JP6757903B2 - Non-circular bicycle gear with gear multiples for each left and right leg - Google Patents

Non-circular bicycle gear with gear multiples for each left and right leg Download PDF

Info

Publication number
JP6757903B2
JP6757903B2 JP2015187397A JP2015187397A JP6757903B2 JP 6757903 B2 JP6757903 B2 JP 6757903B2 JP 2015187397 A JP2015187397 A JP 2015187397A JP 2015187397 A JP2015187397 A JP 2015187397A JP 6757903 B2 JP6757903 B2 JP 6757903B2
Authority
JP
Japan
Prior art keywords
gear
circular
pedaling force
crank
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015187397A
Other languages
Japanese (ja)
Other versions
JP2017047875A (en
Inventor
昌義 矢口
昌義 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMITH Ltd
Original Assignee
SMITH Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMITH Ltd filed Critical SMITH Ltd
Priority to JP2015187397A priority Critical patent/JP6757903B2/en
Publication of JP2017047875A publication Critical patent/JP2017047875A/en
Application granted granted Critical
Publication of JP6757903B2 publication Critical patent/JP6757903B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission Devices (AREA)

Description

本発明は、人間が自転車ペダルをこぐ際の効率を高め、また左右脚の力の違い、またはクランク角度により適したギヤ倍率に変化させることで走行効率を高めより素早く効率よく自転車を走らせる自転車ギヤを発明するものである。 The present invention improves the efficiency when a human pedals a bicycle, and improves the running efficiency by changing the gear ratio more suitable for the difference in the force of the left and right legs or the crank angle, so that the bicycle can be run more quickly and efficiently. It invents gears.

従来、自転車のフロントギヤは真円形であるか楕円形、非円形のものが存在した(特許文献1)。楕円形、非円形のものはそれらが意図した外輪郭形状をしていたが自転車をこぐ個人の体格や脚力といった個人の個別性に合わせたものではなく、市販品として提案された外輪郭形状がその個人の特性に適合しているとは言えなかった。
またペダルをこぐ人の脚力には左右の差があるが従来品ではこの脚力の左右の差には対応できていないという問題点があった。従来は個人が自転車のペダルをこぐ際のベクトルについて知り得る手段は無かったが近年市販されたパイオニア社の車載型ペダリングモニターの登場によって選手個人が自身がペダリングしている際のベクトルについて図2のように簡単に観察、記録できるようになった。
これにより各個人のベクトル方向や力の大きさへの関心や認知が高まり非円形ギヤの外輪郭形状を個別に吟味することが可能になった。
Conventionally, there have been bicycle front gears that are perfectly circular, oval, or non-circular (Patent Document 1). The oval and non-circular ones had the outer contour shape that they intended, but they did not match the individuality of the individual who rides the bicycle, such as the physique and leg strength, and the outer contour shape proposed as a commercial product is It could not be said that it fits the individual's characteristics.
In addition, although there is a difference between the left and right leg strengths of the person who pedals, there is a problem that the conventional product cannot cope with this difference between the left and right leg strengths. In the past, there was no way for an individual to know the vector when pedaling a bicycle, but with the advent of Pioneer's in-vehicle pedaling monitor on the market in recent years, the vector when an individual player is pedaling himself is shown in Fig. 2. It has become easy to observe and record.
As a result, each individual's interest in and recognition of the vector direction and the magnitude of the force increased, and it became possible to individually examine the outer contour shape of the non-circular gear.

従来は真円形のギヤが主流でクランク角度によってペダル踏力の大きな変化が発生していてもそれに対応できず人体が運動によって発生させるエネルギーを無駄に損失させていた。
その状況を改善すべく様々な楕円ギヤ、非円形ギヤが登場したがその外輪郭形状を決定する根拠は画一的なもので自転車のペダルをこぐ選手個人の個別性に対応するものではなかった。
よって真円形ギヤ以外を使用してもその効果や恩恵に預かることは希有であった。
外輪郭形状が量産のため画一的で個別性に対応できなかった最大の原因は、チェーンを駆動するギヤの歯先形状をインボリュート曲線等にする必要があり、その一歯一歯を楕円なり非円形をした輪郭線に沿わせて作図することが大変に困難だったためである。
また例え作図できたとしても製造工程において例えばギヤの歯先専用の加工機は真円に対応した機構を有しており楕円、まして非円形に対応することが出来ない。またはプレス加工によって製造されるため金型を個別性に合わせて変えることはコストの制約上できない。またCADCAMを用いていても都度、形状を変更させることは工数がかかり過ぎ製品価格が高価になる。
以上の3大要因によって真円形ギヤや画一的な輪郭形状のギヤ形状以外では多様な外輪郭形状のものを多品種少量生産することは極めて困難であった。
Conventionally, a perfect circular gear is the mainstream, and even if a large change in pedal pedal force occurs depending on the crank angle, it cannot cope with it, and the energy generated by the movement of the human body is wasted.
Various elliptical gears and non-circular gears have appeared to improve the situation, but the grounds for determining the outer contour shape are uniform and do not correspond to the individuality of the individual who pedals the bicycle. ..
Therefore, even if a gear other than a perfect circular gear is used, it is rare to take advantage of its effects and benefits.
The biggest reason why the outer contour shape was uniform and could not correspond to individuality due to mass production is that the tooth tip shape of the gear that drives the chain needs to be an involute curve etc., and each tooth becomes elliptical. This is because it was very difficult to draw along the non-circular contour line.
Further, even if drawing can be performed, in the manufacturing process, for example, a processing machine dedicated to the tooth tip of a gear has a mechanism corresponding to a perfect circle, and cannot correspond to an ellipse, much less a non-circular shape. Or, since it is manufactured by press working, it is not possible to change the mold according to individuality due to cost constraints. Further, even if CADCAM is used, it takes too much man-hours to change the shape each time, and the product price becomes expensive.
Due to the above three major factors, it has been extremely difficult to produce a wide variety of gears having an outer contour shape in small quantities, except for a perfect circular gear and a gear shape having a uniform contour shape.

特開平09−020281号公報 Japanese Unexamined Patent Publication No. 09-020281

本発明は、上記問題点に鑑みてなされたものであり、個人の個別性により適合した非円形ギヤを提供することを目的とするものである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a non-circular gear that is more suitable for individual individuality.

各個人がペダリングモニタ等のベクトル測定装置で測定した結果を分析し3D−CADで非円形ギヤの外輪郭形状を設計する際に反映し個別、または少量多品種でマシニングセンタ等のNC工作機械によって非円形ギヤを製造し販売提供することを特徴とする。
こうして、本発明に係るギヤは、各個人がペダリングモニタ等のベクトル測定装置で測定した結果を分析し3D−CADで非円形ギヤの外輪郭形状を設計する際に反映し個別、または少量多品種でマシニングセンタ等のNC工作機械によって非円形ギヤを製造し販売提供することを特徴とする。
本発明において、円盤状の外輪郭が真円ではなく意図した非円形の輪郭形状なることを特徴とする自転車駆動装置の自転車中央のクランク軸に装着されるギヤであることが好ましい。
また、右脚がペダル踏力を発揮するクランク角度で作用するギヤ倍数と左脚がペダル踏力を発揮するクランク角度で作用するギヤ倍数が左右で異なるよう非円形の輪郭形状が設計されたことが好ましい。
また、脚がペダルを踏む際、クランク角度に応じてギヤ倍数が変化する外輪郭形状を有することが好ましい。
Each individual analyzes the results measured by a vector measuring device such as a pedaling monitor and reflects them when designing the outer contour shape of the non-circular gear with 3D-CAD. Individually or in small quantities and in many types, not by NC machine tools such as machining centers. It is characterized by manufacturing and selling circular gears.
In this way, the gear according to the present invention is reflected when each individual analyzes the result measured by a vector measuring device such as a pedaling monitor and designs the outer contour shape of the non-circular gear by 3D-CAD. It is characterized in that non-circular gears are manufactured and sold by NC machine tools such as machining centers.
In the present invention, it is preferable that the gear is mounted on the crankshaft of the center of the bicycle of the bicycle drive device, which is characterized in that the disk-shaped outer contour is not a perfect circle but an intended non-circular contour shape.
Further, it is preferable that the non-circular contour shape is designed so that the gear multiple that acts at the crank angle at which the right leg exerts the pedal pedal force and the gear multiple that acts at the crank angle at which the left leg exerts the pedal pedal force are different on the left and right. ..
Further, it is preferable that the leg has an outer contour shape in which the gear multiple changes according to the crank angle when the pedal is stepped on.

本発明によれば、ペダルをこぐ選手本人の左右脚の脚力の差に対応することでより効率よく自転車を走らせることが出来る。 According to the present invention, it is possible to run a bicycle more efficiently by dealing with the difference in leg strength between the left and right legs of the player who pedals.

ペダル踏力のベクトル図である。 It is a vector diagram of a pedal effort. 各クランク位相でのベクトル合力図である。 It is a vector resultant force diagram at each crank phase. グラフは、各クランク位相での両選手個別のクランク軸のトルク曲線である。 The graph is a torque curve of the crankshaft of each player for each crank phase. 水平位相でのクランク長とギヤ半径とのテコ比を示す図である。 It is a figure which shows the lever ratio of a crank length and a gear radius in a horizontal phase. 下死点でのクランク長とギヤ半径とのテコ比を示す図である。 It is a figure which shows the lever ratio of a crank length and a gear radius at the bottom dead center. グラフは、各クランク位相での左右脚別のクランク軸のトルク曲線である。 The graph is a torque curve of the crankshaft for each of the left and right legs at each crank phase. グラフは、各クランク位相での角速度を示した曲線である。 The graph is a curve showing the angular velocity at each crank phase. クランク水平位置で右脚が水平位置にある際のギヤ半径と左脚のそれに差をつけた作用原理を解説した図である。 It is the figure which explained the working principle which made the difference between the gear radius and the left leg when the right leg is a horizontal position in the crank horizontal position. 本実施形態の原理を適応した結果、右脚と左脚の角速度がほぼ等しく調節されたことを示す概念図である。 It is a conceptual diagram which shows that the angular velocity of a right leg and a left leg was adjusted almost equal as a result of applying the principle of this embodiment. 非円形ギヤを選手個人の測定結果から個別の最適形状を算出し製造するフローチャートである。 It is a flowchart which calculates the individual optimum shape from the measurement result of an individual player, and manufactures a non-circular gear.

以下、ペダリングモニタ装置を用いた非円形ギヤの外輪郭形状の実施例について、図1〜図10を参照して説明する。 Hereinafter, an example of the outer contour shape of the non-circular gear using the pedaling monitor device will be described with reference to FIGS. 1 to 10.

図1には、自転車の操作者が、クランクのアーム20を踏むときのペダル踏力をベクトル図として示したものである。自転車ギヤ板10は、軸の中心00を中心として、所定の方向に回転する。自転車ギヤ板10には、左右一対のクランクのアーム20が、中心00から互いに反対方向に延設されている。アーム20の先端付近には、ペダル軸中心30が設けられており、ここには図示しないペダルが回転可能に取り付けられている。符号40は、仮想的な真円ギア板の輪郭を示す仮想線である。本実施形態では、ギア板10は真円ではなく、所定の非円形の輪郭形状とされている。
操作者がペダルを踏むと、ペダル踏力は、合力52として作用する。この合力52は、クランクの回転方向に対して、垂直方向(アーム20の延長方向)に作用する法線分力50と、クランクの回転方向(アーム20の延長方向に対して垂直な方向)に作用する接線分力51とに分解して示すことができる。
FIG. 1 shows a vector diagram of the pedal depression force when the bicycle operator steps on the arm 20 of the crank. The bicycle gear plate 10 rotates in a predetermined direction about the center 00 of the shaft. On the bicycle gear plate 10, a pair of left and right crank arms 20 extend in opposite directions from the center 00. A pedal shaft center 30 is provided near the tip of the arm 20, and a pedal (not shown) is rotatably attached thereto. Reference numeral 40 is a virtual line indicating the outline of a virtual perfect circular gear plate. In the present embodiment, the gear plate 10 has a predetermined non-circular contour shape instead of a perfect circle.
When the operator steps on the pedal, the pedal stepping force acts as a resultant force 52. The resultant force 52 is in the direction of rotation of the crank (direction perpendicular to the extension direction of the arm 20) and the normal component force 50 acting in the direction perpendicular to the direction of rotation of the crank (direction of extension of the arm 20). It can be decomposed into the acting tangential component force 51 and shown.

理想的には、ベクトル合力52はギヤ板10を回転させる接線分力51と同じ方向、つまり法線分力50は働いていない事が最高の効率を示す。しかしながら、自転車の競技選手であっても、相当なロスを示すことが分かった。図2には、自転車競技選手がペダルを踏むときのベクトル合力を測定システム(例えば、パイオニア製ペダリングモニターセンサー)を用いて実験計測した結果を示す。測定システムは、ペダル踏力の合力を左右別々に測定できる。図2中の矢印に示すように、ベクトル合力52は、回転方向(接線方向)に対して、相当な傾きを示している。各クランク位相において、理想的な効率の良いベクトル合力52を示す(すなわち、回転方向に沿った方向を示す)のは、クランク一回転360°の中で図2右側のクランク水平付近の僅か60°程度の角度範囲に限られる。 Ideally, the vector resultant force 52 shows the highest efficiency in the same direction as the tangential component force 51 that rotates the gear plate 10, that is, the normal component force 50 is not working. However, even bicycle athletes have been found to show considerable loss. FIG. 2 shows the results of experimental measurement of the vector resultant force when a cycling athlete steps on a pedal using a measurement system (for example, a pedaling monitor sensor manufactured by Pioneer Corporation). The measurement system can measure the resultant force of the pedal effort separately on the left and right. As shown by the arrows in FIG. 2, the vector resultant force 52 shows a considerable inclination with respect to the rotation direction (tangential direction). In each crank phase, the ideal efficient vector resultant force 52 (that is, the direction along the rotation direction) is only 60 ° near the horizontal crank in FIG. 2 in 360 ° of one rotation of the crank. Limited to a degree of angle range.

図3は、A選手とB選手の二名について、各クランク位相においてクランク軸に作用するトルク(のうち右側脚のみ)を測定したものである。クランクが上端を向いている位置を0°とすると、最も踏力が強いのは、クランクが90°付近にあるところであり、後側(180°〜360°(再び0°となる位置))にあるときには、負の踏力となっている(このとき、逆側の脚の踏力によって、クランクの回転が維持される)。大きな傾向は同様であるものの、A選手、B選手の比較からも判るように人間がペダルを漕ぐ際に発生させるトルク曲線には大きな個別差があることが判る。 FIG. 3 shows the torque acting on the crankshaft (of which only the right leg) was measured at each crank phase for two players, A player and B player. Assuming that the position where the crank faces the upper end is 0 °, the strongest pedaling force is in the vicinity of 90 ° and on the rear side (180 ° to 360 ° (position where it becomes 0 ° again)). Sometimes it has a negative pedaling force (at this time, the pedaling force of the opposite leg maintains the rotation of the crank). Although the big tendency is the same, as can be seen from the comparison between A player and B player, it can be seen that there is a large individual difference in the torque curve generated when a human pedals.

また、図6には、同一人物において、左右両脚の踏力を測定した結果を示した。通常、個人には利き足があり、利き足側の踏力が、より強くなっている(図6の者では、右脚が利き足)。自転車を速く走らせるためには、この左右両脚の踏力の差が少なく、できるだけ左右均等に踏力を作用させることが好ましい。
非円形ギヤでどうやって図6にあるような左右脚の踏力の差を解消するのかを図4と図5を用いて解説する。チェーン60は常に図4の12時付近でギヤ板10と待遇する。ペダルを踏んでクランクがどの位相に動いてもチェーン60がギヤ板10と待遇する接点の位置は不変である。本発明では、このクランク位相とチェーン60とギヤ板10が待遇する箇所の独立性を利用する。
つまりクランク軸芯00からチェーン60と待遇する接点までの半径を各クランク位相別に調節することでギヤ比を任意に可変させることが出来るわけである。
In addition, FIG. 6 shows the results of measuring the treading force of both the left and right legs of the same person. Usually, an individual has a dominant foot, and the treading force on the dominant foot side is stronger (in the person in FIG. 6, the right leg is the dominant foot). In order to run the bicycle at high speed, it is preferable that the difference in pedaling force between the left and right legs is small and the pedaling force is applied evenly to the left and right as much as possible.
How to eliminate the difference in pedaling force between the left and right legs as shown in FIG. 6 with a non-circular gear will be described with reference to FIGS. 4 and 5. The chain 60 is always treated as the gear plate 10 around 12:00 in FIG. Regardless of which phase the crank moves by stepping on the pedal, the position of the contact point where the chain 60 treats the gear plate 10 does not change. In the present invention, the independence of the crank phase and the portion treated by the chain 60 and the gear plate 10 is utilized.
That is, the gear ratio can be arbitrarily changed by adjusting the radius from the crankshaft core 00 to the contact point treated with the chain 60 for each crank phase.

図6の者にあっては、クランク角度90°付近で右脚に比べ左足の踏力が弱いことが測定結果より解る。
そこで図8にあるようにクランク右側がクランク角度90°にあるときギヤ半径実線Bを点線B´に偏芯70させる(B<B’及びC>C’となる位置)ことで
右脚A÷B>A÷B´
左足A÷C<A÷C´
というように踏力の弱い左脚の負荷トルクを軽減させることが出来る。
これは逆に踏む力の強い右脚の負荷トルクを増加させることにもなる。このようなギヤ半径の調節手段によって、踏力の弱い左脚側のクランク角速度を増大させ自転車が走行する際の加速度の加減速を抑制することが出来るので、より効率的に自転車を走らせることが出来る。具体的には、上記偏芯70の結果として、図9に示すように、左右脚における踏み込み時の角速度を、左右で差違が認めにくい程度まで修正できた。その結果、競技時のタイムも短縮された。
It can be seen from the measurement results that the stepping force of the left foot is weaker than that of the right leg at a crank angle of around 90 ° for the person shown in FIG.
Therefore, as shown in FIG. 8, when the right side of the crank is at a crank angle of 90 °, the solid gear radius line B is eccentric to the dotted line B'(the position where B <B'and C>C'are formed), so that the right leg A ÷ B> A ÷ B'
Left foot A ÷ C <A ÷ C'
As such, the load torque of the left leg with weak pedaling force can be reduced.
On the contrary, this also increases the load torque of the right leg, which has a strong stepping force. By such a means for adjusting the gear radius, it is possible to increase the crank angular velocity on the left leg side where the pedaling force is weak and suppress the acceleration / deceleration of the acceleration when the bicycle is running, so that the bicycle can be run more efficiently. You can. Specifically, as a result of the eccentricity 70, as shown in FIG. 9, the angular velocity at the time of stepping on the left and right legs could be corrected to the extent that a difference between the left and right legs is hardly recognized. As a result, the time during the competition was also shortened.

本発明の非円形ギヤを加工するためには、ローラー間隔を整数倍した距離をもつ非円形軌道上に連続して加工する必要がある。
これは従来のギヤ加工機には出来ない加工である。
そこで、図10に示すように3次元CADを用いて数学的な形状モデルを演算し、そこから派生した3次元モデルデータを3次元CAMを用いて数値制御工作機械を指令する工具経路を演算させる。具体的には、まず各自転車操作者において、図6に示すような左右脚の踏力を含むデータをペダリングモニターを用いて測定し(Step10)、このデータを解析することにより、踏力ベクトル、トルク曲線、角速度などの選手の個別性を解析する(Step20)。現在、携帯型の測定装置(例えば、パイオニア社の車載型ペダリングモニター)が普及しているので、これを用いて測定・解析を行える。
次に、各選手の特性に応じて、非円形ギヤの輪郭を設計する。このとき、特に左右脚の踏力の差を低減又は解消できる程度に偏芯70を加える。このデータに基づき、3D−CADにてスプロケット歯先の形状を非円形とし、ギヤの輪郭形状に沿わせる演算処理を行う(Step30)。次いで、この演算処理に基づき、三次元データを出力し(Step40)、3D−CAMで加工機械用の工具経路を演算後(Step50)、マシニングセンタで材料を切削加工する(Step60)。このように、3D−CAMCADと、高度な演算能力を備えた工作機械を用いて、従来は製造できなかった複雑な形状の自転車ギヤを製造できた。
これによって選手個人が必要とする非円形形状をしたギヤ板を1枚でも大量生産でもほぼ変わらない加工時間で加工することが可能になる。
このように、本実施形態によれば、個人の個別性により適合した非円形ギヤを提供することが可能となった。これにより、ペダルをこぐ選手本人の左右脚の脚力の差に対応することでより効率よく自転車を走らせることが出来た。
In order to process the non-circular gear of the present invention, it is necessary to continuously process on a non-circular track having a distance obtained by multiplying the roller spacing by an integer.
This is a process that cannot be done by a conventional gear processing machine.
Therefore, as shown in FIG. 10, a mathematical shape model is calculated using 3D CAD, and the 3D model data derived from the calculation is used to calculate a tool path for commanding a numerically controlled machine tool using 3D CAM. .. Specifically, each bicycle operator first measures data including the pedaling force of the left and right legs as shown in FIG. 6 using a pedaling monitor (Step 10), and analyzes this data to obtain a pedaling force vector and a torque curve. , The individuality of the athlete such as the angular velocity is analyzed (Step 20). At present, portable measuring devices (for example, in-vehicle pedaling monitors manufactured by Pioneer Corporation) are widely used, and measurement / analysis can be performed using them.
Next, the contour of the non-circular gear is designed according to the characteristics of each player. At this time, the eccentricity 70 is added to such an extent that the difference in pedaling force between the left and right legs can be reduced or eliminated. Based on this data, the shape of the sprocket tooth tip is made non-circular by 3D-CAD, and arithmetic processing is performed so as to follow the contour shape of the gear (Step 30). Next, based on this arithmetic processing, three-dimensional data is output (Step 40), the tool path for the machining machine is calculated by 3D-CAM (Step 50), and then the material is cut by the machining center (Step 60). In this way, using 3D-CAMCAD and a machine tool equipped with a high degree of computing power, it was possible to manufacture a bicycle gear having a complicated shape that could not be manufactured in the past.
This makes it possible to process a non-circular gear plate required by an individual player in a processing time that is almost the same regardless of whether it is a single piece or mass production.
As described above, according to the present embodiment, it has become possible to provide a non-circular gear that is more suitable for individual individuality. As a result, it was possible to run the bicycle more efficiently by responding to the difference in leg strength between the left and right legs of the player who pedals.

00…自転車クランク軸の中心 ペダルやギヤはここを中心に回転する。
10…自転車ギヤ板 これの形状を真円、楕円、非円形などとしている。
20…自転車クランクのアーム
30…自転車ペダル軸中心 選手はこの軸芯のペダルを踏みつけてこぐ。
40…真円ギヤ板の輪郭線
50…ペダルを踏んだ力のクランク軸回転の法線方向の力 単位はkgf
51…ペダルを踏んだ力のクランク軸回転の接線方向の力 単位はkgf
52…50と51の合力 ペダルを踏んだ力の方向と大きさを示している。
60…駆動用チェーンの線分 ⇒方向に運動する。
70…脚力の左右差を改善するためにギヤ板中心を00から偏芯させる。
A…クランク長さ
B…右脚クランクが水平位置の時に作用するギヤ半径
B’…右脚クランクが水平位置の時のギヤ倍率を上げたギヤ半径
C…左脚クランクが水平位置の時に作用するギヤ半径
C’…左脚クランクが水平位置の時のギヤ倍率を下げたギヤ半径
D…右脚クランクが下死点位置の時に作用するギヤ半径
00 ... Center of bicycle crankshaft Pedal and gear rotate around here.
10 ... Bicycle gear plate The shape of this is a perfect circle, an ellipse, a non-circle, or the like.
20 ... Bicycle crank arm 30 ... Bicycle pedal shaft center Athletes step on the pedal of this shaft core.
40 ... Contour line of perfect circular gear plate 50 ... Force in the normal direction of crankshaft rotation of pedaling force The unit is kgf
51 ... The tangential force unit of the crankshaft rotation of the pedaling force is kgf.
52 ... The direction and magnitude of the combined force of 50 and 51 when the pedal is pressed.
60 ... Line segment of drive chain ⇒Move in the direction.
70 ... The center of the gear plate is eccentric from 00 in order to improve the laterality of the leg force.
A ... Crank length B ... Gear radius that acts when the right leg crank is in the horizontal position B'... Gear radius that increases the gear magnification when the right leg crank is in the horizontal position C ... Acts when the left leg crank is in the horizontal position Gear radius C'... Gear radius that lowered the gear magnification when the left leg crank is in the horizontal position D ... Gear radius that acts when the right leg crank is in the bottom dead center position

Claims (1)

円盤状の外輪郭が真円ではなく意図した非円形(楕円を除く)の輪郭形状なることを特徴とする後輪ギヤが空回りする一般的な自転車駆動装置の自転車中央のクランク軸に装着されるギヤの製造方法であって
各自転車操作者において、左右脚の踏力を含むデータを測定システムを用いて測定し、このデータを解析することにより、踏力ベクトル、トルク曲線、および角速度の選手の個別性を解析し、各選手の特性に応じて、左右脚の踏力の差を低減又は解消できる程度に偏芯を加え、右脚がペダル踏力を発揮するクランク角度で作用するギヤ倍数と左脚がペダル踏力を発揮するクランク角度で作用するギヤ倍数が左右で異なるよう非円形ギヤの輪郭を設計し、このデータに基づき、3D−CADにてスプロケット歯先の形状を非円形とし、ギヤの輪郭形状に沿わせる演算処理を行った後、この演算処理に基づき、三次元データを出力し、3D−CAMで加工機械用の工具経路を演算後、マシニングセンタで材料を切削加工するギヤの製造方法。
The disc-shaped outer contour is not a perfect circle but an intended non-circular (excluding elliptical) contour shape. The rear wheel gear is mounted on the central crank shaft of a general bicycle drive device that runs idle. It is a method of manufacturing gears, and each bicycle operator measures data including the pedaling force of the left and right legs using a measuring system, and by analyzing this data, the individuality of the pedaling force vector, torque curve, and angular speed of the athlete. According to the characteristics of each athlete, eccentricity is added to the extent that the difference in pedaling force between the left and right legs can be reduced or eliminated , and the gear multiple that acts at the crank angle where the right leg exerts pedal pedaling force and the left leg are pedals. The contour of the non-circular gear is designed so that the gear multiple acting on the crank angle that exerts the pedaling force is different on the left and right, and based on this data, the shape of the sprocket tooth tip is made non-circular by 3D-CAD, and the contour shape of the gear is made. A gear manufacturing method in which three-dimensional data is output based on this arithmetic processing, a tool path for a processing machine is calculated by 3D-CAM, and then a material is cut by a machining center.
JP2015187397A 2015-09-03 2015-09-03 Non-circular bicycle gear with gear multiples for each left and right leg Active JP6757903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015187397A JP6757903B2 (en) 2015-09-03 2015-09-03 Non-circular bicycle gear with gear multiples for each left and right leg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015187397A JP6757903B2 (en) 2015-09-03 2015-09-03 Non-circular bicycle gear with gear multiples for each left and right leg

Publications (2)

Publication Number Publication Date
JP2017047875A JP2017047875A (en) 2017-03-09
JP6757903B2 true JP6757903B2 (en) 2020-09-23

Family

ID=58279027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015187397A Active JP6757903B2 (en) 2015-09-03 2015-09-03 Non-circular bicycle gear with gear multiples for each left and right leg

Country Status (1)

Country Link
JP (1) JP6757903B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7424754B2 (en) * 2019-04-03 2024-01-30 株式会社シマノ Control device for human-powered vehicles

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8516007U1 (en) * 1985-05-31 1985-07-18 Niesel, Andreas, 8044 Lohhof Drive device, in particular for bicycles
JP2000081112A (en) * 1998-06-24 2000-03-21 Showa Eng:Kk Gear, gear mechanism and manufacture of gear
JP2002098219A (en) * 2000-07-19 2002-04-05 Takehiro Otsubo Gear, gear mechanism, gear manufacturing method and system, and program for gear manufacture
KR20030025430A (en) * 2001-09-20 2003-03-29 학교법인 두원학원 Method of manufacturing press for elliptical noncircular gear
JP3764124B2 (en) * 2002-04-15 2006-04-05 整 松本 Bicycle pedaling correction device
WO2008109914A2 (en) * 2006-10-30 2008-09-18 Robert Masterton Smith Method and apparatus for measuring and monitoring torque exerted during pedalling of a bicycle or the like equipment
WO2012056522A1 (en) * 2010-10-26 2012-05-03 パイオニア株式会社 Pedaling state detection device, pedaling state detection method, pedaling state detection program, medium that records pedaling state detection program
WO2013017465A2 (en) * 2011-08-02 2013-02-07 Rotor Componentes Tecnologicos S.L Pedaling torque sensor device for each cyclist's leg and power meter apparatus
US9074682B2 (en) * 2011-08-23 2015-07-07 Yun Seok Choi Asymmetric elliptical chain gear for a bicycle

Also Published As

Publication number Publication date
JP2017047875A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
EP2848288B1 (en) Exercise device
JP6184353B2 (en) Control device and control method for exercise therapy apparatus
CN103863507B (en) Driving unit and battery-assisted bicycle
TWI537030B (en) Exercise device providing automatic bracking
Gonzalez et al. Multivariable optimization of cycling biomechanics
CA2697297C (en) Ergometric training device
US8899110B2 (en) Pedaling motion measuring device and pedaling motion sensor device
Stone et al. Rider/bicycle interaction loads during standing treadmill cycling
JP6989520B2 (en) Stationary ergometric exercise device
CN105015663B (en) Trample condition detecting device
CN103158829A (en) Electric power assisted bicycle
TWI548438B (en) Exercise device providing symmetry index
FR3004961A1 (en) CONTROL OF EXERCISE MACHINE
JP6757903B2 (en) Non-circular bicycle gear with gear multiples for each left and right leg
JP2014008789A (en) Pedalling state measurement device
WO2018186488A1 (en) Steering input information acquisition device
EP3560808B1 (en) Joint-torque calculation device, joint-torque calculation method, and joint-torque calculation program
CN108348803A (en) Fixation fitness equipment for Spinning
Fregly et al. Bicycle drive system dynamics: theory and experimental validation
CN104417707B (en) Bicycle control
TW201400358A (en) Bicycle pedaling force detection apparatus production method and the apparatus made with the method thereof
CN215913539U (en) Heavy burden adjustment mechanism and wearing equipment
US20180321096A1 (en) Evaluating pedaling efficiency
Bielak et al. Static and dynamic ergonomic corrects of torque controlled in bicycle ergometer
CN206230086U (en) A kind of precision machine components cutter sweep high

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200813

R150 Certificate of patent or registration of utility model

Ref document number: 6757903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150