JP2011136887A - Repairing material - Google Patents

Repairing material Download PDF

Info

Publication number
JP2011136887A
JP2011136887A JP2009298980A JP2009298980A JP2011136887A JP 2011136887 A JP2011136887 A JP 2011136887A JP 2009298980 A JP2009298980 A JP 2009298980A JP 2009298980 A JP2009298980 A JP 2009298980A JP 2011136887 A JP2011136887 A JP 2011136887A
Authority
JP
Japan
Prior art keywords
repair material
repair
cement
hydraulic composition
rust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009298980A
Other languages
Japanese (ja)
Inventor
Yuji Matsubayashi
裕二 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2009298980A priority Critical patent/JP2011136887A/en
Publication of JP2011136887A publication Critical patent/JP2011136887A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a repairing material of a cement-based hydraulic composition which is suitable for repair of a deteriorated part by corrosion of mortar and concrete involving a reinforcing bar, a steel frame, a steel net or the like, and after repair becomes a repaired product which has solid and strong properties and does not tend to generate the corrosion of macrocells. <P>SOLUTION: The repairing material is produced by impregnating a solidified body in which a hydraulic composition containing (A) cement, (B) porous aggregate of 5-60% of open pore rate in which water is contained in the open pores and (C) metakaolin is terminated in setting with (D) an inorganic anticorrosive. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、強力な防錆能力を具備した水硬性組成物の補修材に関する。   The present invention relates to a repair material for a hydraulic composition having a strong rust prevention ability.

ひび割れが発生したり、剥落を起こしたりした劣化が見られるモルタルやコンクリートの補修には、セメント系の補修材を劣化部分又は劣化部分をはつった箇所に充填・被覆することが行われている。補修材は、施工性等が特に考慮されるため、通常は補修対象とする既存モルタル・コンクリートと同一のものが用いられることは無く、補修対象物とは異なる電気特性のものとなるため、補修後に補修部と既存モルタル・コンクリートとの境界部に接する鉄筋や鉄骨にマクロセル腐食と称される再劣化が発生し易い。
一方、モルタル・コンクリートの中性化、モルタル・コンクリート中に残存する塩化物、又は微細空隙を通じて浸透する大気等の長年の影響によってモルタルやコンクリートに内包された鉄筋や鉄骨が錆化し腐食することがある。この腐食に対する防止手段として、例えば亜硝酸ナトリウム等の亜硝酸塩を始め、アルカリ金属のクロム酸塩、ケイ酸塩又はリン酸塩等を有効成分とする防錆剤を予めモルタルやコンクリートに混和させるか、モルタル・コンクリート硬化体表面への塗布が一般的に行われている。
For repairing mortar and concrete that are cracked or deteriorated, such as peeling, cement-based repair materials are filled or covered on the part where the deteriorated part or the deteriorated part is sandwiched. . Since repairability is particularly considered in terms of workability, repair materials are usually not the same as existing mortar and concrete to be repaired, and have different electrical characteristics from the repair target. Later, re-degradation called macrocell corrosion is likely to occur in the reinforcing bars and steel frames that contact the boundary between the repaired part and the existing mortar / concrete.
On the other hand, rebars and steel frames contained in mortar and concrete may rust and corrode due to the effects of many years such as neutralization of mortar and concrete, chloride remaining in mortar and concrete, or air penetrating through fine voids. is there. As a preventive measure against this corrosion, for example, nitrite such as sodium nitrite, or an antirust agent containing an alkali metal chromate, silicate or phosphate as an active ingredient is mixed with mortar or concrete in advance. Application to the surface of a cured mortar / concrete is generally performed.

このような防錆剤は、前記のマクロセル腐食に対しても有効ではあるものの、一旦劣化によって外部に曝された部分がある鉄筋や鉄骨の防錆を十分達成することは容易でなく、一般に防錆成分中の例えば亜硝酸イオン等を鉄筋や鉄骨表面に十分な量を留め、速やかに酸化皮膜を表面に形成させねばならない。しかるに、補修材と補修対象となる既存のモルタル・コンクリートでは電気特性が異なるため補修対象の金属表面に亜硝酸イオン等が留まる量を十分確保するにはかなり大量の防錆成分の補修材への混入が必要となる。セメント系補修材では大量の防錆成分を直接混和させると、施工性が低下することに加え、注水後の凝結性に著しい支障を及ぼし、強度発現性が低下する。防錆成分の直接混入を避けた、大量混入手段も検討されており、例えばその特異な構造から種々の大きさの物質を大量に内包できるゼオライト系鉱物粉に防錆成分を内包させ、該ゼオライト系鉱物粉そのものを混和させることで大量の防錆成分を含有できることが知られている。(例えば、特許文献1〜2参照。)また、防錆成分を大量に内包させた多孔質骨材を配合したモルタルによって劣化部を補修することも知られている。(例えば、特許文献3参照。)   Although such a rust preventive is effective against the above-mentioned macrocell corrosion, it is not easy to achieve sufficient rust prevention for reinforcing bars and steel frames that have been exposed to the outside once due to deterioration. A sufficient amount of, for example, nitrite ions in the rust component must be retained on the surface of the reinforcing bar or the steel frame, and an oxide film must be rapidly formed on the surface. However, since the electrical properties of the repair material and the existing mortar / concrete to be repaired are different, a sufficient amount of rust-preventive component can be used to secure a sufficient amount of nitrite ions, etc. on the repaired metal surface. Mixing is required. In cement-based repair materials, if a large amount of rust-preventive components are mixed directly, the workability is lowered, and the cohesiveness after water injection is significantly hindered and the strength development is lowered. Mass mixing means that avoid direct mixing of rust-preventing ingredients are also being studied. For example, zeolitic mineral powder that can contain a large amount of substances of various sizes from its unique structure contains rust-preventing ingredients, and the zeolite It is known that a large amount of rust-preventive components can be contained by mixing the system mineral powder itself. (For example, refer to Patent Documents 1 and 2.) It is also known to repair a deteriorated portion with a mortar containing a porous aggregate containing a large amount of an antirust component. (For example, refer to Patent Document 3.)

特開平05−43282号公報Japanese Patent Laid-Open No. 05-43282 特開2008−297137号公報JP 2008-297137 A 特開平09−317195号公報JP 09-317195 A

防錆成分を内包或いは吸着させたゼオライトや開口性多孔質骨材等をモルタルやコンクリート組成物に混和させると、大量の防錆成分の含有が可能であるが、注水してスラリー化すると、ゼオライトや多孔質骨材に含ませた大量の防錆成分が水性スラリー中に溶出し、スラリー性状や凝結性等に影響を及ぼすことが避けられない。そして、このような組成物からなる補修材では施工性の低下や施工物の硬化体としての材料性状は概して低くなる。また、防錆成分のスラリー中への流出量が多くなるとマクロセル腐食等による再劣化に対して十分な防止効果が得られなくなる。本発明はこのような問題を鑑み、鉄筋、鉄骨又は鋼ネツト等を内包したモルタルやコンクリートの腐食による劣化部の補修に適し、補修後は堅牢強固な性状の補修施工物になり、マクロセル腐食も発生し難い補修材を提供することである。   When zeolite or porous porous aggregate containing or adsorbing rust preventive components is mixed with mortar or concrete composition, it can contain a large amount of rust preventive components. In addition, it is inevitable that a large amount of the rust preventive component contained in the porous aggregate is dissolved in the aqueous slurry and affects the slurry properties and the setting properties. And in the repair material which consists of such a composition, the fall of workability and the material property as a hardening body of a construction material become low in general. Further, when the amount of the rust preventive component flowing out into the slurry increases, a sufficient prevention effect against re-deterioration due to macrocell corrosion or the like cannot be obtained. In view of such a problem, the present invention is suitable for repairing a deteriorated part due to corrosion of mortar or concrete containing reinforcing bars, steel frames, steel nets, etc., and after repair, it becomes a repair work having a robust and strong property, and macrocell corrosion is also caused. It is to provide repair materials that are unlikely to occur.

本発明者は、前記課題を解決のため検討を重ねた結果、少なくともセメントとメタカオリンと水を吸水させた開口気孔を有する多孔質細骨材とを含有させた水硬性組成物の凝結終結後の固化物に、液状防錆成分を含浸させてなる補修材が、凝結や硬化性状に支障を及ぼさずに、鉄筋や鉄骨を十分防錆できる大量の防錆成分を含有できるという知見を得、本発明を完成させた。   As a result of repeated investigations to solve the above problems, the present inventor has obtained a hydraulic composition containing at least cement, metakaolin, and a porous fine aggregate having open pores in which water has been absorbed. Obtained the knowledge that a repair material made by impregnating a solidified product with a liquid rust preventive component can contain a large amount of rust preventive components that can sufficiently rust rebars and steel frames without affecting the setting and hardening properties. Completed the invention.

即ち、本発明は、次の[1]〜[4]で表す補修材である。
[1](A)セメント、(B)開口気孔に含水された開口気孔率5〜60%の多孔質骨材及び(C)メタカオリンを含有してなる水硬性組成物の凝結終結した固化体に、(D)無機系防錆剤を含浸せしめてなる補修材。
[2]多孔質骨材が、開口端の開口気孔径が10μm未満である請求項1記載の補修材。
[3]無機系防錆剤が、アルカリ金属又はアルカリ土類金属の亜硝酸塩、クロム酸塩、ケイ酸塩又はリン酸塩の何れか1種又は2種以上である請求項1又は2記載の補修材。
[4]水硬性組成物が、さらに(E)ポリマーディスパージョン又は再乳化形粉末樹脂を含有したものである請求項1〜3何れか記載の補修材。
That is, the present invention is a repair material represented by the following [1] to [4].
[1] To a solidified solidified body of a hydraulic composition containing (A) cement, (B) porous aggregate containing 5 to 60% of open porosity contained in open pores, and (C) metakaolin. (D) Repair material impregnated with an inorganic rust inhibitor.
[2] The repair material according to claim 1, wherein the porous aggregate has an opening pore diameter at an opening end of less than 10 μm.
[3] The inorganic rust inhibitor is any one or more of nitrites, chromates, silicates and phosphates of alkali metals or alkaline earth metals. Repair material.
[4] The repair material according to any one of claims 1 to 3, wherein the hydraulic composition further contains (E) a polymer dispersion or a re-emulsifying powder resin.

本発明の補修材は、施工性、凝結性及び硬化性状等に支障を引き起こすことなく大量の防錆成分を担持させることが可能なため、鉄筋や鉄骨等を内包するコンクリートの劣化部分の補修に用いると強力な防錆作用を付与することができ、化学的に補修対象コンクリートに近似したものにしなくともマクロセル腐食等の発生を十分抑制できる。また、補修後の補修施工物は堅牢で耐久性に優れたものとなる。さらに、本発明の補修材は、一般的には低容重の多孔質骨材を用いるため、軽量化でき、補修対象の方向等に拘わらず自重に起因する変形、剥落等が生じ難い。   Since the repair material of the present invention can carry a large amount of rust-preventive components without causing problems in workability, setting properties, and curing properties, it can be used for repairing deteriorated parts of concrete containing reinforcing bars and steel frames. When used, it can provide a strong rust-preventing action, and the occurrence of macrocell corrosion and the like can be sufficiently suppressed without chemically approximating the concrete to be repaired. In addition, the repaired construction after the repair is robust and excellent in durability. Furthermore, since the repair material of the present invention generally uses a low-weight porous aggregate, the repair material can be reduced in weight and hardly deformed or peeled off due to its own weight regardless of the direction of the repair object.

本発明の補修材において、水硬性組成物の作製に使用する(A)セメントは、何れのセメントでも良く、例えば普通、早強、中庸熱、低熱等の各種ポルトランドセメント、高炉セメント等の混合セメント、アルミナセメントやエコセメント等の特殊セメントなどが挙げられ、2種以上を併用しても良い。例えば鉄筋、鉄骨、鋼ネット等を内包するモルタルやコンクリート用としては経済性観点から普通ポルトランドセメントが推奨され、またモルタル・コンクリート劣化部位の補修用としては工期短縮化の観点から例えば早強又は超早強ポルトランドセメント、アルミナセメントと他のポルトランドセメントの併用なども推奨されるが、記載例に限定されるものではない。   In the repair material of the present invention, the (A) cement used for producing the hydraulic composition may be any cement, for example, various portland cements such as normal, early strength, moderate heat, and low heat, and mixed cements such as blast furnace cement. And special cements such as alumina cement and eco-cement can be used, and two or more kinds may be used in combination. For example, normal portland cement is recommended from the economical viewpoint for mortar and concrete containing reinforcing bars, steel frames, steel nets, etc., and from the viewpoint of shortening the construction period for repairing mortar / concrete deteriorated parts Early-strength Portland cement, combined use of alumina cement and other Portland cement are also recommended, but are not limited to the examples described.

本発明の補修材において、水硬性組成物の作製に使用する(B)開口気孔に含水された開口気孔率5〜60%の多孔質骨材は、骨材表面に開口した気孔を有し、開口した気孔部の気孔率が5〜60%の多孔質骨材を使用する。開口気孔率は、例えばJIS A 1509「陶磁器質試験方法−第3節:吸水率、見掛け気孔率およびかさ密度の測定方法の真空法による場合」に規定された方法で測定することができる。尚、本発明で用いる多孔質骨材において骨材表面に非連通の閉口気孔の存在有無は特に問わない。また補修材が軽量であると施工後の自重による変形・剥落等が起こり難く、施工作業も容易になるので、本発明ではかさ容積0.8Kg/リットル以下の多孔質骨材の使用が好ましい。多孔質骨材の材質は、モルタルやコンクリートに使用できるもの、即ち水やアルカリに実質不活性なものであれば何れのものでも良い。好ましくは、耐久性が得やすいことから、火成岩等の天然鉱物、人工の鉱物質無機物質、硬質樹脂などの材質からなる骨材とし、具体的には、例えば火山礫、沸石類、黒曜石や真珠岩の加熱発泡粒(パーライト)、各種スラグ骨材、アルミノシリケートセラミックス、ポリプロピレン、ポリエチレン、四弗化エチレンなどの高分子樹脂が挙げられ、このうち開口気孔率が5〜60%のものを使用すれば良い。開口気孔率が5%未満の骨材では内包可能な遅延成分量が少なくなりすぎるため好ましくなく、また開口気孔率が60%を超える骨材では強度が低く、施工時に破損したり、補修後も堅牢・高耐久の施工物が得られないので好ましくない。また、開口端の開口気孔径が10μmの多孔質骨材を使用するのが好ましい。より好ましくは気孔経が5オングストローム以上で10μmのものとする。開口端部の気孔径が10μmを超えると比表面積の低下により内包物を担持する吸着力が不足し、流出し易くなるので適当ではない。また5オングストローム未満では水分子が大き過ぎて通過が困難となる。本発明では、このような多孔質骨材を含水させ、開口気孔部に水が保持された多孔質骨材をセメント等との配合に供する。開口気孔部への含水方法は例えば前記多孔質骨材を水中に浸漬する。含水状態は、概ね開口気孔容積の60%以上が水で満たされていれば良い。60%未満だと注水後のセメント系スラリーが開口部から大量に侵入し、そのまま凝結して気孔が閉塞される虞があるので適当ではない。本発明の補修材において、水硬性組成物の作製に使用する多孔質骨材の配合量は、水を含有していない絶乾状態で換算した質量で、セメント配合量100質量部に対し、1〜100質量部が好ましい。より好ましくは、20〜40質量部とする。1質量部未満では必要量の防錆成分を担持できないので適当でなく、100質量部を超えると補修施工物の強度・耐久性が低下することがあるので適当でない。   In the repair material of the present invention, (B) the porous aggregate having an open porosity of 5 to 60% contained in the open pores used for producing the hydraulic composition has pores opened on the aggregate surface, A porous aggregate having a porosity of 5 to 60% in the open pores is used. The open porosity can be measured, for example, by a method defined in JIS A 1509 “Ceramics Test Method-Section 3: Vacuum Method of Measuring Water Absorption, Apparent Porosity and Bulk Density”. In the porous aggregate used in the present invention, the presence or absence of closed pores on the aggregate surface is not particularly limited. In addition, if the repair material is light, deformation and peeling due to its own weight after construction hardly occur and construction work is facilitated. Therefore, in the present invention, it is preferable to use a porous aggregate having a bulk volume of 0.8 kg / liter or less. The material of the porous aggregate may be any material that can be used for mortar and concrete, that is, any material that is substantially inert to water and alkali. Preferably, aggregates made of natural minerals such as igneous rocks, artificial minerals, and hard resins are used because they are easy to obtain durability. Specifically, for example, volcanic gravel, zeolites, obsidian and pearls. Examples include heated foam particles (perlite) of rocks, various slag aggregates, aluminosilicate ceramics, polypropylene, polyethylene, ethylene tetrafluoride, etc., of which those with an open porosity of 5 to 60% are used. It ’s fine. Aggregates with an open porosity of less than 5% are not preferred because the amount of delay components that can be included is too small, and aggregates with an open porosity of more than 60% are low in strength and may be damaged during construction or after repair. This is not preferable because a solid and highly durable construction cannot be obtained. Moreover, it is preferable to use a porous aggregate having an opening pore diameter of 10 μm at the opening end. More preferably, the pore diameter is 5 angstroms or more and 10 μm. If the pore diameter at the open end exceeds 10 μm, the adsorbing force for supporting the inclusions becomes insufficient due to the decrease in specific surface area, which tends to flow out. If it is less than 5 angstroms, water molecules are too large to pass. In the present invention, such a porous aggregate is hydrated, and the porous aggregate in which water is retained in the open pores is used for blending with cement or the like. For example, the porous pore aggregate is immersed in water. In the water-containing state, it is sufficient that 60% or more of the open pore volume is filled with water. If it is less than 60%, a large amount of cementitious slurry after pouring invades from the opening and condenses as it is, which is not suitable. In the repair material of the present invention, the amount of the porous aggregate used for the production of the hydraulic composition is a mass converted in an absolutely dry state not containing water, and is 1 for 100 parts by mass of cement. -100 mass parts is preferable. More preferably, it is 20-40 mass parts. If the amount is less than 1 part by mass, a necessary amount of the rust-preventive component cannot be supported, so that it is not appropriate. If the amount exceeds 100 parts by mass, the strength and durability of the repair work may be lowered.

本発明の補修材において、水硬性組成物の作製に使用する(C)メタカオリンは、含水珪酸塩鉱物であるカオリナイトを通常550〜1200℃で加熱して得られる脱水構造となった中間体である。好ましくは、より強固な硬化体が得られ易くなることから、カオリンを700〜1000℃で焼成したものを使用する。メタカオリンの粉末は高活性であり、ゼオライトや高気孔率の多孔質骨材を多く含ませるほど起こり易い脆弱化を補い、また他の活性シリカやポゾラン反応性物質の大量使用では往々に見られる硬化物の大規模な体積減少を引き起こすこともなく、強固な硬化体を得るのに有用である。メタカオリンの配合量はセメント配合量100質量部に対し、5〜20質量部が好ましい。5質量部未満では強固な水硬性組成物が得られないことがあるため適当ではなく、また、20質量部を超えると例えば鉄筋コンクリートの打設用やモルタル・コンクリート劣化部位の補修用として使用する際の施工性が低下するので適当ではない。   In the repair material of the present invention, (C) metakaolin used for preparing the hydraulic composition is an intermediate having a dehydrated structure obtained by heating kaolinite, which is a hydrous silicate mineral, usually at 550 to 1200 ° C. is there. Preferably, kaolin is calcined at 700 to 1000 ° C. because a stronger hardened body is easily obtained. Metakaolin powder is highly active and compensates for the brittleness that is likely to occur as it contains more zeolite and high porosity porous aggregates, and is often found in heavy use of other active silica and pozzolanic reactive materials This is useful for obtaining a hardened body without causing a large-scale volume reduction of the object. As for the compounding quantity of a metakaolin, 5-20 mass parts is preferable with respect to 100 mass parts of cement compounding quantities. If it is less than 5 parts by mass, a strong hydraulic composition may not be obtained, so it is not suitable. If it exceeds 20 parts by mass, for example, for placing reinforced concrete or repairing mortar / concrete degradation sites This is not appropriate because the workability of the machine is reduced.

本発明の補修材において、水硬性組成物の作製に用いる成分は、前記(A)〜(C)を必須とするが、これに加えてさらに(E)ポリマーディスパージョン又は再乳化形粉末樹脂を用いることができる。ポリマーディスパージョン又は再乳化形粉末樹脂を用いることにより、補修材として多様な施工手段に対する適性が増し、また補修部位に対する施工付着性の向上、さらに補修後の施工物は高い化学的耐久性を有するものとなる。使用するポリマーディスパージョンや再乳化粉末樹脂は、何れもポリマーモルタルやポリマーコンクリートと称されるものに使用できるものであれば良く、好ましくは、JIS A 6203の「セメント混和用ポリマーディスパージョン及び再乳化粉末樹脂」に記載されているものが使用できる。より好ましくは、アクリル系ポリマーエマルション、酢酸ビニル系ポリマーエマルション、スチレンブタジエンゴムラテックス、酢酸ビニル系再乳化粉末樹脂、ベオバ系再乳化粉末樹脂が使用できる。ポリマーディスパージョン又は再乳化形粉末樹脂の配合量はセメント配合量100質量部に対し、固形分換算で0.5〜5質量部が好ましい。0.5質量部未満では配合効果が殆ど得られず、また5質量部を超えると防錆剤が含浸し難くなるので適当ではない。   In the repair material of the present invention, the components used for the preparation of the hydraulic composition include the above (A) to (C), but in addition to this, (E) a polymer dispersion or a re-emulsified powder resin Can be used. Use of polymer dispersion or re-emulsified powder resin increases suitability for various construction methods as a repair material, improves work adhesion to the repair site, and the work after repair has high chemical durability. It will be a thing. Any polymer dispersion or re-emulsified powder resin may be used as long as it can be used for what is called polymer mortar or polymer concrete. Preferably, JIS A 6203 “Polymer dispersion and re-emulsification for cement admixture” is used. What is described in "powder resin" can be used. More preferably, an acrylic polymer emulsion, a vinyl acetate polymer emulsion, a styrene butadiene rubber latex, a vinyl acetate re-emulsified powder resin, or a Veova re-emulsified powder resin can be used. The blending amount of the polymer dispersion or the re-emulsified powder resin is preferably 0.5 to 5 parts by mass in terms of solid content with respect to 100 parts by mass of the cement. If it is less than 0.5 parts by mass, almost no blending effect is obtained, and if it exceeds 5 parts by mass, it is difficult to impregnate the rust preventive agent.

本発明の補修材において、水硬性組成物の作製に用いる成分として、前記(A)〜(C)及び(E)以外にも、本発明の効果を実質喪失させないものであれば使用することができる。このような成分として、例えばモルタルやコンクリートに使用できる減水剤類、増粘剤、短繊維、開口気孔率1%未満の骨材、乾燥収縮低減剤、膨張材、凝結調整剤、速硬剤、急結剤、消泡剤などが挙げられる。   In the repair material of the present invention, in addition to the components (A) to (C) and (E), the components used for preparing the hydraulic composition may be used as long as the effects of the present invention are not substantially lost. it can. Examples of such components include water reducing agents that can be used in mortar and concrete, thickeners, short fibers, aggregates having an open porosity of less than 1%, drying shrinkage reducing agents, expansion materials, setting modifiers, fast hardeners, Examples thereof include quick setting agents and antifoaming agents.

本発明の補修材は、上記のような成分を配合し、これにセメントとメタカオリンの合計量100質量部に対し、50〜65質量部の量の注水を行い、混練した水硬性組成物を凝結させた固化体に、(D)無機系防錆剤を含浸させたものである。ここで注水量には配合する含水多孔質骨材中の水分量は含めない。水硬性組成物の混練物は補修対象部に施工する。施工法は左官施行が推奨されるが、急結成分や速硬成分等を併用して吹き付け施工することも可能である。また、刷毛で鉄筋並びに駆体との界面に塗り付けることも可能である。施工した水硬性組成物が凝結した固化体はできる限り乾燥させた後、無機系防錆剤を含浸させる。これは固化体中の多孔質骨材の開口気孔に含まれる水分を十分消失させ、気孔中の空隙領域が増大した時点で無機系防錆剤を含浸させると、補修材中に防錆成分の担持場所が多く確保され大量の無機系防錆剤が含有できることによる。無機系防錆剤の含浸方法は特に限定されないが、例えば防錆有効成分濃度が50%以上とした高濃度水溶液を調整し、これを乾燥させた水硬性組成物の固化体表面に塗布する。補修施工部が傾斜部や天井部などでは、垂れや剥落を防ぐために、例えば酢酸ビニル等の水溶性糊剤等を該水溶液に適宜加えて接着性を付与したものを使用する。   The repair material of the present invention is blended with the above components, and water is poured in an amount of 50 to 65 parts by mass with respect to 100 parts by mass of the total amount of cement and metakaolin to condense the kneaded hydraulic composition. The solidified body impregnated with (D) an inorganic rust inhibitor. Here, the amount of water injected does not include the amount of water in the hydrated porous aggregate to be blended. The kneaded product of the hydraulic composition is applied to the repair target part. Plastering is recommended for the construction method, but it is also possible to perform spraying using a combination of quick-setting components and fast-hardening components. It is also possible to apply it to the interface between the reinforcing bar and the body with a brush. The solidified body in which the applied hydraulic composition is condensed is dried as much as possible and then impregnated with an inorganic rust inhibitor. This is because the moisture contained in the open pores of the porous aggregate in the solidified body is sufficiently lost, and when the void area in the pores is increased and impregnated with an inorganic rust preventive agent, This is because a large number of supporting places are secured and a large amount of an inorganic rust inhibitor can be contained. The impregnation method of the inorganic anticorrosive agent is not particularly limited. For example, a high concentration aqueous solution having an antirust active ingredient concentration of 50% or more is prepared and applied to the solidified body of the dried hydraulic composition. When the repair construction part is an inclined part or a ceiling part, in order to prevent dripping or peeling off, for example, a water-soluble paste such as vinyl acetate is appropriately added to the aqueous solution to provide adhesiveness.

本発明の補修材に用いる(D)無機系防錆剤は、鉄や鋼に対する防錆能がある無機物質であって、例えば常温で少なくとも濃度20%程度の水溶液を作成できるものであれば特に限定されない。好ましくはアルカリ金属の亜硝酸塩、クロム酸塩、ケイ酸塩、リン酸塩の何れか又はアルカリ土類金属の亜硝酸塩を挙げることができ、2種以上併用しても良い。より好ましい無機系防錆剤はアルカリ金属の亜硝酸塩である。無機系防錆剤の使用量は、補修対象に内包された鉄筋や鉄骨の量、補修部分の大きさ等に応じて決定すれば良いが、補修材内部に担持できる量は、多孔質骨材の開口気孔の総容積を概ね上限とし、それを超える量では含浸されないことがあるので適当でない。   The (D) inorganic rust preventive agent used in the repair material of the present invention is an inorganic substance having a rust preventive ability for iron or steel, and is particularly capable of producing an aqueous solution having a concentration of at least about 20% at room temperature, for example. It is not limited. Preferably, any of alkali metal nitrites, chromates, silicates, phosphates or alkaline earth metal nitrites can be mentioned, and two or more of them may be used in combination. A more preferred inorganic rust inhibitor is alkali metal nitrite. The amount of inorganic rust inhibitor used may be determined according to the amount of reinforcing bars and steel frames contained in the repair object, the size of the repaired part, etc., but the amount that can be supported inside the repair material is porous aggregate. The total volume of the open pores is generally set to an upper limit, and if it exceeds that, it may not be impregnated.

使用するゼオライトは、特に限定されるものではないが、例えば数十オングストローム以下となるような極微結晶空洞が主体となる構造のものでは大量の防錆成分を担持し難く、また吸着能が強くなり過ぎて放出がスムーズに行い難い虞がある。また、開口性多孔質骨材としては、モルタルやコンクリートに使用できる骨材のうち、表面に開口端を有す多孔質骨材であれば良く、各気孔が互いに連通しているか否かは問わない。好ましくは開口端における口径が0.2μm以下であって、見掛け気孔率が10%以上の細骨材が、より大量の防錆成分を担持できるので好ましい。該骨材の材質は天然又は人工の鉱物、硬質樹脂等   The zeolite to be used is not particularly limited. For example, a structure mainly composed of microcrystalline cavities of several tens of angstroms or less is difficult to carry a large amount of rust-preventive components and has a strong adsorption ability. After that, there is a possibility that it is difficult to discharge smoothly. In addition, as the porous porous aggregate, among aggregates that can be used for mortar and concrete, any porous aggregate having an open end on the surface may be used, and whether or not each pore communicates with each other. Absent. Preferably, a fine aggregate having an aperture diameter of 0.2 μm or less at the open end and an apparent porosity of 10% or more is preferable because it can carry a larger amount of rust preventive components. The aggregate is made of natural or artificial mineral, hard resin, etc.

以下、実施例により本発明を具体的に詳しく説明するが、本発明はここに表す実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the examples shown here.

絶乾状態の多孔質骨材を約25℃の水中に浸漬し、真空含浸させることによって、次の表1に表す含水状態の多孔質細骨材B1〜B5を得た。但し、B3は吸水させない絶乾状態のままで使用した。また、B6は比較のため開口気孔を実質有しない緻密質骨材を用いた。   The completely dry porous aggregate was immersed in water at about 25 ° C. and vacuum impregnated to obtain water-containing porous fine aggregates B1 to B5 shown in Table 1 below. However, B3 was used in an absolutely dry state where water was not absorbed. For comparison, B6 used a dense aggregate having substantially no open pores.

Figure 2011136887
Figure 2011136887

含水させた多孔質骨材と次に示す各材料を表2に表す配合となるよう秤量・調合したものに表2に表す量の水(多孔質骨材中の含水分は含まず)を添加し、ホバートミキサーで約2分間混練して水硬性組成物を得た。
A;普通ポルトランドセメント(市販品)
C1;メタカオリン(米国産カオリンを800℃で2時間焼成したもの。)
C2;シリカフューム(ブレーン比表面積200000cm2/g、市販品)
E1;スチレンブタジエンゴムラテックス系ポリマー(固型分45%、商品名「太平洋CXB」、太平洋マテリアル株式会社製)
E2;エチレン酢酸ビニル共重合体系再乳化粉末樹脂(商品名「ビナパス7055」、旭化成ケミカルズ株式会社製)
F;天然6号ケイ砂
G;ポリカルボン酸系高性能減水剤(商品名「コアフローNP−5」、太平洋マテリアル株式会社製)
The amount of water shown in Table 2 (excluding the water content in the porous aggregate) is added to the water-containing porous aggregate and the following materials weighed and prepared so as to have the composition shown in Table 2. The mixture was kneaded with a Hobart mixer for about 2 minutes to obtain a hydraulic composition.
A: Ordinary Portland cement (commercially available)
C1: Metakaolin (A US-made kaolin calcined at 800 ° C. for 2 hours)
C2: Silica fume (Blaine specific surface area 200,000 cm 2 / g, commercially available product)
E1: Styrene butadiene rubber latex polymer (solid content 45%, trade name "Pacific CXB", manufactured by Taiheiyo Materials Co., Ltd.)
E2; ethylene vinyl acetate copolymer re-emulsified powder resin (trade name “Vinapass 7055”, manufactured by Asahi Kasei Chemicals Corporation)
F: Natural No. 6 silica sand G; Polycarboxylic acid-based high-performance water reducing agent (trade name “Core Flow NP-5”, manufactured by Taiheiyo Materials Co., Ltd.)

Figure 2011136887
Figure 2011136887

前記水硬性組成物の混練物を、内寸が直径50mmで高さ100mmのアクリル製型枠に充填し、24時間放置した後、脱型して得た成形物を80℃の乾燥器中で24時間乾燥後、表3に表す固形分濃度25%の防錆剤水溶液(液温20℃)に24時間浸漬した。浸漬による吸液量(浸漬前後の質量測定による増加質量に相当)と圧縮強度(JIS A 1108に準拠した方法で測定。)を調べた。その結果も表3に表す。   The kneaded product of the hydraulic composition is filled into an acrylic mold having an inner dimension of 50 mm in diameter and a height of 100 mm, left to stand for 24 hours, and then demolded to obtain a molded product in an oven at 80 ° C. After drying for 24 hours, it was immersed for 24 hours in a rust inhibitor aqueous solution (liquid temperature 20 ° C.) having a solid content concentration of 25% shown in Table 3. The amount of liquid absorbed by immersion (corresponding to increased mass by mass measurement before and after immersion) and compressive strength (measured by a method based on JIS A 1108) were examined. The results are also shown in Table 3.

Figure 2011136887
Figure 2011136887

質量比で普通ポルトランドセメント:砕石系粗骨材:川砂系細骨材:水:塩化ナトリウム(市販試薬)=100:347:313:65:1.4の質量比となるよう配合混練してなるベースコンクリートに、直径約13mmの鉄筋1本をかぶり厚さ10mmの位置で内包する外寸100×100×400mmの鉄筋コンクリート試験体を作製し、試験体作製から7日後に該鉄筋の径方向の約50%が露出するようハツリ取りした。24時間、20℃−湿度60%の空気中に曝した試験体のハツリ部(大きさがおよそ100×20×400mm)に、露出鉄筋が完全に覆われるように前記水硬性組成物の混練物を鏝で塗布し、ハツリ前の外寸形状(100×100×400mm)となるよう施工物を形成させた。常温で14日間経過させて乾燥固化した施工物の表面に、表3に表す固形分濃度25%の防錆剤水溶液を塗り付け、塗付け量は前記表3の含浸可能量以下とした。含浸の確認は目視で行い、施工物表面に塗物が実質残存しないことで判断した。表4に防錆剤水溶液の塗付け量を表す。防錆剤を塗り付けた試験体は、平均気温18℃の屋外で3年間暴露した後、鉄筋周囲のコンクリートを慎重に取り外し、一旦露出され、施工物によって覆われた部分の鉄筋表面、露出されずにコンクリート中に内包されていた部分の鉄筋表面における、それぞれ鉄筋腐食の状況を、目視による錆の発生有無により調べた。錆の発生が見られたものを腐食「有」と判断した。併せて、施工物の状況も目視で観察し、耐久性の観点から著しい不具合が認められたものを特記した。これらを表4に纏めて表す。尚、補修材No.15は水硬性組成物No.1と同じ配合成分からなるベース水硬性組成物に、亜硝酸リチウム水溶液(固形分濃度25%)をセメントとメタカオリンの合計100質量部に対し、5質量部を混和配合して作製したもので、硬化後の施工物に防錆剤等の塗付けは行っていない。また、補修材No.14は防錆剤を塗り付けも混和配合も行っていない。   Ordinary Portland cement: Crushed stone coarse aggregate: River sand fine aggregate: Water: Sodium chloride (commercially available reagent) = 100: 347: 313: 65: 1.4 A reinforced concrete test specimen with an outer dimension of 100 × 100 × 400 mm containing one reinforcing bar with a diameter of about 10 mm was prepared on the base concrete, and about 7 days after the test specimen was prepared, The chip was removed so that 50% was exposed. The kneaded mixture of the hydraulic composition so that the exposed rebar is completely covered with a chip portion (size: approximately 100 × 20 × 400 mm) exposed to air at 20 ° C. and 60% humidity for 24 hours. Was applied with a scissors, and a construction was formed so as to have an external dimension shape (100 × 100 × 400 mm) before crushing. An aqueous rust inhibitor solution having a solid content concentration of 25% shown in Table 3 was applied to the surface of the construction that had been dried and solidified for 14 days at room temperature, and the amount applied was less than the impregnable amount shown in Table 3 above. The impregnation was confirmed visually and judged by the fact that the coating material did not substantially remain on the surface of the work. Table 4 shows the coating amount of the rust inhibitor aqueous solution. Specimens coated with a rust inhibitor were exposed for 3 years outdoors at an average temperature of 18 ° C, then carefully removed the concrete around the rebar, exposed once, and the surface of the rebar covered by the construction was exposed. The state of corrosion of the reinforcing bars on the surface of the reinforcing bars included in the concrete was examined by the presence or absence of visual rust. The case where the occurrence of rust was observed was judged as having corrosion. At the same time, the condition of the construction was also observed visually, and those that showed significant defects from the viewpoint of durability were noted. These are summarized in Table 4. In addition, repair material No. 15 is a hydraulic composition No. 15; In the base hydraulic composition composed of the same blending component as 1, the lithium nitrite aqueous solution (solid content concentration 25%) was prepared by mixing 5 parts by mass with respect to a total of 100 parts by mass of cement and metakaolin. No rust preventive agent is applied to the cured construction. In addition, repair material No. In No. 14, no rust preventive agent is applied or blended.

Figure 2011136887
Figure 2011136887

表3の結果より、本発明の補修材を用いて補修した鉄筋コンクリートはコンクリートに内包された鉄筋部及び本補修材で覆われた鉄筋部ともに、錆が発生し易い環境下に長期間置かれても、錆の発生が見られず、非常に高い防錆能力を付与できるものであることがわかる。また、表4の結果より、本発明の補修材は従来の防錆剤よりも大量の防錆成分を凝結性や硬化体性状に支障を及ぼすこと無く保持できることがわかる。   From the results in Table 3, the reinforced concrete repaired using the repair material of the present invention is placed in an environment where rust is likely to occur for a long time, both of the reinforcing steel part embedded in the concrete and the reinforcing steel part covered with the repair material. However, it can be seen that the generation of rust is not observed, and a very high rust prevention ability can be imparted. Moreover, it turns out that the repair material of this invention can hold | maintain a large amount of rust preventive components rather than the conventional rust preventive agent, without affecting a coagulation property or a hardening body property from the result of Table 4.

Claims (4)

(A)セメント、(B)開口気孔に含水された開口気孔率5〜60%の多孔質骨材及び(C)メタカオリンを含有してなる水硬性組成物の凝結終結した固化体に、(D)無機系防錆剤を含浸せしめてなる補修材。 (D) solidified solidified product of a hydraulic composition comprising (A) cement, (B) porous aggregate containing 5 to 60% of open porosity contained in open pores, and (C) metakaolin (D ) A repair material that is impregnated with an inorganic rust inhibitor. 多孔質骨材が、開口端の開口気孔径が10μm未満である請求項1記載の補修材。 The repair material according to claim 1, wherein the porous aggregate has an opening pore diameter at an opening end of less than 10 µm. 無機系防錆剤が、アルカリ金属又はアルカリ土類金属の亜硝酸塩、クロム酸塩、ケイ酸塩又はリン酸塩の何れか1種又は2種以上である請求項1記載の補修材。 The repair material according to claim 1, wherein the inorganic rust preventive is one or more of alkali metal or alkaline earth metal nitrites, chromates, silicates or phosphates. 水硬性組成物が、さらに(E)ポリマーディスパージョン又は再乳化形粉末樹脂を含有したものである請求項1〜3何れか記載の補修材。 The repair material according to any one of claims 1 to 3, wherein the hydraulic composition further contains (E) a polymer dispersion or a re-emulsifying powder resin.
JP2009298980A 2009-12-28 2009-12-28 Repairing material Pending JP2011136887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009298980A JP2011136887A (en) 2009-12-28 2009-12-28 Repairing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009298980A JP2011136887A (en) 2009-12-28 2009-12-28 Repairing material

Publications (1)

Publication Number Publication Date
JP2011136887A true JP2011136887A (en) 2011-07-14

Family

ID=44348709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009298980A Pending JP2011136887A (en) 2009-12-28 2009-12-28 Repairing material

Country Status (1)

Country Link
JP (1) JP2011136887A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104402392A (en) * 2014-11-12 2015-03-11 武汉理工大学 Preparation method of metakaolin-based magnesium oxide type rapid repair material
CN105604338A (en) * 2015-12-21 2016-05-25 中国铁道科学研究院铁道建筑研究所 Cement-based anchoring glue construction technology
JP2020158371A (en) * 2019-03-27 2020-10-01 太平洋マテリアル株式会社 Polymer cement mortar and repair method of reinforced concrete

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104402392A (en) * 2014-11-12 2015-03-11 武汉理工大学 Preparation method of metakaolin-based magnesium oxide type rapid repair material
CN105604338A (en) * 2015-12-21 2016-05-25 中国铁道科学研究院铁道建筑研究所 Cement-based anchoring glue construction technology
JP2020158371A (en) * 2019-03-27 2020-10-01 太平洋マテリアル株式会社 Polymer cement mortar and repair method of reinforced concrete
JP7234001B2 (en) 2019-03-27 2023-03-07 太平洋マテリアル株式会社 Repair method for polymer cement mortar and reinforced concrete

Similar Documents

Publication Publication Date Title
Bondar et al. Suitability of alkali activated slag/fly ash (AA-GGBS/FA) concretes for chloride environments: Characterisation based on mix design and compliance testing
Nazari et al. RETRACTED: The effects of TiO2 nanoparticles on properties of binary blended concrete
JP5939776B2 (en) Repair mortar composition
Nazari et al. RETRACTED: Assessment of the effects of Fe2O3 nanoparticles on water permeability, workability, and setting time of concrete
Vahabi et al. Effect of pre‐coating lightweight aggregates on the self‐compacting concrete
Alonge et al. Properties of hybrid cementitious composite with metakaolin, nanosilica and epoxy
JP4634213B2 (en) Alumina cement composition and repair method using the same
Erk et al. Using polymer science to improve concrete: Superabsorbent polymer hydrogels in highly alkaline environments
Aswed et al. Optimisation and prediction of fresh ultra-high-performance concrete properties enhanced with nanosilica
JP4634212B2 (en) Alumina cement composition and repair method using the same
JP5179919B2 (en) Sulfuric acid resistant cement composition and sulfuric acid resistant concrete
KR101577748B1 (en) Grout Composite for Offshore PSC Structure
JP6508789B2 (en) Method using polymer cement mortar and polymer cement mortar
JP2011136887A (en) Repairing material
JP2020158348A (en) Polymer cement grout mortar composition and polymer cement grout mortar
Li et al. Insights on the role of particulate filler on the polymer-modified cement-based coating and its application
JP6203546B2 (en) Polymer cement mortar and method using polymer cement mortar
Tanyildizi et al. An experimental investigation of bond and compressive strength of concrete with mineral admixtures at high temperatures
Maryoto et al. Corrosion resistance of self-compacting concrete containing calcium stearate
JP7465451B2 (en) Cement composition, mortar composition, and method for repairing concrete structure
Luan et al. Experimental study on mortar with the addition of hydrophobic silicone oil for water absorption, strength, and shrinkage
Tognonvi et al. Durability of tubular geopolymer reinforced with silica sand
JP5730627B2 (en) Curing agent for alumina cement composition and repair method using the same
JPH11189453A (en) Lightweight mortar composition and decorative finishing material using the same composition
Hanayneh et al. Improving durability of concrete to phosphoric acid attack