JP6755049B2 - 粒子監視装置の帯電ユニットおよび粒子監視装置 - Google Patents

粒子監視装置の帯電ユニットおよび粒子監視装置 Download PDF

Info

Publication number
JP6755049B2
JP6755049B2 JP2018540221A JP2018540221A JP6755049B2 JP 6755049 B2 JP6755049 B2 JP 6755049B2 JP 2018540221 A JP2018540221 A JP 2018540221A JP 2018540221 A JP2018540221 A JP 2018540221A JP 6755049 B2 JP6755049 B2 JP 6755049B2
Authority
JP
Japan
Prior art keywords
particles
current
charged
spc1
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018540221A
Other languages
English (en)
Other versions
JP2018533020A5 (ja
JP2018533020A (ja
Inventor
ヴィッレ ニエメラ
ヴィッレ ニエメラ
レオ ホルマ
レオ ホルマ
サミ ルンダール
サミ ルンダール
テイラー ベック
テイラー ベック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dekati Oy
Original Assignee
Dekati Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dekati Oy filed Critical Dekati Oy
Publication of JP2018533020A publication Critical patent/JP2018533020A/ja
Publication of JP2018533020A5 publication Critical patent/JP2018533020A5/ja
Application granted granted Critical
Publication of JP6755049B2 publication Critical patent/JP6755049B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/68Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using electric discharge to ionise a gas
    • G01N27/70Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using electric discharge to ionise a gas and measuring current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • G01N15/0618Investigating concentration of particle suspensions by collecting particles on a support of the filter type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0038Investigating nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、エアロゾル粒子の測定に関する。
エアロゾル粒子が、例えば内燃機関の排気ガス中に浮遊して存在し得る。エアロゾルの測定を、例えば、エアロゾル粒子の濃度が所定の限界よりも低いかどうかを確認するために使用することができる。
エアロゾル粒子を、コロナ放電を用いることによって帯電させることができる。粒子を、粒子を収集し、収集された粒子の電荷を検出することによって、測定することができる。
いくつかの変種は、エアロゾル粒子を測定するための方法に関係し得る。いくつかの変種は、エアロゾル粒子を帯電させるための方法に関係し得る。いくつかの変種は、帯電ユニットを備える粒子監視装置に関係し得る。いくつかの変種は、帯電ユニットに関係し得る。
一態様によれば、
・入力流(FG2)によって運ばれるエアロゾル粒子(P1)から荷電粒子(P2)を形成する帯電ユニット(CUNIT1)と、
・前記荷電粒子(P2)を収集することによって電流(Ip(t))をもたらす検出器(DET1)と
を備えており、
前記帯電ユニット(CUNIT1)は、
・帯電空間(SPC1)を定める実質的に半球状の内部を有している対向電極(ELE0)と、
・エアロゾル粒子(P1)を前記帯電空間(SPC1)へと導く入口チャネル(CH1)と、
・前記帯電空間(SPC1)にコロナ放電を発生させることによって前記エアロゾル粒子(P1)から荷電粒子(P2)を形成するコロナ電極(TIP1)と、
・前記荷電粒子(P2)を前記帯電空間(SPC1)から導く出口チャネル(CH2)と
を備えている、粒子監視装置(200、500)が提供される。
一態様によれば、粒子監視装置(200、500)のための帯電ユニット(CUNIT1)であって、
・帯電空間(SPC1)を定める実質的に半球状の内部を有している対向電極(ELE0)と、
・エアロゾル粒子(P1)を前記帯電空間(SPC1)へと導く入口チャネル(CH1)と、
・前記帯電空間(SPC1)にコロナ放電を発生させることによって前記エアロゾル粒子(P1)から荷電粒子(P2)を形成するコロナ電極(TIP1)と、
・前記荷電粒子(P2)を前記帯電空間(SPC1)から導く出口チャネル(CH2)と
を備える、帯電ユニット(CUNIT1)が提供される。
一態様によれば、粒子監視装置を使用することによってエアロゾル粒子を測定するための方法が提供される。
一態様によれば、帯電ユニットを使用することによってエアロゾル粒子を帯電させるための方法が提供される。
さらなる態様は、特許請求の範囲に定められる。
検出器から得られる電流Ip(t)は、入力流のエアロゾル粒子の瞬時濃度を表すことができる。とくには、電流は、入力流のエアロゾル粒子の瞬時有効表面積濃度を表すことができる。したがって、検出器から得られる電流は、濃度の継続的な監視を可能にすることができる。
装置を、エアロゾル濃度の急激な変化を検出するために使用することができる。監視信号の応答時間は、例えば1秒よりも短くてよく、さらには0.1秒よりも短くてよい。
監視信号を、時間情報に関連付けてメモリに記録することができる。記録された監視信号は、1つ以上のタイムスタンプに関連付けられてよい。
粒子監視装置は、帯電ユニットを備える。帯電ユニットの対向電極は、実質的に半球状の帯電空間を定めることができる。半球状の帯電空間は、粒子の効果的な帯電をもたらすことができる。半球状の帯電空間は、空気流によって運ばれる粒子によって容易に詰まることがない。コロナ電極の形状は、電極の損耗に起因して動作中に変化し得る。実質的に半球状の帯電空間は、対称な電界をもたらすことができ、これは、動作中にコロナ電極の対称形状を維持することを容易にすることができる。実質的に半球状の帯電空間は、コロナ放電の発生に必要な電力を低減または最小化することができる。半球状の帯電空間は、粒子の帯電の程度へのガス流量の変化の影響を低減することができる。
荷電粒子を収集することによって生成される一次電流は、きわめて弱い可能性がある。装置は、例えば、一次電流の大きさを測定するための電位計を備えることができ、装置は、一次電流の大きさを示す二次電流信号をもたらすことができる。二次電流信号は、例えば、デジタル信号であってよい。二次電流信号を、例えば、監視信号と呼ぶことができる。監視信号は、一次電流信号に実質的に比例することができる。
粒子監視装置を、単独で動作させることができ、あるいは粒子収集ユニットおよび/またはガス分析器などの1つ以上の追加の測定機器と組み合わせて動作させることができる。監視装置から得られる情報を、例えば、追加の測定機器の動作をトリガおよび/または制御するために使用することができる。監視装置から得られる情報を、例えば、追加の測定機器から得られた測定結果の有効性の確認に使用することができる。
例えば、追加の測定機器は、粒子フィルタを備える粒子収集ユニットであってよい。追加の測定機器を、粒子収集期間においてエアロゾル粒子を粒子フィルタに捕捉するように構成することができる。フィルタによって収集された粒子の総質量を、重量測定法によって決定することができ、粒子の平均質量濃度を、総質量を粒子収集期間の間にフィルタを通って導かれたガスの総体積で除算することによって決定することができる。フィルタによって収集された粒子の総質量を、収集期間の後にフィルタの重量を測定することによって決定することができる。充分な重量測定精度を得るために、充分な量の粒子の収集に、最小限の時間が必要となり得る。この最小時間は、粒子の濃度に依存し得る。より低い濃度は、より長い時間を必要とし得る。濃度が高いほど、収集時間は短くてよい。監視信号に基づいて収集期間の長さを制御することで、時間およびコストを節約することができる。一実施形態においては、粒子フィルタの動作を、継続的な監視に基づいて制御することができる。監視信号を、粒子収集期間をトリガするために使用することができる。例えば、監視信号の値または監視信号の変化率が所定のしきい値を超えるときに、フィルタによる粒子の収集を開始させることができる。
監視信号の分析は、重量測定結果の有効性および/または診断値の推定を可能にすることができる。例えば、フィルタの重量を測定することによって得られる重量測定結果は、例えばフィルタの誤った取り扱いに起因して、真の値から逸脱する可能性がある。監視信号を、例えば、重量測定結果の信頼性を確認するために使用することができる。重量測定結果の変動が監視信号の変動に相関しているかどうかを判定するために、いくつかの測定期間の後に得られた重力測定結果を、監視信号と比較することができる。
監視信号の分析が異常な挙動を示している場合、エアロゾル測定を含む実験を中断することができる。例えば、実質的に一定の値が予想される状況において監視信号が信号の変化を示す場合に、実験を中断することができる。例えば、信号の変化が予想される状況において監視信号が一定の信号を示す場合に、実験を中断することができる。失敗した実験に費やされる時間を、減らすことができる。監視信号に基づいて実験の進行を推定することで、時間およびコストを節約することができる。
以下の実施例において、いくつかの変種を、添付の図面を参照してさらに詳細に説明する。
エアロゾル測定システムの一部として動作するように接続された粒子測定装置を、一例として、断面図にて示している。 粒子測定装置の制御システムを、一例として示している。 電流信号および監視信号の形成を、一例として示している。 粒子測定装置の粒子監視装置を、一例として、断面図にて示している。 粒子監視装置の帯電空間およびイオントラップを、一例として、三次元図にて示している。 粒子監視装置を、一例として、断面図にて示している。 図4cに示した粒子監視装置の断面を一例として示している。 粒子監視装置の検出器を、一例として、断面図にて示している。 図4cに示した粒子監視装置の側面図を、一例として示している。 図4cに示した粒子監視装置のためのカバーを、一例として示している。 粒子監視ユニットの電気的接続を、一例として示している。 プロセスインジケータ信号に相関した電流信号を、一例として示している。 異常な挙動を示す電流信号を、一例として示している。
図1を参照すると、エアロゾル測定システム1000を、一次ガスPG0のエアロゾル粒子P1を測定するように構成することができる。一次ガスPG0は、エアロゾル粒子発生源SRC1が発生させ得るエアロゾル粒子P1を運ぶことができる。発生源SRC1は、例えば、燃焼施設または化学プラントであってよい。発生源SRC1は、例えば、暖房ボイラ、石油バーナ、ガスバーナ、微粉炭バーナ、焼却炉、流動床ボイラ、内燃機関、ガスタービン、または精油所であってよい。一次ガスPG0は、エアロゾル粒子P1を運ぶことができる。粒子P1は、例えば、固体または液体粒子であってよい。エアロゾル粒子P1のサイズは、例えば、5nm〜50μmの範囲であってよい。粒子P1を含む入力ガス流FG0を、入力エアロゾル流FG0と呼ぶこともできる。
一次ガスPG0は、ガスダクトDUC1内を案内されてよく、あるいはガスダクトDUC1内に含まれてよい。ガスダクトDUC1は、例えば、燃焼施設の煙道ガスダクトであってよい。ガスダクトDUC1は、例えば、排気ガスダクトであってよい。また、一次ガスPG0は、周囲ガス、とくには周囲空気であってもよい。周囲ガスは、ガスダクトDUC1によって案内されてよい。あるいは、ダクトを省略してもよく、すなわち周囲ガスを、ダクトDUC1を使用せずに直接採取してもよい。システム1000は、一次ガスPG0からエアロゾルサンプル流FG0を分離するためのサンプリングノズル612を備えることができる。サンプリングノズル612のオリフィスを、サンプリング地点POS0に配置することができる。エアロゾル測定システム1000は、エアロゾルサンプル流FG0をガスダクトDUC1から測定装置500へと案内するためのサンプルライン610を備えることができる。エアロゾルサンプル流FG0を、例えば、入力流FG0と呼ぶこともできる。
エアロゾル測定システム1000は、一次ガスPG0の粒子P1を継続的に監視するように構成されてよいエアロゾル測定装置500を備えることができる。サンプルガス流FG0を、例えばサンプリングノズル612を使用することによって一次ガスPG0から分離させることができる。サンプル流FG0を、サンプルライン610を介してエアロゾル測定装置500へと導くことができる。流れFG2は、監視装置200へと導かれる入力流を示す。流れFG2によって運ばれるエアロゾル粒子P1の濃度は、一次ガスPG0中のエアロゾル粒子P2の濃度に比例し得る。流れFG2を、例えばサンプル流FG0から分離させることができ、さらには/あるいは入力流FG2を、サンプル流FG0を希釈することによってサンプル流FG0から形成することができる。サンプル流FG0は、入力流FG2として監視装置200に直接導かれてもよい。
粒子監視装置200は、エアロゾル粒子P1を帯電させることによって荷電粒子P2を形成するための帯電ユニットCUNIT1を備えることができる。装置500は、帯電ユニットCUNIT1に動作電力を供給するための電圧供給部410を備えることができる。監視装置200は、荷電粒子P2によって運ばれる電荷を検出するための検出器DET1を備えることができる。検出器DET1は、単位時間当たりに検出器DET1によって捕捉される荷電粒子の電荷に実質的に比例し得る電流Ip(t)をもたらすことができる。装置500は、電流Ip(t)を測定する電流監視ユニットCMU1を備えることができる。電流監視ユニットCMU1は、例えば、検出器DET1から電流監視ユニットCMU1へと導かれる電流Ip(t)の大きさを測定するための電位計を備えることができる。電流Ip(t)の大きさは、検出器DET1によって捕捉されたエアロゾル粒子の瞬時有効表面積濃度を示すことができる。電流Ip(t)を、濃度についての情報を含む信号を運ぶと解釈することができる。電流Ip(t)を、電流信号Ip(t)と呼ぶこともできる。電流信号Ip(t)を、検出器DET1から電流監視ユニットCMU1へと送ることができる。
電流監視ユニットCMU1は、検出器DET1から得られる電流Ip(t)に基づいて監視信号S1(t)を実質的に継続的にもたらすことができる。電流監視ユニットCMU1は、例えば、測定された電流Ip(t)に基づくデジタル監視信号S1(t)をもたらすことができる。監視装置200は、流れFG2によって運ばれるエアロゾル粒子の瞬時濃度を示す監視信号S1(t)をもたらすことができる。
また、監視信号S1(t)は、サンプル流FG0によって運ばれるエアロゾル粒子の瞬時濃度を示すことができる。さらに、監視信号S1(t)は、一次ガスPG0中のエアロゾル粒子の瞬時濃度を示すこともできる。流れFG2によって運ばれるエアロゾル粒子の濃度は、流れFG0によって運ばれるエアロゾル粒子の濃度に比例し得る。サンプリングノズル612の寸法および流れFG0、FG2のガス流量を、流れFG2によって運ばれるエアロゾル粒子P1の濃度が、一次ガスPG0中のエアロゾル粒子の濃度に実質的に等しくなるように選択することができる。サンプリングノズル612の寸法および流れFG0、FG2のガス流量を、流れFG2によって運ばれるエアロゾル粒子P1のサイズ分布が、一次ガスPG0中のエアロゾル粒子の濃度に実質的に等しくなるように選択することができる。
装置500を、第1の測定機器であると考えることができる。エアロゾル測定システム1000は、随意により、例えばガス分析ユニットおよび/またはフィルタユニットなど、1つ以上の追加の測定機器100を備えることができる。フィルタユニット100は、フィルタFIL1を備えることができる。フィルタユニット100を、例えば重量測定法による粒子P1の質量濃度の測定のために、一次ガスPG0の粒子P1を捕捉するように構成することができる。捕捉された粒子の化学組成を、化学分析によって明らかにすることができる。例えば、捕捉された粒子の構造を、走査型電子顕微鏡(SEM)を用い、あるいは透過型電子顕微鏡(TEM)を用いることによって、明らかにすることができる。分析ユニット100を、例えば、一次ガスPG0の化学組成を分析するように構成することができる。分析ユニット100を、例えば、一次ガスPG0の気体成分の濃度を分析するように構成することができる。エアロゾル測定システム1000は、随意により、追加の測定機器100を通ってガス流FG1を引き込むためのポンプPUMP1を備えることができる。
システム1000は、随意により、ガス流FG1および/またはガス流FG2をサンプル流FG0から分離するためのディストリビュータ300を備えることができる。ガス流FG2を、監視装置200へと導くことができる。流れFG1を、追加の測定機器100へと導くことができる。流れFG0は、流量Q0を有することができる。流れFG1は、流量Q1を有することができる。流れFG2は、流量Q2を有することができる。流量Q0は、合計Q1+Q2に等しくてよい。監視装置200の検出器DET1は、ガス流FG2によって運ばれるエアロゾル粒子P1の濃度を示す電流Ip(t)をもたらすことができる。監視装置200の検出器DET1は、入力ガス流FG0によって運ばれるエアロゾル粒子P1の濃度を示す電流Ip(t)をもたらすことができる。
エアロゾル測定装置500は、随意により、粒子監視装置200を通ってガス流FG2を引き込むためのポンプPUMP2を備えることができる。エアロゾル測定装置500は、随意により、ガス流FG2を制御するための弁280を備えることができる。ポンプPUMP2を、粒子P2が検出器DET1によって検出される前にポンプPUMP2がガス流FG2から粒子を除去することがないように、検出器DET1の下流に配置することができる。ポンプPUMP2は、例えば、ダイアフラムポンプ、ピストンポンプ、回転ベーンポンプ、または蠕動ポンプであってよい。監視装置200を通って導かれたガス流FG2を、例えば大気または換気ダクトへと逃がすことができる。流れFG2がポンプPUMP2によって引き出された後で、流れFG2を、出口290から、例えば装置500の外部の大気または換気ダクトへと排出することができる。
装置500は、随意により、ガス流FG2の流量Q2を制御するための弁280を備えることができる。弁280は、例えば、制御可能な電磁弁であってよい。弁280を、検出器DET1の下流に配置することができる。
装置200を、随意により、例えば凝縮を安定化させるために、例えば加熱されたオーブン内に保つことができる。
エアロゾル測定装置1000は、随意により、サンプル流FG0を希釈するための希釈システムを備えることができる。希釈比を、監視ユニット200から得られる信号S1(t)の分析に基づいて決定および/または調整することができる。希釈比を、電流信号Ip(t)に基づいて制御してもよい。希釈比を、電流信号Ip(t)の分析が濃度が低すぎることを示す場合に、増加させることができる。希釈比を、電流信号Ip(t)の分析が濃度が高すぎることを示す場合に、減少させることができる。希釈比を、電流信号Ip(t)に基づいて粒子収集期間中に調整することができる。希釈比を、電流信号Ip(t)に基づいて、粒子収集期間の開始前に所定の値に設定してもよい。
エアロゾル粒子発生源SRC1は、随意により、プロセスインジケータ信号P(t)をもたらすことができる。監視信号S1(t)をプロセスインジケータ信号P(t)と比較して、粒子発生源SRC1の動作パラメータの変化が監視信号S1(t)の変化に対応するか否かを判断することができる。監視信号S1(t)がプロセスインジケータ信号P(t)に相関しているか否かを判断するために、監視信号S1(t)をプロセスインジケータ信号P(t)と比較することができる。プロセスインジケータ信号P(t)は、例えば、燃料流量、燃焼施設への入力空気流、発生源SRC1の動作温度、触媒コンバータの動作温度、フィルタの動作温度、プロセスの動作温度、燃料供給圧力、または添加剤の流量を示すことができる。エアロゾル粒子発生源SRC1は、発生源SRC1の異なる動作パラメータを示すことができる複数のプロセスインジケータ信号を同時にもたらすことができる。
図2が、一例として、粒子測定装置500の制御システムを示している。装置500は、測定データを処理し、さらには/あるいは装置500の動作を制御するための制御ユニットCNT1を備えることができる。装置500は、監視装置200を通って流れFG2を引き込むためのポンプPUMP2を備えることができる。装置500は、随意により、流れFG2を制御するための弁280を備えることができる。
装置500は、電流信号Ip(t)をもたらすための検出器DET1を備えることができる。装置500は、電流信号Ip(t)から監視信号S1(t)をもたらすための電流監視ユニットCMU1を備えることができる。装置500は、測定データDATA1を記憶するためのメモリMEM1を備えることができる。データDATA1は、例えば、測定された信号Ip(t)および/またはS1(t)を含むことができる。
装置500は、コンピュータプログラムPROG1を記憶するためのメモリMEM2を備えることができる。コンピュータプログラムPROG1は、少なくとも1つのデータプロセッサにおいて実行されたときに制御ユニットCNT1に装置500の動作を制御させるように構成されたコンピュータプログラムコードを含むことができる。コンピュータプログラムPROG1は、少なくとも1つのデータプロセッサにおいて実行されたときに測定データIp(t)、S1(t)の処理を生じさせるように構成されたコンピュータプログラムコードを含むことができる。
装置500は、随意により、データを受信および/または送信するための通信ユニットRXTX1を備えることができる。通信ユニットRXTX1は、例えば監視信号S1(t)を、例えば外部のポータブルコンピュータへと送信することができる。通信ユニットRXTX1は、例えば監視信号S1(t)を、例えばシステム1000の制御ユニットへと送信することができる。通信ユニットRXTX1は、例えば監視信号S1(t)を、例えばインターネットサーバへと送信することができる。通信ユニットRXTX1は、例えば、無線伝送、光ケーブル、および/または電気ケーブルを使用して、データを受信および/または送信することができる。測定を開始するための指令および/または測定を停止するための指令を、通信ユニットRXTX1を介して制御ユニットCNT1へと通信することができる。コンピュータプログラムPROG1を、通信ユニットRXTX1を介してデータを受信することによって更新することができる。コンピュータプログラムPROG1を、例えばインターネットサーバからデータを受信することによって更新することができる。
装置500は、随意により、時間情報をもたらすためのクロックCLK1を備えることができる。監視信号S1(t)を、監視信号S1(t)が時間情報に関連付けて記録されるように、データDATA1としてメモリMEM1に記録することができる。監視信号S1(t)を、時間tの関数S1(t)としてメモリMEM1に記録することができる。データDATA1に、タイムスタンプを付すことができる。
装置500は、随意により、ユーザに情報を提供するため、および/またはユーザからのユーザ入力を受け取るためのユーザインタフェースUIF1を備えることができる。ユーザインタフェースUIF1は、例えば、ディスプレイと1つ以上のキーとを備えることができる。ユーザインタフェースUIF1は、例えば、タッチスクリーンを備えることができる。ユーザインタフェースUIF1を、例えば、電流Ip(t)の大きさを表示するように構成することができる。インタフェースUIF1を、電流(Ip(t))の大きさの視覚的表示をもたらすように構成することができる。インタフェースUIF1を、例えば、電流(Ip(t))の大きさを示す曲線を表示するように構成することができる。
監視装置200は、例えば、加熱されたキャビネットの中および/または高温の燃焼施設の近くに配置され得る。さらに、インタフェースUIF1は、例えばインタフェースUIF1を人間工学的な位置および/または安全な位置に配置できるように、装置200から離れていてもよい。ポータブルコンピュータまたはモバイルデバイス(例えば、スマートフォン)を、通信ユニットRXTX1を介して装置500と通信するように構成でき、このポータブルコンピュータまたはモバイルデバイスを、インタフェースUIF1として働くように構成することができる。
装置200によって測定されたデータは、分散型のやり方で処理されてもよい。例えば、温度補償、バックグラウンドの補償、および/またはデータ相関分析を、別個のデータプロセッサにおいて実行することができる。データを、例えば、ポータブルコンピュータおよび/またはインターネットサーバを使用して処理することができる。
装置500は、随意により、例えば以下の部分、すなわち制御ユニットCNT1、高電圧供給部410、電荷監視ユニットCMU1、および/またはポンプPUMP2のうちの1つ以上のために、例えば動作用の電力を供給するための充電式バッテリBAT1を備えることができる。バッテリを使用することにより、装置500を、装置500の動作時に電力線に接続しておく必要がなくなる。粒子収集期間の後に、装置500をサンプルライン610から切り離し、サンプルライン610から離れた場所に移動させることができる。バッテリを、サンプルライン610から離れた場所で再充電することができる。
装置500は、コロナ電極ELEC3に動作電圧UCを供給するための高電圧供給部410を備えることができる。装置500を、高電圧供給部410の動作を制御するように構成することができる。
装置500は、随意により、1つ以上の加熱素子HUNIT1を備えることができる。加熱素子HUNIT1を、電流監視ユニットCMU1の動作温度を安定させるように構成することができる。加熱要素HUNIT1を、電流監視ユニットCMU1の動作温度を実質的に一定に保つように構成することができる。
装置500は、流れFG2の流量を監視し、さらには/あるいは検出器DET1の圧力差を監視するための流量センサSEN2を備えることができる。検出器DET1の流れ抵抗は、動作の最中に、フィルタDFILに捕捉された粒子ゆえに増加し得る。流れFG2の流量Q2は、検出器DET1の流れ抵抗に依存し得る。装置500は、検出器DET1によって引き起こされる圧力差を監視するためのセンサSEN2を備えることができる。センサSEN2は、例えば、検出器DET1の下流の圧力を測定する圧力センサであってよい。センサSEN2は、例えば、検出器DET1をまたぐ圧力差を測定する圧力差センサであってよい。センサSEN2は、例えば、流れFG2の流量Q2を監視するように構成された流量センサであってよい。センサSEN2の動作は、例えば、流れFG2によって引き起こされる圧力差または温度変化の監視に基づくことができる。
装置500を、検出器DET1の流れ抵抗が所定の限界を超えるときを検出するように構成することができる。検出器DET1の流れ抵抗が所定の限界を超える場合には、検出器DET1を交換または清掃することができる。装置500を、検出器DET1の流れ抵抗が所定の限界を超えたときにユーザに知らせをもたらすように構成することができる。知らせを、例えば、ユーザインタフェースUIF1を使用してもたらすことができる。
装置500を、センサSEN2から得られる信号に基づいてポンプPUMP2を制御して、流量Q2を所定の範囲内に維持するように構成することができる。例えば、装置500を、センサSEN2から得られる信号に基づいて、ポンプPUMP2のモータの回転速度を調整するように構成することができる。
プロセスまたは燃焼施設の異常状況が、エアロゾル濃度の突然の増加に関連付けられる可能性がある。エアロゾル測定システム1000の動作を、監視ユニット200によってもたらされる監視信号S1(t)に基づいて制御することができる。例えば、エアロゾル測定システム1000を、監視信号S1(t)が所定のレベルを超えたとき、または監視信号S1(t)の変化率が所定のレベルを超えたときに、粒子収集フィルタユニット100を通るガス流FG1を開始させるように構成することができる。結果として、フィルタユニット100によって粒子サンプルを収集でき、監視信号S1(t)を後の異常状況の分析のために記録することができる。装置500を、ガス流FG1を開始および/または停止させるための制御信号を送信するように構成することができる。制御信号を、例えば、通信ユニットRXTX1を介して送信することができる。
帯電ユニットCUNIT1を、帯電空間SPC1を通過する流量Q2が所定の限界よりも大きい場合にのみコロナ放電をオンにすべく動作するように構成することができる。帯電ユニットCUNIT1を、ガス流FG2のガス流量Q2が所定の限界を下回ったときにコロナ放電をオフにすべく動作するように構成することができる。電圧供給部410を、流れFG2の流量Q2に基づいて制御することができる。
監視信号S1(t)は、例えば、電流監視ユニットCMU1の動作温度の変化、コロナ電極ELEC3の損耗、および/または流路の汚損に起因して、ドリフトする可能性がある。装置500を、監視信号S1(t)への温度、損耗、および/または汚損の影響を少なくとも部分的に補償するように構成することができる。
監視装置200の動作温度は、監視信号に影響を及ぼす可能性がある。とくに、電流監視ユニットCMU1の動作温度の変化は、監視装置200への粒子の流れが不変のままであっても、監視信号の変化を引き起こす可能性がある。装置500を、電流監視ユニットCMU1の動作温度を安定させるように構成することができる。装置500を、監視装置200の動作温度を監視するように構成することができる。装置500は、随意により、電流監視ユニットCMU1の動作温度TEMP200を監視するための温度センサSEN3を備えることができる。装置500は、電流監視ユニットCMU1を加熱するように構成された加熱要素HUNIT1を備えることができる。装置500を、例えば温度センサSEN3から得られる温度情報TEMP200に基づいて加熱要素HUNIT1を制御するように構成することができる。
電圧供給部410は、コロナ電極ELEC3に電力を供給することができる。電圧供給部410およびコロナ放電DSR1は、電力を熱に変換することができる。電流監視ユニットCMU1を、電圧供給部410の付近および/またはコロナ電極ELEC3の付近に配置することができる。電圧供給部410およびコロナ放電DSR1の動作は、電流監視ユニットCMU1の動作温度に影響を及ぼす可能性がある。コロナ放電DSR1は、コロナ放電DSR1が動作している第1の動作状態と、コロナ放電DSR1が動作していない第2の動作状態とを有することができる。電圧供給部410は、コロナ放電DSR1が動作している第1のアクティブ動作状態と、コロナ放電DSR1が動作していない第2の非アクティブ動作状態とを有することができる。装置500は、電流監視ユニットCMU1を加熱するように構成された加熱要素HUNIT1を備えることができる。装置500を、コロナ放電の動作状態に基づいて加熱要素HUNIT1を制御するように構成することができる。装置500を、電圧供給部410の動作状態に基づいて加熱要素HUNIT1を制御するように構成することができる。装置500を、電圧供給部410の動作状態が変化するときに監視装置200の電力消費を実質的に一定に保つべく加熱要素HUNIT1を制御するように構成することができる。電圧供給部410は、第1の加熱電力を有することができ、コロナ放電DSR1は、第2の加熱電力を有することができ、加熱素子HUNIT1は、第3の加熱電力を有することができる。装置500を、電圧供給部410の動作状態が変化するときに前記加熱電力の合計を実質的に一定に保つべく加熱要素HUNIT1を制御するように構成することができる。
装置500を、温度センサSEN3から得られる温度情報に基づいて監視信号に対する動作温度の影響を補償するように構成することができる。装置500を、温度補償された監視信号S1(t)をもたらすように構成することができる。装置500は、所定の温度補償データを含むメモリを備えることができる。装置500を、測定された動作温度についての情報を使用し、温度補償データを使用することによって、電流Ip(t)から温度補償された監視信号S1(t)をもたらすように構成することができる。
一実施形態においては、複数の同一の監視装置200が製造され得る。温度補償データは、個々の監視装置200毎に別々に決定されてよい。各々の個別の監視装置200に、この監視装置200に関する温度補償データを関連付けることができる。第1の監視装置200に関する温度補償データは、第2の監視装置200に関する温度補償データとは異なるかもしれない。第1の監視装置200が第2の監視装置200と交換される場合、第2の監視装置200に関する温度補償データを、装置500のメモリに記憶することができる。温度補償データを、例えば、第2の監視装置200の識別コードに基づいてインターネットサーバから検索することができる。さらに、第2の監視装置200は、第2の監視装置200に関する所定の温度補償データを記憶するためのメモリを備えることができる。また、温度補償データを、ユーザインタフェースUIF1を使用することによって手動で装置500のメモリへと入力することができる。
装置200によってもたらされる監視信号S1(t)を、例えば、バックグラウンド信号値SREFを使用することによって補償することができる。バックグラウンド信号値SREFを、例えば検出器DET1を通る流れFG2がゼロである状況において検出器DET1の電流信号Ip(t)を測定することによって、実験的に決定することができる。流れFG2を、例えば弁280を閉じることによってゼロへと減らすことができる。流れFG2の流量Q2は、通常動作の最中はゼロよりも大きい。バックグラウンド信号値SREFを用いて、通常動作の最中に測定された電流信号Ip(t)から、補償された監視信号S1(t)を決定することができる。装置500を、バックグラウンド信号値SREFを用いて、通常動作の最中に測定された電流信号Ip(t)から補償された監視信号S1(t)を決定するように構成することができる。
装置500を、流れFG2が実質的にゼロに等しい第1の時刻tREF1における電流Ip(tR1)を測定することによって、第1のバックグラウンド信号値SREF1を測定するように構成することができる。装置500を、流れFG2が実質的にゼロに等しい第2の時刻tREF2における第2の基準値SREF2を測定するように構成することができる。時刻tREF1は、例えば、粒子収集期間Ttotの開始前であってよく、時刻tREF2は、粒子収集期間Ttotの終了後であってよい。バックグラウンド信号値SREF2は、バックグラウンド信号値SREF1と異なる場合もある。
バックグラウンド信号値SREF1およびSREF2を用いて、通常の動作の最中に測定された電流信号Ip(t)から、補償された監視信号S1(t)を決定することができる。
ΔSREFが、信号SREF1、SREF2の間の変化を表す(すなわち、ΔSREF=SREF2−SREF1)。通常の動作の最中に測定された電流信号Ip(t)の有効性を、変化ΔSREFに基づいて評価することができる。電流信号Ip(t)を、変化ΔSREFが所定の限界よりも小さい場合に、有効であると判断することができる。変化ΔSREFが所定の限界を超える場合、電流信号Ip(t)を無効であると判断することができる。
装置500を、1つ以上のバックグラウンド信号値SREF1、SREF2を使用し、さらには/あるいは温度情報を使用することによって、測定された電流信号Ip(t)から補償された監視信号S1(t)を決定するように構成することができる。
外部のデータ処理装置を、補償された監視信号S1(t)を決定するように構成することができる。とくには、ポータブルコンピュータを、1つ以上のバックグラウンド信号値SREF1、SREF2を使用し、さらには/あるいは温度情報を使用することによって、測定された電流信号Ip(t)から補償された監視信号S1(t)を決定するように構成することができる。
補償された監視信号S1(t)を、実質的にリアルタイムで決定することができ、あるいは粒子収集期間Ttotの終了後に決定することができる。電流監視ユニットCMU1は、電流Ip(t)の瞬間的な大きさを示すことができる補助信号データSAUX(t)をもたらすことができる。補償された監視信号S1(t)を、バックグラウンド信号値SREF1、SREF2に関する情報を使用することによって、補助信号データSAUX(t)から後に決定することができる。補助信号データSAUX(t)を、随意により、メモリに記録することができ、補償された監視信号S1(t)を、粒子収集期間Ttotの終了後に補助信号データSAUX(t)から決定することができる。
図3が、一例として、測定信号の形成を示している。
図3の一番上の曲線は、一例として、入力流FG0のエアロゾル粒子の濃度Cp(t)の時間変化を示している。Cp(t)は、実際の質量濃度を示している。粒子測定の目的は、実際の質量濃度Cp(t)を表す1つ以上の測定値をもたらすことであり得る。
図3の上から2番目の曲線は、電流Ip(t)の時間変化を示している。電流Ip(t)は、入力流FG0のエアロゾル粒子の有効表面積濃度に実質的に比例し得る。第1の近似に対して、有効表面積濃度の時間変化は、質量濃度Cp(t)の時間変化の推定値をもたらすことができる。
また、電流Ip(t)は、流れFG2の流量Q2にも依存し得る。電流Ip(t)は、流量Q2に実質的に比例し得る。
図3の上から3番目の曲線を参照すると、エアロゾル粒子を、フィルタFIL1によって収集することができる。フィルタFIL1を通る流れFG1を、時刻t1において開始させ、時刻t2において停止させることができる。期間Ttotは、時刻t1と時刻t2との間の期間を示すことができる。期間Ttotの間にフィルタFIL1によって収集された粒子の総質量mtotを、測定期間Ttotの後にフィルタFIL1の重量を測定することによって測定することができる。総質量mtotは、期間Ttotにわたる積Q1(t)・Cp(t)の積分に実質的に等しいかもしれない。期間Ttotの全体を表す平均濃度Cave,totを、総質量mtotを期間Ttotの間にフィルタFIL1を通って導かれた総ガス体積Vtotで除算することによって決定することができる。
図3の一番下の曲線は、電流Ip(t)から決定された監視信号S1(t)を示している。監視信号S1(t)は、電流Ip(t)を示すことができる。監視信号S1(t)は、電流Ip(t)に実質的に比例してよい。
瞬時濃度値C1(t)を、測定された電流信号Ip(t)を使用することによって平均濃度Cave,totから決定することができる。
時刻tkにおける瞬時濃度Cp(tk)の推定値C1(tk)を、測定された電流Ip(t)を使用することによって平均濃度Cave,totから決定することができる。
Figure 0006755049
式(1)を、補間のために使用することができ、すなわち期間Ttotは、時刻tkを含むことができる。式(1)は、瞬時電流値Ip(tk)から瞬時濃度Cp(tk)の推定値C1(tk)を算出するための比例定数をもたらすことができる。一実施形態においては、瞬時濃度Cp(tk)の推定値C1(tk)を、時刻t1から時刻t2までの期間Ttotが時刻tkを含まない場合にも、前記比例定数を使用することによって算出することができる。換言すると、推定値C1(tk)を、外挿によって算出することも可能である。
監視信号S1(t)は、電流信号Ip(t)に実質的に比例し得る。式(1)に現れる電流信号Ip(t)を、監視信号S1(t)で置き換えることもできる。
図4aを参照すると、監視装置200は、帯電ユニットCUNIT1および電荷検出器DET1を備えることができる。帯電ユニットCUNIT1は、流れFG2によって運ばれる粒子P1の少なくとも一部を帯電させることによって荷電粒子P2をもたらすことができる。帯電ユニットCUNIT1は、流れFG2の粒子P1の少なくとも一部を荷電粒子P2に変換することができる。帯電ユニットCUNIT1は、コロナ放電DSR1によってイオンJ1を発生させるためのコロナ電極ELEC3および対向電極ELEC0を備えることができる。イオンJ1は、中性のエアロゾル粒子P1と電荷を交換することによって荷電粒子P2を形成することができる。コロナ電極ELEC3は、対向電極ELEC0と協働して働くことができる。電極ELEC3、ELEC0を、電極ELEC3、ELEC0が電圧差UC−U0を有するように、高電圧供給部410へと接続することができる。コロナ電極ELEC3と対向電極ELEC0とが、コロナ放電DSR1を発生させる電界EF0を協働して形成することができる(図4c)。電界EF0の強度は、コロナ電極ELEC3の近傍にコロナ放電DSR1を形成できるように、電極ELEC0、ELEC3の間の帯電空間を通って導かれるガスの絶縁耐力を局所的に超えることができる。
コロナ電極ELEC3と対向電極ELEC0とが協働して、実質的に半球状の帯電空間SPC1を定めることができる。帯電空間SPC1を、例えば、帯電容積または帯電ゾーンと呼ぶこともできる。ガス流FG2および中性の粒子P1を、入口チャネルCH1を介して帯電空間SPC1へと導くことができる。ガス流FG2および帯電した粒子P2を、帯電空間SPC1から出口チャネルCH2を介して導くことができる。
対向電極ELEC0は、実質的に半球状であってよい。対向電極ELEC0は、実質的に半球状の表面部分を有してもよい。対向電極ELEC0は、球の中空の半分を定めるように、実質的に球状の表面を有してもよい。コロナ電極ELEC3は、露出した鋭い先端を有する導電性要素であってよい。コロナ電極ELEC3の先端を、半球状の帯電空間SPC1の対称軸に位置させることができる。先端と電極ELEC0の半球状の部分の各点との間の距離は、R1に実質的に等しくてよい。粒子の帯電を、コロナ電極ELEC3と対向電極ELEC0との間の帯電空間SPC1において行うことができる。
コロナ電極ELEC3の形状は、電極の損耗に起因して動作中に変化し得る。実質的に半球状の帯電空間SPC1は、対称な電界をもたらすことができ、これは、動作中にコロナ電極ELEC3の対称形状を維持することを容易にすることができる。実質的に半球状の帯電空間SPC1は、コロナ放電の発生に必要な電力を低減または最小化することができる。半球状の帯電空間は、例えば、粒子の帯電の程度への温度の変化の影響を低減することができる。半球状の帯電空間は、例えば、粒子の帯電の程度へのガス流量の変化の影響を低減することができる。半球状の荷電空間は、帯電空間の表面の近傍において充分なガス速度をもたらして、これらの表面への粒子の付着を最小限にすることを助けることができる。粒子は、さまざまな経路に沿って帯電空間SPC1を通過することができる。第1の経路は、コロナ電極ELEC3に近接し得る。第2の経路は、対向電極ELEC0に近接し得る。コロナ電極ELEC3の近くのイオンJ1の密度は、対向電極ELEC0の近くのイオンJ1の密度よりも高くなり得る。半球状の形状は、帯電空間SPC1における粒子の滞留時間を短くすることができる。半球状の形状は、高速な応答時間をもたらすことを容易にすることができる。
第1の経路に沿って移動する粒子は、帯電空間SPC1における滞留時間が短くなり得るが、より高いイオン密度に曝され得る。第2の経路に沿って移動する粒子は、第2のより長い帯電空間SPC1における滞留時間を有し得るが、より低いイオン密度に曝され得る。したがって、半球状の形状は、荷電粒子P2の最終的な帯電の程度への異なる経路の影響を、低減することができる。
対向電極ELEC0は、帯電空間SPC1を通過するガス流を定めるために、ガスに対して実質的に非透過性であってよい。対向電極ELEC0は、ガス流FG2の実質的にすべての粒子がチャネルCH1からチャネルCH2へと帯電空間SPC1を通過することを保証するために、ガス流FG2のガスに対して実質的に非透過性であってよい。出口チャネルCH2は、例えば、入口チャネルCH1に実質的に平行であってよい。
対向電極ELEC0は、内径R1を有することができる。対向電極ELEC0の実質的に半球状の部分は、流れFG2を入口チャネルCH1から帯電空間SPC1へと導くための開口部APE1を備えることができる。実質的に半球状の対向電極ELEC0は、流れFG2を入口チャネルCH1から帯電空間SPC1へと導くための開口部APE1を定めることができる。流れFG2は、入口チャネルCH1から対向電極ELEC0の開口部APE1を介して帯電空間SPC1へと通過することができる。寸法h1は、開口部APE1と半球形の帯電空間SPC1の境界の平面部分との間の距離を表すことができる。距離h1は、例えば、帯電空間SPC1を通過する粒子の直線的な移動経路を防止するために、内径R1の0.3倍よりも大きくてよい。
コロナ電極ELEC3は、実質的に尖った先端を有することができる。先端の曲率半径は、例えば、0.2mmより小さくてよい。コロナ電極ELEC3の先端と対向電極ELEC0との間の距離は、R1に実質的に等しくてよい。
監視ユニット200は、流れFG2からイオンJ1を除去するためのイオントラップJTRAP1を備えることができる。ガス流FG2、荷電粒子P2、およびイオンJ1を、帯電空間SPC1からイオントラップJTRAP1へと導くことができる。イオントラップJTRAP1は、帯電空間SPC1と検出器DET1との間に位置することができる。ガス流FG2および荷電粒子P2を、イオントラップJTRAP1から検出器DET1へと導くことができる。イオントラップJTRAP1を、帯電ユニットCUNIT1の下流かつ検出器DET1の上流に配置することができる。イオントラップJTRAP1は、検出器DET1に導かれる流れFG2からイオンJ1の少なくとも一部を除去することができる。イオントラップJTRAP1を使用することにより、電流Ip(t)を安定させることができる。イオントラップJTRAP1は、第1の偏向電極ELEC1および第2の偏向電極ELEC2を備えることができる。偏向電極ELEC1、ELEC2が協働して、イオンJ1の少なくとも一部をガス流FG2から離れるようにそらす電界を形成することができる。dTRAPは、電極ELEC1、ELEC2の間の距離を表すことができる。LTRAPは、イオントラップJTRAP1の長さを表すことができる。電界は、電極ELEC1、ELEC2を通過するガス流FG2の方向に対して実質的に横方向であってよい。イオントラップは、例えば、実質的に平行な1対の電極ELEC1、ELEC2を備えることができる。
電極ELEC3、ELEC0の間の半径方向の距離R1は、例えば、1mm〜50mmの範囲、好都合には2mm〜20mmの範囲、好ましくは3mm〜10mmの範囲であってよい。小さな距離R1を使用することにより、粒子P2のより効果的な帯電をもたらすことができる。小さな距離R1を使用するとき、電極ELEC3、ELEC0の間に印加される電圧差UC−U0を減らすことができる。しかしながら、距離R1がきわめて小さい場合、帯電空間SPC1が粒子P2によって目詰まりしたり、あるいは短絡する可能性がある。
偏向電極ELEC1、ELEC2の間の距離dTRAPは、例えば、0.1mm〜2mmの範囲、好都合には0.2mm〜1.0mmの範囲、好ましくは0.3mm〜0.8mmの範囲であってよい。距離dTRAPは、例えば、半径R1の20%よりも小さくてよい。小さい距離dTRAPを使用する場合、偏向電極ELEC1、ELEC2の間に印加される電圧差U2−U1を小さくすることができる。しかしながら、距離dTRAPがきわめて小さい場合、チャネルCH2が粒子P2によって目詰まりしたり、あるいは短絡する可能性がある。長さLTRAPは、例えば、2mm〜50mmの範囲であってよい。
偏向電極ELEC1、ELEC2は、例えば、実質的に平坦であってよい。偏向電極ELEC1、ELEC2が協働して、流路CH2を定めることができる。流路CH2は、帯電空間SPC1からガス流FG2、荷電粒子P2、およびイオンJ1を受け取ることができる。流路CH2の入口は、帯電空間SPC1に近接して位置することができる。流路CH2の入口は、半球状の帯電空間SPC1の平面部分に近接して位置することができる。電極ELEC2とコロナ電極ELEC3との間の距離は、例えば、半径R1の1.2倍よりも小さくてよい。
ガス流FG2および荷電粒子P2を、チャネルCH3によってイオントラップJTRAPから粒子検出器DET1へと導くことができる。粒子検出器DET1は、単位時間当たりに粒子検出器DET1によって捕捉された電荷に実質的に等しくてよい電流信号Ip(t)をもたらすことができる。
対向電極ELEC0および/または偏向電極ELEC1は、同じ電位であってよい。対向電極ELEC0および/または偏向電極ELEC1は、接地電位U0であってよい。偏向電極ELEC1を、対向電極ELEC0に電気的に接続してもよい。対向電極ELEC0および/または偏向電極ELEC1を、本体BLC0の表面に実装してもよい。対向電極ELEC0および/または偏向電極ELEC1を、導電体BLC0の表面に実装してもよい。対向電極ELEC0および/または偏向電極ELEC1を、例えば、単一の金属ブロックから機械加工によって形成することができる。対向電極ELEC0、偏向電極ELEC1、入口チャネルCH1、および出口チャネルCH2を、単一の金属ブロックから機械加工によって形成してもよい。これは、きわめて頑丈かつ安定した構造をもたらすことができる。対向電極ELEC0および/または偏向電極ELE3は、例えば、成型または3D印刷によって形成することも可能である。対向電極ELEC0および/または偏向電極ELE3を、例えば、電気絶縁材料に導電性材料を付着させることによって形成することができる。
コロナ電極ELEC3および/または偏向電極ELEC2を、支持要素CVR1によって支持することができる。支持要素CVR1は、電気絶縁性であってよい。支持要素CVR1を、例えば、帯電空間SPC1のカバーと呼ぶこともできる。電極ELEC0および/またはELEC1を、接触面N1に電気的に接続することができる。コロナ電極ELEC3を、接触要素N3に電気的に接続することができる。偏向電極ELEC2を、接触要素N2に電気的に接続することができる。電極ELEC2、ELEC3は、カバーCVR1の第1の面にあってよく、要素N2、N3は、カバーCVR1の第2の面にあってよい。要素N2、N3は、カバーCVR1を通って第1の面から第2の面へと延びることもできる。要素N3、N2は、例えば、金属製のスタブであってよい。電気絶縁カバーCVR1の平坦な表面は、帯電空間SPC1の半球状の形態を部分的に定めることができる。カバーCVR1は、帯電空間SPC1を部分的に定めることができる実質的に平坦な表面を有することができる。カバーCVR1の実質的に平坦な表面は、半球形状の帯電空間SPC1を部分的に定めることができる。
カバーCVR1は、偏向電極ELEC2を支持することもできる。カバーCVR1の平坦な表面が、偏向電極ELEC2を支持することができる。偏向電極ELEC2は、帯電空間SPC1の平面部に実質的に平行であってよい。電極ELEC2を、例えば、カバーCVR1の表面に導電性材料を付着させることによって実現でき、あるいはカバーCVR1の表面に導電性のホイルを取り付けることによって実現できる。
偏向電極ELEC2の平坦な表面は、流路CH2を部分的に定めることができる。カバーCVR1は、本体BLC0とともに耐圧シールを形成することができる。カバーCVR1は、コロナ電極ELEC3を導電体BLC0から電気的に絶縁することができる。カバーCVR1は、偏向電極ELEC2を導電体BLC0から電気的に絶縁することができる。
平坦な電極ELEC1、ELEC2を使用することにより、単純かつ頑丈な構造を提供することができる。一実施形態においては、イオントラップJTRAPを、例えば1対の同心電極を使用するなど、非平坦な電極ELEC1、ELEC2を使用することによって実現することも可能である。電極ELEC1、ELEC2は、例えば、同心円筒電極であってよい。
SX、SY、およびSZは、直交する方向を示している。
図4bは、半球状の帯電空間SPC1およびイオントラップJTRAP1を三次元図にて示している。
図4cおよび図4eを参照すると、粒子検出器DET1は、ファラデーケージFARA1によって囲まれた粒子フィルタDFILを備えることができる。ファラデーケージFARA1を、1つ以上の電気絶縁体252a、252bによって支持することができる。電気絶縁体252a、252bは、ファラデーケージFARA1を周囲の導電性の構造物から電気的に絶縁することができる。とくに、電気絶縁体252a、252bは、ファラデーケージFARA1を導電体BLC0から電気的に絶縁することができる。1つ以上の電気絶縁体252a、252bは、検出器DET1とイオントラップJTRAP1の出口チャネルCH3との間の耐圧シールを形成することができる。検出器DET1は、随意により、導電性シェル253を備えることができる。導電性シェル253は、ファラデーケージFARA1の一部を形成することができる。粒子フィルタDFILは、電気絶縁性であっても、導電性であってもよい。粒子P2を、粒子フィルタDFILによって捕捉することができる。
粒子監視装置500は、電極ELEC0、ELEC1、ELEC2、ELEC3、および検出器DET1との電気的接続を形成するための1つ以上の接続要素PIN1、PIN2、PIN3、PIN4を備えることができる。要素PIN1は、電極ELEC0およびELEC1との電気的接触を形成することができる。要素PIN2は、電極ELEC2との電気的接触を形成することができる。要素PIN3は、コロナ電極ELEC3との電気的接触を形成することができる。要素PIN4は、検出器DET1のファラデーケージFARA1との電気的接触を形成することができる。要素PIN1を、接触要素N1に接触するように構成することができる。本体BLC0の表面の一部が、接触要素N1として機能してもよい。要素PIN2を、接触要素N2に接触するように構成することができる。要素PIN3を、接触要素N3に接触するように構成することができる。接続要素PIN4を、検出器DET1に接触するように構成することができる。接続要素PIN2、PIN3、PIN4は、例えば、ばねで付勢された導電ピンであってよい。
図4dが、図3aに示した線A−Aに沿った粒子監視装置200の断面を示している。POS3は、コロナ電極ELEC3の位置を示している。POS2は、接触要素N2の位置を示している。POS4は、接続要素PIN4の位置を示している。B_CH2は、流路CH2の位置を示している。B_ELEC2は、偏向電極ELEC2の位置を示している。
図5eは、装置200から分離されたときの検出器DET1を示している。検出器DET1は、例えば、荷電粒子P2を捕捉するための粒子フィルタDFILを備えることができる。フィルタDFILは、導電性または電気絶縁性であってよい。フィルタDFILを、ファラデーケージFARA1によって囲むことができ、あるいはフィルタDFILの導電性の外側層が、ファラデーケージFARA1として動作してもよい。導電性のフィルタDFILは、例えば、焼結された導電性粒子または導電性繊維を含むことができる。ファラデーケージFARA1および/または導電性フィルタDFILを、電流監視ユニットCMU1に電気的に接続することができる。ファラデーケージFARA1の内側のフィルタDFILによって捕捉される荷電粒子P2がファラデーケージFARA1に触れない状況においても、ファラデーケージFARA1および電流監視ユニットCMU1を使用することによって、荷電粒子P2によって運ばれる電荷を検出することができる。
フィルタDFILは、粒子が検出器DET1から再びガス流へと放出されることがないように、粒子を不可逆的に集めることができる。検出器DET1は、例えば集められた粒子の質量のうち測定期間の間に検出器DET1から再びガス流へと放出されるものが10%未満であるように、測定期間において粒子を集めることができる。検出器DET1によって集められた粒子が、最終的に検出器DET1を汚し、さらには/あるいは妨害する可能性がある。必要であれば、検出器DET1を清掃でき、あるいは清浄な検出器と交換することができる。
図4fは、粒子監視装置200の側面図を示している。偏向電極ELEC2を、カバーCVR1の内面に配置することができる。偏向電圧U2を、接触要素N2を用いて電極ELEC2に結合させることができる。
監視装置200は、寿命が限られているかもしれない。監視装置200の動作寿命は、例えば、汚損、検出器DET1によって捕捉された粒子、および/またはコロナ電極ELEC3の損耗に起因して、限定的である可能性がある。監視装置200を、装置500の交換可能な一部分とすることができる。監視装置200を、監視装置200の容易な交換を可能にするために、例えばフレームへと取り外し可能に取り付けることができる。
装置500は、随意により、接続要素PIN1、PIN2、PIN3、PIN4(図5を参照)のための支持も提供することができるフレーム401を備えることができる。監視装置200を、電極ELEC2、ELEC3と接続要素PIN2、PIN3との間に電気的接続が形成されるようにフレーム401に取り付けることができる。しかしながら、要素N2とPIN2との間の接続が不良となる場合があり得る。粒子監視装置200は、随意により、装置200がフレーム401に適切に取り付けられているかどうかを確認するための補助接触要素N2bを備えることができる。接触要素N2bは、例えば、要素N2または本体BLC0に恒久的に接続されてよい。
図4gは、カバーCRV1の外側を示している。偏向電極ELEC2は、電極ELEC2の形状が半球状の帯電空間SPC1の形状に一致できるように、湾曲した縁部を有することができる。電極ELEC2の縁部の曲率半径は、半径R1に実質的に等しくてよい。電極ELEC2の縁部の曲率半径は、例えば、半径R1の0.9〜1.1倍の範囲内にあってよい。湾曲した縁部は、イオントラップJTRAP1の効率を改善でき、イオントラップJTRAP1の動作を安定化でき、さらには/あるいは粒子監視装置200の外寸の縮小を助けることができる。あるいは、偏向電極ELEC2は、直線的な入口縁部(例えば、図4bを参照)を有してもよい。
図6を参照すると、粒子監視装置200を、第1の電圧供給部410、第2の電圧供給部420、および電流監視ユニットCMU1に電気的に接続することができる。第1の電圧供給部410は、コロナ放電を発生させるためにコロナ電極ELEC3へと印加することができる電圧UCをもたらすことができる。第1の電圧供給部410は、電気的接地GNDに対する電圧UCをもたらすことができる。電気的接地GNDは、電圧U0を有することができる。対向電極ELEC0を、電気的接地GNDに接続することができる。本体BLC0を、電気的接地GNDに接続することができる。本体BLC0を、例えば接続要素PIN1によって電気的接地GNDに接続することができる。
第2の電圧供給部420は、第1の偏向電極ELEC1に印加することができる電圧U1をもたらすことができる。第2の電圧供給部420は、第2の偏向電極ELEC2に印加することができる電圧U2をさらにもたらすことができる。電圧U1は、接地電圧U0に等しくてよい。第1の偏向電極ELEC1を、例えば導電体BLC0を介して電気的接地GNDに接続することができる。
電荷検出器DET1は、単位時間当たりに検出器DET1によって捕捉される荷電粒子の電荷に比例する電流Ip(t)をもたらすことができる。検出器DET1は、流れFG2の荷電粒子P2を集めることができる。電流Ip(t)の瞬間的な大きさを、電流監視ユニットCMU1によって測定することができる。電流監視ユニットCMU1は、電流Ip(t)を示す監視信号S1(t)をもたらすことができる。電流監視ユニットCMU1は、電流Ip(t)から監視信号S1(t)をもたらすことができる。監視信号S1(t)は、電流Ip(t)に実質的に比例してよい。監視信号S1(t)は、例えば、デジタル信号またはアナログ信号であってよい。監視信号S1(t)は、監視装置200へと導かれる粒子P1の瞬時濃度を示すことができる。電流監視ユニットCMU1は、例えば、電流Ip(t)を測定するための電位計を備えることができる。電流監視ユニットCMU1を、検出器DET1から監視装置200の電気的接地GNDへと導かれる電流Ip(t)を測定するように構成することができる。検出器DET1を、検出器DET1から電流監視ユニットCMU1を経由して電気的接地GNDへと導かれる電流Ip(t)を電流監視ユニットCMU1によって測定することができるように、監視装置200の電気的接地GNDから電気的に絶縁することができる。
検出器DET1のファラデーケージFARA1は、電圧UDET1を有することができる。電気的接地GNDは、電圧U0を有することができる。電流監視ユニットCMU1を、検出器DET1の電圧UDET1を電気的接地GNDの電圧U0の近くに保つように構成することができる。検出器DET1の電圧UDET1を、電流Ip(t)の監視の間、電気的接地GNDの電圧U0の近くに保つことができる。検出器DET1の電圧UDET1と電気的接地の電圧U0との間の差(UDET1−U0)の絶対値は、例えば、10Vよりも小さくてよい。
イオントラップJTRAP1は、2つ以上の偏向電極ELEC1、ELEC2を備えることができる。第1の電極ELEC1は、第1の電圧U1を有することができ、第2の電極ELEC2は、第2の異なる電圧U2を有することができる。電極ELEC1、ELEC2を、電界EF1を生成するために電圧差U1−U2に組み合わせることができる。電界EF1の大きさおよび/または電極ELEC1、ELEC2の空間を通過するガス流の速度を、荷電粒子P2のうちの(第1の)適切な割合がイオントラップJTRAP1を通過できるように、かつイオンJ1のうちの(第2の)適切な割合を流れFG2からそらすことができるように、選択することができる。したがって、荷電粒子P2の大部分は、検出器DET1へとイオントラップJTRAP1を通過することができる。イオントラップを通過できる粒子の下方のカットオフサイズを、電圧差U1−U2を選択することによって選択することができる。電圧U1および/または電圧U2を、電圧供給部420によって生成することができる。
電圧UCを、例えば接続要素PIN3を介して接触要素N3に接続することができる。電圧U2を、例えば接続要素PIN2を介して偏向電極ELEC2に接続することができる。電流信号Ip(t)を、例えば接続要素PIN4を介して電流監視ユニットCMU1に結合させることができる。接続要素PIN4を、例えば、検出器DET1の導電性シェル253の側面に触れるように構成することができる。測定装置500は、例えば、監視装置200を測定装置のフレーム401に固定するためのラッチ機構を備えることができる。監視装置200を、要素PIN1とN1との間の解除可能な接続を形成し、要素PIN2とN2との間の解除可能な接続を形成し、要素PIN3とN3との間の解除可能な接続を形成し、さらには/あるいは要素PIN4と検出器DET1との間の解除可能な接続を形成するように、フレーム401に固定することができる。装置200を、ラッチ機構を開き、監視装置200をフレーム401から遠ざかるように移動させることによって、要素PIN1、PIN2、PIN3、PIN4から切り離すことができる。フレーム401は、要素PIN1、PIN2、PIN3、および/またはPIN4のための支持を提供することができる。
測定装置は、随意により、監視装置200がフレーム401に適切に取り付けられているかどうかを確認するための近接感知ユニット430を備えることができる。測定装置は、随意により、要素PIN2と要素N2との間の電気的接続の電気抵抗が所定の限界よりも低いかどうかを確認するための近接感知ユニット430を備えることができる。例えば、装置500を、装置200がフレーム401に適切に取り付けられていないときに高電圧供給部410の動作を防止するように構成することができる。
監視装置200は、監視装置200の接触要素N2と接続要素PIN2との間に形成された接続の電気抵抗を測定するための1つ以上の補助接触要素N2bを備えることができる。近接感知ユニット430を、例えば接続要素PIN2bの電圧に基づいて監視装置200の近接を検出するように構成することができる。近接感知ユニット430は、例えば、接触要素PIN2bの電圧UTESTを測定することができる。接触要素PIN2bを、接触要素N2bに接触するように構成することができる。接触要素N2bは、要素N2に電気的に接続されてよい。電圧UTESTが電圧U2に等しい場合、これは、要素PIN2が接触要素N2に適切に接続されていることを示すことができる。電圧UTESTが電圧U2と異なる場合、これは、要素PIN2が接触要素N2に適切に接続されていないことを示すことができる。
装置200は、電圧供給部(420)と電極(ELEC2)との間の電気的接触を形成するための接触要素(N2)を備えることができ、装置200は、前記電圧供給部と前記電極との間に適切な電気的接続が形成されているかどうかを確認するための補助接触要素(N2b)をさらに備えることができる。
この方法は、
・監視装置200をフレーム401から遠ざかるように移動させるステップと、
・監視装置200をフレーム401に再び取り付けるステップと、
・装置200の電圧供給部と電極との間に適切な電気的接続が形成されているか否かを確認するために補助接続要素PIN2bの電圧を監視するステップと
を含むことができる。
装置200は、随意により、コロナ放電DSR1が動作していないときに装置200を加熱するための加熱要素HUNIT1を備えることができる。
装置200は、粒子を含まないガス流FG2を検出器DET1からポンプPUMP2へと導くためのチャネルCH4を備えることができる。ポンプPUMP2を、例えばコネクタCON4によってチャネルCH4へと接続することができる。
装置500を、追加の測定機器100を用いて得られた測定結果の有効性を確認するために使用することができる。例えば、装置500を、フィルタFIL1を用いて得られた重量測定結果の有効性を確認するために使用することができる。重量測定結果は、重量測定によって得られた総質量mtotおよび/または平均濃度Cave,totを意味することができる。総質量mtotを、粒子収集期間Ttotの後にフィルタFIL1の重量を測定することによって決定することができる。次いで、平均濃度Cave,totを、総質量mtotから算出することができる。監視装置200を、測定された粒子の総質量mtotの有効性を確認するために使用することができる。有効性の確認により、測定された粒子の総質量が無効であることが示された場合、特定の動作条件にて実行される測定を、再度実行することができる。
フィルタFIL1の手動または自動での取り扱いにより、さまざまな種類の測定誤差が生じる可能性がある。測定されたフィルタFIL1の重量の変化が、例えばフィルタFIL1によって実際に収集された粒子の質量よりも小さくなり、あるいは大きくなる可能性がある。重量測定結果の有効性を確認することにより、1つ以上の重量測定結果から決定される出力結果の信頼性および/または精度を改善することができる。出力結果を、例えば2つ以上の有効な重量測定結果を平均することによって得ることができる。出力結果を、無効な測定結果が出力結果に寄与することがないよう、無効な重量測定結果を排除することによって1つ以上の重量測定結果から決定することができる。とくに、出力結果を、無効な測定結果が出力結果に寄与することがないよう、1つ以上の無効な測定結果を排除することによって2つ以上の重量測定結果から決定することができる。
粒子排出の実験は、エアロゾル粒子発生源SRC1を数時間にわたって試験手順に従って運転することを含むことができる。粒子発生源SRC1は、例えば、燃焼施設またはエンジンであってよい。粒子排出の実験の実行は、高価につく可能性がある。実験の最中に、監視信号S1(t)の分析により、実験によってもたらされる重量測定結果が無効である可能性が高いことが示される場合、粒子排出の実験を中断することができる。1つ以上の追加の実験を、少なくとも1つの追加の実験が有効な重量測定結果をもたらすまで実行することができる。
この方法は、
・第1の測定期間(Ttot,1)の間、サンプリング点(POS0)からフィルタ(FIL1)へと粒子(P1)を収集するステップと、
・第1の測定期間(Ttot,1)の後にフィルタ(FIL1)の重量を測定することによって、第1の重量測定結果(mtot,1)を得るステップと、
・第1の測定期間(Ttot,1)の間、電流信号Ip(t)を測定するステップと、
・第1の測定期間(Ttot,1)の間に測定された電流信号Ip(t)を分析することによって、第1の重量測定結果(mtot,1)を有効または無効として分類するステップと
を含むことができる。
電流信号Ip(t)の分析は、例えば、第1の期間(Ttot,1)において測定された電流信号Ip(t)の平均または積分が、第1の重量測定結果(mtot,1)に対応するか否かを判定することを含むことができる。
第1の実験は、第1の測定期間Ttot,1の間、粒子を第1のフィルタFIL1に収集することを含むことができる。第2の実験は、第2の重量測定結果mtot,2を得るために、第2の測定時間Ttot,2の間、粒子を第2のフィルタFIL2に収集することを含むことができる。第1の積分SUM1を、第1の測定期間Ttot,1にわたって電流Ip(t)を積分することによって得ることができる。第2の積分SUM2を、第2の測定時間Ttot,2にわたって電流Ip(t)を積分することによって得ることができる。この方法は、比SUM1/SUM2が比mtot,1/mtot,2に対応するか否かを確認することを、含むことができる。第1の結果mtot,1および/または第2の結果mtot,2を、例えば次の条件が満たされない場合に、無効であると判定することができる。
Figure 0006755049
装置500を、粒子発生源SRC1からの粒子の排出を測定するために使用することができる。粒子発生源SRC1を、第1の試験手順に従って動作させることができる。第1の試験手順は、例えば、施設の制御信号(例えば、燃料供給速度または運転温度)を所定のシーケンスに従って調整することを含むことができる。この方法は、発生源SRC1の動作パラメータを示すプロセスインジケータ信号P(t)を得ることを含むことができる。発生源SRC1の動作パラメータは、例えば、燃料供給速度、空気流量、または出力であってよい。電流信号Ip(t)の分析は、監視信号S1(t)をプロセスインジケータ信号P(t)と比較することを含むことができる。プロセスインジケータ信号P(t)は、粒子発生源SRCの動作パラメータを示すことができる。例えば、プロセスインジケータ信号P(t)は、例えば、燃料流量、入力空気流量、動作温度、触媒コンバータの動作温度、煙道ガスフィルタの動作温度、プロセスの動作温度、アクセルペダルの設定、燃料供給圧力、または添加剤の流量を示すことができる。
エアロゾル粒子発生源SRC1の動作パラメータの変化が監視信号S1(t)の変化に対応しているか否かを判定するために、監視信号S1(t)をプロセスインジケータ信号P(t)と比較することができる。発生源SRC1の動作パラメータの変化が監視信号S1(t)の変化に時間的に一致しているか否かを判定するために、監視信号S1(t)をプロセスインジケータ信号P(t)と比較することができる。監視信号S1(t)がプロセスインジケータ信号P(t)に相関しているか否かを判断するために、監視信号S1(t)をプロセスインジケータ信号P(t)と比較することができる。この方法は、電流信号Ip(t)と第1のプロセスインジケータ信号P(t)との間の相互相関を算出し、相互相関が所定の値よりも高いか否かを確認することを含むことができる。
この方法は、
・第1の試験期間Ttot,1の間、第1の試験手順に従って粒子発生源SRC1を動作させるステップと、
・第1の試験期間Ttot,1の間、第1のフィルタFIL1へと発生源SRC1によってもたらされるエアロゾル含有ガスPG0から粒子P1を収集するステップと、
・発生源SRC1の動作パラメータを示すプロセスインジケータ信号P(t)を得るステップと、
・第1の試験期間Ttot,1において測定された電流信号Ip(t)が、第1の試験期間Ttot,1において得られたプロセスインジケータ信号P(t)に実質的に対応するか否かを判定するステップと
を含むことができる。
前記判定は、例えば、電流信号Ip(t)の変化がプロセスインジケータ信号P(t)の変化に時間的に一致するか否かの確認を含むことができる。
前記判定は、例えば、電流信号Ip(t)の少なくとも1つの変化がプロセスインジケータ信号P(t)の少なくとも1つの変化に時間的に一致するか否かの確認を含むことができる。
前記判定は、例えば、電流信号Ip(t)とプロセスインジケータ信号P(t)との間の相互相関の算出を含むことができる。
監視信号S1(t)とプロセスインジケータ信号P(t)との間の相関の程度が所定の限界を下回る場合、重力測定結果(mtot,1)を無効と判定することができる。
図6aが、一例として、実験中のプロセスインジケータ信号P(t)の時間変化と、この実験において測定された電流信号Ip(t)の時間変化とを示している。粒子収集期間Ttotは、時刻t1において開始し、時刻t2において停止する。プロセスインジケータ信号P(t)は、時刻tdにおいて変化ΔP1を示すことができる。プロセスインジケータ信号P(t)は、例えば、燃焼施設SRC1の燃料供給速度、出力、または動作温度を示すことができる。粒子発生源SRC1の動作を、例えば、時刻tcにおいて開始させ、時刻tdにおいて停止させることができる。電流信号は、プロセスインジケータ信号P(t)の変化ΔP1に時間的に一致し得る変化ΔIを示すことができる。電流信号Ip(t)を、図3aに示した例において、プロセスインジケータ信号P(t)に相関していると判定することができる。
一実施形態においては、1つ以上のプロセスインジケータ信号P(t)が、第1の測定期間(Ttot,1)において粒子濃度が実質的に一定でなければならない旨を示し得る。そのような場合、電流信号Ip(t)が電流信号Ip(t)の平均値Iave,1から著しく逸脱している場合に、重量測定結果(mtot,1)を無効と判定することができる。
図6bを参照すると、記号I’p(t)は、電流信号Ip(t)を低域通過フィルタ処理することによって得られた平滑化された信号を表すことができる。平滑化された信号I’p(t)を、例えばカットオフ周波数0.10Hzを使用することによって、電流信号Ip(t)から形成することができる。平滑化された信号I’p(t)を、平滑化された信号I’p(t)が0.1Hzよりも低い周波数のスペクトル成分を含まないように、電流信号Ip(t)から形成することができる。Iave,1は、測定期間(Ttot)における電流信号Ip(t)の平均値を表す。
図6bは、例として、低域通過フィルタ処理された電流信号I’p(t)が、プロセスインジケータ信号P(t)に対応しない異常な変化ΔIpを示す状況を示している。異常な変化ΔIpは、時刻tdにおいて発生し得る。この例において、プロセスインジケータ信号P(t)は、第1の時刻tcから第2の時刻teまでの期間において実質的に一定であってよい。この期間は、時刻tdを含むことができる。重量測定結果mtot,1を、t1からt2までの期間においてフィルタFIL1に粒子を収集し、フィルタFIL1の重量を測定することによって得ることができる。結果mtot,1を、例えば電流信号Ip(t)のすべての有意な変化(ΔIp)が、粒子発生源SRC1から得られた少なくとも1つのプロセスインジケータ信号の変化に時間的に一致する場合に、有効であると判定することができる。結果mtot,1を、例えば粒子発生源SRC1から得られたすべてのプロセスインジケータ信号が、時間tdを含む期間において実質的に一定である場合に、無効であると判定することができる。
変化ΔIpがプロセスインジケータ信号P(t)に相関していない場合、これは、変化ΔIpが偶発的事象によって引き起こされたことを示し得る。変化ΔIpは、例えば、ガスダクトDUC1の表面に付着した粒子が、再び煙道のガス流PG0へと突然に解放される場合に生じ得る。変化ΔIpは、粒子濃度の実際の増加によって引き起こされ得るが、前記変化ΔIpは、偶発的事象によって引き起こされる可能性もあり、これは、結果mtot,1が例えば曲線の当てはめのためのデータ点として使用された場合に、誤った結論につながる可能性がある。電流Ip(t)の分析が、異常な事象の発生を知らせることができる。装置500を、異常な事象が検出された旨の通知をユーザへともたらすように構成することができる。
装置500は、例えば産業プロセスからの粒子の排出の分析に使用することができる測定データをもたらすことができる。粒子の排出は、重大な経済的および/または環境的結果に関連する可能性がある。装置500のメモリに記録された1つ以上の信号を、随意により、改ざんおよび/または消去から保護することができる。例えば、メモリMEM1に記録された監視信号S1(t)を、改ざんおよび/または消去から保護することができる。メモリに記録された信号を、例えばユーザによってもたらされる1つ以上の信用証明によって保護することができる。信用証明は、例えば、パスワード、RFIDキー、および/または生体認証インジケータを含むことができる。RFIDは、無線周波数識別を意味する。装置500を、記録されたデータを変更または消去することにより、装置のレジスタへの追加のレコードの書き込みが生じるよう動作すべく構成することができる。追加のレコードは、例えば、データを変更した時刻およびデータを変更したユーザの身元を含むことができる。ユーザの身元は、例えば、パスワードまたはRFID識別に基づいて明らかにすることができる。
さらなる態様を、以下の実施例によって例示する。
[実施例1.]入力流(FG1)によって運ばれるエアロゾル粒子(P1)から荷電粒子(P2)を形成する帯電ユニット(CUNIT1)と、
前記荷電粒子(P2)を収集することによって電流(Ip(t))をもたらす粒子検出器(DET1)と
を備えており、
前記帯電ユニット(CUNIT1)は、
帯電空間(SPC1)を定める実質的に半球状の内部を有している対向電極(ELEC0)と、
エアロゾル粒子(P1)を前記帯電空間(SPC1)へと導く入口チャネル(CH1)と、
前記帯電空間(SPC1)を発生させることによって前記エアロゾル粒子(P1)から荷電粒子(P2)を形成するコロナ電極(ELEC3)と、
荷電粒子(P2)を前記帯電空間(SPC1)から導く出口チャネル(CH2)と
を備えている、粒子測定装置(200、500)。
[実施例2.]電気絶縁性のカバー(CVR1)を備えており、前記帯電空間(SPC1)の一部は、前記カバー(CVR1)の平坦な内面によって定められている、実施例1に記載の装置(200、500)。
[実施例3.]前記コロナ電極(ELEC3)は、前記電気絶縁性のカバー(CVR1)によって支持されている、実施例2に記載の装置(200、500)。
[実施例4.]前記コロナ電極(ELEC3)は、前記コロナ放電(DSR1)を形成するための先端を有している、実施例1〜3のいずれかに記載の装置(200、500)。
[実施例5.]前記出口チャネル(CH2)からイオン(J1)を取り除くためのイオントラップ(JTRAP)を備えており、前記イオントラップ(JTRAP)は、第1の偏向電極(ELEC1)および第2の偏向電極(ELEC2)を備える、実施例1〜4のいずれかに記載の装置(200、500)。
[実施例6.]前記第2の偏向電極(ELEC1)は、前記帯電ユニット(CUNIT1)の前記電気絶縁性のカバー(CVR1)に取り付けられている、実施例5に記載の装置(200、500)。
[実施例7.]前記対向電極(ELE0)は、前記第1の偏向電極(ELEC1)に電気的に接続されている、実施例5または6に記載の装置(200、500)。
[実施例8.]前記電流(Ip(t))を測定するための電流監視ユニット(CMU1)と、前記電流監視ユニット(CMU1)を加熱するための加熱要素(HUNIT1)とを備えており、前記コロナ放電(DSR1)の動作に基づいて前記加熱要素(HUNIT1)の加熱電力を制御するように構成されている、実施例1〜7のいずれかに記載の装置(200、500)。
[実施例9.]電圧供給部(420)と、
当該装置(500)の電極(ELEC2)と前記電圧供給部(420)との間に適切な電気的接続が形成されているかどうかを監視するための近接感知ユニット(430)と
を備える、実施例1〜9のいずれかに記載の装置(500)。
[実施例10.]エアロゾル粒子を帯電させるための帯電ユニット(CUNIT1)であって、
帯電空間(SPC1)を定める実質的に半球状の内部を有している対向電極(ELEC0)と、
エアロゾル粒子(P1)を前記帯電空間(SPC1)へと導く入口チャネル(CH1)と、
前記帯電空間(SPC1)にコロナ放電を発生させることによって前記エアロゾル粒子(P1)から荷電粒子(P2)を形成するコロナ電極(ELEC3)と、
荷電粒子(P2)を前記帯電空間(SPC1)から導く出口チャネル(CH2)と
を備える、帯電ユニット(CUNIT1)。
[実施例11.]粒子を帯電させるための方法であって、
エアロゾル粒子(P1)を入口チャネル(CH1)を介して帯電空間(SPC1)へと導くステップと、
前記帯電空間(SPC1)にコロナ放電(DSR1)を発生させることによって前記エアロゾル粒子(P1)から荷電粒子(P2)を形成するステップと、
前記荷電粒子(P2)を前記帯電空間(SPC1)から導くステップと
を含んでおり、
前記コロナ放電(DSR1)は、コロナ電極(ELEC3)と対向電極(ELEC0)とによって発生させられ、前記対向電極(ELEC0)は、前記帯電空間(SPC1)を定める実質的に半球状の内部を有している、方法。
[実施例12.]エアロゾル粒子(P1)を測定するための方法であって、
エアロゾル粒子(P1)を入口チャネル(CH1)を介して帯電空間(SPC1)へと導くステップと、
前記帯電空間(SPC1)にコロナ放電(DSR1)を発生させることによって前記エアロゾル粒子(P1)から荷電粒子(P2)を形成するステップと、
前記荷電粒子(P2)を前記帯電空間(SPC1)から検出器(DET1)へと導くステップと、
前記検出器(DET1)を使用して前記荷電粒子(P2)を収集することによって電流(Ip(t))をもたらすステップと
を含んでおり、
前記コロナ放電(DSR1)は、コロナ電極(ELEC3)と対向電極(ELEC0)とによって発生させられ、前記対向電極(ELEC0)は、前記帯電空間(SPC1)を定める実質的に半球状の内部を有している、方法。
[実施例13.]前記電流(Ip(t))に基づいて測定機器(100)の動作を制御するステップ
を含む、実施例12に記載の方法。
[実施例14.]測定機器(100)を使用することによって測定結果を得るステップと、
前記電流(Ip(t))を分析することによって、前記測定結果の有効性を判定するステップと
を含む、実施例12または13に記載の方法。
[実施例15.]燃焼施設(SRC1)の煙道ガス(PG0)のサンプリング、エンジンの排気ガス(PG0)のサンプリング、または周囲ガス(PG0)からのサンプリングによって、前記入力流(FG0)をもたらすステップ
を含む、実施例11〜14のいずれかに記載の方法。
当業者にとって、本発明による装置および方法について変更および変種が考えられることは、明らかであろう。図面は概略図にすぎない。添付の図面を参照して上述した個々の実施形態は、あくまでも例示にすぎず、添付の特許請求の範囲によって定められる本発明の技術的範囲を限定するものではない。

Claims (13)

  1. 入力流(FG2)によって運ばれるエアロゾル粒子(P1)から荷電粒子(P2)を形成する帯電ユニット(CUNIT1)と、
    前記荷電粒子(P2)を収集することによって電流(Ip(t))をもたらす粒子検出器(DET1)と
    を備えており、
    前記帯電ユニット(CUNIT1)は、
    帯電空間(SPC1)を定める実質的に半球状の内部を有している対向電極(ELEC0)と、
    エアロゾル粒子(P1)を前記帯電空間(SPC1)へと導く入口チャネル(CH1)と、
    前記帯電空間(SPC1)にコロナ放電(DSR1)を発生させることによって前記エアロゾル粒子(P1)から荷電粒子(P2)を形成するコロナ電極(ELEC3)と、
    荷電粒子(P2)を前記帯電空間(SPC1)から前記検出器(DET1)へと導く出口チャネル(CH2)と
    を備えている、粒子測定装置(200、500)。
  2. 電気絶縁性のカバー(CVR1)を備えており、前記帯電空間(SPC1)の一部は、前記カバー(CVR1)の平坦な内面によって定められている、請求項1に記載の装置(200、500)。
  3. 前記コロナ電極(ELEC3)は、前記電気絶縁性のカバー(CVR1)によって支持されている、請求項2に記載の装置(200、500)。
  4. 前記コロナ電極(ELEC3)は、前記コロナ放電(DSR1)を形成するための先端を有している、請求項1〜3のいずれか一項に記載の装置(200、500)。
  5. 前記出口チャネル(CH2)からイオン(J1)を取り除くためのイオントラップ(JTRAP)を備えており、前記イオントラップ(JTRAP)は、第1の偏向電極(ELEC1)および第2の偏向電極(ELEC2)を備える、請求項に記載の装置(200、500)。
  6. 前記第2の偏向電極(ELEC)は、前記帯電ユニット(CUNIT1)の前記電気絶縁性のカバー(CVR1)に取り付けられている、請求項5に記載の装置(200、500)。
  7. 前記対向電極(ELE0)は、前記第1の偏向電極(ELEC1)に電気的に接続されている、請求項5または6に記載の装置(200、500)。
  8. 前記粒子検出器(DET1)によってもたらされる前記電流(Ip(t))を測定するための電流監視ユニット(CMU1)と、前記電流監視ユニット(CMU1)を加熱するための加熱要素(HUNIT1)とを備えており、前記電流監視ユニット(CMU1)の動作温度を安定させるべく前記加熱要素(HUNIT1)の加熱電力を制御するように構成されている、請求項1〜7のいずれか一項に記載の装置(200、500)。
  9. 電圧供給部(420)と、
    当該装置(200、500)の前記第2の偏向電極(ELEC2)と前記電圧供給部(420)との間に適切な電気的接続が形成されているかどうかを監視するための近接感知ユニット(430)と
    を備える、請求項のいずれか一項に記載の装置(200、500)。
  10. エアロゾル粒子(P1)を測定するための方法であって、
    エアロゾル粒子(P1)を入口チャネル(CH1)を介して帯電空間(SPC1)へと導くステップと、
    前記帯電空間(SPC1)にコロナ放電(DSR1)を発生させることによって前記エアロゾル粒子(P1)から荷電粒子(P2)を形成するステップと、
    前記荷電粒子(P2)を前記帯電空間(SPC1)から検出器(DET1)へと導くステップと、
    前記検出器(DET1)を使用して前記荷電粒子(P2)を収集することによって電流(Ip(t))をもたらすステップと
    を含んでおり、
    前記コロナ放電(DSR1)は、コロナ電極(ELEC3)と対向電極(ELEC0)とによって発生させられ、前記対向電極(ELEC0)は、前記帯電空間(SPC1)を定める実質的に半球状の内部を有している、方法。
  11. 前記検出器(DET1)を使用することによってもたらされる前記電流(Ip(t))に基づいて測定機器(100)の動作を制御するステップ
    を含む、請求項10に記載の方法。
  12. 測定機器(100)を使用することによって測定結果を得るステップと、
    前記検出器(DET1)を使用することによってもたらされる前記電流(Ip(t))を分析することによって、前記測定結果の有効性を判定するステップと
    を含む、請求項10または11に記載の方法。
  13. 燃焼施設(SRC1)の煙道ガス(PG0)のサンプリング、エンジンの排気ガス(PG0)のサンプリング、または周囲ガス(PG0)からのサンプリングによって、入力流(FG0)をもたらすステップ
    を含む、請求項10〜12のいずれか一項に記載の方法。
JP2018540221A 2015-10-26 2016-10-03 粒子監視装置の帯電ユニットおよび粒子監視装置 Active JP6755049B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20155760A FI20155760A (fi) 2015-10-26 2015-10-26 Varaajayksikkö hiukkasmonitorointilaitteistoa varten sekä hiukkasmonitorointilaitteisto
FI20155760 2015-10-26
PCT/FI2016/050684 WO2017072395A1 (en) 2015-10-26 2016-10-03 A charging unit for a particle monitoring apparatus, and a particle monitoring apparatus

Publications (3)

Publication Number Publication Date
JP2018533020A JP2018533020A (ja) 2018-11-08
JP2018533020A5 JP2018533020A5 (ja) 2019-11-14
JP6755049B2 true JP6755049B2 (ja) 2020-09-16

Family

ID=58629815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018540221A Active JP6755049B2 (ja) 2015-10-26 2016-10-03 粒子監視装置の帯電ユニットおよび粒子監視装置

Country Status (6)

Country Link
US (1) US11101622B2 (ja)
EP (1) EP3368889B1 (ja)
JP (1) JP6755049B2 (ja)
CN (1) CN108369210B (ja)
FI (1) FI20155760A (ja)
WO (1) WO2017072395A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE542019C2 (en) 2018-06-08 2020-02-11 Fumex Ab Support arm arrangement for a local gas extractor, and a local gas extractor with such a support arm arrangement
RU2743089C1 (ru) * 2020-09-09 2021-02-15 Акционерное общество "Лётно-исследовательский институт имени М.М. Громова" Способ определения величины тока выноса электрически заряженных частиц в выхлопной струе авиационного газотурбинного двигателя в полёте

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3114877A (en) 1956-10-30 1963-12-17 Gen Electric Particle detector having improved unipolar charging structure
US3742475A (en) 1971-03-16 1973-06-26 Tif Instr Inc Gaseous impurity detector employing corona discharge phenomenon
US3949390A (en) 1974-06-05 1976-04-06 Rca Corporation High voltage aerosol detector
CN85106165B (zh) 1985-08-15 1988-06-15 株式会社日立制作所 探测空-燃比的装置和方法
DE4008348A1 (de) 1990-03-15 1991-09-19 Norbert B Dipl Ing Bernigau Einrichtung zur messung von aerosolparametern
US6228149B1 (en) * 1999-01-20 2001-05-08 Patterson Technique, Inc. Method and apparatus for moving, filtering and ionizing air
US6502450B1 (en) 1999-05-10 2003-01-07 Rupprecht & Patashnik Company, Inc. Single detector differential particulate mass monitor with intrinsic correction for volatilization losses
CN2608984Y (zh) 2003-05-15 2004-03-31 中国科学院金属研究所 一种纳米炭材料场致发射性能测试装置
FI118278B (fi) * 2003-06-24 2007-09-14 Dekati Oy Menetelmä ja anturilaite hiukkaspäästöjen mittaamiseksi polttomoottorin pakokaasuista
JP4486799B2 (ja) 2003-09-12 2010-06-23 株式会社堀場製作所 粒子状物質測定方法および装置
US7174767B2 (en) * 2003-12-01 2007-02-13 Sensors, Inc. Particulate matter analyzer and method of analysis
JP4652786B2 (ja) 2004-11-30 2011-03-16 株式会社堀場製作所 排気ガス分析装置及び混合システム
EP1681550A1 (de) * 2005-01-13 2006-07-19 Matter Engineering AG Verfahren und Vorrichtung zur Messung von Anzahlkonzentration und mittlerem Durchmesser von Aerosolpartikeln
US7812306B2 (en) 2005-05-23 2010-10-12 Tsi, Incorporated Instruments for measuring nanoparticle exposure
US7836751B2 (en) 2005-06-28 2010-11-23 Koninklijke Philips Electronics N.V. Ultra fine particle sensor
US7880109B2 (en) 2005-12-22 2011-02-01 Shimadzu Corporation Classification apparatus and fine particle measuring apparatus
US8044350B2 (en) 2007-11-29 2011-10-25 Washington University Miniaturized ultrafine particle sizer and monitor
FI20080182A0 (fi) * 2008-03-04 2008-03-04 Navaro 245 Oy Mittausmenetelmä ja -laite
US8505276B2 (en) 2008-07-16 2013-08-13 Horiba, Ltd. Particulate matter measurement device
EP2431335A4 (en) * 2009-05-12 2013-10-23 Daikin Ind Ltd ELECTRICAL DISCHARGE UNIT FOR LIQUID TREATMENT, MOISTURE CONDITIONING UNIT AND WATER HEATER
JP2011069268A (ja) 2009-09-25 2011-04-07 Ngk Insulators Ltd 排気ガス処理装置
FI122485B (fi) * 2009-10-01 2012-02-15 Jorma Keskinen Menetelmä ja laitteisto kaasun puhdistamiseksi
JP5652851B2 (ja) 2010-02-02 2015-01-14 独立行政法人理化学研究所 微分型電気移動度分級装置、粒子計測システム、及び粒子選別システム
US8859957B2 (en) * 2010-02-26 2014-10-14 Purdue Research Foundation Systems and methods for sample analysis
US9764333B2 (en) 2010-03-10 2017-09-19 Msp Corporation Electrical ionizer for aerosol charge conditioning and measurement
FIU20100360U0 (fi) 2010-08-20 2010-08-20 Kauko Janka Sähköinen hiukkasmittauslaite
CN102147350B (zh) 2011-03-17 2012-07-11 何宗彦 气溶胶粒子浓度和尺寸分布的快速检测方法及其装置
US8779717B2 (en) * 2011-12-02 2014-07-15 Lear Corporation Offline power supply and charging apparatus
JP6321551B2 (ja) 2012-02-18 2018-05-09 ペガソー オーワイ 承認空気流を生成するための装置及び方法、並びに承認空気流中の粒子濃度測定におけるこのような装置の使用
CN104487817B (zh) * 2012-03-06 2017-11-03 皮卡索尔公司 用于颗粒质量浓度测量的设备和过程以及对用于颗粒质量浓度测量的设备的使用
JP6138652B2 (ja) 2013-10-01 2017-05-31 日本特殊陶業株式会社 微粒子測定システム
CN103926178A (zh) 2014-04-30 2014-07-16 天津圣纳科技有限公司 对可吸入颗粒物分类并测量浓度的机构及其检测方法
US9791361B2 (en) 2015-10-26 2017-10-17 Dekati Oy Method and apparatus for measuring aerosol particles of exhaust gas
US9791360B2 (en) 2015-10-26 2017-10-17 Dekati Oy Method and apparatus for measuring aerosol particles suspended in gas

Also Published As

Publication number Publication date
EP3368889B1 (en) 2022-02-02
CN108369210A (zh) 2018-08-03
FI20155760A (fi) 2017-04-27
EP3368889A4 (en) 2019-07-10
US20180331510A1 (en) 2018-11-15
WO2017072395A1 (en) 2017-05-04
US11101622B2 (en) 2021-08-24
EP3368889A1 (en) 2018-09-05
CN108369210B (zh) 2019-12-06
JP2018533020A (ja) 2018-11-08

Similar Documents

Publication Publication Date Title
JP6757039B2 (ja) ガス中に浮遊するエアロゾル粒子を測定するための方法および装置
JP6757040B2 (ja) 排気ガスのエアロゾル粒子を測定するための方法および装置
Marra et al. Monitor for detecting and assessing exposure to airborne nanoparticles
EP2853882B1 (en) Particle count measurement device
Stolzenburg et al. A DMA-train for precision measurement of sub-10 nm aerosol dynamics
JP6755049B2 (ja) 粒子監視装置の帯電ユニットおよび粒子監視装置
BR112017005576B1 (pt) Sistema e método de medição de emissões
KR20100108374A (ko) 공기 흐름 내의 전기적으로 충전된 공기 중 입자들의 크기 분포를 특징화하기 위한 장치
JP2018535435A5 (ja)
WO2015036725A1 (en) Gas sensor
US20230060801A1 (en) Method and apparatus for monitoring number density of aerosol particles
Rostedt et al. Non-collecting electrical sensor for particle concentration measurement
KR20190065556A (ko) 보일러 노내 상태 모니터링 장치 및 방법
Wei et al. Penetration calibration and verification for the solid particle counting system with polydisperse and monodisperse particles
CN210426654U (zh) 一种热导气体质量流量计
Wang et al. Advancing Smart Lithium-Ion Batteries: A Review on Multi-Physical Sensing Technologies for Lithium-Ion Batteries

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191001

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191016

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200819

R150 Certificate of patent or registration of utility model

Ref document number: 6755049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250