JP6760155B2 - Foamed polypropylene resin composition and molded article - Google Patents

Foamed polypropylene resin composition and molded article Download PDF

Info

Publication number
JP6760155B2
JP6760155B2 JP2017052620A JP2017052620A JP6760155B2 JP 6760155 B2 JP6760155 B2 JP 6760155B2 JP 2017052620 A JP2017052620 A JP 2017052620A JP 2017052620 A JP2017052620 A JP 2017052620A JP 6760155 B2 JP6760155 B2 JP 6760155B2
Authority
JP
Japan
Prior art keywords
polypropylene resin
foamed
molded product
resin composition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017052620A
Other languages
Japanese (ja)
Other versions
JP2018024822A (en
Inventor
靖昭 田中
靖昭 田中
内田 均
均 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to US15/635,620 priority Critical patent/US10106663B2/en
Priority to CN201710655793.4A priority patent/CN107686596B/en
Publication of JP2018024822A publication Critical patent/JP2018024822A/en
Application granted granted Critical
Publication of JP6760155B2 publication Critical patent/JP6760155B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、発泡ポリプロピレン樹脂組成物及びそれを用いた成形体に関するものである。 The present invention relates to a foamed polypropylene resin composition and a molded product using the same.

自動車等の乗物においては、軽量化の観点から、熱可塑性樹脂の発泡成形体の使用割合が増えている。従来のフィラー入り樹脂組成物の発泡成形体は、剛性と耐衝撃性を両立するために、剛性に対してはタルクを増量し、耐衝撃性に対してはゴム成分を増量することで補ってきた(特許文献1)。しかし、剛性と耐衝撃性は互いに背反する物性であり、また、発泡倍率を高くすると、発泡セル構造を均一に制御することが難しくなるため、発泡成形体の剛性と耐衝撃性を両立させることは困難であった。 In vehicles such as automobiles, the proportion of thermoplastic resin foam molded products is increasing from the viewpoint of weight reduction. The conventional foam molded product of a resin composition containing a filler is supplemented by increasing the amount of talc for rigidity and increasing the amount of rubber component for impact resistance in order to achieve both rigidity and impact resistance. (Patent Document 1). However, rigidity and impact resistance are physical properties that contradict each other, and if the foaming ratio is increased, it becomes difficult to uniformly control the foam cell structure. Therefore, both rigidity and impact resistance of the foamed molded product should be achieved. Was difficult.

特許文献2には、下の表1の通り、ポリプロピレン樹脂に熱可塑エラストマと無機充填材としてのタルクとを配合し、発泡剤を添加した樹脂組成物が記載されている。

Figure 0006760155
Patent Document 2 describes a resin composition obtained by blending a polypropylene resin with a thermoplastic elastomer and talc as an inorganic filler and adding a foaming agent, as shown in Table 1 below.
Figure 0006760155

特許文献2には、タルクの50%粒子径(D50)について、好ましくは0.01〜50μmと記載されており、実施例では1.8μm又は2.7μmのものが使用されている。タルクの表面処理については、無処理のままでもよいし、分散性を向上させるための処理をしてもよい旨の記載があるが、実施例では無処理のタルクが使用されている。本発明者らの検討によると、50%粒子径が3μm以下の微細なタルクは、混練時の分散が難しく、多量に添加すると凝集するため、必ずしも発泡核として有効ではなく、連泡構造になるなどして剛性と耐衝撃性を両立させることが困難である。
また、有機酸化物は、実施例では最大0.030質量部までしか開示されておらず、発泡セルの均一化や耐衝撃性・剛性等のバランスには改良の余地がある。
また、剛性と耐衝撃性についての具体的な記載はない。
Patent Document 2 describes that the 50% particle size (D50) of talc is preferably 0.01 to 50 μm, and 1.8 μm or 2.7 μm is used in Examples. Regarding the surface treatment of talc, there is a description that it may be left untreated or may be treated to improve dispersibility, but in the examples, untreated talc is used. According to the study by the present inventors, fine talc having a 50% particle diameter of 3 μm or less is difficult to disperse during kneading and aggregates when added in a large amount, so that it is not always effective as a foam nuclei and has a continuous foam structure. It is difficult to achieve both rigidity and impact resistance.
Further, the organic peroxide is disclosed only up to 0.030 parts by mass in the examples, and there is room for improvement in the uniformity of the foam cell and the balance of impact resistance and rigidity.
In addition, there is no specific description about rigidity and impact resistance.

次に、ポリプロピレン樹脂の発泡成形体は、上記のとおり使用割合が増えているが、材着意匠部品への適用は極少ない。その理由として、従来のポリプロピレン樹脂組成物の耐傷付性が不十分で、傷付くと目立つことが挙げられる。耐傷付性を付与するために、タルク入り樹脂組成物に表面改質剤としてエルカ酸アミド等の脂肪酸アミドやシリコーンを添加して表面抵抗を低減させる事例がある(特許文献3)。しかし、未表面処理のタルクが入った樹脂組成物に脂肪酸アミドを添加しても、十分な耐傷付性が得られない場合があった。その理由を本発明者が検討したところ、成形後の初期において、脂肪酸アミドが未表面処理のタルクに吸収され、成形体表面への移行が不十分になるためであると考えられた。また、脂肪酸アミドのみの添加では、経時による外観品質の低下やべたつきの発生などの不具合が見られることがあった。その理由を本発明者が検討したところ、経時により脂肪酸アミドが成形体表面に移行し続けて堆積するためであると考えられた。 Next, the polypropylene resin foam molded product is used more and more as described above, but its application to material design parts is extremely small. The reason is that the scratch resistance of the conventional polypropylene resin composition is insufficient, and it is conspicuous when scratched. In order to impart scratch resistance, there is an example in which a fatty acid amide such as erucic acid amide or silicone is added as a surface modifier to a resin composition containing talc to reduce the surface resistance (Patent Document 3). However, even if fatty acid amide is added to the resin composition containing unsurface-treated talc, sufficient scratch resistance may not be obtained in some cases. When the reason was examined by the present inventor, it was considered that the fatty acid amide was absorbed by the unsurface-treated talc in the initial stage after molding, and the transfer to the surface of the molded product was insufficient. In addition, the addition of fatty acid amide alone may cause problems such as deterioration of appearance quality and stickiness over time. When the reason was examined by the present inventor, it was considered that the fatty acid amide continued to migrate to the surface of the molded product and was deposited over time.

特開平8−20690号公報Japanese Unexamined Patent Publication No. 8-20690 特開2009−132893号公報Japanese Unexamined Patent Publication No. 2009-132893 特開2016−121228号公報Japanese Unexamined Patent Publication No. 2016-12128

そこで、本発明の目的は、剛性と耐衝撃性が高い次元でバランスした発泡樹脂成形体を得ることにある。本発明のさらなる目的は、発泡樹脂成形体の耐傷付性を長期的に維持するとともに、外観品質の悪化やべたつきを防止することにある。 Therefore, an object of the present invention is to obtain a foamed resin molded product having a high level of rigidity and impact resistance. A further object of the present invention is to maintain the scratch resistance of the foamed resin molded product for a long period of time, and to prevent deterioration of appearance quality and stickiness.

本発明の発泡ポリプロピレン樹脂組成物は、ポリプロピレン樹脂100質量部に対し、ゴムとしてのエチレン−αオレフィン共重合体又は熱可塑エラストマとしてのスチレン系エラストマ10〜65質量部と、分散性を高める表面処理がされた、50%粒子径(D50)が1〜3μmであるタルク18〜90質量部と、有機結晶核剤0.1〜6.0質量部と、発泡剤5〜15質量部とを含むように配合されたことを特徴とする。 The foamed polypropylene resin composition of the present invention contains 10 to 65 parts by mass of an ethylene-α olefin copolymer as a rubber or a styrene-based elastomer as a thermoplastic elastomer with respect to 100 parts by mass of a polypropylene resin, and a surface treatment for enhancing dispersibility. Contains 18 to 90 parts by mass of talc having a 50% particle size (D50) of 1 to 3 μm, 0.1 to 6.0 parts by mass of an organic crystal nucleating agent, and 5 to 15 parts by mass of a foaming agent. It is characterized in that it was formulated in such a manner.

ここで、分散性を高める表面処理がされたタルクとしては、表面にシロキサンが付与されたタルクが好ましい。 Here, as the surface-treated talc that enhances dispersibility, talc having siloxane added to the surface is preferable.

本発明の発泡ポリプロピレン樹脂組成物は、高級脂肪酸アミドと相溶化剤とをさらに含むように配合されたものが好ましい。 The expanded polypropylene resin composition of the present invention is preferably blended so as to further contain a higher fatty acid amide and a compatibilizer.

本発明の発泡ポリプロピレン樹脂成形体は、前記発泡ポリプロピレン樹脂組成物により、発泡成形された発泡成形体であって、発泡状態が主として独立気泡であり、かつ、ASTM D3576−77に準拠した平均発泡セル径が100〜300μmであることを特徴とする。 The foamed polypropylene resin molded product of the present invention is a foamed polypropylene molded product foam-molded by the foamed polypropylene resin composition, the foamed state is mainly closed cells, and the average foamed cell conforms to ASTM D3576-77. It is characterized by having a diameter of 100 to 300 μm.

前記発泡成形体のコア層の発泡セル間樹脂部の結晶化度χcが30.0%以上であり、該発泡セル間樹脂部の結晶化度χcのスキン層樹脂部の結晶化度χsに対する比χc/χsが1.05以上であることが好ましい。 The crystallinity χc of the interfoamed cell resin portion of the core layer of the foamed molded product is 30.0% or more, and the ratio of the crystallinity χc of the interfoamed cell resin portion to the crystallinity χs of the skin layer resin portion. It is preferable that χc / χs is 1.05 or more.

前記発泡成形体のISO178に準拠した曲げ剛性が2.0×10−6Nm以上であり、ISO 6603−2に準拠したパンクチャーエネルギーが4J以上であることが好ましい。 It is preferable that the flexural rigidity of the foam molded product in accordance with ISO178 is 2.0 × 10-6 Nm or more, and the puncture energy in accordance with ISO 6603-2 is 4J or more.

前記発泡ポリプロピレン樹脂組成物は高級脂肪酸アミドと相溶化剤とを含み、前記発泡成形体のISO19252に準拠したスクラッチ特性の限界垂直力が6.0N以上であり、110℃×600時間の耐熱性試験前後のISO11664−4に準拠した色差変化が3.0以下であることが好ましい。 The expanded polypropylene resin composition contains a higher fatty acid amide and a compatibilizer, has a limit normal force of scratch characteristics according to ISO 19252 of the expanded molded product of 6.0 N or more, and has a heat resistance test of 110 ° C. for 600 hours. It is preferable that the color difference change according to ISO11664-4 before and after is 3.0 or less.

<作用>
ポリプロピレン等の熱可塑性樹脂の発泡成形体は一般に発泡させることによりソリッド成形体に比べ剛性・耐衝撃性が低下する。その原因の1つとして、高発泡化させるほど、発泡セル構造を均一に制御することが難しくなり、連続気泡(連泡)構造になることがある。この問題を改善する手段として無機充填剤であるタルクなどを発泡核剤として添加する方法があり、粒子径が小さいほど発泡核効果の高いことが知られている。しかし、微粒子のため分散性が悪く凝集しやすいため、核剤としての効果が発揮されない場合がある。これらの問題を解決する手段として、分散性を高める表面処理(シロキサン表面処理等)がされた粒子径1〜3μmのタルクを使用することにより、嵩比重が大きく取扱が容易であり、混練による樹脂中への分散も良好で発泡核剤として有効に機能し、発泡セルを均一化できる。その結果、発泡状態を主として独立気泡にでき、平均発泡セル径を100〜300μmにでき、発泡成形体の剛性・耐衝撃性を向上させることができる。
<Action>
Foam moldings of thermoplastic resins such as polypropylene generally have lower rigidity and impact resistance than solid moldings when foamed. One of the causes is that the higher the foaming, the more difficult it is to control the foamed cell structure uniformly, and the more the foaming becomes, the more the structure becomes an open cell (continuous bubble) structure. As a means for improving this problem, there is a method of adding talc, which is an inorganic filler, as a foaming nucleating agent, and it is known that the smaller the particle size, the higher the foaming nucleating effect. However, since it is fine particles, it has poor dispersibility and easily aggregates, so that it may not be effective as a nucleating agent. As a means for solving these problems, by using talc having a particle diameter of 1 to 3 μm that has been surface-treated (siloxane surface treatment, etc.) to enhance dispersibility, the bulk specific gravity is large and handling is easy, and the resin by kneading The dispersion in the inside is also good, and it functions effectively as a foam nucleating agent, and the foam cells can be made uniform. As a result, the foamed state can be mainly made into closed cells, the average foamed cell diameter can be made 100 to 300 μm, and the rigidity and impact resistance of the foamed molded product can be improved.

また、有機結晶核剤を添加することにより、発泡成形体の発泡セル間樹脂の結晶化度を上げ、発泡成形体の剛性を向上させる。なお、無機フィラー系の結晶核剤では、相反として、樹脂/フィラー界面破壊の伝播による耐衝撃性の低下がある。 Further, by adding an organic crystal nucleating agent, the crystallinity of the interfoamed cell resin of the foamed molded product is increased, and the rigidity of the foamed molded product is improved. In the inorganic filler-based crystal nucleating agent, as a reciprocity, there is a decrease in impact resistance due to propagation of resin / filler interface fracture.

通常成形(非発泡)では、成形型がスキン層樹脂部の熱を奪うため、スキン層樹脂部の結晶化度χsはコア層樹脂部の結晶化度χcより低くなり、発泡セル間樹脂部とスキン層の結晶化度比χc/χs〈以下「結晶化度指数」という。)は1を超える。
一方、発泡成形の場合、泡の発生・膨張により樹脂から熱を奪うため、通常成形のコア層樹脂部に比べ、コア層の発泡セル間樹脂部が急冷状態となり、コア層の発泡セル間樹脂部の結晶化度χcは、スキン層樹脂部の結晶化度χsと同等レベルに留まる。
本発明の発泡樹脂組成物においては、有機結晶核剤の効果により、コア層の発泡セル間樹脂部の結晶化度χcはスキン層樹脂部χsに比べ上昇し、結晶化度指数を、χc/χs≧1.05とすることができ、かつ、χc≧30.0%とすることができる。また、有機結晶核剤は、一旦樹脂に完全溶解するため、樹脂/フィラー界面破壊の伝播の影響が小さくなり、耐衝撃性が向上する。
In normal molding (non-foaming), the molding die takes heat from the skin layer resin portion, so that the crystallinity χs of the skin layer resin portion is lower than the crystallinity χc of the core layer resin portion, and the resin portion between the foamed cells Crystallinity ratio of skin layer χc / χs <hereinafter referred to as "crystallinity index". ) Exceeds 1.
On the other hand, in the case of foam molding, heat is taken from the resin by the generation and expansion of bubbles, so that the resin part between the foam cells of the core layer is in a rapidly cooled state as compared with the resin part of the core layer of the core layer, and the resin between the foam cells of the core layer The crystallinity χc of the portion remains at the same level as the crystallinity χs of the skin layer resin portion.
In the foamed resin composition of the present invention, due to the effect of the organic crystal nucleating agent, the crystallinity χc of the interfoamed cell resin portion of the core layer is higher than that of the skin layer resin portion χs, and the crystallinity index is χc /. χs ≧ 1.05 can be set, and χc ≧ 30.0% can be set. Further, since the organic crystal nucleating agent is once completely dissolved in the resin, the influence of the propagation of the resin / filler interface fracture is reduced, and the impact resistance is improved.

さらに、高級脂肪酸アミドと相溶化剤とを添加することにより、発泡成形体の表面摩擦抵抗が低減され、耐傷付性が向上する。上記のとおり、未表面処理のタルクを配合する場合、高級脂肪酸アミドがタルクに吸収され、成形体表面への移行が不十分となり、耐傷付性が発揮されない場合がある。本発明で配合するのは表面処理タルクであり、高級脂肪酸アミドがタルクに吸収されるのをその表面処理で抑制するため、高級脂肪酸アミドの成形体表面への移行を阻害することがない。また、高級脂肪酸アミドと相溶化剤とを併せて添加することにより、高級脂肪酸アミドの成形体表面への移行を相溶化剤が抑制する作用を奏し、経時による高級脂肪酸アミドの表面への移行・堆積を抑制することができる。その結果、長期的に耐傷付性を維持することができ、外観品質の悪化やべたつきを防止することができる。 Further, by adding the higher fatty acid amide and the compatibilizer, the surface frictional resistance of the foamed molded product is reduced and the scratch resistance is improved. As described above, when unsurface-treated talc is blended, the higher fatty acid amide may be absorbed by the talc, the transfer to the surface of the molded product may be insufficient, and the scratch resistance may not be exhibited. The surface-treated talc is blended in the present invention, and since the surface treatment suppresses the absorption of the higher fatty acid amide by the talc, the transfer of the higher fatty acid amide to the surface of the molded product is not hindered. In addition, by adding the higher fatty acid amide and the compatibilizer together, the compatibilizer acts to suppress the transfer of the higher fatty acid amide to the surface of the molded product, and the transfer of the higher fatty acid amide to the surface over time. Accumulation can be suppressed. As a result, scratch resistance can be maintained for a long period of time, and deterioration of appearance quality and stickiness can be prevented.

本発明によれば、上記の作用の組み合わせにより、剛性と耐衝撃性が高次元でバランスした発泡樹脂成形体が得られるという優れた効果を奏する。さらに、上記の高級脂肪酸アミドと相溶化剤の作用により、発泡樹脂成形体の耐傷付性を長期的に維持することができるとともに、外観品質の悪化やべたつきを防止することができる。 According to the present invention, the combination of the above actions produces an excellent effect that a foamed resin molded product having a high-dimensional balance of rigidity and impact resistance can be obtained. Further, due to the action of the above-mentioned higher fatty acid amide and the compatibilizer, the scratch resistance of the foamed resin molded product can be maintained for a long period of time, and deterioration of appearance quality and stickiness can be prevented.

実施例の発泡樹脂成形体の模式的な部分拡大断面図である。It is a schematic partial enlarged sectional view of the foamed resin molded article of an Example.

1.ポリプロピレン樹脂
ポリプロピレン樹脂としては、特に限定されないが、ISO1133に準拠して測定した230℃、21.2Nにおけるメルトフローレート(MFR)が5〜150g/10分であるものが好ましく、より好ましくは15〜120g/10分である。組成物の流動性が適切になるからである。
1. 1. Polypropylene resin The polypropylene resin is not particularly limited, but a polypropylene resin having a melt flow rate (MFR) of 5 to 150 g / 10 minutes at 230 ° C. and 21.2 N measured in accordance with ISO1133 is preferable, and more preferably 15 to 15 to 10. 120 g / 10 minutes. This is because the fluidity of the composition becomes appropriate.

2.ゴム又は熱可塑エラストマ
ゴムとしてはエチレン−αオレフィン共重合体を使用する。エチレン−αオレフィン共重合体としては、エチレン−プロピレン共重合体(EPM)、エチレン−ブテン共重合体(EBM)、エチレン−オクテン共重合体(EOM)、エチレン−プロピレン−非共役ジエン共重合体(EPDM)等を例示できる。
熱可塑エラストマとしては、スチレン系エラストマを使用する
2. 2. As the rubber or thermoplastic elastomer rubber, an ethylene-α-olefin copolymer is used . Examples of the ethylene-α-olefin copolymer include an ethylene-propylene copolymer (EPM), an ethylene-butene copolymer (EBM), an ethylene-octene copolymer (EOM), and an ethylene-propylene-non-conjugated diene copolymer. (EPDM) and the like can be exemplified.
As the thermoplastic elastomer, a styrene-based elastomer is used .

3.タルク
分散性を高める表面処理がされたタルクとしては、シランカップリング剤、チタンカップリング剤、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸塩類あるいは他の界面活性剤による表面処理がされたタルクを例示できる。これらのうち、シランカップリング剤により表面にシロキサンが付与されたタルクが好ましい。
タルクの配合量は、好ましくは20質量部以上である。
また、発泡ポリプロピレン樹脂組成物は、タルクに加えて、タルク以外の無機充填材を含んでいてもよい。無機充填材としては、炭酸カルシウム、硫酸バリウム、ガラスビーズ等の粒状フィラー、カオリン、ガラスフレーク、層状ケイ酸塩、マイカ等の板状フィラーを例示できる。
3. 3. The surface-treated talc that enhances talc dispersibility was surface-treated with a silane coupling agent, a titanium coupling agent, a higher fatty acid, a higher fatty acid ester, a higher fatty acid amide, a higher fatty acid salt, or another surfactant. An example of talc can be given. Of these, talc in which siloxane is added to the surface by a silane coupling agent is preferable.
The blending amount of talc is preferably 20 parts by mass or more.
Further, the expanded polypropylene resin composition may contain an inorganic filler other than talc in addition to talc. Examples of the inorganic filler include granular fillers such as calcium carbonate, barium sulfate and glass beads, and plate-shaped fillers such as kaolin, glass flakes, layered silicate and mica.

4.有機結晶核剤
有機結晶核剤としては、特に限定されないが、ソルビトール系、アミド系、安息香酸金属塩等を例示できる。
4. Organic crystal nucleating agent The organic crystal nucleating agent is not particularly limited, and examples thereof include sorbitol-based, amide-based, and benzoic acid metal salts.

5.発泡剤
発泡剤としては、特に限定されないが、物理発泡剤、化学発泡剤を例示できる。これらのうち、化学発泡剤が好ましい。化学発泡剤としては、有機系化学発泡剤、無機系化学発泡剤等を例示できる。無機系化学発泡剤としては、重曹(炭酸水素ナトリウム)、亜硝酸塩・水素化物等を例示できる。
発泡剤は、ガス発生量が150〜250ml/5gであるものを5〜15質量部配合することが好ましい。
5. Foaming agent The foaming agent is not particularly limited, and examples thereof include a physical foaming agent and a chemical foaming agent. Of these, chemical foaming agents are preferred. Examples of the chemical foaming agent include an organic chemical foaming agent and an inorganic chemical foaming agent. Examples of the inorganic chemical foaming agent include baking soda (sodium hydrogen carbonate), nitrite and hydride.
As the foaming agent, it is preferable to mix 5 to 15 parts by mass with a gas generating amount of 150 to 250 ml / 5 g.

6.高級脂肪酸アミド
高級脂肪酸アミドとしては、特に限定されないが、エルカ酸アミド、ステアリン酸アミド、オレイン酸アミド、エチレンビスステアリン酸アミド等を例示できる。なかでも、エルカ酸アミドが好ましい。
6. Higher fatty acid amide The higher fatty acid amide is not particularly limited, and examples thereof include erucic acid amide, stearic acid amide, oleic acid amide, and ethylene bisstearic acid amide. Of these, erucic acid amide is preferable.

7.相溶化剤
相溶化剤としては、特に限定されないが、高級脂肪酸アミドとの親和性が劣る、エチレンと少なくとも1種のビニル単量体との共重合体が好ましく、具体的にはエチレン・アクリル酸共重合体、エチレン・アクリル酸メチル共重合体、エチレン・メタクリル酸メチル共重合体、エチレン・アクリル酸エチル共重合体、エチレン・アクリル酸イソブチル共重合体、エチレン・アクリル酸n−ブチル共重合体、エチレン・アクリル酸2−エチルヘキシル共重合体、エチレン・アクリル酸エチル・無水マレイン酸共重合体、エチレン・アクリル酸エチル・メタクリル酸グリシジル共重合体、エチレン・メタクリル酸グリシジル共重合体、エチレン・酢酸ビニル・メタクリル酸グリシジル共重合体、エチレン・酢酸ビニル共重合体又はそのケン化物等を例示できる。これらは単独で用いてもよく、また2種以上組み合せて用いてもよい。
高級脂肪酸アミドと相溶化剤との配合質量比は、特に限定されないが、1:10〜2:1が好ましく、1:3〜2:1がより好ましい。
ポリプロピレン樹脂100質量部に対する、上記配合質量比の高級脂肪酸アミドと相溶化剤との合計の配合量は、特に限定されないが、0.8〜15.0質量部が好ましく、1.0〜9.5質量部がより好ましい。
7. Compatibility agent The compatibility agent is not particularly limited, but a copolymer of ethylene and at least one vinyl monomer having inferior affinity with higher fatty acid amide is preferable, and specifically, ethylene / acrylic acid Copolymer, ethylene / methyl acrylate copolymer, ethylene / methyl methacrylate copolymer, ethylene / ethyl acrylate copolymer, ethylene / isobutyl acrylate copolymer, n-butyl copolymer of ethylene / acrylate , Ethylene / 2-ethylhexyl acrylate copolymer, ethylene / ethyl acrylate / maleic anhydride copolymer, ethylene / ethyl acrylate / glycidyl methacrylate copolymer, ethylene / glycidyl methacrylate copolymer, ethylene / acetic acid Examples thereof include a vinyl / glycidyl methacrylate copolymer, an ethylene / vinyl acetate copolymer, and a saponified product thereof. These may be used alone or in combination of two or more.
The compounding mass ratio of the higher fatty acid amide and the compatibilizer is not particularly limited, but is preferably 1: 10 to 2: 1, more preferably 1: 3 to 2: 1.
The total amount of the higher fatty acid amide and the compatibilizer in the above compounding mass ratio with respect to 100 parts by mass of the polypropylene resin is not particularly limited, but is preferably 0.8 to 15.0 parts by mass, and 1.0 to 9. 5 parts by mass is more preferable.

6.発泡成形体
発泡成形体の用途としては、特に限定されないが、グリル、バンパー、カウルルーバ等の自動車外装部品や、インストゥルメントパネル、コンソール、トリム、ピラー、センタクラスタ、デッキサイドトリム等の自動車内装部品等を例示できる。
6. Foam molding The use of foam molding is not particularly limited, but is limited to automobile exterior parts such as grills, bumpers, and cowl louvers, and automobile interior parts such as instrument panels, consoles, trims, pillars, center clusters, and deck side trims. Etc. can be exemplified.

次の表2に示す配合(配合数値は質量部)の試料1〜17の発泡ポリプロピレン樹脂組成物を調製し、発泡ポリプロピレン樹脂成形体を成形した。試料1〜10が実施例であり、試料11〜17が比較例である。 The foamed polypropylene resin compositions of Samples 1 to 17 having the formulations shown in Table 2 below (the blending values are parts by mass) were prepared, and the expanded polypropylene resin molded product was molded. Samples 1 to 10 are examples, and samples 11 to 17 are comparative examples.

Figure 0006760155
Figure 0006760155

ここで、使用した各材料の詳細は次のとおりである。ここで、「ゴム」はゴム又は熱可塑性エラストマをまとめて称している。
PP−1:SK社の商品名「BX3920」であり、MFR100g/10分のポリプロピレン樹脂である。
PP−2:ブルージュ社の商品名「BH975MO」であり、MFR38g/10分のポリプロピレン樹脂である。
ゴム−1:ダウエラストマー社の商品名「エンゲージ8842」であり、エチレン−αオレフィン共重合体である。
ゴム−2:三井化学社の商品名「タフマーDF610」であり、エチレン−αオレフィン共重合体である。
ゴム−3:クラレ社の商品名「セプトン2063」であり、スチレン系エラストマーである。
Here, the details of each material used are as follows. Here, "rubber" collectively refers to rubber or thermoplastic elastomer.
PP-1: The product name is "BX3920" manufactured by SK, and it is a polypropylene resin having an MFR of 100 g / 10 minutes.
PP-2: The product name is "BH975MO" manufactured by Bruges, and it is a polypropylene resin having an MFR of 38 g / 10 minutes.
Rubber-1: The trade name of Dow Elastomer Co., Ltd. is "Engage 8842", which is an ethylene-α-olefin copolymer.
Rubber-2: The trade name of Mitsui Chemicals, Inc. is "Toughmer DF610", which is an ethylene-α-olefin copolymer.
Rubber-3: The trade name of Kuraray Co., Ltd. is "Septon 2063", which is a styrene-based elastomer.

タルク−1:日本タルク社の商品名「NANO ACE D−1000」であり、シロキサンで表面処理された、50%粒子径(D50)が1μmのタルクである。50%粒子径は、ISO 13320−1に準拠し、レーザー回折式粒度分布測定装置により測定されたものである(本明細書において同じ)。
タルク−2:IMI FABI社の商品名「NSultraC」であり、シロキサンで表面処理された、粒子径2μmのタルクである。
タルク−3:IMI FABI社の商品名「HTPultra5L」であり、表面処理されていない、粒子径2μmのタルクである。
タルク−4:林化成社の商品名「GH7」であり、表面処理されていない、粒子径6μmのタルクである。
Talc-1: A talc having a trade name of "NANO ACE D-1000" manufactured by Nippon Tarku Co., Ltd., which is surface-treated with siloxane and has a 50% particle diameter (D50) of 1 μm. The 50% particle size is based on ISO 1330-1 and measured by a laser diffraction type particle size distribution measuring device (the same applies herein).
Talc-2: A talc having a particle size of 2 μm and surface-treated with siloxane under the trade name “NSultraC” of IMI FABI.
Talc-3: The trade name "HTPultra5L" of IMI FABI, which is a talc having a particle size of 2 μm and not surface-treated.
Talc-4: The trade name "GH7" of Hayashi Kasei Co., Ltd., which is a talc having a particle size of 6 μm and not surface-treated.

有機結晶核剤−1:新日本理化社の商品名「ゲルオールMD」であり、1,3:2,4−ビス−O−(4−メチルベンジリデン)−D−ソルビトールである。
有機結晶核剤−2:新日本理化社の商品名「リカクリアPC1」であり、アミド系結晶核剤である。
発泡剤MB−1:永和化成社の商品名「ポリスレンEE25C」である。これは、重曹マスタバッチである。
発泡剤MB−2:永和化成社の商品名「ポリスレンEE65C」である。これは、重曹マスタバッチである。
Organic crystal nucleating agent-1: The trade name is "Gelol MD" of New Japan Chemical Co., Ltd., and it is 1,3: 2,4-bis-O- (4-methylbenzylidene) -D-sorbitol.
Organic crystal nucleating agent-2: The trade name of New Japan Chemical Co., Ltd. is "Ricaclear PC1", which is an amide-based crystal nucleating agent.
Foaming agent MB-1: The trade name of Eiwa Kasei Co., Ltd. is "Polyslen EE25C". This is a baking soda master batch.
Foaming agent MB-2: The trade name of Eiwa Kasei Co., Ltd. is "Polyslen EE65C". This is a baking soda master batch.

試料1〜試料17の発泡ポリプロピレン樹脂組成物を、成形型(図示略)の隙間1.5mmの偏平なキャビティに射出し、その後、成形型の可動型をコアバックしてキャビティの隙間を増して組成物を発泡させて、厚さ2.8mmの板状の発泡ポリプロピレン樹脂成形体を成形した。すなわち、発泡倍率は1.87倍である。成形した発泡ポリプロピレン樹脂成形体1は、図1に示すように、コア層は発泡セル2と発泡セル間樹脂部3とからなり、成形型に接した表面部は発泡セルがほとんどないスキン層樹脂部4(図1の破線はコア層との区別線)からなる。この板状の成形体1から、測定に応じた所定寸法の板状の試験片を切り出し、物性データを次のように測定した。 The expanded polypropylene resin composition of Samples 1 to 17 is injected into a flat cavity having a gap of 1.5 mm in a molding mold (not shown), and then the movable mold of the molding mold is cored back to increase the gap between the cavities. The composition was foamed to form a plate-shaped foamed polypropylene resin molded product having a thickness of 2.8 mm. That is, the foaming ratio is 1.87 times. As shown in FIG. 1, the molded polypropylene resin molded body 1 has a core layer composed of a foam cell 2 and a resin portion 3 between foam cells, and a skin layer resin having almost no foam cells on the surface portion in contact with the molding die. It is composed of part 4 (the broken line in FIG. 1 is a distinguishing line from the core layer). From this plate-shaped molded body 1, a plate-shaped test piece having a predetermined size according to the measurement was cut out, and the physical property data was measured as follows.

(ア)曲げ剛性
ISO178(JIS K7171)に準拠し、10mm×80mm×厚さ2.8mmの試験片を3点曲げ試験して曲げ弾性率を測定し、曲げ弾性率に断面二次モーメントを乗じて曲げ剛性を算出した。
そして、曲げ剛性が2.0×10−6Nm以上を「良」と判定した。
(A) Flexural rigidity In accordance with ISO178 (JIS K7171), a test piece of 10 mm x 80 mm x 2.8 mm thickness is subjected to a three-point bending test to measure the flexural modulus, and the flexural modulus is multiplied by the moment of inertia of area. The bending rigidity was calculated.
Then, a flexural rigidity of 2.0 × 10-6 Nm or more was judged to be “good”.

(イ)高速面衝撃試験方法
ISO 6603−2(JIS K7211−2)に準拠し、計装化衝撃試験機により、120mm×130mm×厚さ2.8mmの試験片に、試験温度−30℃にて高速かつ等速で衝撃を与え(ストライカ形状:φ12.7mmの球状、支持台内径:φ76.2mm、衝撃速度:5m/秒)、発生する力と変形量を衝撃波形としてとらえ、最大衝撃力が半分に低下したところのパンクチャー変位になるまでに費やされた衝撃エネルギー(パンクチャーエネルギー)を測定した。
そして、衝撃エネルギーが4J以上を「良」と判定した。
(B) High-speed surface impact test method In accordance with ISO 6603-2 (JIS K7211-2), a test piece of 120 mm x 130 mm x 2.8 mm thickness is subjected to a test temperature of -30 ° C by an instrumentation impact tester. High-speed and constant-velocity impact (striker shape: φ12.7 mm spherical, support inner diameter: φ76.2 mm, impact speed: 5 m / sec), the generated force and deformation amount are captured as the impact waveform, and the maximum impact force The impact energy (puncture energy) required to reach the puncture displacement where was reduced by half was measured.
Then, when the impact energy was 4J or more, it was judged as "good".

(ウ)結晶化度の求め方について
発泡セル間樹脂部3とスキン層樹脂部4のそれぞれについて、示差走査熱量計(DSC)(TAインスツルメント社製Q200)を用い、以下の方法で測定した。
0℃から250℃まで、昇温速度40℃/分で昇温し、融解熱量を求めた。得られた融解熱量ΔH(J/g)より、(ΔH/樹脂分率/209)×100(%)の式から、結晶化度(発泡セル間樹脂部3の結晶化度χc、スキン層樹脂部4の結晶化度χs)を求めた。
ここで、樹脂分率とは、材料中無機成分(フィラー等)の重量分率を差し引いた残りのポリマー分率(フィラー20%であれば0.8)である。209は、ポリプロピレン樹脂の100%結晶化時の融解熱量(J/g)である。
そして、発泡セル間樹脂部3の結晶化度χcが30.0%以上を「良」と判定した。
また、結晶化指数χc/χsが1.05以上を「良」と判定した。
(C) How to determine the degree of crystallinity Measure each of the foamed cell-to-cell resin portion 3 and the skin layer resin portion 4 by the following method using a differential scanning calorimeter (DSC) (Q200 manufactured by TA Instruments). did.
The temperature was raised from 0 ° C. to 250 ° C. at a heating rate of 40 ° C./min, and the amount of heat of fusion was determined. From the obtained heat of fusion ΔH (J / g), from the formula (ΔH / resin fraction / 209) × 100 (%), the crystallinity (crystallinity χc of the interfoamed cell resin portion 3 and the skin layer resin) The crystallinity χs) of Part 4 was determined.
Here, the resin fraction is the remaining polymer fraction (0.8 if the filler is 20%) obtained by subtracting the weight fraction of the inorganic component (filler or the like) in the material. 209 is the amount of heat of fusion (J / g) at the time of 100% crystallization of the polypropylene resin.
Then, when the crystallinity χc of the resin portion 3 between the foamed cells was 30.0% or more, it was judged as “good”.
Further, when the crystallization index χc / χs was 1.05 or more, it was judged as “good”.

(エ)平均発泡セル径
ASTM D3576−77に準拠し、平均発泡セル径を求めた。まず、成形体1から切り出した試験片の断面を、実体顕微鏡により倍率50倍(厚さ方向全体が撮影できる)で写真撮影した。この写真上に水平方向と垂直方向に直線(図1に2点鎖線で示す)を引き、直線が横切る発泡セルの弦すべての長さを測定し、該弦の長さの平均値tを求めた。d=t/0.616の式から、平均発泡セル径dを算出した。
そして、平均発泡セル径が100〜300μmを「良」と評価した。
また、発泡状態について、主として独立気泡(独泡)であるものを「良」と評価した。
(D) Average foam cell diameter The average foam cell diameter was determined in accordance with ASTM D3576-77. First, the cross section of the test piece cut out from the molded body 1 was photographed with a stereomicroscope at a magnification of 50 times (the entire thickness direction can be photographed). Draw a straight line (shown by a two-point chain line in FIG. 1) in the horizontal and vertical directions on this photograph, measure the length of all the strings of the foam cell that the straight line crosses, and obtain the average value t of the lengths of the strings. It was. The average foam cell diameter d was calculated from the formula d = t / 0.616.
Then, an average foam cell diameter of 100 to 300 μm was evaluated as “good”.
In addition, regarding the foaming state, those that were mainly closed cells (single bubbles) were evaluated as "good".

上記の各物性データを表2に示す。試料1〜10(実施例)の成形体は、いずれの物性データも良と判定され、剛性と耐衝撃性が高次元でバランスしている。これに対し、試料11〜17(比較例)の成形体は、剛性、耐衝撃性の一方又は両方が不足している。 Table 2 shows each of the above physical property data. In the molded products of Samples 1 to 10 (Example), all the physical property data were judged to be good, and the rigidity and the impact resistance were well balanced in a high dimension. On the other hand, the molded products of Samples 11 to 17 (Comparative Example) lack one or both of rigidity and impact resistance.

次に、耐傷付改良剤をさらに含ませた、次の表3に示す配合(配合数値は質量部)の試料18〜34の発泡ポリプロピレン樹脂組成物を調製し、発泡ポリプロピレン樹脂成形体を成形した。表3には、試料1を後述する追加の物性データとともに再掲している。試料18〜23は試料1の配合をベースにして耐傷付改良剤を含ませたものであり、試料24〜32はそれぞれ試料2〜10の配合をベースにして耐傷付改良剤を含ませたものである。 Next, the expanded polypropylene resin compositions of Samples 18 to 34 having the formulations shown in Table 3 below (the compounding values are parts by mass) further containing the scratch resistance improving agent were prepared, and the expanded polypropylene resin molded product was molded. .. Table 3 reprints Sample 1 with additional physical property data described below. Samples 18 to 23 are based on the formulation of sample 1 and contain a scratch resistance improving agent, and samples 24 to 32 are based on the formulation of samples 2 to 10 and contain a scratch resistance improving agent. Is.

Figure 0006760155
Figure 0006760155

ここで、使用した耐傷付性改良剤の詳細は次のとおりであり、その他の各材料の詳細は上記のとおりである。
耐傷付性改良剤−1:日油社の商品名「ノフアロイKA832」であり、高級脂肪酸アミド(エルカ酸アミドと推定される。)と相溶化剤(エチレンと少なくとも1種のビニル単量体との共重合体であると推定される。)との混合物である。高級脂肪酸アミドと相溶化剤との配合質量比は、2:3と推定される。
耐傷付性改良剤−2:花王社の商品名「脂肪酸アマイド E」であり、エルカ酸アミドである。
耐傷付性改良剤−3:花王社の商品名「カオーワックスEB−G」であり、エチレン・ビスステアリン酸アミドである。
Here, the details of the scratch resistance improving agent used are as follows, and the details of each of the other materials are as described above.
Scratch resistance improver-1: NOF Corporation's trade name "Nofalloy KA832", which is a higher fatty acid amide (presumed to be erucic acid amide) and a compatibilizer (ethylene and at least one vinyl monomer). It is presumed to be a copolymer of.). The compounding mass ratio of the higher fatty acid amide to the compatibilizer is estimated to be 2: 3.
Scratch resistance improver-2: Kao Corporation's trade name "fatty acid amide E", which is an erucic acid amide.
Scratch resistance improver-3: Kao Corporation's trade name "Kaowax EB-G", which is an ethylene / bisstearic acid amide.

試料18〜34の発泡ポリプロピレン樹脂組成物により、試料1〜17と同様の方法で、厚さ2.8mmの板状の成形体1を成形した。この板状の成形体1から、測定に応じた所定寸法の板状の試験片を切り出し、試料1〜17と同様の物性データを測定し、さらに追加の物性データとして、耐傷付性と耐熱試験後のべたつき及び色差変化を次のように測定した。試料1についても追加の物性データを測定した。 A plate-shaped molded product 1 having a thickness of 2.8 mm was molded from the expanded polypropylene resin compositions of Samples 18 to 34 in the same manner as in Samples 1 to 17. From this plate-shaped molded body 1, a plate-shaped test piece having a predetermined size according to the measurement is cut out, physical property data similar to those of samples 1 to 17 are measured, and as additional physical property data, scratch resistance and heat resistance test are performed. The subsequent stickiness and change in color difference were measured as follows. Additional physical property data was also measured for Sample 1.

(オ)耐傷付性(スクラッチ特性)
ISO19252(JIS K7316)に準拠し、試験片の表面をスクラッチ試験し(チップサイズ:φ10μm(ステンレス球)、スクラッチ速度:100mm/秒、スクラッチ距離:100mm)、限界垂直力を求めた。限界垂直力6.0N以上を「良」と判定した。
(E) Scratch resistance (scratch characteristics)
According to ISO19252 (JIS K7316), the surface of the test piece was scratch-tested (chip size: φ10 μm (stainless steel ball), scratch speed: 100 mm / sec, scratch distance: 100 mm), and the limit normal force was determined. A limit normal force of 6.0 N or more was judged to be "good".

(カ)耐熱試験後のべたつき
試験片を加熱槽に入れて110℃×600時間の耐熱試験を行い、耐熱試験後の試験片の表面を指で触れて官能評価した。べたつきがないものを「良」と評価した。
(F) Stickiness after the heat resistance test The test piece was placed in a heating tank and subjected to a heat resistance test at 110 ° C. for 600 hours, and the surface of the test piece after the heat resistance test was touched with a finger for sensory evaluation. Those that were not sticky were evaluated as "good".

(キ)耐熱試験前後の色差変化
ISO11664−4(JIS Z8781−4)に準拠し、上記耐熱試験前後の試験片の表面の色差変化を測定した。色差変化が3.0以下を「良」と評価した。
(G) Color difference change before and after the heat resistance test The color difference change on the surface of the test piece before and after the heat resistance test was measured according to ISO11664-4 (JIS Z8781-4). A color difference change of 3.0 or less was evaluated as "good".

上記の各物性データを表3に示す。試料18〜32の成形体は、曲げ剛性、高速面衝撃、結晶化度及び平均発泡セル径のいずれの物性データも良と判定され、剛性と耐衝撃性が高次元でバランスしており、実施例である。但し、試料1,18は、耐傷付性が不足する点で改善の余地がある。また、試料22,23は、耐熱試験後のべたつきがあり色差変化も多い点で改善の余地がある。試料19〜21,24〜32は、耐傷付性、耐熱試験後のべたつき及び色差変化も良と判定され、好ましい実施例である。 Table 3 shows each of the above physical property data. The molded bodies of Samples 18 to 32 were judged to have good physical property data of flexural rigidity, high-speed surface impact, crystallinity, and average foam cell diameter, and the rigidity and impact resistance were balanced at a high level. This is an example. However, there is room for improvement in Samples 1 and 18 in that they lack scratch resistance. Further, the samples 22 and 23 are sticky after the heat resistance test and there is a lot of color difference change, so there is room for improvement. Samples 19 to 21, 24 to 32 are preferable examples because they are judged to have good scratch resistance, stickiness after the heat resistance test, and color difference change.

これに対し、試料33,34の成形体は、剛性、耐衝撃性の一方又は両方が不足しており、比較例である。また、高級脂肪酸アミドと相溶化剤とを添加したにもかかわらず、耐傷付性が不足しており、これは表面処理されていないタルクが高級脂肪酸アミドを吸収したためと考えられる。 On the other hand, the molded products of the samples 33 and 34 lack one or both of rigidity and impact resistance, which is a comparative example. Further, despite the addition of the higher fatty acid amide and the compatibilizer, the scratch resistance was insufficient, which is considered to be because the unsurface-treated talc absorbed the higher fatty acid amide.

なお、本発明は前記実施例に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することができる。 The present invention is not limited to the above-described embodiment, and can be appropriately modified and embodied without departing from the spirit of the invention.

1 発泡ポリプロピレン樹脂成形体
2 発泡セル
3 発泡セル間樹脂部
4 スキン層樹脂部
1 Foamed polypropylene resin molded body 2 Foamed cell 3 Foamed cell inter-foamed resin part 4 Skin layer resin part

Claims (7)

ポリプロピレン樹脂100質量部に対し、ゴムとしてのエチレン−αオレフィン共重合体又は熱可塑エラストマとしてのスチレン系エラストマ10〜65質量部と、50%粒子径(D50)が1〜3μmであり、分散性を高める表面処理がされたタルク18〜90質量部と、有機結晶核剤0.1〜6.0質量部と、発泡剤5〜15質量部とを含むように配合されたことを特徴とする発泡ポリプロピレン樹脂組成物。 With respect to 100 parts by mass of polypropylene resin, 10 to 65 parts by mass of an ethylene-α olefin copolymer as rubber or a styrene-based elastomer as a thermoplastic elastomer and a 50% particle diameter (D50) of 1 to 3 μm are dispersible. It is characterized in that it is blended so as to contain 18 to 90 parts by mass of a surface-treated talc, 0.1 to 6.0 parts by mass of an organic crystal nucleating agent, and 5 to 15 parts by mass of a foaming agent. Foamed polypropylene resin composition. 分散性を高める表面処理がされたタルクは、表面にシロキサンが付与されたタルクである請求項1記載の発泡ポリプロピレン樹脂組成物。 The expanded polypropylene resin composition according to claim 1, wherein the surface-treated talc that enhances dispersibility is a talc in which siloxane is added to the surface. 高級脂肪酸アミドと相溶化剤とをさらに含むように配合された請求項1又は2記載の発泡ポリプロピレン樹脂組成物。 The expanded polypropylene resin composition according to claim 1 or 2, further comprising a higher fatty acid amide and a compatibilizer. 請求項1、2又は3記載の発泡ポリプロピレン樹脂組成物により発泡成形された発泡成形体(1)であって、発泡状態が主として独立気泡であり、かつ、ASTM D3576−77に準拠した平均発泡セル径が100〜300μmであることを特徴とする発泡ポリプロピレン樹脂成形体。 A foamed molded product (1) foam-molded by the expanded polypropylene resin composition according to claim 1, 2 or 3, wherein the foamed state is mainly closed cells and an average foam cell conforming to ASTM D3576-77. A foamed polypropylene resin molded product having a diameter of 100 to 300 μm. 前記発泡成形体(1)のコア層の発泡セル間樹脂部(3)の結晶化度(χc)が30.0%以上であり、該発泡セル間樹脂部(3)の結晶化度(χc)のスキン層樹脂部(4)の結晶化度(χs)に対する比(χc/χs)が1.05以上である請求項4記載の発泡ポリプロピレン樹脂成形体。 The crystallinity (χc) of the interfoam resin portion (3) of the core layer of the foamed molded product (1) is 30.0% or more, and the crystallinity (χc) of the interfoam resin portion (3) is 30.0% or more. The foamed polypropylene resin molded product according to claim 4, wherein the ratio (χc / χs) of the skin layer resin portion (4) to the crystallinity (χs) of) is 1.05 or more. 前記発泡成形体(1)のISO178に準拠した曲げ剛性が2.0×10−6Nm以上であり、ISO 6603−2に準拠したパンクチャーエネルギーが4J以上である請求項4又は5記載の発泡ポリプロピレン樹脂成形体。 The foam according to claim 4 or 5, wherein the foamed molded product (1) has a bending rigidity of 2.0 × 10-6 Nm or more according to ISO178 and a puncture energy of 4J or more according to ISO 6603-2. Polypropylene resin molded body. 前記発泡ポリプロピレン樹脂組成物は高級脂肪酸アミドと相溶化剤とを含み、前記発泡成形体のISO19252に準拠したスクラッチ特性の限界垂直力が6.0N以上であり、110℃×600時間の耐熱性試験前後のISO11664−4に準拠した色差変化が3.0以下である請求項4、5又は6記載の発泡ポリプロピレン樹脂成形体。 The expanded polypropylene resin composition contains a higher fatty acid amide and a compatibilizer, has a limit normal force of scratch characteristics according to ISO19252 of the foamed molded product of 6.0 N or more, and has a heat resistance test of 110 ° C. × 600 hours. The foamed polypropylene resin molded product according to claim 4, 5 or 6, wherein the color difference change according to ISO11664-4 before and after is 3.0 or less.
JP2017052620A 2016-08-03 2017-03-17 Foamed polypropylene resin composition and molded article Active JP6760155B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/635,620 US10106663B2 (en) 2016-08-03 2017-06-28 Foamable polypropylene resin composition and molded body
CN201710655793.4A CN107686596B (en) 2016-08-03 2017-08-03 Expanded polypropylene resin composition and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016152609 2016-08-03
JP2016152609 2016-08-03

Publications (2)

Publication Number Publication Date
JP2018024822A JP2018024822A (en) 2018-02-15
JP6760155B2 true JP6760155B2 (en) 2020-09-23

Family

ID=61195473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017052620A Active JP6760155B2 (en) 2016-08-03 2017-03-17 Foamed polypropylene resin composition and molded article

Country Status (1)

Country Link
JP (1) JP6760155B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102463207B1 (en) * 2018-03-23 2022-11-03 현대자동차 주식회사 Polyplopylene resin composition and molding inculding the same
JP7145055B2 (en) * 2018-11-27 2022-09-30 株式会社豊田中央研究所 Resin composition and resin molding
CN110791015B (en) * 2019-10-25 2022-06-14 天津金发新材料有限公司 Special material for micro-foaming polypropylene for vehicles and preparation method and application thereof
KR102451191B1 (en) * 2019-11-29 2022-10-05 롯데케미칼 주식회사 Polyolefin resin composition for manufacturing foam, foam manufactured therefrom and molded article
JP7339543B2 (en) * 2020-01-30 2023-09-06 キョーラク株式会社 plastic container
CN114685891A (en) * 2022-03-29 2022-07-01 金发科技股份有限公司 PP/POE composition for gas-assisted molding and preparation method and application thereof

Also Published As

Publication number Publication date
JP2018024822A (en) 2018-02-15

Similar Documents

Publication Publication Date Title
JP6760155B2 (en) Foamed polypropylene resin composition and molded article
ES2702818T3 (en) Composition of vinyl chloride resin for powder molding, molded object obtained therefrom, laminate, vehicle interior material, and method for producing vinyl chloride resin composition for powder molding
JPWO2013146213A1 (en) Resin composite material
JP5972481B2 (en) Foam molded body and method for producing the same
JP5919649B2 (en) Polypropylene resin composition
WO2009057825A1 (en) Polypropylene resin composition, method for producing the same, and shaped foam article
JP4800366B2 (en) Resin composition pellet containing fibrous inorganic filler
JP2002003692A (en) Polypropylene resin composition that is superiorly resistant to injury
JP2018024825A (en) Polyolefin-based resin composition, film using the same, and production method of the same
JP5747063B2 (en) Thermoplastic resin composition and vehicle interior / exterior member using the same
JP4908043B2 (en) Polypropylene resin injection foam
CN107686596B (en) Expanded polypropylene resin composition and molded article
JP2004307842A (en) Polypropylene resin composition, process for production thereof, and injection molded product
JP6515014B2 (en) Elastomer composition for foam molding and foam molded article
JP2010090198A (en) Method for producing molded item of propylene polymer composition
JP2008101060A (en) Polypropylene resin composition for injection expansion molding and injection expansion molded product composed of the same
JP2018024826A (en) Production method of polyolefin-based resin composition and film using polyolefin-based resin composition
JP5122760B2 (en) Polypropylene resin injection foam
JP4885184B2 (en) Propylene polymer composition molded body production method
JPH06220270A (en) Scratch-resistant polypropylene resin composition
JP4963266B2 (en) Polypropylene resin injection foam
JP2007290323A (en) Injection-molded article
JP2006257330A (en) Thermoplastic resin composition for airbag cover
JP2001261902A (en) Polypropylene-based resin composition
JP2018024823A (en) Polyolefin-based resin composition, film using the same, and production method of the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6760155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150