JP6748420B2 - Laminated body and manufacturing method thereof - Google Patents

Laminated body and manufacturing method thereof Download PDF

Info

Publication number
JP6748420B2
JP6748420B2 JP2015235855A JP2015235855A JP6748420B2 JP 6748420 B2 JP6748420 B2 JP 6748420B2 JP 2015235855 A JP2015235855 A JP 2015235855A JP 2015235855 A JP2015235855 A JP 2015235855A JP 6748420 B2 JP6748420 B2 JP 6748420B2
Authority
JP
Japan
Prior art keywords
base material
atmospheric pressure
sheet
pressure plasma
plasma treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015235855A
Other languages
Japanese (ja)
Other versions
JP2017100370A (en
Inventor
俊逸 米内山
俊逸 米内山
植松 武彦
武彦 植松
後藤 実
実 後藤
祥悟 千葉
祥悟 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2015235855A priority Critical patent/JP6748420B2/en
Publication of JP2017100370A publication Critical patent/JP2017100370A/en
Application granted granted Critical
Publication of JP6748420B2 publication Critical patent/JP6748420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水に対する親和性が異なる異種材料どうしの積層体に関する。 The present invention relates to a laminate of different materials having different affinity for water.

従来、包装材料等の種々の用途において、各種材料からなる複数の基材どうしを積層一体化してなる積層体が利用されている。例えば、包装材料用積層体としては、ポリアミド樹脂フィルムとポリエチレン樹脂フィルムとの積層体のような、疎水性樹脂どうしの積層体が多用されている。このような積層体における層間の接合には、ホットメルト型接着剤のような化学系接着剤が用いられる場合が多い。しかし、接着剤の使用は、環境対策や省エネルギー対策の点で問題がある。また、接着剤が塗布された部分は、比較的硬く、さらには通気性が低いため、例えば衛生品の如き、柔軟性や通気性の高さが要求される用途では、接着剤を用いずに、必要とされる接合強度を有する積層体を製造し得る技術が要望されている。 BACKGROUND ART Conventionally, in various applications such as packaging materials, a laminated body in which a plurality of base materials made of various materials are laminated and integrated is used. For example, as a laminate for a packaging material, a laminate of hydrophobic resins such as a laminate of a polyamide resin film and a polyethylene resin film is often used. A chemical adhesive such as a hot-melt adhesive is often used for joining the layers in such a laminate. However, the use of an adhesive has problems in terms of environmental measures and energy saving measures. In addition, since the part coated with the adhesive is relatively hard and has low air permeability, it is not necessary to use the adhesive in applications requiring high flexibility and air permeability, such as hygiene products. There is a demand for a technique capable of producing a laminate having the required bonding strength.

このような要望に対して、熱可塑性樹脂からなる材料どうしの積層体の製造において、プラズマ処理を用いて層間の接合を行うことが提案されている。
例えば特許文献1には、アラミド繊維を湿式抄紙してなるアラミド紙とポリエチレンテレフタレート製樹脂フィルムとを接着剤無しで接合する方法として、アラミド紙の表面に対して低温プラズマ処理を施して該表面の改質を行う方法が記載されている。
また特許文献2には、熱可塑性樹脂フィルムからなる第1基材の両面に、該第1基材用原反シートと異なる種類の熱可塑性樹脂フィルムであってヒートシール性を有する第2基材用原反シートを接合してなる包装材料積層体の製造方法において、両基材用原反シートの接合に大気圧プラズマ処理を用いることが記載されている。
In order to meet such demands, it has been proposed to join layers by using plasma treatment in the production of a laminate of materials made of thermoplastic resin.
For example, in Patent Document 1, as a method of joining an aramid paper obtained by wet-making aramid fibers and a polyethylene terephthalate resin film without an adhesive, a low-temperature plasma treatment is applied to the surface of the aramid paper to form a A method for performing the modification is described.
Further, in Patent Document 2, a second base material which is a thermoplastic resin film of a type different from that of the raw material sheet for a first base material and has heat sealability on both surfaces of a first base material made of a thermoplastic resin film. In a method for producing a packaging material laminate obtained by joining raw material sheets for use with each other, it is described that atmospheric pressure plasma treatment is used for joining the raw material sheets for both substrates.

特開2009−138312号公報JP, 2009-138312, A 特開2011−143586号公報JP, 2011-143586, A

使い捨ておむつ等の衛生品においては、例えば、ポリエチレン等の疎水性樹脂製フィルムからなる構成部材(例えば防漏材)と親水性であるセルロース繊維を主体とする構成部材(例えば吸水性ポリマー等の吸収性材料を包む台紙)とからなる積層体の如き、水に対する親和性が異なる異種材料どうしの積層体が用いられている。このような異種材料の積層体には、柔軟性や通気性の確保等の観点から、層間の接合を接着剤無しで行うことが要望されているが、斯かる要望に十分に応え得る技術は未だ提供されていない。 In hygiene products such as disposable diapers, for example, a constituent member made of a hydrophobic resin film such as polyethylene (for example, a leak preventer) and a constituent member mainly composed of hydrophilic cellulose fibers (for example, absorption of a water-absorbent polymer or the like). A laminated body of different materials having different affinities for water is used, such as a laminated body composed of a base material encapsulating a conductive material). From the viewpoint of ensuring flexibility and air permeability, it has been demanded for such a laminated body of different materials to perform bonding between layers without an adhesive, but a technique capable of sufficiently satisfying such a demand is not available. Not yet offered.

本発明の課題は、柔軟で通気性に優れ、且つ環境に対する負荷が低減されている積層体を提供することに関する。 An object of the present invention is to provide a laminate that is flexible, has excellent breathability, and has a reduced load on the environment.

本発明は、互いに異種のシート状の第1基材と第2基材とが直接接合されてなる積層構造を有し、前記第1基材は、熱可塑性樹脂を主体とするフィルム又は不織布であり、前記第2基材は、セルロース系繊維を主体とする繊維集合体である積層体である。 The present invention has a laminated structure in which a sheet-shaped first base material and a second base material, which are different from each other, are directly bonded, and the first base material is a film or a non-woven fabric mainly composed of a thermoplastic resin. The second base material is a laminated body which is a fiber assembly mainly composed of cellulosic fibers.

また本発明は、第1基材用原反シートの片面に、処理用ガスを用いてプラズマ装置により大気圧下で生成した大気圧プラズマを接触させる大気圧プラズマ処理を施す大気圧プラズマ処理工程と、前記大気圧プラズマ処理が施された前記第1基材用原反シートの片面に第2基材用原反シートを重ね合わせ、その重ね合わせ体を加熱加圧して両シートを一体化する一体化工程とを有する積層体の製造方法である。 The present invention also relates to an atmospheric pressure plasma treatment step of performing atmospheric pressure plasma treatment in which one side of the first substrate raw sheet is brought into contact with atmospheric pressure plasma generated under atmospheric pressure by a plasma apparatus using a treatment gas. An integral unit that superimposes the original fabric sheet for the second substrate on one side of the original fabric sheet for the first substrate that has been subjected to the atmospheric pressure plasma treatment, and heats and presses the laminated body to integrate the two sheets. The manufacturing method of the laminated body which has a conversion process.

本発明によれば、柔軟で通気性に優れ、且つ環境に対する負荷が低減されている積層体が提供される。 According to the present invention, there is provided a laminate which is flexible, has excellent breathability, and has a reduced load on the environment.

図1は、本発明の積層体の製造方法における大気圧プラズマ処理工程の一実施態様の概略図である。FIG. 1 is a schematic diagram of an embodiment of an atmospheric pressure plasma treatment step in the method for producing a laminated body of the present invention.

本発明の積層体は、互いに異種のシート状の第1基材と第2基材とが直接接合されてなる積層構造を有する。ここでいう「互いに異種」とは、主として、第1基材及び第2基材それぞれの主成分どうし(即ち、熱可塑性樹脂、セルロース系繊維)の比較からも明らかなように、第1基材と第2基材とで基本特性が全く異なることを意味し、特許文件1及び2に記載されているような、同種又は異種の熱可塑性樹脂どうしの接合は含まない。この「基本特性」としては、具体的には例えば「水に対する親和性」が挙げられる。即ち、熱可塑性樹脂を主体とする第1基材は、基本的に疎水性であるのに対し、セルロース系繊維を主体とする第2基材は、基本的に親水性であり、両基材は水に対する親和性が異なり、それ故に互いに異種である。 The laminated body of the present invention has a laminated structure in which a sheet-shaped first base material and a second base material that are different from each other are directly bonded. The term “mutually different from each other” as used herein means that, as is clear from the comparison of the main components of the first base material and the second base material (that is, the thermoplastic resin and the cellulosic fiber), the first base material. It means that the second base material has completely different basic characteristics, and does not include joining of thermoplastic resins of the same kind or different kinds as described in Patent Documents 1 and 2. Specific examples of the “basic characteristics” include “affinity for water”. That is, the first base material mainly composed of a thermoplastic resin is basically hydrophobic, whereas the second base material mainly composed of cellulosic fibers is basically hydrophilic and both base materials are Have different affinities for water and are therefore different from one another.

本発明に係る第1基材は、熱可塑性樹脂を主体とするフィルム又は不織布である。ここでいう「熱可塑性樹脂を主体とする」とは、第1基材における熱可塑性樹脂の含有量が50質量%以上である場合を意味する。第1基材における熱可塑性樹脂の含有量は、好ましくは65質量%以上、さらに好ましくは70質量%以上であり、100質量%でも良い。熱可塑性樹脂としては、衛生品や包装材料をはじめとする各種用途に用いられているものを特に制限なく用いることができ、例えば、ポリエチレン(略してPE)、ポリプロピレン(略してPP)等のポリオレフィン系樹脂;ポリエチレンテレフタレート(略してPET)、ポリブチレンテレフタレート(略してPBT)、ポリ乳酸系樹脂等のポリエステル系樹脂;ナイロン6等のポリアミド系樹脂;ポリアクリル酸エチル等のポリアクリル系樹脂;ポリ塩化ビニル系樹脂;ポリウレタン系樹脂;セルロース誘導体系樹脂等が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。これらの熱可塑性樹脂の中でも特に、ガラス転移温度が一般に100℃以下という観点から、ポリオレフィン系樹脂及びポリエステル系樹脂が好ましい。 The first base material according to the present invention is a film or a non-woven fabric mainly composed of a thermoplastic resin. The term "mainly composed of a thermoplastic resin" as used herein means that the content of the thermoplastic resin in the first base material is 50% by mass or more. The content of the thermoplastic resin in the first base material is preferably 65% by mass or more, more preferably 70% by mass or more, and may be 100% by mass. As the thermoplastic resin, those used for various purposes such as hygiene products and packaging materials can be used without particular limitation. For example, polyolefins such as polyethylene (abbreviated as PE) and polypropylene (abbreviated as PP) can be used. Resins: Polyester terephthalate (PET for short), polybutylene terephthalate (PBT for short), polyester resin such as polylactic acid resin; polyamide resin such as nylon 6; polyacrylic resin such as polyethyl acrylate; poly Examples thereof include vinyl chloride resins; polyurethane resins; cellulose derivative resins, and the like, and these can be used alone or in combination of two or more. Among these thermoplastic resins, polyolefin-based resins and polyester-based resins are preferable from the viewpoint that the glass transition temperature is generally 100° C. or lower.

熱可塑性樹脂を主体とするフィルム(即ち第1基材)は、典型的には、樹脂又は樹脂組成物の膜状物であって貫通孔の無い無孔平坦な形状のものであるが、特にこれに限定されず、熱可塑性樹脂フィルムとして種々の用途で使用されているものを特に制限なく用いることができる。具体的には例えば、低密度PEフィルム、二軸延伸PETフィルム等が挙げられる。フィルムの厚みは特に制限されず、積層体の用途等に応じて適宜設定すれば良い。例えば、積層体の用途が使い捨ておむつの防漏材である場合、第1基材としてのフィルムの厚みは、好ましくは0.5μm以上、さらに好ましくは5μm以上、そして、好ましくは50μm以下、さらに好ましくは30μm以下である。 The film containing the thermoplastic resin as a main component (that is, the first substrate) is typically a film of a resin or a resin composition and has a flat shape with no through holes. Without being limited to this, a thermoplastic resin film used in various applications can be used without particular limitation. Specific examples include a low density PE film and a biaxially stretched PET film. The thickness of the film is not particularly limited and may be appropriately set depending on the application of the laminate. For example, when the application of the laminate is a leak preventer for disposable diapers, the thickness of the film as the first base material is preferably 0.5 μm or more, more preferably 5 μm or more, and preferably 50 μm or less, more preferably Is 30 μm or less.

熱可塑性樹脂を主体とする不織布(即ち第1基材)は、典型的には、熱可塑性樹脂繊維からなる不織布である。不織布の種類は特に制限されず、例えば、スパンボンド不織布、スパンレース不織布、メルトブローン不織布、エアスルー不織布、サーマルボンド不織布、ニードルパンチ不織布等の各種製法による不織布を用いることができ、あるいは2種以上の不織布の積層体、例えば、スパンボンド−メルトブローン−スパンボンド(略してSMS)不織布を用いることもできる。但し、エアスルー不織布、サーマルボンド不織布、ニードルパンチ不織布については、水洗又は湯洗をし、繊維表面より工程油剤が除去されているものを用いた方が良い。第1基材としての不織布の坪量は特に制限されず、積層体の用途等に応じて適宜設定すれば良い。例えば、積層体の用途が使い捨ておむつの防漏材である場合、第1基材としての不織布の坪量は、好ましくは3g/m2 以上、さらに好ましくは5g/m2 以上、そして、好ましくは70g/m2 以下、さらに好ましくは25g/m2 以下である。 The non-woven fabric mainly made of a thermoplastic resin (that is, the first substrate) is typically a non-woven fabric made of a thermoplastic resin fiber. The type of non-woven fabric is not particularly limited, and for example, spun-bonded non-woven fabrics, spun-laced non-woven fabrics, melt-blown non-woven fabrics, air-bonded non-woven fabrics, thermal-bonded non-woven fabrics, needle-punched non-woven fabrics, and the like can be used, or two or more non-woven fabrics can be used. It is also possible to use a laminated body of, for example, a spunbond-meltblown-spunbond (SMS for short) nonwoven fabric. However, for the air-through nonwoven fabric, the thermal bond nonwoven fabric, and the needle punch nonwoven fabric, it is preferable to use those that have been washed with water or hot water and the process oil has been removed from the fiber surface. The basis weight of the nonwoven fabric as the first base material is not particularly limited and may be appropriately set depending on the application of the laminate. For example, when the use of the laminate is a leak preventer for disposable diapers, the basis weight of the nonwoven fabric as the first substrate is preferably 3 g/m 2 or more, more preferably 5 g/m 2 or more, and preferably It is 70 g/m 2 or less, more preferably 25 g/m 2 or less.

熱可塑性樹脂を主体とする不織布(即ち第1基材)の構成繊維としては、1種類の熱可塑性樹脂からなる単一繊維でも良く、融点の異なる2種類以上の熱可塑性樹脂を含む複合繊維でも良い。複合繊維としては、相対的に融点の低い樹脂(即ち低融点樹脂)を鞘部、相対的に融点の高い樹脂(即ち高融点樹脂)を芯部とした芯鞘型;低融点樹脂と高融点樹脂とが所定方向に並列したサイドバイサイド型等が挙げられ、本発明では何れも使用できる。具体的には例えば、PETを芯部、PEを鞘部とする芯鞘型複合繊維が挙げられる。不織布の構成繊維の平均繊維径は、特に制限されないが、通常0.1〜30μmの範囲である。 The constituent fibers of the non-woven fabric mainly composed of a thermoplastic resin (that is, the first substrate) may be a single fiber composed of one kind of thermoplastic resin, or a composite fiber containing two or more kinds of thermoplastic resins having different melting points. good. As the composite fiber, a core-sheath type in which a resin having a relatively low melting point (that is, a low melting point resin) is a sheath portion and a resin having a relatively high melting point (that is, a high melting point resin) is a core portion; a low melting point resin and a high melting point resin Examples thereof include a side-by-side type in which a resin and a resin are arranged in parallel in a predetermined direction, and any of them can be used in the present invention. Specifically, for example, a core-sheath type composite fiber having PET as a core portion and PE as a sheath portion can be mentioned. The average fiber diameter of the constituent fibers of the nonwoven fabric is not particularly limited, but is usually in the range of 0.1 to 30 μm.

一方、本発明に係る第2基材は、セルロース系繊維を主体とする繊維集合体である。繊維集合体は、セルロース系繊維の如き繊維材料を積繊してなる繊維集合体であり、繊維集合体においては通常、各繊維材料が本来有する繊維形状(又は紐状)が実質的に維持されており多数の繊維間空隙を有している。ここでいう「セルロース系繊維を主体とする」とは、第2基材におけるセルロース系繊維の含有量が50質量%以上である場合を意味する。第2基材におけるセルロース系繊維の含有量は、好ましくは65質量%以上、さらに好ましくは70質量%以上であり、100質量%でも良い。 On the other hand, the second base material according to the present invention is a fiber assembly mainly composed of cellulosic fibers. A fiber assembly is a fiber assembly obtained by laminating fiber materials such as cellulosic fibers, and in the fiber assembly, the fiber shape (or string shape) originally possessed by each fiber material is substantially maintained. And has many inter-fiber voids. The term “mainly composed of cellulosic fibers” as used herein means that the content of cellulosic fibers in the second base material is 50% by mass or more. The content of the cellulosic fibers in the second base material is preferably 65% by mass or more, more preferably 70% by mass or more, and may be 100% by mass.

セルロース系繊維としては、衛生品をはじめとする各種用途に用いられているものを特に制限なく用いることができ、例えば、天然セルロース繊維、マーセル化セルロース繊維、溶解セルロース繊維及びセルロース繊維誘導体が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。天然セルロース繊維としては、例えば、針葉樹パルプ、広葉樹パルプ等の木材パルプ;コットンリンター、コットンリント等の綿パルプ;麦わらパルプ、バガスパルプ、麻パルプ等の非木材パルプ;古紙パルプ等が挙げられる。マーセル化セルロース繊維は、周知の通り、濃アルカリ処理によってアルカリ変性(いわゆるマーセル化)されているセルロース繊維である。溶解セルロース繊維としては、例えば、リヨセル(登録商標)、テンセル(登録商標)、ベンベルグ(登録商標)、ビスコースレーヨン、ベンリーゼ(登録商標)等が挙げられる。セルロース繊維誘導体としては、例えば、カルボキシメチルセルロース、カルボキシエチルセルロース、TEMPO触媒酸化セルロース、メチルセルロース、エチルセルロース等が挙げられる。 As the cellulosic fibers, those used for various applications including hygiene products can be used without particular limitation, and examples thereof include natural cellulose fibers, mercerized cellulose fibers, dissolved cellulose fibers and cellulose fiber derivatives. , These 1 type can be used individually or in combination of 2 or more types. Examples of the natural cellulose fiber include wood pulp such as softwood pulp and hardwood pulp; cotton pulp such as cotton linter and cotton lint; non-wood pulp such as straw pulp, bagasse pulp and hemp pulp; waste paper pulp and the like. As is well known, the mercerized cellulose fiber is a cellulose fiber that has been alkali-modified (so-called mercerized) by a concentrated alkali treatment. Examples of the dissolved cellulose fiber include Lyocell (registered trademark), TENCEL (registered trademark), Bemberg (registered trademark), viscose rayon, and Benliese (registered trademark). Examples of the cellulose fiber derivative include carboxymethyl cellulose, carboxyethyl cellulose, TEMPO-catalyzed oxidized cellulose, methyl cellulose, ethyl cellulose and the like.

本発明に係る第2基材は、典型的には、公知の湿式抄紙法によって製造された紙、又は不織布である。第2基材としての紙又は不織布の坪量は特に制限されず、積層体の用途等に応じて適宜設定すれば良い。例えば、積層体の用途が使い捨ておむつの防漏材である場合、第2基材としての紙又は不織布の坪量は、好ましくは10g/m2 以上、さらに好ましくは12g/m2 以上、そして、好ましくは50g/m2 以下、さらに好ましくは30g/m2 以下である。 The second base material according to the present invention is typically a paper or a nonwoven fabric manufactured by a known wet papermaking method. The basis weight of the paper or the non-woven fabric as the second base material is not particularly limited and may be appropriately set depending on the application of the laminate. For example, when the application of the laminate is a leak preventer for disposable diapers, the basis weight of the paper or nonwoven fabric as the second base material is preferably 10 g/m 2 or more, more preferably 12 g/m 2 or more, and It is preferably 50 g/m 2 or less, more preferably 30 g/m 2 or less.

本発明の積層体の主たる特徴の1つとして、互いに異種の第1基材と第2基材とが直接接合されている点が挙げられる。本発明でいう「直接接合」とは、第1基材と第2基材とが、接着成分を介さずに直に重なり合って互いに接合されている状態を意味する。また、ここでいう「接着成分」には、両基材とは別体の接着剤、及び、両基材に含有されている成分で加熱により接着成分となり得る物質(典型的には第1基材の熱可塑性樹脂)が含まれる。従って、本発明でいう「直接接合」には、i)第1基材と第2基材とが接着剤を介して互いに接合されている形態、及びii)両基材の何れか一方又は両方(通常は熱可塑性樹脂を主体とする第1基材)が加熱により熱融着性を帯びることに起因して両基材が互いに接合されている形態(いわゆる熱融着)は含まれない。 One of the main characteristics of the laminate of the present invention is that the first base material and the second base material that are different from each other are directly bonded. The “direct bonding” in the present invention means a state in which the first base material and the second base material are directly overlapped and bonded to each other without interposing an adhesive component. The term "adhesive component" as used herein refers to an adhesive separate from both base materials, and a substance contained in both base materials and capable of becoming an adhesive component by heating (typically the first group). Material thermoplastic resin) is included. Therefore, the "direct bonding" in the present invention includes i) a mode in which the first base material and the second base material are bonded to each other via an adhesive, and ii) either one or both of the base materials. The form (so-called heat fusion) in which both base materials are bonded to each other due to the fact that (the first base material mainly composed of a thermoplastic resin) is heat-fusible by heating is not included.

このような、第1基材と第2基材との接着成分を介さない「直接接合」は、熱可塑性樹脂を主体とする第1基材用原反シートに対し、前処理として大気圧プラズマ処理を施した後、その大気圧プラズマ処理面に第2基材用原反シートを重ね合わせて加熱加圧することによって実現可能である。即ち、本発明の積層体は、1)第1基材用原反シートの片面に、処理用ガスを用いてプラズマ装置により大気圧下で生成した大気圧プラズマを接触させる大気圧プラズマ処理を施す大気圧プラズマ処理工程と、2)前記大気圧プラズマ処理が施された第1基材用原反シートの片面に第2基材用原反シートを重ね合わせ、その重ね合わせ体を加熱加圧して両シートを一体化する一体化工程とを経て、製造され得る。 Such "direct bonding" of the first base material and the second base material without using an adhesive component is performed by performing atmospheric pressure plasma as a pretreatment on the raw material sheet for the first base material mainly composed of a thermoplastic resin. After the treatment, it can be realized by superposing the second base material sheet on the atmospheric pressure plasma treated surface and heating and pressurizing it. That is, the laminate of the present invention is 1) subjected to atmospheric pressure plasma treatment in which one side of the first base material sheet is brought into contact with atmospheric pressure plasma generated under atmospheric pressure by a plasma device using a processing gas. Atmospheric pressure plasma treatment step, and 2) stacking the second raw material sheet on one surface of the first raw material sheet that has been subjected to the atmospheric plasma treatment, and heating and pressing the stacked body. It can be manufactured through an integration process of integrating both sheets.

ここでいう「第1基材用原反シート」とは、本発明の積層体を構成する第1基材の主原材料であり、この原反シートに大気圧プラズマ処理前を施すことで第1基材が得られる。また、「第2基材用原反シート」とは、本発明の積層体を構成する第2基材の主原材料である。本発明の積層体の製造方法には、第2基材用原反シートに対して、大気圧プラズマ処理を施す態様と、大気圧プラズマ処理のような改質処理を施さない態様とが含まれるところ、前者の態様では、第2基材用原反シートと第2基材とは実質的に同じであり、後者の態様では、第2基材用原反シートに大気圧プラズマ処理前を施すことで第2基材が得られる。 The "raw material sheet for the first base material" referred to here is a main raw material of the first base material forming the laminate of the present invention, and the raw material sheet is subjected to the atmospheric pressure plasma treatment before the first raw material. A substrate is obtained. Further, the “raw sheet for second base material” is a main raw material of the second base material forming the laminate of the present invention. The method for producing a laminate of the present invention includes an aspect in which the second raw material sheet is subjected to atmospheric pressure plasma treatment and an aspect in which no modification treatment such as atmospheric pressure plasma treatment is applied. However, in the former aspect, the raw sheet for the second base material and the second base material are substantially the same, and in the latter aspect, the raw sheet for the second base material is subjected to the atmospheric pressure plasma treatment before. As a result, the second base material is obtained.

尚、熱可塑性樹脂を主体とするフィルム又は不織布である第1基材とセルロース系繊維を主体とする繊維集合体である第2基材との積層体において、両基材が「直接接合」されているか否かは、第1基材における第2基材との接合面について、水に対する接触角又は濡れ張力を測定することで判断が可能である。また、ある「熱可塑性樹脂を主体とするフィルム又は不織布」(即ち第1基材用原反シート)が「セルロース系繊維を主体とする繊維集合体」(即ち、第2基材用原反シート又は第2基材)に「直接接合」し得るものであるか否かは、第1基材用原反シートにおける第2基材用原反シートとの接合予定面について、水に対する接触角又は濡れ張力を測定することで判断が可能である。また前述した通り、「直接接合」は第1基材用原反シートの大気圧プラズマ処理によって実現可能であることから、第1基材又は第1基材用原反シートについて、水に対する接触角又は濡れ張力を測定することで、それが大気圧プラズマ処理されたものであるか否かを判断することが可能である。 Incidentally, in a laminated body of a first base material which is a film or a non-woven fabric mainly composed of a thermoplastic resin and a second base material which is a fiber assembly mainly composed of a cellulosic fiber, both base materials are "directly bonded". Whether or not it can be determined by measuring the contact angle with respect to water or the wetting tension on the joint surface of the first base material with the second base material. Further, a certain "film or nonwoven fabric mainly composed of a thermoplastic resin" (that is, a raw material sheet for a first substrate) is "a fiber assembly mainly composed of a cellulosic fiber" (that is, a raw material sheet for a second substrate). Or, whether or not it can be "directly joined" to the second base material, the contact angle to water or the contact angle with respect to the surface to be joined to the second base material sheet in the first base material sheet It can be judged by measuring the wetting tension. Further, as described above, the “direct bonding” can be realized by the atmospheric pressure plasma treatment of the raw material sheet for the first base material, and thus the contact angle of water with respect to the first base material or the raw material sheet for the first base material. Alternatively, by measuring the wetting tension, it is possible to determine whether or not it has been subjected to atmospheric pressure plasma treatment.

即ち、第1基材がフィルムの場合において、該第1基材即ちフィルムにおける第2基材との接合面の水に対する接触角が60°以下である場合には、該第1基材即ちフィルムは、接着成分を介さずに第2基材と直に重なって接合し得ると判断でき、あるいは、大気圧プラズマ処理されたものであると判断できる。尚、第1基材即ちフィルムにおける第2基材との接合面の水に対する接触角については、特に下限は設けないが、0°に近いほど好ましい。水に対する接触角はJIS R 3257:1999に従って測定される。 That is, in the case where the first base material is a film, when the contact angle of water on the joint surface of the first base material, ie, the film, with the second base material is 60° or less, the first base material or film Can be judged to be directly overlaid on and bonded to the second base material without the interposition of an adhesive component, or it can be judged to have been subjected to atmospheric pressure plasma treatment. There is no particular lower limit to the contact angle of the first base material, that is, the surface of the film to be joined to the second base material with water, but the contact angle is preferably closer to 0°. The contact angle with water is measured according to JIS R 3257:1999.

また、第1基材が不織布の場合において、該第1基材即ち不織布における第2基材との接合面の濡れ張力が55mN/m以上である場合には、該第1基材即ち不織布は、接着成分を介さずに第2基材と直に重なって接合し得ると判断でき、あるいは、大気圧プラズマ処理されたものであり、本来的に疎水性の熱可塑性繊維を主体とし且つ界面活性剤が付与されていないものであるにもかかわらず、大気圧プラズマ処理により濡れ張力が向上したと判断できる。尚、第1基材即ち不織布における第2基材との接合面の水に対する濡れ張力については、特に上限はなく、73mN/mを超えてもかまわない(但し、水銀の表面張力相当の427mN/mまでもの濡れ張力を有する必要はない)。不織布の濡れ張力は下記方法で測定される。 When the first base material is a non-woven fabric and the wetting tension of the joint surface of the first base material, that is, the non-woven fabric with the second base material is 55 mN/m or more, the first base material or the non-woven fabric is It can be judged that it can be directly overlaid and bonded to the second base material without the interposition of an adhesive component, or it has been subjected to atmospheric pressure plasma treatment and is mainly composed of a hydrophobic thermoplastic fiber and has a surface active property. It can be judged that the wetting tension was improved by the atmospheric pressure plasma treatment even though the agent was not applied. There is no particular upper limit for the wetting tension of the first base material, that is, the surface of the nonwoven fabric bonded to the second base material, with respect to water, and may exceed 73 mN/m (however, the surface tension of mercury is 427 mN/m). It is not necessary to have a wetting tension of up to m). The wetting tension of the nonwoven fabric is measured by the following method.

<不織布の濡れ張力の測定方法>
雰囲気温度20℃の環境領域で、測定対象の不織布を空中に水平に張設し、該不織布の上面に濡れ張力試験液を15μL滴下し、試験液の滴下から20秒経過後に、該上面における該試験液の状態を目視観察する。その観察において、試験液が不織布の厚み方向に透過又は面方向に拡散した場合は、表面張力のより大きな試験液に変更して同様の操作を行う。そして、試験液が不織布を透過できずにその液滴が不織布の上面に残った場合、又は面方向に拡散せずに該上面に濡れがほとんど認められない場合、斯かる場合の直前の滴下操作に使用した試験液、即ち、不織布を透過又は拡散できた試験液のうち表面張力が最大のものの表面張力を、当該不織布の雰囲気温度20℃における濡れ張力とする。濡れ張力試験液としては、JIS K 6768:1999に従い調製した、エチレングリコールモノエチルエーテル、ホルムアミド、メタノール及び水の混合液を用い、各成分の混合比を適宜変更して表面張力を調整する。尚、このような濡れ張力試験液は例えば和光純薬より、ぬれ張力試験用混合液という商品名で市販されている。
<Measuring method of wetting tension of non-woven fabric>
A nonwoven fabric to be measured is stretched horizontally in the air in an environment region of an ambient temperature of 20° C., 15 μL of a wetting tension test liquid is dropped on the upper face of the nonwoven fabric, and 20 seconds after the dropping of the test liquid, 20% after the test liquid is dropped on the upper face. Visually observe the state of the test solution. In the observation, when the test solution permeates in the thickness direction of the nonwoven fabric or diffuses in the plane direction, the test solution having a larger surface tension is used and the same operation is performed. Then, when the test liquid cannot pass through the non-woven fabric and the droplet remains on the upper face of the non-woven fabric, or when almost no wetting is observed on the upper face without spreading in the surface direction, the dropping operation immediately before such a case The surface tension of the test liquid used for the above, that is, the surface tension of the test liquid having the maximum surface tension among the test liquids capable of permeating or diffusing the non-woven fabric is the wetting tension of the non-woven fabric at the ambient temperature of 20°C. As the wetting tension test liquid, a mixed liquid of ethylene glycol monoethyl ether, formamide, methanol and water prepared according to JIS K 6768:1999 is used, and the surface tension is adjusted by appropriately changing the mixing ratio of each component. Such a wetting tension test liquid is commercially available, for example, from Wako Pure Chemical Industries, Ltd. under the trade name of a wetting tension test mixture.

図1には、前記プラズマ処理工程の一実施態様の概略が示されている。本実施態様で用いるプラズマ装置10は、電極12,12間で生成した大気圧プラズマGを、一対の電極12,12間の外に配された処理対象物に向けて吹き出すいわゆるリモート式のプラズマ装置である。プラズマ装置10は、処理対象物に対向配置された処理ヘッド11を具備し、その処理ヘッド11の内部に一対の電極12,12が相対向して配置され、各電極12の対向面には図示しない固体誘電体層が形成されている。両電極12,12のうちの一方が電源13に接続され、他方が電気的に接地されており、電源13からの電圧供給によって、両電極12,12間の空間が大気圧又はその近傍の放電空間14になる。放電空間14における処理用ガスの導入口15側は、処理用ガスG’の供給源16と連通している。斯かる構成のプラズマ装置10においては、供給源16から放電空間14に処理用ガスG’を導入して大気圧プラズマG(即ちプラズマ化された処理用ガスG’)を生成し、その大気圧プラズマGを処理ヘッド11の下端のガス吹き出し口17から吹き出し、ガス吹き出し口17の下方を搬送中の第1基材用原反シート20(即ち処理対象物)の一面(即ち上面)に吹き付けるようになされている。図示の態様における第1基材用原反シート20は連続帯状をなし、その長手方向を搬送方向MDに一致させて、搬送コンベア19によって処理ヘッド11の下方を搬送される。処理用ガスG’としては、窒素及び酸素からなる群から選択される1種以上又は大気を用いることができる。 FIG. 1 shows an outline of one embodiment of the plasma treatment process. The plasma device 10 used in the present embodiment is a so-called remote type plasma device in which atmospheric pressure plasma G generated between the electrodes 12 and 12 is blown toward a processing object arranged outside the pair of electrodes 12 and 12. Is. The plasma device 10 includes a processing head 11 arranged to face a processing object, and a pair of electrodes 12, 12 are arranged inside the processing head 11 so as to face each other. A solid dielectric layer is formed. One of the electrodes 12, 12 is connected to a power supply 13 and the other is electrically grounded, and a voltage is supplied from the power supply 13 so that the space between the electrodes 12, 12 is discharged at or near atmospheric pressure. It becomes space 14. The processing gas introduction port 15 side of the discharge space 14 communicates with the processing gas G′ supply source 16. In the plasma apparatus 10 having such a configuration, the processing gas G′ is introduced from the supply source 16 into the discharge space 14 to generate the atmospheric pressure plasma G (that is, the plasmaized processing gas G′), and the atmospheric pressure is generated. The plasma G is blown out from the gas blowing port 17 at the lower end of the processing head 11, and the lower side of the gas blowing port 17 is blown onto one surface (that is, the upper surface) of the first base material sheet 20 (that is, the processing object) being conveyed. Has been done. The first base material sheet 20 in the illustrated mode has a continuous strip shape, and is conveyed below the processing head 11 by the conveyor 19 with its longitudinal direction aligned with the conveyance direction MD. As the processing gas G', one or more selected from the group consisting of nitrogen and oxygen or the atmosphere can be used.

図1に示す如き態様で大気圧プラズマ処理が施された第1基材用原反シート20は、その大気圧プラズマ処理面即ち大気圧プラズマが吹き付けられた面(即ち図1の第1基材用原反シート20においては上面、即ち搬送コンベア19側とは反対側の面)が改質され、本来的に化学的には第2基材(又は第2基材用原反シート)と接合し得ない状態から接合可能な状態に変化する。即ち第1基材用原反シート20は、大気圧プラズマ処理によって第1基材となる。このような大気圧プラズマ処理による第1基材用原反シート20の表面改質のメカニズムは定かではないが、例えば第1基材用原反シート20がポリエチレンフィルムの場合、その表面は水素原子で占められていて本来的に疎水性(即ち水との接触角が約90°)であるが、大気圧プラズマ処理によって該表面の水素原子の一部がケトンや水酸基等の極性基に置換されることで、該表面が親水化される(即ち水との接触角が約50°になる)ことに起因するものと推察される。そして、こうして親水化された第1基材用原反シート20即ち第1基材の大気圧プラズマ処理面に、セルロース系繊維を主体とする繊維集合体である第2基材用原反シート即ち第2基材を重ね合わせて加熱加圧することで、第1基材の大気圧プラズマ処理面に存するケトンや水酸基等の極性基と、第2基材の表面に本来的に存する水酸基等の極性基とが、脱水縮合反応等により化学的に結合、あるいは水素結合により物理的に結合し、その結果として、第1基材と第2基材との「直接接合」がなされると推察される。 The raw material sheet 20 for a first base material that has been subjected to the atmospheric pressure plasma treatment in the mode as shown in FIG. The upper surface of the raw material sheet 20 for use, that is, the surface opposite to the side of the conveyor 19 is reformed, and is inherently chemically bonded to the second base material (or the second base material sheet). It changes from the impossible state to the joinable state. That is, the raw sheet 20 for the first base material becomes the first base material by the atmospheric pressure plasma treatment. Although the mechanism of surface modification of the first base material sheet 20 by such atmospheric pressure plasma treatment is not clear, for example, when the first base material sheet 20 is a polyethylene film, the surface thereof has hydrogen atoms. Are inherently hydrophobic (that is, the contact angle with water is about 90°), but some of the hydrogen atoms on the surface are replaced with polar groups such as ketones and hydroxyl groups by atmospheric pressure plasma treatment. It is speculated that this is due to the surface being hydrophilized (that is, the contact angle with water becomes about 50°). Then, on the hydrophilized first substrate raw sheet 20, that is, on the atmospheric pressure plasma-treated surface of the first substrate, the second substrate raw sheet, which is a fiber assembly mainly composed of cellulosic fibers, By heating and pressurizing the second base material on top of each other, polar groups such as ketones and hydroxyl groups existing on the atmospheric pressure plasma treated surface of the first base material and polarities such as hydroxyl groups originally present on the surface of the second base material. It is presumed that the group is chemically bonded by a dehydration condensation reaction or the like, or physically bonded by a hydrogen bond, and as a result, “direct bonding” between the first base material and the second base material is performed. ..

大気圧プラズマ処理には、図1に示す如きリモート式のプラズマ処理の他に、処理対象物を放電空間(即ち一対の電極間)に配置して処理を行なういわゆるダイレクト式があり、本発明では何れの方法も利用できる。リモート式プラズマ処理は、プラズマ生成領域(放電空間)と処理対象物処理領域とが分離されているため、ダイレクト式プラズマ処理のように、放電空間に存する電子が処理対象物に衝突することがなく、処理対象物が放電損傷や熱損傷等の電界ダメージを受けないという利点を有する。また、リモート式プラズマ処理は、図1に示す如く、処理対象物に対して連続的に処理を施すことが可能であるため、バッチ式の処理方法に比して、製造効率が高いという利点も有している。以上の点から、本発明に係る大気圧プラズマ処理としては、リモート式プラズマ処理が好ましい。 The atmospheric pressure plasma treatment includes a remote type plasma treatment as shown in FIG. 1 and a so-called direct type in which an object to be treated is placed in a discharge space (that is, between a pair of electrodes) to perform the treatment. Either method can be used. In the remote type plasma processing, since the plasma generation region (discharge space) and the processing target object processing region are separated from each other, electrons existing in the discharge space do not collide with the processing target object unlike the direct plasma processing. Another advantage is that the object to be processed is not subject to electric field damage such as discharge damage and heat damage. Further, as shown in FIG. 1, the remote plasma processing can continuously perform processing on an object to be processed, and therefore has an advantage of high manufacturing efficiency as compared with a batch processing method. Have From the above points, the remote plasma treatment is preferable as the atmospheric pressure plasma treatment according to the present invention.

本実施態様の大気圧プラズマ処理工程においては、搬送コンベア19が具備する図示しない吸引手段によって、搬送中の第1基材用原反シート20(即ち処理対象物)の他面側、即ち大気圧プラズマGが吹き付けられる面とは反対側から第1基材用原反シート20の吸引を実施する。斯かる吸引の主たる目的は、処理対象物である第1基材用原反シート20の固定であり、斯かる吸引により、第1基材用原反シート20が搬送コンベア19に固定され、例えば第1基材用原反シート20の搬送時のめくれや蛇行が防止され、それによって大気圧プラズマGによる第1基材用原反シート20の改質効率が向上し、第2基材との直接接合の実現がより一層確実なものとなり得る。第1基材用原反シート20の吸引は、少なくとも、第1基材用原反シート20にプラズマGを吹き付ける時点の前後にわたって実施することが好ましく、つまり、大気圧プラズマGの吹き出し口17から搬送方向MD及びそれとは逆方向それぞれに所定距離離間した位置にわたって実施することが好ましい。第1基材用原反シート20を吸引するための手段としては、各種のシートを吸引可能な公知の吸引手段を用いることができる。 In the atmospheric pressure plasma processing step of the present embodiment, the suction means (not shown) included in the conveyor 19 causes the other side of the first base material sheet 20 (that is, the object to be processed) being conveyed, that is, the atmospheric pressure. The first base material sheet 20 is suctioned from the side opposite to the surface on which the plasma G is sprayed. The main purpose of such suction is to fix the first base material sheet 20 that is the object to be processed, and the first base material sheet 20 is fixed to the conveyor 19 by such suction, for example, Flipping and meandering during transport of the first base material sheet 20 are prevented, and thereby the reforming efficiency of the first base material sheet 20 by the atmospheric pressure plasma G is improved, and the second base material The realization of direct bonding can be even more reliable. The suction of the first base material sheet 20 is preferably performed at least before and after the time point at which the plasma G is sprayed on the first base material sheet 20, that is, from the outlet 17 of the atmospheric pressure plasma G. It is preferable to carry out over a position separated by a predetermined distance in the transport direction MD and the opposite direction. As a means for sucking the first base material sheet 20, a known suction means capable of sucking various sheets can be used.

また、本実施態様においては、図1に示すように、第1基材用原反シート20(即ち処理対象物)に大気圧プラズマを接触させる前に、加熱手段18を用いて第1基材用原反シート20を加熱する。本実施態様における加熱手段18は熱風(いわゆる加熱エアー)の吹き付け装置であり、大気圧プラズマGの吹き出し口17よりも搬送方向MDの上流側にて、第1基材用原反シート20における大気圧プラズマGが吹き付けられる面(即ち大気圧プラズマ処理面)に対向配置されており、該大気圧プラズマ処理面に熱風を直接吹き付けてこれを加熱するようになされている。斯かる第1基材用原反シート20の加熱処理により、その後の大気圧プラズマ吹き付けによる第1基材用原反シート20の改質効率が向上し、第2基材用原反シート(又は第2基材)との直接接合の実現がより一層確実なものとなり得る。尚、第1基材用原反シート20の加熱方法は、図1に示す如き、大気圧プラズマ処理手段と加熱手段(即ち熱風吹き付け装置)とが一体となった装置を用いた形態での熱風の吹き付けに制限されず、例えば、大気圧プラズマ処理手段とこれとは別体の乾燥機とを用い、大気圧プラズマ接触前に第1基材用原反シート20を乾燥機に搬送して乾燥機中での熱風の吹き付けを行うこともできる。 Further, in this embodiment, as shown in FIG. 1, before the atmospheric pressure plasma is brought into contact with the first base material sheet 20 (that is, the object to be treated), the first base material is heated by using the heating means 18. The raw sheet 20 is heated. The heating means 18 in the present embodiment is a device for blowing hot air (so-called heating air), and is large in the first raw material sheet 20 on the upstream side of the outlet 17 of the atmospheric pressure plasma G in the transport direction MD. It is arranged so as to face the surface on which the atmospheric pressure plasma G is blown (that is, the atmospheric pressure plasma treatment surface), and hot air is directly blown to the atmospheric pressure plasma treatment surface to heat it. By such heat treatment of the raw material sheet 20 for the first base material, the reforming efficiency of the raw material sheet 20 for the first base material by the subsequent atmospheric pressure plasma spraying is improved, and the raw material sheet for the second base material (or The realization of the direct bonding with the second base material) can be further ensured. In addition, as shown in FIG. 1, the heating method of the first base material sheet 20 is performed by using a hot air in a form in which an atmospheric pressure plasma processing means and a heating means (that is, a hot air blowing device) are integrated. However, for example, the atmospheric pressure plasma treatment means and a dryer separate from the atmospheric pressure plasma treatment means are used, and the first base material sheet 20 is conveyed to the dryer and dried before the contact with the atmospheric pressure plasma. It is also possible to blow hot air in the machine.

斯かる大気圧プラズマ接触前の第1基材用原反シート20の加熱温度は、加熱処理による改質効果をより一層確実に奏させるようにする観点から、例えば搬送速度25m/minの場合、第1基材用原反シート20に含まれる熱可塑性樹脂のガラス転移温度プラス70℃以上で且つ該熱可塑性樹脂の融点プラス50℃未満とすることが好ましい。尚、ここでいう「第1基材用原反シートの加熱温度」とは、加熱されている第1基材用原反シート20自体の温度(いわゆる品温)ではなく、加熱手段自体あるいは加熱手段による加熱設定温度を意味し、例えば加熱手段が図1に示す如き熱風の場合は、第1基材用原反シート20の表面(即ち大気圧プラズマ処理予定面)位置での熱風の温度を意味する。また、第1基材用原反シート20にガラス転移温度の異なる複数種の熱可塑性樹脂が含有されている場合における、前記「第1基材用原反シートに含まれる熱可塑性樹脂」は、芯鞘繊維が配合されている場合にはその鞘成分の樹脂とし、複数種類の繊維が配合されている場合には、第1基材用原反シート20における配合割合の質量%で最も割合の大きい樹脂を意味する。前記融点についてもガラス転移温度と同様に考えることができる。第1基材用原反シート20の加熱温度をそれに含まれる熱可塑性樹脂のガラス転移温度以上とする理由は、主として、第2基材用原反シート(又は第2基材)との密着性を向上させるためであり、また、該加熱温度を該熱可塑性樹脂の融点プラス50℃未満とする理由は、第1基材用原反シート20の形状を保持するためである。 The heating temperature of the first raw material sheet 20 for a first substrate before contacting with the atmospheric pressure plasma is, for example, in the case of a transport speed of 25 m/min, from the viewpoint of more reliably producing the modification effect by the heat treatment, The glass transition temperature of the thermoplastic resin contained in the first base material sheet 20 is preferably 70° C. or higher and the melting point of the thermoplastic resin is lower than 50° C. The “heating temperature of the raw material sheet for the first base material” here does not mean the temperature of the heated raw material sheet for the first base material 20 itself (so-called product temperature), but the heating means itself or the heating. Means the heating set temperature by the means, for example, when the heating means is hot air as shown in FIG. 1, the temperature of the hot air at the surface (that is, the atmospheric pressure plasma treatment planned surface) position of the first base material sheet 20 is means. In the case where the raw material sheet 20 for the first base material contains a plurality of types of thermoplastic resins having different glass transition temperatures, the “thermoplastic resin contained in the raw material sheet for the first base material” is When the core-sheath fiber is blended, it is used as the resin of the sheath component, and when plural kinds of fibers are blended, it is the most mass% of the blending ratio in the first base material sheet 20. Means a large resin. The melting point can be considered similarly to the glass transition temperature. The reason for setting the heating temperature of the first base material sheet 20 to the glass transition temperature of the thermoplastic resin contained therein or higher is mainly the adhesiveness with the second base material sheet (or the second base material). The reason for setting the heating temperature to the melting point of the thermoplastic resin plus less than 50° C. is to maintain the shape of the first base material sheet 20.

本発明者らの知見によれば、第1基材用原反シート20に対する大気圧プラズマの接触回数(即ちプラズマ処理回数)が多いほど、第1基材用原反シート20の表面改質効果が高まり、第2基材用原反シート(又は第2基材)との直接接合がより強力なものとなり得る。従って、例えば図1に示す如く、第1基材用原反シート20の一面に大気圧プラズマGを吹き付けた後、再度、第1基材用原反シート20の一面に対して同様の方法で大気圧プラズマGを吹き付けることで、第1基材用原反シート20の一面に対して合計2回の大気圧プラズマ処理を行っても良い。第1基材用原反シート20の一面のプラズマ処理回数は3回以上でも良い。つまり、本発明の積層体の製造方法には、第1基材用原反シートの片面(即ち第2基材用原反シートとの接合予定面)に対し大気圧プラズマを1回以上接触させる態様が含まれる。尚、第1基材用原反シート20の両面それぞれに大気圧プラズマを1回以上接触させても良い。 According to the knowledge of the present inventors, the larger the number of times the atmospheric pressure plasma is brought into contact with the first raw material sheet 20 (that is, the number of plasma treatments), the more the surface modifying effect of the first raw material sheet 20 is improved. As a result, the direct bonding with the raw material sheet for the second base material (or the second base material) can be stronger. Therefore, for example, as shown in FIG. 1, after the atmospheric pressure plasma G is sprayed on one surface of the first base material sheet 20, the same method is performed again on the first surface of the first base material sheet 20. By spraying the atmospheric pressure plasma G, the one surface of the first base material original sheet 20 may be subjected to the atmospheric pressure plasma treatment twice in total. The number of plasma treatments on one surface of the first base material sheet 20 may be three or more. That is, in the method for manufacturing a laminate of the present invention, atmospheric pressure plasma is contacted with one surface of the first base material sheet (that is, the surface to be joined to the second base material sheet) at least once. Embodiments are included. It should be noted that the atmospheric pressure plasma may be brought into contact with each of both surfaces of the first base material sheet 20 once or more.

一方、第2基材用原反シートについては、その表面に本来的に水酸基等の極性基を有していて表面改質を必要としないため、大気圧プラズマ処理を施さなくても良く、第2基材用原反シートはそのまま第2基材として使用できる。但し、第2基材用原反シートに対しても第1基材用原反シートと同様に大気圧プラズマ処理を施すことによって、第1基材と第2基材との直接接合がより強固なものとなり得る等、好ましい結果が得られる可能性はある。本発明の積層体の製造方法には、第2基材用原反シートには大気圧プラズマ処理を施さないか、又は第2基材用原反シートにおける第1基材との対向面に大気圧プラズマを1回以上接触させる態様が含まれ、また、第2基材用原反シートの両面それぞれに大気圧プラズマを1回以上接触させても良い。 On the other hand, the raw material sheet for a second base material does not need to be subjected to atmospheric pressure plasma treatment because it has a polar group such as a hydroxyl group on its surface and does not require surface modification. The raw sheet for two base materials can be used as it is as the second base material. However, direct bonding between the first base material and the second base material is made stronger by subjecting the second base material sheet to the atmospheric pressure plasma treatment similarly to the first base material sheet. There is a possibility that favorable results can be obtained, such as that In the method for manufacturing a laminate of the present invention, the raw material sheet for the second base material is not subjected to atmospheric pressure plasma treatment, or the raw material sheet for the second base material has a large surface facing the first base material. A mode in which the atmospheric pressure plasma is contacted once or more is included, and the atmospheric pressure plasma may be contacted with each side of the second base material sheet once or more.

本発明の積層体の製造方法においては、前述した大気圧プラズマ処理が施された第1基材用原反シート20即ち第1基材の片面に第2基材用原反シート(又は第2基材)を重ね合わせて重ね合わせ体を得、該重ね合わせ体を加熱加圧して両シート即ち両基材を一体化する(即ち一体化工程)。前記大気圧プラズマ処理工程のみを実施し、斯かる一体化工程を実施しない場合には、両基材の直接接合は困難であり、両工程が必須である。一体化工程は、公知の加熱加圧装置を用いて行うことができ、例えば、一対の加熱加圧ロール間に前記重ね合わせ体を通すことで行うことができる。また、別の手段として手動式熱プレス装置を用いて行うこともでき、この場合の加熱加圧条件は、積層体の用途等に応じて適宜設定可能であり、特に制限されないが、前記重ね合わせ体の加熱温度は、好ましくは80℃以上、さらに好ましくは90℃以上、そして、好ましくは120℃以下、さらに好ましくは110℃以下である。また、前記重ね合わせ体にかける圧力は、好ましくは0.1MPa以上、さらに好ましくは5MPa以上、そして、好ましくは30MPa以下、さらに好ましくは25MPa以下である。前記重ね合わせ体の加熱温度、圧力が低すぎると、第1基材と第2基材との直接接合が困難になるおそれがあり、前記重ね合わせ体の加熱温度、圧力が高すぎると、望ましくない第1基材の融解あるいは風合いの著しい変化につながるおそれがある。前記手動式熱プレス装置は、相対向する一対の平板状の加熱加圧部材を備え、両部材間に載置された処理対象物(即ち前記重ね合わせ体)を両部材で圧縮しつつ加熱する装置である。 In the method for manufacturing a laminated body of the present invention, the raw material sheet 20 for the first base material, that is, the raw material sheet 20 for the second base material (or the second raw material) that has been subjected to the above-described atmospheric pressure plasma treatment, on one side of the first base material. The base materials are superposed to obtain a superposed body, and the superposed body is heated and pressed to integrate both sheets, that is, both base materials (that is, an integration step). If only the atmospheric pressure plasma treatment step is performed and the integration step is not performed, direct joining of both base materials is difficult and both steps are essential. The integration step can be performed using a known heating/pressurizing device, and can be performed, for example, by passing the superposed body between a pair of heating/pressurizing rolls. Further, it can be carried out by using a manual heat press device as another means, the heating and pressurizing conditions in this case can be appropriately set depending on the application of the laminate, etc. The heating temperature of the body is preferably 80° C. or higher, more preferably 90° C. or higher, and preferably 120° C. or lower, more preferably 110° C. or lower. The pressure applied to the superposed body is preferably 0.1 MPa or more, more preferably 5 MPa or more, and preferably 30 MPa or less, more preferably 25 MPa or less. If the heating temperature and pressure of the superposed body are too low, direct bonding between the first base material and the second base material may be difficult, and if the heating temperature and pressure of the superposed body are too high, it is desirable. There is a risk of melting the first base material or significantly changing the texture. The manual heat press apparatus includes a pair of flat plate-shaped heating and pressing members facing each other, and heats an object to be processed (that is, the superposed body) placed between the members while compressing the members. It is a device.

前述したように大気圧プラズマ処理及び加熱加圧処理を経て製造される本発明の積層体は、第1基材と第2基材とが接着剤無しで直接接合されているため、例えばホットメルト型接着剤の如き化学系接着剤を用いて製造された従来の積層体に比して、柔軟で通気性に優れ、且つ環境に対する負荷が低減されているという利点を有しつつも、実用上十分な接合強度を有している。本発明の積層体において直接接合している第1基材と第2基材との接合強度は、基材の種類等によって異なるため設定可能な範囲は広範囲にわたるが、通常、0.5〜150cN/10mmの範囲である。例えば、第1基材(又は第1基材用原反シート)が熱可塑性樹脂を主体とするフィルム、第2基材(又は第2基材用原反シート)がセルロース系繊維を主体とする紙である場合、両基材の接合強度は、好ましくは1cN/10mm以上、さらに好ましくは2cN/10mm以上である。また、第1基材(又は第1基材用原反シート)が熱可塑性樹脂を主体とする不織布、第2基材(又は第2基材用原反シート)がセルロース系繊維を主体とする紙である場合、両基材の接合強度は、好ましくは1cN/10mm以上、さらに好ましくは2cN/10mm以上である。接合強度の調整は、大気圧プラズマ処理及び/又は加熱加圧処理の条件を適宜調整することで実施可能である。接合強度は下記方法により測定される。 As described above, the laminated body of the present invention manufactured through the atmospheric pressure plasma treatment and the heating/pressurizing treatment has, for example, a hot melt because the first base material and the second base material are directly bonded without an adhesive. Compared to conventional laminates manufactured using chemical adhesives such as mold adhesives, they have the advantage of being flexible and excellent in breathability and reducing the load on the environment, but practically It has sufficient bonding strength. Since the bonding strength between the first base material and the second base material that are directly bonded in the laminate of the present invention varies depending on the type of the base material and the like, the settable range is wide, but usually 0.5 to 150 cN. The range is /10 mm. For example, the first base material (or the raw material sheet for the first base material) is a film mainly composed of a thermoplastic resin, and the second base material (or the raw material sheet for the second base material) is mainly composed of a cellulosic fiber. In the case of paper, the bonding strength of both base materials is preferably 1 cN/10 mm or more, more preferably 2 cN/10 mm or more. Further, the first base material (or the raw material sheet for the first base material) is a non-woven fabric mainly composed of a thermoplastic resin, and the second base material (or the raw material sheet for the second base material) is mainly composed of a cellulosic fiber. In the case of paper, the bonding strength of both base materials is preferably 1 cN/10 mm or more, more preferably 2 cN/10 mm or more. The bonding strength can be adjusted by appropriately adjusting the conditions of the atmospheric pressure plasma treatment and/or the heating/pressurizing treatment. The bonding strength is measured by the following method.

<積層体の接合強度の測定方法>
JIS Z 0237:2009に規定する180°引きはがし(T型剥離)粘着力の測定法に準じて測定する。測定対象の積層体から幅100mm×長さ20mm以上の帯状物をサンプリングして試験片とする。20℃、65%RHの環境下にて、引張試験機(島津製作所製、オートグラフ(登録商標)AG−IS 100N)チャック間に試験片の長手方向両端部を挟み、その状態で剥離速度300mm/分minで180°方向に引き剥がし(剥離長さ100mm)、剥離強度を測定する。測定結果を試験片の幅(単位はmm)で割って、10mm幅当り接合強度(単位はcN/10mm)とする。
<Measuring method of bonding strength of laminated body>
The 180° peeling (T-type peeling) specified in JIS Z 0237:2009 is performed according to the measuring method of the adhesive force. A strip having a width of 100 mm and a length of 20 mm or more is sampled from the laminate to be measured to obtain a test piece. Under the environment of 20° C. and 65% RH, the tensile tester (manufactured by Shimadzu Corporation, Autograph (registered trademark) AG-IS 100N) is sandwiched between both longitudinal ends of the test piece, and the peeling speed is 300 mm in that state. The peel strength is measured by peeling in a 180° direction at a peeling speed of min/min (peel length 100 mm). The measurement result is divided by the width (unit: mm) of the test piece to obtain the bonding strength per 10 mm width (unit: cN/10 mm).

本発明の積層体が有する積層構造は、少なくとも第1基材及び第2基材をそれぞれ1層有する二層構造であればよく、斯かる二層構造にさらに1層以上の第1基材及び/又は第2基材が積層された三層以上の積層構造であっても良い。例えば、1層の第1基材の両面それぞれに1層の第2基材が直接接合されてなる三層構造でも良く、斯かる三層構造の製造時には、三層構造の中間層となる第1基材用原反シートの両面それぞれに大気圧プラズマ処理を施すことが好ましい。 The laminated structure of the laminate of the present invention may be a two-layer structure having at least one layer of the first base material and one layer of the second base material, and such a two-layer structure may further include one or more layers of the first base material and It may have a laminated structure of three or more layers in which the second base material is laminated. For example, a three-layer structure in which one layer of the second base material is directly bonded to both surfaces of the one layer of the first base material may be used, and at the time of manufacturing such a three-layer structure, an intermediate layer of the three-layer structure is formed. It is preferable to perform atmospheric pressure plasma treatment on each of both sides of one substrate raw sheet.

以下、本発明を実施例により更に具体的に説明するが、本発明は斯かる実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically by way of examples, but the present invention is not limited to the examples.

〔実施例1〕
第1基材用原反シートとして市販の低密度PEフィルム(商品名「ノバテック(登録商標)」、三菱化学(株)製、厚み22μm)を用い、第2基材用原反シートとして坪量20g/m2 の天然セルロース繊維からなる紙を用いた。第2基材用原反シートとして用いた紙は、原料として針葉樹晒しクラフトパルプ100%を用い、これをJIS P 8220:1998に従って離解した後、JIS P 8121:2012に従ってカナダ標準濾水度560mLになるまで叩解し、JIS P 8223:2005に従って湿式抄紙して製造した。
第1基材用原反シートの片面に対し、図1に示すリモート式プラズマ装置10と基本構成が同様の装置を用いて、大気圧プラズマ処理を施した(即ち大気圧プラズマ処理工程)。大気圧プラズマ処理工程における諸条件の詳細は下記の通りである。
次いで、大気圧プラズマ処理が施された第1基材用原反シート即ち第1基材の片面に第2基材用原反シート(又は第2基材)を重ね合わせ、その重ね合わせ体を加熱加圧して両シート(即ち基材)を一体化して、目的とする積層体を得た(即ち一体化工程)。一体化工程における諸条件の詳細は下記の通りである。
[Example 1]
A commercially available low-density PE film (trade name “Novatech (registered trademark)”, manufactured by Mitsubishi Chemical Corporation, thickness 22 μm) was used as the raw sheet for the first base material, and the basis weight was used as the raw sheet for the second base material. Paper consisting of 20 g/m 2 of natural cellulose fibers was used. The paper used as the raw sheet for the second base material was 100% kraft pulp bleached from softwood as a raw material, and after being disintegrated according to JIS P 8220:1998, a Canadian standard freeness of 560 mL was obtained according to JIS P 8121:2012. It was beaten until it became, and wet papermaking was carried out in accordance with JIS P 8223:2005.
Atmospheric pressure plasma treatment was performed on one side of the first substrate raw sheet using the same apparatus as the remote plasma apparatus 10 shown in FIG. 1 (that is, atmospheric pressure plasma treatment step). Details of various conditions in the atmospheric pressure plasma treatment process are as follows.
Then, the raw material sheet for the first base material that has been subjected to the atmospheric pressure plasma treatment, that is, the raw material sheet for the second base material (or the second base material) is superposed on one surface of the first base material, and the superposed body is formed. Both sheets (that is, the base material) were integrated by heating and pressurizing to obtain a target laminate (that is, an integration step). Details of various conditions in the integration process are as follows.

(プラズマ処理工程における諸条件)
・リモート式プラズマ装置:Tough Plasma(登録商標) FPE20(富士機械製造(株)製)
・プラズマ吹き出し口と第1基材用原反シート(即ち処理対象物)との距離:5mm
・大気圧プラズマ処理時における第1基材用原反シート(即ち処理対象物)の搬送速度:25m/min
・処理制御方法:二軸ロボット((株)IAI製)で制御(ここではA4判にわたり処理)
・処理用ガスとして窒素(純度99.9%以上、酸素含有量0.1%以下)を用い、処理用ガスの流量を30L/minとした。
・加熱エアーを用い、大気圧プラズマ吹き付け前の処理対象物を加熱処理した。加熱エアーには大気を用いた。加熱エアーの流量20L/min、加熱温度(即ち加熱エアーの処理対象物の表面位置での温度)150℃とした。
・大気圧プラズマ処理時に、処理対象物における大気圧プラズマが吹き付けられる面とは反対側から処理対象物の吸引を実施した。
(Various conditions in plasma treatment process)
-Remote plasma device: Tough Plasma (registered trademark) FPE20 (manufactured by Fuji Machine Manufacturing Co., Ltd.)
・Distance between the plasma outlet and the original sheet for the first substrate (that is, the object to be treated): 5 mm
-Conveying speed of the first base material sheet (that is, the object to be processed) during the atmospheric pressure plasma processing: 25 m/min
・Processing control method: Controlled by a two-axis robot (manufactured by IAI Co., Ltd.) (here, processing over A4 size)
-Nitrogen (purity 99.9% or more and oxygen content 0.1% or less) was used as the processing gas, and the flow rate of the processing gas was 30 L/min.
-The heated object was heat-treated using the heated air before being sprayed with the atmospheric pressure plasma. The atmosphere was used as the heating air. The flow rate of the heating air was 20 L/min, and the heating temperature (that is, the temperature of the heating air at the surface position of the object to be treated) was 150°C.
During the atmospheric pressure plasma processing, the processing object was sucked from the side opposite to the surface of the processing object to which the atmospheric pressure plasma was sprayed.

(一体化工程における諸条件)
・装置:東洋精機(株)製 Mini Test Press−10
・重ね合わせ体の加熱温度:100℃
・重ね合わせ体への圧力:25MPa
・加熱加圧時間:10秒間
(Various conditions in the integration process)
・Device: Mini Test Press-10 manufactured by Toyo Seiki Co., Ltd.
・Heating temperature of superposed body: 100℃
・Pressure applied to the stack: 25 MPa
・Heating time: 10 seconds

〔実施例2〕
第1基材用原反シートとして、市販の二軸延伸PETフィルム(商品名「テトロン(登録商標)G2C」、帝人(株)製、厚み25μm)を用いた以外は、実施例1と同様にして積層体を得た。
[Example 2]
Same as Example 1 except that a commercially available biaxially stretched PET film (trade name “Tetron (registered trademark) G2C”, Teijin Ltd., thickness 25 μm) was used as the first substrate raw sheet. To obtain a laminate.

〔実施例3〕
第2基材用原反シートとして、市販のコピー用紙(商品名「リサイクルカット判G80(型番G80A4W)、トッパン・フォームズ(株)製、古紙パルプ配合率70質量%、森林認証材パルプ配合率30質量%、坪量64g/m2)を用いた以外は、実施例1と同様にして積層体を得た。
[Example 3]
As the raw material sheet for the second base material, a commercially available copy paper (trade name "recycle cut size G80 (model number G80A4W), manufactured by Toppan Forms Co., Ltd., recycled paper pulp mixing ratio 70% by mass, forest certification material pulp mixing ratio 30") A laminate was obtained in the same manner as in Example 1 except that the mass% and the basis weight 64 g/m 2 ) were used.

〔実施例4〕
第1基材用原反シートとして、実施例1で用いたPETフィルムと同じものを用いた以外は、実施例3と同様にして積層体を得た。
[Example 4]
A laminate was obtained in the same manner as in Example 3 except that the same PET film as that used in Example 1 was used as the first base material sheet.

〔実施例5〕
第1基材用原反シートとして、PETを芯部、PEを鞘部とする芯鞘型複合繊維から構成されるスパンボンド不織布(商品名「エルベス(登録商標)」(型番S20S0203WDO)、ユニチカ(株)製、坪量20g/m2)を用いた以外は、実施例1と同様にして積層体を得た。
[Example 5]
As a raw sheet for the first base material, a spunbonded nonwoven fabric (trade name "Elves (registered trademark)" (model number S20S0203WDO), unitika ( Co., Ltd., basis weight 20 g/m 2 ) was used, and a laminate was obtained in the same manner as in Example 1.

〔実施例6〕
第2基材として、実施例3で用いたコピー用紙と同じものを用いた以外は、実施例5と同様にして積層体を得た。
[Example 6]
A laminate was obtained in the same manner as in Example 5 except that the same copy paper as that used in Example 3 was used as the second base material.

〔実施例7〕
第2基材用原反シートとして、市販の板紙(商品名「色上質紙 超厚口黒」、北越紀州製紙(株)製、坪量204.5g/m2)を用いた以外は、実施例5と同様にして積層体を得た。
[Example 7]
Conducted except that a commercially available paperboard (trade name "color fine paper super thick black", Hokuetsu Kishu Paper Co., Ltd., basis weight 204.5 g/m 2 ) was used as the second base material sheet. A laminated body was obtained in the same manner as in Example 5.

〔比較例1〜7〕
第1基材用原反シートに大気圧プラズマ処理を施さずに、第1基材用原反シートと第2基材用原反シートとの一体化工程を行った以外は、実施例1〜7と同様にして積層体を得た。
[Comparative Examples 1 to 7]
Examples 1 to 1 except that the first base material raw sheet and the second base material raw sheet were integrated together without performing atmospheric pressure plasma treatment on the first base material raw sheet. A laminate was obtained in the same manner as in 7.

〔評価試験〕
各実施例及び比較例の積層体について、前記方法により第1基材と第2基材との接合強度(即ちT型剥離強度)を測定した。その結果を下記表1に示す。
〔Evaluation test〕
With respect to the laminates of Examples and Comparative Examples, the bonding strength (that is, T-type peel strength) between the first base material and the second base material was measured by the method described above. The results are shown in Table 1 below.

Figure 0006748420
Figure 0006748420

10 リモート式プラズマ装置
11 処理ヘッド
12 電極
13 電源
14 放電空間
15 処理用ガスの導入口
16 処理用ガスの供給源
17 ガス吹き出し口
18 加熱手段
19 搬送コンベア
20 第1基材用原反シート(即ち処理対象物)
G’ 処理用ガス
G 大気圧プラズマ
10 Remote Plasma Apparatus 11 Processing Head 12 Electrode 13 Power Supply 14 Discharge Space 15 Processing Gas Inlet 16 Processing Gas Supply Source 17 Gas Blowout 18 Heating Means 19 Conveyor 20 First Substrate for Base Material (ie Object to be processed)
G'Processing gas G Atmospheric pressure plasma

Claims (10)

互いに異種のシート状の第1基材と第2基材とが直接接合されてなる積層構造を有し、
前記第1基材は、熱可塑性樹脂を主体とするフィルム又は不織布であり、前記第2基材は、セルロース系繊維を主体とする繊維集合体であり、
前記直接接合は、前記第1基材の主原材料である原反シートに対し、大気圧プラズマ処理を施した後、その大気圧プラズマ処理面に前記第2基材の主原材料である原反シートを重ね合わせて加熱加圧することによってなされたものである積層体。
It has a laminated structure in which a sheet-shaped first base material and a second base material that are different from each other are directly bonded,
The first base material is a film or non-woven fabric mainly composed of a thermoplastic resin, and the second base material is a fiber assembly mainly composed of cellulosic fibers,
In the direct bonding, a raw sheet which is a main raw material of the first base material is subjected to atmospheric pressure plasma treatment, and then a raw sheet which is a main raw material of the second base material is applied to the atmospheric pressure plasma treated surface. A laminate which is made by stacking and heating and pressing.
前記第1基材の熱可塑性樹脂は、ポリオレフィン系及びポリエステル系からなる群から選択される1種以上である請求項1記載の積層体。 The laminated body according to claim 1 , wherein the thermoplastic resin of the first base material is at least one selected from the group consisting of polyolefin-based and polyester-based. 請求項1又は2に記載の積層体の製造方法であって、
第1基材用原反シートの片面に、処理用ガスを用いてプラズマ装置により大気圧下で生成した大気圧プラズマを接触させる大気圧プラズマ処理を施す大気圧プラズマ処理工程と、
前記大気圧プラズマ処理が施された前記第1基材用原反シートの片面に第2基材用原反シートを重ね合わせ、その重ね合わせ体を加熱加圧して両シートを一体化する一体化工程とを有する積層体の製造方法。
It is a manufacturing method of the laminated body of Claim 1 or 2 , Comprising:
An atmospheric pressure plasma treatment step of performing atmospheric pressure plasma treatment in which one side of the first base material sheet is brought into contact with atmospheric pressure plasma generated under atmospheric pressure by a plasma device using a treatment gas;
An unification in which the original sheet for the second substrate is superposed on one surface of the original sheet for the first substrate which has been subjected to the atmospheric pressure plasma treatment, and the superposed body is heated and pressed to integrate the two sheets. The manufacturing method of the laminated body which has a process.
互いに異種のシート状の第1基材と第2基材とが直接接合されてなる積層構造を有し、It has a laminated structure in which a sheet-shaped first base material and a second base material that are different from each other are directly bonded,
前記第1基材は、熱可塑性樹脂を主体とするフィルムであり、前記第2基材は、セルロース系繊維を主体とする繊維集合体であり、The first base material is a film mainly composed of a thermoplastic resin, and the second base material is a fiber assembly mainly composed of a cellulosic fiber,
前記第2基材のセルロース系繊維は、天然セルロース繊維、マーセル化セルロース繊維、溶解セルロース繊維及びセルロース繊維誘導体からなる群から選択される1種以上であり、The cellulosic fiber of the second substrate is one or more selected from the group consisting of natural cellulosic fiber, mercerized cellulosic fiber, dissolved cellulosic fiber and cellulosic fiber derivative,
前記第1基材における前記第2基材との接合面の水に対する接触角が0°〜60°である積層体の製造方法であって、A method for producing a laminate, wherein a contact angle of water on a joint surface of the first base material with the second base material is 0° to 60°,
第1基材用原反シートの片面に、処理用ガスを用いてプラズマ装置により大気圧下で生成した大気圧プラズマを接触させる大気圧プラズマ処理を施す大気圧プラズマ処理工程と、An atmospheric pressure plasma treatment step of performing atmospheric pressure plasma treatment in which one side of the first base material sheet is brought into contact with atmospheric pressure plasma generated under atmospheric pressure by a plasma device using a treatment gas;
前記大気圧プラズマ処理が施された前記第1基材用原反シートの片面に第2基材用原反シートを重ね合わせ、その重ね合わせ体を加熱加圧して両シートを一体化する一体化工程とを有する積層体の製造方法。An unification in which the original sheet for the second substrate is superposed on one surface of the original sheet for the first substrate which has been subjected to the atmospheric pressure plasma treatment, and the superposed body is heated and pressed to integrate the two sheets. The manufacturing method of the laminated body which has a process.
互いに異種のシート状の第1基材と第2基材とが直接接合されてなる積層構造を有し、It has a laminated structure in which a sheet-shaped first base material and a second base material that are different from each other are directly bonded,
前記第1基材は、熱可塑性樹脂を主体とする不織布であり、前記第2基材は、セルロース系繊維を主体とする繊維集合体であり、The first base material is a non-woven fabric mainly composed of a thermoplastic resin, and the second base material is a fiber assembly mainly composed of cellulosic fibers,
前記第2基材のセルロース系繊維は、天然セルロース繊維、マーセル化セルロース繊維、溶解セルロース繊維及びセルロース繊維誘導体からなる群から選択される1種以上であり、The cellulosic fiber of the second substrate is one or more selected from the group consisting of natural cellulosic fiber, mercerized cellulosic fiber, dissolved cellulosic fiber and cellulosic fiber derivative,
前記第1基材における前記第2基材との接合面の濡れ張力が55〜427mN/mである積層体の製造方法であって、A method for producing a laminate, wherein a wetting tension of a joint surface of the first base material with the second base material is 55 to 427 mN/m,
第1基材用原反シートの片面に、処理用ガスを用いてプラズマ装置により大気圧下で生成した大気圧プラズマを接触させる大気圧プラズマ処理を施す大気圧プラズマ処理工程と、An atmospheric pressure plasma treatment step of performing atmospheric pressure plasma treatment in which one side of the first base material sheet is brought into contact with atmospheric pressure plasma generated under atmospheric pressure by a plasma device using a treatment gas;
前記大気圧プラズマ処理が施された前記第1基材用原反シートの片面に第2基材用原反シートを重ね合わせ、その重ね合わせ体を加熱加圧して両シートを一体化する一体化工程とを有する積層体の製造方法。An unification in which the original sheet for the second substrate is superposed on one surface of the original sheet for the first substrate which has been subjected to the atmospheric pressure plasma treatment, and the superposed body is heated and pressed to integrate the two sheets. The manufacturing method of the laminated body which has a process.
前記処理用ガスは、窒素及び酸素からなる群から選択される1種以上又は大気である請求項3〜5の何れか一項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 3 to 5, wherein the processing gas is at least one selected from the group consisting of nitrogen and oxygen or the atmosphere. 前記第1基材用原反シートの片面に前記大気圧プラズマを接触させる前に、該第1基材用原反シートを加熱する請求項3〜6の何れか一項に記載の積層体の製造方法。 The laminated sheet according to any one of claims 3 to 6 , wherein the raw material sheet for the first base material is heated before the atmospheric pressure plasma is brought into contact with one surface of the raw material sheet for the first base material. Production method. 前記第1基材用原反シートの加熱温度が、該第1基材用原反シートに含まれる熱可塑性樹脂のガラス転移温度以上で且つ該熱可塑性樹脂の融点未満である請求項7に記載の積層体の製造方法。 The heating temperature of the raw material sheet for a first base material is equal to or higher than the glass transition temperature of the thermoplastic resin contained in the raw material sheet for a first base material and lower than the melting point of the thermoplastic resin. A method for manufacturing a laminate. 前記第1基材用原反シートの片面に前記大気圧プラズマを1回以上接触させ、且つ
前記第2基材用原反シートには前記大気圧プラズマ処理を施さないか、又は前記第2基材用原反シートにおける前記第1基材用原反シートとの対向面に前記大気圧プラズマを1回以上接触させる請求項〜8の何れか一項に記載の積層体の製造方法。
The atmospheric pressure plasma is brought into contact with one surface of the raw material sheet for the first substrate one or more times, and the atmospheric pressure plasma treatment is not applied to the raw material sheet for the second substrate, or the second substrate is used. The method for producing a laminate according to claim 3 , wherein the atmospheric pressure plasma is brought into contact with the surface of the material raw sheet facing the first base material sheet once or more.
前記一体化工程において、前記重ね合わせ体の加熱温度が80℃以上、前記重ね合わせ体にかける圧力が0.1MPa以上30MPa以下である請求項〜9の何れか一項に記載の積層体の製造方法。 In the integration step, the superimposed heating temperature of the body 80 ° C. or higher, the superposed pressure applied to the body of the laminate according to any one of claims 3-9 is 0.1MPa or more 30MPa or less Production method.
JP2015235855A 2015-12-02 2015-12-02 Laminated body and manufacturing method thereof Active JP6748420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015235855A JP6748420B2 (en) 2015-12-02 2015-12-02 Laminated body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015235855A JP6748420B2 (en) 2015-12-02 2015-12-02 Laminated body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017100370A JP2017100370A (en) 2017-06-08
JP6748420B2 true JP6748420B2 (en) 2020-09-02

Family

ID=59015359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015235855A Active JP6748420B2 (en) 2015-12-02 2015-12-02 Laminated body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6748420B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114099144B (en) * 2020-08-31 2022-09-27 王子控股株式会社 Method for manufacturing absorbent article and apparatus for manufacturing absorbent article

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08244127A (en) * 1995-03-14 1996-09-24 Sumitomo Chem Co Ltd Production of laminate
JP2004330522A (en) * 2003-05-02 2004-11-25 Idemitsu Unitech Co Ltd Laminate
JP2010202855A (en) * 2009-02-06 2010-09-16 Kao Corp Film-like formed article and manufacturing method therefor
JP5455539B2 (en) * 2009-10-13 2014-03-26 藤森工業株式会社 LAMINATE MANUFACTURING METHOD, LAMINATE, AND PACKAGING CONTAINER USING THE SAME
JP5885068B2 (en) * 2010-12-27 2016-03-15 大日本印刷株式会社 Laminated body and method for producing the same
JP6219701B2 (en) * 2013-12-12 2017-10-25 花王株式会社 Absorbent articles

Also Published As

Publication number Publication date
JP2017100370A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP4528756B2 (en) Drilling device
KR100561762B1 (en) Non-woven fabric and, laminate and string using the same
JPH0354614B2 (en)
WO2002102898A1 (en) High-frequency active polymeric compositions and films
JP7464655B2 (en) Semipermeable membrane support
US20170332873A1 (en) Method for manufacturing water absorbent article and absorbent article manufactured thereby
CN108136714B (en) Laminate body
JP6748420B2 (en) Laminated body and manufacturing method thereof
JP2008238493A (en) Adhesive fiber sheet and its manufacturing method
JP5208861B2 (en) Sound-absorbing laminate and molded article of sound-absorbing laminate
JP5779893B2 (en) Laminate made of nonwoven fabric and film
RU2476319C2 (en) Method of jointing coated textile articles, connection seam, and device to this end
JP5068938B2 (en) Breathable laminated sheet
WO2015046162A1 (en) Absorbent manufacturing method and manufacturing device
JP2001030395A (en) Laminated processed paper
CN107283967A (en) A kind of antifouling ventilative aramid fiber composite material of waterproof and oilproof and its formation process
JP4999906B2 (en) Laminated paper
JP6192364B2 (en) Absorbent articles
JP2021110080A (en) Composite paper manufacturing method and composite paper
JP3157107U (en) Disposable protective clothing
JP6116383B2 (en) Absorbent articles
JP2006002296A (en) Method for producing water-disintegrable paper and water-disintegrable paper
JP2015118836A (en) Method for manufacturing nonwoven fabric base material for lithium ion secondary battery separator and nonwoven fabric base material for lithium ion secondary battery separator
WO2024075655A1 (en) Heat seal sheet and sterilized package
KR20200125929A (en) Textile products and methods of manufacturing textile products

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200807

R151 Written notification of patent or utility model registration

Ref document number: 6748420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250