行って荒地とすることができるため、従来のようなせぎり用の治具を用いた後に、別な鍛造機であらためて鍛伸を行う煩雑な工程を省略できる。そのため、再加熱回数を低減できるにもかかわらず、精度の高いタービンブレード用の荒地を製造することが可能となる。
The hot forged material for turbine blades obtained by performing the above-mentioned shaving and forging processing is bent (shape-corrected). As shown in FIG. 10, the bending (shape correction) has a first pressing portion and a second pressing portion that simultaneously press the large diameter portion and the small diameter portion of the hot forging material for turbine blades, and each of the above-mentioned The pressing portion has a shape formed so as to surround the outer peripheral surface of the forged material along the circumferential direction. The first pressing portion and the second pressing portion are pressed surfaces having substantially the same shape on the outer peripheral surface of the hot forging material for turbine blades to be pressed, and are bent (shape-corrected) to remove rough terrain with little bending. It can be obtained with good reproducibility.
In this way, the forging material can be continuously hot forged into a predetermined wasteland shape using the same radial forging machine from cutting to forging and bending to make a wasteland. After using such a jig for forging, it is possible to omit the complicated process of forging again with another forging machine. Therefore, although the number of reheatings can be reduced, it is possible to manufacture a wasteland for turbine blades with high accuracy.

本発明によれば、タービンブレードに使用される難加工性材であっても、ラジアル鍛造機を用いて容易に曲り取りを行うことができる。また、鍛造工程後に曲り取りの形状矯正を行うことから、形状のばらつきの少ない荒地を再現性良く得ることができる。また、前例のないラジアル鍛造機を用いた熱間鍛造方法によれば、鍛造材の再加熱の回数を飛躍的に低減させることができ、生産性を向上させ、省エネルギーにも極めて有効となる。 According to the present invention, even a difficult-to-process material used for a turbine blade can be easily bent by using a radial forging machine. In addition, since the shape of the bend is corrected after the forging process, it is possible to obtain a wasteland with little variation in shape with good reproducibility. Further, according to the hot forging method using an unprecedented radial forging machine, the number of times of reheating of the forged material can be dramatically reduced, the productivity is improved, and the energy saving is extremely effective.

(実施例1)
図2に示す熱間鍛造用金型1を一対用意した。なお、粗加工部を用いた鍛造は粗加工鍛造であり、仕上げ加工部を用いた鍛造は仕上げ鍛造である。
用意したせぎり加工用の熱間鍛造用金型1のせぎり部5は、鍛造素材を挟み込むための一対のせぎり用押圧部を有し、せぎり用押圧部は鍛造素材を取り囲むように連続した、断面が略半円状の凸形状をなし、せぎり用押圧部は、せぎり粗加工部と、該せぎり粗加工部よりも曲率半径が大きい凸形状のせぎり仕上げ加工部とを有するものである。せぎり粗加工部13の略半円状の凸形状の曲率半径は30mmとし、せぎり仕上げ加工部14の略半円状の凸形状の曲率半径は50mmとし、その間は徐変するものであった。
また、せぎり加工後に鍛造素材を伸長する熱間鍛造用金型11の伸長部7に設けられた鍛伸用押圧部は、押圧部が平坦状に形成されたものであり、その形状は図3に示すものである。鍛伸用の伸長部7は、鍛造素材を挟み込むための一対の押圧部12を有し、押圧部12は鍛造素材を取り囲むように連続した、断面が略台形状の凸形状をなし、鍛伸用押圧部12は、作業面が略平坦状の鍛伸粗加工部13と、仕上げ加工部14とを有するものである。鍛伸用押圧部の幅は粗加工部13を50mmとし、仕上げ加工部14を100mmとし、その間は除変するものであり、最終形状を重視した形状を有する熱間鍛造用金型を用いて行った。
上記の熱間鍛造用金型を2つ1組で一対としてラジアル鍛造機に取り付けて熱間鍛造の準備を行った。
(Example 1)
A pair of hot forging dies 1 shown in FIG. 2 were prepared. The forging using the roughing portion is roughing forging, and the forging using the finishing portion is finish forging.
The prepared cutting portion 5 of the hot forging die 1 for cutting has a pair of pressing portions for cutting for sandwiching the forging material, and the pressing portions for cutting are continuous so as to surround the forging material. , The cross section has a substantially semicircular convex shape, and the forging pressing portion has a forging roughing portion and a convex forging finishing portion having a radius of curvature larger than that of the forging roughing portion. Is. The radius of curvature of the substantially semicircular convex shape of the shaving rough processing portion 13 is 30 mm, and the radius of curvature of the substantially semicircular convex shape of the shaving finishing processing portion 14 is 50 mm, and the radius of curvature is gradually changed during that period. It was.
Further, the forging pressing portion provided in the extending portion 7 of the hot forging die 11 for extending the forging material after the cutting process has the pressing portion formed flat, and the shape thereof is shown in FIG. It is shown in 3. The forging extension portion 7 has a pair of pressing portions 12 for sandwiching the forging material, and the pressing portion 12 has a substantially trapezoidal convex cross section so as to surround the forging material and forging. The pressing portion 12 has a forging and roughing processing portion 13 having a substantially flat work surface and a finishing processing portion 14. The width of the forging pressing portion is 50 mm for the roughing portion 13 and 100 mm for the finishing processing portion 14, and the width is displaced between them. Using a hot forging die having a shape that emphasizes the final shape. went.
The hot forging dies were attached to the radial forging machine as a pair in pairs to prepare for hot forging.

50インチタービンブレード用の鍛造素材を950℃に加熱された加熱炉で加熱を行った。鍛造素材はチタン合金であり、その寸法は直径がφ200mm、長さが1100mmであった。
鍛造素材を加熱炉から取り出して、ラジアル鍛造機で熱間鍛造を開始した。なお、鍛造素材は、マニプレータで把持して操作した。
熱間鍛造は、まず、加熱された鍛造素材21を間欠回転と、対向配置された2つの熱間鍛造用金型1のせぎり用押圧部で鍛造素材の外周面の押圧を繰り返すことにより、鍛造素材にせぎり加工を行った。最初に行うせぎり加工は、鍛造素材はその場で回転(鍛造素材の長手方向の移動は行わない)しつつ、所定の形状に熱間鍛造した。図2に示すように1つの金型に複数個のせぎり加工用の押圧部2が形成された金型を使用し、2ヶ所同時にせぎりを行った。せぎり加工時は、鍛造素材の押圧場所を粗加工部から徐々に仕上げ加工部に移動するように行った。
前記のせぎり加工の終了後、鍛伸用押圧部を有する図3に示す熱間鍛造用金型11に交換した。このとき、鍛造素材はラジアル鍛造機から取り外して、再度所定の鍛造温度に再加熱行った。鍛伸用押圧部を有する熱間鍛造用金型11に交換終了後に再度鍛造素材をラジアル鍛造機に取り付けて鍛伸用押圧部による熱間鍛造を行った。鍛造素材はラジアル鍛造機によって間欠回転と長手方向への順次移動と押圧を繰返しながら所定の形状に整えて荒地形状に熱間鍛造した。この鍛伸加工は、鍛造素材の押圧場所を粗加工部から徐々に仕上げ加工部に移動するように行った。熱間鍛造後のタービンブレード用熱間鍛造材は、根部、翼部、ボス部の成形に好適な図5に示すような形状であった。熱間鍛造後のタービンブレード用熱間鍛造材には、特にかぶり疵等の問題も発生しなかった。
最後に曲り取り(形状矯正)工程を図10に示す曲り取り用金型を用いて行った。曲り取り用金型の第一押圧部と第二押圧部とは、押圧するタービンブレード用熱間鍛造材の外周面に略同一形状の押圧面としたものを準備し、ラジアル鍛造機を用いて間欠的な押圧を繰返し、曲り取り(形状矯正)を行った。このときは、図11に示すように、タービンブレード用熱間鍛造材の小径部から曲り取り(形状矯正)を開始して順次曲り取り(形状矯正)を行いながら第三押圧部と首部が接触した時点で、タービンブレード用熱間鍛造材の移動を停止して、間欠回転のみとして第一、第二及び第三押圧部により曲り取りを行って形状を最終形状に整えて荒地とした。曲り取り後の荒地の小径部及び大径部の直径は、曲り取り前の直径と比較して変化は殆ど無かった。曲り取り(形状矯正)後のタービンブレード用の荒地は殆ど曲り等の形状不良は見られなかった。
The forged material for the 50-inch turbine blade was heated in a heating furnace heated to 950 ° C. The forged material was a titanium alloy, the dimensions of which were φ200 mm in diameter and 1100 mm in length.
The forging material was taken out of the heating furnace and hot forging was started with a radial forging machine. The forged material was gripped and operated by a manipulator.
In hot forging, first, the heated forging material 21 is intermittently rotated, and the outer peripheral surface of the forging material is repeatedly pressed by the pressing portions of the two hot forging dies 1 arranged opposite to each other. The material was forged. In the first forging process, the forged material was hot-forged into a predetermined shape while rotating on the spot (the forged material was not moved in the longitudinal direction). As shown in FIG. 2, a die in which a plurality of pressing portions 2 for cutting was formed in one die was used, and cutting was performed at two locations at the same time. At the time of shaving, the pressing location of the forged material was gradually moved from the roughing portion to the finishing portion.
After the completion of the cutting process, the die was replaced with a hot forging die 11 shown in FIG. 3 having a forging pressing portion. At this time, the forging material was removed from the radial forging machine and reheated to a predetermined forging temperature. After the replacement was completed with the hot forging die 11 having the forging pressing portion, the forging material was attached to the radial forging machine again and hot forging was performed by the forging pressing portion. The forged material was hot-forged into a wasteland shape by adjusting it to a predetermined shape while repeating intermittent rotation, sequential movement in the longitudinal direction, and pressing with a radial forging machine. In this forging process, the pressing location of the forged material was gradually moved from the rough processed portion to the finished processed portion. The hot forged material for turbine blades after hot forging had a shape as shown in FIG. 5, which is suitable for forming roots, blades, and bosses. The hot forged material for turbine blades after hot forging did not have any problems such as fog defects.
Finally, the bending (shape correction) step was performed using the bending mold shown in FIG. For the first pressing part and the second pressing part of the bending die, a pressing surface having substantially the same shape is prepared on the outer peripheral surface of the hot forging material for the turbine blade to be pressed, and a radial forging machine is used. Intermittent pressing was repeated to perform bending (shape correction). At this time, as shown in FIG. 11, the third pressing portion and the neck portion come into contact with each other while starting bending (shape correction) from the small diameter portion of the hot forging material for turbine blades and sequentially performing bending (shape correction). At that point, the movement of the hot forging material for the turbine blade was stopped, and bending was performed by the first, second, and third pressing portions only for intermittent rotation, and the shape was adjusted to the final shape to make a wasteland. The diameters of the small and large diameter parts of the wasteland after bending were almost unchanged as compared with the diameters before bending. There was almost no shape defect such as bending in the wasteland for turbine blades after bending (shape correction).

(実施例2)
実施例2として、図8の熱間鍛造用金型の効果を確認した。用いたせぎり用の熱間鍛造用金型は前記の実施例1と同じである。
実施例2として、図8の熱間鍛造用金型11の効果を確認した。図8に示す熱間鍛造用金型は、鍛伸用の伸長部7は、鍛造素材を挟み込むための一対の鍛伸用押圧部12を有し、鍛伸用押圧部12は鍛造素材を取り囲むように連続した、断面が略台形状の凸形状をなし、鍛伸用押圧部12は、作業面が略平坦状の鍛伸粗加工部13と、鍛伸仕上げ加工部14とを有するものである。鍛伸用押圧部の幅は粗加工部13を50mmとし、仕上げ加工部14を120mmとし、その間は除変するものであり、その仕上げ加工部の中央に幅が50mmの凹部を形成し、仕上げ加工部の押圧部を2つにしたものである。なお、2つに分けた押圧部の幅はそれぞれ35mmであった。また、用いたせぎり用の熱間鍛造用金型は前述の実施例1と同じである。
(Example 2)
As Example 2, the effect of the hot forging die shown in FIG. 8 was confirmed. The hot forging die used for cutting is the same as in Example 1 above.
As Example 2, the effect of the hot forging die 11 of FIG. 8 was confirmed. In the hot forging die shown in FIG. 8, the forging extension portion 7 has a pair of forging pressing portions 12 for sandwiching the forging material, and the forging pressing portion 12 surrounds the forging material. As described above, the forging pressing portion 12 having a substantially trapezoidal convex shape in cross section has a forging roughing portion 13 having a substantially flat work surface and a forging finishing machining portion 14. is there. The width of the forging pressing portion is 50 mm for the roughing portion 13 and 120 mm for the finishing processed portion 14, and the width is displaced between them. A recess having a width of 50 mm is formed in the center of the finishing processed portion for finishing. It has two pressing parts of the processed part. The width of the pressing portion divided into two was 35 mm, respectively. Further, the hot forging die used for cutting is the same as that of the first embodiment described above.

50インチタービンブレード用の鍛造素材を950℃に加熱された加熱炉で加熱を行った。鍛造素材はチタン合金であり、その寸法は直径がφ200mm、長さが1100mmであった。
鍛造素材を加熱炉から取り出して、ラジアル鍛造機で熱間鍛造を開始した。なお、鍛造素材は、マニプレータで把持して操作した。
熱間鍛造は、まず、加熱された鍛造素材21を間欠回転と、対向配置された2つの熱間鍛造用金型1のせぎり用押圧部で鍛造素材の外周面の押圧を繰り返すことにより、鍛造素材にせぎり加工を行った。最初に行うせぎり加工は、鍛造素材はその場で回転(鍛造素材の長手方向の移動は行わない)しつつ、所定の形状に熱間鍛造した。図3に示すように1つの金型に複数個のせぎり加工用の押圧部12が形成された金型を使用し、2ヶ所同時にせぎりを行った。せぎり加工時は、鍛造素材の押圧場所を粗加工部から徐々に仕上げ加工部に移動するように行った。
前記のせぎり加工の終了後、鍛伸用押圧部を有する図3の熱間鍛造用金型11に交換した。このとき、鍛造素材はラジアル鍛造機から取り外して、再度所定の鍛造温度に再加熱行った。鍛伸用押圧部を有する熱間鍛造用金型11に交換終了後に再度鍛造素材をラジアル鍛造機に取り付けて鍛伸用押圧部による熱間鍛造を行った。鍛造素材はラジアル鍛造機によって間欠回転と長手方向への順次移動と押圧を繰返しながら所定の形状に整えて荒地形状に熱間鍛造した。次に、図8に示す熱間鍛造用金型11に交換して鍛造用素材に対して10パスのラジアル鍛造による仕上げ加工を行った。この鍛伸加工は、鍛造素材の押圧場所を粗加工部から徐々に仕上げ加工部に移動するように行った。熱間鍛造後のタービンブレード用熱間鍛造材は、根部、翼部、ボス部の成形に好適な図5に示すような形状であった。熱間鍛造後のタービンブレード用熱間鍛造材には、特にかぶり疵等の問題も発生しなかった。全長が約1500mmのタービンブレード用熱間鍛造材の曲りについては実施例1で得られた荒地と比較して、約5mm程度の曲りの抑制が確認された。
最後に曲り取り(形状矯正)工程を図10に示す曲り取り用金型を用いて行った。前記曲り取り用金型の第一押圧部と第二押圧部とは、押圧するタービンブレード用熱間鍛造材の外周面に略同一形状の押圧面としたものを準備し、ラジアル鍛造機を用いて間欠的な押圧を繰返し、曲り取り(形状矯正)を行った。このときは、図11に示すように、タービンブレード用熱間鍛造材の小径部から曲り取り(形状矯正)を開始して順次曲り取り(形状矯正)を行いながら第三押圧部と首部が接触した時点で、タービンブレード用熱間鍛造材の移動を停止して、間欠回転のみとして第一、第二及び第三押圧部により曲り取りを行って形状を最終形状に整えて荒地とした。曲り取り後の荒地の小径部及び大径部の直径は、曲り取り前の直径と比較して変化は殆ど無かった。曲り取り(形状矯正)後のタービンブレード用の荒地は殆ど曲り等の形状不良は見られなかった。
The forged material for the 50-inch turbine blade was heated in a heating furnace heated to 950 ° C. The forged material was a titanium alloy, the dimensions of which were φ200 mm in diameter and 1100 mm in length.
The forging material was taken out of the heating furnace and hot forging was started with a radial forging machine. The forged material was gripped and operated by a manipulator.
In hot forging, first, the heated forging material 21 is intermittently rotated, and the outer peripheral surface of the forging material is repeatedly pressed by the pressing portions of the two hot forging dies 1 arranged opposite to each other. The material was forged. In the first forging process, the forged material was hot-forged into a predetermined shape while rotating on the spot (the forged material was not moved in the longitudinal direction). As shown in FIG. 3, a die in which a plurality of pressing portions 12 for cutting was formed in one die was used, and cutting was performed at two locations at the same time. At the time of shaving, the pressing location of the forged material was gradually moved from the roughing portion to the finishing portion.
After the completion of the cutting process, the die was replaced with the hot forging die 11 of FIG. 3 having a forging pressing portion. At this time, the forging material was removed from the radial forging machine and reheated to a predetermined forging temperature. After the replacement was completed with the hot forging die 11 having the forging pressing portion, the forging material was attached to the radial forging machine again and hot forging was performed by the forging pressing portion. The forged material was hot-forged into a wasteland shape by adjusting it to a predetermined shape while repeating intermittent rotation, sequential movement in the longitudinal direction, and pressing with a radial forging machine. Next, the forging material was replaced with the hot forging die 11 shown in FIG. 8 and finished by 10-pass radial forging. In this forging process, the pressing location of the forged material was gradually moved from the rough processed portion to the finished processed portion. The hot forged material for turbine blades after hot forging had a shape as shown in FIG. 5, which is suitable for forming roots, blades, and bosses. The hot forged material for turbine blades after hot forging did not have any problems such as fog defects. Regarding the bending of the hot forged material for turbine blades having a total length of about 1500 mm, it was confirmed that the bending was suppressed by about 5 mm as compared with the wasteland obtained in Example 1.
Finally, the bending (shape correction) step was performed using the bending mold shown in FIG. As the first pressing portion and the second pressing portion of the bending die, a pressing surface having substantially the same shape is prepared on the outer peripheral surface of the hot forging material for the turbine blade to be pressed, and a radial forging machine is used. The intermittent pressing was repeated to remove the bend (shape correction). At this time, as shown in FIG. 11, the third pressing portion and the neck portion come into contact with each other while starting bending (shape correction) from the small diameter portion of the hot forging material for turbine blades and sequentially performing bending (shape correction). At that point, the movement of the hot forging material for the turbine blade was stopped, and bending was performed by the first, second, and third pressing portions only for intermittent rotation, and the shape was adjusted to the final shape to make a wasteland. The diameters of the small and large diameter parts of the wasteland after bending were almost unchanged as compared with the diameters before bending. There was almost no shape defect such as bending in the wasteland for turbine blades after bending (shape correction).

1 熱間鍛造用金型(せぎり用熱間鍛造用金型)
2 略半円状押圧部(せぎり用押圧部)
3 せぎり粗加工部
4 せぎり仕上げ加工部
5 せぎり部
7 伸長部
8 凹部
9 稜線部分
11 熱間鍛造用金型(鍛伸用熱間鍛造用金型)
12 略台形状押圧部(鍛伸用押圧部)
13 鍛伸粗加工部
14 鍛伸仕上げ加工部
21 鍛造素材
22 荒地
23 大径部
24 小径部
25 首部
31 曲り取り用金型(熱間鍛造用金型)
32 第一押圧部
33 第二押圧部
34 第三押圧部
1 Hot forging die (hot forging die for shaving)
2 Approximately semi-circular pressing part (pressing part for cutting)
3 Roughing part 4 Roughing part 5 Cutting part 7 Extension part 8 Recession 9 Ridge part 11 Hot forging die (Hot forging die for forging)
12 Approximately trapezoidal pressing part (pressing part for forging and stretching)
13 Forging rough processing part 14 Forging finishing processing part 21 Forging material 22 Rough ground 23 Large diameter part 24 Small diameter part 25 Neck 31 Bending die (hot forging die)
32 First pressing part 33 Second pressing part 34 Third pressing part

Claims (4)

棒状に成形されたタービンブレード用熱間鍛造材をラジアル鍛造により形状矯正するための曲り取り用金型であって、
前記曲り取り用金型は、前記タービンブレード用熱間鍛造材の曲りを矯正する押圧部を有し、
前記タービンブレード用熱間鍛造材は外径の異なる大径部と小径部とを有し、
前記押圧部は、前記タービンブレード用熱間鍛造材の前記大径部と前記小径部とを同時に押圧する第一押圧部と第二押圧部とを有し、
前記第一押圧部と第二押圧部とは、前記タービンブレード用熱間鍛造材の外周面を周方向に沿って取り囲むように形成されていることを特徴とする曲り取り用金型。
It is a bending die for correcting the shape of a rod-shaped hot forging material for turbine blades by radial forging.
The bending die has a pressing portion for correcting the bending of the hot forging material for turbine blades.
The hot forging material for turbine blades has a large diameter portion and a small diameter portion having different outer diameters.
The pressing portion has a first pressing portion and a second pressing portion that simultaneously press the large diameter portion and the small diameter portion of the hot forging material for turbine blades.
The bending die for bending, wherein the first pressing portion and the second pressing portion are formed so as to surround the outer peripheral surface of the hot forging material for turbine blades along the circumferential direction.
ラジアル鍛造機を用いて、タービンブレード用熱間鍛造材の中心軸に向かって対向配置された一対の曲り取り用金型により、前記タービンブレード用熱間鍛造材の曲り取りを行う曲り取り方法であって、
前記曲り取り用金型は、前記タービンブレード用熱間鍛造材の曲りを矯正する押圧部を有し、
前記タービンブレード用熱間鍛造材は外径の異なる大径部と小径部とを有し、
前記押圧部は、前記タービンブレード用熱間鍛造材の前記大径部と前記小径部とを同時に押圧する第一押圧部と第二押圧部とを有し、
前記第一押圧部と第二押圧部とは、前記タービンブレード用熱間鍛造材の外周面を周方向に沿って取り囲むように形成されていることを特徴とする曲り取り方法。
A bending method in which the hot forging material for turbine blades is bent by a pair of bending dies arranged opposite to the central axis of the hot forging material for turbine blades using a radial forging machine. There,
The bending die has a pressing portion for correcting the bending of the hot forging material for turbine blades.
The hot forging material for turbine blades has a large diameter portion and a small diameter portion having different outer diameters.
The pressing portion has a first pressing portion and a second pressing portion that simultaneously press the large diameter portion and the small diameter portion of the hot forging material for turbine blades.
The bending method, wherein the first pressing portion and the second pressing portion are formed so as to surround the outer peripheral surface of the hot forging material for turbine blades along the circumferential direction.
前記タービンブレード用熱間鍛造材がニッケル基超耐熱合金またはチタン合金であることを特徴とする請求項1または2に記載の曲り取り方法。 The bending method according to claim 1 or 2, wherein the hot forging material for turbine blades is a nickel-based superheat-resistant alloy or a titanium alloy. 熱間鍛造によって棒状のタービンブレード用熱間鍛造材を得る第1の工程と、
ラジアル鍛造機を用いて、前記タービンブレード用熱間鍛造材の中心軸に向かって対向配置された一対の曲り取り用金型により、前記タービンブレード用熱間鍛造材の曲り取りを行う第2の工程とを有するタービンブレード用荒地の製造方法であって、
前記曲り取り用金型は、前記タービンブレード用熱間鍛造材の曲りを矯正する押圧部を有し、
前記タービンブレード用熱間鍛造材は外径の異なる大径部と小径部とを有し、
前記押圧部は、前記タービンブレード用熱間鍛造材の前記大径部と前記小径部とを同時に押圧する第一押圧部と第二押圧部とを有し、
前記第一押圧部と第二押圧部とは、前記タービンブレード用熱間鍛造材の外周面を周方向に沿って取り囲むように形成されていることを特徴とするタービンブレード用荒地の製造方法。
The first step of obtaining a rod-shaped hot forging material for turbine blades by hot forging, and
A second method for bending the hot forging material for turbine blades by using a radial forging machine and using a pair of bending dies arranged to face each other toward the central axis of the hot forging material for turbine blades. It is a method of manufacturing a wasteland for a turbine blade having a process.
The bending die has a pressing portion for correcting the bending of the hot forging material for turbine blades.
The hot forging material for turbine blades has a large diameter portion and a small diameter portion having different outer diameters.
The pressing portion has a first pressing portion and a second pressing portion that simultaneously press the large diameter portion and the small diameter portion of the hot forging material for turbine blades.
A method for manufacturing a wasteland for turbine blades, wherein the first pressing portion and the second pressing portion are formed so as to surround an outer peripheral surface of the hot forging material for turbine blades along a circumferential direction.
JP2016192296A 2016-09-29 2016-09-29 Bending mold and bending method and manufacturing method of wasteland for turbine blades Active JP6761576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016192296A JP6761576B2 (en) 2016-09-29 2016-09-29 Bending mold and bending method and manufacturing method of wasteland for turbine blades

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016192296A JP6761576B2 (en) 2016-09-29 2016-09-29 Bending mold and bending method and manufacturing method of wasteland for turbine blades

Publications (2)

Publication Number Publication Date
JP2018051611A JP2018051611A (en) 2018-04-05
JP6761576B2 true JP6761576B2 (en) 2020-09-30

Family

ID=61833334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016192296A Active JP6761576B2 (en) 2016-09-29 2016-09-29 Bending mold and bending method and manufacturing method of wasteland for turbine blades

Country Status (1)

Country Link
JP (1) JP6761576B2 (en)

Also Published As

Publication number Publication date
JP2018051611A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6132030B2 (en) Manufacturing method of forged crankshaft
EP0700738A1 (en) Method of producing a hollow turbine blade
JP2013513055A (en) Method for producing metal reinforcement for turbine engine blades
JP6774625B2 (en) Hot forging die and hot forging method
KR100418464B1 (en) Forging method and dies of crank throw using the unbended preform
JP6761576B2 (en) Bending mold and bending method and manufacturing method of wasteland for turbine blades
JP6541024B2 (en) Mold for hot forging and hot forging method
JP6287631B2 (en) Manufacturing method of forged crankshaft
JP6108259B2 (en) Die for hot forging and hot forging method
JP6761579B2 (en) Hot forging die and hot forging method
JP6738537B2 (en) Hot forging method
CN205324588U (en) Mould is forged to subdivision formula of bucket tooth
JP6108258B2 (en) Die for hot forging and hot forging method
JP6206739B2 (en) Turbine blade manufacturing method
US2181269A (en) Manufacture of propeller blades
KR100197023B1 (en) Die forging method and mold of large crank thrower for ship engine
JPS6040332B2 (en) How to make incisors for saw chains
US2593139A (en) Plowshare manufacture
JPS597455A (en) Manufacture of rack of variable gear ratio steering device
RU150113U1 (en) DEVICE FOR MANUFACTURE OF CUTTING TOOLS
US2453000A (en) Method of manufacturing auger bits
JPH09323219A (en) Tooth form electrode for electric discharge machine and manufacture thereof
US1942221A (en) Method of making propeller blades
SU649492A1 (en) Method of manufacturing hollow blades of turbomachines
US2944327A (en) Method of making hollow blades for turbine engines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200819

R150 Certificate of patent or registration of utility model

Ref document number: 6761576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350