JP2015001423A - Insulation status detection device - Google Patents

Insulation status detection device Download PDF

Info

Publication number
JP2015001423A
JP2015001423A JP2013125462A JP2013125462A JP2015001423A JP 2015001423 A JP2015001423 A JP 2015001423A JP 2013125462 A JP2013125462 A JP 2013125462A JP 2013125462 A JP2013125462 A JP 2013125462A JP 2015001423 A JP2015001423 A JP 2015001423A
Authority
JP
Japan
Prior art keywords
voltage
primary
circuit
flying capacitor
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013125462A
Other languages
Japanese (ja)
Inventor
佳浩 河村
Yoshihiro Kawamura
佳浩 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2013125462A priority Critical patent/JP2015001423A/en
Priority to PCT/JP2014/063864 priority patent/WO2014199809A1/en
Publication of JP2015001423A publication Critical patent/JP2015001423A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique which realizes an insulation status detection device capable of properly operating even during step-up operation.SOLUTION: A ground fault sensor 11 includes: a flying capacitor C1; first and second switches SW1, SW2 selectively connecting both poles of the flying capacitor C1 to a positive pole and a negative pole of a high voltage DC power supply B; third and fourth switches SW3, SW4 selectively connecting both poles of the flying capacitor C1 to a control part (micro-computer) 15 and a ground potential part; a current direction selection circuit 30; and a high voltage selection circuit 20 on the upstream side of the first and second switches SW1, SW2. The high voltage selection circuit 20 has primary and secondary selection diodes arranged in parallel, having both cathode sides connected, and is communicated to the first switch SW1, while an anode of the primary selection diode is connected to a primary side high voltage positive pole. Further, the anode of the secondary selection diode is connected to a secondary side high voltage positive pole of a booster 3.

Description

本発明は、フライングキャパシタへの充電状態に基づき接地電位に対する地絡や絶縁状態を検出する絶縁状態検出装置に関する。   The present invention relates to an insulation state detection device that detects a ground fault or an insulation state with respect to a ground potential based on a state of charge of a flying capacitor.

電気自動車やPHV(プラグインハイブリット自動車)が実用化され様々な車種が市場に投入されるようになっている。このような車両においては、動力源として電力が利用される。その場合、例えば200Vに高圧化された直流電源を車体から絶縁する必要がある。そして、このような直流電源の接地電位部に対する地絡や絶縁状態を検出する絶縁状態検出装置が重要な役割を果たすことになる。この種の絶縁状態検出装置として、直流電源により充電されるフライングキャパシタを用いた装置が知られている。この絶縁状態検出装置は、直流電源の正電位や負電位によりフライングキャパシタを充電し、その充電電圧をマイクロコンピュータ等で計測することで、正側や負側の地絡抵抗又は絶縁状態を検出する。   Electric vehicles and PHVs (plug-in hybrid vehicles) have been put into practical use, and various types of vehicles have been put on the market. In such a vehicle, electric power is used as a power source. In that case, for example, it is necessary to insulate the DC power source whose voltage is increased to 200 V from the vehicle body. And the insulation state detection apparatus which detects the ground fault and insulation state with respect to the grounding potential part of such DC power supply plays an important role. As this type of insulation state detection device, a device using a flying capacitor charged by a DC power source is known. This insulation state detection device detects a ground fault resistance or insulation state on the positive side or negative side by charging a flying capacitor with a positive potential or negative potential of a DC power source and measuring the charging voltage with a microcomputer or the like. .

ところで、上述したように推進用エネルギーとして電力を利用する車両においては、負荷の駆動効率を高めるために、直流電源の正電位を昇圧して負荷に供給する場合がある。そのような場合には、昇圧前の1次側と昇圧後の2次側とのそれぞれについて、接地電位部に対する地絡や絶縁状態を検出する必要がある。   By the way, as described above, in a vehicle that uses electric power as propulsion energy, the positive potential of the DC power supply may be boosted and supplied to the load in order to increase the drive efficiency of the load. In such a case, it is necessary to detect a ground fault or an insulation state with respect to the ground potential portion for each of the primary side before boosting and the secondary side after boosting.

また、この場合、部品の耐圧や高圧バッテリの電圧検知バックアップ等を考慮すると、1次側に地絡センサを配置することが望ましい。そして昇圧された2次側の電圧及び地絡抵抗値によっては2次側からの異常な電位の回り込みが発生してしまうことがあり、各種の対策技術が提案されている。例えば、昇圧中は地絡計測動作を停止する制御を行う技術がある(例えば特許文献1参照)。また、1次側設置の構成において、負電位計測回路を設け、接地電位部から絶縁された直流電源の正電位を昇圧した2次側の正電位と地絡抵抗との関係に起因して、直流電源の正電位による充電時にフライングキャパシタが2次側の正電位により逆極性で充電されても、フライングキャパシタの充電電圧を計測手段により計測することを可能にした技術もある(例えば特許文献2参照)。   In this case, it is desirable to place a ground fault sensor on the primary side in consideration of the breakdown voltage of components, the voltage detection backup of the high voltage battery, and the like. Depending on the boosted secondary voltage and ground fault resistance value, an abnormal potential wraparound from the secondary side may occur, and various countermeasure techniques have been proposed. For example, there is a technique for performing control to stop the ground fault measurement operation during boosting (for example, see Patent Document 1). In addition, in the configuration of the primary side, a negative potential measurement circuit is provided, and due to the relationship between the secondary side positive potential obtained by boosting the positive potential of the DC power source insulated from the ground potential portion and the ground fault resistance, There is also a technique that enables the charging voltage of the flying capacitor to be measured by the measuring means even when the flying capacitor is charged with the reverse polarity by the secondary side positive potential during charging with the positive potential of the DC power supply (for example, Patent Document 2). reference).

特開2010−239822号公報JP 2010-239822 A 特開2011−017586号公報JP 2011-017586 A

ところで、特許文献1に開示の技術では、計測動作が一時的に停止する期間が生じてしまうことから、計測を行える期間に制限ができてしまうという課題があった。また、特許文献2に開示の技術では、追加回路が大がかりになってしまう傾向があり、また、対応するためのアプリケーション(ソフト)の設計負担が大きく、別の技術が求められていた。   By the way, in the technique disclosed in Patent Document 1, there is a problem that a period during which the measurement operation is temporarily stopped is generated, and thus the period during which the measurement can be performed is limited. Further, in the technique disclosed in Patent Document 2, there is a tendency that an additional circuit becomes large, and the design burden of an application (software) for dealing with it is large, and another technique is required.

本発明の目的は、このような状況に鑑みてなされたものであり、上記課題を解決する技術を提供することにある。   The object of the present invention is made in view of such a situation, and is to provide a technique for solving the above-described problems.

本発明は、接地電位部から絶縁された直流電源により地絡抵抗に応じた電圧で充電されるフライングキャパシタと、前記直流電源により充電された後に前記直流電源から絶縁された前記フライングキャパシタを、前記フライングキャパシタの充電電圧を計測する計測手段と前記接地電位部との間に直列接続する計測回路とを備え、前記直流電源の正電位を昇圧して負荷に供給する昇圧電源回路の1次側に接続されて、前記計測手段による前記フライングキャパシタの充電電圧の計測結果に基づき、前記昇圧電源回路の絶縁状態を検出する絶縁状態検出装置であって、前記一次側の正極と前記2次側の正極に別経路で接続され直流電流を前記フライングキャパシタへ導く回路を構成する高圧選択回路を備え、前記高圧選択回路は、前記1次側の正極に接続され少なくとも昇圧動作時に前記1次側の正極への電流が流れないように機能する1次選択部と、前記2次側の正極に接続される2次選択部とを有している。
また、前記1次選択部及び前記2次選択部は、前記1次側の正極及び前記2次側の正極から電流を流し、前記高圧選択回路から前記1次側の正極及び前記2次側の正極へ電流を流さないように接続される整流手段であってもよい。
また、前記1次選択部及び前記2次選択部は、オンオフ制御されるスイッチング手段であって、昇圧動作時に前記1次選択部はオフに制御されてもよい。
The present invention provides a flying capacitor charged with a voltage corresponding to a ground fault resistance by a DC power source insulated from a ground potential portion, and the flying capacitor insulated from the DC power source after being charged by the DC power source, A measuring circuit for measuring a charging voltage of the flying capacitor and a measuring circuit connected in series between the ground potential section, and boosting a positive potential of the DC power supply to supply to a load on a primary side of the boosting power supply circuit; An insulation state detection device that is connected and detects an insulation state of the boost power supply circuit based on a measurement result of a charging voltage of the flying capacitor by the measurement unit, the primary side positive electrode and the secondary side positive electrode And a high voltage selection circuit that configures a circuit that guides a direct current to the flying capacitor. The high voltage selection circuit is connected to the primary side A primary selection unit that is connected to the pole and functions to prevent current from flowing to the primary-side positive electrode during at least a boost operation; and a secondary selection unit that is connected to the secondary-side positive electrode .
The primary selection unit and the secondary selection unit flow current from the primary-side positive electrode and the secondary-side positive electrode, and from the high-voltage selection circuit, the primary-side positive electrode and the secondary-side positive electrode. Rectifying means connected so as not to flow current to the positive electrode may be used.
The primary selection unit and the secondary selection unit may be switching means that is controlled to be turned on / off, and the primary selection unit may be controlled to be turned off during a boost operation.

本発明によれば、昇圧動作時であっても、適切に動作可能な絶縁状態検出装置を実現することができる。   According to the present invention, it is possible to realize an insulation state detection device that can operate properly even during a boost operation.

発明の実施形態に係る、地絡センサを備える昇圧電源回路の図である。FIG. 3 is a diagram of a boost power supply circuit including a ground fault sensor according to an embodiment of the invention. 発明の実施形態に係る、高圧選択回路の図である。1 is a diagram of a high voltage selection circuit according to an embodiment of the invention. 発明の実施形態に係る、昇圧器が停止時の第1の充電状態を示す昇圧電源回路の図である。It is a figure of the step-up power supply circuit which shows the 1st charge state at the time of a booster stopping based on embodiment of invention. 発明の実施形態に係る、昇圧器が停止時の第2の充電状態を示す昇圧電源回路の図である。It is a figure of the step-up power supply circuit which shows the 2nd charge state at the time of a booster stopping according to embodiment of invention. 発明の実施形態に係る、昇圧器が停止時の第3の充電状態を示す昇圧電源回路の図である。It is a figure of the step-up power supply circuit which shows the 3rd charge state at the time of a booster stopping based on embodiment of invention. 発明の実施形態に係る、昇圧器が動作時の第1の充電状態を示す昇圧電源回路の図である。It is a figure of the step-up power supply circuit which shows the 1st charge state at the time of operation | movement of the booster based on embodiment of invention. 発明の実施形態に係る、昇圧器が動作時の第2の充電状態を示す昇圧電源回路の図である。It is a figure of the step-up power supply circuit which shows the 2nd charge state at the time of operation | movement of the booster based on embodiment of invention. 発明の実施形態に係る、昇圧器が動作時の第3の充電状態を示す昇圧電源回路の図である。It is a figure of the step-up power supply circuit which shows the 3rd charge state at the time of operation | movement of the booster based on embodiment of invention. 発明の実施形態に係る、高圧選択回路を備えない地絡センサを備える昇圧電源回路において電圧の異常回り込みを説明する図である。It is a figure explaining the abnormal sneak in the voltage in the step-up power supply circuit including the ground fault sensor not including the high-voltage selection circuit according to the embodiment of the invention. 発明の実施形態に係る、高圧選択回路の変形例の図である。It is a figure of the modification of the high voltage | pressure selection circuit based on embodiment of invention.

以下、発明を実施するための形態(以下、「実施形態」という)を、図面を参照しつつ説明する。   Hereinafter, modes for carrying out the invention (hereinafter referred to as “embodiments”) will be described with reference to the drawings.

図1は本実施形態に係る地絡センサ11を絶縁状態検出装置として用いた昇圧電源回路1の回路図である。図示のように、昇圧電源回路1は、接地電位部から絶縁された1次側の高圧直流電源Bの正電位を、昇圧器3により昇圧して2次側の負荷5に供給する。昇圧電源回路1の地絡や絶縁状態は、高圧直流電源Bの正極及び負極の間に接続された地絡センサ11によって検出される。   FIG. 1 is a circuit diagram of a boost power supply circuit 1 using a ground fault sensor 11 according to the present embodiment as an insulation state detection device. As shown in the figure, the boosting power supply circuit 1 boosts the positive potential of the primary high-voltage DC power supply B insulated from the ground potential portion by the booster 3 and supplies the boosted voltage to the secondary load 5. The ground fault and insulation state of the boost power supply circuit 1 are detected by a ground fault sensor 11 connected between the positive electrode and the negative electrode of the high-voltage DC power supply B.

なお、図中の符号RLpは1次側の正側の地絡抵抗(1次側+地絡抵抗)、符号RLnは1次側の負側の地絡抵抗(1次側−地絡抵抗)、符号RLp2は2次側の正側の地絡抵抗(2次側+地絡抵抗)、符号RLn2は2次側の負側の地絡抵抗(2次側−地絡抵抗)をそれぞれ示す。   In addition, the code | symbol RLp in a figure is a primary side ground fault resistance (primary side + ground fault resistance), and a code | symbol RLn is a primary side negative side ground fault resistance (primary side-ground fault resistance). RLp2 indicates a secondary side ground fault resistance (secondary side + ground fault resistance), and RLn2 indicates a secondary side negative ground fault resistance (secondary side-ground fault resistance).

地絡センサ11は、両極性のフライングキャパシタC1と、フライングキャパシタC1の両極を高圧直流電源Bの正極及び負極にそれぞれ選択的に接続する第1及び第2のスイッチSW1、SW2と、フライングキャパシタC1の両極を制御部(マイクロコンピュータ)15及び接地電位部に選択的に接続する第3及び第4のスイッチSW3、SW4と、電流方向選択回路30と、第1及び第2のスイッチSW1、SW2より上流側(高圧直流電源Bの正極側)の高圧選択回路20とを有している。   The ground fault sensor 11 includes a bipolar flying capacitor C1, first and second switches SW1 and SW2 that selectively connect both poles of the flying capacitor C1 to the positive electrode and the negative electrode of the high-voltage DC power supply B, and the flying capacitor C1. From the third and fourth switches SW3, SW4, the current direction selection circuit 30, and the first and second switches SW1, SW2 that selectively connect the two electrodes to the control unit (microcomputer) 15 and the ground potential unit. And a high voltage selection circuit 20 on the upstream side (positive electrode side of the high voltage DC power supply B).

なお、本実施形態の地絡センサ11の基本的な計測原理は一般的な計測原理と同一であるので、以下の説明では、本実施形態において特徴的な点に着目して説明し、一般的な原理等は適宜説明を省略する。また、地絡センサ11において、放電のためにフライングキャパシタC1の両極を抵抗を介して短絡させるスイッチを設けたり、もしくは一方の極(図中上方の極)と後述の第4のスイッチSW4を同時オンで放電する制御がなされてもよい。   In addition, since the basic measurement principle of the ground fault sensor 11 of this embodiment is the same as a general measurement principle, in the following description, it demonstrates paying attention to the characteristic point in this embodiment, and is general. The description of such principles is omitted as appropriate. In addition, the ground fault sensor 11 is provided with a switch for short-circuiting both poles of the flying capacitor C1 through a resistor for discharging, or one pole (upper pole in the figure) and a fourth switch SW4 described later are simultaneously provided. Control to discharge when on may be performed.

制御部15は、マイコンで構成され計測装置として機能し、また、高圧直流電源Bよりも低い低圧系の所定の電源(図示せず)によって動作する。高圧直流電源Bは制御部15の接地電位部からも絶縁されている。第1〜第4のスイッチSW1〜SW4は、例えば光MOSFETで構成されており、高圧直流電源Bから絶縁して制御部15によりオンオフ制御される。また、第5のスイッチSW5は、地絡センサ11へ高圧電源を供給するためのパワーリレー回路である。   The control unit 15 is constituted by a microcomputer and functions as a measuring device, and is operated by a predetermined low-voltage power supply (not shown) lower than the high-voltage DC power supply B. The high-voltage DC power source B is also insulated from the ground potential portion of the control unit 15. The first to fourth switches SW <b> 1 to SW <b> 4 are configured by, for example, optical MOSFETs, insulated from the high-voltage DC power supply B and controlled to be turned on / off by the control unit 15. The fifth switch SW5 is a power relay circuit for supplying high-voltage power to the ground fault sensor 11.

制御部15と第3のスイッチSW3との接続点は、第3の抵抗R3を介して接地されている。第4のスイッチSW4と接地電位部との間には、第4の抵抗R4が接続されている。フライングキャパシタC1の一端側の第1及び第3のスイッチSW1、SW3は直列接続されており、両者の接続点T1とフライングキャパシタC1の一端との間には、電流方向切替回路30が接続されている。   A connection point between the control unit 15 and the third switch SW3 is grounded via the third resistor R3. A fourth resistor R4 is connected between the fourth switch SW4 and the ground potential portion. The first and third switches SW1 and SW3 on one end side of the flying capacitor C1 are connected in series, and a current direction switching circuit 30 is connected between the connection point T1 and one end of the flying capacitor C1. Yes.

電流方向切替回路30は並列回路であり、その一方は、第1及び第3のスイッチSW1、SW3からフライングキャパシタC1の一端に向けて順方向となるダイオードD0と第1の抵抗R1の直列回路で構成され、他方は、フライングキャパシタC1の一端から第1及び第3のスイッチSW1、SW3に向けて順方向となるダイオードD1と第2の抵抗R2の直列回路で構成されている。   The current direction switching circuit 30 is a parallel circuit, one of which is a series circuit of a diode D0 and a first resistor R1 that are forwardly directed from the first and third switches SW1 and SW3 toward one end of the flying capacitor C1. The other is composed of a series circuit of a diode D1 and a second resistor R2 that are forward from one end of the flying capacitor C1 toward the first and third switches SW1 and SW3.

また、高圧選択回路20は、第1のスイッチSW1より上流側に配置されており、上流側の接続として、第5のスイッチSW5及び2次側高圧正極に接続されている。また、高圧選択回路20は、下流側接続として、第1のスイッチSW1に接続される。   Moreover, the high voltage | pressure selection circuit 20 is arrange | positioned upstream from 1st switch SW1, and is connected to 5th switch SW5 and a secondary side high voltage positive electrode as an upstream connection. The high voltage selection circuit 20 is connected to the first switch SW1 as a downstream connection.

高圧選択回路20の具体的な構成は、図2に示すように、二つのダイオードとして1次及び2次選択ダイオードD21、D22が並列に配置され、両カソード側が接続され、第1のスイッチSW1に繋がる。一方、ダイオードD21のアノードは、1次側高圧正極(第5のスイッチSW5)に接続される。また、第2選択ダイオードD22のアノードは、昇圧器3の2次側高圧正極に接続される。したがって、地絡センサ11から1次側及び2次側高圧正極に電流が流れることはない。   As shown in FIG. 2, the specific configuration of the high-voltage selection circuit 20 is such that primary and secondary selection diodes D21 and D22 are arranged in parallel as two diodes, both cathode sides are connected, and the first switch SW1 is connected to the first switch SW1. Connected. On the other hand, the anode of the diode D21 is connected to the primary high voltage positive electrode (fifth switch SW5). The anode of the second selection diode D22 is connected to the secondary high-voltage positive electrode of the booster 3. Therefore, no current flows from the ground fault sensor 11 to the primary side and secondary side high-voltage positive electrodes.

以上の構成による地絡や絶縁状態を検出する動作及び処理について図3〜図8を参照して説明する。まず、図3〜図5を参照して昇圧器3が停止している場合について説明する。   Operations and processing for detecting a ground fault and an insulation state with the above configuration will be described with reference to FIGS. First, the case where the booster 3 is stopped will be described with reference to FIGS.

図3に示す第1の充電状態(昇圧器3停止時)の昇圧電源回路1では、地絡や絶縁状態を検出するために、まず、制御部15は、第1及び第2スイッチSW1、SW2をオンさせると共に第3及び第4のスイッチSW3、SW4をオフさせる。これにより、高圧直流電源Bの正極から、高圧選択回路20(1次選択ダイオードD21)、第1のスイッチSW1、ダイオードD0、第1の抵抗R1、フライングキャパシタC1の一端、他端、及び、第2のスイッチSW2を経て、高圧直流電源Bの負極に至る充電回路が形成される。   In the boosting power supply circuit 1 in the first charging state (when the booster 3 is stopped) shown in FIG. 3, in order to detect a ground fault or an insulation state, first, the control unit 15 first and second switches SW1, SW2 And the third and fourth switches SW3 and SW4 are turned off. Accordingly, from the positive electrode of the high-voltage DC power supply B, the high-voltage selection circuit 20 (primary selection diode D21), the first switch SW1, the diode D0, the first resistor R1, the one end of the flying capacitor C1, the other end, A charging circuit that reaches the negative electrode of the high-voltage DC power supply B through the second switch SW2 is formed.

そして、この充電回路において、フライングキャパシタC1は高圧直流電源Bの電圧に応じた電荷量を充電する。この充電により、フライングキャパシタC1の一端が正極、他端が負極となる。   In this charging circuit, the flying capacitor C1 charges a charge amount corresponding to the voltage of the high-voltage DC power supply B. By this charging, one end of the flying capacitor C1 becomes a positive electrode and the other end becomes a negative electrode.

つづいて、制御部15は、第1及び第2スイッチSW1、SW2をオフさせると共に第3及び第4のスイッチSW3、SW4をオンさせる。これにより、フライングキャパシタC1が、第2の抵抗R2、第3の抵抗R3、及び、第4の抵抗R4の直列回路と並列接続される。そして、フライングキャパシタC1の充電電圧を第2、第3及び第4の抵抗R2、R3、R4で分圧したうちの第3の抵抗R3の両端電圧の差に相当する電位が、制御部15の所定のA/D変換ポートに入力されて計測される。制御部15は、この計測値と、第2、第3及び第4の抵抗R2、R3、R4の分圧比とから、フライングキャパシタC1の充電電圧を計測する。したがって、本実施形態では、ダイオードD1、第2の抵抗R2、第3のスイッチSW3、第3の抵抗R3、第4のスイッチSW4、及び、第4の抵抗R4によって、計測回路が形成される。   Subsequently, the control unit 15 turns off the first and second switches SW1 and SW2 and turns on the third and fourth switches SW3 and SW4. Thereby, the flying capacitor C1 is connected in parallel to the series circuit of the second resistor R2, the third resistor R3, and the fourth resistor R4. The potential corresponding to the difference between the voltages at both ends of the third resistor R3, which is obtained by dividing the charging voltage of the flying capacitor C1 by the second, third, and fourth resistors R2, R3, R4, is It is input to a predetermined A / D conversion port and measured. The controller 15 measures the charging voltage of the flying capacitor C1 from this measured value and the voltage dividing ratio of the second, third, and fourth resistors R2, R3, R4. Therefore, in the present embodiment, a measurement circuit is formed by the diode D1, the second resistor R2, the third switch SW3, the third resistor R3, the fourth switch SW4, and the fourth resistor R4.

そして、制御部15は、放電回路を形成しフライングキャパシタC1を放電させる。具体的には、制御部15は、例えば、フライングキャパシタC1の一端(正極)と接地電位部との間に設けられる所定のスイッチ(図示せず)と第4のスイッチSW4とを同時にオンすることで放電を行ったり、第3のスイッチSW3と第4のスイッチSW4を同時にオンし続けることで放電を行う。   Then, the control unit 15 forms a discharge circuit to discharge the flying capacitor C1. Specifically, for example, the control unit 15 simultaneously turns on a predetermined switch (not shown) and a fourth switch SW4 provided between one end (positive electrode) of the flying capacitor C1 and the ground potential unit. The discharge is performed by discharging the first switch SW3 and the fourth switch SW4 at the same time.

つぎに、図4に示す第2の充電状態(昇圧器3停止時)の昇圧電源回路1になるように、制御部15は、第1及び第4のスイッチSW1、SW4をオンさせると共に第2及び第3のスイッチSW2、SW3をオフさせる。これにより、高圧直流電源Bの正極から、高圧選択回路20(1次選択ダイオードD21)、第1のスイッチSW1、ダイオードD0、第1の抵抗R1、フライングキャパシタC1の一端、他端、第4のスイッチSW4、第4の抵抗R4、(接地電位部)、及び、負側の地絡抵抗RLnを経て、高圧直流電源Bの負極に至る充電回路を形成する。   Next, the control unit 15 turns on the first and fourth switches SW1 and SW4 so as to be the second boosted power circuit 1 in the second charging state (when the booster 3 is stopped) shown in FIG. Then, the third switches SW2 and SW3 are turned off. Thereby, from the positive electrode of the high-voltage DC power supply B, the high-voltage selection circuit 20 (primary selection diode D21), the first switch SW1, the diode D0, the first resistor R1, the one end of the flying capacitor C1, the other end, A charging circuit that reaches the negative electrode of the high-voltage DC power source B is formed through the switch SW4, the fourth resistor R4, (ground potential part), and the negative-side ground fault resistor RLn.

そして、この充電回路において、フライングキャパシタC1を負側の地絡抵抗RLnに応じた電荷量で充電する。この充電により、フライングキャパシタC1の一端が正極、他端が負極となる。   In this charging circuit, the flying capacitor C1 is charged with a charge amount corresponding to the negative-side ground fault resistance RLn. By this charging, one end of the flying capacitor C1 becomes a positive electrode and the other end becomes a negative electrode.

つづいて、制御部15は、第1及び第2のスイッチSW1、SW2をオフさせると共に第3及び第4のスイッチSW3、SW4をオンさせて、高圧直流電源Bの電圧に応じたフライングキャパシタC1の充電電圧の計測の際と同じ計測回路を形成する。そして、制御部15は、この計測回路を用いて、フライングキャパシタC1の充電電圧を計測する。   Subsequently, the control unit 15 turns off the first and second switches SW1 and SW2 and turns on the third and fourth switches SW3 and SW4, so that the flying capacitor C1 according to the voltage of the high-voltage DC power supply B is turned on. The same measurement circuit as that for charging voltage measurement is formed. And the control part 15 measures the charging voltage of the flying capacitor C1 using this measuring circuit.

そして、計測が完了すると、制御部15は、上述同様に放電回路を形成してフライングキャパシタC1を放電させる。   When the measurement is completed, the control unit 15 forms a discharge circuit as described above to discharge the flying capacitor C1.

つぎに、図5に示す第3の充電状態(昇圧器3停止時)の昇圧電源回路1になるように、制御部15は、第2及び第3のスイッチSW2、SW3をオンさせると共に第1及び第4のスイッチSW1、SW4をオフさせる。これにより、高圧直流電源Bの正極から、正側の地絡抵抗RLp、(接地電位部)、第3の抵抗R3、第3のスイッチSW3、ダイオードD0、第1の抵抗R1、フライングキャパシタC1の一端、他端、及び、第2のスイッチSW2を経て、高圧直流電源Bの負極に至る充電回路が形成される。そして、この充電回路において、フライングキャパシタC1を正側の地絡抵抗RLpに応じた電荷量で充電する。この充電により、フライングキャパシタC1の一端が正極、他端が負極となる。   Next, the control unit 15 turns on the second and third switches SW2 and SW3 and turns on the first power supply circuit 1 in the third charging state (when the booster 3 is stopped) shown in FIG. The fourth switches SW1 and SW4 are turned off. Thereby, from the positive electrode of the high-voltage DC power supply B, the positive side ground fault resistance RLp, (ground potential part), the third resistance R3, the third switch SW3, the diode D0, the first resistance R1, and the flying capacitor C1 A charging circuit that reaches the negative electrode of the high-voltage DC power supply B through one end, the other end, and the second switch SW2 is formed. In this charging circuit, the flying capacitor C1 is charged with a charge amount according to the positive-side ground fault resistance RLp. By this charging, one end of the flying capacitor C1 becomes a positive electrode and the other end becomes a negative electrode.

つづいて、制御部15は、第1及び第2のスイッチSW1、SW2をオフさせると共に第3及び第4のスイッチSW3、SW4をオンさせて、高圧直流電源Bの電圧に応じたフライングキャパシタC1の充電電圧の計測の際や、負側の地絡抵抗RLnに応じたフライングキャパシタC1の充電電圧の計測の際と同じ計測回路を形成する。そして、制御部15は、この計測回路を用いて、フライングキャパシタC1の充電電圧を計測する。   Subsequently, the control unit 15 turns off the first and second switches SW1 and SW2 and turns on the third and fourth switches SW3 and SW4, so that the flying capacitor C1 according to the voltage of the high-voltage DC power supply B is turned on. The same measurement circuit as that at the time of measurement of the charging voltage or the measurement of the charging voltage of the flying capacitor C1 according to the negative ground fault resistance RLn is formed. And the control part 15 measures the charging voltage of the flying capacitor C1 using this measuring circuit.

そして、計測が完了すると、制御部15は、上述同様に放電回路を形成してフライングキャパシタC1を放電させる。   When the measurement is completed, the control unit 15 forms a discharge circuit as described above to discharge the flying capacitor C1.

以上のようにして計測した、高圧直流電源Bの電圧に応じたフライングキャパシタC1の充電電圧、負側の地絡抵抗RLnに応じたフライングキャパシタC1の充電電圧、及び、正側の地絡抵抗RLpに応じたフライングキャパシタC1の充電電圧を用いて、所定の計測理論式の計算を行うことで、制御部15は、正側の地絡抵抗RLpや負側の地絡抵抗RLnの値に基づいた高圧直流電源Bの地絡や絶縁状態を検出することができる。   The charging voltage of the flying capacitor C1 according to the voltage of the high-voltage DC power source B, the charging voltage of the flying capacitor C1 according to the negative ground fault resistance RLn, and the positive ground fault resistance RLp measured as described above. By calculating the predetermined measurement theoretical formula using the charging voltage of the flying capacitor C1 according to the control unit 15, the control unit 15 is based on the values of the positive side ground fault resistance RLp and the negative side ground fault resistance RLn. The ground fault and insulation state of the high-voltage DC power source B can be detected.

つづいて図6〜8を参照して昇圧器3が動作している場合について説明する。   Next, a case where the booster 3 is operating will be described with reference to FIGS.

図6に示す第1の充電状態(昇圧器3動作時)の昇圧電源回路1では、まず、制御部15は、第1及び第2スイッチSW1、SW2をオンさせると共に第3及び第4のスイッチSW3、SW4をオフさせる。これにより、昇圧器3の正極(2次側高圧正極)から、高圧選択回路20(2次選択ダイオードD22)、スイッチSW1、ダイオードD0、第1の抵抗R1、フライングキャパシタC1の一端、他端、及び、第2のスイッチSW2を経て、高圧直流電源Bの負極に至る充電回路が形成される。また、このとき、破線で示すように、図3で示した高圧直流電源Bによる充電回路が同時に形成される。   In the boost power supply circuit 1 in the first charging state (when the booster 3 is operating) shown in FIG. 6, first, the control unit 15 turns on the first and second switches SW1 and SW2, and the third and fourth switches. SW3 and SW4 are turned off. Thereby, from the positive electrode (secondary high voltage positive electrode) of the booster 3, the high voltage selection circuit 20 (secondary selection diode D22), the switch SW1, the diode D0, the first resistor R1, the one end and the other end of the flying capacitor C1, In addition, a charging circuit that reaches the negative electrode of the high-voltage DC power supply B through the second switch SW2 is formed. At this time, as indicated by a broken line, the charging circuit by the high-voltage DC power source B shown in FIG. 3 is simultaneously formed.

そして、昇圧器3による充電回路において、フライングキャパシタC1は昇圧器3の昇圧後の電圧に応じた電荷量を充電する。この充電により、フライングキャパシタC1の一端が正極、他端が負極となる。   In the charging circuit using the booster 3, the flying capacitor C <b> 1 charges a charge amount corresponding to the boosted voltage of the booster 3. By this charging, one end of the flying capacitor C1 becomes a positive electrode and the other end becomes a negative electrode.

つづいて、制御部15は、第1及び第2スイッチSW1、SW2をオフさせると共に第3及び第4のスイッチSW3、SW4をオンさせて、上述した昇圧器3停止時と同様に、計測回路を形成させたうえで、充電電圧の計測を行う。そして、計測後は、上述した昇圧器3停止時と同様に、制御部15は、放電回路を形成し、フライングキャパシタC1を放電させる。   Subsequently, the control unit 15 turns off the first and second switches SW1 and SW2 and turns on the third and fourth switches SW3 and SW4, and performs the measurement circuit in the same manner as when the booster 3 is stopped. Once formed, the charging voltage is measured. Then, after the measurement, the control unit 15 forms a discharge circuit and discharges the flying capacitor C1 in the same manner as when the booster 3 is stopped.

つぎに、図7に示す第2の充電状態(昇圧器3動作時)の昇圧電源回路1になるように、制御部15は、第1及び第4のスイッチSW1、SW4をオンさせると共に第2及び第3のスイッチSW2、SW3をオフさせる。これにより、昇圧器3の正極から、高圧選択回路20(2次選択ダイオードD22)、第1のスイッチSW1、ダイオードD0、第1の抵抗R1、フライングキャパシタC1の一端、他端、第4のスイッチSW4、第4の抵抗R4、(接地電位部)、及び、2次側の負側の地絡抵抗(2次側−地絡抵抗)RLn2を経て、高圧直流電源Bの負極に至る充電回路を形成する。また、このとき、破線で示すように、図4で示した高圧直流電源Bによる充電回路が同時に形成される。   Next, the control unit 15 turns on the first and fourth switches SW1 and SW4 so as to be the second boosted power circuit 1 in the second charging state (when the booster 3 is operating) shown in FIG. Then, the third switches SW2 and SW3 are turned off. Accordingly, from the positive electrode of the booster 3, the high voltage selection circuit 20 (secondary selection diode D22), the first switch SW1, the diode D0, the first resistor R1, the one end, the other end, and the fourth switch of the flying capacitor C1. A charging circuit that reaches the negative electrode of the high-voltage DC power supply B through SW4, the fourth resistor R4, (ground potential part), and the secondary-side negative ground fault resistor (secondary side-ground fault resistor) RLn2. Form. At this time, as indicated by a broken line, the charging circuit by the high-voltage DC power source B shown in FIG. 4 is simultaneously formed.

そして、この充電回路において、フライングキャパシタC1を2次側の負側の地絡抵抗(2次側−地絡抵抗)RLn2に応じた電荷量で充電する。この充電により、フライングキャパシタC1の一端が正極、他端が負極となる。   In this charging circuit, the flying capacitor C1 is charged with a charge amount corresponding to the secondary-side negative ground fault resistance (secondary-ground fault resistance) RLn2. By this charging, one end of the flying capacitor C1 becomes a positive electrode and the other end becomes a negative electrode.

つづいて、制御部15は、第1及び第2スイッチSW1、SW2をオフさせると共に第3及び第4のスイッチSW3、SW4をオンさせて、上述した昇圧器3停止時と同様に、計測回路を形成させたうえで、充電電圧の計測を行う。そして、計測後は、上述した昇圧器3停止時と同様に、制御部15は、放電回路を形成し、フライングキャパシタC1を放電させる。   Subsequently, the control unit 15 turns off the first and second switches SW1 and SW2 and turns on the third and fourth switches SW3 and SW4, and performs the measurement circuit in the same manner as when the booster 3 is stopped. Once formed, the charging voltage is measured. Then, after the measurement, the control unit 15 forms a discharge circuit and discharges the flying capacitor C1 in the same manner as when the booster 3 is stopped.

つぎに、図8に示す第3の充電状態(昇圧器3動作時)の昇圧電源回路1になるように、制御部15は、第2及び第3のスイッチSW2、SW3をオンさせると共に第1及び第4のスイッチSW1、SW4をオフさせる。これにより、昇圧器3の正極(2次側高圧正極)から、2次側の正側の地絡抵抗RLp2、(接地電位部)、第3の抵抗R3、第3のスイッチSW3、ダイオードD0、第1の抵抗R1、フライングキャパシタC1の一端、他端、及び、第2のスイッチSW2を経て、高圧直流電源Bの負極に至る充電回路が形成される。そして、この充電回路において、フライングキャパシタC1を2次側の正側の地絡抵抗RLp2に応じた電荷量で充電する。この充電により、フライングキャパシタC1の一端が正極、他端が負極となる。   Next, the control unit 15 turns on the second and third switches SW2 and SW3 and turns on the first power supply circuit 1 in the third charging state (when the booster 3 operates) shown in FIG. The fourth switches SW1 and SW4 are turned off. Thereby, from the positive electrode (secondary high voltage positive electrode) of the booster 3, the secondary side ground fault resistor RLp2, (ground potential part), the third resistor R3, the third switch SW3, the diode D0, A charging circuit is formed that reaches the negative electrode of the high-voltage DC power supply B through the first resistor R1, one end and the other end of the flying capacitor C1, and the second switch SW2. In this charging circuit, the flying capacitor C1 is charged with a charge amount corresponding to the secondary side ground fault resistance RLp2. By this charging, one end of the flying capacitor C1 becomes a positive electrode and the other end becomes a negative electrode.

つづいて、制御部15は、第1及び第2スイッチSW1、SW2をオフさせると共に第3及び第4のスイッチSW3、SW4をオンさせて、上述した昇圧器3停止時と同様に、計測回路を形成させたうえで、充電電圧の計測を行う。そして、計測後は、上述した昇圧器3停止時と同様に、制御部15は、放電回路を形成し、フライングキャパシタC1を放電させる。   Subsequently, the control unit 15 turns off the first and second switches SW1 and SW2 and turns on the third and fourth switches SW3 and SW4, and performs the measurement circuit in the same manner as when the booster 3 is stopped. Once formed, the charging voltage is measured. Then, after the measurement, the control unit 15 forms a discharge circuit and discharges the flying capacitor C1 in the same manner as when the booster 3 is stopped.

以上のようにして計測した、昇圧器3による昇圧後の電圧に応じたフライングキャパシタC1の充電電圧、2次側の負側の地絡抵抗RLn2に応じたフライングキャパシタC1の充電電圧、及び、2次側の正側の地絡抵抗RLp2に応じたフライングキャパシタC1の充電電圧を用いて、所定の計測理論式の計算を行うことで、制御部15は、2次側の正側の地絡抵抗RLp2や2次側の負側の地絡抵抗RLn2の値に基づいた昇圧器3の地絡や絶縁状態を検出することができる。   The charging voltage of the flying capacitor C1 according to the voltage boosted by the booster 3 and the charging voltage of the flying capacitor C1 according to the negative ground fault resistance RLn2 on the secondary side, measured as described above, and 2 By calculating a predetermined measurement theoretical formula using the charging voltage of the flying capacitor C1 corresponding to the secondary positive ground fault resistance RLp2, the control unit 15 can calculate the secondary positive ground fault resistance. It is possible to detect the ground fault or the insulation state of the booster 3 based on the values of RLp2 and the negative ground fault resistance RLn2 on the secondary side.

また、高圧選択回路20が設けられていることで、昇圧器3が動作時において、昇圧された2次側の電圧及び地絡抵抗値によっては2次側からの異常な電位の回り込みが発生してしまうことが想定されるが、このような現象を防止できる。例えば、上述の特許文献2も同様の記載があるように、高圧選択回路20が設けられない図9の構成の昇圧電源回路100の場合、2次側の正側と負側の地絡抵抗RLp2、RLn2の分圧比に応じた電位VRLが、1次側の高圧直流電源Bの正電位を上回ると、2次側からの異常な電位の回り込みが発生する。しかし、高圧選択回路20を構成する1次及び2次選択ダイオードD21、D22の整流方向が上流(1次側高圧正極側)から下流方向(地絡センサ11内の第1のスイッチSW1側)に設定されているので、上記のような異常な電位の回り込みは発生しない。   Further, since the high voltage selection circuit 20 is provided, when the booster 3 operates, an abnormal potential wraparound from the secondary side occurs depending on the boosted secondary side voltage and the ground fault resistance value. However, this phenomenon can be prevented. For example, as described in Patent Document 2 described above, in the case of the boost power supply circuit 100 having the configuration of FIG. 9 in which the high voltage selection circuit 20 is not provided, the secondary side positive side and negative side ground fault resistors RLp2 When the potential VRL corresponding to the voltage division ratio of RLn2 exceeds the positive potential of the high-voltage DC power source B on the primary side, an abnormal potential wraparound from the secondary side occurs. However, the rectification directions of the primary and secondary selection diodes D21 and D22 constituting the high voltage selection circuit 20 are changed from upstream (primary high voltage positive electrode side) to downstream (first switch SW1 side in the ground fault sensor 11). Since it is set, the abnormal potential wraparound as described above does not occur.

また、1次及び2次選択ダイオードD21、D22で構成される簡易的な高圧選択回路20を追加するだけで、上記の機能及び効果を実現することができ、既存の回路を実質そのまま流用することができるため、現実の投資負担を非常に軽くすることができる。また、計測原理等も大きく変更することが無いため、制御プログラム等の開発負担も実質無く効果的な昇圧電源回路1(地絡センサ11)を実現することができる。   Moreover, the above-mentioned functions and effects can be realized only by adding a simple high-voltage selection circuit 20 composed of primary and secondary selection diodes D21 and D22, and existing circuits can be used as they are. Can reduce the actual investment burden. In addition, since the measurement principle and the like are not significantly changed, an effective boosting power supply circuit 1 (ground fault sensor 11) can be realized without substantially developing a control program.

以上、本発明を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素及びその組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。   The present invention has been described based on the embodiments. This embodiment is an exemplification, and it is understood by those skilled in the art that various modifications can be made to each of those components and combinations thereof, and such modifications are also within the scope of the present invention.

例えば、上述の実施形態では、高圧選択回路20として、1次及び2次選択ダイオードD21、D22で構成される回路が用いられたがこれに限る趣旨ではない。例えば、図10に示すように、1次及び2次選択ダイオードD21、D22に代わってそれぞれ1次及び2次選択スイッチSW21、SW22が配置された構成の高圧選択回路20aが採用されてもよい。   For example, in the above-described embodiment, as the high-voltage selection circuit 20, a circuit including the primary and secondary selection diodes D21 and D22 is used, but the present invention is not limited to this. For example, as shown in FIG. 10, a high voltage selection circuit 20a having a configuration in which primary and secondary selection switches SW21 and SW22 are arranged in place of the primary and secondary selection diodes D21 and D22 may be employed.

この場合、1次及び2次選択スイッチSW21、SW22は、制御部15によって制御される。つまり、昇圧器3が停止時には1次選択スイッチSW21がオンに、2次選択スイッチSW22がオフに制御される。また、昇圧器3が動作時には1次選択スイッチSW21がオフに、2次選択スイッチSW22がオンに制御される。   In this case, the primary and secondary selection switches SW21 and SW22 are controlled by the control unit 15. That is, when the booster 3 is stopped, the primary selection switch SW21 is controlled to be on and the secondary selection switch SW22 is controlled to be off. Further, when the booster 3 is in operation, the primary selection switch SW21 is turned off and the secondary selection switch SW22 is turned on.

このような構成を採用することで、目的・状況に応じて意図を持って高圧電圧選択が可能となる。このため、例えば、選択した側の高圧電圧計測値をセル電圧センサ2の計測値や昇圧器3が示す電圧値と比較することによって、1次側及び2次側のそれぞれの回路の故障検知が可能となる。また、高圧選択回路20は、いずれか一方がダイオードで他方が制御部15によって制御されるスイッチで構成されてもよい。また、高圧選択回路20から昇圧器3の2次側正極へ回りこむことは想定されないため、昇圧電源回路1は、高圧選択回路20の2次選択部である2次選択ダイオードD22や2次選択スイッチSW22が設けられない構成であってもよい。   By adopting such a configuration, it is possible to select a high voltage with an intention according to the purpose and situation. Therefore, for example, by comparing the measured value of the high voltage on the selected side with the measured value of the cell voltage sensor 2 or the voltage value indicated by the booster 3, the failure detection of each circuit on the primary side and the secondary side can be performed. It becomes possible. Further, the high voltage selection circuit 20 may be configured by a switch in which one is a diode and the other is controlled by the control unit 15. Further, since it is not assumed that the high voltage selection circuit 20 goes around to the secondary side positive electrode of the booster 3, the boost power supply circuit 1 has a secondary selection diode D 22 that is a secondary selection unit of the high voltage selection circuit 20 and a secondary selection diode. The switch SW22 may not be provided.

1、100 昇圧電源回路
2 セル電圧センサ
3 昇圧器
11 地絡センサ
15 制御部
20、20a 高圧選択回路
30 電流方向選択回路
B 高圧直流電源
C1 フライングキャパシタ
D0、D1 ダイオード
D21 1次選択ダイオード
D22 2次選択ダイオード
R1〜R4 第1〜第4の抵抗
SW1〜SW5 第1〜第5のスイッチ
SW21 1次選択スイッチ
SW22 2次選択スイッチ
DESCRIPTION OF SYMBOLS 1,100 Boost power supply circuit 2 Cell voltage sensor 3 Booster 11 Ground fault sensor 15 Control part 20, 20a High voltage selection circuit 30 Current direction selection circuit B High voltage DC power supply C1 Flying capacitor D0, D1 Diode D21 Primary selection diode D22 Secondary Selection diodes R1 to R4 First to fourth resistors SW1 to SW5 First to fifth switches SW21 Primary selection switch SW22 Secondary selection switch

Claims (3)

接地電位部から絶縁された直流電源により地絡抵抗に応じた電圧で充電されるフライングキャパシタと、前記直流電源により充電された後に前記直流電源から絶縁された前記フライングキャパシタを、前記フライングキャパシタの充電電圧を計測する計測手段と前記接地電位部との間に直列接続する計測回路とを備え、前記直流電源の正電位を昇圧して負荷に供給する昇圧電源回路の1次側に接続されて、前記計測手段による前記フライングキャパシタの充電電圧の計測結果に基づき、前記昇圧電源回路の絶縁状態を検出する絶縁状態検出装置であって、
前記1次側の正極と2次側の正極に別経路で接続され直流電流を前記フライングキャパシタへ導く回路を構成する高圧選択回路を備え、
前記高圧選択回路は、前記1次側の正極に接続され少なくとも昇圧動作時に前記1次側の正極への電流が流れないように機能する1次選択部と、前記2次側の正極に接続される2次選択部とを有していることを特徴とする絶縁状態検出装置。
The flying capacitor charged with a voltage corresponding to a ground fault resistance by a DC power source insulated from a ground potential unit, and the flying capacitor insulated from the DC power source after being charged by the DC power source are charged to the flying capacitor. A measuring circuit for measuring voltage and a measuring circuit connected in series between the ground potential unit, and connected to a primary side of a boosting power supply circuit that boosts the positive potential of the DC power supply and supplies it to a load; An insulation state detection device that detects an insulation state of the boost power supply circuit based on a measurement result of a charging voltage of the flying capacitor by the measurement unit,
A high-voltage selection circuit that configures a circuit that is connected to the positive electrode on the primary side and the positive electrode on the secondary side through a separate path and guides a direct current to the flying capacitor;
The high-voltage selection circuit is connected to the primary-side positive electrode and is connected to the primary-side selection unit that functions to prevent a current from flowing to the primary-side positive electrode at least during the boosting operation, and to the secondary-side positive electrode. An insulation state detecting device.
前記1次選択部及び前記2次選択部は、前記1次側の正極及び前記2次側の正極から電流を流し、前記高圧選択回路から前記1次側の正極及び前記2次側の正極へ電流を流さないように接続される整流手段であることを特徴とする請求項1に記載の絶縁状態検出装置。   The primary selection unit and the secondary selection unit allow current to flow from the primary side positive electrode and the secondary side positive electrode, and from the high voltage selection circuit to the primary side positive electrode and the secondary side positive electrode. The insulation state detection device according to claim 1, wherein the insulation state detection device is a rectifying unit connected so as not to pass a current. 前記1次選択部及び前記2次選択部は、オンオフ制御されるスイッチング手段であって、昇圧動作時に前記1次選択部はオフに制御されることを特徴とする請求項1に記載の絶縁状態検出装置。   The insulation state according to claim 1, wherein the primary selection unit and the secondary selection unit are switching means that are controlled to be turned on and off, and the primary selection unit is controlled to be turned off during a boosting operation. Detection device.
JP2013125462A 2013-06-14 2013-06-14 Insulation status detection device Pending JP2015001423A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013125462A JP2015001423A (en) 2013-06-14 2013-06-14 Insulation status detection device
PCT/JP2014/063864 WO2014199809A1 (en) 2013-06-14 2014-05-26 Insulation state detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013125462A JP2015001423A (en) 2013-06-14 2013-06-14 Insulation status detection device

Publications (1)

Publication Number Publication Date
JP2015001423A true JP2015001423A (en) 2015-01-05

Family

ID=52022108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013125462A Pending JP2015001423A (en) 2013-06-14 2013-06-14 Insulation status detection device

Country Status (2)

Country Link
JP (1) JP2015001423A (en)
WO (1) WO2014199809A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018013389A (en) * 2016-07-20 2018-01-25 株式会社東芝 Electric leakage detector and electric leakage detection method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6348456B2 (en) * 2015-06-05 2018-06-27 トヨタ自動車株式会社 Vehicle power supply system
TWI684770B (en) * 2019-03-28 2020-02-11 高苑科技大學 DC power supply leakage current detection device
JP7433994B2 (en) * 2020-03-11 2024-02-20 本田技研工業株式会社 Ground fault detection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5323561B2 (en) * 2009-03-31 2013-10-23 本田技研工業株式会社 Ground fault detection system and electric vehicle equipped with the system
JP5406611B2 (en) * 2009-07-08 2014-02-05 矢崎総業株式会社 Insulation state detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018013389A (en) * 2016-07-20 2018-01-25 株式会社東芝 Electric leakage detector and electric leakage detection method

Also Published As

Publication number Publication date
WO2014199809A1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
JP5406611B2 (en) Insulation state detector
JP6433305B2 (en) Insulation detection device and insulation detection method for non-grounded power supply
US20110234176A1 (en) Discharge control apparatus
US8970155B2 (en) Power inverter
US9083267B2 (en) Electric motor vehicle
US20160156258A1 (en) Power source control device and method for detecting relay abnormality
JP5808678B2 (en) Electric vehicle
JP6228059B2 (en) DC / DC converter and battery system
US10031190B2 (en) Voltage detection device
WO2014199809A1 (en) Insulation state detecting device
JP7482354B2 (en) In-vehicle power supply system
JP6348456B2 (en) Vehicle power supply system
JP5349698B2 (en) Auxiliary power supply for vehicle
JP5631173B2 (en) Charger
JP2013042639A (en) Charger
WO2017159035A1 (en) Discharge circuit and power storage device
CA2954481C (en) Cell system and control method for cell system
WO2022131121A1 (en) Power conversion device
JP7415145B2 (en) Vehicle power supply device
JP6241074B2 (en) Fuel cell power regulation system
JP2012115018A (en) Power controller
JP2007325340A (en) Rectifying circuit
US10326290B2 (en) Power converting device and method of controlling power converting device
JP5996149B1 (en) Power assist device and power assist system
WO2017168835A1 (en) Ground fault detection circuit diagnosing device