JP6755070B2 - Alkali-silica reaction inhibitor, cementitious cured product production method, and alkali-silica reaction suppression method - Google Patents

Alkali-silica reaction inhibitor, cementitious cured product production method, and alkali-silica reaction suppression method Download PDF

Info

Publication number
JP6755070B2
JP6755070B2 JP2016191679A JP2016191679A JP6755070B2 JP 6755070 B2 JP6755070 B2 JP 6755070B2 JP 2016191679 A JP2016191679 A JP 2016191679A JP 2016191679 A JP2016191679 A JP 2016191679A JP 6755070 B2 JP6755070 B2 JP 6755070B2
Authority
JP
Japan
Prior art keywords
alkali
aggregate
silica reaction
aluminum nitrate
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016191679A
Other languages
Japanese (ja)
Other versions
JP2018052774A (en
Inventor
志偉 桂
志偉 桂
雅隆 内田
雅隆 内田
昂雄 落合
昂雄 落合
玲 江里口
玲 江里口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2016191679A priority Critical patent/JP6755070B2/en
Publication of JP2018052774A publication Critical patent/JP2018052774A/en
Application granted granted Critical
Publication of JP6755070B2 publication Critical patent/JP6755070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、硝酸アルミニウムを含むアルカリシリカ反応の抑制剤、および該抑制剤中に浸漬した骨材を用いてアルカリシリカ反応が抑制されたセメント質硬化体を製造する方法、およびセメント質硬化体のアルカリシリカ反応を抑制する方法に関する。 The present invention is a method for producing a cementum cured product in which the alkali silica reaction is suppressed by using an alkali silica reaction inhibitor containing aluminum nitrate and an aggregate immersed in the inhibitor, and a cementum cured product. The present invention relates to a method for suppressing an alkali-silica reaction.

アルカリシリカ反応は、反応性骨材中のシリカとコンクリート中のアルカリ金属が、反応して生成したアルカリシリカゲルが吸水により膨張して、コンクリートにひび割れが生じる現象である。このアルカリシリカ反応は、コンクリートの耐久性を低下させる主因になっている。
アルカリシリカ反応の抑制に関する従来の基本的な考えは、(i)アルカリシリカ反応が生じないと判定された骨材の使用、(ii)アルカリ含有量の少ないセメントの使用(いわゆるアルカリ総量規制)、および、(iii)アルカリを吸着する能力がある高炉スラグ、フライアッシュ、シリカヒューム、およびメタカオリン等のポゾラン物質を含む混合セメントの使用が挙げられる。
しかし、これらの対策を講じてもなおアルカリシリカ反応が発生する場合があり、これらの対策だけでは万全とは云えない。
The alkali-silica reaction is a phenomenon in which silica in a reactive aggregate and alkali metal in concrete react to generate alkali silica gel, which expands due to water absorption, causing cracks in concrete. This alkali-silica reaction is a major factor in reducing the durability of concrete.
The conventional basic ideas for suppressing the alkali-silica reaction are (i) the use of aggregate determined that the alkali-silica reaction does not occur, (ii) the use of cement with a low alkali content (so-called total alkali content regulation), And (iii) the use of mixed cements containing pozzolanic substances such as blast furnace slag, fly ash, silica fume, and metacaolin capable of adsorbing alkali.
However, even if these measures are taken, the alkali-silica reaction may still occur, and these measures alone cannot be said to be perfect.

そこで、各種の薬剤を用いてアルカリシリカ反応を抑制する方法が、種々提案されている。
例えば、特許文献1に記載のコンクリートの耐久仕上げ方法は、硬化コンクリートの表面に、亜硝酸塩を含有したセメント組成物を塗布した後、未硬化状態にある該セメント組成物の表面を、エポキシ樹脂含有塗材で被覆する方法である。
しかし、前記特許文献1に記載の方法は、コンクリート面に亜硝酸塩等を含有するセメント組成物を塗布した後、さらに樹脂等の表面被覆材を用いてコンクリート面を被覆するため、作業が煩雑になる。
Therefore, various methods for suppressing the alkali-silica reaction using various chemicals have been proposed.
For example, in the durable finishing method for concrete described in Patent Document 1, after applying a cement composition containing nitrite to the surface of hardened concrete, the surface of the cement composition in an uncured state contains an epoxy resin. This is a method of coating with a coating material.
However, the method described in Patent Document 1 complicates the work because the concrete surface is coated with a cement composition containing nitrite or the like and then the concrete surface is further coated with a surface covering material such as resin. Become.

また、非特許文献1に記載の研究は、水酸化アルミニウム、フッ化アルミニウム、臭化アルミニウム、プロピオン酸カルシウム、および炭酸リチウム等の各種の化合物を用いて、反応性骨材を含むモルタルの膨張抑制効果(アルカリシリカ反応の抑制効果)を検討した結果が記載されている。その内容は、プロピオン酸カルシウムと炭酸リチウムは、膨張抑制効果が認められたが、水酸化アルミニウム等のアルミニウム化合物では、膨張抑制効果が認められないか、むしろ膨張が増大する場合があった(3.2.6 各種化学物質の膨張抑制効果の比較の欄を参照のこと)。また、前記プロピオン酸カルシウム、および炭酸リチウムが膨張抑制効果を有するとしても、これらの化合物を混和剤として用いた場合、コンクリートやモルタルの強度発現性に与える悪影響が危惧されるが、非特許文献1には強度発現性に関する記載がなく、コンクリート等の強度発現性に与えるプロピオン酸カルシウム等の影響は不明である。 Further, in the study described in Non-Patent Document 1, various compounds such as aluminum hydroxide, aluminum fluoride, aluminum bromide, calcium propionate, and lithium carbonate were used to suppress the expansion of mortar containing a reactive aggregate. The result of examining the effect (the effect of suppressing the alkali-silica reaction) is described. As for the contents, calcium propionate and lithium carbonate were found to have an expansion-suppressing effect, but aluminum compounds such as aluminum hydroxide did not have an expansion-suppressing effect, or rather the expansion was increased (3). .2.6 Refer to the column for comparison of expansion inhibitory effects of various chemical substances). Further, even if the calcium propionate and lithium carbonate have an expansion inhibitory effect, when these compounds are used as an admixture, there is a concern that the strength development of concrete or mortar may be adversely affected. There is no description about the strength development, and the effect of calcium propionate on the strength development of concrete etc. is unknown.

特開平08−012467号公報Japanese Unexamined Patent Publication No. 08-012467

平林ら、「化学物質の少量添加によるアルカリシリカ反応の抑制に関する研究」、愛知工業大学研究報告、第45号、平成22年Hirabayashi et al., "Study on suppression of alkali-silica reaction by adding a small amount of chemical substance", Aichi Institute of Technology Research Report, No. 45, 2010

したがって、本発明は、アルカリシリカ反応の抑制効果が高く、かつコンクリート等の物性(強度発現性等)に影響しないアルカリシリカ反応の抑制剤等を提供することを目的とする。 Therefore, an object of the present invention is to provide an alkali-silica reaction inhibitor or the like, which has a high effect of suppressing the alkali-silica reaction and does not affect the physical properties (strength development, etc.) of concrete or the like.

本発明者は、前記目的にかなうアルカリシリカ反応の抑制剤等について、鋭意検討した結果、硝酸アルミニウムは、アルカリシリカ反応の抑制効果が高く、セメント質硬化体の強度発現性や鉄筋の腐食に悪影響を及ぼさないこと、すなわち、前記非特許文献1では、アルミニウム化合物は、アルカリシリカ反応の抑制効果がないとしていたが、本発明者は、非特許文献1の記載に反し、硝酸アルミニウム(アルミニウム化合物の1種)の抑制効果を見い出し、本発明を完成させた。
すなわち、本発明は下記の構成を有するアルカリシリカ反応の抑制剤等である。
As a result of diligent studies on an agent for suppressing the alkali-silica reaction that meets the above object, the present inventor has a high effect of suppressing the alkali-silica reaction, and adversely affects the strength development of the hardened cement material and the corrosion of the reinforcing bar. That is, in the non-patent document 1, the aluminum compound does not have the effect of suppressing the alkali-silica reaction, but the present inventor contradicts the description of the non-patent document 1 and uses aluminum nitrate (aluminum compound). The present invention has been completed by finding the inhibitory effect of (1)).
That is, the present invention is an inhibitor of the alkali-silica reaction having the following constitution.

[1]硝酸アルミニウムの含有率が10質量%以上で飽和濃度以下の水溶液であるアルカリシリカ反応の抑制剤中に、日以上浸漬してなる骨材を水洗することなく用いてセメント質硬化体を製造する、セメント質硬化体の製造方法。
[2]硝酸アルミニウムの含有率が10質量%以上で飽和濃度以下の水溶液であるアルカリシリカ反応の抑制剤中に、日以上骨材を浸漬する骨材の浸漬工程と、
該浸漬した骨材を水洗することなく用いてセメント質硬化体を製造する製造工程と
を少なくとも経て、該セメント質硬化体のアルカリシリカ反応を抑制する、アルカリシリカ反応の抑制方法。
[1] A hardened cementum using an aggregate immersed in an alkali silica reaction inhibitor, which is an aqueous solution having an aluminum nitrate content of 10% by mass or more and a saturation concentration or less , for 7 days or more without washing with water. A method for producing a hardened cementum.
[2] An aggregate immersion step of immersing the aggregate in an alkali silica reaction inhibitor, which is an aqueous solution having an aluminum nitrate content of 10% by mass or more and a saturation concentration or less , for 7 days or more.
A method for suppressing an alkali-silica reaction, which suppresses an alkali-silica reaction of a hardened cementum through at least a manufacturing step of producing a hardened cementum using the soaked aggregate without washing with water .

本発明のアルカリシリカ反応の抑制剤等によれば、アルカリシリカ反応の抑制効果が高く、セメント質硬化体の強度発現性やセメント質硬化体中の鉄筋の腐食に悪影響を及ぼさない。 According to the alkali-silica reaction inhibitor of the present invention, the effect of suppressing the alkali-silica reaction is high, and the strength development of the hardened cementum and the corrosion of the reinforcing bars in the hardened cementum are not adversely affected.

(A)はモルタルバーの長さの経時変化を示す図であり、(B)はモルタルバーの重さの経時変化を示す図である。(A) is a figure which shows the time-dependent change of the length of a mortar bar, and (B) is a figure which shows the time-dependent change of the weight of a mortar bar. (A)は実施例3の骨材を用いたモルタルバーの断面の反射電子像を示す写真であり、(B)は比較例の骨材を用いたモルタルバーの断面の反射電子像を示す写真である。(A) is a photograph showing a reflected electron image of a cross section of a mortar bar using the aggregate of Example 3, and (B) is a photograph showing a reflected electron image of a cross section of a mortar bar using the aggregate of Comparative Example. Is.

本発明のアルカリシリカ反応の抑制剤(以下「抑制剤」と略すこともある。)は、前記のとおり、硝酸アルミニウムを含む。また、本発明のセメント質硬化体の製造方法は、前記アルカリシリカ反応の抑制剤中に、1日以上浸漬してなる骨材を用いてセメント質硬化体を製造する方法である。さらに、本発明のアルカリシリカ反応の抑制方法は、抑制材中に骨材を浸漬する浸漬工程と、該骨材を用いてセメント質硬化体を製造する製造工程とを少なくとも経て、アルカリシリカ反応を抑制する方法等である。
以下、本発明について、アルカリシリカ反応の抑制剤、セメント質硬化体の製造方法、およびアルカリシリカ反応の抑制方法に分けて詳細に説明する。
As described above, the alkali-silica reaction inhibitor of the present invention (hereinafter, may be abbreviated as “inhibitor”) contains aluminum nitrate. Further, the method for producing a hardened cementum of the present invention is a method for producing a hardened cementum using an aggregate which is immersed in the alkali-silica reaction inhibitor for one day or more. Further, in the method for suppressing the alkali-silica reaction of the present invention, the alkali-silica reaction is carried out at least through a dipping step of immersing the aggregate in the suppressing material and a manufacturing step of producing a cementum cured product using the aggregate. It is a method of suppressing.
Hereinafter, the present invention will be described in detail separately for an alkali-silica reaction inhibitor, a method for producing a hardened cementum, and a method for suppressing the alkali-silica reaction.

1.アルカリシリカ反応の抑制剤
該抑制剤は硝酸アルミニウムであり、取扱いの容易性から、好ましくは硝酸アルミニウムを含む水溶液(硝酸アルミニウム水溶液)である。
前記抑制剤(硝酸アルミニウム水溶液)中の硝酸アルミニウムの含有率(濃度)は、特に制限されないが、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは20質量%以上であり、該含有率の上限は、特に制限されないが、好ましくは硝酸アルミニウムの飽和濃度である。該濃度が5質量%以上であれば、アルカリシリカ反応の抑制効果が高い。
また、該抑制剤は、硝酸アルミニウムに加えて、亜硝酸ナトリウム、および亜硝酸カルシウム等の亜硝酸塩や、硝酸ナトリウム、および硝酸カルシウム等の硝酸アルミニウム以外の硝酸塩等の抑制剤から選ばれる1種以上を併用することもできる。
1. 1. Inhibitor of Alkali-Silica Reaction The inhibitor is aluminum nitrate, and is preferably an aqueous solution containing aluminum nitrate (aluminum nitrate aqueous solution) because of its ease of handling.
The content (concentration) of aluminum nitrate in the inhibitor (aluminum nitrate aqueous solution) is not particularly limited, but is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more. The upper limit of the content is not particularly limited, but is preferably the saturated concentration of aluminum nitrate. When the concentration is 5% by mass or more, the effect of suppressing the alkali-silica reaction is high.
Further, the inhibitor is one or more selected from inhibitors such as sodium nitrite, nitrite such as calcium nitrite, and nitrate other than aluminum nitrate such as sodium nitrate and calcium nitrate, in addition to aluminum nitrate. Can also be used together.

2.セメント質硬化体の製造方法
該製造方法は、抑制剤中に、1日以上浸漬してなる骨材を用いてセメント質硬化体を製造する方法である。浸漬期間が1日以上であれば、アルカリシリカ反応の抑制効果が高い。なお、該浸漬期間は、好ましくは3日以上、より好ましくは7日以上である。
浸漬した後は骨材を乾燥してもよい。ここで、乾燥とは、乾燥機等で強制的に乾燥するほかに、天日下で静置して骨材を表乾状態にすることも含む。水分が蒸発して恒量になるまで乾燥を行うと、アルカリシリカ反応の抑制効果が高くなり好ましい。ここで、前記セメント質硬化体とは、骨材とセメントを少なくとも含む水硬性硬化体であって、例えば、モルタルやコンクリートが挙げられる。
セメント質硬化体の製造において用いる混練機は、強制練り2軸ミキサ、パン型ミキサ等の公知の混練機を用いることができる。
2. 2. Method for Producing Hardened Cementum The manufacturing method is a method for producing a hardened cementum using an aggregate that is immersed in an inhibitor for one day or more. When the immersion period is one day or more, the effect of suppressing the alkali-silica reaction is high. The immersion period is preferably 3 days or longer, more preferably 7 days or longer.
After soaking, the aggregate may be dried. Here, the term "drying" includes not only forcibly drying with a dryer or the like, but also allowing the aggregate to stand dry in the sun. It is preferable to dry until the water content evaporates and becomes constant because the effect of suppressing the alkali-silica reaction is enhanced. Here, the cementum hardened body is a hydraulic hardened body containing at least an aggregate and cement, and examples thereof include mortar and concrete.
As the kneader used in the production of the hardened cementum, a known kneader such as a forced kneading biaxial mixer or a pan-type mixer can be used.

3.アルカリシリカ反応の抑制方法
該抑制方法は、抑制剤(硝酸アルミニウム水溶液)中に、1日以上骨材を浸漬する骨材の浸漬工程と、該浸漬した骨材を用いてセメント質硬化体を製造する製造工程とを少なくとも経て、該セメント質硬化体のアルカリシリカ反応を抑制する方法である。なお、該浸漬期間は、前記と同様に、好ましくは3日以上、より好ましくは7日以上である。
また、該抑制方法は、前記浸漬工程と前記製造工程の間に、前記浸漬した骨材を水洗する水洗工程を含んでもよい。骨材を水洗すると、骨材とセメントペーストとの付着性が向上し、セメント質硬化体の強度が向上するほか、流動性の低下を抑制できる。
3. 3. Method for suppressing the alkali-silica reaction The method for suppressing the reaction is a step of immersing the aggregate in an inhibitor (aqueous solution of aluminum nitrate) for one day or more, and producing a cementum hardened product using the soaked aggregate. This is a method of suppressing the alkali-silica reaction of the cementum cured product through at least the manufacturing process. The immersion period is preferably 3 days or longer, more preferably 7 days or longer, as described above.
Further, the suppressing method may include a water washing step of washing the soaked aggregate with water between the dipping step and the manufacturing step. When the aggregate is washed with water, the adhesiveness between the aggregate and the cement paste is improved, the strength of the cementum hardened body is improved, and the decrease in fluidity can be suppressed.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.使用材料
(1)セメント:普通ポルトランドセメント(太平洋セメント社製)
(2)骨材:アルカリシリカ反応性が高い安山岩の細骨材(Rc=119mmol/L、Sc=626mmol/L)。ただし、Rcは骨材から溶出したシリカ量を意味し、Scは骨材により消費されたアルカリ量を意味する。
(3)硝酸アルミニウム( Al(NO、試薬1級、関東化学社製)
Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples.
1. 1. Materials used (1) Cement: Ordinary Portland cement (manufactured by Taiheiyo Cement)
(2) Aggregate: Fine aggregate of andesite (Rc = 119 mmol / L, Sc = 626 mmol / L) with high alkali-silica reactivity. However, Rc means the amount of silica eluted from the aggregate, and Sc means the amount of alkali consumed by the aggregate.
(3) Aluminum nitrate (Al (NO 3 ) 3 , reagent first grade, manufactured by Kanto Chemical Co., Inc.)

2.骨材の硝酸アルミニウム処理
(1)実施例1
10質量%の硝酸アルミニウム水溶液中に前記骨材を、質量比で1:1の割合で入れて7日間浸漬した。該浸漬後、硝酸アルミニウム水溶液を全量注ぎ出し、容器に残った骨材を105℃で恒量になるまで乾燥した後、JIS A 1146「骨材のアルカリシリカ反応性試験方法(モルタルバー法)」に準拠して骨材の粒度を調整した後、乾燥して表乾状態にして硝酸アルミニウム処理骨材を作製した。
(2)実施例2
10質量%の硝酸アルミニウム水溶液中に前記骨材を、質量比で1:1の割合で入れて7日間浸漬した。該浸漬後、硝酸アルミニウム水溶液を全量注ぎ出し、容器に残った骨材に水を加えて骨材を洗浄した後、洗浄液を注ぎ出し、この洗浄を合計で8回繰り返した。
洗浄した骨材を乾燥した後、前記JISに準拠して骨材の粒度を調整した後、乾燥して表乾状態にして硝酸アルミニウム処理骨材を作製した。
(3)実施例3
前記JISに準拠して骨材の粒度を調整した後、10質量%の硝酸アルミニウム水溶液中に前記骨材を、質量比で1:1の割合で入れて7日間浸漬した。該浸漬後、硝酸アルミニウム水溶液を全量注ぎ出し、容器に残った骨材を乾燥して表乾状態にして硝酸アルミニウム処理骨材を作製した。
(4)比較例
前記骨材を硝酸アルミニウム処理することなく、そのまま前記JISに準拠して骨材の粒度を調整して、硝酸アルミニウム非処理骨材を作製した。
2. 2. Aluminum nitrate treatment of aggregate (1) Example 1
The aggregate was placed in a 10% by mass aqueous aluminum nitrate solution at a mass ratio of 1: 1 and immersed for 7 days. After the immersion, the entire amount of the aluminum nitrate aqueous solution is poured out, and the aggregate remaining in the container is dried at 105 ° C. until the volume becomes constant, and then subjected to JIS A 1146 "Alkaline silica reactivity test method for aggregate (mortar bar method)". After adjusting the particle size of the aggregate in accordance with this, the aggregate was dried and brought to a surface dry state to prepare an aluminum nitrate-treated aggregate.
(2) Example 2
The aggregate was placed in a 10% by mass aqueous aluminum nitrate solution at a mass ratio of 1: 1 and immersed for 7 days. After the immersion, the entire amount of the aluminum nitrate aqueous solution was poured out, water was added to the aggregate remaining in the container to wash the aggregate, and then the washing liquid was poured out, and this washing was repeated 8 times in total.
After the washed aggregate was dried, the particle size of the aggregate was adjusted according to the JIS, and then the aggregate was dried and brought into a surface dry state to prepare an aluminum nitrate-treated aggregate.
(3) Example 3
After adjusting the particle size of the aggregate according to the JIS, the aggregate was placed in a 10 mass% aluminum nitrate aqueous solution at a mass ratio of 1: 1 and immersed for 7 days. After the immersion, the entire amount of the aluminum nitrate aqueous solution was poured out, and the aggregate remaining in the container was dried to a surface dry state to prepare an aluminum nitrate-treated aggregate.
(4) Comparative Example An aluminum nitrate untreated aggregate was prepared by adjusting the particle size of the aggregate as it was according to the JIS without treating the aggregate with aluminum nitrate.

3.アルカリシリカ反応性試験
前記硝酸アルミニウム処理骨材、および硝酸アルミニウム非処理骨材を用いて、前記JISに準拠してモルタルバーを作製し、材齢26週まで骨材のアルカリシリカ反応性試験を行なった。モルタルバーの長さおよび重さの経時変化を図1に示す。また、材齢8週の実施例3と比較例のモルタルバー中の骨材の反射電子像を図2に示す。
3. 3. Alkaline silica reactivity test Using the aluminum nitrate treated aggregate and aluminum nitrate untreated aggregate, a mortar bar is prepared in accordance with the JIS, and the alkali silica reactivity test of the aggregate is performed up to 26 weeks of age. It was. The time course of the length and weight of the mortar bar is shown in FIG. In addition, the reflected electron images of the aggregates in the mortar bars of Example 3 and Comparative Example having a material age of 8 weeks are shown in FIG.

4.モルタルのフローと圧縮強度の測定
JIS R 5201「セメントの物理試験方法」に準拠して、モルタルフローとモルタルの圧縮強度を測定した。
具体的には、実施例1〜3および比較例の骨材を用いて、モルタルを練り混ぜした後、モルタルのフローをJIS R 5201に準拠して測定するとともに、該モルタルを型枠に打設して、20±3℃、湿度95%以上の湿空箱で24±2時間、養生を行った後に脱型し、内径50mm、高さ100mmの円柱形の供試体を得た。
次に、該供試体を20±2℃で水中養生し、材齢28日と91日でJSCE−G 505に準拠して圧縮強度を測定した。その結果を表1に示す。
4. Measurement of mortar flow and compressive strength The compressive strength of mortar flow and mortar was measured in accordance with JIS R 5201 “Physical test method for cement”.
Specifically, after kneading the mortar using the aggregates of Examples 1 to 3 and Comparative Examples, the flow of the mortar is measured in accordance with JIS R5201 and the mortar is placed in a mold. Then, after curing in a wet box at 20 ± 3 ° C. and a humidity of 95% or more for 24 ± 2 hours, the mold was removed to obtain a cylindrical specimen having an inner diameter of 50 mm and a height of 100 mm.
Next, the specimen was cured in water at 20 ± 2 ° C., and the compressive strength was measured at 28 days and 91 days of age according to JSCE-G 505. The results are shown in Table 1.

5.試験結果について
(1)耐アルカリシリカ反応性について
図1(A)に示すように、膨張率は、比較例が0.4%を超えて高いのに対し、実施例1〜3では0.3%未満と低い。特に実施例1および3の膨張率は0.04%未満と、極めて低い。また、図1(B)に示すように、質量変化率も、特に実施例1および3が低くなっている。
また、図2(B)に示すように、比較例はアルカリシリカ反応によるゲル(図中のASRgelの箇所)が生じているのに対し、図2(A)に示すように、実施例3ではアルカリシリカ反応によるゲルは生じていない。
(2)モルタルのフローと圧縮強度について
表1に示すように、モルタルのフローおよび圧縮強度は、実施例、比較例ともにほぼ同程度であるから、本発明のアルカリシリカ反応の抑制剤は、コンクリート等の物性に悪影響を与えないことが分かる。
5. Test Results (1) Alkali Dioxide Reactivity As shown in FIG. 1 (A), the expansion rate was higher than 0.4% in Comparative Examples, whereas it was 0.3 in Examples 1 to 3. Low as less than%. In particular, the expansion coefficient of Examples 1 and 3 is extremely low, less than 0.04%. Further, as shown in FIG. 1 (B), the mass change rate is also particularly low in Examples 1 and 3.
Further, as shown in FIG. 2 (B), in the comparative example, a gel (the portion of ASR gel in the figure) is generated by the alkali silica reaction, whereas in Example 3, as shown in FIG. 2 (A), the gel is generated. No gel was formed by the alkali-silica reaction.
(2) Flow and compressive strength of mortar As shown in Table 1, since the flow and compressive strength of mortar are almost the same in both Examples and Comparative Examples, the alkali silica reaction inhibitor of the present invention is concrete. It can be seen that it does not adversely affect the physical properties such as.

Claims (2)

硝酸アルミニウムの含有率が10質量%以上で飽和濃度以下の水溶液であるアルカリシリカ反応の抑制剤中に、日以上浸漬してなる骨材を水洗することなく用いてセメント質硬化体を製造する、セメント質硬化体の製造方法。 A cementum hardened product is produced by using an aggregate immersed in an alkali silica reaction inhibitor, which is an aqueous solution having an aluminum nitrate content of 10% by mass or more and a saturation concentration or less , for 7 days or more without washing with water. , Manufacturing method of hardened cementum. 硝酸アルミニウムの含有率が10質量%以上で飽和濃度以下の水溶液であるアルカリシリカ反応の抑制剤中に、日以上骨材を浸漬する骨材の浸漬工程と、
該浸漬した骨材を水洗することなく用いてセメント質硬化体を製造する製造工程と
を少なくとも経て、該セメント質硬化体のアルカリシリカ反応を抑制する、アルカリシリカ反応の抑制方法。
An aggregate dipping step of immersing the aggregate in an alkali silica reaction inhibitor, which is an aqueous solution having an aluminum nitrate content of 10% by mass or more and a saturation concentration or less , for 7 days or more.
A method for suppressing an alkali-silica reaction, which suppresses an alkali-silica reaction of a hardened cementum through at least a manufacturing step of producing a hardened cementum using the soaked aggregate without washing with water .
JP2016191679A 2016-09-29 2016-09-29 Alkali-silica reaction inhibitor, cementitious cured product production method, and alkali-silica reaction suppression method Active JP6755070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016191679A JP6755070B2 (en) 2016-09-29 2016-09-29 Alkali-silica reaction inhibitor, cementitious cured product production method, and alkali-silica reaction suppression method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016191679A JP6755070B2 (en) 2016-09-29 2016-09-29 Alkali-silica reaction inhibitor, cementitious cured product production method, and alkali-silica reaction suppression method

Publications (2)

Publication Number Publication Date
JP2018052774A JP2018052774A (en) 2018-04-05
JP6755070B2 true JP6755070B2 (en) 2020-09-16

Family

ID=61835189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016191679A Active JP6755070B2 (en) 2016-09-29 2016-09-29 Alkali-silica reaction inhibitor, cementitious cured product production method, and alkali-silica reaction suppression method

Country Status (1)

Country Link
JP (1) JP6755070B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574031B (en) * 2019-03-27 2023-09-05 瓦克化学股份公司 Method for reducing or avoiding alkali-aggregate reactions in set concrete

Also Published As

Publication number Publication date
JP2018052774A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6755070B2 (en) Alkali-silica reaction inhibitor, cementitious cured product production method, and alkali-silica reaction suppression method
US4931314A (en) Method for preventing hardened cementitious material from deteriorating
JPS646145B2 (en)
JP2009208984A (en) Surface modifying agent for mortar or concrete and surface modification method
JP6163243B1 (en) Method for reducing drying shrinkage of hardened cementitious material
JPH02307879A (en) Method for preventing deterioration of hardened cement
JPH0492844A (en) Hydraulic composition for repairing concrete and repairing technique using thereof
JP2011136887A (en) Repairing material
Konca The effect of pozzolans addition on cement mortars
JP4791200B2 (en) Hydrated cured body and method for producing the same
JP6229095B1 (en) Method for reducing drying shrinkage of hardened cementitious material
CN116003088B (en) Method for exciting activity of fluorogypsum
JP5483307B2 (en) Concrete structure with reduced release of alkali gas and method for reducing release of alkali gas from concrete structure
JP2003146720A (en) Concrete
RU2201904C2 (en) Raw mixture and method for building article making
JP2001089206A (en) Low water absorptive wood chip cement board
Zemri et al. Thermal Impact on the Physical and Transfer Properties of Slag Cement and Portland Cement Concretes.
JP6906949B2 (en) Method of suppressing alkali-silica reaction
JP2017043497A (en) Plaster material, plaster and plaster panel
JP4948196B2 (en) Cementitious hardened body surface modifier and method for producing hardened cementitious body
JP2010229658A (en) Placing joint treatment method for concrete
Sumranwanich et al. Time-dependent chloride binding capacity of various types of cement pastes
SU1229199A1 (en) Method of protecting concrete articles
JPH0881252A (en) Production of highly durable concrete structural material
JP2010222205A (en) Method for suppressing neutralization of concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200821

R150 Certificate of patent or registration of utility model

Ref document number: 6755070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250