WO2012056522A1 - Pedaling state detection device, pedaling state detection method, pedaling state detection program, medium that records pedaling state detection program - Google Patents

Pedaling state detection device, pedaling state detection method, pedaling state detection program, medium that records pedaling state detection program Download PDF

Info

Publication number
WO2012056522A1
WO2012056522A1 PCT/JP2010/069009 JP2010069009W WO2012056522A1 WO 2012056522 A1 WO2012056522 A1 WO 2012056522A1 JP 2010069009 W JP2010069009 W JP 2010069009W WO 2012056522 A1 WO2012056522 A1 WO 2012056522A1
Authority
WO
WIPO (PCT)
Prior art keywords
pedal
crank
pedaling
force
pedaling state
Prior art date
Application number
PCT/JP2010/069009
Other languages
French (fr)
Japanese (ja)
Inventor
隆真 亀谷
隆二郎 藤田
岳彦 塩田
泰輝 児玉
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2012540564A priority Critical patent/JP5490916B2/en
Priority to PCT/JP2010/069009 priority patent/WO2012056522A1/en
Publication of WO2012056522A1 publication Critical patent/WO2012056522A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M3/00Construction of cranks operated by hand or foot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/20Cycle computers as cycle accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/42Sensor arrangements; Mounting thereof characterised by mounting
    • B62J45/421Sensor arrangements; Mounting thereof characterised by mounting at the pedal crank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J50/00Arrangements specially adapted for use on cycles not provided for in main groups B62J1/00 - B62J45/00
    • B62J50/20Information-providing devices
    • B62J50/21Information-providing devices intended to provide information to rider or passenger
    • B62J50/22Information-providing devices intended to provide information to rider or passenger electronic, e.g. displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft
    • G01L3/1407Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs
    • G01L3/1428Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs using electrical transducers
    • G01L3/1457Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs using electrical transducers involving resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • G01L5/162Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of piezoresistors

Definitions

  • the present invention relates to a pedaling state detection device for detecting a pedaling state, which is a method of rowing a pedal of a vehicle such as a bicycle, a pedaling state detection method, a program for causing a computer to detect pedaling, and a program recorded therein It relates to the medium.
  • a cycle computer that is mounted on a bicycle and calculates and displays information related to the traveling of the bicycle and information related to the movement of the driver.
  • the cycle computer calculates and displays predetermined information by receiving data from each sensor provided on the bicycle.
  • a force acting on the pedal such as a force that the driver steps on the pedal (hereinafter referred to as a “pedal acting force”).
  • a force acting on the pedal such as a force that the driver steps on the pedal (hereinafter referred to as a “pedal acting force”).
  • a force acting on the pedal such as a force that the driver steps on the pedal
  • the present invention has been made in view of the above-described circumstances, and an example of an object is to solve the above-described problems, and a pedaling state detection device and a pedaling that can solve these problems It is an object to provide a state detection method, a pedaling state detection program for detecting a pedaling state, and a medium on which the pedaling state program is recorded.
  • a pedaling state detection device includes a crank that is rotatably connected to a vehicle body, and a pedal that is connected to the crank, and is a pedal that is a force acting on the pedal.
  • a pedaling state detection device that detects a pedaling state in a vehicle in which the crank rotates by an acting force, and obtains effective component information that obtains at least pedal acting force effective component information that is an effective component for pedaling of the pedal acting force.
  • a pedaling state detection method includes a crank that is rotatably connected to a vehicle body and a pedal that is connected to the crank, and a force acting on the pedal.
  • a pedaling state detection method for detecting a pedaling state in a vehicle in which the crank rotates by a pedal action force, at least pedal action force effective component information that is an effective component for pedaling of the pedal action force, or the pedal To obtain any of the pedal action force invalid component information that is an invalid component for pedaling of the action force, using at least one of the pedal action force effective component information or the pedal action force invalid component information, A transmission efficiency, which is an efficiency of the pedal acting force with respect to the rotation of the crank, is calculated, and based on the transmission efficiency. Characterized in that for informing the Ku pedaling state notification executing means.
  • a pedaling state detection program and a medium on which the program is recorded include a computer, a crank that is rotatably connected to a vehicle body, and a pedal that is connected to the crank.
  • the effective component information acquisition unit that acquires the pedal action force effective component information that is the component acquires the pedal action force effective component information, or detects the pedal action force invalid component that is an invalid component for pedaling of the pedal action force
  • the pedal acting force invalid component information is sent to the invalid component detecting means.
  • the transmission efficiency that is the efficiency of the pedal action force with respect to the rotation of the crank is calculated.
  • a notification control function for notifying the notification execution means of the pedaling state based on the transmission efficiency.
  • (A) is a side view of a bicycle to which a pedaling state detection device is attached
  • (b) is a front view of the bicycle of FIG. 1 (a). It is a figure showing the attachment condition of the rotation direction component detection sensor of FIG. 1, and a radial direction component detection sensor.
  • (A) is a figure showing a mode that a rotation direction distortion sensor unit is affixed on a crankshaft
  • (b) is a figure showing a mode that a radial direction distortion sensor unit is affixed on a crankshaft. It is the elements on larger scale of the pedaling state detection apparatus of FIG.
  • A An electrical block diagram of a pedaling state detection device
  • (b) is an electrical block diagram of a rotational direction component detection sensor and a radial direction component detection sensor. It is a control block diagram of a pedaling state detection device. It is a flowchart which shows the pedaling state detection process by a pedaling state detection apparatus. It is a flowchart which shows the transmission efficiency analysis process of FIG. It is a flowchart which shows the torque value analysis process of FIG. It is a flowchart which shows drawing creation processing of FIG.
  • (A) is a diagram showing a configuration of a part of a RAM used when displaying the pedaling state on the left side of the bicycle when viewed from the front, and (b) used when displaying the pedaling state on the right side of the bicycle when viewed from the front. It is a figure showing the structure of a part of RAM.
  • (A) A diagram showing an example of a reference circle object, (b) a diagram showing an example of a power zone object, (c) a diagram showing an example of a loss zone object, and (d) a diagram showing an example of a pedaling state object. .
  • it is a figure showing an example of a structure of the table utilized when calculating the determination value for power zones.
  • FIG. 1A is a side view showing a state where the pedaling state detection device 100 of the present invention is attached to the bicycle B
  • FIG. 1B shows a state where the pedaling state detection device 100 is attached to the bicycle B. It is a front view to represent.
  • the bicycle B has a vehicle body frame B1 and two wheels B2 (front wheel B21 and rear wheel B22) that support the frame B1 movably by being pivotally supported by the frame B1 before and after the bicycle B.
  • a driving mechanism B3 that transmits a load applied by the driver such as a pedaling force of the driver for propelling the bicycle B to the rear wheel B22 as a driving force, a handle B4 for the driver to steer, and a saddle B5 for the driver to sit on And have.
  • the drive mechanism B3 has a rotation shaft (crank shaft) at one end, and the rotation shaft is rotatably supported at the other end of the crank B31. And a sprocket (not shown) arranged to rotate integrally with the crank B31 using the pedal B32 receiving a load from the driver and the crankshaft at the one end of the crank B31 as a common rotating shaft. ) And a rear sprocket (not shown) arranged so as to rotate integrally with the rear wheel B22, with the rotation axis of the rear wheel B22 being a common rotation axis, and acting on the pedal B32.
  • a chain B33 is provided for transmitting the load from the driver to the rear wheel B22 via the crank B31.
  • the crank B31 has a left crankshaft B311 disposed on the left side of the bicycle B as viewed from the front, and a right crankshaft B312 disposed on the right side of the front, and the left and right crankshafts B311 and B312 are symmetrical with respect to the crankshaft. It is fixed at a point symmetrical point.
  • the pedal B32 also includes a left pedal B321 disposed on the left side of the bicycle B as viewed from the front and a right pedal B322 disposed on the right side of the bicycle B as viewed from the front.
  • the left pedal B321 is disposed at the tip of the left crankshaft B311.
  • the left pedal shaft (not shown) is rotatably supported by the attached left pedal shaft
  • the right pedal B322 is rotatably supported by the right pedal shaft (not shown) attached to the tip of the right crankshaft B312.
  • crank length (see FIG. 1).
  • the pedaling state detection device 100 includes a crank rotation angle detection sensor 2 for detecting a rotation angle of the crank B31, a force acting on the pedal B32 (hereinafter referred to as “pedal acting force”), and a rotation direction component of the crank B31 (hereinafter referred to as “pedal”).
  • Rotation direction component detection sensor 3 for detecting the magnitude of the acting force rotation direction component), a radial direction (or length direction of the crank length) component (hereinafter referred to as “pedal action”) of the pedal acting force around the crankshaft.
  • the radial direction component detection sensor 4 for detecting the magnitude of the "radiation direction component", the crank rotation number detection sensor 5 for detecting the rotation number of the crank B31, the crank rotation angle detection sensor 2, and the rotation direction component detection sensor 3 Based on the signals transmitted from the radial direction component detection sensor 4 and the crank rotation speed detection sensor 5, Show emissions and Rosuzon (calculates preset predetermined value will be described later, and displays predetermined items) comprises a cycle computer 1.
  • crank rotation angle detection sensor 2 the rotation direction component detection sensor 3, the radial direction component detection sensor 4, and the crank rotation number detection sensor 5 are provided with a transmitter (not shown). It is possible to transmit a detection signal to. That is, the cycle computer 1 and the sensors 2 to 5 are connected wirelessly.
  • the crank rotation angle detection sensor 2 is composed of an optical rotation detection sensor having a light emitting part and a light receiving part, for example, narrowly provided in the vicinity of the outer peripheral part of the crank gear, and a gear that passes between the light emitting part and the light receiving part.
  • the rotation angle can be detected by counting the number of teeth and obtaining the ratio between the count value and the number of gear teeth.
  • the rotation angle detection sensor 2 is not limited to this, and an existing sensor such as a potentiometer can be used.
  • a crank rotation angle detection signal corresponding to the crank rotation angle ( ⁇ ) is transmitted from the sensor 2 to the cycle computer 1.
  • crank rotation angle ( ⁇ ) is expressed with reference to the left crankshaft B311. That is, when the left crankshaft B311 is positioned in the 12 o'clock direction (the tip is directed upward), the crank rotation angle ( ⁇ ) is “0 °”.
  • the crank rotation angle detection sensor 2 indicates the crank rotation angle “90 °” when the left crankshaft B311 indicates the direction of 3 o'clock (the front end faces forward), and the left crankshaft B311 indicates the direction of 9 o'clock.
  • the crank rotation angle “270 °” is indicated.
  • the range of the crank rotation angle ( ⁇ ) detected by the crank rotation angle detection sensor 2 is 0 ° or more and less than 360 ° (0 ⁇ ⁇ ⁇ 360 °), and the left crankshaft B311 is rotated from the 12 o'clock direction.
  • the direction of rotation around is the “+” direction.
  • the rotational direction component detection sensor 3 is connected to a sensor unit 3a composed of two strain sensors (hereinafter referred to as “rotational direction strain sensor unit 3”) and each terminal of the strain sensor constituting the rotational direction strain sensor unit 3a. As shown in FIGS. 1 (a) and 1 (b), a rotational direction distortion detection circuit 3b and a rotational direction component control unit 3c for comprehensively controlling the sensor 3 are provided (see FIG. 5 (b)).
  • the rotational direction component detection sensor 3 is attached to the front face of the crankshafts B311 and B312 (the face that faces the traveling direction when the crankshafts B311 and B312 indicate the 6 o'clock direction) (attached to the left crankshaft B311). Left rotation direction component detection sensor 31 and right rotation direction component detection sensor 32 attached to the right crankshaft B312).
  • each rotational direction strain sensor unit 3a As shown in FIG. 3A, the strain sensors constituting each rotational direction strain sensor unit 3a are bonded in a state orthogonal to each other on the front surfaces of the crankshafts B311 and B312.
  • the rotation direction distortion detection circuit 3b amplifies and adjusts the output of each distortion sensor, and information indicating the unified distortion amount detected by the sensor unit 3a (hereinafter referred to as “rotation direction distortion information”) is controlled by the control unit 3c.
  • the rotational direction component control unit 3c of each sensor 31, 32 determines the magnitude Fx of the crank pedal force rotational direction component from the following number (1) based on the rotational direction distortion amount information transmitted by the rotational direction distortion detection circuit 3b.
  • the rotation direction component detection signal corresponding to the magnitude Fx of each pedal action force rotation direction component is calculated and transmitted to the cycle computer 1.
  • m represents mass
  • g represents gravitational acceleration
  • X represents the amount of strain detected by the rotational direction strain detection circuit 3b
  • Xc represents that the crankshaft B31 is held in a horizontal state.
  • Xz is the front surface of the crankshaft B31 when the crankshaft B31 is in an unloaded state. Represents the amount of distortion.
  • Xc and Xz are acquired, for example, by attaching the sensor unit 3a to the front surface of the crankshaft B31 and calibrating it before using the sensor 3.
  • the radial direction component detection sensor 4 is connected to a sensor unit 4a composed of two strain sensors (hereinafter referred to as “radial direction strain sensor unit 4”) and each terminal of the strain sensor constituting the radial direction strain sensor unit 4a.
  • a radial direction distortion detection circuit 4b and a radial direction component control unit 4c that comprehensively controls the sensor 4 are provided (see FIG. 5B), as shown in FIGS. 1A and 1B.
  • the radial direction component detection sensor 4 is attached to the outer surface of the crankshaft B31 (the left radial direction component detection sensor 41 attached to the left crankshaft B311 and the right radial direction component attached to the right crankshaft B312. Detection sensor 42).
  • each radial strain sensor unit 4a is bonded to each other on the outer side surfaces of the crankshafts B311 and B312 so as to be orthogonal to each other.
  • the radial distortion detection circuit 3b amplifies and adjusts the output of each distortion sensor, and information (hereinafter referred to as “radial distortion information”) indicating a unified distortion amount detected by the sensor unit 4a is controlled by the control unit 4c.
  • radial distortion information information indicating a unified distortion amount detected by the sensor unit 4a is controlled by the control unit 4c.
  • the radial direction distortion control unit 4c of each sensor 41, 42 determines the magnitude Fy of the crank pedal force radial direction component from the following number (2) based on the radial direction distortion amount information transmitted by the radial direction distortion detection circuit 4b. Calculation is performed and a radial direction component detection signal corresponding to the magnitude Fy of each pedal acting force radial direction component is transmitted to the cycle computer 1.
  • m represents mass
  • g represents gravitational acceleration
  • Y represents the amount of strain detected by the radial strain detection circuit 4b
  • Yu represents the pedal B32 at the bottom dead center.
  • Yz is the outer surface of the crankshaft B31 when the crankshaft B31 is unloaded Represents the amount of distortion. Yu and Yz are acquired, for example, by attaching the sensor unit 4a to the outer surface of the crankshaft B31 and calibrating it before using the sensor 4.
  • the crank rotation speed detection sensor 5 includes a cadence sensor including a magnet fixed to the left crankshaft B312 and a magnet detector mounted at a predetermined position of the frame B1, for example, per unit time (1 minute).
  • the number of rotations of the crank B31 per unit time is detected by detecting the number of times (rpm) the magnet passes the front of the magnet detector. From the sensor 5, a rotation speed detection signal corresponding to the rotation speed of the crank B 31 per unit time is transmitted to the cycle computer 1.
  • the control unit 13 of the cycle computer 1 reads the rotational speed per unit time of the crank B31 from this signal.
  • FIG. 4 is an external view of the cycle computer 1
  • FIG. 5A is an electrical block diagram of the pedaling state detection apparatus 100.
  • the cycle computer 1 is attached to the bicycle B via a bracket 6 that can be attached to and detached from the handle B4 of the bicycle B.
  • the cycle computer 1 includes an input unit 11 for inputting predetermined information, a display unit 12 for displaying predetermined information, and a control unit 13 having an arithmetic circuit for executing predetermined processing related to pedaling to be described later (FIG. 5 (a)), and a housing 14 that houses the input unit 11, the display unit 12, and the control unit 13.
  • the input unit 11 includes three buttons 11 a, 11 b, 11 c that are juxtaposed in a state of protruding from the upper surface of the housing 14, and a slide-type switch, and supplies power. Is provided with a power switch 11d for ON / OFF operation.
  • the input unit 11 includes an input control circuit 11e that relays an input signal accompanying the operation of the buttons 11a to 11c and the power switch 11d as control information to the control unit 13.
  • the input control circuit 11e converts the control information into control information corresponding to the pressing operation and transmits the control information to the control unit 13.
  • buttons 11a to 11c that can be pressed are used as a structure for inputting predetermined information.
  • the present invention is not limited to this, and pointing devices such as a cross key, a trackball, and a joystick are used. It is also possible to adopt.
  • the display unit 12 includes a liquid crystal panel 12a for displaying (notifying) predetermined information including a power zone and a loss zone described later, and a display control circuit 12e that performs display control of the liquid crystal panel 12a according to information to be displayed. It comprises.
  • the input unit 11 and the display unit 12 can be integrated by using the liquid crystal panel 12a as a touch panel.
  • the control unit 13 of the cycle computer 1 includes a CPU 13a, a ROM 13b, a RAM 13c, a recording medium I / F 13d, a sensor I / F 13e, a communication I / F 13f, and an oscillation circuit 13g. These components are connected by a bus 13h. It is connected.
  • the CPU 13a controls basic operations as a cycle computer including detection and display of a pedaling state based on a program stored in the ROM 13b in advance.
  • the ROM 13b stores in advance a program code for executing basic processing as a cycle computer executed by the CPU 13a.
  • the RAM 13c functions as a working area for data and the like in arithmetic processing performed when the CPU 13a executes basic processing as a cycle computer.
  • the recording medium I / F 13d is an interface for recording a parameter, etc., which bears a pedaling state, which will be described later, on a recording medium such as a memory card.
  • the sensor I / F 13e takes in various detection signals transmitted from the crank rotation angle detection sensor 2, the rotation direction component detection sensor 3, the radial direction component detection sensor 4 and the crank rotation number detection sensor 5 described above, and outputs from the CPU 13a. Output based on instructions.
  • the communication I / F 13f transmits / receives data to / from an external processing device that transmits / receives various data to / from an external device (not shown) such as a mobile terminal such as a mobile phone or a PC installed at home. It is an interface to do.
  • the oscillation circuit 13g includes a crystal resonator as a clock oscillator, and outputs a pulse signal to the CPU 13a at a predetermined cycle by counting generated clocks.
  • the input unit 11, the display unit 12, and the control unit 13 described above are configured to transmit and receive necessary information data via the bus 13g.
  • FIG. 6 is a block diagram illustrating a control (or functional) configuration of the pedaling state detection apparatus 100 according to the embodiment of the present invention.
  • the pedaling state detection apparatus 100 includes a driver / bicycle information acquisition unit S1, a running state information acquisition unit S2, a torque value analysis unit S3, a transmission efficiency analysis unit S4, a drawing creation unit S5, and an information display unit S6.
  • the traveling state information acquisition unit S2 includes a crank rotation angle information acquisition unit S21, a pedal action force rotation direction component information acquisition unit S22, a pedal action force radial direction component information acquisition unit S23, and a crank rotation number information acquisition unit S24.
  • the driver / bicycle information acquisition unit S1 (hereinafter referred to as “driver information acquisition unit S1”) has a function of acquiring data on the driver and the bicycle B (hereinafter referred to as “driver data”). .
  • the driver information acquisition unit S1 displays, for example, input items on the display unit 12 according to the operation of the input unit 11 and the buttons 11a to 11c of the input unit 11, and also according to the operation of the buttons 11a to 11c. It is comprised by the control part 13 which preserve
  • the driver information acquisition unit S1 stores at least data on maximum power (hereinafter referred to as “maximum power data”) and data on crank length (hereinafter referred to as “crank length data”) in a predetermined area of the RAM 13c.
  • maximum power data data on maximum power
  • crank length data data on crank length
  • the traveling state information acquisition unit S2 has a function of acquiring information data related to traveling of the bicycle B (hereinafter referred to as “running state information data”).
  • the traveling state information acquisition unit S2 includes a crank rotation angle detection sensor 2, a rotation direction component detection sensor 3 (a left rotation direction component detection sensor 31 disposed on the left side of the front view and a right rotation direction component detection sensor disposed on the right side of the front view). 32), a radial direction component detection sensor 4 (a left radial direction component detection sensor 41 disposed on the left side of the front view and a right radial direction component detection sensor 42 disposed on the right side of the front view), the crank rotation number detection sensor 5, and each of these.
  • the controller 13 stores data based on signals transmitted from the sensors 2 to 5.
  • the traveling state information acquisition unit S2 includes a crank rotation angle information acquisition unit S21, a pedal action force rotation direction component information acquisition unit S22, a pedal action force radial direction component information acquisition unit S23, and a crank rotation number information acquisition unit S24.
  • the crank rotation angle information acquisition unit S21 includes the crank rotation angle detection sensor 2 and the control unit 13, and stores (acquires) crank rotation angle data in a predetermined area of the RAM 13c based on a signal output from the crank rotation angle detection sensor 2.
  • the pedal action force rotation direction component information acquisition unit S22 includes a rotation direction component detection sensor 3 and a control unit 13. Based on a signal output from the rotation direction component detection sensor 3, pedal action force rotation direction component data is stored in the RAM 13c.
  • the pedal action force radial direction component information acquisition unit S23 includes the radial direction component detection sensor 4 and the control unit 13. Based on the signal output from the radial direction component detection sensor 4, pedal action force radial direction component data is stored in the RAM 13c. It has a function of storing (acquiring) in an area.
  • the crank rotational speed information acquisition unit S24 includes the crank rotational speed detection sensor 5 and the control unit 13, and stores (acquires) crank rotational speed data in a predetermined area of the RAM 13c based on the signal output from the crank rotational speed detection sensor 5. Has the function of
  • the torque value analysis unit S3 is configured by the control unit 13 and uses the data acquired by the crank rotation angle information acquisition unit S21, the pedal action force rotation direction component information acquisition unit S22, and the crank rotation number information acquisition unit S24. It has a function of calculating a torque value (torque magnitude) associated with the rotation angle and determining whether or not the crank rotation angle is a power zone.
  • the power zone is calculated from an effective component for pedaling that is pedaling the pedal B32 (or rotating the crank B31), that is, a pedal acting force rotation direction component that is a pedal acting force contributing to the propulsion of the bicycle B.
  • the determination value (reference value) for the power zone in which the torque value to be set is set based on the maximum power data acquired by the driver etc. information acquisition unit S1 and the crank rotation speed acquired by the crank rotation speed information acquisition unit S24 This is the crank rotation angle that exceeds.
  • the transmission efficiency analysis unit S4 includes the control unit 13, and uses data acquired by the crank rotation angle information acquisition unit S21, the pedal action force rotation direction component information acquisition unit S22, and the pedal action force radial direction component information acquisition unit S23. Thus, the transmission efficiency associated with the crank rotation angle is calculated, and it is determined whether or not the crank rotation angle is a loss zone.
  • the transmission efficiency is the efficiency of the pedal acting force with respect to the rotation of the crank B31, specifically, the ratio of the force that has contributed to the rotation of the crank B31, in other words, the propulsion of the bicycle B out of the force acting on the pedal B32. More specifically, it is indicated by the ratio of the magnitude of the pedal action force rotation direction component to the magnitude of the pedal action force.
  • This transmission efficiency is an indicator of pedaling (how to pedal P32).
  • the loss zone is a crank rotation angle range in which the transmission efficiency is equal to or less than the loss zone determination value.
  • the drawing creation unit S5 is configured by the control unit 13 and creates drawing data as a basis of a drawing representing the determination result in order to visualize and notify the determination result of the torque value analysis unit S3 and the transmission efficiency analysis unit S4.
  • the drawing creating unit S5 uses, as drawing data, reference circle object data that is a base of a reference circle object that represents rotation (pedaling) of the crank B31, and power zone object data that is a base of a power zone object that represents a power zone.
  • Loss zone object data that is a source of a loss zone object that represents a loss zone
  • pedaling state object data that is a source of a pedaling state object that overlays these objects are created and set in a transmission buffer that includes the RAM 13c.
  • the information display unit S6 includes a control unit 13 and a display unit 12, and has a function of displaying a drawing based on the drawing data created by the drawing creation unit S5.
  • the processing / method in which the pedaling state detection device 100 displays (notifies) the pedaling state (how to pedal) of the driver will be described with reference to FIGS. Since the processing / method for displaying the pedaling state of the left crankshaft B311 and the processing / method for displaying the pedaling state of the right crankshaft B312 are the same, in the pedaling state detection device 100 according to the present embodiment, the left A process / method for displaying the pedaling state of the crankshaft B311 (right foot) will be described as a representative.
  • step S1 information input processing is performed.
  • the driver's buttons 11a to 11c display a caution to prompt the driver and bicycle information (hereinafter referred to as “driver information”) to be input, and wait until the desired information is input.
  • Driver information includes the driver's maximum power, gender, height / weight, bicycle type, tire size / type, crank length, and the like.
  • step S1 since the maximum power and the crank length are information necessary for displaying the pedaling state, it is essential to input such information. Therefore, in step S1, the maximum power data representing the maximum power is always stored in the maximum power data storage area of the RAM 13c, and the crank length data representing the crank length is stored in the crank length data storage area of the RAM 13c.
  • step S2 a condition for measuring the crank rotation angle, the pedal action force rotation direction component, the pedal action force radial direction component, and the crank rotation speed (hereinafter referred to as “measurement start condition”) is satisfied, and measurement is started. It is determined whether or not In the present embodiment, as described above, the input of the maximum power and the crank length is essential, so at least the input of the maximum power and the crank length is included in the measurement start condition.
  • the measurement start condition may be satisfied when a signal indicating the start of measurement is transmitted after the maximum power and the crank length are input. If it is determined in step S2 that the measurement start condition is not satisfied, the process proceeds to step S1, and if it is determined that the measurement start condition is satisfied, the process proceeds to step S3.
  • step S3 the crank rotational angle data is stored in the crank rotational angle data storage area of the RAM 13c based on the crank rotational angle signal, and the crank rotational speed data is stored in the crank rotational speed data storage area of the RAM 13c based on the crank rotational speed signal.
  • the rotation angle of the right crankshaft B312 is a value obtained by adding 180 ° to the crank rotation angle data indicated by the crank rotation angle data.
  • step S4 the pedal action force rotation direction component data is stored in the pedal action force rotation direction component data storage area of the RAM 13c based on the pedal action force rotation direction component signal, and the pedal action based on the pedal action force radial direction component signal.
  • the force radiation direction component data is stored in the pedal action force radiation direction component data storage area of the RAM 13c.
  • pedal action force rotation direction component data and pedal action force radial direction component data are stored in association with crank rotation angle data. Specifically, it is stored as pedal action force rotation direction component data and pedal action force radial direction component data with respect to the crank rotation angle represented by the latest stored crank rotation angle data (calculated by the latest processing). Note that the processing in step S3 and step S4 is performed, for example, every 10 ms based on the pulse signal output from the oscillation circuit 13g, and the crank rotation angle data, pedal action force rotation direction component data, and pedal action force radiation direction. The component data is stored sequentially. Further, since the crank speed is not detected unless the crank B31 is rotated once, the crank speed data is stored every time the crank B31 rotates once.
  • step S5 the crank rotation angle indicated by the crank rotation angle data acquired in step S3 is a predetermined value (30 °, 60 °, 90 °, 120 °, 150 °, 180 °, 210 °, 240 °, 270 °, 300 It is determined whether the angle is any one of °, 330 °, and 0 °. If it is determined in this step that the crank rotation angle is not equal to or greater than the predetermined value, the process proceeds to step S3. If it is determined that the crank rotation angle is equal to or greater than the predetermined value, the process proceeds to step S6.
  • the “predetermined value” is initially set to 30 °.
  • the “predetermined value” is set to 60 in step S8 described later. Updated to °. Thereafter, every time the crank rotation angle becomes equal to or greater than the predetermined value, the predetermined value is repeatedly increased by 30 °. Since the crank rotation angle range is 0 ° or more and less than 360 °, the predetermined value is 330 ° followed by 0 °.
  • step S6 the transmission efficiency in the range of the crank rotation angle is calculated based on the pedal action force rotation direction component data and the pedal action force radial direction component data acquired in step S4, and the crank rotation angle range is calculated.
  • a transmission efficiency analysis process is performed to determine whether the zone is a loss zone. Details will be described later.
  • step S7 the predetermined value is updated, specifically, the predetermined value is increased by one step, and it is determined whether or not the predetermined value of the newly set crank rotation angle is 30 °. That is, it is determined whether or not the left crankshaft B311 has made one revolution. This is because the pedaling state of one rotation is displayed on the display unit 12 every time the left crankshaft B311 makes one rotation, as will be described later. If it is determined in this step that the crank rotation angle is not 30 °, the process proceeds to step S3. If it is determined that the predetermined value of the crank rotation angle is 30 °, the process proceeds to step S9.
  • step S8 a torque value is calculated for each crank rotation angle range based on the pedal action force rotation direction component data acquired in step S4, and it is determined whether the crank rotation angle range is a power zone. Torque value analysis processing is performed. Details will be described later.
  • step S9 in order to display the pedaling state during one rotation of the left crankshaft B311 on the display unit 12, a drawing creation process is performed to create data that is the basis of the drawing displayed on the display unit 12. Details will be described later.
  • step S10 data that is the basis of the drawing created in step S9 is transmitted to the display unit 12, and information display processing for displaying (notifying) information such as the pedaling state is performed.
  • step S11 it is determined whether or not the measurement end condition is satisfied and the measurement can be ended.
  • the measurement end condition is satisfied when a signal indicating a button operation for the end of the measurement is transmitted.
  • the process proceeds to step S3. If it is determined that the measurement end condition is satisfied, the main process is ended.
  • step S81 a representative value of the crank rotation angle is calculated.
  • the type of the representative value is not particularly limited, but in this embodiment, one rotation of the left crankshaft B311 is equally divided into 12 parts, and the power zone and the loss zone are determined in each section. Representative values are used (see FIG. 11). For example, if the range of the crank rotation angle is 0 ° ⁇ ⁇ ⁇ 30 °, the representative value is “1”, and if 30 ° ⁇ ⁇ ⁇ 60 °, the representative value is “2”.
  • crank rotation angle representative value data storage area The storage area for storing the representative value data of the crank rotation angle (hereinafter referred to as “crank rotation angle representative value data storage area”) is divided into 12, and each of the 12 divided areas has a representative value of the crank rotation angle.
  • a storage area for storing a flag associated with is provided (see FIG. 11). If the representative value of the calculated crank rotation angle is “1”, the flag is turned on in the flag storage area corresponding to the representative value “1” of the crank rotation angle, and the representative value of the calculated crank rotation angle is If “2”, the flag is turned on in the flag storage area corresponding to the representative value “2” of the crank rotation angle. When the flag is turned on in the flag storage area corresponding to the representative value of the calculated crank rotation angle, the flag not corresponding to the representative value is turned off.
  • step S62 a representative value of the magnitude of the pedal action force in the crank rotation angle range is calculated, and the pedal action force data is stored in the pedal action force data storage area of the RAM 13c.
  • the pedal action force data storage area is divided into twelve, and each is associated with a representative crank rotation angle value (see FIG. 11).
  • step S62 the pedal action force data is stored in a region related to the crank rotation angle representative value for which the flag is ON.
  • the calculation method of the representative value of the magnitude of the pedal action force in the range of the crank rotation angle is not particularly limited, but in this embodiment, the magnitude of the pedal action force rotation direction component and the magnitude of the pedal action force radial direction component are calculated.
  • the representative value (F) of the magnitude of the pedal action force can be calculated by the following numbers (3) and (4). .
  • Fx (k) represents the magnitude of the pedal acting force rotation direction component detected at the kth time in the crank rotation angle range
  • Fy (k) is the pedal detected at the kth time in the crank rotation angle range
  • the magnitude of the acting force radial direction component is represented
  • F (k) represents the magnitude of the pedal acting force calculated k-th in the range of the crank rotation angle
  • t represents the crank rotation angle in the range of the crank rotation angle.
  • step S63 the transmission efficiency in the range of the crank rotation angle is calculated, and the transmission efficiency data is stored in the transmission efficiency data storage area of the RAM 13c. Similarly to the pedal action force data storage area, the transmission efficiency data storage area is also divided into 12 parts, which are associated with representative crank rotation angle values (see FIG. 11). In step S63, the transmission efficiency data is stored in the area related to the crank rotation angle representative value for which the flag is ON.
  • the transmission efficiency is the ratio of the pedal action force rotation direction component to the pedal action force, in other words, the contribution ratio of each pedal action force to the propulsion of the bicycle B, and is an index indicating the pedaling state.
  • the method for calculating the transmission efficiency is not particularly limited, but in this embodiment, the transmission efficiency P can be calculated from the following number (5). “Fx (k)”, “F”, and “t” are the same as “Fx (k)”, “F”, and “t” in number (4) or number (5), respectively.
  • the transmission efficiency P is used to determine whether the pedaling state is good / bad within the crank rotation angle range.
  • the loss zone can be determined using the value of the radial direction component of the pedal action force that does not contribute to the propulsion of the bicycle, or the ratio of the pedal action force radial direction component to the pedal action force.
  • step S64 a determination value for loss zone is calculated.
  • the method for calculating the loss zone determination value is not particularly limited, but in this embodiment, the loss zone determination value is set to “0.7”.
  • step S65 it is determined whether or not the crank rotation angle range is a loss zone. Specifically, it is determined whether or not the transmission efficiency P calculated in step S63 is equal to or less than the loss zone determination value calculated in step S64. Here, if the transmission efficiency is equal to or less than the determination value for the loss zone, it means that the range of the crank rotation angle is the loss zone. Conversely, if the transmission efficiency exceeds the determination value for the loss zone, the rotation angle Range means not a loss zone. That is, if only 70% or less of the pedal action force contributes to the promotion of the bicycle B, it is determined that the pedaling state (how to pedal) is inferior and the crank rotation angle range (zone) is inefficient.
  • step S66 the loss zone determination result for the crank rotation angle range is stored in the loss zone determination result data storage area of the RAM 13c.
  • the loss zone determination result data storage area is divided into twelve, similar to the pedal action force data storage area, and each is associated with a representative crank rotation angle value (see FIG. 11).
  • the loss zone determination result data indicating the determination result of the loss zone is stored in the region related to the crank rotation angle representative value for which the flag is ON. For example, “02H” is stored if the crank rotation angle range is the loss zone, and “03H” is stored if it is not the loss zone.
  • step S81 the average torque value is calculated for each crank rotation angle range, and the torque value data is stored in the torque value data storage area of the RAM 13.
  • the method for calculating the average torque value is not particularly limited.
  • the average torque value is obtained by dividing the sum of the torque values in the crank rotation angle range by the number of measurements in the crank rotation angle range. It is said.
  • a method for calculating the sum of torque values for each crank rotation angle range, a method of multiplying the sum of the magnitudes of the pedal action force rotation direction components by the crank length according to the crank length data input in step S1 can be used.
  • a method may be used in which the sum of values obtained by multiplying the magnitude of the pedal action force rotation direction component by the crank length indicated by the crank length data input in step S1 is calculated.
  • the torque value data storage area is also divided into 12 parts, which are associated with the representative crank rotation angle values (see FIG. 11).
  • torque value average data is stored in a region related to the crank rotation angle representative value for which the flag is ON.
  • step S82 the crank speed n for one rotation of the crank B31 is calculated, and the crank speed data is stored in the crank speed data storage area of the RAM 13.
  • step S83 the power zone determination value is calculated, and the power zone determination value data is stored in the power zone determination value data storage area of the RAM 13c.
  • the calculation method of the power zone determination value is not particularly limited, in the present embodiment, the power zone determination value is calculated by the following number (6).
  • Ta represents a power zone determination value used for determination of the power zone
  • Pa represents the input maximum power
  • n represents the rotation of the crank B31 in one rotation of the crank B31.
  • the average of the numbers is represented, and “0.8” represents a predetermined coefficient set in advance.
  • the power zone determination value data storage area is divided into 12 parts, which are associated with the representative crank rotation angle values (see FIG. 11).
  • step S83 power zone determination value data is stored in a region related to the crank rotation angle representative value for which the flag is ON.
  • step S84 it is determined whether or not each crank rotation angle range is a power zone. Specifically, it is determined whether or not the average torque value in each crank rotation angle range calculated in step S81 is greater than or equal to the power zone determination value calculated in step S83. If the average torque value is greater than or equal to the power zone judgment value, it means that the crank rotation angle range is the power zone. Conversely, if the average torque value is less than the power zone judgment value, This means that the rotation angle range is not a power zone.
  • the maximum power is not associated with the crank rotation angle, and the same power zone determination value is used for any crank rotation angle range. That is, the power zone is absolutely evaluated.
  • step S85 the power zone determination result for each crank rotation angle range is stored in the power zone determination result data storage area of the RAM 13c. Similar to the torque value data storage area, the power zone determination result data storage area is divided into 12 parts, which are associated with the representative crank rotation angle values (see FIG. 11).
  • step S85 power zone determination result data indicating the determination result of the power zone is stored in the region related to the crank rotation angle representative value for which the flag is ON. For example, if the crank rotation angle range is the power zone, “00H” is stored, and if it is not the power zone, “01H” is stored.
  • step S91 data (hereinafter referred to as “reference circle object data”) that is the basis of a reference circle object (see FIG. 12A) representing the rotational motion of the left crankshaft B311 is created, and the reference circle in the RAM 13c is created.
  • reference circle object data data (hereinafter referred to as “reference circle object data”) that is the basis of a reference circle object (see FIG. 12A) representing the rotational motion of the left crankshaft B311 is created, and the reference circle in the RAM 13c is created.
  • the reference circle object Store in the object area.
  • the reference circle object is divided into 12 in the circumferential direction. This is because, as described above, the power zone and the loss zone are determined in each section obtained by dividing one rotation of the crankshaft B311 into 12 parts.
  • step S92 data (hereinafter referred to as “power zone object data”) that is a source of a power zone object (refer to FIG. 12B) representing a crank rotation angle range that is a power zone is created, and the power zone of the RAM 13c is created.
  • the object data storage area More specifically, referring to the power zone determination result data storage area of the RAM 13c, the power zone object data reflecting the range of the crank rotation angle determined as the power zone ("00H" is stored) is reflected. create.
  • data representing an arcuate arrow that extends along the outside of the reference circle object and covers the range of the crank rotation angle determined to be the power zone is created. The direction of the arrow here is set clockwise.
  • step S93 data (hereinafter referred to as “loss zone object data”) that is a source of a loss zone object (see FIG. 12C) that represents the range of the crank rotation angle that is the loss zone is created, and the loss zone object in the RAM 13c is created.
  • the loss zone object data reflecting the range of the crank rotation angle determined as the loss zone ("02H" is stored) is created.
  • data representing an arc-shaped strip extending along the inside of the reference circle object and covering the range of the crank rotation angle determined to be the loss zone is created.
  • step S94 the objects created in steps S91 to S93 are combined to create the original data of the pedaling state object representing the pedaling state (hereinafter referred to as “left pedaling state object data”) and stored in the transmission buffer of the RAM 13c. set.
  • the pedaling state object is formed by overlaying a power zone object and a loss zone object on a reference circle object (see FIG. 12D).
  • different objects are arranged at different positions for the same left crank rotation angle range, such that the power zone object is arranged outside the reference circle and the loss zone object is arranged inside the reference circle. Therefore, even if the same crank rotation angle range is the power zone and the loss zone, both can be displayed simultaneously.
  • the pedaling state detection device 100 allows the pedaling force to be defined by (the magnitude of the pedaling force rotation direction component that is an effective component of the pedaling force that contributes to the rotation of the crank / the magnitude of the pedaling force).
  • the transmission efficiency representing the efficiency with respect to the rotation of the crank and displaying the pedaling state from the viewpoint of efficiency based on this transmission efficiency, that is, notifying, it is possible to grasp whether the pedaling state is good / bad . Based on this, the driver's own pedaling state can be corrected.
  • the pedaling state over the entire circumference accompanying the rotation of the crank B31 is displayed, it is possible to intuitively and easily grasp and correct its own pedaling state.
  • the display content is simplified, so that the driver can easily and intuitively adjust the pedaling state. Can grasp.
  • the pedaling state can be easily grasped by expressing the pedaling state with a graphic using a display device.
  • the cycle computer 1, the crank rotation angle detection sensor 2, the rotation direction component detection sensor 3, the radial direction component detection sensor 4, and the crank rotation number detection sensor 5 constitute the pedal state detection device of the present invention.
  • the pedal action force rotation direction component information acquisition unit S22 constitutes a pedal action force effective component information acquisition unit of the present invention
  • the pedal action force radial direction component information acquisition unit S23 of the present invention is a pedal action force invalid component information acquisition unit.
  • the transmission efficiency analysis unit S4 constitutes the transmission efficiency calculation means and comparison means of the present invention, and the loss zone determination value constitutes the reference value of the present invention.
  • the drawing creation unit S5 and the information display unit S6 constitute notification control means of the present invention, and the display unit 2 constitutes notification execution means of the present invention.
  • the crank rotation angle information acquisition unit S21 constitutes the rotation angle information acquisition means of the present invention.
  • the sensors 3 and 4 detect the magnitude of the pedal action force rotation direction component and the pedal action force radial direction component to determine the power zone and the loss zone.
  • the power zone and the loss zone are determined.
  • the method is not limited to this method.
  • the control unit for detecting the length constitutes pedal action force effective component information acquisition means of the present invention.
  • the pedal action force which is an ineffective component of the pedal action force that does not contribute to crank rotation It is also possible to determine the loss zone by calculating the transmission efficiency consisting of the radial direction component size / the pedal acting force size. In this case, if the transmission efficiency is equal to or higher than a predetermined reference value, the loss zone is determined.
  • the control part to detect comprises the pedal action force invalid component information acquisition means of this invention.
  • the maximum power is directly input and the power zone determination value is calculated based on a predetermined calculation formula using the maximum power as a parameter.
  • the power zone determination value may be calculated using the driver level and the crank rotation angle range as parameters.
  • a table in which the driver level and the range of the crank rotation angle and the power zone determination value are related is stored in the ROM 13b, and the driver level and The power zone determination value is calculated by acquiring the crank rotation angle range.
  • the driver level can be acquired by inputting in the information input process of step S1.
  • the range of the crank rotation angle can be acquired in the representative value calculation process of the crank rotation angle range in step S61.
  • the pedaling state can be made relative by setting the crank rotation angle range as a parameter for the power zone judgment value. Can be judged.
  • the power zone determination value may be associated with information on the driver such as the driver's body shape (for example, weight and height), gender or age, and information related to the driving situation such as a gear ratio.
  • the torque value analysis process in step S8 and the transmission efficiency analysis process in step S6 are performed for the entire range of the crank rotation angle.
  • the crank rotation angle may be limited to a range of 210 ° to 330 °) or a “push-down” portion where a pedal action force is easily applied (for example, a crank rotation angle of 30 ° to 150 °).
  • the entire range of the crank rotation angle, the pulled-up portion, or the pushed-down portion may be selected in the information input process in step S1.
  • the sum of torque vectors during one rotation of the left crankshaft B311 and the right crankshaft B312 using the magnitude of the pedal action force rotation direction component and the crank rotation angle is used. May be calculated and displayed. Thereby, it is possible to intuitively grasp the pedal action force contributing to the propulsion of the bicycle.
  • the maximum power data is acquired by directly inputting, but the maximum power data is acquired by inputting the driver level (advanced, intermediate, beginner) data. May be. Specifically, an image for selecting the driver level is displayed on the display unit 12, and by selecting the driver level, the maximum power corresponding to the selected driver level is also automatically selected. Is stored in the maximum power data storage area of the RAM 13c.
  • both the pedaling state on the right side of the front view and the pedaling state on the left side of the front view are displayed, but only one of them may be displayed. Further, for example, in the information input process in step S1, which pedaling state is to be displayed may be selected. Further, the display form of the pedaling state on the right side in the front view and the pedaling state on the left side in the front view is not limited to the first embodiment. For example, the pedaling state on the right side when viewed from the front and the pedaling state on the left side when viewed from the front may be displayed as one drawing object.
  • the display mode of the power zone and the loss zone is not limited to the first embodiment.
  • the power zone or the loss zone may not be an arc shape, but may be a fan portion in which a reference circle in the range of the crank rotation angle that is the power zone or the loss zone is divided. It is also possible to provide a plurality of power zone determination values and loss zone determination values so that the ranges to which the calculated torque value and transmission efficiency belong are associated with each other and displayed in color.
  • the comparison result between the determination value and the actual measurement value is displayed.
  • the comparison result is not displayed, but based on the calculated torque value and the transmission efficiency (calculated torque value).
  • the fan portion into which the reference circle in the range of the crank rotation angle is divided may be displayed separately (in a color obtained from the transmission efficiency by a predetermined calculation formula). For example, by using a torque value-color conversion expression that expresses the relationship between a color value (for example, RGB value or HSV color space value) and a torque value, the color is continuously changed according to the torque value. indicate.
  • the fan portion corresponding to the crank rotation angle range in which the calculated torque value is “0” is displayed in black, and the torque value corresponds to the crank rotation angle range that is greater than or equal to the power zone determination value.
  • the fan part to be displayed is displayed in white.
  • the pedaling state is determined and displayed by the cycle computer 1, but the pedaling state may be determined and displayed by application software of a mobile terminal such as a mobile phone.
  • the mobile terminal may be installed on the bicycle B or carried by the driver.
  • the torque value analysis process, the transmission efficiency analysis process, the drawing creation process, and the information display process may be executed by an external device such as a PC installed at home or the like.
  • data necessary for torque value analysis processing and transmission efficiency analysis processing such as torque value data and crank rotation angle data is stored in a recording medium such as a memory card via the storage medium I / F 13d of the cycle computer 1, for example. Save and import from the recording medium to the external device. Further, the data is transmitted to the external device via the communication I / F 13f of the cycle computer 1 and is taken into the external device.
  • a torque value analysis process, a transmission efficiency analysis process, a drawing creation process, and an information display process are executed on a fixed terminal
  • a storage medium such as a CD in which a program for performing these processes is stored is read into the fixed terminal.
  • an application incorporating a program for performing these processes may be downloaded from the server.
  • these torque value analysis processing, transmission efficiency analysis processing, drawing creation processing, and information display processing may be executed on a server via a mobile terminal or a fixed terminal.
  • the pedaling state detection device of the present invention is not limited to a bicycle that travels on the road, but an exercise bike that is installed in a sports gym or the like and cannot be used for training, or a boat that is manually driven and driven by a pedal (for example, a swan boat) It can be applied to a vehicle that rotates a crank connected to a pedal.
  • the notification execution means of the present invention is configured by a liquid crystal display device, but the notification execution means is not limited to this.
  • the notification execution means is not limited to this.
  • other display devices such as a CRT, a plasma display, and an organic EL display may be used.
  • the notification execution means may be an acoustic device such as a speaker or a lighting device such as a light instead of the display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Mechanical Control Devices (AREA)

Abstract

Provided are: a pedaling state detection device that can rectify the state of pedaling; a pedaling state detection method; a pedaling state detection program; and a medium that records the pedaling state detection program. The present invention has: a rotational-direction-component detection sensor (3) that detects the component in the direction of rotation of pedal stepping force, which is an effective component for pedaling of pedal operation force; and a radial-component detection sensor (4) that detects the component in the radial direction of pedal stepping force, which is an ineffective component for pedaling of pedal operation force. A cycle computer (1) connected to these sensors (3, 4): calculates transmission efficiency (P), which is the efficiency of pedal operation force on the rotation of a crank (B31), on the basis of the signals transmitted from the sensors (3, 4); compares the efficiency with a predetermined baseline value; and displays the comparison results on a display unit (2) as the pedaling state.

Description

ペダリング状態検出装置、ペダリング状態検出方法、ペダリング状態検出プログラム、ペダリング状態検出プログラムを記録した媒体Pedaling state detection device, pedaling state detection method, pedaling state detection program, medium recording pedaling state detection program
 本発明は、自転車等のペダルを漕ぐ乗り物のペダルの漕ぎ方であるペダリング状態を検出するペダリング状態検出装置、ペダリング状態の検出方法、コンピュータにペダリングを検出させるプログラム、及び、そのプログラムが記録された媒体に関する。 The present invention relates to a pedaling state detection device for detecting a pedaling state, which is a method of rowing a pedal of a vehicle such as a bicycle, a pedaling state detection method, a program for causing a computer to detect pedaling, and a program recorded therein It relates to the medium.
 従来、自転車に装着され、自転車の走行に関する情報や運転者の運動に関する情報等を算出し、表示するサイクルコンピュータと称される装置がある。サイクルコンピュータは、自転車に設けられた各センサからデータを受信することによって、所定の情報を算出し、表示する。サイクルコンピュータの具体例として、例えば、ペダルに設けられた圧力センサが検出する圧力値に基づいて、運転者がペダルを踏む力等のペダルに作用する力(以下、「ペダル作用力」という)を担う圧力値の経時変化や運転者の運動量等を算出して報知(表示)するものがある(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, there is a device called a cycle computer that is mounted on a bicycle and calculates and displays information related to the traveling of the bicycle and information related to the movement of the driver. The cycle computer calculates and displays predetermined information by receiving data from each sensor provided on the bicycle. As a specific example of the cycle computer, for example, based on a pressure value detected by a pressure sensor provided on the pedal, a force acting on the pedal, such as a force that the driver steps on the pedal (hereinafter referred to as a “pedal acting force”). There is one that calculates and notifies (displays) a change in pressure value with time, a driver's momentum, and the like (see, for example, Patent Document 1).
特開平7-96877号公報JP 7-96877 A
 ところで、自転車を効率的に走行させるために、運転者自身のペダリング(ペダルの漕ぎ方)を矯正したいという要望がある。そのためには自身のペダリングの状態を客観的に把握することが一つの解決手段となる。特許文献1に記載の走行状態検出装置は、ペダル作用力に基づく圧力値の変化が時系列で表示するため、これを用いて自身のペダリングを知るための一つの指標を得ることができものの、例えばペダル作用力とこのペダル作用力がかかる方向やタイミングとの関係等のペダリングの状態を矯正する上での重要な指標を得ることはできない。 By the way, there is a demand for correcting the driver's own pedaling (how to pedal) in order to drive the bicycle efficiently. For that purpose, one solution is to grasp the state of pedaling objectively. Although the running state detection device described in Patent Document 1 displays changes in pressure values based on pedal action force in time series, it can obtain one index for knowing its pedaling using this, For example, it is not possible to obtain an important index for correcting pedaling conditions such as the relationship between the pedal action force and the direction and timing at which the pedal action force is applied.
 本発明は、上述した事情に鑑みてなされたものであり、上述のような問題を解決することを課題の一例とするものであり、これらの課題を解決することができるペダリング状態検出装置、ペダリング状態検出方法、ペダリング状態を検出させるペダリング状態検出プログラム、及び、ペダリング状態プログラムを記録した媒体を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and an example of an object is to solve the above-described problems, and a pedaling state detection device and a pedaling that can solve these problems It is an object to provide a state detection method, a pedaling state detection program for detecting a pedaling state, and a medium on which the pedaling state program is recorded.
 上記課題を解決するために、本発明に係るペダリング状態検出装置は、車体に回転自在に連結されたクランクと、当該クランクに連結されたペダルとを具備し、前記ペダルに作用する力であるペダル作用力により前記クランクが回転する乗り物におけるペダリング状態を検出するペダリング状態検出装置であって、少なくとも、前記ペダル作用力のペダリングに対する有効な成分であるペダル作用力有効成分情報を取得する有効成分情報取得手段、又は、前記ペダル作用力のペダリングに対する無効な成分であるペダル作用力無効成分情報を取得する無効成分情報取得手段のいずれかと、少なくとも、前記ペダル作用力有効成分情報、又は、前記ペダル作用力無効成分情報のいずれかを用いて、前記ペダル作用力の前記クランクの回転に対する効率である伝達効率を算出する伝達効率算出手段と、前記伝達効率に基づくペダリング状態を報知実行手段に報知させる報知制御手段と、を有することを特徴とする。
 また、上記課題を解決するために、本発明に係るペダリング状態検出方法は、車体に回転自在に連結されたクランクと、当該クランクに連結されたペダルとを具備し、前記ペダルに作用する力であるペダル作用力により前記クランクが回転する乗り物におけるペダリング状態を検出するペダリング状態検出方法であって、少なくとも、前記ペダル作用力のペダリングに対する有効な成分であるペダル作用力有効成分情報、又は、前記ペダルに作用力のペダリングに対する無効な成分であるペダル作用力無効成分情報のいずれかを取得し、少なくとも、前記ペダル作用力有効成分情報、又は、前記ペダル作用力無効成分情報のいずれかを用いて、前記ペダル作用力の前記クランクの回転に対する効率である伝達効率を算出し、前記伝達効率に基づくペダリング状態を報知実行手段に報知させることを特徴とする。
 また、上記課題を解決するために、本発明に係るペダリング状態検出プログラム及びそのプログラムを記録した媒体は、コンピュータに、車体に回転自在に連結されたクランクと、当該クランクに連結されたペダルとを具備し、前記ペダルに作用する力であるペダル作用力により前記クランクが回転する乗り物におけるペダリング状態を検出させるペダリング状態検出プログラムであって、前記コンピュータに、少なくとも、前記ペダル作用力のペダリングに対する有効な成分であるペダル作用力有効成分情報を取得する有効成分情報取得手段に前記ペダル作用力有効成分情報を取得させ、又は、前記ペダル作用力のペダリングに対する無効な成分であるペダル作用力無効成分を検出する無効成分検出手段に前記ペダル作用力無効成分情報を取得させる情報取得機能と、少なくとも、前記ペダル作用力有効成分情報、又は、前記ペダル作用力無効成分情報のいずれかを用いて、前記ペダル作用力の前記クランクの回転に対する効率である伝達効率を算出する伝達効率算出機能と、前記伝達効率に基づくペダリング状態を報知実行手段に報知させる報知制御機能と、を実現させることを特徴とする。
In order to solve the above-described problems, a pedaling state detection device according to the present invention includes a crank that is rotatably connected to a vehicle body, and a pedal that is connected to the crank, and is a pedal that is a force acting on the pedal. A pedaling state detection device that detects a pedaling state in a vehicle in which the crank rotates by an acting force, and obtains effective component information that obtains at least pedal acting force effective component information that is an effective component for pedaling of the pedal acting force. Any one of the means, or the invalid component information acquisition means for acquiring the pedal acting force invalid component information which is an invalid component for pedaling of the pedal acting force, and at least the pedal acting force effective component information or the pedal acting force Using any of the invalid component information, the pedal acting force against the rotation of the crank And having a transmission efficiency calculating means for calculating a transmission efficiency is the efficiency, and a notification control means for notifying the notification executing unit pedaling state based on the transmission efficiency.
In order to solve the above-described problem, a pedaling state detection method according to the present invention includes a crank that is rotatably connected to a vehicle body and a pedal that is connected to the crank, and a force acting on the pedal. A pedaling state detection method for detecting a pedaling state in a vehicle in which the crank rotates by a pedal action force, at least pedal action force effective component information that is an effective component for pedaling of the pedal action force, or the pedal To obtain any of the pedal action force invalid component information that is an invalid component for pedaling of the action force, using at least one of the pedal action force effective component information or the pedal action force invalid component information, A transmission efficiency, which is an efficiency of the pedal acting force with respect to the rotation of the crank, is calculated, and based on the transmission efficiency. Characterized in that for informing the Ku pedaling state notification executing means.
In order to solve the above problems, a pedaling state detection program according to the present invention and a medium on which the program is recorded include a computer, a crank that is rotatably connected to a vehicle body, and a pedal that is connected to the crank. A pedaling state detection program for detecting a pedaling state in a vehicle in which the crank rotates by a pedal acting force that is a force acting on the pedal, the computer having at least an effective pedaling force pedaling force The effective component information acquisition unit that acquires the pedal action force effective component information that is the component acquires the pedal action force effective component information, or detects the pedal action force invalid component that is an invalid component for pedaling of the pedal action force The pedal acting force invalid component information is sent to the invalid component detecting means. Using the information acquisition function to be obtained and at least one of the pedal action force effective component information and the pedal action force invalid component information, the transmission efficiency that is the efficiency of the pedal action force with respect to the rotation of the crank is calculated. And a notification control function for notifying the notification execution means of the pedaling state based on the transmission efficiency.
(a)は、ペダリング状態検出装置が取り付けられた自転車の側面図、(b)は図1(a)の自転車の正面図である。(A) is a side view of a bicycle to which a pedaling state detection device is attached, and (b) is a front view of the bicycle of FIG. 1 (a). 図1の回転方向成分検出センサ及び放射方向成分検出センサの取り付け状況を表す図である。It is a figure showing the attachment condition of the rotation direction component detection sensor of FIG. 1, and a radial direction component detection sensor. (a)は回転方向歪みセンサユニットがクランクシャフトに貼り付けられている様子を表す図、(b)は放射方向歪みセンサユニットがクランクシャフトに貼り付けられている様子を表す図である。(A) is a figure showing a mode that a rotation direction distortion sensor unit is affixed on a crankshaft, (b) is a figure showing a mode that a radial direction distortion sensor unit is affixed on a crankshaft. 図1のペダリング状態検出装置の部分拡大図である。It is the elements on larger scale of the pedaling state detection apparatus of FIG. (a)ペダリング状態検出装置の電気的なブロック図、(b)は回転方向成分検出センサ及び放射方向成分検出センサの電気的なブロック図である。(A) An electrical block diagram of a pedaling state detection device, (b) is an electrical block diagram of a rotational direction component detection sensor and a radial direction component detection sensor. ペダリング状態検出装置の制御的なブロック図である。It is a control block diagram of a pedaling state detection device. ペダリング状態検出装置によるペダリング状態検出処理を示すフローチャートである。It is a flowchart which shows the pedaling state detection process by a pedaling state detection apparatus. 図7の伝達効率解析処理を示すフローチャートである。It is a flowchart which shows the transmission efficiency analysis process of FIG. 図7のトルク値解析処理を示すフローチャートである。It is a flowchart which shows the torque value analysis process of FIG. 図7の図面作成処理を示すフローチャートである。It is a flowchart which shows drawing creation processing of FIG. (a)は自転車の正面視左側のペダリング状態の表示を行う際に利用されるRAMの一部の構成を表す図、(b)自転車の正面視右側のペダリング状態の表示を行う際に利用されるRAMの一部の構成を表す図である。(A) is a diagram showing a configuration of a part of a RAM used when displaying the pedaling state on the left side of the bicycle when viewed from the front, and (b) used when displaying the pedaling state on the right side of the bicycle when viewed from the front. It is a figure showing the structure of a part of RAM. (a)基準円オブジェクトの一例を表す図、(b)はパワーゾーンオブジェクトの一例を表す図、(c)ロスゾーンオブジェクトの一例を表す図、(d)ペダリング状態オブジェクトの一例を表す図である。(A) A diagram showing an example of a reference circle object, (b) a diagram showing an example of a power zone object, (c) a diagram showing an example of a loss zone object, and (d) a diagram showing an example of a pedaling state object. . その他の実施の形態において、パワーゾーン用判定値を算出する際に利用されるテーブルの構成の一例を表す図である。In other embodiment, it is a figure showing an example of a structure of the table utilized when calculating the determination value for power zones.
(実施の形態1)
 以下、本発明の実施の形態について図面を参照しながら具体的に説明する。図1(a)は、本発明のペダリング状態検出装置100が自転車Bに取り付けられている様子を表す側面図、図1(b)はペダリング状態検出装置100が自転車Bに取り付けられている様子を表す正面図である。自転車Bは、車体のフレームB1と、当該自転車Bの前後においてフレームB1で回転自在に軸支されることにより、フレームB1を移動自在に支持する二つの車輪B2(前輪B21及び後輪B22)と、自転車Bを推進させる運転者の踏力等の運転者による荷重を推進力として後輪B22に伝える駆動機構B3と、運転者が操縦するためのハンドルB4と、運転者が着座するためのサドルB5とを有する。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1A is a side view showing a state where the pedaling state detection device 100 of the present invention is attached to the bicycle B, and FIG. 1B shows a state where the pedaling state detection device 100 is attached to the bicycle B. It is a front view to represent. The bicycle B has a vehicle body frame B1 and two wheels B2 (front wheel B21 and rear wheel B22) that support the frame B1 movably by being pivotally supported by the frame B1 before and after the bicycle B. , A driving mechanism B3 that transmits a load applied by the driver such as a pedaling force of the driver for propelling the bicycle B to the rear wheel B22 as a driving force, a handle B4 for the driver to steer, and a saddle B5 for the driver to sit on And have.
 駆動機構B3は、一端に回動軸(クランク軸)を有し、斯かる回動軸がフレームB1に対して回転自在に軸支されるクランクB31、クランクB31の他端において回転自在に軸支されると共に、運転者による荷重を受けるペダルB32、及び、クランクB31の上記一端にあるクランク軸を共通の回動軸としてクランクB31と一体的に回動するように配されたスプロケット(図示せず)と後輪B22の回動軸を共通の回動軸として後輪B22と一体的に回転するように配されたリアスプロケット(図示せず)とに連結されることで、ペダルB32に作用する運転者による荷重をクランクB31を介して後輪B22に伝達するチェーンB33を具備する。 The drive mechanism B3 has a rotation shaft (crank shaft) at one end, and the rotation shaft is rotatably supported at the other end of the crank B31. And a sprocket (not shown) arranged to rotate integrally with the crank B31 using the pedal B32 receiving a load from the driver and the crankshaft at the one end of the crank B31 as a common rotating shaft. ) And a rear sprocket (not shown) arranged so as to rotate integrally with the rear wheel B22, with the rotation axis of the rear wheel B22 being a common rotation axis, and acting on the pedal B32. A chain B33 is provided for transmitting the load from the driver to the rear wheel B22 via the crank B31.
 クランクB31は、自転車Bの正面視左側に配置される左クランクシャフトB311と、正面視右側に配置される右クランクシャフトB312とを有し、これら左右クランクシャフトB311、B312は、上記クランク軸を対称点とする点対称となる位置で固着されている。また、ペダルB32も、自転車Bの正面視左側に配置される左ペダルB321と、自転車Bの正面視右側に配置される右ペダルB322とからなり、左ペダルB321は左クランクシャフトB311の先端部に取り付けられた左ペダル軸(図示せず)に回転自在に支持され、右ペダルB322は右クランクシャフトB312の先端部に取り付けられた右ペダル軸(図示せず)に回転自在に支持されている。 The crank B31 has a left crankshaft B311 disposed on the left side of the bicycle B as viewed from the front, and a right crankshaft B312 disposed on the right side of the front, and the left and right crankshafts B311 and B312 are symmetrical with respect to the crankshaft. It is fixed at a point symmetrical point. The pedal B32 also includes a left pedal B321 disposed on the left side of the bicycle B as viewed from the front and a right pedal B322 disposed on the right side of the bicycle B as viewed from the front. The left pedal B321 is disposed at the tip of the left crankshaft B311. The left pedal shaft (not shown) is rotatably supported by the attached left pedal shaft, and the right pedal B322 is rotatably supported by the right pedal shaft (not shown) attached to the tip of the right crankshaft B312.
 なお、左クランクシャフトB311と右クランクシャフトB312とは同一形状であり、左ペダルB321と右ペダルB322も同一形状であり、対応するクランクシャフトとペダルとの相関的な構造も同一である。以下においては、クランク軸とペダル軸(右ペダル軸又は左ペダル軸)との距離Lを「クランク長」という(図1参照)。 The left crankshaft B311 and the right crankshaft B312 have the same shape, the left pedal B321 and the right pedal B322 have the same shape, and the corresponding structures of the corresponding crankshaft and pedal are the same. Hereinafter, the distance L between the crankshaft and the pedal shaft (right pedal shaft or left pedal shaft) is referred to as “crank length” (see FIG. 1).
 ペダリング状態検出装置100は、クランクB31の回転角度を検出するクランク回転角度検出センサ2、ペダルB32に作用する力(以下、「ペダル作用力」という)のクランクB31の回転方向成分(以下、「ペダル作用力回転方向成分」という)の大きさを検出する回転方向成分検出センサ3、ペダル作用力のクランク軸を中心とする放射方向(又は、クランク長の長さ方向)成分(以下、「ペダル作用力放射方向成分」という)の大きさを検出する放射方向成分検出センサ4、クランクB31の回転数を検出するクランク回転数検出センサ5、及び、クランク回転角度検出センサ2、回転方向成分検出センサ3、放射方向成分検出センサ4、並びに、クランク回転数検出センサ5から送信される信号に基づいて、後述するパワーゾーン及びロスゾーンを表示する(後述する予め設定された所定値を算出し、所定事項を表示する)サイクルコンピュータ1を備える。 The pedaling state detection device 100 includes a crank rotation angle detection sensor 2 for detecting a rotation angle of the crank B31, a force acting on the pedal B32 (hereinafter referred to as “pedal acting force”), and a rotation direction component of the crank B31 (hereinafter referred to as “pedal”). Rotation direction component detection sensor 3 for detecting the magnitude of the acting force rotation direction component), a radial direction (or length direction of the crank length) component (hereinafter referred to as “pedal action”) of the pedal acting force around the crankshaft. The radial direction component detection sensor 4 for detecting the magnitude of the "radiation direction component", the crank rotation number detection sensor 5 for detecting the rotation number of the crank B31, the crank rotation angle detection sensor 2, and the rotation direction component detection sensor 3 Based on the signals transmitted from the radial direction component detection sensor 4 and the crank rotation speed detection sensor 5, Show emissions and Rosuzon (calculates preset predetermined value will be described later, and displays predetermined items) comprises a cycle computer 1.
 なお、クランク回転角度検出センサ2、回転方向成分検出センサ3、放射方向成分検出センサ4、及び、クランク回転数検出センサ5は図示しない発信機を備えており、各センサ2~5からサイクルコンピュータ1へ検出信号を送信することが可能となっている。つまり、サイクルコンピュータ1と各センサ2~5とは無線で接続されている。 The crank rotation angle detection sensor 2, the rotation direction component detection sensor 3, the radial direction component detection sensor 4, and the crank rotation number detection sensor 5 are provided with a transmitter (not shown). It is possible to transmit a detection signal to. That is, the cycle computer 1 and the sensors 2 to 5 are connected wirelessly.
 クランク回転角度検出センサ2は、例えばクランクギアの外周部近傍に狭装された、発光部と受光部とを有する光学式の回転検出センサからなり、発光部と受光部との間を通過するギアの歯の数をカウントし、このカウント値とギアの歯数との比を求めることで、回転角度を検出することができる。なお、回転角度検出センサ2としてはこれに限定されるものではなく、ポテンションメータ等の既存のセンサが利用可能である。このセンサ2からは、クランク回転角度(θ)に応じたクランク回転角度検出信号がサイクルコンピュータ1に送信される。 The crank rotation angle detection sensor 2 is composed of an optical rotation detection sensor having a light emitting part and a light receiving part, for example, narrowly provided in the vicinity of the outer peripheral part of the crank gear, and a gear that passes between the light emitting part and the light receiving part. The rotation angle can be detected by counting the number of teeth and obtaining the ratio between the count value and the number of gear teeth. The rotation angle detection sensor 2 is not limited to this, and an existing sensor such as a potentiometer can be used. A crank rotation angle detection signal corresponding to the crank rotation angle (θ) is transmitted from the sensor 2 to the cycle computer 1.
 なお、本実施の形態においては、クランク回転角度(θ)は、左クランクシャフトB311を基準に表されるものとする。つまり、左クランクシャフトB311が12時の方向に位置する(先端が上方を向く)ときに、クランク回転角度(θ)は「0°」である。また、クランク回転角度検出センサ2は、左クランクシャフトB311が3時の方向を指す(先端が前方を向く)とき、クランク回転角度「90°」を示し、左クランクシャフトB311が9時の方向を指す(先端が後方を向く)とき、クランク回転角度「270°」を示す。そして、クランク回転角度検出センサ2が検出するクランク回転角度(θ)の範囲は0°以上360°未満(0≦θ<360°)となっており、左クランクシャフトB311が12時の方向から時計回りで回転する向きを「+」方向とする。 In the present embodiment, the crank rotation angle (θ) is expressed with reference to the left crankshaft B311. That is, when the left crankshaft B311 is positioned in the 12 o'clock direction (the tip is directed upward), the crank rotation angle (θ) is “0 °”. The crank rotation angle detection sensor 2 indicates the crank rotation angle “90 °” when the left crankshaft B311 indicates the direction of 3 o'clock (the front end faces forward), and the left crankshaft B311 indicates the direction of 9 o'clock. When pointing (the tip is pointing backward), the crank rotation angle “270 °” is indicated. The range of the crank rotation angle (θ) detected by the crank rotation angle detection sensor 2 is 0 ° or more and less than 360 ° (0 ≦ θ <360 °), and the left crankshaft B311 is rotated from the 12 o'clock direction. The direction of rotation around is the “+” direction.
 回転方向成分検出センサ3は、2つの歪みセンサからなるセンサのユニット3a(以下、「回転方向歪みセンサユニット3」という)、回転方向歪みセンサユニット3aを構成する歪みセンサの各端子に接続された回転方向歪み検出回路3b、及び、センサ3を包括的に制御する回転方向成分制御部3cを具備し(図5(b)参照)、図1(a)及び図1(b)に示すように、クランクシャフトB311、B312の正面(各クランクシャフトB311、B312が6時の方向を指すとき、進行方向を向く面)に回転方向成分検出センサ3が取り付けられている(左クランクシャフトB311に取り付けられている左回転方向成分検出センサ31、右クランクシャフトB312に取り付けられている右回転方向成分検出センサ32)。 The rotational direction component detection sensor 3 is connected to a sensor unit 3a composed of two strain sensors (hereinafter referred to as “rotational direction strain sensor unit 3”) and each terminal of the strain sensor constituting the rotational direction strain sensor unit 3a. As shown in FIGS. 1 (a) and 1 (b), a rotational direction distortion detection circuit 3b and a rotational direction component control unit 3c for comprehensively controlling the sensor 3 are provided (see FIG. 5 (b)). The rotational direction component detection sensor 3 is attached to the front face of the crankshafts B311 and B312 (the face that faces the traveling direction when the crankshafts B311 and B312 indicate the 6 o'clock direction) (attached to the left crankshaft B311). Left rotation direction component detection sensor 31 and right rotation direction component detection sensor 32 attached to the right crankshaft B312).
 図3(a)に示すように、各回転方向歪みセンサユニット3aを構成する歪みセンサは、各クランクシャフトB311、B312の正面において互いに直交した状態で接着されている。回転方向歪み検出回路3bは、各歪みセンサの出力の増幅及び調整を行い、当該センサユニット3aが検出した統一的な歪み量を表す情報(以下、「回転方向歪み情報」という)を制御部3cに送信する。各センサ31、32の回転方向成分制御部3cは、回転方向歪み検出回路3bが送信した回転方向歪み量情報に基づいて、次の数(1)より、クランク踏力回転方向成分の大きさFxを算出し、各ペダル作用力回転方向成分の大きさFxに応じた回転方向成分検出信号をサイクルコンピュータ1に送信する。
Figure JPOXMLDOC01-appb-M000001
As shown in FIG. 3A, the strain sensors constituting each rotational direction strain sensor unit 3a are bonded in a state orthogonal to each other on the front surfaces of the crankshafts B311 and B312. The rotation direction distortion detection circuit 3b amplifies and adjusts the output of each distortion sensor, and information indicating the unified distortion amount detected by the sensor unit 3a (hereinafter referred to as “rotation direction distortion information”) is controlled by the control unit 3c. Send to. The rotational direction component control unit 3c of each sensor 31, 32 determines the magnitude Fx of the crank pedal force rotational direction component from the following number (1) based on the rotational direction distortion amount information transmitted by the rotational direction distortion detection circuit 3b. The rotation direction component detection signal corresponding to the magnitude Fx of each pedal action force rotation direction component is calculated and transmitted to the cycle computer 1.
Figure JPOXMLDOC01-appb-M000001
 ここで、「m」は質量を表し、「g」は重力加速度を表し、「X」は回転方向歪み検出回路3bによって検出された歪み量、「Xc」はクランクシャフトB31が水平状態に保持されているときにペダルB32に垂直な力(mg(N))が作用した場合のクランクシャフトB31の正面の歪み量、「Xz」はクランクシャフトB31が無負荷状態である場合におけるクランクシャフトB31の正面の歪み量を表す。なお、Xc、Xzは、例えば、当該センサ3を使用する前にセンサユニット3aをクランクシャフトB31の正面に貼り付けて校正することによって取得される。 Here, “m” represents mass, “g” represents gravitational acceleration, “X” represents the amount of strain detected by the rotational direction strain detection circuit 3b, and “Xc” represents that the crankshaft B31 is held in a horizontal state. The amount of distortion of the front surface of the crankshaft B31 when a force (mg (N)) perpendicular to the pedal B32 is applied, and “Xz” is the front surface of the crankshaft B31 when the crankshaft B31 is in an unloaded state. Represents the amount of distortion. Xc and Xz are acquired, for example, by attaching the sensor unit 3a to the front surface of the crankshaft B31 and calibrating it before using the sensor 3.
 放射方向成分検出センサ4は、2つの歪みセンサからなるセンサのユニット4a(以下、「放射方向歪みセンサユニット4」という)、放射方向歪みセンサユニット4aを構成する歪みセンサの各端子に接続された放射方向歪み検出回路4b、及び、センサ4を包括的に制御する放射方向成分制御部4cを具備し(図5(b)参照)、図1(a)及び図1(b)に示すように、クランクシャフトB31の外側面に放射方向成分検出センサ4が取り付けられている(左クランクシャフトB311に取り付けられている左放射方向成分検出センサ41、右クランクシャフトB312に取り付けられている右放射方向成分検出センサ42)。 The radial direction component detection sensor 4 is connected to a sensor unit 4a composed of two strain sensors (hereinafter referred to as “radial direction strain sensor unit 4”) and each terminal of the strain sensor constituting the radial direction strain sensor unit 4a. A radial direction distortion detection circuit 4b and a radial direction component control unit 4c that comprehensively controls the sensor 4 are provided (see FIG. 5B), as shown in FIGS. 1A and 1B. The radial direction component detection sensor 4 is attached to the outer surface of the crankshaft B31 (the left radial direction component detection sensor 41 attached to the left crankshaft B311 and the right radial direction component attached to the right crankshaft B312. Detection sensor 42).
 図3(b)に示すように、各放射方向歪みセンサユニット4aを構成する歪みセンサは、各クランクシャフトB311、B312の外側面において互いに直交した状態で接着されている。放射方向歪み検出回路3bは、各歪みセンサの出力の増幅及び調整を行い、当該センサユニット4aが検出した統一的な歪み量を表す情報(以下、「放射方向歪み情報」という)を制御部4cに送信する。各センサ41、42の放射方向歪み制御部4cは、放射方向歪み検出回路4bが送信した放射方向歪み量情報に基づいて、次の数(2)より、クランク踏力放射方向成分の大きさFyを算出し、各ペダル作用力放射方向成分の大きさFyに応じた放射方向成分検出信号をサイクルコンピュータ1に送信する。
Figure JPOXMLDOC01-appb-M000002
As shown in FIG. 3B, the strain sensors constituting each radial strain sensor unit 4a are bonded to each other on the outer side surfaces of the crankshafts B311 and B312 so as to be orthogonal to each other. The radial distortion detection circuit 3b amplifies and adjusts the output of each distortion sensor, and information (hereinafter referred to as “radial distortion information”) indicating a unified distortion amount detected by the sensor unit 4a is controlled by the control unit 4c. Send to. The radial direction distortion control unit 4c of each sensor 41, 42 determines the magnitude Fy of the crank pedal force radial direction component from the following number (2) based on the radial direction distortion amount information transmitted by the radial direction distortion detection circuit 4b. Calculation is performed and a radial direction component detection signal corresponding to the magnitude Fy of each pedal acting force radial direction component is transmitted to the cycle computer 1.
Figure JPOXMLDOC01-appb-M000002
 ここで、「m」は質量を表し、「g」は重力加速度を表し、「Y」は放射方向歪み検出回路4bによって検出された歪み量、「Yu」はペダルB32が下死点に位置するときにペダルB32に垂直な力(mg(N))が作用した場合のクランクシャフトB31の外側面の歪み量、「Yz」はクランクシャフトB31が無負荷状態である場合におけるクランクシャフトB31の外側面の歪み量を表す。なお、Yu、Yzは、例えば、当該センサ4を使用する前にセンサユニット4aをクランクシャフトB31の外側面に貼り付けて校正することによって取得される。 Here, “m” represents mass, “g” represents gravitational acceleration, “Y” represents the amount of strain detected by the radial strain detection circuit 4b, and “Yu” represents the pedal B32 at the bottom dead center. The amount of distortion of the outer surface of the crankshaft B31 when a force (mg (N)) perpendicular to the pedal B32 is sometimes applied, “Yz” is the outer surface of the crankshaft B31 when the crankshaft B31 is unloaded Represents the amount of distortion. Yu and Yz are acquired, for example, by attaching the sensor unit 4a to the outer surface of the crankshaft B31 and calibrating it before using the sensor 4.
 クランク回転数検出センサ5は、例えば左クランクシャフトB312に固定されたマグネットと、フレームB1の所定位置に装着されたマグネット検出器とで構成されるケイデンスセンサからなり、単位時間当たり(1分間)にマグネットがマグネット検出器の正面を通過する回数(rpm)を検出することで、単位時間当たりのクランクB31の回転数を検出する。このセンサ5からは、単位時間当たりのクランクB31の回転数に応じた回転数検出信号がサイクルコンピュータ1に送信される。後述するようにサイクルコンピュータ1の制御部13がこの信号からクランクB31の単位時間当たりの回転数を読み取る。 The crank rotation speed detection sensor 5 includes a cadence sensor including a magnet fixed to the left crankshaft B312 and a magnet detector mounted at a predetermined position of the frame B1, for example, per unit time (1 minute). The number of rotations of the crank B31 per unit time is detected by detecting the number of times (rpm) the magnet passes the front of the magnet detector. From the sensor 5, a rotation speed detection signal corresponding to the rotation speed of the crank B 31 per unit time is transmitted to the cycle computer 1. As will be described later, the control unit 13 of the cycle computer 1 reads the rotational speed per unit time of the crank B31 from this signal.
 次に、図4及び図5(a)を用いて、サイクルコンピュータ1の構成について説明する。図4はサイクルコンピュータ1の外観図であり、図5(a)はペダリング状態検出装置100の電気的なブロック構成図である。図4に示すように、サイクルコンピュータ1は、自転車BのハンドルB4に着脱可能であるブラケット6を介して自転車Bに装着されている。サイクルコンピュータ1は、所定の情報を入力するための入力部11、所定の情報を表示するための表示部12、後述するペダリングに関わる所定の処理を実行する演算回路を具備する制御部13(図5(a)参照)、及び、これら入力部11、表示部12並びに制御部13を収容する筐体14を有する。 Next, the configuration of the cycle computer 1 will be described with reference to FIGS. 4 and 5A. FIG. 4 is an external view of the cycle computer 1, and FIG. 5A is an electrical block diagram of the pedaling state detection apparatus 100. As shown in FIG. 4, the cycle computer 1 is attached to the bicycle B via a bracket 6 that can be attached to and detached from the handle B4 of the bicycle B. The cycle computer 1 includes an input unit 11 for inputting predetermined information, a display unit 12 for displaying predetermined information, and a control unit 13 having an arithmetic circuit for executing predetermined processing related to pedaling to be described later (FIG. 5 (a)), and a housing 14 that houses the input unit 11, the display unit 12, and the control unit 13.
 図4に示すように、入力部11は、筐体14の上面から突出した状態で並設された押圧操作可能な3つのボタン11a、11b、11c、及び、スライド式のスイッチからなり、電力供給のON/OFF操作を行うための電源スイッチ11dを備えている。 As shown in FIG. 4, the input unit 11 includes three buttons 11 a, 11 b, 11 c that are juxtaposed in a state of protruding from the upper surface of the housing 14, and a slide-type switch, and supplies power. Is provided with a power switch 11d for ON / OFF operation.
 また、図5(a)に示すように、入力部11は、ボタン11a~11c及び電源スイッチ11dの操作に伴う入力信号を制御部13への制御情報として中継する入力制御回路11eを備える。各ボタン11a~11cが押圧操作されると、入力制御回路11eは押圧操作に対応する制御情報に変換して制御部13に送信する。これによって、運転者は、ボタン11a~11cの限られた数のボタンであっても、これらのボタン操作の組み合わせによって、運転者や自転車に関する固有情報の入力や計測の開始/終了等、ボタンの数以上の複数の種類の入力操作が可能となる。 Further, as shown in FIG. 5A, the input unit 11 includes an input control circuit 11e that relays an input signal accompanying the operation of the buttons 11a to 11c and the power switch 11d as control information to the control unit 13. When the buttons 11a to 11c are pressed, the input control circuit 11e converts the control information into control information corresponding to the pressing operation and transmits the control information to the control unit 13. As a result, even if the driver has a limited number of buttons 11a to 11c, the combination of these button operations allows the driver to input specific information about the driver and the bicycle and to start / end the measurement. Multiple types of input operations can be performed.
 なお、本実施の形態では、所定の情報を入力するための構造として、押圧操作可能なボタン11a~11cを採用しているが、これに限られず、十字キー、トラックボール及びジョイスティック等のポインティングデバイスを採用することも可能である。 In this embodiment, the buttons 11a to 11c that can be pressed are used as a structure for inputting predetermined information. However, the present invention is not limited to this, and pointing devices such as a cross key, a trackball, and a joystick are used. It is also possible to adopt.
 表示部12は、後述するパワーゾーンやロスゾーン等を含む所定の情報を表示(報知)するための液晶パネル12aと、表示すべき情報に応じて当該液晶パネル12aの表示制御を行う表示制御回路12eとを具備する。なお、液晶パネル12aをタッチパネルにして、入力部11と表示部12とを一体化することも可能である。 The display unit 12 includes a liquid crystal panel 12a for displaying (notifying) predetermined information including a power zone and a loss zone described later, and a display control circuit 12e that performs display control of the liquid crystal panel 12a according to information to be displayed. It comprises. The input unit 11 and the display unit 12 can be integrated by using the liquid crystal panel 12a as a touch panel.
 サイクルコンピュータ1の制御部13は、CPU13a、ROM13b、RAM13c、記録媒体用I/F13d、センサ用I/F13e、通信用I/F13f、及び、発振回路13gからなり、これら各構成部はバス13hによって接続されている。 The control unit 13 of the cycle computer 1 includes a CPU 13a, a ROM 13b, a RAM 13c, a recording medium I / F 13d, a sensor I / F 13e, a communication I / F 13f, and an oscillation circuit 13g. These components are connected by a bus 13h. It is connected.
 CPU13aは、ROM13bに予め記憶されているプログラムに基づいて、ペダリング状態の検出や表示等を含むサイクルコンピュータとしての基本動作を制御する。ROM13bには、CPU13aが実行するサイクルコンピュータとしての基本処理を実行するためのプログラムコードが予め記憶されている。RAM13cは、CPU13aがサイクルコンピュータとしての基本処理を実行する際に行う演算処理において、データ等のワーキングエリアとして機能する。 The CPU 13a controls basic operations as a cycle computer including detection and display of a pedaling state based on a program stored in the ROM 13b in advance. The ROM 13b stores in advance a program code for executing basic processing as a cycle computer executed by the CPU 13a. The RAM 13c functions as a working area for data and the like in arithmetic processing performed when the CPU 13a executes basic processing as a cycle computer.
 記録媒体用I/F13dは、後述するペダリング状態を担うパラメータ等をメモリカード等の記録媒体に記録する際のインターフェースである。センサ用I/F13eは、上述したクランク回転角度検出センサ2、回転方向成分検出センサ3、放射方向成分検出センサ4及びクランク回転数検出センサ5から送信される各種検出信号を取り込んで、CPU13aからの指示に基づいて出力する。通信用I/F13fは、携帯電話等の移動端末や自宅等に設置されるPCといった外部装置(図示せず)との間で各種データを送受信する外部の処理機器との間でデータの送受信を行うためのインターフェースである。発振回路13gは、クロック発振子としての水晶振動子を具備しており、発生するクロックを計数することにより所定周期でCPU13aにパルス信号を出力する。なお、上述した入力部11、表示部12、及び、制御部13は、バス13gを介して必要な情報データの送受信がされる構成である。 The recording medium I / F 13d is an interface for recording a parameter, etc., which bears a pedaling state, which will be described later, on a recording medium such as a memory card. The sensor I / F 13e takes in various detection signals transmitted from the crank rotation angle detection sensor 2, the rotation direction component detection sensor 3, the radial direction component detection sensor 4 and the crank rotation number detection sensor 5 described above, and outputs from the CPU 13a. Output based on instructions. The communication I / F 13f transmits / receives data to / from an external processing device that transmits / receives various data to / from an external device (not shown) such as a mobile terminal such as a mobile phone or a PC installed at home. It is an interface to do. The oscillation circuit 13g includes a crystal resonator as a clock oscillator, and outputs a pulse signal to the CPU 13a at a predetermined cycle by counting generated clocks. The input unit 11, the display unit 12, and the control unit 13 described above are configured to transmit and receive necessary information data via the bus 13g.
 図6は、本発明の実施の形態に係るペダリング状態検出装置100の制御的な(又は、機能的な)構成を示すブロック図である。ペダリング状態検出装置100は、運転者・自転車情報取得部S1、走行状態情報取得部S2、トルク値解析部S3、伝達効率解析部S4、図面作成部S5及び情報表示部S6を有する。なお、走行状態情報取得部S2は、クランク回転角度情報取得部S21、ペダル作用力回転方向成分情報取得部S22、ペダル作用力放射方向成分情報取得部S23及びクランク回転数情報取得部S24からなる。 FIG. 6 is a block diagram illustrating a control (or functional) configuration of the pedaling state detection apparatus 100 according to the embodiment of the present invention. The pedaling state detection apparatus 100 includes a driver / bicycle information acquisition unit S1, a running state information acquisition unit S2, a torque value analysis unit S3, a transmission efficiency analysis unit S4, a drawing creation unit S5, and an information display unit S6. The traveling state information acquisition unit S2 includes a crank rotation angle information acquisition unit S21, a pedal action force rotation direction component information acquisition unit S22, a pedal action force radial direction component information acquisition unit S23, and a crank rotation number information acquisition unit S24.
 運転者・自転車情報取得部S1(以下、「運転者等情報取得部S1」という)は、運転者及び自転車Bに関する情報のデータ(以下、「運転者等データ」という)を取得する機能を有する。運転者等情報取得部S1は、例えば、入力部11、及び、入力部11のボタン11a~11cの操作に応じて入力項目を表示部12に表示させると共に、ボタン11a~11cの操作に応じて入力制御回路11eから出力された信号に基づくデータを保存する制御部13によって構成される。本実施の形態において、運転者等情報取得部S1は少なくとも、最大パワーに関するデータ(以下、「最大パワーデータ」という)及びクランク長に関するデータ(以下、「クランク長データ」という)をRAM13cの所定領域に記憶する。なお、最大パワーとは、運転者が発揮することができる最大の仕事率のことである。 The driver / bicycle information acquisition unit S1 (hereinafter referred to as “driver information acquisition unit S1”) has a function of acquiring data on the driver and the bicycle B (hereinafter referred to as “driver data”). . The driver information acquisition unit S1 displays, for example, input items on the display unit 12 according to the operation of the input unit 11 and the buttons 11a to 11c of the input unit 11, and also according to the operation of the buttons 11a to 11c. It is comprised by the control part 13 which preserve | saves the data based on the signal output from the input control circuit 11e. In the present embodiment, the driver information acquisition unit S1 stores at least data on maximum power (hereinafter referred to as “maximum power data”) and data on crank length (hereinafter referred to as “crank length data”) in a predetermined area of the RAM 13c. To remember. The maximum power is the maximum work rate that can be exhibited by the driver.
 走行状態情報取得部S2は、自転車Bの走行に関する情報のデータ(以下、「走行状態情報データ」という)を取得する機能を有する。走行状態情報取得部S2は、クランク回転角度検出センサ2、回転方向成分検出センサ3(正面視左側に配される左回転方向成分検出センサ31及び正面視右側に配される右回転方向成分検出センサ32)、放射方向成分検出センサ4(正面視左側に配される左放射方向成分検出センサ41及び正面視右側に配される右放射方向成分検出センサ42)、クランク回転数検出センサ5及びこれら各センサ2~5から送信された信号に基づくデータを保存する制御部13によって構成される。 The traveling state information acquisition unit S2 has a function of acquiring information data related to traveling of the bicycle B (hereinafter referred to as “running state information data”). The traveling state information acquisition unit S2 includes a crank rotation angle detection sensor 2, a rotation direction component detection sensor 3 (a left rotation direction component detection sensor 31 disposed on the left side of the front view and a right rotation direction component detection sensor disposed on the right side of the front view). 32), a radial direction component detection sensor 4 (a left radial direction component detection sensor 41 disposed on the left side of the front view and a right radial direction component detection sensor 42 disposed on the right side of the front view), the crank rotation number detection sensor 5, and each of these. The controller 13 stores data based on signals transmitted from the sensors 2 to 5.
 また、走行状態情報取得部S2は、クランク回転角度情報取得部S21、ペダル作用力回転方向成分情報取得部S22、ペダル作用力放射方向成分情報取得部S23及びクランク回転数情報取得部S24からなる。クランク回転角度情報取得部S21は、クランク回転角度検出センサ2及び制御部13で構成され、クランク回転角度検出センサ2から出力された信号に基づきクランク回転角度データをRAM13cの所定領域に記憶(取得)する機能を有する。ペダル作用力回転方向成分情報取得部S22は、回転方向成分検出センサ3及び制御部13で構成され、回転方向成分検出センサ3から出力された信号に基づきペダル作用力回転方向成分データをRAM13cの所定領域に記憶(取得)する機能を有する。ペダル作用力放射方向成分情報取得部S23は、放射方向成分検出センサ4及び制御部13で構成され、放射方向成分検出センサ4から出力された信号に基づきペダル作用力放射方向成分データをRAM13cの所定領域に記憶(取得)する機能を有する。クランク回転数情報取得部S24は、クランク回転数検出センサ5及び制御部13で構成され、クランク回転数検出センサ5から出力された信号に基づきクランク回転数データをRAM13cの所定領域に記憶(取得)する機能を有する。 The traveling state information acquisition unit S2 includes a crank rotation angle information acquisition unit S21, a pedal action force rotation direction component information acquisition unit S22, a pedal action force radial direction component information acquisition unit S23, and a crank rotation number information acquisition unit S24. The crank rotation angle information acquisition unit S21 includes the crank rotation angle detection sensor 2 and the control unit 13, and stores (acquires) crank rotation angle data in a predetermined area of the RAM 13c based on a signal output from the crank rotation angle detection sensor 2. Has the function of The pedal action force rotation direction component information acquisition unit S22 includes a rotation direction component detection sensor 3 and a control unit 13. Based on a signal output from the rotation direction component detection sensor 3, pedal action force rotation direction component data is stored in the RAM 13c. It has a function of storing (acquiring) in an area. The pedal action force radial direction component information acquisition unit S23 includes the radial direction component detection sensor 4 and the control unit 13. Based on the signal output from the radial direction component detection sensor 4, pedal action force radial direction component data is stored in the RAM 13c. It has a function of storing (acquiring) in an area. The crank rotational speed information acquisition unit S24 includes the crank rotational speed detection sensor 5 and the control unit 13, and stores (acquires) crank rotational speed data in a predetermined area of the RAM 13c based on the signal output from the crank rotational speed detection sensor 5. Has the function of
 トルク値解析部S3は、制御部13で構成され、クランク回転角度情報取得部S21、ペダル作用力回転方向成分情報取得部S22及びクランク回転数情報取得部S24によって取得されたデータを用いて、クランク回転角度に対応付けられたトルク値(トルクの大きさ)を算出し、クランク回転角度がパワーゾーンであるか否かを判定する機能を有する。パワーゾーンとは、ペダルB32を漕ぐこと(又は、クランクB31を回転させること)であるペダリングに対する有効な成分、すなわち、自転車Bの推進に寄与するペダル作用力であるペダル作用力回転方向成分から算出されるトルク値が、運転者等情報取得部S1によって取得された最大パワーデータ及びクランク回転数情報取得部S24によって取得されたクランク回転数に基づいて設定されるパワーゾーン用判定値(基準値)を超えているクランク回転角度のことをいう。 The torque value analysis unit S3 is configured by the control unit 13 and uses the data acquired by the crank rotation angle information acquisition unit S21, the pedal action force rotation direction component information acquisition unit S22, and the crank rotation number information acquisition unit S24. It has a function of calculating a torque value (torque magnitude) associated with the rotation angle and determining whether or not the crank rotation angle is a power zone. The power zone is calculated from an effective component for pedaling that is pedaling the pedal B32 (or rotating the crank B31), that is, a pedal acting force rotation direction component that is a pedal acting force contributing to the propulsion of the bicycle B. The determination value (reference value) for the power zone in which the torque value to be set is set based on the maximum power data acquired by the driver etc. information acquisition unit S1 and the crank rotation speed acquired by the crank rotation speed information acquisition unit S24 This is the crank rotation angle that exceeds.
 伝達効率解析部S4は、制御部13で構成され、クランク回転角度情報取得部S21、ペダル作用力回転方向成分情報取得部S22及びペダル作用力放射方向成分情報取得部S23によって取得されたデータを用いて、クランク回転角度に対応付けられた伝達効率を算出し、クランク回転角度がロスゾーンであるか否かを判定する機能を有する。伝達効率とは、ペダル作用力のクランクB31の回転に対する効率、具体的には、ペダルB32に作用した力のうち、クランクB31の回転、換言すれば、自転車Bの推進に寄与した力の割合のことであり、より具体的には、ペダル作用力の大きさに対するペダル作用力回転方向成分の大きさの割合で示される。この伝達効率は、ペダリング(ペダルB32の漕ぎ方)の指標となる。ロスゾーンとは、その伝達効率が、ロスゾーン用判定値以下であるクランク回転角度の範囲のことをいう。 The transmission efficiency analysis unit S4 includes the control unit 13, and uses data acquired by the crank rotation angle information acquisition unit S21, the pedal action force rotation direction component information acquisition unit S22, and the pedal action force radial direction component information acquisition unit S23. Thus, the transmission efficiency associated with the crank rotation angle is calculated, and it is determined whether or not the crank rotation angle is a loss zone. The transmission efficiency is the efficiency of the pedal acting force with respect to the rotation of the crank B31, specifically, the ratio of the force that has contributed to the rotation of the crank B31, in other words, the propulsion of the bicycle B out of the force acting on the pedal B32. More specifically, it is indicated by the ratio of the magnitude of the pedal action force rotation direction component to the magnitude of the pedal action force. This transmission efficiency is an indicator of pedaling (how to pedal P32). The loss zone is a crank rotation angle range in which the transmission efficiency is equal to or less than the loss zone determination value.
 図面作成部S5は、制御部13で構成され、トルク値解析部S3及び伝達効率解析部S4の判定結果を可視化して報知するために、当該判定結果を表す図面の元となる図面データを作成する機能を有する。具体的に、図面作成部S5は、図面データとして、クランクB31の回転(ペダリング)を表す基準円オブジェクトの元となる基準円オブジェクトデータ、パワーゾーンを表すパワーゾーンオブジェクトの元となるパワーゾーンオブジェクトデータ、ロスゾーンを表すロスゾーンオブジェクトの元となるロスゾーンオブジェクトデータ、及び、これらのオブジェクトをオーバーレイしたペダリング状態オブジェクトの元となるペダリング状態オブジェクトデータを作成し、RAM13cからなる送信バッファにセットする。 The drawing creation unit S5 is configured by the control unit 13 and creates drawing data as a basis of a drawing representing the determination result in order to visualize and notify the determination result of the torque value analysis unit S3 and the transmission efficiency analysis unit S4. Has the function of Specifically, the drawing creating unit S5 uses, as drawing data, reference circle object data that is a base of a reference circle object that represents rotation (pedaling) of the crank B31, and power zone object data that is a base of a power zone object that represents a power zone. Loss zone object data that is a source of a loss zone object that represents a loss zone, and pedaling state object data that is a source of a pedaling state object that overlays these objects are created and set in a transmission buffer that includes the RAM 13c.
 情報表示部S6は、制御部13及び表示部12で構成され、図面作成部S5が作成した図面データに基づいて、図面を表示する機能を有する。 The information display unit S6 includes a control unit 13 and a display unit 12, and has a function of displaying a drawing based on the drawing data created by the drawing creation unit S5.
 次に、図7~図10を用いて、ペダリング状態検出装置100が運転者のペダリング状態(ペダルの漕ぎ方)を表示(報知)する処理・方法について説明する。なお、左クランクシャフトB311のペダリング状態を表示する処理・方法と右クランクシャフトB312のペダリング状態を表示する処理・方法とは、同様であるので、本実施の形態におけるペダリング状態検出装置100では、左クランクシャフトB311(右足)のペダリング状態を表示する処理・方法を代表として説明する。 Next, the processing / method in which the pedaling state detection device 100 displays (notifies) the pedaling state (how to pedal) of the driver will be described with reference to FIGS. Since the processing / method for displaying the pedaling state of the left crankshaft B311 and the processing / method for displaying the pedaling state of the right crankshaft B312 are the same, in the pedaling state detection device 100 according to the present embodiment, the left A process / method for displaying the pedaling state of the crankshaft B311 (right foot) will be described as a representative.
 電源スイッチ11dの操作を介してサイクルコンピュータ1に電力が供給されると、CPU13aにシステムリセットが発生し、CPU13はROM13bに記憶されているペダリング状態を検出するプログラムに基づいて、図7に示すペダリング状態検出処理を開始する。 When power is supplied to the cycle computer 1 through the operation of the power switch 11d, a system reset occurs in the CPU 13a, and the CPU 13 performs the pedaling shown in FIG. 7 based on a program for detecting the pedaling state stored in the ROM 13b. The state detection process is started.
 まず、ステップS1において、情報入力処理を行う。ここでは、運転者のボタン11a~11cによって運転者及び自転車についての情報(以下、「運転者等情報」という)の入力を促すためにコーションを表示すると共に、所望の情報が入力されるまで待機する。そして、入力部11からの情報(ボタン11aの被操作を示す第1ボタン操作検出信号、ボタン11bの被操作を示す第2ボタン操作検出信号、及び、ボタン11cの被操作を示す第3ボタン操作検出信号)が入力されると、斯かる入力された情報に基づいて、運転者等情報を表す運転者等データをRAM13bの運転者等データ記憶領域に記憶する。「運転者等情報」は、運転者の最大パワー、性別、身長・体重、自転車の種類、タイヤの大きさ・種類、クランク長等で構成されるものである。 First, in step S1, information input processing is performed. Here, the driver's buttons 11a to 11c display a caution to prompt the driver and bicycle information (hereinafter referred to as “driver information”) to be input, and wait until the desired information is input. To do. Information from the input unit 11 (a first button operation detection signal indicating the operation of the button 11a, a second button operation detection signal indicating the operation of the button 11b, and a third button operation indicating the operation of the button 11c) When the detection signal is input, based on the input information, the driver data indicating the driver information is stored in the driver data storage area of the RAM 13b. “Driver information” includes the driver's maximum power, gender, height / weight, bicycle type, tire size / type, crank length, and the like.
 本実施の形態において、最大パワー及びクランク長はペダリング状態を表示するために必要な情報であるので、これらの情報を入力することが必須となっている。よって、ステップS1においては必ず、最大パワーを表す最大パワーデータがRAM13cの最大パワーデータ記憶領域に記憶され、クランク長を表すクランク長データがRAM13cのクランク長データ記憶領域に記憶される。 In the present embodiment, since the maximum power and the crank length are information necessary for displaying the pedaling state, it is essential to input such information. Therefore, in step S1, the maximum power data representing the maximum power is always stored in the maximum power data storage area of the RAM 13c, and the crank length data representing the crank length is stored in the crank length data storage area of the RAM 13c.
 ステップS2において、クランク回転角度、ペダル作用力回転方向成分、ペダル作用力放射方向成分及びクランク回転数を計測するための条件(以下、「計測開始条件」という)が成立し、計測を開始することができるか否かを判定する。本実施の形態においては、上述した様に最大パワー及びクランク長の入力が必須であることから、少なくとも最大パワー及びクランク長の入力が計測開始条件に含まれる。例えば、最大パワー及びクランク長が入力された上で、計測開始を示す信号が送信されてくることが計測開始条件の成立となるようにしてもよい。ステップS2において、計測開始条件が成立していないと判定するとステップS1に処理を移し、計測開始条件が成立したと判定するとステップS3に処理を移す。 In step S2, a condition for measuring the crank rotation angle, the pedal action force rotation direction component, the pedal action force radial direction component, and the crank rotation speed (hereinafter referred to as “measurement start condition”) is satisfied, and measurement is started. It is determined whether or not In the present embodiment, as described above, the input of the maximum power and the crank length is essential, so at least the input of the maximum power and the crank length is included in the measurement start condition. For example, the measurement start condition may be satisfied when a signal indicating the start of measurement is transmitted after the maximum power and the crank length are input. If it is determined in step S2 that the measurement start condition is not satisfied, the process proceeds to step S1, and if it is determined that the measurement start condition is satisfied, the process proceeds to step S3.
 ステップS3では、クランク回転角度信号に基づいてクランク回転角度データをRAM13cのクランク回転角度データ記憶領域に記憶すると共に、クランク回転数信号に基づいてクランク回転数データをRAM13cのクランク回転数データ記憶領域に記憶する。なお、左クランクシャフトB311と右クランクシャフトB312の位相差が180°であるため、右クランクシャフトB312の回転角度は、クランク回転角度データが示すクランク回転角度データに180°を加算した値となる。 In step S3, the crank rotational angle data is stored in the crank rotational angle data storage area of the RAM 13c based on the crank rotational angle signal, and the crank rotational speed data is stored in the crank rotational speed data storage area of the RAM 13c based on the crank rotational speed signal. Remember. Since the phase difference between the left crankshaft B311 and the right crankshaft B312 is 180 °, the rotation angle of the right crankshaft B312 is a value obtained by adding 180 ° to the crank rotation angle data indicated by the crank rotation angle data.
 ステップS4では、ペダル作用力回転方向成分信号に基づいてペダル作用力回転方向成分データをRAM13cのペダル作用力回転方向成分データ記憶領域に記憶すると共に、ペダル作用力放射方向成分信号に基づいてペダル作用力放射方向成分データをRAM13cのペダル作用力放射方向成分データ記憶領域に記憶する。 In step S4, the pedal action force rotation direction component data is stored in the pedal action force rotation direction component data storage area of the RAM 13c based on the pedal action force rotation direction component signal, and the pedal action based on the pedal action force radial direction component signal. The force radiation direction component data is stored in the pedal action force radiation direction component data storage area of the RAM 13c.
 なお、本実施の形態では、ペダル作用力回転方向成分データ及びペダル作用力放射方向成分データを、クランク回転角度データに対応付けて記憶する。具体的には、最も新しく記憶された(直近の処理で算出された)クランク回転角度データが表すクランク回転角度に対するペダル作用力回転方向成分データ及びペダル作用力放射方向成分データとして保存する。なお、ステップS3及びステップS4の処理は、発振回路13gから出力されるパルス信号に基づいて例えば10ms毎に行われ、クランク回転角度データ、ペダル作用力回転方向成分データ、及び、ペダル作用力放射方向成分データは逐次記憶される。また、クランク回転数は、クランクB31が1回転されないと検出されないので、クランク回転数データはクランクB31が1回転する度に記憶される。 In the present embodiment, pedal action force rotation direction component data and pedal action force radial direction component data are stored in association with crank rotation angle data. Specifically, it is stored as pedal action force rotation direction component data and pedal action force radial direction component data with respect to the crank rotation angle represented by the latest stored crank rotation angle data (calculated by the latest processing). Note that the processing in step S3 and step S4 is performed, for example, every 10 ms based on the pulse signal output from the oscillation circuit 13g, and the crank rotation angle data, pedal action force rotation direction component data, and pedal action force radiation direction. The component data is stored sequentially. Further, since the crank speed is not detected unless the crank B31 is rotated once, the crank speed data is stored every time the crank B31 rotates once.
 ステップS5において、ステップS3で取得したクランク回転角度データが示すクランク回転角度が所定値(30°、60°、90°、120°、150°、180°、210°、240°、270°、300°、330°、又は、0°のいずれか)以上であるか否かを判定する。本ステップでクランク回転角度が所定値以上ではないと判定すると、ステップS3に処理を移し、クランク回転角度が所定値以上であると判定すると、ステップS6に処理を移す。 In step S5, the crank rotation angle indicated by the crank rotation angle data acquired in step S3 is a predetermined value (30 °, 60 °, 90 °, 120 °, 150 °, 180 °, 210 °, 240 °, 270 °, 300 It is determined whether the angle is any one of °, 330 °, and 0 °. If it is determined in this step that the crank rotation angle is not equal to or greater than the predetermined value, the process proceeds to step S3. If it is determined that the crank rotation angle is equal to or greater than the predetermined value, the process proceeds to step S6.
 「所定値」は最初、30°に設定されており、クランク回転角度の計測が開始されて、クランク回転角度が徐々に増加し、クランク回転角度が30°以上になると、後述するステップS8において60°に更新される。その後、クランク回転角度が所定値以上となる度に所定値を30°増加させることを繰り返す。なお、クランク回転角度の範囲は0°以上360°未満であるため、所定値は330°の次に0°となる。 The “predetermined value” is initially set to 30 °. When the crank rotation angle is started to be measured and the crank rotation angle is gradually increased to reach 30 ° or more, the “predetermined value” is set to 60 in step S8 described later. Updated to °. Thereafter, every time the crank rotation angle becomes equal to or greater than the predetermined value, the predetermined value is repeatedly increased by 30 °. Since the crank rotation angle range is 0 ° or more and less than 360 °, the predetermined value is 330 ° followed by 0 °.
 ステップS6においては、ステップS4で取得したペダル作用力回転方向成分データ及びペダル作用力放射方向成分データ等に基づいて、当該クランク回転角度の範囲における伝達効率を算出し、当該クランク回転角度の範囲がロスゾーンであるか否かを判定する伝達効率解析処理を行う。詳しくは、後述する。 In step S6, the transmission efficiency in the range of the crank rotation angle is calculated based on the pedal action force rotation direction component data and the pedal action force radial direction component data acquired in step S4, and the crank rotation angle range is calculated. A transmission efficiency analysis process is performed to determine whether the zone is a loss zone. Details will be described later.
 ステップS7において、所定値を更新し、具体的には所定値を1段階高めて新たに設定されたクランク回転角度の所定値が30°であるか否かを判定する。すなわち、左クランクシャフトB311が1回転したか否かが判定される。これは、後述する様に、左クランクシャフトB311が1回転する度に、表示部12に当該1回転のペダリング状態を表示するからである。本ステップでクランク回転角度が30°ではないと判定するとステップS3に処理を移し、クランク回転角度の所定値が30°であると判定すると、ステップS9に処理を移す。 In step S7, the predetermined value is updated, specifically, the predetermined value is increased by one step, and it is determined whether or not the predetermined value of the newly set crank rotation angle is 30 °. That is, it is determined whether or not the left crankshaft B311 has made one revolution. This is because the pedaling state of one rotation is displayed on the display unit 12 every time the left crankshaft B311 makes one rotation, as will be described later. If it is determined in this step that the crank rotation angle is not 30 °, the process proceeds to step S3. If it is determined that the predetermined value of the crank rotation angle is 30 °, the process proceeds to step S9.
 ステップS8において、ステップS4で取得したペダル作用力回転方向成分データに基づいて、クランク回転角度の範囲毎にトルク値を算出し、クランク回転角度の範囲毎にパワーゾーンであるか否かを判定するトルク値解析処理を行う。詳しくは、後述する。 In step S8, a torque value is calculated for each crank rotation angle range based on the pedal action force rotation direction component data acquired in step S4, and it is determined whether the crank rotation angle range is a power zone. Torque value analysis processing is performed. Details will be described later.
 ステップS9において、左クランクシャフトB311が1回転する間のペダリング状態を表示部12に表示するために、表示部12に表示する図面の元となるデータを作成する図面作成処理を行う。詳しくは、後述する。 In step S9, in order to display the pedaling state during one rotation of the left crankshaft B311 on the display unit 12, a drawing creation process is performed to create data that is the basis of the drawing displayed on the display unit 12. Details will be described later.
 ステップS10において、ステップS9で作成した図面の元となるデータを表示部12に送信し、ペダリング状態等の情報を表示(報知)する情報表示処理を行う。 In step S10, data that is the basis of the drawing created in step S9 is transmitted to the display unit 12, and information display processing for displaying (notifying) information such as the pedaling state is performed.
 ステップS11において、計測終了条件が成立し、計測を終了することができることか否かを判定する。本実施の形態においては、計測終了のためのボタン操作を示す信号が送信されてくることが計測終了条件の成立となる。本ステップにおいて、計測終了条件が成立していないと判定すると、ステップS3に処理を移し、計測終了条件が成立したと判定すると当該メイン処理を終了する。 In step S11, it is determined whether or not the measurement end condition is satisfied and the measurement can be ended. In the present embodiment, the measurement end condition is satisfied when a signal indicating a button operation for the end of the measurement is transmitted. In this step, if it is determined that the measurement end condition is not satisfied, the process proceeds to step S3. If it is determined that the measurement end condition is satisfied, the main process is ended.
 次に、図8を用いて伝達効率解析処理を説明する。まず、ステップS81において、クランク回転角度の代表値を算出する。代表値の種類は特に限定されないが、本実施の形態では、左クランクシャフトB311の1回転を均等に12分割して、各区分でパワーゾーン及びロスゾーンを判定するため、1~12を各区分の代表値としている(図11参照)。例えば、当該クランク回転角度の範囲が0°≦θ<30°であれば代表値は「1」となり、30°≦θ<60°であれば代表値は「2」となる。 Next, the transmission efficiency analysis process will be described with reference to FIG. First, in step S81, a representative value of the crank rotation angle is calculated. The type of the representative value is not particularly limited, but in this embodiment, one rotation of the left crankshaft B311 is equally divided into 12 parts, and the power zone and the loss zone are determined in each section. Representative values are used (see FIG. 11). For example, if the range of the crank rotation angle is 0 ° ≦ θ <30 °, the representative value is “1”, and if 30 ° ≦ θ <60 °, the representative value is “2”.
 そして、クランク回転角度の代表値データを記憶する記憶領域(以下、「クランク回転角度代表値データ記憶領域」という)は12分割されており、12分割された各領域にはクランク回転角度の代表値が対応付けられたフラグを記憶するための記憶領域が設けられている(図11参照)。そして、算出されたクランク回転角度の代表値が「1」であれば、クランク回転角度の代表値「1」に対応するフラグ記憶領域にフラグがONされ、算出されたクランク回転角度の代表値が「2」であれば、クランク回転角度の代表値「2」に対応するフラグ記憶領域にフラグがONされる。なお、算出されたクランク回転角度の代表値に対応するフラグ記憶領域にフラグがONされる際には、当該代表値に対応しないフラグがOFFされる。 The storage area for storing the representative value data of the crank rotation angle (hereinafter referred to as “crank rotation angle representative value data storage area”) is divided into 12, and each of the 12 divided areas has a representative value of the crank rotation angle. A storage area for storing a flag associated with is provided (see FIG. 11). If the representative value of the calculated crank rotation angle is “1”, the flag is turned on in the flag storage area corresponding to the representative value “1” of the crank rotation angle, and the representative value of the calculated crank rotation angle is If “2”, the flag is turned on in the flag storage area corresponding to the representative value “2” of the crank rotation angle. When the flag is turned on in the flag storage area corresponding to the representative value of the calculated crank rotation angle, the flag not corresponding to the representative value is turned off.
 ステップS62において当該クランク回転角度の範囲におけるペダル作用力の大きさの代表値を算出し、ペダル作用力データをRAM13cのペダル作用力データ記憶領域に記憶する。ペダル作用力データ記憶領域は、12分割されており、それぞれクランク回転角度代表値に対応付けられている(図11参照)。そして、ステップS62においては、フラグがONされているクランク回転角度代表値に係る領域に、ペダル作用力データを記憶する。 In step S62, a representative value of the magnitude of the pedal action force in the crank rotation angle range is calculated, and the pedal action force data is stored in the pedal action force data storage area of the RAM 13c. The pedal action force data storage area is divided into twelve, and each is associated with a representative crank rotation angle value (see FIG. 11). In step S62, the pedal action force data is stored in a region related to the crank rotation angle representative value for which the flag is ON.
 当該クランク回転角度の範囲におけるペダル作用力の大きさの代表値の算出方法は、特に限定されないが、本実施の形態ではペダル作用力回転方向成分の大きさとペダル作用力放射方向成分の大きさとを検出し、ペダル作用力の大きさはこれらに基づいて求めることができることにより、次の数(3)及び数(4)によりペダル作用力の大きさの代表値(F)を算出することができる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
The calculation method of the representative value of the magnitude of the pedal action force in the range of the crank rotation angle is not particularly limited, but in this embodiment, the magnitude of the pedal action force rotation direction component and the magnitude of the pedal action force radial direction component are calculated. By detecting and determining the magnitude of the pedal action force based on these, the representative value (F) of the magnitude of the pedal action force can be calculated by the following numbers (3) and (4). .
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 ここで、Fx(k)は当該クランク回転角度の範囲においてk回目に検出したペダル作用力回転方向成分の大きさを表し、Fy(k)は当該クランク回転角度の範囲においてk回目に検出したペダル作用力放射方向成分の大きさを表し、F(k)は当該クランク回転角度の範囲においてk回目に算出したペダル作用力の大きさを表し、tは当該クランク回転角度の範囲におけるクランク回転角度の計測回数を表す。すなわち、当該クランク回転角度の範囲におけるペダル作用力の大きさは、当該クランク回転角度の範囲におけるペダル作用力の大きさの総和を当該クランク回転角度の範囲におけるデータ取得回数(計測回数)で除算して算出する。 Here, Fx (k) represents the magnitude of the pedal acting force rotation direction component detected at the kth time in the crank rotation angle range, and Fy (k) is the pedal detected at the kth time in the crank rotation angle range. The magnitude of the acting force radial direction component is represented, F (k) represents the magnitude of the pedal acting force calculated k-th in the range of the crank rotation angle, and t represents the crank rotation angle in the range of the crank rotation angle. Represents the number of measurements. That is, the magnitude of the pedal action force in the crank rotation angle range is obtained by dividing the sum of the pedal action forces in the crank rotation angle range by the number of data acquisitions (measurements) in the crank rotation angle range. To calculate.
 ステップS63において、当該クランク回転角度の範囲における伝達効率を算出し、伝達効率データをRAM13cの伝達効率データ記憶領域に記憶する。伝達効率データ記憶領域もペダル作用力データ記憶領域と同様に、12分割されており、それぞれクランク回転角度代表値に対応付けられている(図11参照)。そして、ステップS63においては、フラグがONされているクランク回転角度代表値に係る領域に、伝達効率データを記憶する。 In step S63, the transmission efficiency in the range of the crank rotation angle is calculated, and the transmission efficiency data is stored in the transmission efficiency data storage area of the RAM 13c. Similarly to the pedal action force data storage area, the transmission efficiency data storage area is also divided into 12 parts, which are associated with representative crank rotation angle values (see FIG. 11). In step S63, the transmission efficiency data is stored in the area related to the crank rotation angle representative value for which the flag is ON.
 伝達効率とは、ペダル作用力に対するペダル作用力回転方向成分の割合、換言すれば、各ペダル作用力の自転車Bの推進に対する寄与率のことであり、ペダリング状態を示す指標となる。伝達効率の算出方法は、特に限定されないが、本実施の形態では、次の数(5)により伝達効率Pを算出することができる。
Figure JPOXMLDOC01-appb-M000005
 「Fx(k)」、「F」及び「t」はそれぞれ数(4)又は数(5)の「Fx(k)」、「F」及び「t」と同一である。
The transmission efficiency is the ratio of the pedal action force rotation direction component to the pedal action force, in other words, the contribution ratio of each pedal action force to the propulsion of the bicycle B, and is an index indicating the pedaling state. The method for calculating the transmission efficiency is not particularly limited, but in this embodiment, the transmission efficiency P can be calculated from the following number (5).
Figure JPOXMLDOC01-appb-M000005
“Fx (k)”, “F”, and “t” are the same as “Fx (k)”, “F”, and “t” in number (4) or number (5), respectively.
 後述する様に、この伝達効率Pを用いて当該クランク回転角度の範囲におけるペダリング状態の良好/不良が判定されることになる。なお、最終的にペダリング状態の良好/不良が判定できれば良いので、必ずしもペダル作用力に対するペダル作用力の回転方向成分割合からなる伝達効率を用いる必要はない。これに代わる値として、例えば、自転車の推進に寄与しないペダル作用力の放射方向成分の値そのもの、又は、ペダル作用力に対するペダル作用力放射方向成分の割合等を用いてロスゾーンを判定することもできる。 As will be described later, the transmission efficiency P is used to determine whether the pedaling state is good / bad within the crank rotation angle range. In addition, since it is only necessary to finally determine whether the pedaling state is good / bad, it is not always necessary to use the transmission efficiency composed of the ratio of the pedal acting force to the pedal acting force in the rotational direction. As an alternative value, for example, the loss zone can be determined using the value of the radial direction component of the pedal action force that does not contribute to the propulsion of the bicycle, or the ratio of the pedal action force radial direction component to the pedal action force. .
 ステップS64において、ロスゾーン用判定値を算出する。ロスゾーン用判定値の算出方法は、特に限定されないが、本実施の形態では、ロスゾーン用判定値は「0.7」に設定されている。 In step S64, a determination value for loss zone is calculated. The method for calculating the loss zone determination value is not particularly limited, but in this embodiment, the loss zone determination value is set to “0.7”.
 ステップS65において、当該クランク回転角度の範囲はロスゾーンであるか否かを判定する。具体的には、ステップS63で算出した伝達効率Pが、ステップS64で算出したロスゾーン用判定値以下であるか否かを判定する。ここで、伝達効率がロスゾーン用判定値以下であれば、当該クランク回転角度の範囲はロスゾーンであることを意味し、反対に、伝達効率がロスゾーン用判定値を超えていれば、当該回転角度の範囲はロスゾーンではないことを意味する。すなわち、ペダル作用力の70%以下しか自転車Bの推進に寄与されていなければ、ペダリング状態(ペダルの漕ぎ方)が悪く、非効率的なクランク回転角度の範囲(ゾーン)と判定される。 In step S65, it is determined whether or not the crank rotation angle range is a loss zone. Specifically, it is determined whether or not the transmission efficiency P calculated in step S63 is equal to or less than the loss zone determination value calculated in step S64. Here, if the transmission efficiency is equal to or less than the determination value for the loss zone, it means that the range of the crank rotation angle is the loss zone. Conversely, if the transmission efficiency exceeds the determination value for the loss zone, the rotation angle Range means not a loss zone. That is, if only 70% or less of the pedal action force contributes to the promotion of the bicycle B, it is determined that the pedaling state (how to pedal) is inferior and the crank rotation angle range (zone) is inefficient.
 ステップS66において、当該クランク回転角度の範囲についてのロスゾーンの判定結果をRAM13cのロスゾーン判定結果データ記憶領域に保存する。ロスゾーン判定結果データ記憶領域は、ペダル作用力データ記憶領域と同様に、12分割されており、それぞれクランク回転角度代表値に対応付けられている(図11参照)。そして、ステップS66においては、フラグがONされているクランク回転角度代表値に係る領域に、ロスゾーンの判定結果を示すロスゾーン判定結果データを記憶する。例えば、当該クランク回転角度の範囲が、ロスゾーンであれば「02H」を記憶し、ロスゾーンでなければ「03H」を記憶する。 In step S66, the loss zone determination result for the crank rotation angle range is stored in the loss zone determination result data storage area of the RAM 13c. The loss zone determination result data storage area is divided into twelve, similar to the pedal action force data storage area, and each is associated with a representative crank rotation angle value (see FIG. 11). In step S66, the loss zone determination result data indicating the determination result of the loss zone is stored in the region related to the crank rotation angle representative value for which the flag is ON. For example, “02H” is stored if the crank rotation angle range is the loss zone, and “03H” is stored if it is not the loss zone.
 次に、図9を用いてトルク値解析処理を説明する。まず、ステップS81において、クランク回転角度の範囲毎にトルク値の平均を算出し、トルク値データをRAM13のトルク値データ記憶領域に記憶する。トルク値の平均の算出方法は特に限定されないが、本実施の形態では、当該クランク回転角度の範囲におけるトルク値の総和を、当該クランク回転角度の範囲における計測回数で除算した値をトルク値の平均としている。 Next, the torque value analysis process will be described with reference to FIG. First, in step S81, the average torque value is calculated for each crank rotation angle range, and the torque value data is stored in the torque value data storage area of the RAM 13. The method for calculating the average torque value is not particularly limited. In this embodiment, the average torque value is obtained by dividing the sum of the torque values in the crank rotation angle range by the number of measurements in the crank rotation angle range. It is said.
 トルク値の総和の算出方法としては、各クランク回転角度の範囲について、ペダル作用力回転方向成分の大きさの総和にステップS1で入力されたクランク長データに応じたクランク長を乗じる方法でも、各クランク回転角度の範囲について、ペダル作用力回転方向成分の大きさにステップS1で入力されたクランク長データが示すクランク長を乗じた値の総和を算出する方法でもよい。 As a method for calculating the sum of torque values, for each crank rotation angle range, a method of multiplying the sum of the magnitudes of the pedal action force rotation direction components by the crank length according to the crank length data input in step S1 can be used. With respect to the range of the crank rotation angle, a method may be used in which the sum of values obtained by multiplying the magnitude of the pedal action force rotation direction component by the crank length indicated by the crank length data input in step S1 is calculated.
 トルク値データ記憶領域も12分割されており、それぞれクランク回転角度代表値に対応付けられている(図11参照)。そして、ステップS81においては、フラグがONされているクランク回転角度代表値に係る領域に、トルク値平均データを記憶する。 The torque value data storage area is also divided into 12 parts, which are associated with the representative crank rotation angle values (see FIG. 11). In step S81, torque value average data is stored in a region related to the crank rotation angle representative value for which the flag is ON.
 ステップS82において、当該クランクB31の1回転におけるクランク回転数nを算出し、クランク回転数データをRAM13のクランク回転数データ記憶領域に記憶する。 In step S82, the crank speed n for one rotation of the crank B31 is calculated, and the crank speed data is stored in the crank speed data storage area of the RAM 13.
 ステップS83において、パワーゾーン用判定値を算出し、パワーゾーン用判定値データをRAM13cのパワーゾーン用判定値データ記憶領域に記憶する。パワーゾーン用判定値の算出方法は特に限定されないが、本実施の形態では、パワーゾーン用判定値は次の数(6)で算出される。
Figure JPOXMLDOC01-appb-M000006
In step S83, the power zone determination value is calculated, and the power zone determination value data is stored in the power zone determination value data storage area of the RAM 13c. Although the calculation method of the power zone determination value is not particularly limited, in the present embodiment, the power zone determination value is calculated by the following number (6).
Figure JPOXMLDOC01-appb-M000006
 ここで、「Ta」は当該パワーゾーンの判定に用いられるパワーゾーン用判定値を表し、「Pa」は入力された最大パワーを表し、「n」は当該クランクB31の1回転におけるクランクB31の回転数の平均を表し、「0.8」は予め設定された所定の係数を表す。パワーゾーン用判定値データ記憶領域は12分割されており、それぞれクランク回転角度代表値に対応付けられている(図11参照)。そして、ステップS83においては、フラグがONされているクランク回転角度代表値に係る領域に、パワーゾーン用判定値データを記憶する。 Here, “Ta” represents a power zone determination value used for determination of the power zone, “Pa” represents the input maximum power, and “n” represents the rotation of the crank B31 in one rotation of the crank B31. The average of the numbers is represented, and “0.8” represents a predetermined coefficient set in advance. The power zone determination value data storage area is divided into 12 parts, which are associated with the representative crank rotation angle values (see FIG. 11). In step S83, power zone determination value data is stored in a region related to the crank rotation angle representative value for which the flag is ON.
 ステップS84において、各クランク回転角度の範囲はパワーゾーンであるか否かを判定する。具体的には、ステップS81で算出した各クランク回転角度の範囲におけるトルク値の平均が、ステップS83で算出したパワーゾーン用判定値以上であるか否かを判定する。トルク値の平均がパワーゾーン用判定値以上であれば、そのクランク回転角度の範囲はパワーゾーンであることを意味し、反対に、トルク値の平均がパワーゾーン用判定値未満であれば、その回転角度の範囲はパワーゾーンではないことを意味する。 In step S84, it is determined whether or not each crank rotation angle range is a power zone. Specifically, it is determined whether or not the average torque value in each crank rotation angle range calculated in step S81 is greater than or equal to the power zone determination value calculated in step S83. If the average torque value is greater than or equal to the power zone judgment value, it means that the crank rotation angle range is the power zone. Conversely, if the average torque value is less than the power zone judgment value, This means that the rotation angle range is not a power zone.
 なお、本実施の形態においては、最大パワーは、クランク回転角度に関連付けられておらず、いずれのクランク回転角度の範囲についても同一のパワーゾーン判定用判定値が用いられる。つまり、パワーゾーンは絶対的に評価される。 In the present embodiment, the maximum power is not associated with the crank rotation angle, and the same power zone determination value is used for any crank rotation angle range. That is, the power zone is absolutely evaluated.
 ステップS85において、各クランク回転角度の範囲についてのパワーゾーンの判定結果をRAM13cのパワーゾーン判定結果データ記憶領域に保存する。トルク値データ記憶領域と同様に、パワーゾーン判定結果データ記憶領域は12分割されており、それぞれクランク回転角度代表値に対応付けられている(図11参照)。そして、ステップS85においては、フラグがONされているクランク回転角度代表値に係る領域に、パワーゾーンの判定結果を示すパワーゾーン判定結果データを記憶する。例えば、当該クランク回転角度の範囲が、パワーゾーンであれば「00H」を記憶し、パワーゾーンでなければ「01H」を記憶する。 In step S85, the power zone determination result for each crank rotation angle range is stored in the power zone determination result data storage area of the RAM 13c. Similar to the torque value data storage area, the power zone determination result data storage area is divided into 12 parts, which are associated with the representative crank rotation angle values (see FIG. 11). In step S85, power zone determination result data indicating the determination result of the power zone is stored in the region related to the crank rotation angle representative value for which the flag is ON. For example, if the crank rotation angle range is the power zone, “00H” is stored, and if it is not the power zone, “01H” is stored.
 次に、図10を用いて図面作成処理について説明する。まず、ステップS91において、左クランクシャフトB311の回転運動を表す基準円オブジェクト(図12(a)参照)の元となるデータ(以下、「基準円オブジェクトデータ」という)を作成し、RAM13cの基準円オブジェクト領域に記憶する。図12(a)に示す様に、基準円オブジェクトは、周方向に12分割されている。これは、上述した様に、クランクシャフトB311の1回転を12分割した各区分においてパワーゾーン及びロスゾーンを判定するからである。 Next, the drawing creation process will be described with reference to FIG. First, in step S91, data (hereinafter referred to as “reference circle object data”) that is the basis of a reference circle object (see FIG. 12A) representing the rotational motion of the left crankshaft B311 is created, and the reference circle in the RAM 13c is created. Store in the object area. As shown in FIG. 12A, the reference circle object is divided into 12 in the circumferential direction. This is because, as described above, the power zone and the loss zone are determined in each section obtained by dividing one rotation of the crankshaft B311 into 12 parts.
 ステップS92において、パワーゾーンであるクランク回転角度の範囲を表すパワーゾーンオブジェクト(図12(b)参照)の元となるデータ(以下、「パワーゾーンオブジェクトデータ」という)を作成し、RAM13cのパワーゾーンオブジェクトデータ記憶領域に記憶する。詳細に説明すると、RAM13cのパワーゾーン判定結果データ記憶領域を参照して、パワーゾーンと判定されている(「00H」が記憶されている)クランク回転角度の範囲が反映されたパワーゾーンオブジェクトデータを作成する。具体的には、基準円オブジェクトの外側に沿うと共に、パワーゾーンであると判定されたクランク回転角度の範囲に亘る円弧状の矢印を表すデータが作成される。なお、ここでの矢印の向きは時計回りに設定されている。 In step S92, data (hereinafter referred to as “power zone object data”) that is a source of a power zone object (refer to FIG. 12B) representing a crank rotation angle range that is a power zone is created, and the power zone of the RAM 13c is created. Store in the object data storage area. More specifically, referring to the power zone determination result data storage area of the RAM 13c, the power zone object data reflecting the range of the crank rotation angle determined as the power zone ("00H" is stored) is reflected. create. Specifically, data representing an arcuate arrow that extends along the outside of the reference circle object and covers the range of the crank rotation angle determined to be the power zone is created. The direction of the arrow here is set clockwise.
 ステップS93において、ロスゾーンであるクランク回転角度の範囲を表すロスゾーンオブジェクト(図12(c)参照)の元となるデータ(以下、「ロスゾーンオブジェクトデータ」という)を作成し、RAM13cのロスゾーンオブジェクトデータ記憶領域に記憶する。詳細に説明すると、RAM13cのロスゾーン判定結果データ記憶領域を参照して、ロスゾーンと判定されている(「02H」が記憶されている)クランク回転角度の範囲が反映されたロスゾーンオブジェクトデータを作成する。具体的には、基準円オブジェクトの内側に沿うと共に、ロスゾーンであると判定されたクランク回転角度の範囲に亘る円弧状の短冊を表すデータが作成される。 In step S93, data (hereinafter referred to as “loss zone object data”) that is a source of a loss zone object (see FIG. 12C) that represents the range of the crank rotation angle that is the loss zone is created, and the loss zone object in the RAM 13c is created. Store in the data storage area. More specifically, referring to the loss zone determination result data storage area of the RAM 13c, the loss zone object data reflecting the range of the crank rotation angle determined as the loss zone ("02H" is stored) is created. . Specifically, data representing an arc-shaped strip extending along the inside of the reference circle object and covering the range of the crank rotation angle determined to be the loss zone is created.
 ステップS94において、ステップS91~ステップS93で作成したオブジェクトを合成し、ペダリング状態を表すペダリング状態オブジェクトの元となるデータ(以下、「左側ペダリング状態オブジェクトデータ」という)を作成し、RAM13cの送信バッファにセットする。なお、ペダリング状態オブジェクトは、基準円オブジェクトにパワーゾーンオブジェクト及びロスゾーンオブジェクトがオーバーレイされてなる(図12(d)参照)。ここで、パワーゾーンオブジェクトが基準円の外側に配置され、ロスゾーンオブジェクトが基準円の内側に配置されるというように、同一の左クランク回転角度の範囲について異なるオブジェクトが異なる位置に配置される。よって、同一のクランク回転角度の範囲が、パワーゾーン且つロスゾーンであっても双方を同時に表示することができる。 In step S94, the objects created in steps S91 to S93 are combined to create the original data of the pedaling state object representing the pedaling state (hereinafter referred to as “left pedaling state object data”) and stored in the transmission buffer of the RAM 13c. set. The pedaling state object is formed by overlaying a power zone object and a loss zone object on a reference circle object (see FIG. 12D). Here, different objects are arranged at different positions for the same left crank rotation angle range, such that the power zone object is arranged outside the reference circle and the loss zone object is arranged inside the reference circle. Therefore, even if the same crank rotation angle range is the power zone and the loss zone, both can be displayed simultaneously.
 以上のように、ペダリング状態検出装置100によって、(クランクの回転に寄与するペダル作用力の有効な成分であるペダル作用力回転方向成分の大きさ/ペダル作用力の大きさ)からなるペダル作用力のクランクの回転に対する効率を表す伝達効率を算出し、この伝達効率に基づいて効率性の観点からみたペダリング状態を表示、すなわち、報知することによって、ペダリング状態の良好/不良を把握することができる。これに基づき運転者自身のペダリング状態を矯正することができる。さらには、クランクB31の回転に伴う全周に亘るペダリングの状態が表示されるので、自身のペダリング状態を直感的に且つ容易に把握し、矯正することができる。また、算出された伝達効率を、基準値となるロスゾーン用判定値と比較し、その比較結果を表示することによって、表示内容が単純化されるので、運転者はペダリング状態を容易に且つ直感的に把握することができる。 As described above, the pedaling state detection device 100 allows the pedaling force to be defined by (the magnitude of the pedaling force rotation direction component that is an effective component of the pedaling force that contributes to the rotation of the crank / the magnitude of the pedaling force). By calculating the transmission efficiency representing the efficiency with respect to the rotation of the crank and displaying the pedaling state from the viewpoint of efficiency based on this transmission efficiency, that is, notifying, it is possible to grasp whether the pedaling state is good / bad . Based on this, the driver's own pedaling state can be corrected. Furthermore, since the pedaling state over the entire circumference accompanying the rotation of the crank B31 is displayed, it is possible to intuitively and easily grasp and correct its own pedaling state. In addition, by comparing the calculated transmission efficiency with the reference value for loss zone as a reference value and displaying the comparison result, the display content is simplified, so that the driver can easily and intuitively adjust the pedaling state. Can grasp.
 また、伝達効率をクランク回転角度の範囲毎に算出し、クランク回転角度の範囲毎にペダリング状態を表示することで、自身のペダリングの傾向を一層詳細に把握することができる。また、双方のクランクシャフトについて伝達効率を算出し、ペダリング状態を表示することで、自分のペダリングの傾向を一層詳細に把握することができる。さらに、ペダリング状態を、表示装置を用いて図形で表現することにより、ペダリング状態の把握が容易となる。 Also, by calculating the transmission efficiency for each crank rotation angle range and displaying the pedaling state for each crank rotation angle range, it is possible to grasp the pedaling tendency in more detail. In addition, by calculating the transmission efficiency for both crankshafts and displaying the pedaling state, it is possible to grasp the pedaling tendency in more detail. Furthermore, the pedaling state can be easily grasped by expressing the pedaling state with a graphic using a display device.
 なお、サイクルコンピュータ1、クランク回転角度検出センサ2、回転方向成分検出センサ3、放射方向成分検出センサ4及びクランク回転数検出センサ5が本発明のペダル状態検出装置を構成する。また、ペダル作用力回転方向成分情報取得部S22が本発明のペダル作用力有効成分情報取得手段を構成し、ペダル作用力放射方向成分情報取得部S23が本発明のペダル作用力無効成分情報取得手段を構成し、伝達効率解析部S4が本発明の伝達効率算出手段及び比較手段を構成し、ロスゾーン用判定値が本発明の基準値を構成する。また、図面作成部S5及び情報表示部S6が本発明の報知制御手段を構成し、表示部2が本発明の報知実行手段を構成する。さらに、クランク回転角度情報取得部S21が本発明の回転角度情報取得手段を構成する。 The cycle computer 1, the crank rotation angle detection sensor 2, the rotation direction component detection sensor 3, the radial direction component detection sensor 4, and the crank rotation number detection sensor 5 constitute the pedal state detection device of the present invention. Further, the pedal action force rotation direction component information acquisition unit S22 constitutes a pedal action force effective component information acquisition unit of the present invention, and the pedal action force radial direction component information acquisition unit S23 of the present invention is a pedal action force invalid component information acquisition unit. The transmission efficiency analysis unit S4 constitutes the transmission efficiency calculation means and comparison means of the present invention, and the loss zone determination value constitutes the reference value of the present invention. The drawing creation unit S5 and the information display unit S6 constitute notification control means of the present invention, and the display unit 2 constitutes notification execution means of the present invention. Furthermore, the crank rotation angle information acquisition unit S21 constitutes the rotation angle information acquisition means of the present invention.
(その他の実施の形態)
 実施の形態1においては、センサ3、4でペダル作用力回転方向成分及びペダル作用力放射方向成分の大きさを検出してパワーゾーン及びロスゾーンを判定しているが、パワーゾーン及びロスゾーンを判定する方法はこの方法に限られない。例えば、ペダル作用力全体の大きさ及びペダルの回転角度を適切なセンサで検出してパワーゾーン及びロスゾーンを判定する方法を適用することもできる。検出されたペダル作用力全体の大きさ及びペダルの回転角度に基づいて、ペダル作用力回転方向成分の大きさ及びトルク値を算出し、パワーゾーンを判定することができる。また、検出されたペダル作用力全体の大きさ、及び、算出されたペダル作用力回転方向成分の大きさに基づいて、(クランクの回転に寄与するペダル作用力の有効成分であるペダル作用力回転方向成分の大きさ/ペダル作用力の大きさ)からなる伝達効率を算出し、ロスゾーンを判定することができる。この場合においては、ペダル作用力全体の大きさを検出するセンサ、ペダルの回転角度を検出するセンサ、及び、ペダル作用力全体の大きさとペダルの回転角度を用いてペダル作用力回転方向成分の大きさを検出する制御部が本発明のペダル作用力有効成分情報取得手段を構成する。
(Other embodiments)
In the first embodiment, the sensors 3 and 4 detect the magnitude of the pedal action force rotation direction component and the pedal action force radial direction component to determine the power zone and the loss zone. However, the power zone and the loss zone are determined. The method is not limited to this method. For example, it is also possible to apply a method of determining the power zone and the loss zone by detecting the magnitude of the entire pedal action force and the rotation angle of the pedal with an appropriate sensor. Based on the detected magnitude of the entire pedal action force and the rotation angle of the pedal, the magnitude and torque value of the pedal action force rotation direction component can be calculated to determine the power zone. Further, based on the detected magnitude of the pedal action force as a whole and the magnitude of the calculated pedal action force rotation direction component (the pedal action force rotation which is an effective component of the pedal action force contributing to the crank rotation) It is possible to determine the loss zone by calculating the transmission efficiency consisting of the magnitude of the direction component / the magnitude of the pedal action force. In this case, the sensor for detecting the magnitude of the pedal action force, the sensor for detecting the rotation angle of the pedal, and the magnitude of the pedal action force rotation direction component using the magnitude of the pedal action force and the pedal rotation angle. The control unit for detecting the length constitutes pedal action force effective component information acquisition means of the present invention.
 さらには、検出されたペダル作用力全体の大きさ、及び、算出されたペダル作用力放射方向成分の大きさに基づいて、(クランクの回転に寄与しないペダル作用力の無効成分であるペダル作用力放射方向成分の大きさ/ペダル作用力の大きさ)からなる伝達効率を算出し、ロスゾーンを判定することもできる。この場合、伝達効率が所定の基準値以上であればロスゾーンと判定されることとなる。この場合においては、ペダル作用力全体の大きさを検出するセンサ、ペダルの回転角度を検出するセンサ、及び、ペダル作用力全体とペダルの回転角度を用いてペダル作用力放射方向成分の大きさを検出する制御部が本発明のペダル作用力無効成分情報取得手段を構成する。 Furthermore, based on the magnitude of the detected pedal action force as a whole and the magnitude of the calculated pedal action force radial component, the pedal action force which is an ineffective component of the pedal action force that does not contribute to crank rotation It is also possible to determine the loss zone by calculating the transmission efficiency consisting of the radial direction component size / the pedal acting force size. In this case, if the transmission efficiency is equal to or higher than a predetermined reference value, the loss zone is determined. In this case, the sensor for detecting the magnitude of the entire pedal action force, the sensor for detecting the rotation angle of the pedal, and the magnitude of the pedal action force radial direction component using the whole pedal action force and the pedal rotation angle. The control part to detect comprises the pedal action force invalid component information acquisition means of this invention.
 また、実施の形態1では、最大パワーを直接入力し、最大パワーをパラメータとする所定の計算式に基づいてパワーゾーン用判定値を算出しているが、パワーゾーン用判定値の算出方法はこれに限られない。例えば、運転者レベル、及び、クランク回転角度の範囲をパラメータとしてパワーゾーン用判定値を算出するようにしてもよい。具体例としては、図13に示すように、運転者レベル、及び、クランク回転角度の範囲とパワーゾーン用判定値とが関係付けられたテーブルをROM13bに格納しておき、運転者レベル、及び、クランク回転角度の範囲を取得することでパワーゾーン用判定値を算出する。運転者レベルはステップS1の情報入力処理において入力させることで取得することができる。クランク回転角度の範囲はステップS61のクランク回転角度の範囲の代表値算出処理において取得することができる。自転車を推進させるために必要なペダル作用力回転方向成分の大きさは、クランク回転角度の範囲によって異なるため、クランク回転角度の範囲をパワーゾーン用判定値のパラメータとすることで、ペダリング状態を相対的に判断することができる。なお、パワーゾーン用判定値を、運転者の体型(例えば、体重や身長)、性別又は年齢等の運転者等情報やギア比等の走行状況に関わる情報に関連付けてもよい。 In the first embodiment, the maximum power is directly input and the power zone determination value is calculated based on a predetermined calculation formula using the maximum power as a parameter. Not limited to. For example, the power zone determination value may be calculated using the driver level and the crank rotation angle range as parameters. As a specific example, as shown in FIG. 13, a table in which the driver level and the range of the crank rotation angle and the power zone determination value are related is stored in the ROM 13b, and the driver level and The power zone determination value is calculated by acquiring the crank rotation angle range. The driver level can be acquired by inputting in the information input process of step S1. The range of the crank rotation angle can be acquired in the representative value calculation process of the crank rotation angle range in step S61. Since the magnitude of the pedal action force rotation direction component necessary for propelling the bicycle differs depending on the crank rotation angle range, the pedaling state can be made relative by setting the crank rotation angle range as a parameter for the power zone judgment value. Can be judged. The power zone determination value may be associated with information on the driver such as the driver's body shape (for example, weight and height), gender or age, and information related to the driving situation such as a gear ratio.
 また、実施の形態1では、ステップS8のトルク値解析処理及びステップS6の伝達効率解析処理は、クランク回転角度の範囲の全てについて行われているが、ペダル作用力がかかり難い「引上げ」部分(例えば、クランク回転角度が210°~330°の範囲)やペダル作用力がかかり易い「押下げ」部分(例えば、クランク回転角度が30°~150°の範囲)に限定してもよい。さらには、クランク回転角度の範囲全体、引上げ部分、又は、押下げ部分をステップS1の情報入力処理において選択するようにしてもよい。 In the first embodiment, the torque value analysis process in step S8 and the transmission efficiency analysis process in step S6 are performed for the entire range of the crank rotation angle. For example, the crank rotation angle may be limited to a range of 210 ° to 330 °) or a “push-down” portion where a pedal action force is easily applied (for example, a crank rotation angle of 30 ° to 150 °). Furthermore, the entire range of the crank rotation angle, the pulled-up portion, or the pushed-down portion may be selected in the information input process in step S1.
 また、実施の形態1では算出されていないが、ペダル作用力回転方向成分の大きさ及びクランク回転角度を用いて、左クランクシャフトB311及び右クランクシャフトB312が1回転する間のトルクのベクトルの総和を算出し、表示するようにしてもよい。これにより、自転車の推進に寄与するペダル作用力を直感的に把握することができる。 Although not calculated in the first embodiment, the sum of torque vectors during one rotation of the left crankshaft B311 and the right crankshaft B312 using the magnitude of the pedal action force rotation direction component and the crank rotation angle is used. May be calculated and displayed. Thereby, it is possible to intuitively grasp the pedal action force contributing to the propulsion of the bicycle.
 また、実施の形態1においては、最大パワーデータは直接入力されることで取得されるが、運転者レベル(上級、中級、初級)データが入力されることで最大パワーデータが取得されるようにしても良い。具体的には、表示部12に運転者レベルを選択する画像が表示され、運転者レベルを選択することで、選択された運転者レベルに対応する最大パワーも自動的に選択され、その最大パワーを表す最大パワーデータがRAM13cの最大パワーデータ記憶領域に記憶される。 In the first embodiment, the maximum power data is acquired by directly inputting, but the maximum power data is acquired by inputting the driver level (advanced, intermediate, beginner) data. May be. Specifically, an image for selecting the driver level is displayed on the display unit 12, and by selecting the driver level, the maximum power corresponding to the selected driver level is also automatically selected. Is stored in the maximum power data storage area of the RAM 13c.
 また、実施の形態1では、正面視右側のペダリング状態及び正面視左側のペダリング状態の双方を表示しているが、いずれか一方のみを表示してもよい。さらには、例えばステップS1の情報入力処理において、いずれのペダリング状態を表示するのかを選択するようにしてもよい。また、正面視右側のペダリング状態及び正面視左側のペダリング状態の表示形態は実施の形態1に限られない。例えば、正面視右側のペダリング状態と正面視左側のペダリング状態とを1つの図面オブジェクトで表示してもよい。 In the first embodiment, both the pedaling state on the right side of the front view and the pedaling state on the left side of the front view are displayed, but only one of them may be displayed. Further, for example, in the information input process in step S1, which pedaling state is to be displayed may be selected. Further, the display form of the pedaling state on the right side in the front view and the pedaling state on the left side in the front view is not limited to the first embodiment. For example, the pedaling state on the right side when viewed from the front and the pedaling state on the left side when viewed from the front may be displayed as one drawing object.
 さらに、パワーゾーン及びロスゾーンの表示態様は実施の形態1に限られない。例えば、パワーゾーン又はロスゾーンは円弧状の図形ではなく、パワーゾーン又はロスゾーンであるクランク回転角度の範囲の基準円が分割された扇部分であってもよい。また、パワーゾーン用判定値及びロスゾーン用判定値を複数設けて、算出されたトルク値及び伝達効率が属する範囲を色で関連付けて表示するようにすることもできる。 Furthermore, the display mode of the power zone and the loss zone is not limited to the first embodiment. For example, the power zone or the loss zone may not be an arc shape, but may be a fan portion in which a reference circle in the range of the crank rotation angle that is the power zone or the loss zone is divided. It is also possible to provide a plurality of power zone determination values and loss zone determination values so that the ranges to which the calculated torque value and transmission efficiency belong are associated with each other and displayed in color.
 また、実施の形態1では、判定値と実測値との比較結果を表示しているが、比較結果を表示するのではなく、算出されたトルク値及び伝達効率に基づいて(算出されたトルク値及び伝達効率から所定の計算式によって求められる色で)クランク回転角度の範囲の基準円が分割された扇部分を分けして表示してもよい。例えば、色を表す値(例えば、RGBの値又はHSV色空間の値)とトルク値との関係を表すトルク値-色変換式を用いて、トルク値に応じて色を連続的に変化させて表示する。この一例として、例えば、算出したトルク値が「0」であるクランク回転角度の範囲に対応する扇部分を黒色で表示し、トルク値がパワーゾーン用判定値以上であるクランク回転角度の範囲に対応する扇部分を白色で表示する。 In the first embodiment, the comparison result between the determination value and the actual measurement value is displayed. However, the comparison result is not displayed, but based on the calculated torque value and the transmission efficiency (calculated torque value). In addition, the fan portion into which the reference circle in the range of the crank rotation angle is divided may be displayed separately (in a color obtained from the transmission efficiency by a predetermined calculation formula). For example, by using a torque value-color conversion expression that expresses the relationship between a color value (for example, RGB value or HSV color space value) and a torque value, the color is continuously changed according to the torque value. indicate. As an example of this, for example, the fan portion corresponding to the crank rotation angle range in which the calculated torque value is “0” is displayed in black, and the torque value corresponds to the crank rotation angle range that is greater than or equal to the power zone determination value. The fan part to be displayed is displayed in white.
 また、実施の形態1では、サイクルコンピュータ1によってペダリング状態が判断されて表示されているが、携帯電話等の移動端末のアプリケーションソフトウェアによってペダリング状態を判断して表示するようにすることもできる。この場合、移動端末は自転車Bに設置しても、運転者が携帯するようにしてもよい。また、トルク値解析処理、伝達効率解析処理、図面作成処理及び情報表示処理は、自宅等に設置されたPC等の外部装置で実行されるようにしてもよい。この場合、トルク値データ及びクランク回転角度データ等のトルク値解析処理及び伝達効率解析処理に必要なデータは、例えば、サイクルコンピュータ1の記憶媒体用I/F13dを介してメモリカード等の記録媒体に保存して、記録媒体から外部装置に取り込む。また、サイクルコンピュータ1の通信用I/F13fを介して外部装置に送信して、外部装置に取り込む。 In the first embodiment, the pedaling state is determined and displayed by the cycle computer 1, but the pedaling state may be determined and displayed by application software of a mobile terminal such as a mobile phone. In this case, the mobile terminal may be installed on the bicycle B or carried by the driver. Further, the torque value analysis process, the transmission efficiency analysis process, the drawing creation process, and the information display process may be executed by an external device such as a PC installed at home or the like. In this case, data necessary for torque value analysis processing and transmission efficiency analysis processing such as torque value data and crank rotation angle data is stored in a recording medium such as a memory card via the storage medium I / F 13d of the cycle computer 1, for example. Save and import from the recording medium to the external device. Further, the data is transmitted to the external device via the communication I / F 13f of the cycle computer 1 and is taken into the external device.
 なお、固定端末で、トルク値解析処理、伝達効率解析処理、図面作成処理及び情報表示処理を実行する場合、これらの処理を行うためのプログラムが記憶されたCD等の記憶媒体を固定端末に読み込んでも、これらの処理を行うためのプログラムが組み込まれたアプリケーションをサーバからダウンロードしてもよい。また、これらのトルク値解析処理、伝達効率解析処理、図面作成処理及び情報表示処理は移動端末や固定端末を介してサーバ上で実行されるようにしてもよい。 When a torque value analysis process, a transmission efficiency analysis process, a drawing creation process, and an information display process are executed on a fixed terminal, a storage medium such as a CD in which a program for performing these processes is stored is read into the fixed terminal. However, an application incorporating a program for performing these processes may be downloaded from the server. Further, these torque value analysis processing, transmission efficiency analysis processing, drawing creation processing, and information display processing may be executed on a server via a mobile terminal or a fixed terminal.
 また、本発明のペダリング状態検出装置は路上を走行する自転車以外に、スポーツジム等に設置されるトレーニング用の走行不能なエクササイズバイク、又は、人力でペダルを漕いで推進する船(例えば、スワンボート)等のペダルに連結されたクランクを回転させる乗り物に適用することができる。 Further, the pedaling state detection device of the present invention is not limited to a bicycle that travels on the road, but an exercise bike that is installed in a sports gym or the like and cannot be used for training, or a boat that is manually driven and driven by a pedal (for example, a swan boat) It can be applied to a vehicle that rotates a crank connected to a pedal.
 また、実施の形態1においては、本発明の報知実行手段が液晶表示装置で構成されているが、報知実行手段はこれに限られない。例えば、CRT、プラズマディスプレイ、有機ELディスプレイ等の他の表示装置でもよい。また、報知実行手段は、表示装置ではなく、スピーカー等の音響装置やライト等の照明装置でもよい。 In Embodiment 1, the notification execution means of the present invention is configured by a liquid crystal display device, but the notification execution means is not limited to this. For example, other display devices such as a CRT, a plasma display, and an organic EL display may be used. Further, the notification execution means may be an acoustic device such as a speaker or a lighting device such as a light instead of the display device.
1    サイクルコンピュータ
2    クランク回転角度検出センサ
3    回転方向成分検出センサ
4    放射方向成分検出センサ
5    クランク回転数検出センサ
6    ブラケット
11   入力部
11a  ボタン
11b  ボタン
11c  ボタン
11d  電源スイッチ
11e  入力制御回路
12   表示部
12a  液晶パネル
12e  表示制御回路
13   制御部
13a  CPU
13b  ROM
13c  RAM
13d  記録媒体用I/F
13e  センサ用I/F
13f  通信用I/F
13g  発振回路
13h  バス
14   筐体
100  ペダリング状態検出装置
B    自転車
B1   フレーム
B2   車輪
B21  前輪
B22  後輪
B3   駆動機構
B31  クランク
B311 左クランクシャフト
B312 右クランクシャフト
B32  ペダル
B321 左ペダル
B322 右ペダル
B33  チェーン
S1   運転者・自転車情報取得部
S2   走行状態情報取得部
S21  クランク回転角度情報取得部
S22  ペダル作用力回転方向成分情報取得部
S23  ペダル作用力放射方向成分情報取得部
S24  クランク回転数情報取得部
S3   トルク値解析部
S4   伝達効率解析部
S5   図面作成部
S6   情報表示部
DESCRIPTION OF SYMBOLS 1 Cycle computer 2 Crank rotation angle detection sensor 3 Rotation direction component detection sensor 4 Radial direction component detection sensor 5 Crank rotation speed detection sensor 6 Bracket 11 Input part 11a Button 11b Button 11c Button 11d Power switch 11e Input control circuit 12 Display part 12a Liquid crystal Panel 12e Display control circuit 13 Control unit 13a CPU
13b ROM
13c RAM
13d I / F for recording media
13e I / F for sensors
13f I / F for communication
13g Oscillator circuit 13h Bus 14 Case 100 Pedaling state detection device B Bicycle B1 Frame B2 Wheel B21 Front wheel B22 Rear wheel B3 Drive mechanism B31 Crank B311 Left crankshaft B312 Right crankshaft B32 Pedal B321 Left pedal B322 Right pedal B33 Chain S1 Driver Bicycle information acquisition unit S2 Traveling state information acquisition unit S21 Crank rotation angle information acquisition unit S22 Pedal acting force rotation direction component information acquisition unit S23 Pedal action force radial direction component information acquisition unit S24 Crank rotation number information acquisition unit S3 Torque value analysis unit S4 Transmission efficiency analysis unit S5 Drawing creation unit S6 Information display unit

Claims (9)

  1.  車体に回転自在に連結されたクランクと、当該クランクに連結されたペダルとを具備し、前記ペダルに作用する力であるペダル作用力により前記クランクが回転する乗り物におけるペダリング状態を検出するペダリング状態検出装置であって、
     少なくとも、前記ペダル作用力のペダリングに対する有効な成分であるペダル作用力有効成分情報を取得する有効成分情報取得手段、又は、前記ペダル作用力のペダリングに対する無効な成分であるペダル作用力無効成分情報を取得する無効成分情報取得手段のいずれかと、
     少なくとも、前記ペダル作用力有効成分情報、又は、前記ペダル作用力無効成分情報のいずれかを用いて、前記ペダル作用力の前記クランクの回転に対する効率である伝達効率を算出する伝達効率算出手段と、
     前記伝達効率に基づくペダリング状態を報知実行手段に報知させる報知制御手段と、を有することを特徴とするペダリング状態検出装置。
    Pedaling state detection for detecting a pedaling state in a vehicle in which the crank rotates by a pedal acting force that is a force acting on the pedal, the crank being rotatably coupled to the vehicle body and a pedal coupled to the crank A device,
    Effective component information acquisition means for acquiring at least pedal acting force effective component information that is an effective component for pedaling of the pedal acting force, or pedal acting force invalid component information that is an invalid component for pedaling of the pedal acting force Any of the invalid component information acquisition means to acquire;
    Transmission efficiency calculation means for calculating a transmission efficiency that is an efficiency of the pedal action force with respect to rotation of the crank, using at least either the pedal action force effective component information or the pedal action force invalid component information;
    A pedaling state detection apparatus comprising: a notification control unit that notifies a notification execution unit of a pedaling state based on the transmission efficiency.
  2.  前記クランクの回転角度を検出する回転角度検出手段を有し、
     前記伝達効率算出手段は、前記クランクの回転角度に対応付けて前記伝達効率を算出し、
     前記報知制御手段は、前記クランクの回転角度に対応付けて前記伝達効率に基づくペダリング状態を報知実行手段に報知させることを特徴とする請求項1に記載のペダリング状態検出装置。
    A rotation angle detecting means for detecting the rotation angle of the crank;
    The transmission efficiency calculating means calculates the transmission efficiency in association with a rotation angle of the crank;
    The pedaling state detection apparatus according to claim 1, wherein the notification control unit causes the notification execution unit to notify a pedaling state based on the transmission efficiency in association with a rotation angle of the crank.
  3.  前記伝達効率算出手段は、前記クランクの回転角度の所定の範囲における前記伝達効率の代表値を算出し、
     前記報知制御手段は、前記伝達効率算出手段によって算出された前記代表値に基づくペダリング状態を報知実行手段に報知させることを特徴とする請求項2に記載のペダリング状態検出装置。
    The transmission efficiency calculating means calculates a representative value of the transmission efficiency in a predetermined range of the rotation angle of the crank;
    The pedaling state detection apparatus according to claim 2, wherein the notification control unit causes the notification execution unit to notify the pedaling state based on the representative value calculated by the transmission efficiency calculation unit.
  4.  前記報知制御手段は、前記クランクの回転角度の特定の範囲における前記伝達効率の代表値に基づくペダリング状態のみを報知実行手段に報知させることを特徴とする請求項3に記載のペダリング状態検出装置。 4. The pedaling state detection apparatus according to claim 3, wherein the notification control unit causes the notification execution unit to notify only the pedaling state based on the representative value of the transmission efficiency in a specific range of the crank rotation angle.
  5.  前記伝達効率算出手段によって算出された前記伝達効率を所定の基準値と比較する比較手段を有し、
     前記報知制御手段は、前記比較手段による比較結果をペダリング状態として前記報知実行手段に報知させることを特徴とする請求項1乃至4のいずれか1つに記載のペダリング状態検出装置。
    Comparing means for comparing the transmission efficiency calculated by the transmission efficiency calculation means with a predetermined reference value;
    5. The pedaling state detection apparatus according to claim 1, wherein the notification control unit causes the notification execution unit to notify the result of comparison by the comparison unit as a pedaling state.
  6.  前記報知実行手段は、表示装置を含み、
     前記報知制御手段は、前記表示装置に、前記クランクの回転角度として円形状の図形を表示させると共に、前記円形状の図形の円周上における前記クランク回転角度の所定の範囲に対応する部分に亘って前記ペダリング状態を表示させることを特徴とする請求項3乃至5のいずれか1つに記載のペダリング状態検出装置。
    The notification execution means includes a display device,
    The notification control means causes the display device to display a circular figure as the rotation angle of the crank, and covers a portion corresponding to a predetermined range of the crank rotation angle on the circumference of the circular figure. The pedaling state detection apparatus according to claim 3, wherein the pedaling state is displayed.
  7.  車体に回転自在に連結されたクランクと、当該クランクに連結されたペダルとを具備し、前記ペダルに作用する力であるペダル作用力により前記クランクが回転する乗り物におけるペダリング状態を検出するペダリング状態検出方法であって、
     少なくとも、前記ペダル作用力のペダリングに対する有効な成分であるペダル作用力有効成分情報、又は、前記ペダルに作用力のペダリングに対する無効な成分であるペダル作用力無効成分情報のいずれかを取得し、
     少なくとも、前記ペダル作用力有効成分情報、又は、前記ペダル作用力無効成分情報のいずれかを用いて、前記ペダル作用力の前記クランクの回転に対する効率である伝達効率を算出し、
     前記伝達効率に基づくペダリング状態を報知実行手段に報知させることを特徴とするペダリング状態検出方法。
    Pedaling state detection for detecting a pedaling state in a vehicle in which the crank rotates by a pedal acting force that is a force acting on the pedal, the crank being rotatably coupled to the vehicle body and a pedal coupled to the crank A method,
    At least one of the pedal action force effective component information that is an effective component for pedaling of the pedal action force, or the pedal action force invalid component information that is an invalid component for action force pedaling to the pedal,
    At least, using either the pedal action force effective component information or the pedal action force invalid component information, a transmission efficiency that is an efficiency of the pedal action force with respect to rotation of the crank is calculated,
    A pedaling state detection method, characterized by causing a notification execution means to notify a pedaling state based on the transmission efficiency.
  8.  コンピュータに、
     車体に回転自在に連結されたクランクと、当該クランクに連結されたペダルとを具備し、前記ペダルに作用する力であるペダル作用力により前記クランクが回転する乗り物におけるペダリング状態を検出させるペダリング状態検出プログラムであって、
     前記コンピュータに、
     少なくとも、前記ペダル作用力のペダリングに対する有効な成分であるペダル作用力有効成分情報を取得する有効成分情報取得手段に前記ペダル作用力有効成分情報を取得させ、又は、前記ペダル作用力のペダリングに対する無効な成分であるペダル作用力無効成分を検出する無効成分検出手段に前記ペダル作用力無効成分情報を取得させる情報取得機能と、
     少なくとも、前記ペダル作用力有効成分情報、又は、前記ペダル作用力無効成分情報のいずれかを用いて、前記ペダル作用力の前記クランクの回転に対する効率である伝達効率を算出する伝達効率算出機能と、
     前記伝達効率に基づくペダリング状態を報知実行手段に報知させる報知制御機能と、を実現させるためのペダリング状態検出プログラム。
    On the computer,
    Pedaling state detection that includes a crank that is rotatably connected to the vehicle body and a pedal that is connected to the crank, and detects a pedaling state in a vehicle in which the crank rotates by a pedal acting force that is a force acting on the pedal. A program,
    In the computer,
    At least, the effective component information acquisition means for acquiring effective pedal component information that is an effective component for pedaling of the pedal effect force acquires the effective pedal component information, or is invalid with respect to the pedal effect force pedaling. An information acquisition function for causing the invalid component detecting means to detect the pedal acting force invalid component, which is a non-active component, to acquire the pedal acting force invalid component information;
    A transmission efficiency calculation function for calculating a transmission efficiency that is an efficiency of the pedal action force with respect to rotation of the crank, using at least either the pedal action force effective component information or the pedal action force invalid component information;
    A pedaling state detection program for realizing a notification control function for notifying a notification execution means of a pedaling state based on the transmission efficiency.
  9.  コンピュータに、
     車体に回転自在に連結されたクランクと、当該クランクに連結されたペダルとを具備し、前記ペダルに作用する力であるペダル作用力により前記クランクが回転する乗り物におけるペダリング状態を検出させるペダリング状態検出プログラムであって、
     前記コンピュータに、
     少なくとも、前記ペダル作用力のペダリングに対する有効な成分であるペダル作用力有効成分情報を取得する有効成分情報取得手段に前記ペダル作用力有効成分情報を取得させ、又は、前記ペダル作用力のペダリングに対する無効な成分であるペダル作用力無効成分を検出する無効成分検出手段に前記ペダル作用力無効成分情報を取得させる情報取得機能と、
     少なくとも、前記ペダル作用力有効成分情報、又は、前記ペダル作用力無効成分情報のいずれかを用いて、前記ペダル作用力の前記クランクの回転に対する効率である伝達効率を算出する伝達効率算出機能と、
     前記伝達効率に基づくペダリング状態を報知実行手段に報知させる報知制御機能と、を実現させるためのペダリング状態検出プログラムを記録した媒体。
    On the computer,
    Pedaling state detection that includes a crank that is rotatably connected to the vehicle body and a pedal that is connected to the crank, and detects a pedaling state in a vehicle in which the crank rotates by a pedal acting force that is a force acting on the pedal. A program,
    In the computer,
    At least, the effective component information acquisition means for acquiring effective pedal component information that is an effective component for pedaling of the pedal effect force acquires the effective pedal component information, or is invalid with respect to the pedal effect force pedaling. An information acquisition function for causing the invalid component detecting means to detect the pedal acting force invalid component, which is a non-active component, to acquire the pedal acting force invalid component information;
    A transmission efficiency calculation function for calculating a transmission efficiency that is an efficiency of the pedal action force with respect to rotation of the crank, using at least either the pedal action force effective component information or the pedal action force invalid component information;
    A medium in which a pedaling state detection program for realizing a notification control function for notifying a notification execution unit of a pedaling state based on the transmission efficiency is recorded.
PCT/JP2010/069009 2010-10-26 2010-10-26 Pedaling state detection device, pedaling state detection method, pedaling state detection program, medium that records pedaling state detection program WO2012056522A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012540564A JP5490916B2 (en) 2010-10-26 2010-10-26 Pedaling state detection device, pedaling state detection method, pedaling state detection program, medium recording pedaling state detection program
PCT/JP2010/069009 WO2012056522A1 (en) 2010-10-26 2010-10-26 Pedaling state detection device, pedaling state detection method, pedaling state detection program, medium that records pedaling state detection program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069009 WO2012056522A1 (en) 2010-10-26 2010-10-26 Pedaling state detection device, pedaling state detection method, pedaling state detection program, medium that records pedaling state detection program

Publications (1)

Publication Number Publication Date
WO2012056522A1 true WO2012056522A1 (en) 2012-05-03

Family

ID=45993278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069009 WO2012056522A1 (en) 2010-10-26 2010-10-26 Pedaling state detection device, pedaling state detection method, pedaling state detection program, medium that records pedaling state detection program

Country Status (2)

Country Link
JP (1) JP5490916B2 (en)
WO (1) WO2012056522A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015105900A1 (en) 2014-04-23 2015-10-29 Shimano Inc. Pedal operation condition detecting device
US9322725B2 (en) 2012-08-28 2016-04-26 Shimano Inc. Pedaling force measurement device
JP2016190637A (en) * 2016-08-10 2016-11-10 パイオニア株式会社 Measuring apparatus
JP2017038757A (en) * 2015-08-19 2017-02-23 セイコーエプソン株式会社 Pedaling measurement device, pedaling measurement system, pedaling measurement method, and program
JP2017047875A (en) * 2015-09-03 2017-03-09 株式会社スミス Non-circular bicycle gear provided with gear multiple in right and left legs separately
US9688348B2 (en) 2014-12-15 2017-06-27 Shimano Inc. Hydraulic hose fitting and hydraulic device
US9771126B2 (en) 2015-05-27 2017-09-26 Shimano Inc. Bicycle crank assembly
US9773966B2 (en) 2014-09-08 2017-09-26 Shimano Inc. Piezoelectric sensor for bicycle component
US10000253B1 (en) 2016-11-25 2018-06-19 Shimano Inc. Bicycle crank assembly
US10458868B2 (en) 2015-12-21 2019-10-29 Shimano Inc. Bicycle crank arm assembly
US10475303B2 (en) 2017-03-16 2019-11-12 Shimano Inc. Bicycle electric device
JP2020140382A (en) * 2019-02-27 2020-09-03 株式会社シマノ Output device, computer program, and storage medium
US11029225B1 (en) 2019-12-27 2021-06-08 Shimano Inc. Electronic device, crank assembly with electronic device and drive train including crank assembly with electronic device
US11351434B2 (en) * 2018-05-08 2022-06-07 Tacx B.V. Power measurement device
US11858581B2 (en) 2021-11-23 2024-01-02 Shimano Inc. Detecting system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3186590B1 (en) * 2014-08-26 2019-07-03 4IIII Innovations Inc. Adhesively coupled power-meter for measurement of force, torque, and power

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123569A (en) * 1989-10-07 1991-05-27 Konbi Kk Method and apparatus for measuring instantaneous power
JPH1035567A (en) * 1996-07-19 1998-02-10 Bridgestone Cycle Co Bicycle meter
JP2003306189A (en) * 2002-04-15 2003-10-28 Hitoshi Matsumoto Correction device for pedaling of bicycle
WO2004113157A1 (en) * 2003-06-20 2004-12-29 Hitoshi Matsumoto Pedaling correction device for bicycle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123569A (en) * 1989-10-07 1991-05-27 Konbi Kk Method and apparatus for measuring instantaneous power
JPH1035567A (en) * 1996-07-19 1998-02-10 Bridgestone Cycle Co Bicycle meter
JP2003306189A (en) * 2002-04-15 2003-10-28 Hitoshi Matsumoto Correction device for pedaling of bicycle
WO2004113157A1 (en) * 2003-06-20 2004-12-29 Hitoshi Matsumoto Pedaling correction device for bicycle

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9322725B2 (en) 2012-08-28 2016-04-26 Shimano Inc. Pedaling force measurement device
CN105015663A (en) * 2014-04-23 2015-11-04 株式会社岛野 Pedaling state detecting apparatus
US9463358B2 (en) 2014-04-23 2016-10-11 Shimano Inc. Pedaling state detecting apparatus
DE102015105900A1 (en) 2014-04-23 2015-10-29 Shimano Inc. Pedal operation condition detecting device
US9773966B2 (en) 2014-09-08 2017-09-26 Shimano Inc. Piezoelectric sensor for bicycle component
US10833246B2 (en) 2014-09-08 2020-11-10 Shimano Inc. Piezoelectric sensor for bicycle component
US9688348B2 (en) 2014-12-15 2017-06-27 Shimano Inc. Hydraulic hose fitting and hydraulic device
US10300984B2 (en) 2015-05-27 2019-05-28 Shimano Inc. Bicycle electrical unit for bicycle crank assembly
US9771126B2 (en) 2015-05-27 2017-09-26 Shimano Inc. Bicycle crank assembly
JP2017038757A (en) * 2015-08-19 2017-02-23 セイコーエプソン株式会社 Pedaling measurement device, pedaling measurement system, pedaling measurement method, and program
JP2017047875A (en) * 2015-09-03 2017-03-09 株式会社スミス Non-circular bicycle gear provided with gear multiple in right and left legs separately
US10458868B2 (en) 2015-12-21 2019-10-29 Shimano Inc. Bicycle crank arm assembly
JP2016190637A (en) * 2016-08-10 2016-11-10 パイオニア株式会社 Measuring apparatus
US10000253B1 (en) 2016-11-25 2018-06-19 Shimano Inc. Bicycle crank assembly
US10475303B2 (en) 2017-03-16 2019-11-12 Shimano Inc. Bicycle electric device
US11351434B2 (en) * 2018-05-08 2022-06-07 Tacx B.V. Power measurement device
JP2020140382A (en) * 2019-02-27 2020-09-03 株式会社シマノ Output device, computer program, and storage medium
JP7457458B2 (en) 2019-02-27 2024-03-28 株式会社シマノ Output device, computer program, and storage medium
US11029225B1 (en) 2019-12-27 2021-06-08 Shimano Inc. Electronic device, crank assembly with electronic device and drive train including crank assembly with electronic device
US11858581B2 (en) 2021-11-23 2024-01-02 Shimano Inc. Detecting system

Also Published As

Publication number Publication date
JPWO2012056522A1 (en) 2014-02-24
JP5490916B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5490916B2 (en) Pedaling state detection device, pedaling state detection method, pedaling state detection program, medium recording pedaling state detection program
JP5490915B2 (en) Pedaling correction assisting device, pedaling correction assisting method, program for assisting pedaling correction, medium recording program for assisting pedaling correction
JP5490917B2 (en) Pedaling target setting device, pedaling target setting method, pedaling target setting program, medium recording a pedaling target setting program
US9182304B2 (en) Power meter, power measurement method, program and storage medium
US9010201B2 (en) Measurement apparatus and method
EP2540608B1 (en) Assisting force control device for bicycle
JP5081042B2 (en) Vehicle display device
JP2014008789A (en) Pedalling state measurement device
JP2013095306A (en) Electronic system for bicycle, and program
TWI831960B (en) Control device for human driven vehicles
JP6215472B2 (en) Measurement timing detector
US10604210B2 (en) Human-powered vehicle control device
JP2019151255A (en) Control device
KR101458386B1 (en) Cadence measurement system using bicycle shoes
WO2016009536A1 (en) Rotation angle detection device
JP2014134509A (en) Measuring device
WO2016009539A1 (en) Measurement timing detection device
WO2016009538A1 (en) Rotation angle detection device
WO2015141008A1 (en) Measurement device
JP5815115B2 (en) Measuring device, measuring method, measuring program, and recording medium capable of recording measuring program
JP5802825B2 (en) Rotation angle detection device and rotation angle detection method
US20240174313A1 (en) Electrical device and rotational device for human-powered vehicle
JP2014134506A (en) Measuring device
JP2014134510A (en) Measuring device
JP5857120B2 (en) Index value calculation device for exercise, index value calculation method for exercise, index value calculation program for exercise, and recording medium capable of recording index value calculation program for exercise

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858912

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012540564

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858912

Country of ref document: EP

Kind code of ref document: A1