JP6753715B2 - Leakage detection device and leakage detection method - Google Patents

Leakage detection device and leakage detection method Download PDF

Info

Publication number
JP6753715B2
JP6753715B2 JP2016142419A JP2016142419A JP6753715B2 JP 6753715 B2 JP6753715 B2 JP 6753715B2 JP 2016142419 A JP2016142419 A JP 2016142419A JP 2016142419 A JP2016142419 A JP 2016142419A JP 6753715 B2 JP6753715 B2 JP 6753715B2
Authority
JP
Japan
Prior art keywords
voltage
switch
electrode side
resistor
side resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016142419A
Other languages
Japanese (ja)
Other versions
JP2018013389A (en
Inventor
村上 学
学 村上
岳史 大澤
岳史 大澤
信之 山内
信之 山内
吉盛 小畑
吉盛 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2016142419A priority Critical patent/JP6753715B2/en
Priority to PCT/JP2017/024227 priority patent/WO2018016298A1/en
Priority to EP17830818.5A priority patent/EP3489698A4/en
Priority to CN201780038731.7A priority patent/CN109416383A/en
Publication of JP2018013389A publication Critical patent/JP2018013389A/en
Priority to US16/250,482 priority patent/US20190146040A1/en
Application granted granted Critical
Publication of JP6753715B2 publication Critical patent/JP6753715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • G01R27/18Measuring resistance to earth, i.e. line to ground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/308Electric sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

本発明の実施形態は、漏電検出装置および漏電検出方法に関する。 Embodiments of the present invention relate to an earth leakage detection device and an earth leakage detection method.

例えば電気自動車やハイブリッド車等の車両には、駆動電源として蓄電池群(電池パック)が搭載される。車両用の高電圧蓄電池群と人体とが導通すると、高電圧蓄電池群から人体へ電流が流れて感電するため、高電圧蓄電池群と車両のシャーシグランドとは電気的に分離され、安全性を担保している。 For example, vehicles such as electric vehicles and hybrid vehicles are equipped with a storage battery group (battery pack) as a drive power source. When the high-voltage storage battery group for the vehicle and the human body are electrically connected, a current flows from the high-voltage storage battery group to the human body and an electric shock occurs. Therefore, the high-voltage storage battery group and the chassis ground of the vehicle are electrically separated to ensure safety. doing.

しかしながら、車両故障等により、高電圧蓄電池群の絶縁性が保たれなくなる状況が想定される。したがって、より確実に安全性を担保するために、高電圧蓄電池群とシャーシグランドとの漏電を検出可能とすることが望ましい。 However, it is assumed that the insulation of the high-voltage storage battery group cannot be maintained due to a vehicle failure or the like. Therefore, in order to ensure safety more reliably, it is desirable to be able to detect an electric leakage between the high voltage storage battery group and the chassis ground.

特許第2838462号公報Japanese Patent No. 2838462

蓄電池群が充電も放電も行っていない状態では、電池電圧に変動がないため、絶縁抵抗を正確に測定することが可能である。しかしながら、蓄電池群の充電あるいは放電を行っている期間は電池電圧が変動するため、絶縁抵抗を測定する際に誤差が生じる可能性があった。 When the storage battery group is neither charged nor discharged, the battery voltage does not fluctuate, so that the insulation resistance can be measured accurately. However, since the battery voltage fluctuates during the period of charging or discharging the storage battery group, there is a possibility that an error may occur when measuring the insulation resistance.

本発明の実施形態は、上記事情を鑑みて成されたものであって、正確に漏電検出を行う漏電検出装置および漏電検出方法を提供することを目的とする。 An embodiment of the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an earth leakage detection device and an earth leakage detection method for accurately detecting an earth leakage.

実施形態による漏電検出方法は、蓄電池群の主回路正極端子と電気的に接続した第1端子と、前記蓄電池群の主回路負極端子と電気的に接続した第2端子と、前記第1端子とグランドとの電気的接続を切り換える第1スイッチと、前記第2端子と前記グランドとの電気的接続を切り換える第2スイッチと、前記第1スイッチと前記グランドとの間に直列に接続した第1正極側抵抗器および第2抵抗器と、前記第2スイッチと前記グランドとの間において、前記第2抵抗器と直列に接続した第1負極側抵抗器と、前記第2抵抗器の両端の電圧を検出する電圧検出器と、メモリを含み、前記電圧検出器で検出された電圧の値と、前記蓄電池群のセル電圧を監視する監視装置から送信される電圧に基づいて演算される前記第1端子および前記第2端子間の総電圧とを前記メモリに記録する制御装置と、を備えた漏電検出装置の漏電検出方法であって、前記制御装置は、前記第1スイッチと前記第2スイッチとの一方を閉じ、前記第1スイッチと前記第2スイッチとの他方を開いた状態とし、前記第2抵抗器の両端の電圧である第1電圧と前記総電圧との組を複数回測定して前記メモリに記録し、前記第1スイッチと前記第2スイッチとの一方を開き、前記第1スイッチと前記第2スイッチとの他方を閉じた状態とし、前記電圧検出器により、前記メモリに記録された複数の前記総電圧の何れかとの差分が電圧閾値以下である総電圧に対応する、前記第2抵抗器の両端の電圧である第2電圧を少なくとも1つ測定し、前記総電圧と、前記第1電圧と、前記第2電圧とを用いて前記蓄電池群と前記グランドとの間の総絶縁抵抗を演算し、前記総絶縁抵抗の値が漏電閾値以下であるときに、漏電していると判断する。 The leakage detection method according to the embodiment includes a first terminal electrically connected to the main circuit positive terminal of the storage battery group, a second terminal electrically connected to the main circuit negative terminal of the storage battery group, and the first terminal. A first switch that switches the electrical connection with the ground, a second switch that switches the electrical connection between the second terminal and the ground, and a first positive electrode connected in series between the first switch and the ground. Between the side resistor and the second resistor, the second switch and the ground, the voltage across the first negative electrode side resistor connected in series with the second resistor and the second resistor is applied. The first terminal calculated based on the voltage value to be detected, the value of the voltage detected by the voltage detector including the memory, and the voltage transmitted from the monitoring device that monitors the cell voltage of the storage battery group. A method for detecting an electric leakage of an electric leakage detecting device including a control device for recording the total voltage between the second terminal and the second terminal in the memory, wherein the control device includes the first switch and the second switch. One is closed, the other of the first switch and the second switch is opened, and the pair of the first voltage and the total voltage, which are the voltages across the second resistor, is measured a plurality of times. Recording was performed in the memory, one of the first switch and the second switch was opened, the other of the first switch and the second switch was closed, and the voltage detector recorded the data in the memory. At least one second voltage, which is the voltage across the second resistor, corresponding to the total voltage whose difference from any of the plurality of total voltages is equal to or less than the voltage threshold is measured, and the total voltage and the first voltage are measured. The total insulation resistance between the storage battery group and the ground is calculated using the 1 voltage and the second voltage, and when the value of the total insulation resistance is equal to or less than the leakage threshold, it is determined that electricity is leaking. To do.

図1は、第1実施形態の漏電検出装置が搭載された電池パックの構成例を概略的に示す図である。FIG. 1 is a diagram schematically showing a configuration example of a battery pack equipped with the leakage detection device of the first embodiment. 図2は、絶縁抵抗低下検出器の構成および動作の一例を説明するための回路図である。FIG. 2 is a circuit diagram for explaining an example of the configuration and operation of the insulation resistance reduction detector. 図3は、絶縁抵抗低下検出器の構成および動作の一例を説明するための回路図である。FIG. 3 is a circuit diagram for explaining an example of the configuration and operation of the insulation resistance reduction detector. 図4は、第2実施形態の漏電検出装置の絶縁抵抗低下検出器の構成および動作の一例を説明するための回路図である。FIG. 4 is a circuit diagram for explaining an example of the configuration and operation of the insulation resistance reduction detector of the leakage detection device of the second embodiment. 図5は、総電圧の時間変化と測定値との一例を時系列に沿って示した図である。FIG. 5 is a diagram showing an example of the time change of the total voltage and the measured value in chronological order. 図6は、第1スイッチおよび第2スイッチを切換えた際の第2抵抗器の両端の電圧の一例を示す図である。FIG. 6 is a diagram showing an example of the voltage across the second resistor when the first switch and the second switch are switched. 図7は、第1スイッチおよび第2スイッチを切換えた際の第2抵抗器の両端の電圧の一例を示す図である。FIG. 7 is a diagram showing an example of the voltage across the second resistor when the first switch and the second switch are switched. 図8は、所定の範囲で制御される電池パックの総電圧の一例を時系列に沿って示す図である。FIG. 8 is a diagram showing an example of the total voltage of the battery pack controlled in a predetermined range in chronological order.

第1実施形態の漏電検出装置および漏電検出方法について、図面を参照して以下に説明する。
図1は、第1実施形態の漏電検出装置が搭載された電池パックの構成例を概略的に示す図である。
The leakage detection device and the leakage detection method of the first embodiment will be described below with reference to the drawings.
FIG. 1 is a diagram schematically showing a configuration example of a battery pack equipped with the leakage detection device of the first embodiment.

本実施形態の漏電検出装置が適用された電池パック10は、例えばハイブリッド車に蓄電池群として搭載されている。ハイブリッド車は、電池パック10と、車両ECU30と、12Vの鉛電池40と、を備えている。電池パック10は、第1電池バンクbk1と、第2電池バンクbk2と、電池制御装置(BCU:battery control unit)12と、絶縁抵抗低下検出器16と、端子台18P、18Nと、電流センサCSと、プリチャージ抵抗器PCRと、プリチャージスイッチSWPと、主回路開閉器SWG、SWBと、コネクタCNと、主回路正極端子TPと、主回路負極端子TNと、を備えている。電池パック10は、シャーシグランドに接地されている。本実施形態の漏電検出装置は、絶縁抵抗低下検出器16と、制御装置としての電池制御装置12を含む。 The battery pack 10 to which the leakage detection device of the present embodiment is applied is mounted as a storage battery group in, for example, a hybrid vehicle. The hybrid vehicle includes a battery pack 10, a vehicle ECU 30, and a 12V lead battery 40. The battery pack 10 includes a first battery bank bk1, a second battery bank bk2, a battery control unit (BCU: battery control unit) 12, an insulation resistance reduction detector 16, terminal blocks 18P and 18N, and a current sensor CS. A precharge resistor PCR, a precharge switch SWP, a main circuit switch SWG, SWB, a connector CN, a main circuit positive terminal TP, and a main circuit negative terminal TN are provided. The battery pack 10 is grounded to the chassis ground. The leakage detection device of this embodiment includes an insulation resistance reduction detector 16 and a battery control device 12 as a control device.

第1電池バンクbk1と第2電池バンクbk2とは互いに並列に接続している。第1電池バンクbk1と第2電池バンクbk2とは同様の構成である。
第1電池バンクbk1は、直列に接続した複数の電池モジュールMDL1〜MDL7と、複数の電池モジュールMDL1〜MDL7それぞれの、電圧および温度を監視する複数の電池監視回路(CMU:cell monitoring unit)11と、を備えている。
The first battery bank bk1 and the second battery bank bk2 are connected to each other in parallel. The first battery bank bk1 and the second battery bank bk2 have the same configuration.
The first battery bank bk1 includes a plurality of battery modules MDL1 to MDL7 connected in series, and a plurality of battery monitoring circuits (CMU: cell monitoring unit) 11 for monitoring voltage and temperature of each of the plurality of battery modules MDL1 to MDL7. , Is equipped.

なお、電池モジュールMDL3と電池モジュールMDL4との間はサービスプラグSPを介して接続している。サービスプラグSPは、上位制御装置である車両ECU30からのインターロック(IL)信号によりその動作を監視される。
電池モジュールMDL1〜MDL7それぞれは、複数の電池セル(図示せず)を備えている。
The battery module MDL3 and the battery module MDL4 are connected via a service plug SP. The operation of the service plug SP is monitored by an interlock (IL) signal from the vehicle ECU 30, which is a host control device.
Each of the battery modules MDL1 to MDL7 includes a plurality of battery cells (not shown).

第2電池バンクbk2は、直列に接続した複数の電池モジュールMDL8〜MDL14と、複数の電池モジュールMDL8〜MDL14それぞれの、電圧および温度を監視する複数の電池監視回路11と、を備えている。 The second battery bank bk2 includes a plurality of battery modules MDL8 to MDL14 connected in series, and a plurality of battery monitoring circuits 11 for monitoring the voltage and temperature of each of the plurality of battery modules MDL8 to MDL14.

なお、電池モジュールMDL10と電池モジュールMDL11との間はサービスプラグSPを介して接続している。サービスプラグSPは、上位制御装置である車両ECU30からのインターロック(IL)信号によりその動作を監視される。
電池モジュールMDL8〜MDL14それぞれは、複数の電池セル(図示せず)を備えている。
The battery module MDL10 and the battery module MDL11 are connected via a service plug SP. The operation of the service plug SP is monitored by an interlock (IL) signal from the vehicle ECU 30, which is a host control device.
Each of the battery modules MDL8 to MDL14 includes a plurality of battery cells (not shown).

電池監視回路11は、複数の電池モジュールMDL1〜MDL14それぞれに含まれる電池セルの電圧を検出し、CAN(control area network)通信プロトコルに基づいて、電池制御装置12へ送信する。また、電池監視回路11は、複数の電池モジュールMDL1〜MDL14それぞれの温度を検出し、CAN通信プロトコルに基づいて、電池制御装置12へ送信する。 The battery monitoring circuit 11 detects the voltage of the battery cell included in each of the plurality of battery modules MDL1 to MDL14 and transmits the voltage to the battery control device 12 based on the CAN (control area network) communication protocol. Further, the battery monitoring circuit 11 detects the temperature of each of the plurality of battery modules MDL1 to MDL14 and transmits the temperature to the battery control device 12 based on the CAN communication protocol.

第1電池バンクbk1の正極端子と第2電池バンクbk2の正極端子とは、主回路開閉器SWGを介して正極側の端子台18Pで電気的に接続している。正極側の端子台18Pは、主回路正極端子TPと電気的に接続している。第1電池バンクbk1の負極端子と第2電池バンクbk2の負極端子とは、切替スイッチSWBを介して負極側の端子台18Nで電気的に接続している。負極側の端子台18Nは、主回路負極端子TNと電気的に接続している。 The positive electrode terminal of the first battery bank bk1 and the positive electrode terminal of the second battery bank bk2 are electrically connected by the terminal block 18P on the positive electrode side via the main circuit switch SWG. The terminal block 18P on the positive electrode side is electrically connected to the positive electrode terminal TP of the main circuit. The negative electrode terminal of the first battery bank bk1 and the negative electrode terminal of the second battery bank bk2 are electrically connected by a terminal block 18N on the negative electrode side via a changeover switch SWB. The terminal block 18N on the negative electrode side is electrically connected to the negative electrode terminal TN of the main circuit.

プリチャージスイッチSWPは、第1電池バンクbk1と第2電池バンクbk2の正極端子と正極側の端子台18Pとの間の接続を切り換えるスイッチング素子である。プリチャージスイッチSWPと第1電池バンクbk1の正極端子の間、および、プリチャージスイッチSWPと第2電池バンクbk2の正極端子の間には、プリチャージ抵抗器PCRが介在している。 The precharge switch SWP is a switching element that switches the connection between the positive electrode terminals of the first battery bank bk1 and the second battery bank bk2 and the terminal block 18P on the positive electrode side. A precharge resistor PCR is interposed between the precharge switch SWP and the positive electrode terminal of the first battery bank bk1 and between the precharge switch SWP and the positive electrode terminal of the second battery bank bk2.

プリチャージスイッチSWPは、電池制御装置12によりその動作を制御される。プリチャージスイッチSWPが閉じると、第1電池バンクbk1の正極端子と第2電池バンクbk2の正極端子とは、プリチャージ抵抗器PCRを介して正極側の端子台18Pと電気的に接続し、第1電池バンクbk1と第2電池バンクbk2との間、及び端子台18P,18Nと車両システムとの間、で大電流が流れることが抑制される。 The operation of the precharge switch SWP is controlled by the battery control device 12. When the precharge switch SWP is closed, the positive electrode terminal of the first battery bank bk1 and the positive electrode terminal of the second battery bank bk2 are electrically connected to the terminal block 18P on the positive electrode side via the precharge resistor PCR. It is suppressed that a large current flows between the 1 battery bank bk1 and the 2nd battery bank bk2, and between the terminal bases 18P and 18N and the vehicle system.

また、プリチャージ抵抗器PCRとプリチャージスイッチSWPとは、主回路開閉器SWGと並列に接続している。すなわち、主回路開閉器SWGは、第1電池バンクbk1の正極端子と、第2電池バンクbk2の正極端子との夫々と、正極側の端子台18Pとの接続を切り換えるスイッチング素子である。主回路開閉器SWGは、電池制御装置12によりその動作を制御される。 Further, the precharge resistor PCR and the precharge switch SWP are connected in parallel with the main circuit switch SWG. That is, the main circuit switch SWG is a switching element that switches the connection between the positive electrode terminal of the first battery bank bk1 and the positive electrode terminal of the second battery bank bk2, and the terminal block 18P on the positive electrode side. The operation of the main circuit switch SWG is controlled by the battery control device 12.

電流センサCSは、負極側の端子台18Nの前段に配置され、電池パック10の充電電流および放電電流を検出する。電流センサCSで検出された電流の値は電池制御装置12へ伝達される。
電池制御装置12は、コネクタCNを介して車両ECU30および鉛電池40と接続可能に構成されている。例えば、車両のイグニッションがオンとなると、車両側リレーRLY1がオンとなり、電池制御装置12に鉛電池40からDC12Vが供給される。電池制御装置12は、鉛電池40から供給されたDC12Vを必要に応じて変圧し、電池監視回路11、電池制御装置12、絶縁抵抗低下検出器16および、電流センサCSへDC12V、若しくはDC5Vを供給する。
The current sensor CS is arranged in front of the terminal block 18N on the negative electrode side, and detects the charge current and the discharge current of the battery pack 10. The value of the current detected by the current sensor CS is transmitted to the battery control device 12.
The battery control device 12 is configured to be connectable to the vehicle ECU 30 and the lead battery 40 via the connector CN. For example, when the ignition of the vehicle is turned on, the relay RLY1 on the vehicle side is turned on, and DC12V is supplied from the lead battery 40 to the battery control device 12. The battery control device 12 transforms the DC12V supplied from the lead battery 40 as necessary, and supplies the DC12V or DC5V to the battery monitoring circuit 11, the battery control device 12, the insulation resistance reduction detector 16, and the current sensor CS. To do.

また、電池制御装置12には、鉛電池40から+B電源が供給される。+B電源は、バックアップ用として常時給電されるが、イグニッション信号がオンにならない限り、電流は流れない。
電池制御装置12は、制御信号および電流センサCSから伝達される電流の値に基づいて、主回路開閉器SWG、SWBおよびプリチャージスイッチSWPを切換えることができる。
Further, + B power is supplied to the battery control device 12 from the lead battery 40. The + B power supply is always supplied for backup, but no current flows unless the ignition signal is turned on.
The battery control device 12 can switch the main circuit switch SWG, SWB and the precharge switch SWP based on the control signal and the value of the current transmitted from the current sensor CS.

また、電池制御装置12は、絶縁抵抗低下検出器16との間で制御信号を通信可能に構成されている。この制御信号は、例えば、絶縁抵抗低下検出器16で電池パック10の漏電が検出されたときに、電池制御装置12からの電源供給を停止させる信号である。
電池制御装置12は、上位制御装置である車両ECU30との間でCAN(controller area network)プロトコルに基づいて通信可能に構成されている。また、電池制御装置12は、車両ECU30から供給される主回路開閉器制御信号に基づいて、プリチャージスイッチSWPおよび主回路開閉器SWG、SWBの動作をオンオフ制御する。
Further, the battery control device 12 is configured to be able to communicate a control signal with the insulation resistance reduction detector 16. This control signal is, for example, a signal for stopping the power supply from the battery control device 12 when the insulation resistance reduction detector 16 detects an electric leakage in the battery pack 10.
The battery control device 12 is configured to be able to communicate with the vehicle ECU 30, which is a higher-level control device, based on the CAN (controller area network) protocol. Further, the battery control device 12 controls the operation of the precharge switch SWP, the main circuit switch SWG, and the SWB on and off based on the main circuit switch control signal supplied from the vehicle ECU 30.

電池制御装置12は、例えばCPU(central processing unit)やMPU(micro processing unit)などのプロセッサと、メモリと、を備えた制御装置である。電池制御装置12は、車両ECU30との間、および、電池監視回路11との間において、CANプロトコルに基づいて通信を行う。電池制御装置12は、絶縁抵抗低下検出器16との間で、例えばSPI(serial peripheral interface)通信方式により通信を行う。 The battery control device 12 is a control device including, for example, a processor such as a CPU (central processing unit) or an MPU (micro processing unit), and a memory. The battery control device 12 communicates with the vehicle ECU 30 and with the battery monitoring circuit 11 based on the CAN protocol. The battery control device 12 communicates with the insulation resistance reduction detector 16 by, for example, an SPI (serial peripheral interface) communication method.

電池制御装置12は、電池監視回路11から電池セルの電圧および電池モジュールの温度を受信し、SOC(state of charge)の推定等を行う。また、電池制御装置12は、電池監視回路11、絶縁抵抗低下検出器16、及び電流センサCSの動作を制御する。 The battery control device 12 receives the voltage of the battery cell and the temperature of the battery module from the battery monitoring circuit 11, and estimates the SOC (state of charge) and the like. Further, the battery control device 12 controls the operation of the battery monitoring circuit 11, the insulation resistance reduction detector 16, and the current sensor CS.

絶縁抵抗低下検出器16は、第1電池バンクbk1および第2電池バンクbk2の総正極端子Pと総負極端子Nと、シャーシグランドとの間の絶縁抵抗値を検出し、電池パック10が漏電しているか否かを検出する。総正極端子Pは、電池パック10の主回路正極端子TPと電気的に接続している。総負極端子Nは電池パック10の主回路負極端子TNと電気的に接続している。 The insulation resistance drop detector 16 detects the insulation resistance value between the total positive electrode terminal P and the total negative electrode terminal N of the first battery bank bk1 and the second battery bank bk2 and the chassis ground, and the battery pack 10 leaks electricity. Detects whether or not it is. The total positive electrode terminal P is electrically connected to the main circuit positive electrode terminal TP of the battery pack 10. The total negative electrode terminal N is electrically connected to the main circuit negative electrode terminal TN of the battery pack 10.

図2および図3は、絶縁抵抗低下検出器の構成および動作の一例を説明するための回路図である。
絶縁抵抗低下検出器16は、第1スイッチSW1と、第2スイッチSW2と、第1正極側抵抗器R1Pと、第1負極側抵抗器R1Nと、第2抵抗器R2と、電圧検出器VSと、を備えている。なお、抵抗Rpは、総正極端子(第1端子)Pとシャーシグランドとの間に生じる絶縁抵抗であり、抵抗Rnは、総負極端子(第2端子)Nとシャーシグランドとの間に生じる絶縁抵抗であって、仮想的に抵抗器として記載したものである。
2 and 3 are circuit diagrams for explaining an example of the configuration and operation of the insulation resistance reduction detector.
The insulation resistance drop detector 16 includes a first switch SW1, a second switch SW2, a first positive electrode side resistor R1P, a first negative electrode side resistor R1N, a second resistor R2, and a voltage detector VS. , Is equipped. The resistor Rp is an insulation resistance generated between the total positive electrode terminal (first terminal) P and the chassis ground, and the resistor Rn is an insulation generated between the total negative electrode terminal (second terminal) N and the chassis ground. It is a resistor, which is virtually described as a resistor.

第1スイッチSW1は、総正極端子Pとシャーシグランドとの電気的接続を切り換えるスイッチング素子である。第1スイッチSW1は、電気的動作を制御可能なスイッチング素子であって、電池制御装置12によりその動作を制御される。 The first switch SW1 is a switching element that switches the electrical connection between the total positive electrode terminal P and the chassis ground. The first switch SW1 is a switching element capable of controlling electrical operation, and its operation is controlled by the battery control device 12.

第2スイッチSW2は、総負極端子Nとシャーシグランドとの電気的接続を切り換えるスイッチング素子である。第2スイッチSW2は、電気的動作を制御可能なスイッチング素子であって、電池制御装置12によりその動作を制御される。 The second switch SW2 is a switching element that switches the electrical connection between the total negative electrode terminal N and the chassis ground. The second switch SW2 is a switching element capable of controlling the electrical operation, and the operation is controlled by the battery control device 12.

第1正極側抵抗器R1Pと第2抵抗器R2とは、第1スイッチSW1とシャーシグランドとの間において直列に接続している。第1負極側抵抗器R1Nと第2抵抗器R2とは、第2スイッチSW2とシャーシグランドとの間において直列に接続している。第1正極側抵抗器R1Pと第1負極側抵抗器R1Nとは同じ大きさ(=R1)である。 The first positive electrode side resistor R1P and the second resistor R2 are connected in series between the first switch SW1 and the chassis ground. The first negative electrode side resistor R1N and the second resistor R2 are connected in series between the second switch SW2 and the chassis ground. The first positive electrode side resistor R1P and the first negative electrode side resistor R1N have the same size (= R1).

電圧検出器VSは、所定のタイミングで第2抵抗器R2の両端の電圧VL1、VL2を検出し、検出した値を電池制御装置12へ送信する。電圧検出器VSは、電池制御装置12によりその動作を制御される。 The voltage detector VS detects the voltages VL1 and VL2 at both ends of the second resistor R2 at a predetermined timing, and transmits the detected values to the battery control device 12. The operation of the voltage detector VS is controlled by the battery control device 12.

次に、図2、図3および図5を参照して、絶縁抵抗低下検出器16を用いた漏電検出方法について説明する。
図5は、総電圧の時間変化と測定値との一例を時系列に沿って示した図である。
電池制御装置12は、第1スイッチSW1を閉じ、第2スイッチSW2を開いた状態とする。このとき、絶縁抵抗Rnに流れる電流をI1、絶縁抵抗Rpに流れる電流をI3、第1正極側抵抗器R1Pに流れる電流をI2、総正極端子Pと総負極端子Nとの間の電圧(総電圧)をVb1、第2抵抗器R2の両端の電圧(第1電圧)をVL1とする。なお、このとき下記の関係が成立する。
Next, a leakage detection method using the insulation resistance reduction detector 16 will be described with reference to FIGS. 2, 3 and 5.
FIG. 5 is a diagram showing an example of the time change of the total voltage and the measured value in chronological order.
The battery control device 12 closes the first switch SW1 and opens the second switch SW2. At this time, the current flowing through the insulation resistance Rn is I1, the current flowing through the insulation resistance Rp is I3, the current flowing through the first positive electrode side resistor R1P is I2, and the voltage between the total positive terminal P and the total negative terminal N (total). The voltage) is Vb1, and the voltage across the second resistor R2 (first voltage) is VL1. At this time, the following relationship is established.

Vb1=I1×Rn+(R1+R2)×I2
Rp×I3=(R1+R2)×I2
VL1=R2×I2
上記の関係およびI1=I2+I3であることから、下記式(1)の関係が成立する。
Vb1 = I1 x Rn + (R1 + R2) x I2
Rp x I3 = (R1 + R2) x I2
VL1 = R2 x I2
Since the above relationship and I1 = I2 + I3, the relationship of the following equation (1) is established.

続いて、電池制御装置12は、電圧検出器VSを制御して、第2抵抗器R2の両端の電圧VL1を測定する。更に、電池制御装置12は、電池監視回路11から受信した電池モジュールMDL1〜MDL14の電池セル電圧に基づいて、電圧VL1を測定したときの総電圧Vb1を測定し、電圧VL1と総電圧Vb1とを関連付けてメモリに記録する。 Subsequently, the battery control device 12 controls the voltage detector VS to measure the voltage VL1 across the second resistor R2. Further, the battery control device 12 measures the total voltage Vb1 when the voltage VL1 is measured based on the battery cell voltages of the battery modules MDL1 to MDL14 received from the battery monitoring circuit 11, and obtains the voltage VL1 and the total voltage Vb1. Associate and record in memory.

なお、本実施形態では、電池制御装置12は、第1スイッチSW1を閉じている期間において、電圧VL1と総電圧Vb1との組を複数回測定し、メモリに記録する。電池制御装置12は、電圧VL1と総電圧Vb1との組を複数回測定するための所定の期間において、第1スイッチSW1を連続して閉じるように制御してもよく、電圧VL1、Vb1を測定するタイミングに同期して間欠的に第1スイッチSW1を閉じるように制御してもよい。 In the present embodiment, the battery control device 12 measures the pair of the voltage VL1 and the total voltage Vb1 a plurality of times and records them in the memory during the period when the first switch SW1 is closed. The battery control device 12 may control the first switch SW1 to be continuously closed during a predetermined period for measuring the pair of the voltage VL1 and the total voltage Vb1 a plurality of times, and measures the voltages VL1 and Vb1. The first switch SW1 may be controlled to be closed intermittently in synchronization with the timing of the operation.

また、電池制御装置12は、車両ECU30からの漏電を検出する指令に先立って、電圧VL1と、総電圧Vb1との組を複数回測定し、メモリに記録しておく。電池制御装置12は、定期的に、メモリに格納された電圧VL1、Vb1の値を更新するように制御してもよい。このとき、電池制御装置12は、測定した総電圧Vb1と同じ値が既にメモリに記録されているときには、新しく測定した電圧VL1、Vb1の値によりメモリに記録された値を更新する。 Further, the battery control device 12 measures the pair of the voltage VL1 and the total voltage Vb1 a plurality of times and records them in the memory prior to the command for detecting the electric leakage from the vehicle ECU 30. The battery control device 12 may be controlled to periodically update the values of the voltages VL1 and Vb1 stored in the memory. At this time, when the same value as the measured total voltage Vb1 is already recorded in the memory, the battery control device 12 updates the value recorded in the memory with the newly measured values of the voltages VL1 and Vb1.

続いて、電池制御装置12は、車両ECU30から漏電検出指令を受けると、第1スイッチSW1を開いて、第2スイッチSW2を閉じた状態とする。このとき、絶縁抵抗Rpに流れる電流をI4、第1負極側抵抗器R1Nに流れる電流をI5、絶縁抵抗Rnに流れる電流をI6、総電圧をVb2、第2抵抗器R2の両端の電圧(第2電圧)をVL2とすると、下記の関係が成立する。 Subsequently, when the battery control device 12 receives an electric leakage detection command from the vehicle ECU 30, the battery control device 12 opens the first switch SW1 and closes the second switch SW2. At this time, the current flowing through the insulation resistance Rp is I4, the current flowing through the first negative electrode side resistor R1N is I5, the current flowing through the insulation resistance Rn is I6, the total voltage is Vb2, and the voltage across the second resistor R2 (the first). When (2 voltage) is VL2, the following relationship is established.

Vb2=I4×Rp+(R1+R2)×I5
Rn×I6=(R1+R2)×I5
VL2=R2×I5
上記の関係およびI4=I5+I6であることから、下記式(2)の関係が成立する。
Vb2 = I4 x Rp + (R1 + R2) x I5
Rn x I6 = (R1 + R2) x I5
VL2 = R2 x I5
Since the above relationship and I4 = I5 + I6, the relationship of the following equation (2) is established.

続いて、電池制御装置12は、電圧検出器VSを制御して、第2抵抗器R2の両端の電圧VL2を測定する。更に、電池制御装置12は、電池監視回路11から受信した電池モジュールMDL1〜MDL14の電池セル電圧に基づいて、電圧VL2を測定したときの総電圧Vb2を測定し、電圧VL2と総電圧Vb2とを関連付けてメモリに記録する。 Subsequently, the battery control device 12 controls the voltage detector VS to measure the voltage VL2 across the second resistor R2. Further, the battery control device 12 measures the total voltage Vb2 when the voltage VL2 is measured based on the battery cell voltages of the battery modules MDL1 to MDL14 received from the battery monitoring circuit 11, and obtains the voltage VL2 and the total voltage Vb2. Associate and record in memory.

なお、電池制御装置12は、測定した総電圧Vb2と、メモリに記録された複数の総電圧Vb1の値とを比較して、メモリに複数の総電圧Vb1の何れかと同じ値(或いは近傍の値)の総電圧Vb2と、この総電圧Vb2と同時に測定された電圧VL2とをメモリに記録すればよい。したがって、メモリに記録される電圧VL2と総電圧Vb2とは少なくとも1組でよい。 The battery control device 12 compares the measured total voltage Vb2 with the values of the plurality of total voltages Vb1 recorded in the memory, and compares the measured total voltage Vb2 with the same value as any one of the plurality of total voltages Vb1 in the memory (or a value in the vicinity thereof). ), And the voltage VL2 measured at the same time as the total voltage Vb2 may be recorded in the memory. Therefore, the voltage VL2 and the total voltage Vb2 recorded in the memory may be at least one set.

続いて、電池制御装置12は、図5に示すように、総電圧Vb1と総電圧Vb2が等しいときの、電圧VL1、VL2および総電圧Vb1、Vb2の値(図5に示す黒丸で示した値)を用いて、総絶縁抵抗RLの値を算出する。総電圧Vb1と総電圧Vb2とが等しいときに、総絶縁抵抗RLは下記式により演算することができる。
Subsequently, as shown in FIG. 5, the battery control device 12 has the values of the voltages VL1 and VL2 and the total voltages Vb1 and Vb2 when the total voltage Vb1 and the total voltage Vb2 are equal (values shown by black circles shown in FIG. 5). ) Is used to calculate the value of the total insulation resistance RL. When the total voltage Vb1 and the total voltage Vb2 are equal, the total insulation resistance RL can be calculated by the following equation.

なお、上記式(3)により総絶縁抵抗RLを演算するとき、総電圧Vb1と総電圧Vb2とは等しい値である必要はなく、総絶縁抵抗RLの誤差が所定の範囲内となる程度の差分であれば、異なる値であっても構わない。すなわち、総電圧Vb1と総電圧Vb2との差分が許容される電圧閾値以下であれば、上述の式(1)により算出された総絶縁抵抗RLの値を採用することができる。 When calculating the total insulation resistance RL by the above equation (3), the total voltage Vb1 and the total voltage Vb2 do not have to be equal to each other, and the difference is such that the error of the total insulation resistance RL is within a predetermined range. If so, the values may be different. That is, if the difference between the total voltage Vb1 and the total voltage Vb2 is equal to or less than the allowable voltage threshold value, the value of the total insulation resistance RL calculated by the above equation (1) can be adopted.

上記のように、総電圧Vb1と総電圧Vb2とが等しいタイミングにおける電圧VL1、VL2および総電圧Vb1、Vb2の値を用いて、式(3)により総絶縁抵抗RLを演算することにより、電池パック10が充電あるいは放電しているときであっても、正確に総絶縁抵抗RLの値を演算することが可能となる。 As described above, the battery pack is calculated by calculating the total insulation resistance RL according to the equation (3) using the values of the voltages VL1 and VL2 and the total voltages Vb1 and Vb2 at the timing when the total voltage Vb1 and the total voltage Vb2 are equal. Even when 10 is being charged or discharged, it is possible to accurately calculate the value of the total insulation resistance RL.

電池制御装置12は、上記のように算出した絶縁抵抗RLの値と所定の漏電閾値(例えば100kΩ以下)とを比較して、絶縁抵抗RLが所定の漏電閾値以下であるときに漏電しているものと判断する。電池制御装置12は、漏電していると判断したときに、例えば車両ECU30へ故障している旨の通知を行う。車両ECU30は、電池制御装置12から故障している旨の通知を受けると、例えば、電池制御装置12へ動作(充電、放電など)を停止させる指令を送信し、電池パック10を停止する。 The battery control device 12 compares the value of the insulation resistance RL calculated as described above with a predetermined leakage threshold value (for example, 100 kΩ or less), and leaks electricity when the insulation resistance RL is equal to or less than the predetermined leakage threshold value. Judge as a thing. When the battery control device 12 determines that there is an electric leakage, the battery control device 12 notifies, for example, the vehicle ECU 30 that the vehicle is out of order. Upon receiving the notification from the battery control device 12 that the vehicle is out of order, the vehicle ECU 30 transmits, for example, a command to stop the operation (charging, discharging, etc.) to the battery control device 12 to stop the battery pack 10.

本実施形態によれば、電池制御装置12は、正確に総絶縁抵抗RLの値を演算することが可能となり、正確に漏電検出を行う漏電検出装置および漏電検出方法を提供することができる。 According to the present embodiment, the battery control device 12 can accurately calculate the value of the total insulation resistance RL, and can provide an earth leakage detection device and an earth leakage detection method that accurately detect an earth leakage.

図6および図7は、第1スイッチおよび第2スイッチを切換えた際の第2抵抗器の両端の電圧の一例を示す図である。
また、図6に示すように、第1スイッチSW1および第2スイッチSW2の切換時には、総正極端子P‐シャーシ間の容量C1、総負極端子N‐シャーシ間の容量C1、および、第2抵抗器R2と並列に接続されるノイズ除去コンデンサC2と第2抵抗器R2とによる時定数が発生し、第2抵抗器R2は大きな抵抗値となるため、第1スイッチSW1および第2スイッチSW2を切換えてから電圧VL1、VL2の値が安定するまでには例えば数10秒間必要となる。本実施形態では、図7に示すように、車両ECU30からの漏電を検出する指令に先立って、電圧VL1および総電圧Vb1の組を複数回測定し、同じVb1であれば前回値を新値として更新することにより、漏電検出に要する時間は第2スイッチSW2を閉じて第1スイッチSW1を開いた状態としたときの時定数のみ影響を受けることとなり、車両ECU30から指令を受けてから漏電検出が終了するまでに要する時間を約半分に短縮することができる。
6 and 7 are diagrams showing an example of the voltage across the second resistor when the first switch and the second switch are switched.
Further, as shown in FIG. 6, when switching between the first switch SW1 and the second switch SW2, the capacitance C1 between the total positive electrode terminal P and the chassis, the capacitance C1 between the total negative electrode terminals N and the chassis, and the second resistor Since a time constant is generated by the noise removing capacitor C2 connected in parallel with R2 and the second resistor R2 and the second resistor R2 has a large resistance value, the first switch SW1 and the second switch SW2 are switched. It takes, for example, several tens of seconds for the values of the voltages VL1 and VL2 to stabilize. In the present embodiment, as shown in FIG. 7, prior to the command for detecting the leakage from the vehicle ECU 30, the set of the voltage VL1 and the total voltage Vb1 is measured a plurality of times, and if the same Vb1, the previous value is set as a new value. By updating, the time required for leakage detection will be affected only by the time constant when the second switch SW2 is closed and the first switch SW1 is open, and the leakage detection will be detected after receiving a command from the vehicle ECU 30. The time required to complete can be reduced by about half.

なお、上述の実施形態では、電圧VL1と総電圧Vb1との組を複数回測定しメモリに記録した後に、電圧VL2と総電圧Vb2とを測定したが、電圧VL2と総電圧Vb2との組を複数回測定しメモリに記録した後に、電圧VL1と総電圧Vb1とを測定しても構わない。その場合であっても、電圧VL2を測定した後に総電圧Vb2を測定し、測定した電圧VL2、Vb2の組をメモリに記録することを複数回行い、その後、電圧VL1と総電圧Vb1とを測定し、総電圧Vb2と総電圧Vb1とが等しいときの電圧VL1、VL2および総電圧Vb1、Vb2を用いて総絶縁抵抗RLを演算することにより、上述の実施形態と同様の効果を得ることができる。 In the above-described embodiment, the set of the voltage VL1 and the total voltage Vb1 is measured a plurality of times and recorded in the memory, and then the voltage VL2 and the total voltage Vb2 are measured. However, the set of the voltage VL2 and the total voltage Vb2 is used. The voltage VL1 and the total voltage Vb1 may be measured after being measured a plurality of times and recorded in the memory. Even in that case, after measuring the voltage VL2, the total voltage Vb2 is measured, the set of the measured voltages VL2 and Vb2 is recorded in the memory a plurality of times, and then the voltage VL1 and the total voltage Vb1 are measured. Then, by calculating the total insulation resistance RL using the voltages VL1 and VL2 and the total voltages Vb1 and Vb2 when the total voltage Vb2 and the total voltage Vb1 are equal, the same effect as that of the above-described embodiment can be obtained. ..

次に、第2実施形態の漏電検出装置および漏電検出方法について、図面を参照して以下に説明する。なお、以下の説明において、上述の第1実施形態と同様の構成については同一の符号を付して説明を省略する。 Next, the leakage detection device and the leakage detection method of the second embodiment will be described below with reference to the drawings. In the following description, the same reference numerals will be given to the same configurations as those in the first embodiment described above, and the description thereof will be omitted.

本実施形態の漏電検出装置が適用された電池パック10は、第1実施形態と同様に、例えばハイブリッド車に搭載されている。本実施形態の漏電検出装置は、電池制御装置12と絶縁抵抗低下検出器16との構成が上述の第1実施形態と異なっている。 The battery pack 10 to which the leakage detection device of the present embodiment is applied is mounted on, for example, a hybrid vehicle as in the first embodiment. The leakage detection device of this embodiment has a different configuration of the battery control device 12 and the insulation resistance reduction detector 16 from the above-described first embodiment.

図4は、第2実施形態の漏電検出装置の絶縁抵抗低下検出器の構成および動作の一例を説明するための回路図である。
絶縁抵抗低下検出器16は、第3正極側抵抗器R3Pと、第3負極側抵抗器R3Nと、第3スイッチSW3と、基準電圧AGと、を更に備えている。
FIG. 4 is a circuit diagram for explaining an example of the configuration and operation of the insulation resistance reduction detector of the leakage detection device of the second embodiment.
The insulation resistance drop detector 16 further includes a third positive electrode side resistor R3P, a third negative electrode side resistor R3N, a third switch SW3, and a reference voltage AG.

正極側の第3正極側抵抗器R3Pは、第1正極側抵抗器R1Pと第2抵抗器R2との間に直列に接続している。負極側の第3負極側抵抗器R3Nは、第1負極側抵抗器R1Nと第2抵抗器R2との間に直列に接続している。第3正極側抵抗器R3Pと第3負極側抵抗器R3Nとは同じ大きさ(=R3)である。 The third positive electrode side resistor R3P on the positive electrode side is connected in series between the first positive electrode side resistor R1P and the second resistor R2. The third negative electrode side resistor R3N on the negative electrode side is connected in series between the first negative electrode side resistor R1N and the second resistor R2. The third positive electrode side resistor R3P and the third negative electrode side resistor R3N have the same size (= R3).

第3スイッチSW3は、第2抵抗器R2とシャーシグランドとの間の接続を切り換えるスイッチング素子である。第3スイッチSW3は、電気的動作を制御可能なスイッチング素子であって、電池制御装置12によりその動作を制御される。 The third switch SW3 is a switching element that switches the connection between the second resistor R2 and the chassis ground. The third switch SW3 is a switching element capable of controlling the electrical operation, and the operation is controlled by the battery control device 12.

基準電圧AGは、第2抵抗器R2と第3スイッチSW3との間に接続している。なお、基準電圧AGは、シャーシグランドとは異なる値である。
本実施形態の漏電検出装置は、上記の絶縁抵抗低下検出器16および電池制御装置12以外は上述の第1実施形態と同様である。
The reference voltage AG is connected between the second resistor R2 and the third switch SW3. The reference voltage AG is a value different from that of the chassis ground.
The leakage detection device of this embodiment is the same as that of the first embodiment except for the above-mentioned insulation resistance reduction detector 16 and the battery control device 12.

以下に、図4を参照して、絶縁抵抗低下検出器16を用いた漏電検出方法について説明する。
本実施形態では、電池制御装置12は、第3スイッチSW3を開き、第1スイッチSW1と第2スイッチSW2とを閉じて、総電圧Vbを測定することができる。
すなわち、電池制御装置12は、第1スイッチSW1と第2スイッチSW2とを閉じて、第3スイッチSW3を開いた状態で、電圧検出器VSにより第1正極側抵抗器R1Pと第3正極側抵抗器R3Pとの間の電圧PS_Pと、第1負極側抵抗器R1Nと第3負極側抵抗器R3Nとの間の電圧PS_Nとを検出する。
Hereinafter, a leakage detection method using the insulation resistance reduction detector 16 will be described with reference to FIG.
In the present embodiment, the battery control device 12 can measure the total voltage Vb by opening the third switch SW3 and closing the first switch SW1 and the second switch SW2.
That is, in the battery control device 12, with the first switch SW1 and the second switch SW2 closed and the third switch SW3 open, the voltage detector VS causes the first positive electrode side resistor R1P and the third positive electrode side resistor. The voltage PS_P between the device R3P and the voltage PS_N between the first negative electrode side resistor R1N and the third negative electrode side resistor R3N are detected.

続いて、電池制御装置12は、検出した電圧PS_P、PS_Nの値、第1正極側抵抗器R1Pおよび第1負極側抵抗器R1Nの値(=R1)と、第3正極側抵抗器R3Pおよび第3負極側抵抗器R3Nの値(=R3)とを用いて、下記式(4)により、総電圧Vbを演算する。
Vb=(|PS_P|+|PS_N|)×{(2R1+2R3)/2R3}…(4)
Subsequently, the battery control device 12 sets the detected voltages PS_P and PS_N, the values of the first positive electrode side resistor R1P and the first negative electrode side resistor R1N (= R1), and the third positive electrode side resistor R3P and the third positive electrode side resistor R1N. 3 Using the value of the negative electrode side resistor R3N (= R3), the total voltage Vb is calculated by the following equation (4).
Vb = (| PS_P | + | PS_N |) × {(2R1 + 2R3) / 2R3} ... (4)

続いて、電池制御装置12は、電池監視回路11から受信した電池モジュールMDL1〜MDL14の電池セル電圧を積算することにより得られる総正極端子Pと総負極端子Nとの間の電圧VPNと、式(4)により得られた総電圧Vbとを比較する。 Subsequently, the battery control device 12 describes the voltage GBP between the total positive electrode terminal P and the total negative electrode terminal N obtained by integrating the battery cell voltages of the battery modules MDL1 to MDL14 received from the battery monitoring circuit 11. Compare with the total voltage Vb obtained in (4).

電池制御装置12は、電圧VPNと総電圧Vbとの差が所定の閾値以上であるときに、電池パック10が故障していると判断する。すなわち、電池監視回路11、電池制御装置12、および、絶縁抵抗低下検出器16が正常に動作しているときには、電圧VPNと総電圧Vbは、略等しい値が得られる。しかしながら、電圧VPNと総電圧Vbとの差が所定の閾値以上であるときには、例えば絶縁抵抗低下検出器16の配線が断線やスイッチの故障等が生じている可能性があり、電池パック10が正常に動作していることを補償することができず、故障している可能性がある。 The battery control device 12 determines that the battery pack 10 has failed when the difference between the voltage VPN and the total voltage Vb is equal to or greater than a predetermined threshold value. That is, when the battery monitoring circuit 11, the battery control device 12, and the insulation resistance reduction detector 16 are operating normally, the voltage VPN and the total voltage Vb are obtained to have substantially equal values. However, when the difference between the voltage VPN and the total voltage Vb is equal to or greater than a predetermined threshold value, for example, the wiring of the insulation resistance reduction detector 16 may be broken or the switch may be out of order, and the battery pack 10 is normal. It is not possible to compensate for the operation and there is a possibility that it is out of order.

この場合、電池制御装置12は、例えば車両ECU30へ故障している旨の通知を行う。車両ECU30は、電池制御装置12から故障している旨の通知を受けると、例えば、電池制御装置12へ動作(充電、放電など)を停止させる指令を送信し、電池パック10を停止する。 In this case, the battery control device 12 notifies, for example, the vehicle ECU 30 that the vehicle is out of order. Upon receiving the notification from the battery control device 12 that the vehicle is out of order, the vehicle ECU 30 transmits, for example, a command to stop the operation (charging, discharging, etc.) to the battery control device 12 to stop the battery pack 10.

更に、本実施形態の漏電検出装置の絶縁抵抗低下検出器16によれば、総電圧Vb1、Vb2を測定することが可能となる。したがって、本実施形態の漏電検出装置では、電圧VL1を測定したときの総電圧Vb1と、電圧VL2を測定したときの総電圧Vb2とが異なる場合であっても、総絶縁抵抗の値を正確に演算することができる。総電圧Vb1と総電圧Vb2とが、Vb1=k×Vb2の関係となるとき、総絶縁抵抗RLは下記の式(5)により演算することができる。 Further, according to the insulation resistance decrease detector 16 of the leakage detection device of the present embodiment, it is possible to measure the total voltages Vb1 and Vb2. Therefore, in the leakage detection device of the present embodiment, even if the total voltage Vb1 when the voltage VL1 is measured and the total voltage Vb2 when the voltage VL2 is measured are different, the value of the total insulation resistance is accurately measured. Can be calculated. When the total voltage Vb1 and the total voltage Vb2 have a relationship of Vb1 = k × Vb2, the total insulation resistance RL can be calculated by the following equation (5).

本実施形態の漏電検出装置によれば、電池制御装置12は、第1スイッチSW1を閉じ、第2スイッチSW2を開き、第3スイッチSW3を閉じた状態で、電圧検出器VSにより電圧VL1を検出する。続いて、電池制御装置12は、第1スイッチSW1を閉じ、第2スイッチSW2を閉じ、第3スイッチSW3を開いた状態で、電圧検出器VSにより電圧PS_P、PS_Nを検出し、検出された電圧PS_P、PS_Nを用いて上記式(5)により総電圧Vb1を演算する。 According to the leakage detection device of the present embodiment, the battery control device 12 detects the voltage VL1 by the voltage detector VS in a state where the first switch SW1 is closed, the second switch SW2 is opened, and the third switch SW3 is closed. To do. Subsequently, the battery control device 12 detects the voltages PS_P and PS_N by the voltage detector VS with the first switch SW1 closed, the second switch SW2 closed, and the third switch SW3 open, and the detected voltage. The total voltage Vb1 is calculated by the above equation (5) using PS_P and PS_N.

電池制御装置12は、第1スイッチSW1を開き、第2スイッチSW2を閉じ、第3スイッチSW3を閉じた状態で、電圧検出器VSにより電圧VL2を検出する。続いて、電池制御装置12は、第1スイッチSW1を閉じ、第2スイッチSW2を閉じ、第3スイッチSW3を開いた状態で、電圧検出器VSにより電圧PS_P、PS_Nを検出し、検出された電圧PS_P、PS_Nを用いて上記式(5)により総電圧Vb2を演算する。 The battery control device 12 detects the voltage VL2 by the voltage detector VS in a state where the first switch SW1 is opened, the second switch SW2 is closed, and the third switch SW3 is closed. Subsequently, the battery control device 12 detects the voltages PS_P and PS_N by the voltage detector VS with the first switch SW1 closed, the second switch SW2 closed, and the third switch SW3 open, and the detected voltage. The total voltage Vb2 is calculated by the above equation (5) using PS_P and PS_N.

電池制御装置12は、電圧検出器VSにより得られた電圧VL1、VL2と、同時に式(5)により演算された総電圧Vb1、Vb2とを用いて、上記式(5)から総絶縁抵抗RLを演算する。 The battery control device 12 uses the voltages VL1 and VL2 obtained by the voltage detector VS and the total voltages Vb1 and Vb2 calculated by the equation (5) at the same time to obtain the total insulation resistance RL from the above equation (5). Calculate.

電池パック10の充電中又は放電中に電圧VL1を測定するタイミングと総電圧Vb1を測定するタイミングとの間、および、電圧VL2を測定するタイミングと総電圧Vb2を測定するタイミングとの間に、時間差があるとエラー(誤検知)となる可能性がある。これに対し、上記の漏電検出装置および漏電検出方法によれば、第2抵抗器R2の両端の電圧VL1、VL2を測定した直後に、測定した電圧PS_P、PS_Nに基づいて総電圧Vb1、Vb2を演算することが可能となり、総絶縁抵抗RLをより正確に演算することが可能となる。 The time difference between the timing of measuring the voltage VL1 and the timing of measuring the total voltage Vb1 during charging or discharging of the battery pack 10 and the timing of measuring the voltage VL2 and the timing of measuring the total voltage Vb2. If there is, an error (false positive) may occur. On the other hand, according to the above-mentioned earth leakage detection device and earth leakage detection method, immediately after measuring the voltages VL1 and VL2 across the second resistor R2, the total voltages Vb1 and Vb2 are measured based on the measured voltages PS_P and PS_N. It becomes possible to calculate, and it becomes possible to calculate the total insulation resistance RL more accurately.

電池制御装置12は、上記のように算出した絶縁抵抗RLの値と所定の漏電閾値(例えば100kΩ以下)とを比較して、絶縁抵抗RLが所定の漏電閾値以下であるときに漏電しているものと判断する。電池制御装置12は、漏電していると判断したときに、例えば車両ECU30へ故障している旨(エラー)の通知を行う。車両ECU30は、電池制御装置12から故障している旨の通知を受けると、例えば、電池制御装置12へ動作(充電、放電など)を停止させる指令を送信し、電池パック10を停止する。 The battery control device 12 compares the value of the insulation resistance RL calculated as described above with a predetermined leakage threshold value (for example, 100 kΩ or less), and leaks electricity when the insulation resistance RL is equal to or less than the predetermined leakage threshold value. Judge as a thing. When the battery control device 12 determines that there is an electric leakage, the battery control device 12 notifies, for example, the vehicle ECU 30 of a failure (error). Upon receiving the notification from the battery control device 12 that the vehicle is out of order, the vehicle ECU 30 transmits, for example, a command to stop the operation (charging, discharging, etc.) to the battery control device 12 to stop the battery pack 10.

すなわち、本実施形態によれば、上述の第1実施形態と同様の効果を得ることができる。更に、本実施形態によれば、セル電圧から得られる総正極端子Pと総負極端子Nとの間の電圧VPNと、式(2)により得られた総電圧Vbとを比較することにより、電池パック10の故障を判断することが可能となり、漏電検出装置が正常に動作していることを補償し、より正確に漏電検出を行うことができる。 That is, according to the present embodiment, the same effect as that of the above-described first embodiment can be obtained. Further, according to the present embodiment, the battery is obtained by comparing the voltage VPN between the total positive electrode terminal P and the total negative electrode terminal N obtained from the cell voltage with the total voltage Vb obtained by the equation (2). It is possible to determine the failure of the pack 10, compensate that the leakage detection device is operating normally, and perform leakage detection more accurately.

また、第1スイッチSW1を閉じて第2スイッチSW2を開いた状態から、第1スイッチSW1を開いて第2スイッチSW2を閉じた状態へと遷移する際、総電圧Vb1≒総電圧Vb2となるまでに時間がかかる可能性がある。本実施形態の絶縁抵抗測定装置では、例えば、電池制御装置12は、総電圧Vb2が安定したタイミングで電圧VL2、Vb2を測定した場合であっても、正確な総絶縁抵抗RLを得ることができる。 Further, when transitioning from a state in which the first switch SW1 is closed and the second switch SW2 is opened to a state in which the first switch SW1 is opened and the second switch SW2 is closed, until the total voltage Vb1 ≈ total voltage Vb2. May take some time. In the insulation resistance measuring device of the present embodiment, for example, the battery control device 12 can obtain an accurate total insulation resistance RL even when the voltages VL2 and Vb2 are measured at the timing when the total voltage Vb2 is stable. ..

図8は、所定の範囲で制御される電池パックの総電圧の一例を時系列に沿って示す図である。
例えば、ハイブリッド電動車両(HEV)やアイドリングストップシステム(ISS)を搭載した電動車両では、図8に示すように、電池パックの電圧が所定の範囲で制御される。この場合、電池パックの電圧(総電圧Vb)は、周期的に最大値と最小値との中間値となる。したがって、電池パックの電圧が最大値と最小値との中間値となるときに、電圧VL1、VL2のデータ取得する仕様とすれば、電圧測定時間を短縮することができる。
FIG. 8 is a diagram showing an example of the total voltage of the battery pack controlled in a predetermined range in chronological order.
For example, in an electric vehicle equipped with a hybrid electric vehicle (HEV) or an idling stop system (ISS), the voltage of the battery pack is controlled within a predetermined range as shown in FIG. In this case, the voltage of the battery pack (total voltage Vb) periodically becomes an intermediate value between the maximum value and the minimum value. Therefore, if the specifications are such that data of the voltages VL1 and VL2 are acquired when the voltage of the battery pack becomes an intermediate value between the maximum value and the minimum value, the voltage measurement time can be shortened.

また、上記第2実施形態の漏電検出装置の絶縁抵抗低下検出器16において、第3スイッチSW3を閉じた状態とすると、上述の第1実施形態と同様の動作にて、漏電検出を行うことも可能である。なお、本実施形態の絶縁抵抗低下検出器16では、第1実施形態の数式(3)において、R1をR1+R3と置き換えて下記式により演算することができる。 Further, in the insulation resistance reduction detector 16 of the leakage detection device of the second embodiment, when the third switch SW3 is closed, the leakage detection can be performed by the same operation as that of the first embodiment. It is possible. In the insulation resistance reduction detector 16 of the present embodiment, in the mathematical formula (3) of the first embodiment, R1 can be replaced with R1 + R3 and the calculation can be performed by the following formula.

上記のように第1実施形態および第2実施形態によれば、正確に漏電検出を行う漏電検出装置および漏電検出方法を提供することができる。 According to the first embodiment and the second embodiment as described above, it is possible to provide an earth leakage detection device and an earth leakage detection method that accurately detect an earth leakage.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 While some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

例えば、上記第1実施形態および第2実施形態において、電池制御装置12は、電圧VL1、Vb1だけでなく、電圧VL2、Vb2も予めメモリに記録しても構わない。例えば、電池制御装置12は、メモリに記録された電圧VL1、Vb1と電圧VL2、Vb2との、より新しいデータを用いることで、漏電検出時間を短縮できる。例えば、電池制御装置12は、メモリに記録された電圧VL1、Vb1を用い、複数の電圧VL2、Vb2の値を測定してメモリを更新し、総電圧Vb1と総電圧Vb2とが等しい電圧VL1、VL2を用いて絶縁抵抗RLを算出し、次回はメモリに記録された電圧VL2、Vb2を用い、複数の電圧VL1、Vb1の値を測定してメモリを更新し、総電圧Vb1と総電圧Vb2とが等しい電圧VL1、VL2を用いて絶縁抵抗RLを算出する。電池制御装置12がこの動作を繰り返すことで、メモリ内のデータを更新しつつ、正確な漏電検出を実現することができる。 For example, in the first embodiment and the second embodiment, the battery control device 12 may record not only the voltages VL1 and Vb1 but also the voltages VL2 and Vb2 in the memory in advance. For example, the battery control device 12 can shorten the leakage detection time by using newer data of the voltages VL1 and Vb1 and the voltages VL2 and Vb2 recorded in the memory. For example, the battery control device 12 updates the memory by measuring the values of a plurality of voltages VL2 and Vb2 using the voltages VL1 and Vb1 recorded in the memory, and the total voltage Vb1 and the total voltage Vb2 are equal to the voltage VL1. The insulation resistance RL is calculated using VL2, and next time, the voltages VL2 and Vb2 recorded in the memory are used to measure the values of a plurality of voltages VL1 and Vb1 to update the memory, and the total voltage Vb1 and the total voltage Vb2 are obtained. The insulation resistance RL is calculated using the voltages VL1 and VL2 having the same value. By repeating this operation, the battery control device 12 can realize accurate leakage detection while updating the data in the memory.

10…電池パック(蓄電池群)、11…電池監視回路(CMU)、12…電池制御装置(BCU)、16…絶縁抵抗低下検出器、R1N…第1負極側抵抗器、R1P…第1正極側抵抗器、R2…第2抵抗器、R3N…第3負極側抵抗器、R3P…第3正極側抵抗器、SW1…第1スイッチ、SW2…第2スイッチ、SW3…第3スイッチ、bk1…第1電池バンク、bk2…第2電池バンク。 10 ... Battery pack (storage battery group), 11 ... Battery monitoring circuit (CMU), 12 ... Battery control device (BCU), 16 ... Insulation resistance drop detector, R1N ... First negative electrode side resistor, R1P ... First positive electrode side Resistor, R2 ... 2nd resistor, R3N ... 3rd negative electrode side resistor, R3P ... 3rd positive electrode side resistor, SW1 ... 1st switch, SW2 ... 2nd switch, SW3 ... 3rd switch, bk1 ... 1st Battery bank, bk2 ... Second battery bank.

Claims (5)

蓄電池群の主回路正極端子と電気的に接続した第1端子と、
前記蓄電池群の主回路負極端子と電気的に接続した第2端子と、
前記第1端子とグランドとの電気的接続を切り換える第1スイッチと、
前記第2端子と前記グランドとの電気的接続を切り換える第2スイッチと、
前記第1スイッチと前記グランドとの間に直列に接続した第1正極側抵抗器および第2抵抗器と、
前記第2スイッチと前記グランドとの間において、前記第2抵抗器と直列に接続した第1負極側抵抗器と、
前記第2抵抗器の両端の電圧を検出する電圧検出器と、
メモリを含み、前記電圧検出器で検出された電圧の値と、前記蓄電池群のセル電圧を監視する監視装置から送信される電圧に基づいて演算される前記第1端子および前記第2端子間の総電圧とを前記メモリに記録する制御装置と、を備えた漏電検出装置の漏電検出方法であって、
前記制御装置は、前記第1スイッチと前記第2スイッチとの一方を閉じ、前記第1スイッチと前記第2スイッチとの他方を開いた状態とし、前記第2抵抗器の両端の電圧である第1電圧と前記総電圧との組を複数回測定して前記メモリに記録し、
前記第1スイッチと前記第2スイッチとの一方を開き、前記第1スイッチと前記第2スイッチとの他方を閉じた状態とし、前記電圧検出器により、前記メモリに記録された複数の前記総電圧の何れかとの差分が電圧閾値以下である総電圧に対応する、前記第2抵抗器の両端の電圧である第2電圧を少なくとも1つ測定し、
前記総電圧と、前記第1電圧と、前記第2電圧とを用いて前記蓄電池群と前記グランドとの間の総絶縁抵抗を演算し、
前記総絶縁抵抗の値が漏電閾値以下であるときに、漏電していると判断する、漏電検出方法。
The first terminal electrically connected to the positive electrode terminal of the main circuit of the storage battery group,
A second terminal electrically connected to the main circuit negative electrode terminal of the storage battery group,
The first switch that switches the electrical connection between the first terminal and the ground,
A second switch that switches the electrical connection between the second terminal and the ground,
A first positive electrode side resistor and a second resistor connected in series between the first switch and the ground,
A first negative electrode side resistor connected in series with the second resistor between the second switch and the ground.
A voltage detector that detects the voltage across the second resistor and
Between the first terminal and the second terminal calculated based on the value of the voltage detected by the voltage detector including the memory and the voltage transmitted from the monitoring device that monitors the cell voltage of the storage battery group. It is a leakage detection method of a leakage detection device including a control device that records the total voltage in the memory.
The control device closes one of the first switch and the second switch, keeps the other of the first switch and the second switch open, and is a voltage across the second resistor. The set of one voltage and the total voltage is measured a plurality of times and recorded in the memory.
One of the first switch and the second switch is opened, the other of the first switch and the second switch is closed, and a plurality of the total voltages recorded in the memory by the voltage detector. At least one second voltage, which is the voltage across the second resistor, corresponding to the total voltage whose difference from any of the above is equal to or less than the voltage threshold value is measured.
Using the total voltage, the first voltage, and the second voltage, the total insulation resistance between the storage battery group and the ground is calculated.
An earth leakage detection method for determining an earth leakage when the value of the total insulation resistance is equal to or less than the earth leakage threshold value.
前記制御装置は、前記第1スイッチと前記第2スイッチとの一方を開き、前記第1スイッチと前記第2スイッチとの他方を閉じた状態としたときに、前記第2抵抗器の両端の電圧である第2電圧と前記総電圧との組を複数回測定して前記メモリに記録する、請求項1記載の漏電検出方法。 When the control device opens one of the first switch and the second switch and closes the other of the first switch and the second switch, the voltage across the second resistor is set. The leakage detection method according to claim 1, wherein the set of the second voltage and the total voltage is measured a plurality of times and recorded in the memory. 前記第2抵抗器と前記グランドとの電気的接続を切り換える第3スイッチと、
前記第3スイッチと前記第2抵抗器との間に接続した基準電圧と、
前記第1正極側抵抗器と前記第2抵抗器との間に直列に接続した第3正極側抵抗器と、
前記第1負極側抵抗器と前記第2抵抗器との間に直列に接続した第3負極側抵抗器と、
を更に備えた漏電検出装置の漏電検出方法であって、
前記制御装置は、前記第1スイッチを閉じ、前記第2スイッチを閉じ、前記第3スイッチを開いた状態とし、前記電圧検出器により、前記第1正極側抵抗器と前記第3正極側抵抗器との間の電圧と、前記第1負極側抵抗器と前記第3負極側抵抗器との間の電圧と、を検出し、
前記電圧検出器により検出された値を用いて、前記第1端子と前記第2端子との間の電圧を演算するとともに、前記総電圧とを比較し、
前記第1端子と前記第2端子との間の電圧と前記総電圧との差が所定の閾値以上であるときに故障であると判断する、前記請求項1又は請求項2記載の漏電検出方法。
A third switch that switches the electrical connection between the second resistor and the ground,
The reference voltage connected between the third switch and the second resistor,
A third positive electrode side resistor connected in series between the first positive electrode side resistor and the second positive electrode side resistor,
A third negative electrode side resistor connected in series between the first negative electrode side resistor and the second negative electrode side resistor,
It is a leakage detection method of a leakage detection device further equipped with
The control device closes the first switch, closes the second switch, opens the third switch, and uses the voltage detector to make the first positive electrode side resistor and the third positive electrode side resistor open. The voltage between the first negative electrode side resistor and the voltage between the first negative electrode side resistor and the third negative electrode side resistor are detected.
Using the value detected by the voltage detector, the voltage between the first terminal and the second terminal is calculated, and the total voltage is compared.
The leakage detection method according to claim 1 or 2, wherein a failure is determined when the difference between the voltage between the first terminal and the second terminal and the total voltage is equal to or greater than a predetermined threshold value. ..
蓄電池群の主回路正極端子と電気的に接続した第1端子と、
前記蓄電池群の主回路負極端子と電気的に接続した第2端子と、
前記第1端子とグランドとの電気的接続を切り換える第1スイッチと、
前記第2端子と前記グランドとの電気的接続を切り換える第2スイッチと、
前記第1スイッチと前記グランドとの間に直列に接続した第1正極側抵抗器および第2抵抗器と、
前記第2スイッチと前記グランドとの間において、前記第2抵抗器と直列に接続した第1負極側抵抗器と、
前記第2抵抗器と前記グランドとの電気的接続を切り換える第3スイッチと、
前記第3スイッチと前記第2抵抗器との間に接続した基準電圧と、
前記第1正極側抵抗器と前記第2抵抗器との間に直列に接続した第3正極側抵抗器と、
前記第1負極側抵抗器と前記第2抵抗器との間に直列に接続した第3負極側抵抗器と、
前記第2抵抗器の両端の電圧、前記第1正極側抵抗器と前記第3正極側抵抗器との間の電圧、および、前記第1負極側抵抗器と前記第3負極側抵抗器との間の電圧を検出する電圧検出器と、
前記第1スイッチ、前記第2スイッチ、前記第3スイッチの動作を制御する制御装置と、を備えた漏電検出装置の漏電検出方法であって、
前記制御装置は、前記第1スイッチと前記第2スイッチとの一方を閉じ、前記第1スイッチと前記第2スイッチとの他方を開き、前記第3スイッチを閉じた状態とし、前記電圧検出器により、前記第2抵抗器の両端の電圧である第1電圧を測定し、
前記第1スイッチを閉じ、前記第2スイッチを閉じ、前記第3スイッチを開いた状態とし、前記電圧検出器により、前記第1正極側抵抗器と前記第3正極側抵抗器との間の電圧と、前記第1負極側抵抗器と前記第3負極側抵抗器との間の電圧と、を検出し、前記電圧検出器により検出された値を用いて、前記第1端子と前記第2端子との間の第1総電圧を演算し、
前記第1スイッチと前記第2スイッチとの一方を開き、前記第1スイッチと前記第2スイッチとの他方を閉じ、前記第3スイッチを閉じた状態とし、前記電圧検出器により、前記第2抵抗器の両端の電圧である第2電圧を測定し、
前記第1スイッチを閉じ、前記第2スイッチを閉じ、前記第3スイッチを開いた状態とし、前記電圧検出器により、前記第1正極側抵抗器と前記第3正極側抵抗器との間の電圧と、前記第1負極側抵抗器と前記第3負極側抵抗器との間の電圧と、を検出し、前記電圧検出器により検出された値を用いて、前記第1端子と前記第2端子との間の第2総電圧を演算し、
前記第1総電圧と、前記第2総電圧と、前記第1電圧と、前記第2電圧とを用いて前記蓄電池群と前記グランドとの間の総絶縁抵抗を演算し、
前記総絶縁抵抗の値が漏電閾値以下であるときに、漏電していると判断する、漏電検出方法。
The first terminal electrically connected to the positive electrode terminal of the main circuit of the storage battery group,
A second terminal electrically connected to the main circuit negative electrode terminal of the storage battery group,
The first switch that switches the electrical connection between the first terminal and the ground,
A second switch that switches the electrical connection between the second terminal and the ground,
A first positive electrode side resistor and a second resistor connected in series between the first switch and the ground,
A first negative electrode side resistor connected in series with the second resistor between the second switch and the ground.
A third switch that switches the electrical connection between the second resistor and the ground,
The reference voltage connected between the third switch and the second resistor,
A third positive electrode side resistor connected in series between the first positive electrode side resistor and the second positive electrode side resistor,
A third negative electrode side resistor connected in series between the first negative electrode side resistor and the second negative electrode side resistor,
The voltage across the second resistor, the voltage between the first positive electrode side resistor and the third positive electrode side resistor, and the first negative electrode side resistor and the third negative electrode side resistor. With a voltage detector that detects the voltage between
A method for detecting an electric leakage of an electric leakage detecting device including the first switch, the second switch, and a control device for controlling the operation of the third switch.
In the control device, one of the first switch and the second switch is closed, the other of the first switch and the second switch is opened, the third switch is closed, and the voltage detector is used. , Measure the first voltage, which is the voltage across the second resistor,
The first switch is closed, the second switch is closed, the third switch is opened, and the voltage between the first positive electrode side resistor and the third positive electrode side resistor is measured by the voltage detector. And the voltage between the first negative electrode side resistor and the third negative electrode side resistor, and the value detected by the voltage detector is used to detect the first terminal and the second terminal. Calculate the first total voltage between and
One of the first switch and the second switch is opened, the other of the first switch and the second switch is closed, the third switch is closed, and the second resistor is operated by the voltage detector. Measure the second voltage, which is the voltage across the device,
The first switch is closed, the second switch is closed, the third switch is opened, and the voltage between the first positive electrode side resistor and the third positive electrode side resistor is measured by the voltage detector. And the voltage between the first negative electrode side resistor and the third negative electrode side resistor, and the value detected by the voltage detector is used to detect the first terminal and the second terminal. Calculate the second total voltage between and
Using the first total voltage, the second total voltage, the first voltage, and the second voltage, the total insulation resistance between the storage battery group and the ground is calculated.
An earth leakage detection method for determining an earth leakage when the value of the total insulation resistance is equal to or less than the earth leakage threshold value.
蓄電池群の主回路正極端子と電気的に接続した第1端子と、
前記蓄電池群の主回路負極端子と電気的に接続した第2端子と、
前記第1端子とグランドとの電気的接続を切り換える第1スイッチと、
前記第2端子と前記グランドとの電気的接続を切り換える第2スイッチと、
前記第1スイッチと前記グランドとの間に直列に接続した第1正極側抵抗器および第2抵抗器と、
前記第2スイッチと前記グランドとの間において、前記第2抵抗器と直列に接続した第1負極側抵抗器と、
前記第2抵抗器と前記グランドとの電気的接続を切り換える第3スイッチと、
前記第3スイッチと前記第2抵抗器との間に接続した基準電圧と、
前記第1正極側抵抗器と前記第2抵抗器との間に直列に接続した第3正極側抵抗器と、
前記第1負極側抵抗器と前記第2抵抗器との間に直列に接続した第3負極側抵抗器と、
前記第2抵抗器の両端の電圧、前記第1正極側抵抗器と前記第3正極側抵抗器との間の電圧、および、前記第1負極側抵抗器と前記第3負極側抵抗器との間の電圧を検出する電圧検出器と、
前記第1スイッチ、前記第2スイッチ、前記第3スイッチの動作を制御する制御装置と、を備えた漏電検出装置。
The first terminal electrically connected to the positive electrode terminal of the main circuit of the storage battery group,
A second terminal electrically connected to the main circuit negative electrode terminal of the storage battery group,
The first switch that switches the electrical connection between the first terminal and the ground,
A second switch that switches the electrical connection between the second terminal and the ground,
A first positive electrode side resistor and a second resistor connected in series between the first switch and the ground,
A first negative electrode side resistor connected in series with the second resistor between the second switch and the ground.
A third switch that switches the electrical connection between the second resistor and the ground,
The reference voltage connected between the third switch and the second resistor,
A third positive electrode side resistor connected in series between the first positive electrode side resistor and the second positive electrode side resistor,
A third negative electrode side resistor connected in series between the first negative electrode side resistor and the second negative electrode side resistor,
The voltage across the second resistor, the voltage between the first positive electrode side resistor and the third positive electrode side resistor, and the first negative electrode side resistor and the third negative electrode side resistor. With a voltage detector that detects the voltage between
An electric leakage detection device including a control device for controlling the operation of the first switch, the second switch, and the third switch.
JP2016142419A 2016-07-20 2016-07-20 Leakage detection device and leakage detection method Active JP6753715B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016142419A JP6753715B2 (en) 2016-07-20 2016-07-20 Leakage detection device and leakage detection method
PCT/JP2017/024227 WO2018016298A1 (en) 2016-07-20 2017-06-30 Earth leakage detecting device and earth leakage detecting method
EP17830818.5A EP3489698A4 (en) 2016-07-20 2017-06-30 Earth leakage detecting device and earth leakage detecting method
CN201780038731.7A CN109416383A (en) 2016-07-20 2017-06-30 Earth detector and electrical leakage detecting method
US16/250,482 US20190146040A1 (en) 2016-07-20 2019-01-17 Electric leakage detection apparatus and electric leakage detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016142419A JP6753715B2 (en) 2016-07-20 2016-07-20 Leakage detection device and leakage detection method

Publications (2)

Publication Number Publication Date
JP2018013389A JP2018013389A (en) 2018-01-25
JP6753715B2 true JP6753715B2 (en) 2020-09-09

Family

ID=60992118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016142419A Active JP6753715B2 (en) 2016-07-20 2016-07-20 Leakage detection device and leakage detection method

Country Status (5)

Country Link
US (1) US20190146040A1 (en)
EP (1) EP3489698A4 (en)
JP (1) JP6753715B2 (en)
CN (1) CN109416383A (en)
WO (1) WO2018016298A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101948344B1 (en) * 2011-03-31 2019-02-14 르네사스 일렉트로닉스 가부시키가이샤 Voltage monitoring module and voltage monitoring system using same
JP2021076373A (en) * 2018-03-15 2021-05-20 三洋電機株式会社 Leakage detection circuit, vehicle power supply system
CN110568366B (en) * 2018-06-05 2022-02-11 广州小鹏汽车科技有限公司 Insulation circuit, battery pack leakage detection method and hardware detection method
CN111122976B (en) * 2018-10-30 2022-07-19 郑州深澜动力科技有限公司 Method for detecting insulation resistance of electric vehicle
CN109884534B (en) * 2019-02-28 2021-04-13 蜂巢能源科技有限公司 Power battery pack parameter detection method and detection device
JP7086886B2 (en) * 2019-04-03 2022-06-20 矢崎総業株式会社 Ground fault detector
JP7268515B2 (en) * 2019-07-16 2023-05-08 三菱自動車工業株式会社 power supply system
CN211123030U (en) * 2019-07-23 2020-07-28 潍柴动力股份有限公司 Fuel cell automobile insulation resistance fault detection system
WO2021085893A1 (en) 2019-10-31 2021-05-06 주식회사 엘지화학 Short circuit detecting apparatus, short circuit detecting method, and electric vehicle
CN111273132B (en) * 2019-11-05 2022-03-18 浙江零跑科技股份有限公司 Battery pack insulation detection circuit and diagnosis method
CN111142051A (en) * 2020-01-06 2020-05-12 深圳市盛弘电气股份有限公司 Serial line detection circuit and judgment method thereof
CN113306397B (en) * 2020-02-26 2023-04-07 宇通客车股份有限公司 Insulation failure positioning method and system of battery system and new energy automobile
US11264651B2 (en) * 2020-02-28 2022-03-01 Delphi Technologies Ip Limited Method to detect current leakage from a vehicle battery
CN111751689A (en) * 2020-05-25 2020-10-09 福建星云电子股份有限公司 Voltage withstand insulation test method for lithium battery module total positive electrode to shell
CN113721075A (en) * 2020-05-25 2021-11-30 广东亿顶新能源汽车有限公司 False alarm prevention method applied to bridge method insulation detection
CN114002502B (en) * 2020-07-27 2023-01-13 宁德时代新能源科技股份有限公司 Insulation resistance detection circuit and method
KR20220059039A (en) 2020-11-02 2022-05-10 삼성전자주식회사 Nonvolatile memory devices and methods of programming in nonvolatile memory devices
KR20220062223A (en) * 2020-11-06 2022-05-16 현대자동차주식회사 System and method for managing battery of vehicle
KR20220074582A (en) * 2020-11-27 2022-06-03 주식회사 엘지에너지솔루션 Apparatus for managing status of relay and operating method of the same
KR20220109745A (en) * 2021-01-29 2022-08-05 주식회사 엘지에너지솔루션 BATTERY PACK, battery APPARTUS and method for DETECTING electrolyte LEAKAGE
US11971443B2 (en) 2021-03-05 2024-04-30 Volvo Car Corporation Active symmetrization via insulation monitoring for electrical vehicle interoperability with charging stations
WO2022210668A1 (en) * 2021-03-31 2022-10-06 ヌヴォトンテクノロジージャパン株式会社 Earth leakage detecting circuit, and battery state detecting circuit
EP4141457B1 (en) * 2021-08-24 2024-10-09 Volvo Car Corporation Ground fault monitoring system for an energy storage system
KR102709287B1 (en) * 2021-11-09 2024-09-24 주식회사 글로쿼드텍 System for measuring insulation resistance and method of the same
KR20230069593A (en) * 2021-11-12 2023-05-19 주식회사 엘지에너지솔루션 Apparatus for measuring insulation resistance
CN114295945B (en) * 2021-12-29 2023-10-03 湖北亿纬动力有限公司 Insulation detection method, device and system
DE102022201190B8 (en) * 2022-02-04 2024-01-18 Vitesco Technologies GmbH Detection of symmetrical and asymmetrical insulation faults through asymmetrically switchable fault current detection

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08163704A (en) * 1994-11-30 1996-06-21 Fujikura Ltd Leakage detector
JP3307173B2 (en) * 1995-03-20 2002-07-24 松下電器産業株式会社 Earth leakage detection device
JP2003066090A (en) * 2001-08-29 2003-03-05 Omron Corp Leak detector
DE10300539B4 (en) * 2003-01-09 2007-05-24 Daimlerchrysler Ag Circuit and method for detecting insulation faults
JP5705730B2 (en) * 2008-08-11 2015-04-22 エルジー・ケム・リミテッド Battery leakage current sensing device and method, and battery driving device and battery pack including the device
CN201335868Y (en) * 2008-12-29 2009-10-28 株洲电力机车厂长河机电产品开发公司 Insulation monitor for DC (direct current) network
EP2570289B1 (en) * 2011-09-16 2018-08-15 Samsung SDI Co., Ltd. Device for determining the insulation resistance of a high-voltage battery system
CN104220886B (en) * 2012-03-26 2017-05-17 株式会社Lg化学 Device and method for measuring insulation resistance of battery
JP2014020914A (en) * 2012-07-18 2014-02-03 Keihin Corp Leak detection device
US9063179B2 (en) * 2012-09-26 2015-06-23 Lg Chem, Ltd. System and method for determining an isolation resistance of a battery pack disposed on a vehicle chassis
JP5642146B2 (en) * 2012-12-19 2014-12-17 オムロンオートモーティブエレクトロニクス株式会社 Earth leakage detector
JP2015001423A (en) * 2013-06-14 2015-01-05 矢崎総業株式会社 Insulation status detection device
US9194918B2 (en) * 2013-12-12 2015-11-24 Ford Global Technologies, Llc Leakage detection circuit with integral circuit robustness check

Also Published As

Publication number Publication date
EP3489698A4 (en) 2020-03-11
WO2018016298A1 (en) 2018-01-25
EP3489698A1 (en) 2019-05-29
CN109416383A (en) 2019-03-01
US20190146040A1 (en) 2019-05-16
JP2018013389A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP6753715B2 (en) Leakage detection device and leakage detection method
US10197619B2 (en) State determination apparatus
US9685807B2 (en) Battery control device
EP2110679B1 (en) Device and method for detecting abnormality of electric storage device
JP6485825B2 (en) A battery system comprising: a battery configured to supply electrical energy to a high voltage network; and a measuring device for measuring at least one insulation resistance of the battery.
US9194918B2 (en) Leakage detection circuit with integral circuit robustness check
US10551468B2 (en) Failure detection apparatus for voltage sensor
US20190123568A1 (en) Power Supply System
WO2014122721A1 (en) Cell control device
US9863993B2 (en) Storage battery monitoring device with wiring disconnection detection
KR102155207B1 (en) Insulation resistance measuring apparatus, battery management system having the same and insulation resistance measuring method
US20210148992A1 (en) Ground fault detection device
JP6668102B2 (en) Deterioration detection device and deterioration detection method
KR20130128597A (en) Insulation resistance sensing circuit and battery management system including the same
JP2013242324A (en) Battery monitoring device
CN111954824A (en) Diagnostic device and diagnostic method
JP2007285714A (en) Apparatus and method for detecting anomaly of battery voltage detection device
KR101142461B1 (en) Insulation resistance measurement circuit
JP2017209003A (en) Method and apparatus for charging vehicle battery
US20230230788A1 (en) Relay control device and method of controlling relay control device
KR20140124470A (en) Battery control system and driving method of the same
US7999553B2 (en) Voltage measurement device and electric vehicle
KR101475914B1 (en) Apparatus for measuring isolation resistance having malfunction self-diagnosing and method thereof
KR102294267B1 (en) Cell Sensing Circuit Inspection Apparatus For Electrical Vehicle Battery Or Fuel Cell Vehicle Stack, And Inspection Method Thereof
KR101417461B1 (en) Apparatus and method for checking disconnection of battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170904

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190513

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200820

R151 Written notification of patent or utility model registration

Ref document number: 6753715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151