WO2024075655A1 - Heat seal sheet and sterilized package - Google Patents

Heat seal sheet and sterilized package Download PDF

Info

Publication number
WO2024075655A1
WO2024075655A1 PCT/JP2023/035722 JP2023035722W WO2024075655A1 WO 2024075655 A1 WO2024075655 A1 WO 2024075655A1 JP 2023035722 W JP2023035722 W JP 2023035722W WO 2024075655 A1 WO2024075655 A1 WO 2024075655A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
thermoplastic resin
heat seal
fiber nonwoven
resin fiber
Prior art date
Application number
PCT/JP2023/035722
Other languages
French (fr)
Japanese (ja)
Inventor
律雄 萬道
幸子 小口
真裕 川北
美紗 名古屋
健司 柳沢
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Publication of WO2024075655A1 publication Critical patent/WO2024075655A1/en

Links

Images

Definitions

  • the present invention relates to a heat seal sheet and a sterile package.
  • Sterilization methods used by hospitals and medical equipment manufacturers include placing scalpels, forceps, and other items to be sterilized in sterile packaging and sealing it, and then sterilizing them using gas sterilization, high-pressure steam sterilization, radiation sterilization, etc.
  • gas sterilization the package is placed in a pressure-resistant container, the pressure inside the container is reduced, the air inside the package is expelled, and then ethylene oxide gas (EOG) or the like is filled into the container to permeate the inside of the package and sterilize it.
  • EOG ethylene oxide gas
  • the package In high-pressure steam sterilization, the package is exposed to high-temperature steam using an autoclave or the like, and sterilized by repeatedly reducing and pressurizing the pressure. In radiation sterilization, sterilization is performed by exposing the package to radiation. Of these, gas sterilization and high-pressure steam sterilization are often used due to their cost and simplicity.
  • Sterilized packaging using the peel-open method is manufactured by bonding two rectangular sheets, one on the front and one on the back, so that they can be peeled off.
  • Sterilized packaging using the tear-off method is manufactured using an easily tearable (easy to tear open) sheet.
  • the sterilization packaging used in the gas sterilization and high-pressure steam sterilization methods described above must be breathable due to the sterilization method used.
  • Sterilization packaging used in radiation sterilization is also preferably breathable, as residual solvents and odors contained in the contents may evaporate during the sterilization process. For this reason, breathable sheets are used for the sterilization packaging.
  • heat seal sheets that form a hermetic seal by thermocompression are used.
  • heat seal sheets that form lids for molded containers such as trays and cups are thermocompression-bonded to the flanges surrounding the openings to seal the containers.
  • Heat seal sheets are required to ensure breathability that allows sterilization while achieving complete closure (maintaining the sterile state) after sterilization.
  • Patent Document 1 proposes that the heat adhesive layer of the heat seal sheet is formed in a mesh-like shape to ensure breathability.
  • the flange portion where the heat seal sheet is thermocompressed is usually narrow, and there are doubts about the integrity of the closure with a mesh-like heat adhesive layer.
  • Patent Document 2 proposes a heat seal sheet in which a granular thermoplastic resin is blended into the thermal adhesive layer, making it possible to make the thermal adhesive layer a so-called solid coating while ensuring breathability.
  • these heat seal sheets must limit their basis weight to ensure sufficient breathability, which limits their strength.
  • the objective of the present invention is to provide an excellent heat seal sheet that has sufficient thermal adhesion and breathability over the entire heat seal surface, is strong, and minimizes the amount of lint (fiber fluff) generated, a method for producing the same, and a sterilized package using the same.
  • thermoplastic resin fiber nonwoven fabric layer B contains a low-melting point polyester resin, polyester fibers, and a polyethylene resin, and a mass ratio of the low-melting point polyester resin, polyester fibers, and polyethylene resin (low-melting point polyester resin:polyester fibers:polyethylene resin) is 13.75:11.25:75 to 41.25:33.75:25;
  • the heat seal sheet has an Oken air permeability of 700 seconds or less as measured in accordance with JIS P 8117:2009, and The heat seal sheet has a tear strength of 700 mN or more as measured in accordance with JIS P 8116:2000.
  • thermoplastic resin fiber nonwoven fabric layer A is a nonwoven fabric layer derived from at least one selected from the group consisting of a spunbonded nonwoven fabric, a thermally bonded nonwoven fabric, a chemically bonded nonwoven fabric, a needle-punched nonwoven fabric, a spunlace nonwoven fabric, a meltblown nonwoven fabric, and a wet-laid nonwoven fabric.
  • thermoplastic resin fiber nonwoven fabric layer A contains at least one fiber selected from the group consisting of polypropylene resin fibers, polyester fibers, and polyamide fibers.
  • thermoplastic resin fiber nonwoven fabric layer A retains a fibrous shape.
  • peel strength when the heat seal sheet is peeled off at 180° from a sterilization packaging material such as paper, a film, or a molded container for sterilization at a peel speed of 300 mm/min in accordance with JIS P 8113:2006 is 1.0/15 mm or more and 15 N/15 mm or less.
  • thermoplastic resin fiber nonwoven fabric layer A and the thermoplastic resin fiber nonwoven fabric layer B are laminated together so that the thermoplastic resin fiber nonwoven fabric layer B serves as a surface layer.
  • thermoplastic resin fiber nonwoven fabric layer B serves as a surface layer.
  • thermoplastic resin fiber nonwoven fabric b preparing a thermoplastic resin fiber nonwoven fabric a and a thermoplastic resin fiber nonwoven fabric b
  • Step 2 laminating one or more layers of a thermoplastic resin fiber nonwoven fabric a and one or more layers of a thermoplastic resin fiber nonwoven fabric b to obtain a laminate
  • Step 3 heat-sealing the laminate obtained in step 2.
  • thermoplastic resin fiber nonwoven fabric b contains a core-sheath polyester fiber.
  • thermoplastic resin fiber nonwoven fabric b is a nonwoven fabric obtained by a wet papermaking method.
  • the heat seal sheet of the present invention has sufficient thermal adhesion and breathability over the entire heat seal surface, is strong, and keeps lint generation to a minimum, making it an excellent sterilized medical packaging material.
  • FIG. 1 is a cross-sectional view of one embodiment of a sterile package.
  • FIG. 2 is a cross-sectional view of one embodiment of a heat seal sheet.
  • FIG. 2 is a cross-sectional view of another embodiment of a heat seal sheet.
  • FIG. 2 is a cross-sectional view of another embodiment of a heat seal sheet.
  • the term "sheet” is a general term for thin sheets such as sheets, films, nonwoven fabrics, and laminates thereof.
  • Oleken air permeability is a value measured in accordance with JIS P 8117:2009.
  • Basis weight is a value measured in accordance with JIS P 8124:2011.
  • Melting point is the melting peak temperature measured in accordance with JIS K 7121:1987.
  • the “tear strength” is the geometric mean value of the measured values in the longitudinal and transverse directions of the sheet measured in accordance with JIS P 8116:2000.
  • the sterilization package (11) comprises a heat seal sheet (21) and an adherend (31) ( Figure 1).
  • the heat seal sheet (21) comprises one or more thermoplastic resin fiber nonwoven fabric layers A (22) and one or more thermoplastic resin fiber nonwoven fabric layers B (23) (FIGS. 2 and 3).
  • thermoplastic resin fiber nonwoven fabric layer A (22) and one or more thermoplastic resin fiber nonwoven fabric layers B (23) it may also comprise a thermoplastic resin fiber nonwoven fabric layer C (41) different from the thermoplastic resin fiber nonwoven fabric layer A (22) and the thermoplastic resin fiber nonwoven fabric layer B (23) (FIG. 4).
  • the heat seal sheet (21) is preferably obtained by laminating one or more layers of a thermoplastic resin fiber nonwoven fabric a and one or more layers of a thermoplastic resin fiber nonwoven fabric b, and heat fusing them together, the thermoplastic resin fiber nonwoven fabric layer A being a layer derived from the thermoplastic resin fiber nonwoven fabric a, and the thermoplastic resin fiber nonwoven fabric layer B being a layer derived from the thermoplastic resin fiber nonwoven fabric b.
  • the heat seal sheet (21) also has an Oken air permeability of 700 seconds or less as measured in accordance with JIS P 8117:2009, and a tear strength of 700 mN or more as measured in accordance with JIS P 8116:2000.
  • thermoplastic resin fiber nonwoven fabric layer B contains a low melting point polyester resin, polyester fibers, and polyethylene resin, and the mass ratio of the low melting point polyester resin, polyester fibers, and polyethylene resin (low melting point polyester resin:polyester fibers:polyethylene resin) is 13.75:11.25:75 to 41.25:33.75:25.
  • the heat seal sheet of this embodiment has sufficient thermal adhesiveness and breathability over the entire heat seal surface, and also has high strength, particularly tear strength, and suppresses the amount of lint generation. The detailed reasons why the above effects are obtained are unclear, but some of them are thought to be as follows.
  • thermoplastic resin fiber nonwoven fabric layer B has a specific resin composition, it is thought that the layer has excellent thermal adhesion and suppresses the generation of fiber fluff called lint and fiber debris that falls off when the sheet is opened.
  • the heat seal sheet (21) has an Oken air permeability of 700 seconds or less, measured according to JIS P 8117:2009.
  • the Oken air permeability of 700 seconds or less is preferable because ethylene oxide gas sterilization can be applied.
  • the Oken air permeability of the heat seal sheet (21) is more preferably 300 seconds or less, even more preferably 150 seconds or less, and even more preferably 100 seconds or less. There is no particular limit to the lower limit of the Oken air permeability.
  • the heat seal sheet (21) has a tear strength of 700 mN or more as measured according to JIS P 8116:2000. If the tear strength is 700 mN or more, it is preferable because it can be used as a sterilization packaging material for relatively large medical equipment or medical instruments with a large mass.
  • the tear strength of the heat seal sheet (21) is more preferably 800 mN or more, even more preferably 1000 mN or more, even more preferably 1500 mN or more, and particularly preferably 2000 mN or more.
  • the upper limit of the tear strength is not particularly limited, but from the viewpoint of ease of production, it is preferably 5000 mN or less, more preferably 4000 mN or less.
  • the basis weight of the heat seal sheet of this embodiment is preferably 30 g/ m2 or more, more preferably 50 g/ m2 or more, even more preferably 70 g/ m2 or more, and is preferably 300 g/ m2 or less, more preferably 200 g/ m2 or less, even more preferably 150 g/ m2 or less, and even more preferably 100 g/ m2 or less.
  • the basis weight of the heat seal sheet can be adjusted to a desired range by adjusting the basis weights of the thermoplastic resin fiber nonwoven fabric a and the thermoplastic resin fiber nonwoven fabric b to appropriate ranges.
  • the heat seal sheet (21) of this embodiment has one or more thermoplastic resin fiber nonwoven fabric layers A.
  • the thermoplastic resin fiber nonwoven fabric layer A (22) is a layer derived from a thermoplastic resin fiber nonwoven fabric a obtained by forming one or more types of thermoplastic resin fibers a group into a sheet by various known methods. Examples of the sheeting method include spunbonding, thermal bonding, chemical bonding, needle punching, spunlace, melt blowing, and wet sheeting, among which the spunbonding method is preferred because it is made of continuous fibers, so that it has high strength and is less susceptible to fiber detachment, and the wet sheeting method is preferred because it can produce a uniform nonwoven fabric.
  • thermoplastic resin fiber nonwoven fabric a As the thermoplastic resin fibers a group constituting the thermoplastic resin fiber nonwoven fabric a, various known materials can be used, but those having a melting point higher than the melting point (not particularly limited, for example, 150° C. or lower) of the fibers constituting the thermoplastic resin fibers b group used in the thermoplastic resin fiber nonwoven fabric layer B (23) are preferred because they tend to maintain their fiber shape even after thermal lamination and to obtain high tear strength (tear strength measured by the Elmendorf method, which measures the tear strength of a portion that has been previously torn). Examples of the fibers constituting the group a of thermoplastic resin fibers include, but are not limited to, polypropylene fibers, polyester fibers, and polyamide fibers.
  • thermoplastic resin fiber nonwoven fabric a and the thermoplastic resin fiber nonwoven fabric layer A preferably contain at least one fiber selected from the group consisting of polypropylene resin fibers, polyester fibers, and polyamide fibers, and more preferably contain polypropylene resin fibers or polyester fibers. From the viewpoint of improving the interlayer adhesion between the thermoplastic resin fiber nonwoven fabric layer A and the thermoplastic resin fiber nonwoven fabric layer B, polypropylene fibers are preferred.
  • thermoplastic resin fiber nonwoven fabric a and thermoplastic resin fiber nonwoven fabric b are laminated, the difference in melting point between the resin constituting thermoplastic resin fiber nonwoven fabric a and the resin constituting thermoplastic resin fiber nonwoven fabric b can be increased, and melting of the resin constituting thermoplastic resin fiber nonwoven fabric a can be suppressed during thermal lamination. As a result, the resin shape is better maintained in the thermoplastic resin fiber nonwoven fabric layer A, which is preferable because it improves the strength as a heat seal sheet.
  • thermoplastic resin fibers constituting the thermoplastic resin fiber nonwoven fabric a do not melt in the heat fusion step described below, and it is preferable that the fiber shape remains in the thermoplastic resin fiber nonwoven fabric layer A even in the heat seal sheet (21).
  • thermoplastic resin fiber nonwoven fabric layer A (22) is constructed as the surface layer of the heat seal sheet (21)
  • polypropylene resin fibers as the thermoplastic resin group a, which are easy to suppress surface raising during thermal lamination.
  • natural pulp fibers, regenerated fibers, and other chemical fibers in combination, provided that the object of the present invention is not impaired.
  • the average fiber diameter of group a of thermoplastic resin fibers is not particularly limited, but is, for example, 0.5 ⁇ m or more and 50 ⁇ m or less, and preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the thermoplastic resin fiber nonwoven fabric a is preferably any nonwoven fabric selected from the group consisting of a spunbond nonwoven fabric, a thermal bond nonwoven fabric, a chemical bond nonwoven fabric, a needle punched nonwoven fabric, a spunlace nonwoven fabric, a meltblown nonwoven fabric, and a wet nonwoven fabric, more preferably any nonwoven fabric selected from the group consisting of a meltblown nonwoven fabric, a spunbond nonwoven fabric, and a wet nonwoven fabric, and even more preferably a spunbond nonwoven fabric or a wet nonwoven fabric.
  • Spunbond nonwoven fabrics are preferred because they are produced by melting a thermoplastic resin and extruding it into continuous long fibers, which allows the production of a heat sealable sheet having excellent strength.
  • Wet-laid nonwoven fabrics are preferred because they are highly uniform.
  • the basis weight of the thermoplastic resin fiber nonwoven fabric a and the thermoplastic resin fiber nonwoven fabric layer A (22) is not particularly limited, but is adjusted, for example, in the range of about 5 g/ m2 or more and 100 g/ m2 or less. From the viewpoint of obtaining sufficient thermal adhesiveness, breathability, and tear strength, it is preferably 10 g/ m2 or more and 80 g/ m2 or less, more preferably 20 g/ m2 or more and 50 g/ m2 or less.
  • the above-mentioned preferable range of basis weight is the preferable range of basis weight of each layer.
  • thermoplastic resin fiber nonwoven fabric layer A (22) may be a single layer or a multi-layer structure of two or more layers.
  • thermoplastic resin fiber nonwoven fabric layer B (23) and the thermoplastic resin fiber nonwoven fabric layer C (41) may be laminated in any order.
  • thermoplastic resin fiber nonwoven fabric layer B is a layer derived from a thermoplastic resin fiber nonwoven fabric b obtained by forming one or more kinds of thermoplastic resin fibers b into a sheet by any of various known methods.
  • the thermoplastic resin fiber nonwoven fabric layer B contains a low melting point polyester resin, polyester fibers, and polyethylene resin, and the mass ratio of the low melting point polyester resin, polyester fibers, and polyethylene resin (low melting point polyester resin:polyester fibers:polyethylene resin) is 13.75:11.25:75 to 41.25:33.75:25.
  • thermoplastic resin fiber nonwoven fabric b One or more types of thermoplastic resin fibers can be used as the thermoplastic resin fiber group b constituting the thermoplastic resin fiber nonwoven fabric b.
  • the fibers constituting the thermoplastic resin fiber group b may have a single structure or a core-sheath structure of two or more layers. In the case of a core-sheath structure, the melting point of the sheath resin is preferably less than 150°C, and the melting point of the core resin may be 150°C or higher.
  • thermoplastic resin fibers group b examples include various polyethylene resin fibers, polyethylene-vinyl acetate ester resin fibers, low melting point polyester resin fibers, composite fibers with a core-sheath structure in which the core is a normal polyester resin and the sheath is the various polyethylene resin fibers mentioned above, polyethylene-vinyl acetate ester resin, and composite resins with a core-sheath structure in which the core is a normal polyester resin and the sheath is a low melting point polyester resin. These resin fibers can also be used in a multi-branched structure.
  • polyester fibers and polyethylene fibers having a core-sheath structure in which a low melting point polyester is used for the sheath and a normal polyester is used for the core are preferably used because they have excellent thermal lamination properties and heat sealability with the thermoplastic resin fiber nonwoven fabric a.
  • the low melting point polyester used in the sheath has a melting point less than 150° C., preferably 140° C. or less, more preferably 130° C. or less, and even more preferably 120° C. or less.
  • the polyester used in the core has a melting point of 150° C. or more, preferably 180° C. or more, more preferably 200° C. or more, and even more preferably 240° C. or more.
  • polyester used in the core is polyethylene terephthalate.
  • the polyethylene fibers are polyethylene hyperbranched fibers obtained by quasi-pulping polyethylene, because this allows the thermoplastic resin fiber nonwoven fabric b to be produced by wet papermaking.
  • thermoplastic resin fiber nonwoven fabric b By producing the thermoplastic resin fiber nonwoven fabric b by wet papermaking, it is preferable that a nonwoven fabric having better texture, better uniformity, and more dense can be obtained.
  • thermoplastic resin fiber nonwoven fabric b is a nonwoven fabric obtained by using a core-sheath structure polyester fiber in which a low melting point polyester is used as the sheath and a normal polyester is used as the core, and a polyethylene fiber
  • the low melting point polyester resin in the sheath of the core-sheath structure polyester fiber and the polyethylene fiber are partially melted in the thermoplastic resin fiber nonwoven fabric layer B after heat fusion, and therefore the fiber shape is not necessarily maintained.
  • it is not limited to the case where all of the low melting point polyester resin and the polyethylene fiber are melted, and it is sufficient that at least a portion is melted.
  • the thermoplastic resin fiber nonwoven fabric b is preferably a nonwoven fabric obtained by a wet papermaking method, and is preferably obtained by wet papermaking of a core-sheath polyester fiber in which the low melting point polyester is used for the sheath and a normal polyester is used for the core, and a polyethylene hyperbranched fiber.
  • the thermoplastic resin fiber nonwoven fabric b contains a core-sheath structure polyester fiber using a low melting point polyester for the sheath and a normal polyester for the core, in an amount of preferably 25% by mass or more and 75% by mass or less, more preferably 30% by mass or more and 70% by mass or less, and even more preferably 40% by mass or more and 60% by mass or less.
  • the mass ratio of the sheath to the core is preferably 20/80 or more and 80/20 or less, more preferably 30/70 or more and 70/30 or less, and even more preferably 40/60 or more and 60/40 or less.
  • polyester fibers having a core-sheath structure in which a low melting point polyester is used for the sheath and a normal polyester is used for the core include the Tepyrus series manufactured by Teijin Frontier Co., Ltd. and PET-based binder fibers manufactured by Kuraray Co., Ltd.
  • the thermoplastic resin fiber nonwoven fabric b contains polyethylene hyperbranched fibers in an amount of preferably 25% by mass or more and 75% by mass or less, more preferably 30% by mass or more and 70% by mass or less, and even more preferably 35% by mass or more and 60% by mass or less.
  • polyethylene hyperbranched fibers obtained by quasi-pulping polyethylene include the SWP (registered trademark) series manufactured by Mitsui Chemicals, Inc.
  • thermoplastic resin fiber nonwoven fabric layer B derived from the thermoplastic resin fiber nonwoven fabric b obtained using these thermoplastic resin fibers b group, as described above, the mass ratio of the low melting point polyester resin, polyester fiber, and polyethylene resin (low melting point polyester resin: polyester fiber: polyethylene resin) is 13.75: 11.25: 75 to 41.25: 33.75: 25. Since the polyester fiber is preferably in a fibrous form, it is referred to as "polyester fiber", while the low melting point polyester and polyethylene constituting the thermoplastic resin fiber are at least partially melted, and therefore are referred to as "low melting point polyester resin” and "polyethylene resin", respectively.
  • the content of the low melting point polyester resin is 13.75 parts by mass or more and 41.25 parts by mass or less, preferably 16.5 parts by mass or more and 38.5 parts by mass or less, and more preferably 22 parts by mass or more and 33 parts by mass or less.
  • the low melting point polyester resin is a polyester resin having a melting point of less than 150° C.
  • the content of the polyester resin is 11.25 parts by mass or more and 33.75 parts by mass or less, preferably 13.5 parts by mass or more and 31.5 parts by mass or less, and more preferably 18 parts by mass or more and 27 parts by mass or less.
  • the "polyester fiber” has a melting point of 150° C. or more, preferably 180° C. or more, more preferably 200° C. or more, and even more preferably 240° C. or more, and an example of such a fiber is polyethylene terephthalate.
  • the content of the polyethylene resin is 25 parts by mass or more and 75 parts by mass or less, preferably 30 parts by mass or more and 70 parts by mass or less, and more preferably 35 parts by mass or more and 60 parts by mass or less.
  • the total content of low melting point polyester resin, polyester fiber and polyethylene resin in the thermoplastic resin fiber nonwoven fabric layer B is 50% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, and even more preferably 85% by mass or more, with the upper limit being 100% by mass or less.
  • thermoplastic resin fiber group b it is possible to use natural pulp fibers, regenerated fibers, and other chemical fibers in combination as the thermoplastic resin fiber group b.
  • natural pulp may also be used in combination.
  • natural pulp include wood pulp (softwood pulp, hardwood pulp, etc.) and non-wood pulp (hemp pulp, cotton pulp, straw pulp, etc.).
  • the fiber diameter of the fibers used in the thermoplastic resin fiber nonwoven fabric b is not particularly limited, but is, for example, 1 ⁇ m or more and 60 ⁇ m or less, and preferably 1 ⁇ m or more and 40 ⁇ m or less.
  • the basis weight of the thermoplastic resin fiber nonwoven fabric b and the thermoplastic resin fiber nonwoven fabric layer B (23) is not particularly limited, but is adjusted, for example, in the range of about 5 g/ m2 or more and 100 g/ m2 or less. From the viewpoint of obtaining sufficient thermal adhesiveness, breathability, and tear strength, it is preferably 10 g/ m2 or more and 80 g/ m2 or less, more preferably 15 g/ m2 or more and 60 g/ m2 or less.
  • the above-mentioned preferable range of basis weight is the preferable range of basis weight of each layer.
  • thermoplastic resin fiber nonwoven fabric layer B (23) may be a single layer or a multi-layer consisting of two or more layers. As mentioned above, the lamination method with the thermoplastic resin fiber nonwoven fabric layer A (22) can also be carried out in any order.
  • thermoplastic resin fiber nonwoven fabric b Various known methods can be used to manufacture the thermoplastic resin fiber nonwoven fabric b, but among them, the wet papermaking method is preferred because it is easy to obtain good texture even at low basis weights and is less likely to produce pinholes that impair the antibacterial properties of the heat seal sheet.
  • Wet papermaking methods include those using a Fourdrinier papermaking machine, a short wire papermaking machine, a cylinder papermaking machine, an inclined papermaking machine, etc.
  • a cylinder papermaking machine and an inclined papermaking machine are preferred because they can be used with materials with relatively long fiber lengths, and an inclined papermaking machine is more preferred.
  • Various dispersants, surfactants, thickeners and other internal additives can also be added to the raw material slurry to improve the texture.
  • the method for drying the thermoplastic resin fiber nonwoven fabric b after wet papermaking is not particularly limited, and a multi-cylinder dryer, Yankee dryer, hot air dryer, infrared dryer, etc. can be used.
  • a multi-cylinder dryer or Yankee dryer it is preferable to set the drying temperature below the melting point of the thermoplastic resin fiber, or to coat the surface of the multi-cylinder dryer or Yankee dryer with a fluororesin to prevent surface contamination due to adhesion of the thermoplastic resin.
  • thermoplastic resin fiber nonwoven fabric layer C is a layer derived from a thermoplastic resin fiber nonwoven fabric c obtained by forming one or more types of thermoplastic resin fibers c into a sheet by any of various known methods.
  • the thermoplastic resin fiber nonwoven fabric layer C is a layer provided on the side of the heat seal sheet of this embodiment that is not to be heat sealed.
  • thermoplastic resin fiber nonwoven fabric c One or more types of fibers may be used as the thermoplastic resin fiber group c constituting the thermoplastic resin fiber nonwoven fabric c.
  • the fibers constituting the thermoplastic resin fiber group c contain thermoplastic resin fibers having a melting point of less than 150°C.
  • Thermoplastic resin fibers group C include, for example, various polyethylene resin fibers, polyethylene-vinyl acetate ester resin fibers, low-melting point polyester resin fibers, composite fibers with a core-sheath structure in which the core is a normal polyester resin and the sheath is the various polyethylene resin fibers mentioned above, polyethylene-vinyl acetate ester resin, and composite resins with a core-sheath structure in which the core is a normal polyester resin and the sheath is a low-melting point polyester resin. These resin fibers may also have a multi-branched structure. Natural pulp fibers, recycled fibers, and other chemical fibers may also be used in combination. Examples of natural pulp include wood pulp (softwood pulp, hardwood pulp, etc.) and non-wood pulp (hemp pulp, cotton pulp, straw pulp, etc.).
  • the thermoplastic resin fiber nonwoven fabric c contains natural pulp as a fiber group constituting the thermoplastic resin fiber nonwoven fabric c.
  • the thermoplastic resin fiber nonwoven fabric layer A and the thermoplastic resin fiber nonwoven fabric layer B may open up and the air permeability may decrease.
  • the thermoplastic resin fiber nonwoven fabric c contains natural pulp, since this suppresses the above-mentioned opening up and suppresses the decrease in air permeability.
  • thermoplastic resin fiber nonwoven fabric b may shrink during heat fusion, causing the heat seal sheet to curl, but by using the thermoplastic resin fiber nonwoven fabric c containing pulp, curling can be suppressed, which is preferable.
  • the content of natural pulp in the thermoplastic resin fiber nonwoven fabric c is preferably 5% by mass or more, and more preferably 10% by mass or more.
  • the basis weight of the thermoplastic resin fiber nonwoven fabric c and the thermoplastic resin fiber nonwoven fabric layer C (41) is not particularly limited, but is adjusted, for example, in the range of about 10 g/ m2 or more and 100 g/ m2 or less. From the viewpoint of obtaining sufficient thermal adhesiveness, breathability, and tear strength, it is preferably 15 g/ m2 or more and 80 g/ m2 or less, more preferably 20 g/ m2 or more and 60 g/ m2 or less.
  • the basis weight of the thermoplastic resin fiber nonwoven fabric c and the thermoplastic resin fiber nonwoven fabric layer C (41) is preferably larger than the basis weight of the thermoplastic resin fiber nonwoven fabric b and the thermoplastic resin fiber nonwoven fabric layer B (23), and more preferably is 5 g/ m2 or more larger.
  • This configuration is preferable because it suppresses curling of the heat seal paper due to curling of the thermoplastic resin fiber nonwoven fabric b and the thermoplastic resin fiber nonwoven fabric layer B (23).
  • the method for producing a heat seal sheet of the present embodiment preferably includes the following steps 1 to 3 in this order.
  • Step 1 preparing a thermoplastic resin fiber nonwoven fabric a and a thermoplastic resin fiber nonwoven fabric b;
  • Step 2 laminating one or more layers of a thermoplastic resin fiber nonwoven fabric a and one or more layers of a thermoplastic resin fiber nonwoven fabric b to obtain a laminate;
  • Step 3 heat-sealing the laminate obtained in step 2
  • Step 1 is a step of preparing a thermoplastic resin fiber nonwoven fabric a and a thermoplastic resin fiber nonwoven fabric b.
  • the thermoplastic resin fiber nonwoven fabric a and the thermoplastic resin fiber nonwoven fabric b may be prepared by the method described above.
  • Step 2 is a step of laminating one or more layers of a thermoplastic resin fiber nonwoven fabric a and one or more layers of a thermoplastic resin fiber nonwoven fabric b to obtain a laminate.
  • the method of laminating the thermoplastic resin fiber nonwoven fabric a and the thermoplastic resin fiber nonwoven fabric b is not limited to a specific order, except that, from the viewpoint of heat sealability, the outermost surface of either the front or back surface is the thermoplastic resin fiber nonwoven fabric b.
  • each layer may be a single layer or may be a multilayer of two or more layers. Among these, in order to reduce curling after thermal lamination, it is preferable that the front and back layers are symmetrical or in a similar order from the center layer.
  • a laminate structure of b/(a/b)n/a/b such as a three-layer structure in which thermoplastic resin fiber nonwoven fabric b/thermoplastic resin fiber nonwoven fabric a/thermoplastic resin fiber nonwoven fabric b are laminated in this order, or a five-layer structure in which b/a/b/a/b are laminated.
  • a laminate structure of b/(a/b)n/a/b such as a three-layer structure in which thermoplastic resin fiber nonwoven fabric b/thermoplastic resin fiber nonwoven fabric a/thermoplastic resin fiber nonwoven fabric b are laminated in this order, or a five-layer structure in which b/a/b/a/b are laminated.
  • it is preferable to have a three-layer structure of b/a/b or a five-layer structure of b/a/b/a/b it is more preferable to have a three-layer structure of b/a/b.
  • a three-layer structure of b/a/c may be used.
  • the three-layer structure it is preferable to reduce the basis weight of the nonwoven fabric layer B, which has a higher thermal shrinkage rate among the thermoplastic resin fiber nonwoven fabrics b and c, because curling after thermal lamination can be reduced.
  • Step 3 is a step of thermally fusing the laminate obtained in step 2.
  • the thermoplastic resin fiber nonwoven fabrics a and b constituting the laminate are thermally fusing (thermally laminating).
  • the heat fusion step is carried out by passing the laminate obtained in step 2 between two heated rolls.
  • the temperature of the heating roll is adjusted within a range of not less than the melting point of the thermoplastic resin fiber with the lowest melting point used in the thermoplastic resin fiber nonwoven fabric b and not more than the melting point of the thermoplastic resin fiber with the lowest melting point used in the thermoplastic resin fiber nonwoven fabric a + 20°C.
  • thermoplastic resin fiber nonwoven fabric layer A 2
  • thermoplastic resin it is also preferable to coat the surface of the heating roll with a fluororesin to prevent surface contamination caused by the adhesion of thermoplastic resin.
  • the surface temperatures of the upper and lower heating rolls may be the same or different.
  • heat fusion may be performed with one nip or with two or more nips. In the case of two or more nips, the process may be performed in one pass or in two or more passes.
  • the heat fusion may be carried out simultaneously for all layers, or a portion of the layers may be heat fused first, and then another layer may be added and heat fused.
  • a step of providing residual heat such as by heating using a preheater, to the thermoplastic resin fiber nonwoven fabric a and/or the thermoplastic resin fiber nonwoven fabric b before contacting them with a heating roll may be added before pressurization.
  • Other known techniques can also be applied.
  • the heat seal sheet (21) of the present invention is obtained by heat fusing (thermal laminating) a thermoplastic resin fiber nonwoven fabric a and a thermoplastic resin fiber nonwoven fabric b, and has sufficient thermal adhesion and breathability over the entire heat seal surface, high strength, and keeps lint generation to a minimum, making it an excellent sterilized medical packaging material.
  • the heat seal sheet (21) is used, for example, in a sterilization package (11).
  • a part of the heat seal sheet (21) and a part of an adherend (31) such as wrapping paper, laminated paper, a film, or a molded container for sterilization are overlapped and heat-pressed together so that a space is formed inside, thereby forming a sterilization package in which the heat seal sheet (21) and the adherend (31) are heat-pressed together.
  • the film or molded container for sterilization examples include films or molded containers for sterilization made of polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, polystyrene, ethylene-vinyl acetate copolymer resins, ethylene-acrylic copolymer resins, or laminates of these.
  • the molded container for sterilization typically has one or more recesses for accommodating contents.
  • the heat seal sheet (21) is typically used as a lid material for sealing the opening of the one or more recesses.
  • the adherend to be thermocompressed with the heat seal sheet (21) is preferably a molded container for sterilization, since sufficient peel strength is required without destroying the substrate even with a relatively narrow seal width.
  • a space for accommodating contents such as medical instruments is formed by a heat seal sheet (21) and an adherend (31) that are heat-pressed together.
  • the heat seal sheet (21) and the adherend (31) are heat-pressed together after the contents are accommodated.
  • the medical instruments to be contained are not particularly limited as long as they are medical instruments that need to be sterilized before use, and specific examples include injection needles, syringes, catheters, gloves, scalpels, forceps, scissors, gauze, and bandages.
  • the sterile package is subjected to a sterilization treatment while containing the contents therein.
  • the sterilization treatment is carried out by a sterilization method such as autoclave, ethylene oxide gas (EOG) sterilization, electron beam sterilization, gamma ray sterilization, etc.
  • EOG ethylene oxide gas
  • the heat seal sheet (21) is peeled off from the adherend to remove the contents.
  • the use of the heat seal sheet (21) is not limited to sterilized packaging, but can also be used for packaging food, various freshness-preserving agents such as desiccants and oxygen absorbers, general industrial products, etc. It is also possible to perform printing on either the front or back surface, or on the outermost surface of both surfaces.
  • the peel strength when the heat seal sheet (21) and the adherend (31) are peeled at 180° at a peel speed of 300 mm/min is preferably 1.0 N/15 mm to 15 N/15 mm, more preferably 1.5 N/15 mm to 12 N/15 mm, even more preferably 2.0 N/15 mm to 10.5 N/15 mm, still more preferably 4.0 N/15 mm to 10.5 N/15 mm, particularly preferably 4.5 N/15 mm to 10.5 N/15 mm, and most preferably 5.0 N/15 mm to 7.5 N/15 mm.
  • the peel strength is within the above range, the balance between easy peel property and heat seal property is excellent.
  • the heat seal peel strength is measured by the method described in the Examples.
  • the heat seal peel strength can be adjusted within a desired range by setting the basis weight of the thermoplastic resin fiber nonwoven fabric layer B (23) constituting the heat seal surface, the polyethylene resin content in the thermoplastic resin fiber nonwoven fabric layer B (23), the heat fusion conditions in the heat fusion step of the laminate when producing the heat seal sheet, and the heat fusion conditions with the adherend, all within appropriate ranges.
  • thermoplastic resin fiber nonwoven fabric b having a basis weight of 25 g/ m2 in Examples 1 to 6 and Comparative Examples 1 to 3.
  • a thermoplastic resin fiber nonwoven fabric b having a basis weight of 35 g/ m2 was obtained.
  • thermoplastic resin fiber nonwoven fabric b obtained above, polypropylene spunbond nonwoven fabric a (fiber diameter about 15 ⁇ m, basis weight 30 g/ m2 ), and thermoplastic resin fiber nonwoven fabric b were stacked in this order and thermally laminated using a thermal laminator having heating rolls with fluorine-coated surfaces at a roll temperature of 150°C for the upper and lower rolls to obtain heat seal sheets of Examples 1 to 5 and Comparative Examples 1 to 3 having a basis weight of 80 g/ m2 .
  • Example 6 a heat seal sheet having a basis weight of 75 g/ m2 was obtained in the same manner as in Example 1, except that a polyester spunbond nonwoven fabric (fiber diameter: approximately 12 ⁇ m, basis weight: 25 g/m2) was used as the thermoplastic resin fiber nonwoven fabric a .
  • Example 7 a heat seal sheet having a basis weight of 90 g/ m2 was obtained in the same manner as in Example 1, except that a polyester wet-laid nonwoven fabric (fiber diameter: approximately 14 ⁇ m, fiber length: approximately 5 mm, basis weight: 20 g/ m2 ) was used as the thermoplastic resin fiber nonwoven fabric a.
  • the raw material slurry was made into a paper sheet using a wet inclined papermaking machine, and dried with a Yankee dryer at a surface temperature of 105° C. to obtain a thermoplastic resin fiber nonwoven fabric c having a basis weight of 30 g/m 2 .
  • thermoplastic resin fiber nonwoven fabric b obtained in the same manner as in Example 1, the thermoplastic resin fiber nonwoven fabric a, and the thermoplastic resin fiber nonwoven fabric c obtained above were stacked in this order and subjected to a thermal lamination treatment at a roll temperature of 150°C for the upper and lower rolls using a thermal laminator having heating rolls with fluorine-coated surfaces, to obtain a heat seal sheet of Example 8 having a basis weight of 75 g/ m2 .
  • thermoplastic resin fiber nonwoven fabric a a polyester wet nonwoven fabric (fiber diameter: about 14 ⁇ m, fiber length: about 5 mm, basis weight: 20 g/m 2 ) was used.
  • the pulp slurry was added with 0.5 parts by mass of aluminum sulfate in an absolute dry state, 0.05 parts by mass of an alkenyl succinic anhydride sizing agent dispersion previously dispersed in cationic starch as the solid content of the alkenyl succinic anhydride sizing agent, 0.7 parts by mass of an amphoteric polyacrylamide resin paper strength enhancer (PAM) (trade name: Polystron OFT-3, manufactured by Arakawa Chemical Industries Co., Ltd., weight average molecular weight 3 million), and 0.4 parts by mass of an epichloro resin wet paper strength enhancer (trade name: WS4024, manufactured by Seiko PMC Co., Ltd.) as an internal additive chemical relative to 100 parts by mass of pulp to obtain a papermaking raw material.
  • PAM amphoteric polyacrylamide resin paper strength enhancer
  • the papermaking raw material was made into paper on a Fourdrinier papermaking machine to obtain a breathable base material.
  • the resulting breathable substrate had a basis weight of 60 g/ m2 .
  • the "alkenyl succinic anhydride sizing agent dispersion previously dispersed in cationic starch" was prepared as follows: A 2% by mass aqueous solution of cationic starch (Pillar 3YK, manufactured by Pillar Starch Co., Ltd.) was prepared, and an alkenyl succinic anhydride sizing agent was added thereto so that the solid content concentration was cationic starch (Pillar 3YK, manufactured by Pillar Starch Co., Ltd.)/alkenyl succinic anhydride sizing agent (Fibran 81K, manufactured by Arakawa Chemical Industries Co., Ltd.) 4/1.
  • the aqueous solution prepared as described above was added in an amount of 0.05 parts by mass as the solid content of alkenyl succinic anhydr
  • a coating material for a thermal adhesive layer with a solid content of 25% was obtained by mixing and stirring 138 parts of an EVA dispersion (Chemipearl V200, manufactured by Mitsui Chemicals, Inc., EVA particle average particle size 7 ⁇ m, minimum film formation temperature 85° C., solid content 40%), 90 parts of a PE dispersion (Chemipearl W400, manufactured by Mitsui Chemicals, Inc., PE particle average particle size 4 ⁇ m, solid content 40%, PE density 920 kg/ m3 , softening point 110° C.), 18 parts of a reinforced rosin emulsion (Sizepine N775, manufactured by Arakawa Chemical Industries, Ltd., softening point less than 100° C., solid content 50%), and 154 parts of dilution water.
  • the Oken air permeability of the heat seal sheet was measured in accordance with JIS P 8117:2009.
  • the air permeability is 700 seconds or less, it is preferable because ethylene oxide gas sterilization treatment can be applied, whereas when the air permeability is more than 700 seconds, it is not preferable because the penetration speed of ethylene oxide gas decreases and the sterilization efficiency decreases.
  • the tear strength of the heat seal sheet was measured in the longitudinal and transverse directions of the sheet in accordance with JIS P 8116:2000, and the geometric mean value of these values was calculated.
  • a tear strength of 700 mN or more is preferable because it can be used as a sterilized packaging material for relatively large medical devices or heavy medical instruments. If the tear strength is less than 700 mN, the sterilized medical packaging material may tear during transportation or if it is accidentally dropped when a relatively large medical device or heavy medical instrument is contained inside, and the sterilized state inside the package may not be maintained.
  • thermocompression bonded product prepared by the above method was cut to a width of 15 mm to prepare a sample for measuring peel strength.
  • the peel strength (N/15 mm) of the obtained sample for measuring peel strength was measured in accordance with JIS P 8113:2006 using a tensile tester (model: Tensilon RTC-1250A, manufactured by Orientec Co., Ltd.) by chucking the ends of the composite film and the heat seal sheet of the sample and peeling them at a peel speed of 300 mm/min by a 180° peel method.
  • a heat seal sheet cut to 25 mm x 100 mm and a laminated film of (PET) and PE (a laminated film obtained by dry laminating a 50 ⁇ m-thick polyethylene film and a 12 ⁇ m-thick PET film) were stacked so that the PE side of the laminated film was in contact with the heat seal sheet and the film was on top, and a heat press tester was used to heat-press the film under heat-pressing conditions of 150 ° C., 0.2 MPa, and 1.0 second to produce a heat-pressed product.
  • the film of the heat-pressed product produced by the above method was peeled off by hand, and the state of the heat seal sheet surface after the film was peeled off was visually confirmed and evaluated according to the following criteria. Less fluffing after peeling means that lint generation is suppressed. 5: No fluff at all 4: A few fluffs 3: Little fluff 2: Much fluff 1: Considerable fluff or substrate destruction occurs
  • thermoplastic resin fiber nonwoven fabric layer A was evaluated for their Oken air permeability, tear strength, peel test, post-peeling fuzz, and adhesion between thermoplastic resin fiber nonwoven fabric layer A and thermoplastic resin fiber nonwoven fabric layer B. The results are shown in Table 1.
  • the heat seal sheets of Examples 1 to 8 have low air permeability (seconds), and are therefore considered to be applicable to ethylene oxide gas sterilization.
  • the tear strength is sufficiently high, and it is considered that they can be used for sterilization of large medical instruments or relatively heavy medical instruments. Furthermore, sufficient heat seal strength was obtained.
  • the thermoplastic resin fiber nonwoven fabric layer A and the thermoplastic resin fiber nonwoven fabric layer B were well bonded, the interlayer adhesion was excellent, and the generation of lint was suppressed.
  • the content of polyethylene resin in the thermoplastic resin fiber nonwoven fabric layer B exceeded the limit of the present invention as in Comparative Examples 1 and 2, the air permeability exceeded 700 seconds, making it impossible to apply sterilization with ethylene oxide.
  • thermoplastic resin fiber nonwoven fabric layer B exceeded the limit of the present invention as in Comparative Example 3, sufficient heat seal peel strength was not obtained, and the adhesion between layers was also poor. Furthermore, when a thermal adhesive layer was provided on the paper substrate as in Comparative Example 4, sufficient tear strength was not obtained.
  • the heat seal sheet of the present invention has sufficient thermal adhesion and breathability over the entire heat seal surface, is strong, and keeps lint generation to a minimum, making it an excellent sterilized medical packaging material.

Abstract

The purpose of the present invention is to provide: an excellent heat seal sheet that has sufficient heat adhesiveness and air permeability throughout the whole heat seal surface thereof, and that has a high strength and a reduced amount of lint generated therefrom; a production method for the heat seal sheet; and a sterilized package using the heat seal sheet. The heat seal sheet according to the present invention comprises: one or more thermoplastic resin fiber nonwoven fabric layers A; and one or more thermoplastic resin fiber nonwoven fabric layers B. The thermoplastic resin fiber nonwoven fabric layers B each contain a low-melting-point polyester resin, polyester fibers, and a polyethylene resin. The mass ratio of the low-melting-point polyester resin, the polyester fibers, and the polyethylene resin (low-melting-point polyester resin : polyester fibers : polyethylene resin) is 13.75:11.25:75 to 41.25:33.75:25. The Oken-type air permeability of the heat seal sheet as measured in accordance with JIS P 8117:2009 is at most 700 seconds, and the tear strength of the heat seal sheet as measured in accordance with JIS P 8116:2000 is at least 700 mN.

Description

ヒートシールシートおよび滅菌包装体Heat-sealed sheets and sterile packaging
 本発明は、ヒートシールシートおよび滅菌包装体に関する。 The present invention relates to a heat seal sheet and a sterile package.
 手術、治療等に使用する器具類は、使用前に滅菌包装体に収納されて滅菌される。病院や医療器具メーカー等で実施される滅菌方法としては、メスや鉗子等の被滅菌物を滅菌包装体に入れて密封した後、ガス滅菌法、高圧蒸気滅菌法、放射線滅菌法等を用いて滅菌を行う方法が挙げられる。ガス滅菌法は、包装物を耐圧容器中に入れて容器内を減圧し、包装物内部の空気を排出させた後、エチレンオキシドガス(EOG)等を容器内に満たして包装物内部にガスを浸透させて滅菌する。高圧蒸気滅菌法は、オートクレーブ等を用いて包装物を高温の蒸気に曝し、減圧と加圧を繰り返して滅菌する。放射線滅菌法は、放射線を照射して滅菌する。このうち、コストおよび簡便性の面から、ガス滅菌法または高圧蒸気滅菌法が多く用いられる。 Instruments used in surgery, treatment, etc. are sterilized by being placed in sterile packaging before use. Sterilization methods used by hospitals and medical equipment manufacturers include placing scalpels, forceps, and other items to be sterilized in sterile packaging and sealing it, and then sterilizing them using gas sterilization, high-pressure steam sterilization, radiation sterilization, etc. In gas sterilization, the package is placed in a pressure-resistant container, the pressure inside the container is reduced, the air inside the package is expelled, and then ethylene oxide gas (EOG) or the like is filled into the container to permeate the inside of the package and sterilize it. In high-pressure steam sterilization, the package is exposed to high-temperature steam using an autoclave or the like, and sterilized by repeatedly reducing and pressurizing the pressure. In radiation sterilization, sterilization is performed by exposing the package to radiation. Of these, gas sterilization and high-pressure steam sterilization are often used due to their cost and simplicity.
 滅菌後の器具は、手術等に使用するまで、この滅菌包装体内に収納され、手術や治療に用いる際に開封して使用される。開封に際しては一般的に、病院内で医師や施術者が手袋を使用していても開封しやすいように、ピールオープン方式や引裂き方式がとられる。ピールオープン方式の滅菌包装体は、裏表の二枚の矩形のシートを剥離可能に接着して製造される。引裂き方式の滅菌包装体は、易裂開性(引裂き開封し易い)シートを用いて製造される。 After sterilization, instruments are stored in this sterile packaging until they are to be used in surgery, etc., and are opened when they are to be used in surgery or treatment. When opening the packaging, the peel-open or tear-off method is generally used so that doctors and practitioners in hospitals can easily open the packaging even if they are wearing gloves. Sterilized packaging using the peel-open method is manufactured by bonding two rectangular sheets, one on the front and one on the back, so that they can be peeled off. Sterilized packaging using the tear-off method is manufactured using an easily tearable (easy to tear open) sheet.
 前記のガス滅菌法や高圧蒸気滅菌法に使用される滅菌包装体は、その滅菌方法から、通気性を有することが必須である。放射線滅菌法に使用される滅菌包装体も、滅菌処理中に内包物が含有する残留溶剤や臭気を揮散させる場合があるため、通気性を有することが好ましい。そのため、通気性を有するシートが滅菌包装体に用いられる。 The sterilization packaging used in the gas sterilization and high-pressure steam sterilization methods described above must be breathable due to the sterilization method used. Sterilization packaging used in radiation sterilization is also preferably breathable, as residual solvents and odors contained in the contents may evaporate during the sterilization process. For this reason, breathable sheets are used for the sterilization packaging.
 袋状や容器状の滅菌包装体には、熱圧着により密封状態を形成するヒートシールシートが用いられる。例えば、トレイやカップ等の成形容器の蓋を形成するヒートシールシートは、開口部を囲むフランジ部分に熱圧着されて、容器を密封する。
ヒートシールシートには、滅菌処理が可能な通気性を確保しながら、滅菌処理後の完全なクロージャー(滅菌状態の維持)を実現することが求められる。
For bag- or container-shaped sterilized packages, heat seal sheets that form a hermetic seal by thermocompression are used. For example, heat seal sheets that form lids for molded containers such as trays and cups are thermocompression-bonded to the flanges surrounding the openings to seal the containers.
Heat seal sheets are required to ensure breathability that allows sterilization while achieving complete closure (maintaining the sterile state) after sterilization.
 特許文献1には、ヒートシールシートの熱接着層を網目状に形成することにより通気性を確保したものが提案されている。しかし、ヒートシールシートが熱圧着されるフランジ部分は通常幅が狭く、網目状の熱接着層ではクロージャーの完全性に疑問があった。
 一方、特許文献2には、熱接着層に粒状の熱可塑性樹脂を配合することにより、通気性を確保しながら、熱接着層をいわゆるベタ塗にすることを可能としたヒートシールシートが提案されている。
 これらのヒートシールシートは通気性基材に紙を使用する場合、十分な通気性を確保するためには坪量を制限する必要があり、強度面での制約があった。また、パルプ繊維の脱離によるリントの発生の懸念もあり、小型・軽量の医療器具の滅菌処理、または一般医療器具の滅菌処理には適用されるが、質量の大きい医療器具、シーツ、ガウンのような大きい医療器具、カテーテル等の高度医療器具には適用されていないのが現状である。
Patent Document 1 proposes that the heat adhesive layer of the heat seal sheet is formed in a mesh-like shape to ensure breathability. However, the flange portion where the heat seal sheet is thermocompressed is usually narrow, and there are doubts about the integrity of the closure with a mesh-like heat adhesive layer.
On the other hand, Patent Document 2 proposes a heat seal sheet in which a granular thermoplastic resin is blended into the thermal adhesive layer, making it possible to make the thermal adhesive layer a so-called solid coating while ensuring breathability.
When using paper as the breathable base material, these heat seal sheets must limit their basis weight to ensure sufficient breathability, which limits their strength. In addition, there is a concern that lint may be generated due to the detachment of pulp fibers, and therefore, although they are applicable to the sterilization of small and lightweight medical instruments or general medical instruments, they are not currently applicable to heavy medical instruments, large medical instruments such as sheets and gowns, or advanced medical instruments such as catheters.
特開2017-43866号公報JP 2017-43866 A 特開2017-20130号公報JP 2017-20130 A
 本発明は、ヒートシール面全体に十分な熱接着性と通気性を有し、かつ強度が高く、リント(繊維毛羽)発生量を小さく抑えた優れたヒートシールシート、その製造方法、およびこれを用いた滅菌包装体を提供することを目的とする。 The objective of the present invention is to provide an excellent heat seal sheet that has sufficient thermal adhesion and breathability over the entire heat seal surface, is strong, and minimizes the amount of lint (fiber fluff) generated, a method for producing the same, and a sterilized package using the same.
 本発明は、以下の態様を有する。
 <1> 1層または2層以上の熱可塑性樹脂繊維不織布層Aと、1層または2層以上の熱可塑性樹脂繊維不織布層Bとを有するヒートシールシートであって、
 前記熱可塑性樹脂繊維不織布層Bが、低融点ポリエステル樹脂、ポリエステル繊維およびポリエチレン樹脂を含有し、低融点ポリエステル樹脂、ポリエステル繊維およびポリエチレン樹脂の質量比(低融点ポリエステル樹脂:ポリエステル繊維:ポリエチレン樹脂)が、13.75:11.25:75~41.25:33.75:25であり、
 前記ヒートシールシートのJIS P 8117:2009に準じて測定される王研式透気度が700秒以下であり、かつ、
 前記ヒートシールシートのJIS P 8116:2000に準じて測定される引裂強度が700mN以上である
 ヒートシールシート。
 <2> 前記熱可塑性樹脂繊維不織布層Aが、スパンボンド不織布、サーマルボンド不織布、ケミカルボンド不織布、ニードルパンチ不織布、スパンレース不織布、メルトブローン不織布、および湿式不織布よりなる群から選択される少なくとも1つに由来する不織布層である、<1>に記載のヒートシールシート。
 <3> 前記熱可塑性樹脂繊維不織布層Aが、ポリプロピレン樹脂繊維、ポリエステル繊維、およびポリアミド繊維よりなる群から選択される少なくとも1種を含む、<1>または<2>に記載のヒートシールシート。
 <4> 前記熱可塑性樹脂繊維不織布層Aに繊維形状が残存している、<1>~<3>のいずれか1つに記載のヒートシールシート。
 <5> 前記ヒートシールシートと、紙、フィルムまたは滅菌用成形容器等の滅菌包装材料とを、JIS P 8113:2006に準じて剥離速度300mm/分で180°剥離する際の剥離強度が、1.0/15mm以上15N/15mm以下である、<1>~<4>のいずれか1つに記載のヒートシールシート。
 <6> 坪量が30g/m以上150g/m以下である、<1>~<5>のいずれか1つに記載のヒートシールシート。
 <7> 前記熱可塑性樹脂繊維不織布層Bが表層となるように、前記熱可塑性樹脂繊維不織布層Aと前記熱可塑性樹脂繊維不織布層Bとが積層されてなる、<1>~<6>のいずれか1つに記載のヒートシールシート。
 <8> <1>~<7>のいずれか1つのヒートシールシートと、滅菌包装材料とが熱圧着された滅菌包装体。
 <9> <1>~<7>のいずれか1つに記載のヒートシールシートの製造方法であって、下記工程1~工程3をこの順で有する、ヒートシールシートの製造方法。
 工程1:熱可塑性樹脂繊維不織布aおよび熱可塑性樹脂繊維不織布bを準備する工程
 工程2:1層または2層以上の熱可塑性樹脂繊維不織布aと、1層または2層以上の熱可塑性樹脂繊維不織布bとを積層して積層体を得る工程
 工程3:工程2で得られた積層体を熱融着する工程
 <10> 前記熱可塑性樹脂繊維不織布bが、ポリエチレン多分岐繊維を25~75質量%含有する、<9>に記載のヒートシールシートの製造方法。
 <11> 前記熱可塑性樹脂繊維不織布bが、芯鞘構造ポリエステル繊維を含有する、<9>または<10>に記載のヒートシールシートの製造方法。
 <12> 前記熱可塑性樹脂繊維不織布bが、湿式抄造法により得られた不織布である、<9>~<11>のいずれか1つに記載のヒートシールシートの製造方法。
The present invention has the following aspects.
<1> A heat seal sheet having one or more thermoplastic resin fiber nonwoven fabric layers A and one or more thermoplastic resin fiber nonwoven fabric layers B,
the thermoplastic resin fiber nonwoven fabric layer B contains a low-melting point polyester resin, polyester fibers, and a polyethylene resin, and a mass ratio of the low-melting point polyester resin, polyester fibers, and polyethylene resin (low-melting point polyester resin:polyester fibers:polyethylene resin) is 13.75:11.25:75 to 41.25:33.75:25;
The heat seal sheet has an Oken air permeability of 700 seconds or less as measured in accordance with JIS P 8117:2009, and
The heat seal sheet has a tear strength of 700 mN or more as measured in accordance with JIS P 8116:2000.
<2> The heat seal sheet according to <1>, wherein the thermoplastic resin fiber nonwoven fabric layer A is a nonwoven fabric layer derived from at least one selected from the group consisting of a spunbonded nonwoven fabric, a thermally bonded nonwoven fabric, a chemically bonded nonwoven fabric, a needle-punched nonwoven fabric, a spunlace nonwoven fabric, a meltblown nonwoven fabric, and a wet-laid nonwoven fabric.
<3> The heat sealable sheet according to <1> or <2>, wherein the thermoplastic resin fiber nonwoven fabric layer A contains at least one fiber selected from the group consisting of polypropylene resin fibers, polyester fibers, and polyamide fibers.
<4> The heat sealable sheet according to any one of <1> to <3>, wherein the thermoplastic resin fiber nonwoven fabric layer A retains a fibrous shape.
<5> The heat seal sheet according to any one of <1> to <4>, wherein the peel strength when the heat seal sheet is peeled off at 180° from a sterilization packaging material such as paper, a film, or a molded container for sterilization at a peel speed of 300 mm/min in accordance with JIS P 8113:2006 is 1.0/15 mm or more and 15 N/15 mm or less.
<6> The heat seal sheet according to any one of <1> to <5>, having a basis weight of 30 g/ m2 or more and 150 g/ m2 or less.
<7> The heat seal sheet according to any one of <1> to <6>, wherein the thermoplastic resin fiber nonwoven fabric layer A and the thermoplastic resin fiber nonwoven fabric layer B are laminated together so that the thermoplastic resin fiber nonwoven fabric layer B serves as a surface layer.
<8> A sterilized package obtained by thermocompression bonding a sterilized packaging material to the heat seal sheet according to any one of <1> to <7>.
<9> A method for producing a heat seal sheet according to any one of <1> to <7>, comprising the following steps 1 to 3 in this order:
Step 1: preparing a thermoplastic resin fiber nonwoven fabric a and a thermoplastic resin fiber nonwoven fabric b; Step 2: laminating one or more layers of a thermoplastic resin fiber nonwoven fabric a and one or more layers of a thermoplastic resin fiber nonwoven fabric b to obtain a laminate; Step 3: heat-sealing the laminate obtained in step 2. <10> The method for producing a heat-sealable sheet according to <9>, wherein the thermoplastic resin fiber nonwoven fabric b contains 25 to 75% by mass of polyethylene hyperbranched fibers.
<11> The method for producing a heat sealable sheet according to <9> or <10>, wherein the thermoplastic resin fiber nonwoven fabric b contains a core-sheath polyester fiber.
<12> The method for producing a heat-sealable sheet according to any one of <9> to <11>, wherein the thermoplastic resin fiber nonwoven fabric b is a nonwoven fabric obtained by a wet papermaking method.
 本発明のヒートシールシートは、ヒートシール面全体に十分な熱接着性と通気性を有し、かつ強度が高く、またリント発生量を小さく抑え、滅菌医療包装材として優れる。 The heat seal sheet of the present invention has sufficient thermal adhesion and breathability over the entire heat seal surface, is strong, and keeps lint generation to a minimum, making it an excellent sterilized medical packaging material.
滅菌包装体の一実施形態の断面図である。FIG. 1 is a cross-sectional view of one embodiment of a sterile package. ヒートシールシートの一実施形態の断面図である。FIG. 2 is a cross-sectional view of one embodiment of a heat seal sheet. ヒートシールシートの別の一実施形態の断面図である。FIG. 2 is a cross-sectional view of another embodiment of a heat seal sheet. ヒートシールシートの別の一実施形態の断面図である。FIG. 2 is a cross-sectional view of another embodiment of a heat seal sheet.
 本発明において「シート」とは、シート、フィルム、不織布、またはこれらの積層体等の薄葉体の総称である。
 「王研式透気度」は、JIS P 8117:2009に準じて測定される値である。
 「坪量」は、JIS P 8124:2011に準じて測定される値である。
 「融点」は、JIS K 7121:1987に準じて測定される融解ピーク温度である。
 「引裂強度」は、JIS P 8116:2000に準じて測定されるそれぞれシートの縦方向と横方向測定値の相乗平均値である。
In the present invention, the term "sheet" is a general term for thin sheets such as sheets, films, nonwoven fabrics, and laminates thereof.
"Oken air permeability" is a value measured in accordance with JIS P 8117:2009.
"Basis weight" is a value measured in accordance with JIS P 8124:2011.
"Melting point" is the melting peak temperature measured in accordance with JIS K 7121:1987.
The "tear strength" is the geometric mean value of the measured values in the longitudinal and transverse directions of the sheet measured in accordance with JIS P 8116:2000.
 以下、ヒートシールシート、および、滅菌包装体の一実施形態について図1~図4を参照して説明する。
[ヒートシールシートおよび滅菌包装体]
 滅菌包装体(11)は、ヒートシールシート(21)と被着体(31)とを備える(図1)。
 ヒートシールシート(21)は、1層または2層以上の熱可塑性樹脂繊維不織布層A(22)と、1層または2層以上の熱可塑性樹脂繊維不織布層B(23)とを備える(図2及び3)。ヒートシールシート(21)は、1層または2層以上の熱可塑性樹脂繊維不織布層A(22)と、1層または2層以上の熱可塑性樹脂繊維不織布層B(23)とを有していれば、熱可塑性樹脂繊維不織布層A(22)および熱可塑性樹脂繊維不織布層B(23)とは異なる、熱可塑性樹脂繊維不織布層C(41)を備えていてもよい(図4)。
 後述するように、ヒートシールシート(21)は、1層または2層以上の熱可塑性樹脂繊維不織布aと、1層または2層以上の熱可塑性樹脂繊維不織布bとを積層し、熱融着することにより得ることが好ましく、熱可塑性樹脂繊維不織布層Aは、熱可塑性樹脂繊維不織布aに由来する層であり、熱可塑性樹脂繊維不織布層Bは、熱可塑性樹脂繊維不織布bに由来する層である。
 またヒートシールシート(21)は、JIS P 8117:2009に準じて測定される王研式透気度が700秒以下であり、かつ、JIS P 8116:2000に準じて測定される引裂強度が700mN以上である。
 さらに、熱可塑性樹脂繊維不織布層Bが、低融点ポリエステル樹脂、ポリエステル繊維およびポリエチレン樹脂を含有し、低融点ポリエステル樹脂、ポリエステル繊維およびポリエチレン樹脂の質量比(低融点ポリエステル樹脂:ポリエステル繊維:ポリエチレン樹脂)が、13.75:11.25:75~41.25:33.75:25である。
 本実施形態のヒートシールシートによれば、ヒートシール面全体に十分な熱接着性と通気性を有し、かつ、強度、特に引裂強度が高く、リント発生量が抑制される。
 上記の効果が得られる詳細な理由は不明であるが、一部は以下のように考えられる。すなわち、王研式透気度が700秒以下であることにより、適度な通気性が得られ、また、引裂強度が700mN以上であることにより、強度の高いヒートシールシートが得られる。また、熱可塑性樹脂繊維不織布層Bが、特定の樹脂構成を有することにより、熱接着性に優れると共に、開封時等にリントと呼ばれる繊維の毛羽立ちおよびそこから脱落した繊維くずの発生が抑制されると考えられる。
Hereinafter, an embodiment of the heat seal sheet and the sterilization package will be described with reference to Figs.
[Heat seal sheet and sterilized packaging]
The sterilization package (11) comprises a heat seal sheet (21) and an adherend (31) (Figure 1).
The heat seal sheet (21) comprises one or more thermoplastic resin fiber nonwoven fabric layers A (22) and one or more thermoplastic resin fiber nonwoven fabric layers B (23) (FIGS. 2 and 3). As long as the heat seal sheet (21) comprises one or more thermoplastic resin fiber nonwoven fabric layers A (22) and one or more thermoplastic resin fiber nonwoven fabric layers B (23), it may also comprise a thermoplastic resin fiber nonwoven fabric layer C (41) different from the thermoplastic resin fiber nonwoven fabric layer A (22) and the thermoplastic resin fiber nonwoven fabric layer B (23) (FIG. 4).
As described later, the heat seal sheet (21) is preferably obtained by laminating one or more layers of a thermoplastic resin fiber nonwoven fabric a and one or more layers of a thermoplastic resin fiber nonwoven fabric b, and heat fusing them together, the thermoplastic resin fiber nonwoven fabric layer A being a layer derived from the thermoplastic resin fiber nonwoven fabric a, and the thermoplastic resin fiber nonwoven fabric layer B being a layer derived from the thermoplastic resin fiber nonwoven fabric b.
The heat seal sheet (21) also has an Oken air permeability of 700 seconds or less as measured in accordance with JIS P 8117:2009, and a tear strength of 700 mN or more as measured in accordance with JIS P 8116:2000.
Furthermore, the thermoplastic resin fiber nonwoven fabric layer B contains a low melting point polyester resin, polyester fibers, and polyethylene resin, and the mass ratio of the low melting point polyester resin, polyester fibers, and polyethylene resin (low melting point polyester resin:polyester fibers:polyethylene resin) is 13.75:11.25:75 to 41.25:33.75:25.
The heat seal sheet of this embodiment has sufficient thermal adhesiveness and breathability over the entire heat seal surface, and also has high strength, particularly tear strength, and suppresses the amount of lint generation.
The detailed reasons why the above effects are obtained are unclear, but some of them are thought to be as follows. That is, by having an Oken air permeability of 700 seconds or less, moderate breathability is obtained, and by having a tear strength of 700 mN or more, a heat seal sheet with high strength is obtained. In addition, by having the thermoplastic resin fiber nonwoven fabric layer B have a specific resin composition, it is thought that the layer has excellent thermal adhesion and suppresses the generation of fiber fluff called lint and fiber debris that falls off when the sheet is opened.
(王研式透気度)
 前記ヒートシールシート(21)のJIS P 8117:2009に準じて測定される王研式透気度は、700秒以下である。前記王研式透気度が、700秒以下であると、エチレンオキシドガス滅菌処理が適用できるため好ましい。ヒートシールシート(21)の王研式透気度は、より好ましくは300秒以下、さらに好ましくは150秒以下、よりさらに好ましくは100秒以下である。王研式透気度の下限は特に限定されない。
(Oken air permeability)
The heat seal sheet (21) has an Oken air permeability of 700 seconds or less, measured according to JIS P 8117:2009. The Oken air permeability of 700 seconds or less is preferable because ethylene oxide gas sterilization can be applied. The Oken air permeability of the heat seal sheet (21) is more preferably 300 seconds or less, even more preferably 150 seconds or less, and even more preferably 100 seconds or less. There is no particular limit to the lower limit of the Oken air permeability.
(引裂強度)
 前記ヒートシールシート(21)のJIS P 8116:2000に準じて測定される引裂強度は700mN以上である。前記引裂強度が700mN以上であると、比較的大型の医療機器や質量の大きい医療器具の滅菌包材に使用できるため好ましい。ヒートシールシート(21)の引裂強度は、より好ましくは800mN以上、さらに好ましくは1000mN以上、よりさらに好ましくは1500mN以上、特に好ましくは2000mN以上である。引裂強度の上限は特に限定されないが、製造容易性の観点から、好ましくは5000mN以下、より好ましくは4000mN以下である。
(Tear strength)
The heat seal sheet (21) has a tear strength of 700 mN or more as measured according to JIS P 8116:2000. If the tear strength is 700 mN or more, it is preferable because it can be used as a sterilization packaging material for relatively large medical equipment or medical instruments with a large mass. The tear strength of the heat seal sheet (21) is more preferably 800 mN or more, even more preferably 1000 mN or more, even more preferably 1500 mN or more, and particularly preferably 2000 mN or more. The upper limit of the tear strength is not particularly limited, but from the viewpoint of ease of production, it is preferably 5000 mN or less, more preferably 4000 mN or less.
(坪量)
 本実施形態のヒートシールシートの坪量は、製造容易性、適切なヒートシール強度、および引裂強度を得る観点から、好ましくは30g/m以上、より好ましくは50g/m以上、さらに好ましくは70g/m以上であり、そして、好ましくは300g/m以下、より好ましくは200g/m以下、さらに好ましくは150g/m以下、よりさらに好ましくは100g/m以下である。
 ヒートシールシートの坪量は、熱可塑性樹脂繊維不織布aおよび熱可塑性樹脂繊維不織布bの坪量を適切な範囲に調整することにより、所望の範囲とすることができる。
(grammage)
From the viewpoints of ease of production, appropriate heat seal strength, and tear strength, the basis weight of the heat seal sheet of this embodiment is preferably 30 g/ m2 or more, more preferably 50 g/ m2 or more, even more preferably 70 g/ m2 or more, and is preferably 300 g/ m2 or less, more preferably 200 g/ m2 or less, even more preferably 150 g/ m2 or less, and even more preferably 100 g/ m2 or less.
The basis weight of the heat seal sheet can be adjusted to a desired range by adjusting the basis weights of the thermoplastic resin fiber nonwoven fabric a and the thermoplastic resin fiber nonwoven fabric b to appropriate ranges.
<熱可塑性樹脂繊維不織布層A>
 本実施形態のヒートシールシート(21)は、1層または2層以上の熱可塑性樹脂繊維不織布層Aを有する。熱可塑性樹脂繊維不織布層A(22)は、1種または2種以上の熱可塑性樹脂繊維a群を各種公知の方法でシート化した熱可塑性樹脂繊維不織布aに由来する層である。
 シート化の方法としては、例えばスパンボンド法、サーマルボンド法、ケミカルボンド法、ニードルパンチ法、スパンレース法、メルトブロー法、湿式抄造法等が挙げられ、中でもスパンボンド法は連続繊維で構成されるので強度が高く、繊維の脱離が発生しにくいため好ましい。また、湿式抄造法は均一な不織布が得られるため好ましい。
<Thermoplastic resin fiber nonwoven fabric layer A>
The heat seal sheet (21) of this embodiment has one or more thermoplastic resin fiber nonwoven fabric layers A. The thermoplastic resin fiber nonwoven fabric layer A (22) is a layer derived from a thermoplastic resin fiber nonwoven fabric a obtained by forming one or more types of thermoplastic resin fibers a group into a sheet by various known methods.
Examples of the sheeting method include spunbonding, thermal bonding, chemical bonding, needle punching, spunlace, melt blowing, and wet sheeting, among which the spunbonding method is preferred because it is made of continuous fibers, so that it has high strength and is less susceptible to fiber detachment, and the wet sheeting method is preferred because it can produce a uniform nonwoven fabric.
(熱可塑性樹脂繊維不織布a)
 熱可塑性樹脂繊維不織布aを構成する熱可塑性樹脂繊維a群としては、各種公知のものが使用できるが、前記熱可塑性樹脂繊維不織布層B(23)に用いられる熱可塑性樹脂繊維b群を構成する繊維の融点(特に限定するものではないが、例えば150℃以下)よりも高い融点を有するものが、熱ラミネート後も繊維形状を保ち、高い引裂強度(あらかじめ裂け目を入れた部分の引き裂き強度を測定するエレメンドルフ法による引裂強度)が得られやすいため好ましい。
 熱可塑性樹脂繊維a群を構成する繊維の例として、例えばポリプロピレン繊維、ポリエステル繊維、ポリアミド繊維等が挙げられるが、これらに限定されない。
 すなわち、熱可塑性樹脂繊維不織布aおよび熱可塑性樹脂繊維不織布層Aは、ポリプロピレン樹脂繊維、ポリエステル繊維、およびポリアミド繊維よりなる群から選択される少なくとも1種を含むことが好ましく、ポリプロピレン樹脂繊維またはポリエステル繊維を含むことがより好ましい。
 熱可塑性樹脂繊維不織布層Aと熱可塑性樹脂繊維不織布層Bとの層間密着性向上の観点からはポリプロピレン繊維が好ましい。
 また、ポリエステル繊維を含むことにより、後述するように、熱可塑性樹脂繊維不織布aと熱可塑性樹脂繊維不織布bとを積層した際に、熱可塑性樹脂繊維不織布aを構成する樹脂と、熱可塑性樹脂繊維不織布bを構成する樹脂との融点差を大きくすることができ、熱ラミネートの際に熱可塑性樹脂繊維不織布aを構成する樹脂の溶融を抑制することができ、熱可塑性樹脂繊維不織布層Aにおいて、樹脂形状がより保持されるため、ヒートシールシートとしての強度が向上するので好ましい。
 なお、熱可塑性樹脂繊維不織布aを構成する熱可塑性樹脂繊維は、後述する熱融着工程により溶融しないことが好ましく、ヒートシールシート(21)においても、熱可塑性樹脂繊維不織布層Aに繊維形状が残存していることが好ましい。
(Thermoplastic resin fiber nonwoven fabric a)
As the thermoplastic resin fibers a group constituting the thermoplastic resin fiber nonwoven fabric a, various known materials can be used, but those having a melting point higher than the melting point (not particularly limited, for example, 150° C. or lower) of the fibers constituting the thermoplastic resin fibers b group used in the thermoplastic resin fiber nonwoven fabric layer B (23) are preferred because they tend to maintain their fiber shape even after thermal lamination and to obtain high tear strength (tear strength measured by the Elmendorf method, which measures the tear strength of a portion that has been previously torn).
Examples of the fibers constituting the group a of thermoplastic resin fibers include, but are not limited to, polypropylene fibers, polyester fibers, and polyamide fibers.
That is, the thermoplastic resin fiber nonwoven fabric a and the thermoplastic resin fiber nonwoven fabric layer A preferably contain at least one fiber selected from the group consisting of polypropylene resin fibers, polyester fibers, and polyamide fibers, and more preferably contain polypropylene resin fibers or polyester fibers.
From the viewpoint of improving the interlayer adhesion between the thermoplastic resin fiber nonwoven fabric layer A and the thermoplastic resin fiber nonwoven fabric layer B, polypropylene fibers are preferred.
Furthermore, by including polyester fibers, as described below, when thermoplastic resin fiber nonwoven fabric a and thermoplastic resin fiber nonwoven fabric b are laminated, the difference in melting point between the resin constituting thermoplastic resin fiber nonwoven fabric a and the resin constituting thermoplastic resin fiber nonwoven fabric b can be increased, and melting of the resin constituting thermoplastic resin fiber nonwoven fabric a can be suppressed during thermal lamination. As a result, the resin shape is better maintained in the thermoplastic resin fiber nonwoven fabric layer A, which is preferable because it improves the strength as a heat seal sheet.
In addition, it is preferable that the thermoplastic resin fibers constituting the thermoplastic resin fiber nonwoven fabric a do not melt in the heat fusion step described below, and it is preferable that the fiber shape remains in the thermoplastic resin fiber nonwoven fabric layer A even in the heat seal sheet (21).
 中でも熱可塑性樹脂繊維不織布層A(22)をヒートシールシート(21)の表面層として構成する場合は、熱ラミネート時に表面の起毛を抑えやすいポリプロピレン樹脂繊維を前記熱可塑性樹脂a群として用いることが好ましい。
 また、本発明の目的を損なわない範囲において、天然パルプ繊維、再生繊維、その他の化学繊維を併用することも可能である。
In particular, when the thermoplastic resin fiber nonwoven fabric layer A (22) is constructed as the surface layer of the heat seal sheet (21), it is preferable to use polypropylene resin fibers as the thermoplastic resin group a, which are easy to suppress surface raising during thermal lamination.
Furthermore, it is possible to use natural pulp fibers, regenerated fibers, and other chemical fibers in combination, provided that the object of the present invention is not impaired.
 熱可塑性樹脂繊維a群の平均繊維径は特に限定されないが、例えば0.5μm以上50μm以下、好ましくは5μm以上30μm以下である。 The average fiber diameter of group a of thermoplastic resin fibers is not particularly limited, but is, for example, 0.5 μm or more and 50 μm or less, and preferably 5 μm or more and 30 μm or less.
 熱可塑性樹脂繊維不織布aは、スパンボンド不織布、サーマルボンド不織布、ケミカルボンド不織布、ニードルパンチ不織布、スパンレース不織布、メルトブローン不織布、および湿式不織布よりなる群から選択されるいずれの不織布であることが好ましく、メルトブローン不織布、スパンボンド不織布、および湿式不織布よりなる群から選択されるいずれかの不織布であることがより好ましく、スパンボンド不織布または湿式不織布であることがさらに好ましい。
 スパンボンド不織布は、熱可塑性樹脂を溶融させ、連続した長繊維状に吐出しながら形成するため、強度に優れたヒートシールシートが得られる点で好ましい。
 湿式不織布は均一性が高い点で好ましい。
The thermoplastic resin fiber nonwoven fabric a is preferably any nonwoven fabric selected from the group consisting of a spunbond nonwoven fabric, a thermal bond nonwoven fabric, a chemical bond nonwoven fabric, a needle punched nonwoven fabric, a spunlace nonwoven fabric, a meltblown nonwoven fabric, and a wet nonwoven fabric, more preferably any nonwoven fabric selected from the group consisting of a meltblown nonwoven fabric, a spunbond nonwoven fabric, and a wet nonwoven fabric, and even more preferably a spunbond nonwoven fabric or a wet nonwoven fabric.
Spunbond nonwoven fabrics are preferred because they are produced by melting a thermoplastic resin and extruding it into continuous long fibers, which allows the production of a heat sealable sheet having excellent strength.
Wet-laid nonwoven fabrics are preferred because they are highly uniform.
 熱可塑性樹脂繊維不織布aおよび熱可塑性樹脂繊維不織布層A(22)の坪量は特に限定するものではないが、例えば5g/m以上100g/m以下程度の範囲で調整され、充分な熱接着性と通気性、および引裂強度を得る観点から、好ましくは10g/m以上80g/m以下、より好ましくは20g/m以上50g/m以下である。
 なお、ヒートシールシートが2層以上の熱可塑性樹脂繊維不織布層A(22)を有する場合、上記の坪量の好ましい範囲は、各層の坪量の好ましい範囲である。
The basis weight of the thermoplastic resin fiber nonwoven fabric a and the thermoplastic resin fiber nonwoven fabric layer A (22) is not particularly limited, but is adjusted, for example, in the range of about 5 g/ m2 or more and 100 g/ m2 or less. From the viewpoint of obtaining sufficient thermal adhesiveness, breathability, and tear strength, it is preferably 10 g/ m2 or more and 80 g/ m2 or less, more preferably 20 g/ m2 or more and 50 g/ m2 or less.
When the heat seal sheet has two or more thermoplastic resin fiber nonwoven fabric layers A (22), the above-mentioned preferable range of basis weight is the preferable range of basis weight of each layer.
 熱可塑性樹脂繊維不織布層A(22)は単層でもよいし、2層以上の複層でもよい。また、熱可塑性樹脂繊維不織布層B(23)、熱可塑性樹脂繊維不織布層C(41)との積層方法も任意の順序で実施することが可能である。 The thermoplastic resin fiber nonwoven fabric layer A (22) may be a single layer or a multi-layer structure of two or more layers. In addition, the thermoplastic resin fiber nonwoven fabric layer B (23) and the thermoplastic resin fiber nonwoven fabric layer C (41) may be laminated in any order.
<熱可塑性樹脂繊維不織布層B>
 熱可塑性樹脂繊維不織布層B(23)は、1種または2種以上の熱可塑性樹脂繊維b群を各種公知の方法でシート化した熱可塑性樹脂繊維不織布bに由来する層である。
 熱可塑性樹脂繊維不織布層Bは、低融点ポリエステル樹脂、ポリエステル繊維およびポリエチレン樹脂を含有し、低融点ポリエステル樹脂、ポリエステル繊維およびポリエチレン樹脂の質量比(低融点ポリエステル樹脂:ポリエステル繊維:ポリエチレン樹脂)が、13.75:11.25:75~41.25:33.75:25である。
<Thermoplastic resin fiber nonwoven fabric layer B>
The thermoplastic resin fiber nonwoven fabric layer B (23) is a layer derived from a thermoplastic resin fiber nonwoven fabric b obtained by forming one or more kinds of thermoplastic resin fibers b into a sheet by any of various known methods.
The thermoplastic resin fiber nonwoven fabric layer B contains a low melting point polyester resin, polyester fibers, and polyethylene resin, and the mass ratio of the low melting point polyester resin, polyester fibers, and polyethylene resin (low melting point polyester resin:polyester fibers:polyethylene resin) is 13.75:11.25:75 to 41.25:33.75:25.
(熱可塑性樹脂繊維不織布b)
 熱可塑性樹脂繊維不織布bを構成する熱可塑性樹脂繊維b群としては、1種または2種以上の熱可塑性樹脂繊維を使用することができる。熱ラミネート後に熱可塑性樹脂繊維不織布層A(22)との接着やヒートシールシートのヒートシール性発現のために、熱可塑性樹脂繊維b群を構成する繊維として、融点が150℃未満の繊維を含有することが好ましい。
 熱可塑性樹脂繊維b群を構成する繊維は単一構造でもよいし、2層以上の芯鞘構造でもよい。芯鞘構造の場合は、鞘部樹脂の融点が150℃未満のものが好ましく、芯部樹脂の融点は150℃以上でもよい。
(Thermoplastic resin fiber nonwoven fabric b)
One or more types of thermoplastic resin fibers can be used as the thermoplastic resin fiber group b constituting the thermoplastic resin fiber nonwoven fabric b. In order to bond with the thermoplastic resin fiber nonwoven fabric layer A (22) after thermal lamination and to exhibit the heat sealability of the heat seal sheet, it is preferable that the fibers constituting the thermoplastic resin fiber group b contain fibers having a melting point of less than 150°C.
The fibers constituting the thermoplastic resin fiber group b may have a single structure or a core-sheath structure of two or more layers. In the case of a core-sheath structure, the melting point of the sheath resin is preferably less than 150°C, and the melting point of the core resin may be 150°C or higher.
 熱可塑性樹脂繊維b群としては、例えば各種ポリエチレン樹脂繊維、ポリエチレン-酢酸ビニルエステル樹脂繊維、低融点ポリエステル樹脂繊維、または芯部が通常のポリエステル樹脂で鞘部が前述の各種ポリエチレン樹脂繊維である芯鞘構造の複合繊維、ポリエチレン-酢酸ビニルエステル樹脂、芯部が通常のポリエステル樹脂で鞘部が低融点ポリエステル樹脂の芯鞘構造の複合樹脂が挙げられる。また、これらの樹脂繊維は、多分岐構造のものも使用できる。 Examples of thermoplastic resin fibers group b include various polyethylene resin fibers, polyethylene-vinyl acetate ester resin fibers, low melting point polyester resin fibers, composite fibers with a core-sheath structure in which the core is a normal polyester resin and the sheath is the various polyethylene resin fibers mentioned above, polyethylene-vinyl acetate ester resin, and composite resins with a core-sheath structure in which the core is a normal polyester resin and the sheath is a low melting point polyester resin. These resin fibers can also be used in a multi-branched structure.
 中でも低融点ポリエステルを鞘部/通常のポリエステルを芯部に使用した芯鞘構造ポリエステル繊維およびポリエチレン繊維が、熱可塑性樹脂繊維不織布aとの熱ラミネート性やヒートシール性に優れているため好ましく用いられる。
 ここで、鞘部に使用される低融点ポリエステルは、融点が150℃未満であり、好ましくは140℃以下、より好ましくは130℃以下、さらに好ましくは120℃以下である。一方、芯部に使用されるポリエステルは、融点が150℃以上であり、好ましくは180℃以上、より好ましくは200℃以上、さらに好ましくは240℃以上である。芯部に使用されるポリエステルとしては、例えば、ポリエチレンテレフタレートが例示される。
 また、ポリエチレン繊維は、ポリエチレンを擬似パルプ化したポリエチレン多分岐繊維であることが、熱可塑性樹脂繊維不織布bを湿式抄造によって作製可能となるため好ましい。熱可塑性樹脂繊維不織布bを湿式抄造により作製することで、より地合に優れ、均一性に優れ、緻密な不織布が得られるので好ましい。
 なお、熱可塑性樹脂繊維不織布bが、低融点ポリエステルを鞘部/通常のポリエステルを芯部に使用した芯鞘構造ポリエステル繊維、およびポリエチレン繊維を用いて得られた不織布である場合、熱融着後の熱可塑性樹脂繊維不織布層Bにおいては、芯鞘構造ポリエステル繊維の鞘部の低融点ポリエステル樹脂およびポリエチレン繊維の一部は溶融するため、必ずしも繊維形状を保持していない。なお、前記低融点ポリエステル樹脂およびポリエチレン繊維の全てが溶融している場合に限定されず、少なくとも一部が溶融していればよい。
Among these, polyester fibers and polyethylene fibers having a core-sheath structure in which a low melting point polyester is used for the sheath and a normal polyester is used for the core are preferably used because they have excellent thermal lamination properties and heat sealability with the thermoplastic resin fiber nonwoven fabric a.
Here, the low melting point polyester used in the sheath has a melting point less than 150° C., preferably 140° C. or less, more preferably 130° C. or less, and even more preferably 120° C. or less. On the other hand, the polyester used in the core has a melting point of 150° C. or more, preferably 180° C. or more, more preferably 200° C. or more, and even more preferably 240° C. or more. An example of the polyester used in the core is polyethylene terephthalate.
In addition, it is preferable that the polyethylene fibers are polyethylene hyperbranched fibers obtained by quasi-pulping polyethylene, because this allows the thermoplastic resin fiber nonwoven fabric b to be produced by wet papermaking. By producing the thermoplastic resin fiber nonwoven fabric b by wet papermaking, it is preferable that a nonwoven fabric having better texture, better uniformity, and more dense can be obtained.
In addition, when the thermoplastic resin fiber nonwoven fabric b is a nonwoven fabric obtained by using a core-sheath structure polyester fiber in which a low melting point polyester is used as the sheath and a normal polyester is used as the core, and a polyethylene fiber, the low melting point polyester resin in the sheath of the core-sheath structure polyester fiber and the polyethylene fiber are partially melted in the thermoplastic resin fiber nonwoven fabric layer B after heat fusion, and therefore the fiber shape is not necessarily maintained. In addition, it is not limited to the case where all of the low melting point polyester resin and the polyethylene fiber are melted, and it is sufficient that at least a portion is melted.
 熱可塑性樹脂繊維不織布bは、湿式抄造法により得られた不織布であることが好ましく、前記低融点ポリエステルを鞘部/通常のポリエステルを芯部に使用した芯鞘構造ポリエステル繊維と、ポリエチレン多分岐繊維とを湿式抄造することにより得ることが好ましい。
 熱可塑性樹脂繊維不織布bは、低融点ポリエステルを鞘部/通常のポリエステルを芯部に使用した芯鞘構造ポリエステル繊維を好ましくは25質量%以上75質量%以下含有し、より好ましくは30質量%以上70質量%以下、さらに好ましくは40質量%以上60質量%以下である。
 また、鞘部と芯部との質量比(鞘部/芯部)は、好ましくは20/80以上80/20以下、より好ましくは30/70以上70/30以下、さらに好ましくは40/60以上60/40以下である。
 低融点ポリエステルを鞘部/通常のポリエステルを芯部に使用した芯鞘構造ポリエステル繊維としては、帝人フロンティア株式会社製のテピルスシリーズ、株式会社クラレ製のPET系バインダー繊維などが例示される。
The thermoplastic resin fiber nonwoven fabric b is preferably a nonwoven fabric obtained by a wet papermaking method, and is preferably obtained by wet papermaking of a core-sheath polyester fiber in which the low melting point polyester is used for the sheath and a normal polyester is used for the core, and a polyethylene hyperbranched fiber.
The thermoplastic resin fiber nonwoven fabric b contains a core-sheath structure polyester fiber using a low melting point polyester for the sheath and a normal polyester for the core, in an amount of preferably 25% by mass or more and 75% by mass or less, more preferably 30% by mass or more and 70% by mass or less, and even more preferably 40% by mass or more and 60% by mass or less.
The mass ratio of the sheath to the core (sheath/core) is preferably 20/80 or more and 80/20 or less, more preferably 30/70 or more and 70/30 or less, and even more preferably 40/60 or more and 60/40 or less.
Examples of polyester fibers having a core-sheath structure in which a low melting point polyester is used for the sheath and a normal polyester is used for the core include the Tepyrus series manufactured by Teijin Frontier Co., Ltd. and PET-based binder fibers manufactured by Kuraray Co., Ltd.
 熱可塑性樹脂繊維不織布bは、ポリエチレン多分岐繊維を、好ましくは25質量%以上75質量%以下含有し、より好ましくは30質量%以上70質量%以下、さらに好ましくは35質量%以上60質量%以下である。
 ポリエチレンを擬似パルプ化したポリエチレン多分岐繊維としては、三井化学株式会社製のSWP(登録商標)シリーズが例示される。
The thermoplastic resin fiber nonwoven fabric b contains polyethylene hyperbranched fibers in an amount of preferably 25% by mass or more and 75% by mass or less, more preferably 30% by mass or more and 70% by mass or less, and even more preferably 35% by mass or more and 60% by mass or less.
Examples of polyethylene hyperbranched fibers obtained by quasi-pulping polyethylene include the SWP (registered trademark) series manufactured by Mitsui Chemicals, Inc.
 これらの熱可塑性樹脂繊維b群を使用して得られた熱可塑性樹脂繊維不織布bに由来する熱可塑性樹脂繊維不織布層Bにおいて、上述のように、低融点ポリエステル樹脂、ポリエステル繊維およびポリエチレン樹脂の質量比(低融点ポリエステル樹脂:ポリエステル繊維:ポリエチレン樹脂)が、13.75:11.25:75~41.25:33.75:25である。なお、ポリエステル繊維は、繊維形状であることが好ましい観点から、「ポリエステル繊維」としており、一方で、熱可塑性樹脂繊維を構成する低融点ポリエステルおよびポリエチレンは少なくとも一部が溶融していることから、それぞれ、「低融点ポリエステル樹脂」「ポリエチレン樹脂」としている。
 低融点ポリエステル樹脂、ポリエステル繊維、およびポリエチレン樹脂の合計量を100質量部としたとき、低融点ポリエステル樹脂の含有量は、13.75質量部以上41.25質量部以下であり、好ましくは16.5質量部以上38.5質量部以下、より好ましくは22質量部以上33質量部以下である。なお、低融点ポリエステル樹脂とは、上述したように、融点が150℃未満のポリエステル樹脂である。
 また、低融点ポリエステル樹脂、ポリエステル繊維、およびポリエチレン樹脂の合計量を100質量部としたとき、ポリエステル樹脂の含有量は、11.25質量部以上33.75質量部以下であり、好ましくは13.5質量部以上31.5質量部以下、より好ましくは18質量部以上27質量部以下である。なお、本実施形態において「ポリエステル繊維」は、融点が150℃以上であり、好ましくは180℃以上、より好ましくは200℃以上、さらに好ましくは240℃以上であり、例えば、ポリエチレンテレフタレートが例示される。
 さらに、低融点ポリエステル樹脂、ポリエステル繊維、およびポリエチレン樹脂の合計量を100質量部としたとき、ポリエチレン樹脂の含有量は、25質量部以上75質量部以下であり、好ましくは30質量部以上70質量部以下、より好ましくは35質量部以上60質量部以下である。
In the thermoplastic resin fiber nonwoven fabric layer B derived from the thermoplastic resin fiber nonwoven fabric b obtained using these thermoplastic resin fibers b group, as described above, the mass ratio of the low melting point polyester resin, polyester fiber, and polyethylene resin (low melting point polyester resin: polyester fiber: polyethylene resin) is 13.75: 11.25: 75 to 41.25: 33.75: 25. Since the polyester fiber is preferably in a fibrous form, it is referred to as "polyester fiber", while the low melting point polyester and polyethylene constituting the thermoplastic resin fiber are at least partially melted, and therefore are referred to as "low melting point polyester resin" and "polyethylene resin", respectively.
When the total amount of the low melting point polyester resin, the polyester fiber, and the polyethylene resin is 100 parts by mass, the content of the low melting point polyester resin is 13.75 parts by mass or more and 41.25 parts by mass or less, preferably 16.5 parts by mass or more and 38.5 parts by mass or less, and more preferably 22 parts by mass or more and 33 parts by mass or less. Note that, as described above, the low melting point polyester resin is a polyester resin having a melting point of less than 150° C.
When the total amount of the low melting point polyester resin, polyester fiber, and polyethylene resin is 100 parts by mass, the content of the polyester resin is 11.25 parts by mass or more and 33.75 parts by mass or less, preferably 13.5 parts by mass or more and 31.5 parts by mass or less, and more preferably 18 parts by mass or more and 27 parts by mass or less. In this embodiment, the "polyester fiber" has a melting point of 150° C. or more, preferably 180° C. or more, more preferably 200° C. or more, and even more preferably 240° C. or more, and an example of such a fiber is polyethylene terephthalate.
Furthermore, when the total amount of the low-melting point polyester resin, the polyester fiber, and the polyethylene resin is 100 parts by mass, the content of the polyethylene resin is 25 parts by mass or more and 75 parts by mass or less, preferably 30 parts by mass or more and 70 parts by mass or less, and more preferably 35 parts by mass or more and 60 parts by mass or less.
 熱可塑性樹脂繊維不織布層B中、低融点ポリエステル樹脂、ポリエステル繊維およびポリエチレン樹脂の合計含有量は、50質量%以上であり、より好ましくは70質量%以上、さらに好ましくは80質量%以上、よりさらに好ましくは85質量%以上であり、そして、上限は100質量%以下である。 The total content of low melting point polyester resin, polyester fiber and polyethylene resin in the thermoplastic resin fiber nonwoven fabric layer B is 50% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, and even more preferably 85% by mass or more, with the upper limit being 100% by mass or less.
 また、本発明の目的を損なわない範囲において、熱可塑性樹脂繊維b群として、天然パルプ繊維、再生繊維、その他の化学繊維を併用することも可能である。なお、環境負荷低減の観点および強度を向上させる観点から、天然パルプを併用してもよく、天然パルプとしては、木材パルプ(針葉樹パルプ、広葉樹パルプなど)、非木材パルプ(麻パルプ、木綿パルプ、藁パルプなど)などが例示される。 Furthermore, as long as the object of the present invention is not impaired, it is possible to use natural pulp fibers, regenerated fibers, and other chemical fibers in combination as the thermoplastic resin fiber group b. From the viewpoint of reducing the environmental load and improving strength, natural pulp may also be used in combination. Examples of natural pulp include wood pulp (softwood pulp, hardwood pulp, etc.) and non-wood pulp (hemp pulp, cotton pulp, straw pulp, etc.).
 熱可塑性樹脂繊維不織布bに使用される繊維の繊維径は特に限定されないが、例えば1μm以上60μm以下、好ましくは1μm以上40μm以下である。 The fiber diameter of the fibers used in the thermoplastic resin fiber nonwoven fabric b is not particularly limited, but is, for example, 1 μm or more and 60 μm or less, and preferably 1 μm or more and 40 μm or less.
 熱可塑性樹脂繊維不織布bおよび熱可塑性樹脂繊維不織布層B(23)の坪量は特に限定するものではないが、例えば5g/m以上100g/m以下程度の範囲で調整され、十分な熱接着性と通気性、および引裂強度を得る観点から、好ましくは10g/m以上80g/m以下、より好ましくは15g/m以上60g/m以下である。
 なお、ヒートシールシートが2層以上の熱可塑性樹脂繊維不織布層B(23)を有する場合、上記の坪量の好ましい範囲は、各層の坪量の好ましい範囲である。
The basis weight of the thermoplastic resin fiber nonwoven fabric b and the thermoplastic resin fiber nonwoven fabric layer B (23) is not particularly limited, but is adjusted, for example, in the range of about 5 g/ m2 or more and 100 g/ m2 or less. From the viewpoint of obtaining sufficient thermal adhesiveness, breathability, and tear strength, it is preferably 10 g/ m2 or more and 80 g/ m2 or less, more preferably 15 g/ m2 or more and 60 g/ m2 or less.
When the heat seal sheet has two or more thermoplastic resin fiber nonwoven fabric layers B (23), the above-mentioned preferable range of basis weight is the preferable range of basis weight of each layer.
 熱可塑性樹脂繊維不織布層B(23)は単層でもよいし、2層以上の複層でもよい。また、前述のとおり、熱可塑性樹脂繊維不織布層A(22)との積層方法も任意の順序で実施することが可能である。 The thermoplastic resin fiber nonwoven fabric layer B (23) may be a single layer or a multi-layer consisting of two or more layers. As mentioned above, the lamination method with the thermoplastic resin fiber nonwoven fabric layer A (22) can also be carried out in any order.
 熱可塑性樹脂繊維不織布bの製造方法としては各種公知のものが適用できるが、中でも湿式抄造法が、低坪量でも良好な地合が得られやすく、ヒートシールシートの遮菌性を損なうピンホールが発生しにくいため好ましい。 Various known methods can be used to manufacture the thermoplastic resin fiber nonwoven fabric b, but among them, the wet papermaking method is preferred because it is easy to obtain good texture even at low basis weights and is less likely to produce pinholes that impair the antibacterial properties of the heat seal sheet.
 湿式抄造法としては、長網抄紙機、短網抄紙機、円網抄紙機、傾斜抄紙機等を使用する方法が挙げられる。中でも円網抄紙機や傾斜抄紙機は比較的繊維長の長い材料を用いることができるため好ましく、傾斜抄紙機がより好ましい。 Wet papermaking methods include those using a Fourdrinier papermaking machine, a short wire papermaking machine, a cylinder papermaking machine, an inclined papermaking machine, etc. Among these, a cylinder papermaking machine and an inclined papermaking machine are preferred because they can be used with materials with relatively long fiber lengths, and an inclined papermaking machine is more preferred.
 原料スラリーには、地合を整える目的で各種の分散剤、界面活性剤、粘剤やその他の内添薬品を添加することもできる。 Various dispersants, surfactants, thickeners and other internal additives can also be added to the raw material slurry to improve the texture.
 湿式抄造後の熱可塑性樹脂繊維不織布bの乾燥方法も特に限定するものではなく、多筒式乾燥機、ヤンキードライヤー、熱風乾燥機、赤外線乾燥機等が使用できる。多筒式乾燥機、ヤンキードライヤーを用いる場合は、熱可塑性樹脂繊維の融点以下の乾燥温度とする、もしくは多筒式乾燥機、ヤンキードライヤーの表面をフッ素樹脂コーティングすることが、熱可塑性樹脂付着による表面汚染防止のために好ましい。 The method for drying the thermoplastic resin fiber nonwoven fabric b after wet papermaking is not particularly limited, and a multi-cylinder dryer, Yankee dryer, hot air dryer, infrared dryer, etc. can be used. When using a multi-cylinder dryer or Yankee dryer, it is preferable to set the drying temperature below the melting point of the thermoplastic resin fiber, or to coat the surface of the multi-cylinder dryer or Yankee dryer with a fluororesin to prevent surface contamination due to adhesion of the thermoplastic resin.
<熱可塑性樹脂繊維不織布層C>
 熱可塑性樹脂繊維不織布層C(41)は、1種または2種以上の熱可塑性樹脂繊維c群を各種公知の方法でシート化した熱可塑性樹脂繊維不織布cに由来する層である。
 熱可塑性樹脂繊維不織布層Cは、本実施形態のヒートシールシートにおいて、ヒートシールを行わない側に設ける層である。
<Thermoplastic resin fiber nonwoven fabric layer C>
The thermoplastic resin fiber nonwoven fabric layer C (41) is a layer derived from a thermoplastic resin fiber nonwoven fabric c obtained by forming one or more types of thermoplastic resin fibers c into a sheet by any of various known methods.
The thermoplastic resin fiber nonwoven fabric layer C is a layer provided on the side of the heat seal sheet of this embodiment that is not to be heat sealed.
(熱可塑性樹脂繊維不織布c)
 熱可塑性樹脂繊維不織布cを構成する熱可塑性樹脂繊維c群としては、1種または2種以上の繊維を使用することができる。熱ラミネート後に熱可塑性樹脂繊維不織布層A(22)との接着のために、熱可塑性樹脂繊維c群を構成する繊維として、融点が150℃未満の熱可塑性樹脂繊維を含有することが好ましい。
(Thermoplastic resin fiber nonwoven fabric c)
One or more types of fibers may be used as the thermoplastic resin fiber group c constituting the thermoplastic resin fiber nonwoven fabric c. For adhesion to the thermoplastic resin fiber nonwoven fabric layer A (22) after thermal lamination, it is preferable that the fibers constituting the thermoplastic resin fiber group c contain thermoplastic resin fibers having a melting point of less than 150°C.
 熱可塑性樹脂繊維c群としては、例えば各種ポリエチレン樹脂繊維、ポリエチレン-酢酸ビニルエステル樹脂繊維、低融点ポリエステル樹脂繊維、または芯部が通常のポリエステル樹脂で鞘部が前述の各種ポリエチレン樹脂繊維である芯鞘構造の複合繊維、ポリエチレン-酢酸ビニルエステル樹脂、芯部が通常のポリエステル樹脂で鞘部が低融点ポリエステル樹脂の芯鞘構造の複合樹脂が挙げられる。また、これらの樹脂繊維は、多分岐構造を有するものも使用できる。また、天然パルプ繊維、再生繊維、その他の化学繊維を併用することが可能である。天然パルプとしては、木材パルプ(針葉樹パルプ、広葉樹パルプなど)、非木材パルプ(麻パルプ、木綿パルプ、藁パルプなど)などが例示される。 Thermoplastic resin fibers group C include, for example, various polyethylene resin fibers, polyethylene-vinyl acetate ester resin fibers, low-melting point polyester resin fibers, composite fibers with a core-sheath structure in which the core is a normal polyester resin and the sheath is the various polyethylene resin fibers mentioned above, polyethylene-vinyl acetate ester resin, and composite resins with a core-sheath structure in which the core is a normal polyester resin and the sheath is a low-melting point polyester resin. These resin fibers may also have a multi-branched structure. Natural pulp fibers, recycled fibers, and other chemical fibers may also be used in combination. Examples of natural pulp include wood pulp (softwood pulp, hardwood pulp, etc.) and non-wood pulp (hemp pulp, cotton pulp, straw pulp, etc.).
 これらの中でも、熱可塑性樹脂繊維不織布cを構成する繊維群として、天然パルプを含有することが好ましい。後述する工程3において熱融着(熱ラミネート)をした際に、加熱された状態でテンションが掛かると、熱可塑性樹脂繊維不織布層Aや熱可塑性樹脂繊維不織布層Bが目開きし、透気度が低下する場合がある。熱可塑性樹脂繊維不織布cが天然パルプを含有することで、上述の目開きが抑制され、透気度の低下が抑制されるので好ましい。
 さらに、熱可塑性樹脂繊維不織布bが熱融着する際に収縮することで、ヒートシールシートがカールする場合があるが、パルプを含有する熱可塑性樹脂繊維不織布cを採用することで、カールが抑制されるので好ましい。
 熱可塑性樹脂繊維不織布c中の天然パルプの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上である。
Among these, it is preferable that the thermoplastic resin fiber nonwoven fabric c contains natural pulp as a fiber group constituting the thermoplastic resin fiber nonwoven fabric c. When tension is applied in a heated state during thermal fusion (thermal lamination) in step 3 described below, the thermoplastic resin fiber nonwoven fabric layer A and the thermoplastic resin fiber nonwoven fabric layer B may open up and the air permeability may decrease. It is preferable that the thermoplastic resin fiber nonwoven fabric c contains natural pulp, since this suppresses the above-mentioned opening up and suppresses the decrease in air permeability.
Furthermore, the thermoplastic resin fiber nonwoven fabric b may shrink during heat fusion, causing the heat seal sheet to curl, but by using the thermoplastic resin fiber nonwoven fabric c containing pulp, curling can be suppressed, which is preferable.
The content of natural pulp in the thermoplastic resin fiber nonwoven fabric c is preferably 5% by mass or more, and more preferably 10% by mass or more.
 熱可塑性樹脂繊維不織布cおよび熱可塑性樹脂繊維不織布層C(41)の坪量は特に限定するものではないが、例えば10g/m以上100g/m以下程度の範囲で調整され、十分な熱接着性と通気性、および引裂強度を得る観点から、好ましくは15g/m以上80g/m以下、より好ましくは20g/m以上60g/m以下である。
 なお、後述するように、b/a/cの積層構造を有する場合、熱可塑性樹脂繊維不織布cおよび熱可塑性樹脂繊維不織布層C(41)の坪量は、熱可塑性樹脂繊維不織布bおよび熱可塑性樹脂繊維不織布層B(23)の坪量よりも大きいことが好ましく、5g/m以上大きいことがより好ましい。上記の構成とすることにより、熱可塑性樹脂繊維不織布bおよび熱可塑性樹脂繊維不織布層B(23)のカールによるヒートシール紙のカールが抑制されるので好ましい。
The basis weight of the thermoplastic resin fiber nonwoven fabric c and the thermoplastic resin fiber nonwoven fabric layer C (41) is not particularly limited, but is adjusted, for example, in the range of about 10 g/ m2 or more and 100 g/ m2 or less. From the viewpoint of obtaining sufficient thermal adhesiveness, breathability, and tear strength, it is preferably 15 g/ m2 or more and 80 g/ m2 or less, more preferably 20 g/ m2 or more and 60 g/ m2 or less.
As described below, in the case of a b/a/c laminated structure, the basis weight of the thermoplastic resin fiber nonwoven fabric c and the thermoplastic resin fiber nonwoven fabric layer C (41) is preferably larger than the basis weight of the thermoplastic resin fiber nonwoven fabric b and the thermoplastic resin fiber nonwoven fabric layer B (23), and more preferably is 5 g/ m2 or more larger. This configuration is preferable because it suppresses curling of the heat seal paper due to curling of the thermoplastic resin fiber nonwoven fabric b and the thermoplastic resin fiber nonwoven fabric layer B (23).
[ヒートシールシートの製造方法]
 本実施形態のヒートシールシートの製造方法は、下記工程1~工程3をこの順で有することが好ましい。
 工程1:熱可塑性樹脂繊維不織布aおよび熱可塑性樹脂繊維不織布bを準備する工程
 工程2:1層または2層以上の熱可塑性樹脂繊維不織布aと、1層または2層以上の熱可塑性樹脂繊維不織布bとを積層して積層体を得る工程
 工程3:工程2で得られた積層体を熱融着する工程
[Method of manufacturing heat seal sheet]
The method for producing a heat seal sheet of the present embodiment preferably includes the following steps 1 to 3 in this order.
Step 1: preparing a thermoplastic resin fiber nonwoven fabric a and a thermoplastic resin fiber nonwoven fabric b; Step 2: laminating one or more layers of a thermoplastic resin fiber nonwoven fabric a and one or more layers of a thermoplastic resin fiber nonwoven fabric b to obtain a laminate; Step 3: heat-sealing the laminate obtained in step 2
<工程1>
 工程1は、熱可塑性樹脂繊維不織布aおよび熱可塑性樹脂繊維不織布bを準備する工程である。
 熱可塑性樹脂繊維不織布aおよび熱可塑性樹脂繊維不織布bは、上述の方法で準備すればよい。
<Step 1>
Step 1 is a step of preparing a thermoplastic resin fiber nonwoven fabric a and a thermoplastic resin fiber nonwoven fabric b.
The thermoplastic resin fiber nonwoven fabric a and the thermoplastic resin fiber nonwoven fabric b may be prepared by the method described above.
<工程2>
 工程2は、1層または2層以上の熱可塑性樹脂繊維不織布aと、1層または2層以上の熱可塑性樹脂繊維不織布bとを積層して積層体を得る工程である。
 熱可塑性樹脂繊維不織布aと熱可塑性樹脂繊維不織布bとの積層方法は、ヒートシール性の観点から、表裏いずれかの最表面が熱可塑性樹脂繊維不織布bになるように積層する以外は、積層する順序は限定するものではなく、また各層単層でも2層以上の多層でもよい。
 これらの中でも、熱ラミネート後のカールを低減するためには、中心層から表裏対称またはそれに準ずる順序となることが好ましい。
 従って、熱可塑性樹脂繊維不織布b/熱可塑性樹脂繊維不織布a/熱可塑性樹脂繊維不織布bの順で積層した3層構造、b/a/b/a/bのように積層した5層構造のように、b/(a/b)/a/b(nは0以上の整数)の積層構造を有することが好ましい。これらの中でも、b/a/bの3層構造またはb/a/b/a/bの5層構造を有することが好ましく、製造容易性の観点から、b/a/bの3層構造を有することがより好ましい。
 また、b/a/cの3層構造としてもよい。上記の3層構造とするとき、熱可塑性樹脂繊維不織布bと熱可塑性樹脂繊維不織布cのうち熱による収縮率が高い不織布層Bの坪量を低くすることで熱ラミネート後のカールを低減できるため好ましい。
<Step 2>
Step 2 is a step of laminating one or more layers of a thermoplastic resin fiber nonwoven fabric a and one or more layers of a thermoplastic resin fiber nonwoven fabric b to obtain a laminate.
The method of laminating the thermoplastic resin fiber nonwoven fabric a and the thermoplastic resin fiber nonwoven fabric b is not limited to a specific order, except that, from the viewpoint of heat sealability, the outermost surface of either the front or back surface is the thermoplastic resin fiber nonwoven fabric b. Furthermore, each layer may be a single layer or may be a multilayer of two or more layers.
Among these, in order to reduce curling after thermal lamination, it is preferable that the front and back layers are symmetrical or in a similar order from the center layer.
Therefore, it is preferable to have a laminate structure of b/(a/b)n/a/b (n is an integer of 0 or more), such as a three-layer structure in which thermoplastic resin fiber nonwoven fabric b/thermoplastic resin fiber nonwoven fabric a/thermoplastic resin fiber nonwoven fabric b are laminated in this order, or a five-layer structure in which b/a/b/a/b are laminated. Among these, it is preferable to have a three-layer structure of b/a/b or a five-layer structure of b/a/b/a/b, and from the viewpoint of ease of production, it is more preferable to have a three-layer structure of b/a/b.
In addition, a three-layer structure of b/a/c may be used. When the three-layer structure is used, it is preferable to reduce the basis weight of the nonwoven fabric layer B, which has a higher thermal shrinkage rate among the thermoplastic resin fiber nonwoven fabrics b and c, because curling after thermal lamination can be reduced.
<工程3>
 工程3は、工程2で得られた積層体を熱融着する工程である。工程3では、積層体を構成する熱可塑性樹脂繊維不織布aおよび熱可塑性樹脂繊維不織布bを熱融着(熱ラミネート)する。
 熱融着工程は、2本の加熱ロールの間に工程2で得られた積層体を通すことで行われる。
<Step 3>
Step 3 is a step of thermally fusing the laminate obtained in step 2. In step 3, the thermoplastic resin fiber nonwoven fabrics a and b constituting the laminate are thermally fusing (thermally laminating).
The heat fusion step is carried out by passing the laminate obtained in step 2 between two heated rolls.
 加熱ロールの温度としては、熱可塑性樹脂繊維不織布b中で使用される熱可塑性樹脂繊維のうち最も融点が低いものの融点以上で、かつ、熱可塑性樹脂繊維不織布aで使用される熱可塑性樹脂繊維のうち最も融点の低いものの融点+20℃以下の範囲で調整される。
 加熱ロールの温度が熱可塑性樹脂繊維不織布b中で使用される熱可塑性樹脂繊維のうち最も融点が低いものの融点を下回らないことで、熱可塑性樹脂繊維不織布b表面の起毛を抑える効果が十分得られ、またヒートシール強度も得られる。また、被着体(31)を剥離する場合の熱接着面の起毛や破壊の発生が抑制される。また、加熱ロールの温度が熱可塑性樹脂繊維不織布a中で使用される熱可塑性樹脂繊維のうち最も融点が低いものの融点+20℃以下とすることで、熱融着後も熱可塑性樹脂繊維不織布層A(22)において、繊維形状が保持されて十分な引裂強度が得られるため好ましい。
The temperature of the heating roll is adjusted within a range of not less than the melting point of the thermoplastic resin fiber with the lowest melting point used in the thermoplastic resin fiber nonwoven fabric b and not more than the melting point of the thermoplastic resin fiber with the lowest melting point used in the thermoplastic resin fiber nonwoven fabric a + 20°C.
By setting the temperature of the heating roll not lower than the melting point of the thermoplastic resin fiber with the lowest melting point used in the thermoplastic resin fiber nonwoven fabric b, the effect of suppressing the raising of the surface of the thermoplastic resin fiber nonwoven fabric b can be sufficiently obtained, and the heat seal strength can also be obtained. In addition, the occurrence of raising and destruction of the heat-bonded surface when peeling off the adherend (31) is suppressed. In addition, by setting the temperature of the heating roll to the melting point of the thermoplastic resin fiber with the lowest melting point used in the thermoplastic resin fiber nonwoven fabric a + 20°C or less, the fiber shape is maintained in the thermoplastic resin fiber nonwoven fabric layer A (22) even after heat fusion, and sufficient tear strength can be obtained, which is preferable.
 また、加熱ロール表面をフッ素樹脂コーティングすることが、熱可塑性樹脂付着による表面汚染防止のために好ましい。 It is also preferable to coat the surface of the heating roll with a fluororesin to prevent surface contamination caused by the adhesion of thermoplastic resin.
 加熱ロールの表面温度は上下で同じでもよく異なっていてもよい。また、1ニップで熱融着してもよく2ニップ以上でもよい。
 2ニップ以上の場合は、1パスで行ってもよく、2パス以上でもよい。
 工程2で得られた積層体が3層以上である場合には、熱融着は、全層同時に行ってもよく、一部を先に熱融着し、引き続き別の層を追加して熱融着することもできる。
 熱融着時は、加圧前に、熱可塑性樹脂繊維不織布aおよび/または熱可塑性樹脂繊維不織布bに対して、加熱ロールに接触させる前に、プレヒーターを用いて加熱する等の余熱を与える工程を付加することもできる。
 その他、公知技術を適用することが可能である。
The surface temperatures of the upper and lower heating rolls may be the same or different. Also, heat fusion may be performed with one nip or with two or more nips.
In the case of two or more nips, the process may be performed in one pass or in two or more passes.
When the laminate obtained in step 2 has three or more layers, the heat fusion may be carried out simultaneously for all layers, or a portion of the layers may be heat fused first, and then another layer may be added and heat fused.
During heat fusion, a step of providing residual heat, such as by heating using a preheater, to the thermoplastic resin fiber nonwoven fabric a and/or the thermoplastic resin fiber nonwoven fabric b before contacting them with a heating roll may be added before pressurization.
Other known techniques can also be applied.
[作用効果]
 本発明のヒートシールシート(21)は、熱可塑性樹脂繊維不織布aと熱可塑性樹脂繊維不織布bを熱融着(熱ラミネート)することで得られ、ヒートシール面全体に十分な熱接着性と通気性を有し、かつ、強度が高く、またリント発生量を小さく抑え、滅菌医療包装材として優れる。
[Action and Effect]
The heat seal sheet (21) of the present invention is obtained by heat fusing (thermal laminating) a thermoplastic resin fiber nonwoven fabric a and a thermoplastic resin fiber nonwoven fabric b, and has sufficient thermal adhesion and breathability over the entire heat seal surface, high strength, and keeps lint generation to a minimum, making it an excellent sterilized medical packaging material.
[用途]
 ヒートシールシート(21)は、例えば、滅菌包装体(11)に用いられる。ヒートシールシート(21)の一部と、包装紙、ラミネート紙、フィルム、滅菌用成形容器等の被着体(31)の一部とを、内側に空間が形成されるように重ねて熱圧着することで、ヒートシールシート(21)と被着体(31)とが熱圧着された滅菌包装体を形成できる。
 フィルムまたは滅菌用成形容器としては、ポリエチレンやポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、エチレン-酢酸ビニル共重合樹脂、エチレン-アクリル共重合樹脂またはこれらの積層体等により構成される、フィルムまたは滅菌用成形容器が挙られる。
 滅菌用成形容器は、典型的には、収容物を収容するための1以上の凹部を有する。この場合、ヒートシールシート(21)は、典型的には、前記1以上の凹部の開口を封止する蓋材として用いられる。
 ヒートシールシート(21)と熱圧着される被着体としては、比較的狭いシール幅でも基材破壊を来たさずに十分な剥離強度が求められる点で、滅菌用成形容器が好ましい。
[Application]
The heat seal sheet (21) is used, for example, in a sterilization package (11). A part of the heat seal sheet (21) and a part of an adherend (31) such as wrapping paper, laminated paper, a film, or a molded container for sterilization are overlapped and heat-pressed together so that a space is formed inside, thereby forming a sterilization package in which the heat seal sheet (21) and the adherend (31) are heat-pressed together.
Examples of the film or molded container for sterilization include films or molded containers for sterilization made of polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, polystyrene, ethylene-vinyl acetate copolymer resins, ethylene-acrylic copolymer resins, or laminates of these.
The molded container for sterilization typically has one or more recesses for accommodating contents. In this case, the heat seal sheet (21) is typically used as a lid material for sealing the opening of the one or more recesses.
The adherend to be thermocompressed with the heat seal sheet (21) is preferably a molded container for sterilization, since sufficient peel strength is required without destroying the substrate even with a relatively narrow seal width.
 滅菌包装体(11)は、互いに熱圧着されたヒートシールシート(21)と被着体(31)により、医療器具等の収容物を収容するための空間が形成されている。ヒートシールシート(21)と被着体(31)とは、収容物を収容した後に熱圧着される。
 収容物としての医療器具は、使用前に滅菌することが求められる医療器具であれば特に限定されない。具体例としては、注射針、注射器、カテーテル、手袋、メス、鉗子、摂子、剪刀、ガーゼ、絆創膏等が挙げられる。
In the sterilized package (11), a space for accommodating contents such as medical instruments is formed by a heat seal sheet (21) and an adherend (31) that are heat-pressed together. The heat seal sheet (21) and the adherend (31) are heat-pressed together after the contents are accommodated.
The medical instruments to be contained are not particularly limited as long as they are medical instruments that need to be sterilized before use, and specific examples include injection needles, syringes, catheters, gloves, scalpels, forceps, scissors, gauze, and bandages.
 滅菌包装体は、収容物を収容した状態で滅菌処理に供される。例えば、オートクレーブ、エチレンオキシドガス(EOG)滅菌、電子線滅菌、γ線滅菌等の滅菌方法により滅菌処理が行われる。そして、収容物を使用する際には、被着体からヒートシールシート(21)を剥離して収容物を取り出すこととなる。
 ヒートシールシート(21)の用途は滅菌包装体に限定されるものではなく、食品や乾燥剤、脱酸素剤等の各種鮮度保持剤、一般工業製品等の包装にも使用することができる。
 また、表裏のいずれか、または両面の最表面に印刷加工を施すことも可能である。
The sterile package is subjected to a sterilization treatment while containing the contents therein. For example, the sterilization treatment is carried out by a sterilization method such as autoclave, ethylene oxide gas (EOG) sterilization, electron beam sterilization, gamma ray sterilization, etc. When the contents are to be used, the heat seal sheet (21) is peeled off from the adherend to remove the contents.
The use of the heat seal sheet (21) is not limited to sterilized packaging, but can also be used for packaging food, various freshness-preserving agents such as desiccants and oxygen absorbers, general industrial products, etc.
It is also possible to perform printing on either the front or back surface, or on the outermost surface of both surfaces.
 ヒートシールシート(21)と被着体(31)との滅菌包装体(11)において、ヒートシールシート(21)と被着体(31)とを剥離速度300mm/分で180°剥離する際の剥離強度は、好ましくは1.0N/15mm以上15N/15mm以下、より好ましくは1.5N/15mm以上12N/15mm以下、さらに好ましくは2.0N/15mm以上10.5N/15mm以下、よりさらに好ましくは4.0N/15mm以上10.5N/15mm以下、特に好ましくは4.5N/15mm以上10.5N/15mm以下、最も好ましくは5.0N/15mm以上7.5N/15mm以下である。剥離強度が前記範囲内であると、イージーピール性とヒートシール性のバランスに優れる。
 ヒートシール剥離強度は、実施例に記載の方法により測定される。
 ヒートシール面を構成する熱可塑性樹脂繊維不織布層B(23)の坪量、熱可塑性樹脂繊維不織布層B(23)中のポリエチレン樹脂の含有量、ヒートシールシートを製造時の積層体の熱融着工程における熱融着条件、被着体との熱融着条件等を適当な範囲にすることで、ヒートシール剥離強度を所望の範囲に調整することができる。
In the sterilized package (11) of the heat seal sheet (21) and the adherend (31), the peel strength when the heat seal sheet (21) and the adherend (31) are peeled at 180° at a peel speed of 300 mm/min is preferably 1.0 N/15 mm to 15 N/15 mm, more preferably 1.5 N/15 mm to 12 N/15 mm, even more preferably 2.0 N/15 mm to 10.5 N/15 mm, still more preferably 4.0 N/15 mm to 10.5 N/15 mm, particularly preferably 4.5 N/15 mm to 10.5 N/15 mm, and most preferably 5.0 N/15 mm to 7.5 N/15 mm. When the peel strength is within the above range, the balance between easy peel property and heat seal property is excellent.
The heat seal peel strength is measured by the method described in the Examples.
The heat seal peel strength can be adjusted within a desired range by setting the basis weight of the thermoplastic resin fiber nonwoven fabric layer B (23) constituting the heat seal surface, the polyethylene resin content in the thermoplastic resin fiber nonwoven fabric layer B (23), the heat fusion conditions in the heat fusion step of the laminate when producing the heat seal sheet, and the heat fusion conditions with the adherend, all within appropriate ranges.
 以下に実施例を挙げて本発明を具体的に説明する。なお、本発明はこれらの例に何ら限定されるものではない。なお、特に断りのない限り、%は質量%であり、部は質量部である。 The present invention will be specifically explained below with reference to examples. Note that the present invention is in no way limited to these examples. Note that, unless otherwise specified, % means % by mass and parts means parts by mass.
[実施例1~7、比較例1~3]
<熱可塑性樹脂繊維不織布bの製造>
 ポリエチレン多分岐繊維(商品名:SWP(登録商標)E400、融点135℃、平均繊維長0.9mm、繊維径約1~30μm、三井化学株式会社製)、芯鞘構造ポリエステル繊維(商品名:テピルス(登録商標)TJ04CN、繊度1.1dtex、繊維長5mm、繊維径約10μm、鞘部の融点110℃、芯部(ポリエチレンテレフタレート)の融点260℃、鞘部/芯部の質量比=55/45、帝人フロンティア株式会社製)、麻パルプ(JIS P 8121-2:2012に記載されるカナダ標準ろ水度(フリーネス):620mL)を表1に示す所定量、変性ポリエステル樹脂分散剤(商品名:SR-1800R、高松油脂株式会社製)を繊維の合計100質量部に対して0.5質量部、混合撹拌して原料スラリーを得た。
 湿式傾斜抄紙機を用いて、前記原料スラリーを抄造し、表面温度105℃のヤンキードライヤーで乾燥して、実施例1~6、比較例1~3では、坪量25g/mの熱可塑性樹脂繊維不織布bを得た。また、実施例7では、坪量35g/mの熱可塑性樹脂繊維不織布bを得た。
[Examples 1 to 7, Comparative Examples 1 to 3]
<Production of Thermoplastic Resin Fiber Nonwoven Fabric b>
A raw material slurry was obtained by mixing and stirring the specified amounts shown in Table 1 of polyethylene hyperbranched fiber (trade name: SWP (registered trademark) E400, melting point 135°C, average fiber length 0.9 mm, fiber diameter about 1 to 30 μm, manufactured by Mitsui Chemicals, Inc.), core-sheath structure polyester fiber (trade name: Tepyrus (registered trademark) TJ04CN, fineness 1.1 dtex, fiber length 5 mm, fiber diameter about 10 μm, sheath melting point 110°C, core (polyethylene terephthalate) melting point 260°C, sheath/core mass ratio = 55/45, manufactured by Teijin Frontier Co., Ltd.), and hemp pulp (Canadian standard freeness (freeness) described in JIS P 8121-2:2012: 620 mL) and modified polyester resin dispersant (trade name: SR-1800R, manufactured by Takamatsu Oil Co., Ltd.) in an amount of 0.5 parts by mass per 100 parts by mass of the fibers in total.
The raw material slurry was made into a sheet using a wet inclined papermaking machine and dried with a Yankee dryer at a surface temperature of 105°C to obtain a thermoplastic resin fiber nonwoven fabric b having a basis weight of 25 g/ m2 in Examples 1 to 6 and Comparative Examples 1 to 3. In Example 7, a thermoplastic resin fiber nonwoven fabric b having a basis weight of 35 g/ m2 was obtained.
<ヒートシールシートの製造>
 実施例1~5、比較例1~3では、上記で得られた熱可塑性樹脂繊維不織布bとポリプロピレンスパンボンド不織布a(繊維径約15μm、坪量30g/m)、熱可塑性樹脂繊維不織布bの3層をこの順序で重ねて表面をフッ素コーティングした加熱ロールを有する熱ラミネーターで上下ロールのロール温度を150℃として熱ラミネート処理を行い、坪量80g/mの実施例1~5および比較例1~3のヒートシールシートを得た。
 実施例6では、熱可塑性樹脂繊維不織布aとして、ポリエステルスパンボンド不織布(繊維径約12μm、坪量25g/m)を使用したこと以外は実施例1と同様にして、坪量75g/mのヒートシールシートを得た。
 また、実施例7では、熱可塑性樹脂繊維不織布aとして、ポリエステル湿式不織布(繊維径約14μm、繊維長約5mm、坪量20g/m)を使用したこと以外は実施例1と同様にして、坪量90g/mのヒートシールシートを得た。
<Production of heat seal sheet>
In Examples 1 to 5 and Comparative Examples 1 to 3, three layers of the thermoplastic resin fiber nonwoven fabric b obtained above, polypropylene spunbond nonwoven fabric a (fiber diameter about 15 μm, basis weight 30 g/ m2 ), and thermoplastic resin fiber nonwoven fabric b were stacked in this order and thermally laminated using a thermal laminator having heating rolls with fluorine-coated surfaces at a roll temperature of 150°C for the upper and lower rolls to obtain heat seal sheets of Examples 1 to 5 and Comparative Examples 1 to 3 having a basis weight of 80 g/ m2 .
In Example 6, a heat seal sheet having a basis weight of 75 g/ m2 was obtained in the same manner as in Example 1, except that a polyester spunbond nonwoven fabric (fiber diameter: approximately 12 μm, basis weight: 25 g/m2) was used as the thermoplastic resin fiber nonwoven fabric a .
In Example 7, a heat seal sheet having a basis weight of 90 g/ m2 was obtained in the same manner as in Example 1, except that a polyester wet-laid nonwoven fabric (fiber diameter: approximately 14 μm, fiber length: approximately 5 mm, basis weight: 20 g/ m2 ) was used as the thermoplastic resin fiber nonwoven fabric a.
[実施例8]
<熱可塑性樹脂繊維不織布cの製造>
 ポリエチレン多分岐繊維(商品名:SWP(登録商標)E400、融点135℃、平均繊維長0.9mm、繊維径約1~30μm、三井化学株式会社製)を60質量部、芯鞘構造ポリエステル繊維(商品名:テピルス(登録商標)TJ04CN、繊度1.1dtex、繊維長5mm、繊維径約10μm、鞘部の融点110℃、芯部(ポリエチレンテレフタレート)の融点260℃、鞘部/芯部の質量比=55/45、帝人フロンティア株式会社製)を10質量部、広葉樹晒クラフトパルプ(LBKP)(JIS P 8121-2:2012に記載されるカナダ標準ろ水度(フリーネス):556mL)を30質量部、変性ポリエステル樹脂分散剤(商品名:SR-1800R、高松油脂株式会社製)を繊維の合計100質量部に対して0.5質量部、混合撹拌して原料スラリーを得た。
 湿式傾斜抄紙機を用いて、前記原料スラリーを抄造し、表面温度105℃のヤンキードライヤーで乾燥して、坪量30g/mの熱可塑性樹脂繊維不織布cを得た。
[Example 8]
<Production of Thermoplastic Resin Fiber Nonwoven Fabric c>
The mixture was mixed with 60 parts by mass of polyethylene hyperbranched fiber (product name: SWP (registered trademark) E400, melting point 135°C, average fiber length 0.9 mm, fiber diameter approximately 1 to 30 μm, manufactured by Mitsui Chemicals, Inc.), 10 parts by mass of core-sheath structure polyester fiber (product name: Tepyrus (registered trademark) TJ04CN, fineness 1.1 dtex, fiber length 5 mm, fiber diameter approximately 10 μm, sheath melting point 110°C, core (polyethylene terephthalate) melting point 260°C, sheath/core mass ratio = 55/45, manufactured by Teijin Frontier Co., Ltd.), and 10 parts by mass of hardwood bleached kraft pulp (LBKP) (JIS P A raw material slurry was obtained by mixing and stirring 30 parts by mass of a fiber mixture containing 30 parts by mass of a modified polyester resin dispersant (product name: SR-1800R, manufactured by Takamatsu Oil Co., Ltd.) and 0.5 parts by mass of a modified polyester resin dispersant per 100 parts by mass of the fibers.
The raw material slurry was made into a paper sheet using a wet inclined papermaking machine, and dried with a Yankee dryer at a surface temperature of 105° C. to obtain a thermoplastic resin fiber nonwoven fabric c having a basis weight of 30 g/m 2 .
<ヒートシールシートの製造>
 実施例1と同様にして得られた熱可塑性樹脂繊維不織布b、熱可塑性樹脂繊維不織布a、上記で得られた熱可塑性樹脂繊維不織布cの3層をこの順序で重ねて表面をフッ素コーティングした加熱ロールを有する熱ラミネーターで上下ロールのロール温度を150℃として熱ラミネート処理を行い、坪量75g/mの実施例8のヒートシールシートを得た。
 熱可塑性樹脂繊維不織布aとして、ポリエステル湿式不織布(繊維径約14μm、繊維長約5mm、坪量20g/m)を使用した。
<Production of heat seal sheet>
Three layers of the thermoplastic resin fiber nonwoven fabric b obtained in the same manner as in Example 1, the thermoplastic resin fiber nonwoven fabric a, and the thermoplastic resin fiber nonwoven fabric c obtained above were stacked in this order and subjected to a thermal lamination treatment at a roll temperature of 150°C for the upper and lower rolls using a thermal laminator having heating rolls with fluorine-coated surfaces, to obtain a heat seal sheet of Example 8 having a basis weight of 75 g/ m2 .
As the thermoplastic resin fiber nonwoven fabric a, a polyester wet nonwoven fabric (fiber diameter: about 14 μm, fiber length: about 5 mm, basis weight: 20 g/m 2 ) was used.
[比較例4]
<紙基材の作製>
 広葉樹晒クラフトパルプ(LBKP)をDDR(ダブルディスクリファイナー)にてJIS P 8121-2:2012に記載されるカナダ標準ろ水度(フリーネス)が390mLになるように叩解し、パルプスラリーを得た。前記パルプスラリーに内添薬品として、パルプ質量100質量部に対し、絶乾で硫酸バンド0.5質量部、あらかじめカチオン化澱粉に分散させたアルケニル無水コハク酸サイズ剤分散液を、アルケニル無水コハク酸サイズ剤の固形分として0.05質量部、両性ポリアクリルアミド系樹脂紙力増強剤(PAM)(商品名:ポリストロンOFT-3、荒川化学工業株式会社製、重量平均分子量300万)0.7質量部、エピクロロ樹脂湿潤紙力増強剤(商品名:WS4024、星光PMC株式会社製)0.4質量部、を添加して抄紙原料を得た。前記抄紙原料を長網抄紙機で抄紙して通気性基材を得た。得られた通気性基材の坪量は60g/mであった。
 なお、前記「あらかじめカチオン化澱粉に分散させたアルケニル無水コハク酸サイズ剤分散液」は、以下のように調製したものである。カチオン化澱粉(ピラー3YK、ピラースターチ株式会社製)の2質量%水溶液を調製し、これに、固形分濃度が、カチオン化澱粉(ピラー3YK,ピラースターチ株式会社製)/アルケニル無水コハク酸サイズ剤(ファイブラン81K、荒川化学工業株式会社製)が4/1となるように、アルケニル無水コハク酸サイズ剤を添加した。上述のようにして調製された水溶液を、アルケニル無水コハク酸の固形分として、0.05質量部添加した。
[Comparative Example 4]
<Preparation of paper substrate>
Hardwood bleached kraft pulp (LBKP) was beaten with a DDR (double disc refiner) to a Canadian standard freeness (freeness) of 390 mL as described in JIS P 8121-2:2012 to obtain a pulp slurry. The pulp slurry was added with 0.5 parts by mass of aluminum sulfate in an absolute dry state, 0.05 parts by mass of an alkenyl succinic anhydride sizing agent dispersion previously dispersed in cationic starch as the solid content of the alkenyl succinic anhydride sizing agent, 0.7 parts by mass of an amphoteric polyacrylamide resin paper strength enhancer (PAM) (trade name: Polystron OFT-3, manufactured by Arakawa Chemical Industries Co., Ltd., weight average molecular weight 3 million), and 0.4 parts by mass of an epichloro resin wet paper strength enhancer (trade name: WS4024, manufactured by Seiko PMC Co., Ltd.) as an internal additive chemical relative to 100 parts by mass of pulp to obtain a papermaking raw material. The papermaking raw material was made into paper on a Fourdrinier papermaking machine to obtain a breathable base material. The resulting breathable substrate had a basis weight of 60 g/ m2 .
The "alkenyl succinic anhydride sizing agent dispersion previously dispersed in cationic starch" was prepared as follows: A 2% by mass aqueous solution of cationic starch (Pillar 3YK, manufactured by Pillar Starch Co., Ltd.) was prepared, and an alkenyl succinic anhydride sizing agent was added thereto so that the solid content concentration was cationic starch (Pillar 3YK, manufactured by Pillar Starch Co., Ltd.)/alkenyl succinic anhydride sizing agent (Fibran 81K, manufactured by Arakawa Chemical Industries Co., Ltd.) 4/1. The aqueous solution prepared as described above was added in an amount of 0.05 parts by mass as the solid content of alkenyl succinic anhydride.
<熱接着層用塗料の調製>
 EVAディスパーション(ケミパールV200、三井化学株式会社製、EVA粒子の平均粒子径7μm、最低造膜温度85℃、固形分濃度40%)の138部、PEディスパーション(ケミパールW400、三井化学株式会社製、PE粒子の平均粒子径4μm、固形分濃度40%、PEの密度920kg/m、軟化点110℃)の90部、強化ロジン系エマルション(サイズパインN775、荒川化学工業株式会社製、軟化点100℃未満、固形分濃度50%)の18部、希釈水154部を混合撹拌して固形分濃度25%の熱接着層用塗料を得た。
<Preparation of paint for thermal adhesive layer>
A coating material for a thermal adhesive layer with a solid content of 25% was obtained by mixing and stirring 138 parts of an EVA dispersion (Chemipearl V200, manufactured by Mitsui Chemicals, Inc., EVA particle average particle size 7 μm, minimum film formation temperature 85° C., solid content 40%), 90 parts of a PE dispersion (Chemipearl W400, manufactured by Mitsui Chemicals, Inc., PE particle average particle size 4 μm, solid content 40%, PE density 920 kg/ m3 , softening point 110° C.), 18 parts of a reinforced rosin emulsion (Sizepine N775, manufactured by Arakawa Chemical Industries, Ltd., softening point less than 100° C., solid content 50%), and 154 parts of dilution water.
<ヒートシールシートの製造>
 上記熱接着層用塗料を上記で得られた通気性基材の一面にバーコーターを用いて塗布し、送風乾燥機にて100℃、1分間の条件で乾燥して熱接着層を形成した。ここでは、乾燥後の熱接着層用塗料の塗布量が2.0g/mとなるように塗布した。これにより、比較例4のヒートシールシートを得た。
<Production of heat seal sheet>
The above-mentioned coating material for thermal adhesive layer was applied to one side of the above-obtained breathable substrate using a bar coater, and then dried in a blower dryer at 100°C for 1 minute to form a thermal adhesive layer. Here, the coating material for thermal adhesive layer was applied so that the coating amount after drying was 2.0 g/ m2 . This resulted in a heat seal sheet of Comparative Example 4.
[測定方法]
 実施例および比較例で得られたヒートシールシートおよび不織布について、以下の評価を行った。
<坪量>
 坪量は、JIS P 8124:2011に準じて測定した。
[Measuring method]
The heat sealable sheets and nonwoven fabrics obtained in the Examples and Comparative Examples were evaluated as follows.
<Basance weight>
The basis weight was measured in accordance with JIS P 8124:2011.
<王研式透気度の測定>
 ヒートシールシートの王研式透気度は、JIS P 8117:2009に準じて測定した。
 透気度は700秒以下の場合、エチレンオキシドガス滅菌処理が適用できるため好ましい。透気度が700秒を超える場合は、エチレンオキシドガスの浸入速度が低下し滅菌効率が低下するため好ましくない。
<Oken air permeability measurement>
The Oken air permeability of the heat seal sheet was measured in accordance with JIS P 8117:2009.
When the air permeability is 700 seconds or less, it is preferable because ethylene oxide gas sterilization treatment can be applied, whereas when the air permeability is more than 700 seconds, it is not preferable because the penetration speed of ethylene oxide gas decreases and the sterilization efficiency decreases.
<引裂強度の測定>
 ヒートシールシートの引裂強度は、JIS P 8116:2000に準じて、それぞれシートの縦方向と横方向を測定し、それらの値の相乗平均値を算出した。
 引裂強度は700mN以上の場合、比較的大型の医療機器や質量の大きい医療器具の滅菌包材に使用できるため好ましい。引裂強度が700mN未満の場合は、比較的大型の医療機器や質量の大きい医療器具を内包すると輸送中や誤って落下させた時などは滅菌医療包材が破れて、包装体内部の滅菌状態が保てなくなるおそれがある。
<Measurement of tear strength>
The tear strength of the heat seal sheet was measured in the longitudinal and transverse directions of the sheet in accordance with JIS P 8116:2000, and the geometric mean value of these values was calculated.
A tear strength of 700 mN or more is preferable because it can be used as a sterilized packaging material for relatively large medical devices or heavy medical instruments. If the tear strength is less than 700 mN, the sterilized medical packaging material may tear during transportation or if it is accidentally dropped when a relatively large medical device or heavy medical instrument is contained inside, and the sterilized state inside the package may not be maintained.
<ヒートシール剥離強度(HS剥離強度)の測定>
 実施例および比較例で得られた各ヒートシールシートと、被着体として、ポリエチレンテレフタレート樹脂(PET)とPEとの積層フィルム(50μm厚のポリエチレンフィルムと、12μmのPETフィルムをドライラミネートした積層フィルム)とを、ヒートシールシートの熱接着層側の面(熱接着面)が積層フィルムのPE側の面と接するように重ね、熱プレス試験機を用いて150℃、0.2MPa、1.0秒間の熱圧着条件で熱圧着して熱圧着物を作製した。
 上記の方法で作製した熱圧着物を幅15mmに断裁して、剥離強度測定用サンプルを作製した。得られた剥離強度測定用サンプルの剥離強度(N/15mm)を、JIS P 8113:2006に準じ、引張試験機(型式:テンシロンRTC-1250A、株式会社オリエンテック製)を用いて、サンプルの複合フィルム、ヒートシールシートそれぞれの端部をチャッキングし、180度ピール法で剥離速度300mm/分で剥離することにより測定した。
<Measurement of heat seal peel strength (HS peel strength)>
Each heat seal sheet obtained in the Examples and Comparative Examples was overlapped with a laminate film of polyethylene terephthalate resin (PET) and PE (a laminate film obtained by dry-laminating a 50 μm-thick polyethylene film and a 12 μm-thick PET film) as an adherend, so that the surface of the heat seal sheet on the thermal adhesive layer side (thermal adhesive surface) was in contact with the PE side surface of the laminate film, and the heat seal sheet was thermally compressed using a heat press tester under thermal compression conditions of 150° C., 0.2 MPa, and 1.0 second to produce a thermal compression bonded product.
The thermocompression bonded product prepared by the above method was cut to a width of 15 mm to prepare a sample for measuring peel strength. The peel strength (N/15 mm) of the obtained sample for measuring peel strength was measured in accordance with JIS P 8113:2006 using a tensile tester (model: Tensilon RTC-1250A, manufactured by Orientec Co., Ltd.) by chucking the ends of the composite film and the heat seal sheet of the sample and peeling them at a peel speed of 300 mm/min by a 180° peel method.
<剥離後毛羽の評価>
 25mm×100mmにカットしたヒートシールシートと、(PET)とPEとの積層フィルム(50μm厚のポリエチレンフィルムと、12μmのPETフィルムをドライラミネートした積層フィルム)を、積層フィルムのPE側がヒートシールシートと接し、フィルムが上になるよう重ね、熱プレス試験機を用いて150℃、0.2MPa、1.0秒間の熱圧着条件で熱圧着して熱圧着物を作製した。上記の方法で作製した熱圧着物のフィルムを手で剥がし、フィルム剥離後のヒートシールシート表面の状態を目視で確認し、以下の基準で評価した。剥離後の毛羽立ちが少ないと、リントの発生が抑制されることを意味する。
 5:毛羽が全くない
 4:毛羽が数本ある
 3:毛羽が少ない
 2:毛羽が多い
 1:毛羽がかなり多い、もしくは基材破壊が発生する
<Evaluation of fluff after peeling>
A heat seal sheet cut to 25 mm x 100 mm and a laminated film of (PET) and PE (a laminated film obtained by dry laminating a 50 μm-thick polyethylene film and a 12 μm-thick PET film) were stacked so that the PE side of the laminated film was in contact with the heat seal sheet and the film was on top, and a heat press tester was used to heat-press the film under heat-pressing conditions of 150 ° C., 0.2 MPa, and 1.0 second to produce a heat-pressed product. The film of the heat-pressed product produced by the above method was peeled off by hand, and the state of the heat seal sheet surface after the film was peeled off was visually confirmed and evaluated according to the following criteria. Less fluffing after peeling means that lint generation is suppressed.
5: No fluff at all 4: A few fluffs 3: Little fluff 2: Much fluff 1: Considerable fluff or substrate destruction occurs
<ヒートシールシートの層間接着性>
 熱圧着により積層した後のヒートシールシートの状態を以下の基準で評価した。
 5:強固に付着しており剥がれない
 4:強固に付着しているが一部剥離可能
 3:シート全体が接着しているが剥がれやすい
 2:シートの一部が接着せず浮いているところがある
 1:ほとんど付いていない
<Interlayer adhesion of heat seal sheet>
The state of the heat seal sheet after lamination by thermocompression was evaluated according to the following criteria.
5: Firmly attached and will not peel off 4: Firmly attached but parts can be peeled off 3: The entire sheet is adhered but easily peeled off 2: Parts of the sheet are not adhered and are floating 1: Almost not attached
 実施例1~8、比較例1~4それぞれのヒートシールシートについて、王研式透気度、引裂強度、剥離試験、剥離後毛羽、および熱可塑性樹脂繊維不織布層Aと熱可塑性樹脂繊維不織布層Bとの接着性の評価を行った。結果を表1に示す。 The heat seal sheets of Examples 1 to 8 and Comparative Examples 1 to 4 were evaluated for their Oken air permeability, tear strength, peel test, post-peeling fuzz, and adhesion between thermoplastic resin fiber nonwoven fabric layer A and thermoplastic resin fiber nonwoven fabric layer B. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~8のヒートシールシートは、透気度(秒)が低く抑えられ、エチレンオキシドガス滅菌への適用が可能と考えられる。また、引裂強度も十分強く、大型医療器具や比較的質量のある医療器具の滅菌にも使用できると考える。さらに、ヒートシール強度も十分得られていた。さらに、熱可塑性樹脂繊維不織布層Aと熱可塑性樹脂繊維不織布層Bが良好に接着しており、層間の接着性にも優れ、リントの発生も抑制されていた。
 一方、比較例1および2のように、熱可塑性樹脂繊維不織布層B中のポリエチレン樹脂の含有量が本発明の規定を超える場合には、透気度が700秒を超え、エチレンオキシドによる滅菌に適用できないものであった。また、比較例3のように、熱可塑性樹脂繊維不織布層B中の低融点ポリエステル樹脂およびポリエステル繊維の含有量が本発明の規定を超える場合には、十分なヒートシール剥離強度が得られず、また、層間の接着性にも劣るものであった。さらに、比較例4のように、紙基材に熱接着層を設けた場合には、十分な引裂強度が得られなかった。
The heat seal sheets of Examples 1 to 8 have low air permeability (seconds), and are therefore considered to be applicable to ethylene oxide gas sterilization. In addition, the tear strength is sufficiently high, and it is considered that they can be used for sterilization of large medical instruments or relatively heavy medical instruments. Furthermore, sufficient heat seal strength was obtained. Furthermore, the thermoplastic resin fiber nonwoven fabric layer A and the thermoplastic resin fiber nonwoven fabric layer B were well bonded, the interlayer adhesion was excellent, and the generation of lint was suppressed.
On the other hand, when the content of polyethylene resin in the thermoplastic resin fiber nonwoven fabric layer B exceeded the limit of the present invention as in Comparative Examples 1 and 2, the air permeability exceeded 700 seconds, making it impossible to apply sterilization with ethylene oxide. Also, when the content of low melting point polyester resin and polyester fiber in the thermoplastic resin fiber nonwoven fabric layer B exceeded the limit of the present invention as in Comparative Example 3, sufficient heat seal peel strength was not obtained, and the adhesion between layers was also poor. Furthermore, when a thermal adhesive layer was provided on the paper substrate as in Comparative Example 4, sufficient tear strength was not obtained.
 本発明のヒートシールシートは、ヒートシール面全体に十分な熱接着性と通気性を有し、かつ強度が高く、またリント発生量を小さく抑え、滅菌医療包装材として優れる。 The heat seal sheet of the present invention has sufficient thermal adhesion and breathability over the entire heat seal surface, is strong, and keeps lint generation to a minimum, making it an excellent sterilized medical packaging material.
11…滅菌包装体、21…ヒートシールシート、22…熱可塑性樹脂繊維不織布層A、23…熱可塑性樹脂繊維不織布層B、31…被着体、41…熱可塑性樹脂繊維不織布層C 11...sterilized package, 21...heat seal sheet, 22...thermoplastic resin fiber nonwoven fabric layer A, 23...thermoplastic resin fiber nonwoven fabric layer B, 31...adherend, 41...thermoplastic resin fiber nonwoven fabric layer C

Claims (12)

  1.  1層または2層以上の熱可塑性樹脂繊維不織布層Aと、1層または2層以上の熱可塑性樹脂繊維不織布層Bとを有するヒートシールシートであって、
     前記熱可塑性樹脂繊維不織布層Bが、低融点ポリエステル樹脂、ポリエステル繊維およびポリエチレン樹脂を含有し、低融点ポリエステル樹脂、ポリエステル繊維およびポリエチレン樹脂の質量比(低融点ポリエステル樹脂:ポリエステル繊維:ポリエチレン樹脂)が、13.75:11.25:75~41.25:33.75:25であり、
     前記ヒートシールシートのJIS P 8117:2009に準じて測定される王研式透気度が700秒以下であり、かつ、
     前記ヒートシールシートのJIS P 8116:2000に準じて測定される引裂強度が700mN以上である
     ヒートシールシート。
    A heat seal sheet having one or more thermoplastic resin fiber nonwoven fabric layers A and one or more thermoplastic resin fiber nonwoven fabric layers B,
    the thermoplastic resin fiber nonwoven fabric layer B contains a low-melting point polyester resin, polyester fibers, and a polyethylene resin, and a mass ratio of the low-melting point polyester resin, polyester fibers, and polyethylene resin (low-melting point polyester resin:polyester fibers:polyethylene resin) is 13.75:11.25:75 to 41.25:33.75:25;
    The heat seal sheet has an Oken air permeability of 700 seconds or less as measured in accordance with JIS P 8117:2009, and
    The heat seal sheet has a tear strength of 700 mN or more as measured in accordance with JIS P 8116:2000.
  2.  前記熱可塑性樹脂繊維不織布層Aが、スパンボンド不織布、サーマルボンド不織布、ケミカルボンド不織布、ニードルパンチ不織布、スパンレース不織布、メルトブローン不織布、および湿式不織布よりなる群から選択される少なくとも1つに由来する不織布層である、請求項1に記載のヒートシールシート。 The heat seal sheet according to claim 1, wherein the thermoplastic resin fiber nonwoven fabric layer A is a nonwoven fabric layer derived from at least one selected from the group consisting of spunbond nonwoven fabric, thermal bond nonwoven fabric, chemical bond nonwoven fabric, needle punch nonwoven fabric, spunlace nonwoven fabric, meltblown nonwoven fabric, and wet-laid nonwoven fabric.
  3.  前記熱可塑性樹脂繊維不織布層Aが、ポリプロピレン樹脂繊維、ポリエステル繊維、およびポリアミド繊維よりなる群から選択される少なくとも1種を含む、請求項1に記載のヒートシールシート。 The heat seal sheet according to claim 1, wherein the thermoplastic resin fiber nonwoven fabric layer A contains at least one fiber selected from the group consisting of polypropylene resin fibers, polyester fibers, and polyamide fibers.
  4.  前記熱可塑性樹脂繊維不織布層Aに繊維形状が残存している、請求項1に記載のヒートシールシート。 The heat seal sheet according to claim 1, in which the thermoplastic resin fiber nonwoven fabric layer A retains a fibrous shape.
  5.  前記ヒートシールシートと、紙、フィルムまたは滅菌用成形容器等の滅菌包装材料とを、JIS P 8113:2006に準じて剥離速度300mm/分で180°剥離する際の剥離強度が、1.0N/15mm以上15N/15mm以下である、請求項1に記載のヒートシールシート。 The heat seal sheet according to claim 1, wherein the peel strength when the heat seal sheet is peeled at 180° from a sterilization packaging material such as paper, film, or a sterilization molded container at a peel speed of 300 mm/min according to JIS P 8113:2006 is 1.0 N/15 mm or more and 15 N/15 mm or less.
  6.  坪量が30g/m以上150g/m以下である、請求項1に記載のヒートシールシート。 2. The heat seal sheet according to claim 1, having a basis weight of 30 g/m2 or more and 150 g/ m2 or less .
  7.  前記熱可塑性樹脂繊維不織布層Bが表層となるように、前記熱可塑性樹脂繊維不織布層Aと前記熱可塑性樹脂繊維不織布層Bとが積層されてなる、請求項1に記載のヒートシールシート。 The heat seal sheet according to claim 1, in which the thermoplastic resin fiber nonwoven fabric layer A and the thermoplastic resin fiber nonwoven fabric layer B are laminated together so that the thermoplastic resin fiber nonwoven fabric layer B is the surface layer.
  8.  請求項1~7のいずれか1項のヒートシールシートと、滅菌包装材料とが熱圧着された滅菌包装体。 A sterilized package in which the heat seal sheet of any one of claims 1 to 7 and a sterilized packaging material are heat-pressed together.
  9.  請求項1~7のいずれか1項に記載のヒートシールシートの製造方法であって、下記工程1~工程3をこの順で有する、ヒートシールシートの製造方法。
     工程1:熱可塑性樹脂繊維不織布aおよび熱可塑性樹脂繊維不織布bを準備する工程
     工程2:1層または2層以上の熱可塑性樹脂繊維不織布aと、1層または2層以上の熱可塑性樹脂繊維不織布bとを積層して積層体を得る工程
     工程3:工程2で得られた積層体を熱融着する工程
    A method for producing the heat seal sheet according to any one of claims 1 to 7, comprising the following steps 1 to 3 in this order:
    Step 1: preparing a thermoplastic resin fiber nonwoven fabric a and a thermoplastic resin fiber nonwoven fabric b; Step 2: laminating one or more layers of a thermoplastic resin fiber nonwoven fabric a and one or more layers of a thermoplastic resin fiber nonwoven fabric b to obtain a laminate; Step 3: heat-sealing the laminate obtained in step 2
  10.  前記熱可塑性樹脂繊維不織布bが、ポリエチレン多分岐繊維を25~75質量%含有する、請求項9に記載のヒートシールシートの製造方法。 The method for producing a heat seal sheet according to claim 9, wherein the thermoplastic resin fiber nonwoven fabric b contains 25 to 75 mass % of polyethylene hyperbranched fibers.
  11.  前記熱可塑性樹脂繊維不織布bが、芯鞘構造ポリエステル繊維を含有する、請求項9に記載のヒートシールシートの製造方法。 The method for producing a heat seal sheet according to claim 9, wherein the thermoplastic resin fiber nonwoven fabric b contains a core-sheath polyester fiber.
  12.  前記熱可塑性樹脂繊維不織布bが、湿式抄造法により得られた不織布である、請求項9に記載のヒートシールシートの製造方法。 The method for producing a heat seal sheet according to claim 9, wherein the thermoplastic resin fiber nonwoven fabric b is a nonwoven fabric obtained by a wet papermaking method.
PCT/JP2023/035722 2022-10-05 2023-09-29 Heat seal sheet and sterilized package WO2024075655A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022161034 2022-10-05
JP2022-161034 2022-10-05
JP2023-024024 2023-02-20
JP2023024024 2023-02-20

Publications (1)

Publication Number Publication Date
WO2024075655A1 true WO2024075655A1 (en) 2024-04-11

Family

ID=90608400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035722 WO2024075655A1 (en) 2022-10-05 2023-09-29 Heat seal sheet and sterilized package

Country Status (1)

Country Link
WO (1) WO2024075655A1 (en)

Similar Documents

Publication Publication Date Title
US8067087B2 (en) Heat seal adhesive paper product, method for manufacturing, and laminate product
JP2008125760A (en) Sterilizing bag
US6349826B1 (en) Medical packaging fabric with improved bacteria barrier
JP6673126B2 (en) Heat seal sheet and package
JP2015534897A5 (en)
JP7143859B2 (en) HEAT SEAL SHEET, MANUFACTURING METHOD THEREOF AND STERILIZED PACKAGE
EP2917408B1 (en) Online treated sealable and peelable medical paper for medical sterilization packaging
TW201042109A (en) Hydraulically-formed nonwoven sheet with microfibers
CA2476258A1 (en) Novel laminates for producing high strength porous sterilizable packaging
EP1325191B1 (en) Saturating composition and its use
WO2013153267A1 (en) Sterilizable and printable nonwoven packaging materials
JP6747911B2 (en) Press-through packaging
JP6477212B2 (en) Sterilized paper and packaging, and method for producing sterile paper
WO2024075655A1 (en) Heat seal sheet and sterilized package
JP2017020130A (en) Sterilized paper and sterilized package
WO2016175299A1 (en) Sterilization paper and sterilization package
US10351305B2 (en) Package seal having a fibrous breathable material
JP2017040015A (en) Sterilization paper and sterilization package
JP2017043866A (en) Sterilization paper, manufacturing method of sterilization paper, packaging material for sterilization, packaging bag for sterilization, and lid material for sterilization
JP4790762B2 (en) Food packaging material using sheets
JP7259266B2 (en) Packaging bag for microwave heating
JP2004084131A (en) Paper for sterilization bag and method for producing the same
JP7076197B2 (en) Heat-sealing film fusion method, packaging method and packaging
AU2015341694A1 (en) Sterilizable multilayer material
JP2023081594A (en) Soft packaging material paper and soft packaging material