JP6747722B2 - Method of manufacturing structure and structure - Google Patents
Method of manufacturing structure and structure Download PDFInfo
- Publication number
- JP6747722B2 JP6747722B2 JP2019016729A JP2019016729A JP6747722B2 JP 6747722 B2 JP6747722 B2 JP 6747722B2 JP 2019016729 A JP2019016729 A JP 2019016729A JP 2019016729 A JP2019016729 A JP 2019016729A JP 6747722 B2 JP6747722 B2 JP 6747722B2
- Authority
- JP
- Japan
- Prior art keywords
- laminate
- laminated body
- thermosetting resin
- manufacturing
- tape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Moulding By Coating Moulds (AREA)
Description
本発明は、構造体の製造方法及び構造体に関する。 The present invention relates to a method of manufacturing a structure and a structure.
部品軽量化の観点から、金属製の構造体を、例えばカーボンファイバー等の強化繊維を樹脂で固めたFRP(Fiber Reinforced Plastics)製の構造体へと置換する試みがある。ここで、FRP製の構造体としては、例えば自転車のフレームなどに既に用いられている中空円筒部材が知られている。 From the viewpoint of reducing the weight of parts, there is an attempt to replace a metal structure with a structure made of FRP (Fiber Reinforced Plastics) in which reinforcing fibers such as carbon fibers are hardened with a resin. Here, as a structure made of FRP, for example, a hollow cylindrical member already used in a frame of a bicycle is known.
しかるに、自転車のフレームは、元々金属製の丸パイプをつなぎ合わせたものであるから、これをFRP製の中空円筒部材に置換することは、接合部の問題などを除けば比較的容易である。一方、例えば車両に使用される構造体は、その設置スペースが限られるため、中空円筒部材のままでは使用しにくいという問題がある。そこで、構造体として広範囲の使用を可能にすべく、FRP製の構造体を、板状或いは非円形中空断面形状(例えば角筒状)に形成したいという要請がある。 However, since the frame of the bicycle is originally made by connecting metal round pipes, it is relatively easy to replace it with the hollow cylindrical member made of FRP except for the problem of the joint. On the other hand, a structure used in, for example, a vehicle has a problem that it is difficult to use the hollow cylindrical member as it is because the installation space is limited. Therefore, in order to enable a wide range of use as a structure, there is a demand for forming a structure made of FRP into a plate shape or a non-circular hollow cross-sectional shape (for example, a rectangular tube shape).
板状のFRP製の構造体を形成する一案としては、プリプレグを平面上で複数枚積層して互いに接着し、完全硬化させる手法がある。プリプレグとは、強化繊維にエポキシなどの熱硬化性樹脂を均等に含浸させ、加熱または乾燥して半硬化状態にしたシート状の強化プラスチック成形品である。
しかしながら、このようにして形成されたFRP製の構造体は、硬化過程でひずみが生じやすく、精度良い平板形状を得られないという問題がある。
As a plan for forming a plate-shaped FRP structure, there is a method in which a plurality of prepregs are laminated on a plane, adhered to each other, and completely cured. A prepreg is a sheet-shaped reinforced plastic molded product obtained by uniformly impregnating a reinforcing fiber with a thermosetting resin such as epoxy, and heating or drying the prepreg into a semi-cured state.
However, the FRP structure thus formed has a problem that strain is likely to be generated during the curing process and an accurate flat plate shape cannot be obtained.
また、このように積層して形成された板状のFRP製の構造体の両端に、ねじりトルクが繰り返し付与された場合、上面側のシートと下面側のシートとの間に相対移動が生じる。このため、構造体の中央幅方向の両縁でシートの接着が剥がれて繊維がはがれやすく、強度低下を招くという問題がある。 Further, when the torsional torque is repeatedly applied to both ends of the plate-shaped FRP structure formed by stacking in this way, relative movement occurs between the upper surface side sheet and the lower surface side sheet. For this reason, there is a problem that the adhesion of the sheet is peeled off at both edges of the structure in the center width direction, the fibers are easily peeled off, and the strength is lowered.
一方、非円形中空断面形状のFRP製の構造体を形成する一案としては、積層したプリプレグなどを外周に配置した可撓性の中空中子を成形型内に配置し、加圧により中空中子を膨張させつつ加熱することによって、プリプレグの外表面を型に倣わせて成形する手法がある。しかしながら、このような製法で成形を行うと、成形時の加圧・加熱工程において生じるプリプレグの肉厚変化時に、型に倣った形状変化に追従できない強化繊維を起因としたシワ、ボイド、樹脂リッチが発生する虞れがある。これにより、FRP製の構造体における製品品質や製品強度の低下を招くこととなる。 On the other hand, as an idea for forming an FRP structure having a non-circular hollow cross-sectional shape, a flexible hollow core having laminated prepregs and the like arranged on the outer periphery thereof is arranged in a molding die, and the hollow core is pressurized. There is a method of forming the outer surface of the prepreg by following the mold by heating the child while expanding it. However, when molding is performed by such a manufacturing method, wrinkles, voids, and resin richness caused by reinforcing fibers that cannot follow the shape change following the mold when the thickness of the prepreg changes in the pressure/heating process during molding May occur. As a result, the product quality and product strength of the FRP structure will be reduced.
これに対し、非円形中空断面形状を持つFRP製の構造体を形成する技術として、特許文献1に示すものが開示されている。特許文献1に開示された技術によれば、外周に強化繊維基材を配置した中空中子を成形型のキャビティ内に配設し、型締めした後、中子内を加圧しながら成形型内に樹脂を注入して、FRP中空構造体を成形することができる。 On the other hand, as a technique for forming a structure made of FRP having a non-circular hollow cross-sectional shape, one disclosed in Patent Document 1 is disclosed. According to the technique disclosed in Patent Document 1, a hollow core having a reinforcing fiber base material arranged on the outer periphery thereof is disposed in a cavity of a molding die, and after the die is clamped, the inside of the molding die is pressurized while pressurizing the inside of the core. The FRP hollow structure can be molded by injecting a resin into.
特許文献1の技術によれば、成形型内に配置した中空中子を加圧しながら成形型内に樹脂を注入することによって、FRP中空構造体にシワやボイドなどの不具合が生じないようにできるとされている。しかしながら、かかる技術では成形型内に樹脂を注入するための樹脂流路などの大掛かり設備が必要になり、コストがかかるという問題がある。 According to the technique of Patent Document 1, it is possible to prevent defects such as wrinkles and voids in the FRP hollow structure by injecting the resin into the mold while pressurizing the hollow core arranged in the mold. It is said that. However, such a technique requires a large-scale facility such as a resin flow path for injecting the resin into the molding die, which causes a problem of cost.
そこで本発明は、低コストであるにもかかわらず、高い形状精度及び強度を有する構造体の製造方法及び構造体を提供することを目的とする。 Therefore, it is an object of the present invention to provide a method for manufacturing a structure and a structure having high shape accuracy and strength despite low cost.
上記目的を達成するために、本発明による構造体の製造方法は、
強化繊維と、未硬化の熱硬化性樹脂とを含むシート及び/又はテープを複数枚、マンドレルの周囲に巻き付けて筒状の積層体を形成する第1工程と、
前記積層体の全周を、テープまたはフィルムにより圧迫する第2工程と、
前記熱硬化性樹脂が完全硬化する前の状態まで、前記積層体を加熱する第3工程と、
前記積層体より前記マンドレルを抜き出す第4工程と、
前記テープまたはフィルムを巻き付けた前記積層体を、成形型内に配置して加圧し、前記熱硬化性樹脂が完全硬化するまで前記積層体を加熱する第5工程と、を有する。
In order to achieve the above object, the method for producing a structure according to the present invention,
A first step of forming a tubular laminate by winding a plurality of sheets and/or tapes containing reinforcing fibers and an uncured thermosetting resin around a mandrel;
A second step of pressing the entire circumference of the laminate with a tape or a film,
A third step of heating the laminate to a state before the thermosetting resin is completely cured,
A fourth step of extracting the mandrel from the laminate,
A fifth step of placing the laminated body around which the tape or film is wound in a molding die, pressurizing the laminated body, and heating the laminated body until the thermosetting resin is completely cured.
本発明による構造体は、強化繊維に含浸させた熱硬化性樹脂から形成され、法線方向が互いに異なる第1の面と第2の面とを持つ構造体であって、前記第1の面と前記第2の面との交差部は、曲率が一定もしくは徐々に変化する曲面を持ち、前記交差部を通過する前記強化繊維が折れることなく連続している。 The structure according to the present invention is a structure formed of a thermosetting resin impregnated with a reinforcing fiber and having a first surface and a second surface having different normal directions, and the first surface The intersection of the second surface and the second surface has a curved surface with a constant curvature or a gradual change, and the reinforcing fiber passing through the intersection is continuous without breaking.
本発明による構造体は、
前記構造体は筒状であって、他部品と連結するための取付部材と接合されており、前記取付部材に係合する凹状もしくは凸状の係合部を内部に有する。
The structure according to the invention is
The structure has a tubular shape, is joined to a mounting member for connecting to another component, and has a concave or convex engaging portion that engages with the mounting member inside.
本発明による構造体は、
強化繊維と、未硬化の熱硬化性樹脂とを含むシート及び/又はテープを複数枚、マンドレルの周囲に巻き付けて筒状の積層体を形成し、
前記積層体の全周を、テープまたはフィルムにより圧迫し、
前記熱硬化性樹脂が完全硬化する前の状態まで、前記積層体を加熱し、
前記積層体より前記マンドレルを抜き出し、
前記テープまたはフィルムを巻き付けた前記積層体を、成形型内に配置して加圧し、前記熱硬化性樹脂が完全硬化するまで前記積層体を加熱することにより形成される。
なお、本発明による構造体は、その構造又は特性により直接的に特定することが困難であるため、その構造体の製造方法によって、構造体自体を特定したものである。
The structure according to the invention is
A plurality of sheets and/or tapes containing reinforcing fibers and an uncured thermosetting resin are wound around a mandrel to form a tubular laminate.
The entire circumference of the laminate is pressed with a tape or a film,
The laminate is heated to a state before the thermosetting resin is completely cured,
Extracting the mandrel from the laminate,
It is formed by placing the laminated body around which the tape or film is wound in a molding die, pressurizing the laminated body, and heating the laminated body until the thermosetting resin is completely cured.
Since it is difficult to directly specify the structure according to the present invention by its structure or characteristics, the structure itself is specified by the manufacturing method of the structure.
本発明によれば、低コストであるにもかかわらず、高い形状精度及び強度を有する構造体の製造方法及び構造体を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a structure and a structure that have high shape accuracy and strength despite low cost.
以下、図面を参照して本発明にかかる実施の形態を説明する。
なお、本明細書中、「強化繊維」は、炭素(カーボン)繊維、ガラス繊維、アラミド繊維に代表される有機繊維、シリコンカーバイド繊維、金属繊維などであると好ましい。さらに、「熱硬化性樹脂」は、エポキシ樹脂、ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ウレタン樹脂、ポリイミド樹脂などであると好ましい。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
In the present specification, the “reinforcing fiber” is preferably carbon fiber, glass fiber, organic fiber typified by aramid fiber, silicon carbide fiber, metal fiber and the like. Furthermore, the "thermosetting resin" is preferably an epoxy resin, a polyester resin, a vinyl ester resin, a phenol resin, a urethane resin, a polyimide resin, or the like.
「筒状の積層体」は、強化繊維に熱硬化性樹脂を含浸させ、加熱または乾燥して半硬化状態にしたプリプレグのシートを、シートワインディング製法を用いて巻くことで形成でき、またプリプレグのテープを、テープワインディング製法を用いて巻くことで形成できる。
あるいは、ロービンク繊維に樹脂を含浸しながら巻き付けるフィラメントワインディング製法で巻くことによっても、筒状の積層体を形成できる。ただし、シートワインディング製法やテープワインディング製法であれば、樹脂と強化繊維の比率が管理され安定したプリプレグを用いることができるので、より好ましい。
プリプレグとしては、例えば東レ株式会社製のトレカ(登録商標)を好適に用いることができる。
The "cylindrical laminate" can be formed by impregnating a reinforcing fiber with a thermosetting resin, heating or drying a prepreg sheet which is in a semi-cured state, and winding the prepreg sheet by a sheet winding method. It can be formed by winding a tape using a tape winding method.
Alternatively, the tubular laminated body can be formed by winding the robinc fiber by a filament winding method in which the resin is impregnated and wound. However, the sheet winding method or the tape winding method is more preferable because a stable prepreg in which the ratio of the resin and the reinforcing fiber is controlled can be used.
As the prepreg, for example, Torayca (registered trademark) manufactured by Toray Industries, Inc. can be preferably used.
「マンドレル」の材質は金属、樹脂、セラミックスなどいずれでも良いが、コストや耐久性の観点からは金属を用いることが好ましい。また、マンドレルの形状は、中実円筒状、或いは中空円筒状であると好ましく、単一ではなく分割可能な形状であってよい。 The material of the "mandrel" may be any of metal, resin, ceramics and the like, but it is preferable to use metal from the viewpoint of cost and durability. The shape of the mandrel is preferably a solid cylindrical shape or a hollow cylindrical shape, and may be a dividable shape instead of a single shape.
本明細書中、「テープ又はフィルム」は、素材を問わない薄肉状部材を指すものとする。ただし、使いやすさの観点からテープを用いると好ましい。テープは、樹脂製、金属製いずれのものでも良いが作業性の良い樹脂性のものを用いることが好ましい。また、樹脂製テープを用いる場合、ポリプロピレン、ポリエチレン、ポリエステル、セロファン、テフロン(登録商標)、ポリイミドなどいずれでも良いが、テープ性状のバランスの良さから、ポリプロピレン、ポリエステルを使用することが好ましい。 In the present specification, the "tape or film" refers to a thin member regardless of material. However, it is preferable to use a tape from the viewpoint of ease of use. The tape may be made of resin or metal, but it is preferable to use a resin tape having good workability. When using a resin tape, any of polypropylene, polyethylene, polyester, cellophane, Teflon (registered trademark), polyimide, etc. may be used, but polypropylene and polyester are preferably used because of the good balance of the tape properties.
[第1の実施形態]
第1の実施形態にかかる構造体の製造方法について説明する。図1は、第1工程を模式的に示す図である。図1に示すように、マンドレルMDおよび各種プリプレグシートPS1〜PS6を準備する。
[First Embodiment]
A method of manufacturing the structure according to the first embodiment will be described. FIG. 1 is a diagram schematically showing the first step. As shown in FIG. 1, a mandrel MD and various prepreg sheets PS1 to PS6 are prepared.
マンドレルMDの外径は、最終的に形成する構造体の外周長に対し、外側に巻き付ける積層体の厚みを考慮して、若干短めに設定する。すなわち、マンドレルMDに複数枚のプリプレグシートを巻き付けた状態における外径を、最終的に形成する構造体の外周長の設計値と略一致させることが望ましい。 The outer diameter of the mandrel MD is set to be slightly shorter than the outer peripheral length of the finally formed structure in consideration of the thickness of the laminated body wound on the outside. That is, it is desirable that the outer diameter of the mandrel MD in which a plurality of prepreg sheets are wound is approximately equal to the design value of the outer peripheral length of the finally formed structure.
プリプレグシートPS1〜PS6は、ここではカーボン繊維をエポキシ樹脂の原料に含浸させたシートを用いる。各プリプレグシートでは、カーボン繊維が規則性を持って配向されており、図1中の実線は、そのカーボン繊維の配向方向を示している。以下、カーボン繊維の配向方向は、プリプレグシートを展開した状態でいうものとする。 As the prepreg sheets PS1 to PS6, sheets obtained by impregnating carbon fiber into a raw material of epoxy resin are used here. In each prepreg sheet, carbon fibers are oriented with regularity, and the solid line in FIG. 1 indicates the orientation direction of the carbon fibers. Hereinafter, the orientation direction of the carbon fibers is referred to as a state in which the prepreg sheet is developed.
(第1工程)
本製造方法の第1工程について説明する。プリプレグシートPS1は、カーボン繊維の配向方向がマンドレルMDの軸線に対し+45度方向のシートと、−45度方向のシートを2層に重ねて張り合わせて1枚のプリプレグシートとしたものであり、構造体が受けるねじれ応力に抗する作用を持つ。このプリプレグシートPS1を、必要に応じて外周に剥離処理を施したマンドレルMDの外周に巻き付ける。
(First step)
The first step of the manufacturing method will be described. The prepreg sheet PS1 is a sheet in which the orientation of carbon fibers is +45 degrees with respect to the axis of the mandrel MD and the sheet in the -45 degrees direction is laminated in two layers to form one prepreg sheet. It acts to resist the torsional stress that the body receives. This prepreg sheet PS1 is wrapped around the outer periphery of the mandrel MD whose outer periphery has been subjected to a peeling treatment, if necessary.
プリプレグシートPS2、PS3及びPS4は、それぞれカーボン繊維の配向方向がマンドレルMDの軸線に平行であり、構造体が受ける引っ張り応力に抗する作用を持つ。このプリプレグシートPS2、PS3及びPS4を、プリプレグシートPS1上に順次巻き付けてゆく。 The prepreg sheets PS2, PS3, and PS4 each have an orientation direction of carbon fibers parallel to the axis of the mandrel MD, and have an action of resisting tensile stress received by the structure. The prepreg sheets PS2, PS3 and PS4 are sequentially wound around the prepreg sheet PS1.
プリプレグシートPS5は、カーボン繊維の配向方向がマンドレルMDの軸線に対し直交しており、構造体が圧縮応力を受けた際の膨張に抗する作用を持つ。このプリプレグシートPS5を、プリプレグシートPS4に巻き付ける。 In the prepreg sheet PS5, the orientation direction of the carbon fibers is orthogonal to the axis of the mandrel MD, and the prepreg sheet PS5 has an action of resisting expansion when the structure receives compressive stress. This prepreg sheet PS5 is wound around the prepreg sheet PS4.
一対のプリプレグシートPS6は、カーボン繊維の配向方向がマンドレルMDの軸線に対し直交しており、台形状を持つ。このプリプレグシートPS6を、プリプレグシートPS5の両端に巻き付ける。 The pair of prepreg sheets PS6 has a trapezoidal shape in which the orientation direction of the carbon fibers is orthogonal to the axis of the mandrel MD. The prepreg sheet PS6 is wound around both ends of the prepreg sheet PS5.
本実施形態の構造体は、その両端部に取付部材(後述)などを取り付けることができるため、最外周のプリプレグシートPS6を両端部にのみ巻き付けることで、補強効果を図っている。プリプレグシートの枚数やカーボン繊維の配向方向は、所望する構造体の機械的強度に合わせて適宜変更可能である。 In the structure of the present embodiment, attachment members (described later) and the like can be attached to both ends thereof, so that the outermost prepreg sheet PS6 is wound only on both ends to enhance the reinforcing effect. The number of prepreg sheets and the orientation direction of carbon fibers can be appropriately changed according to the desired mechanical strength of the structure.
このようにして、マンドレルMD上に複数のプリプレグシートを巻き付けてなる筒状の積層体LM(図2)が形成される。 In this way, a cylindrical laminated body LM (FIG. 2) formed by winding a plurality of prepreg sheets on the mandrel MD is formed.
(第2工程)
本製造方法の第2工程について説明する。図2は、第2工程を模式的に示す図である。図2において、積層体LMを巻き付けたマンドレルMDの一端を、モータ回転軸などの回転駆動体RDに連結し、薄いテープTP(ここでは透明とする)の一端を積層体LMの外周に張り付ける。
(Second step)
The second step of the manufacturing method will be described. FIG. 2 is a diagram schematically showing the second step. In FIG. 2, one end of a mandrel MD around which the laminated body LM is wound is connected to a rotary driving body RD such as a motor rotating shaft, and one end of a thin tape TP (here, transparent) is attached to the outer periphery of the laminated body LM. ..
かかる状態から、回転駆動体RDと共にマンドレルMDを回転させ、所定の張力を付与しつつテープTPを積層体LMの外周に巻き付ける。所定の張力は、積層体LMの外径などの条件によって異なるが、1〜5kgfの範囲であると好ましい。これにより積層したプリプレグシートPS1〜PS6を圧迫加圧することにより、プリプレグシート間の空隙等を排除して積層体LMの緻密化を図ることができる。 From this state, the mandrel MD is rotated together with the rotary drive body RD, and the tape TP is wound around the outer periphery of the laminated body LM while applying a predetermined tension. The predetermined tension varies depending on the conditions such as the outer diameter of the laminated body LM, but is preferably in the range of 1 to 5 kgf. By pressing the laminated prepreg sheets PS1 to PS6 in this way, it is possible to eliminate voids between the prepreg sheets and to densify the laminated body LM.
さらにテープTPをマンドレルMDの軸線Oの方向に沿って相対移動させることで、テープTPが積層体LMの軸線Oの方向全体にわたって巻きつき、略均一な厚さの薄い層を形成する。 Further, by relatively moving the tape TP along the direction of the axis O of the mandrel MD, the tape TP is wound around the entire direction of the axis O of the laminated body LM to form a thin layer having a substantially uniform thickness.
ただし、マンドレルMDに巻き付けた積層体LMを加圧する手段としては、テープに限らない。例えば、熱収縮フィルムからなるチューブなどを積層体LMの周囲に配置して、加熱により熱収縮フィルムを収縮させて積層体LMを圧迫しても良い。 However, the means for pressing the laminated body LM wound around the mandrel MD is not limited to the tape. For example, a tube or the like made of a heat-shrinkable film may be arranged around the laminate LM, and the heat-shrinkable film may be shrunk by heating to press the laminate LM.
あるいはゴムテープや、ゴムフィルムをチューブ化したもの(ゴムチューブ)を積層体LMの周囲に配置して、その弾性力で積層体LMを圧迫することもできる。これにより、マンドレルMDを回転させる回転駆動体が不要になり、設備コストが低減される。 Alternatively, a rubber tape or a tube of a rubber film (rubber tube) may be arranged around the laminated body LM, and the elastic force may press the laminated body LM. This eliminates the need for a rotary drive that rotates the mandrel MD, and reduces equipment costs.
(第3工程)
本製造方法の第3工程について説明する。図3は、第3工程を模式的に示す図である。テープTPを巻いた積層体LMを、マンドレルMDとともにオーブンOV内に配置する。オーブンOV中で加熱して、積層体LMのプリプレグシートの樹脂を完全硬化前の状態まで加熱する。より具体的には、積層体LMの熱硬化性樹脂の硬化度を、30〜90%になるように加熱する。
(Third step)
The third step of the manufacturing method will be described. FIG. 3 is a diagram schematically showing the third step. The laminated body LM wound with the tape TP is arranged in the oven OV together with the mandrel MD. The resin of the prepreg sheet of the laminate LM is heated to a state before complete curing by heating in an oven OV. More specifically, the thermosetting resin of the laminated body LM is heated so that the degree of curing is 30 to 90%.
ここで、熱硬化性樹脂の硬化度について説明する。例えば未硬化のエポキシ樹脂を、室温から200℃まで5℃/minの速度で加熱していったとき、DSC(示差走査熱量測定法)を用いて熱流(発熱又は吸熱)を測定すると、熱硬化性樹脂に特有の現象が生じることがわかる。
具体的には、図4に示すDSC曲線のように、約103℃付近から急激な発熱が生じ、110.7℃で発熱ピークが生じ、以降、急激に発熱が減少する。この発熱は、エポキシ樹脂の昇温加熱により重合(硬化)が生じたことを表す。ここで、110.7℃を、このエポキシ樹脂の最大発熱温度という。
Here, the degree of cure of the thermosetting resin will be described. For example, when uncured epoxy resin is heated from room temperature to 200°C at a rate of 5°C/min, the heat flow (exothermic or endothermic) is measured using DSC (differential scanning calorimetry). It can be seen that a phenomenon peculiar to the organic resin occurs.
Specifically, as in the DSC curve shown in FIG. 4, abrupt heat generation occurs at about 103° C., a heat generation peak occurs at 110.7° C., and thereafter heat generation sharply decreases. This heat generation means that the epoxy resin is polymerized (cured) by heating and heating. Here, 110.7° C. is called the maximum exothermic temperature of this epoxy resin.
このエポキシ樹脂を、再度室温まで冷やし、再び200℃まで5℃/minの速度で加熱していくと、図5に示すDSC曲線のように、発熱ピークは現れず、むしろ吸熱が生じ、116。1℃にガラス転移が生じることがわかる。これは、エポキシ樹脂が既に完全硬化しているために生じる現象である。(「エポキシ樹脂の硬化温度・ガラス転移温度調査」、MST技術資料:No.C0220,掲載日:2011/10/20、財団法人:材料科学技術振興財団) When this epoxy resin was cooled to room temperature again and heated again to 200° C. at a rate of 5° C./min, an exothermic peak did not appear as in the DSC curve shown in FIG. It can be seen that a glass transition occurs at 1°C. This is a phenomenon that occurs because the epoxy resin has already been completely cured. ("Epoxy resin curing temperature/glass transition temperature investigation", MST technical data: No. C0220, publication date: 2011/10/20, foundation: Materials Science and Technology Foundation)
一方、エポキシ樹脂を完全硬化させる前に加熱を中断すると、発熱ピークは110.7℃を下回るX℃となる(図4)。これは、エポキシ樹脂が更に重合できる余地があることを示し、すなわちエポキシ樹脂は完全硬化前の状態となる。
換言すれば、熱硬化性樹脂を加熱していった時の発熱ピークを随時測定し、最大発熱温度未満のX℃となったときに加熱を中断することで、熱硬化性樹脂を完全に硬化する前の状態にとどめることができる。
On the other hand, if heating is interrupted before the epoxy resin is completely cured, the exothermic peak becomes X°C below 110.7°C (Fig. 4). This indicates that the epoxy resin has room for further polymerization, that is, the epoxy resin is in a state before complete curing.
In other words, the exothermic peak when the thermosetting resin is heated is measured at any time, and when the temperature reaches X°C, which is lower than the maximum exothermic temperature, the heating is interrupted to completely cure the thermosetting resin. You can stay in the same state as before.
図4において、完全硬化時のDSC曲線とベースラインBSとで囲む面積(発熱ピーク面積という)をS1とし、発熱ピークがX℃であるDSC曲線とベースラインBSとで囲む面積S2としたときに、(S2/S1)×100%を熱硬化性樹脂の硬化度と定義する。 In FIG. 4, when the area enclosed by the DSC curve at the time of complete curing and the baseline BS (called the exothermic peak area) is S1, and the area enclosed by the DSC curve whose exothermic peak is X° C. and the baseline BS is S2, , (S2/S1)×100% is defined as the degree of cure of the thermosetting resin.
本発明者らは、この熱硬化性樹脂の熱特性を利用して、熱硬化性樹脂が完全に硬化する前、例えば30〜90%の硬化度で積層体LMの加熱を中断することによって、積層体LMの成形性を向上させることを見出した。30〜90%の硬化度に対応する発熱ピークX℃は、実験やシミュレーションで求めることができる。積層体LMの成形性の向上効果については、第5工程に関連して後述する。 The present inventors utilize the thermal characteristics of the thermosetting resin to interrupt the heating of the laminated body LM before the thermosetting resin is completely cured, for example, at a curing degree of 30 to 90%. It was found that the formability of the laminated body LM is improved. The exothermic peak X° C. corresponding to the curing degree of 30 to 90% can be obtained by experiments or simulations. The effect of improving the formability of the laminated body LM will be described later in relation to the fifth step.
(第4工程)
本製造方法の第4工程について説明する。図6は、第4工程を模式的に示す図である。テープTPを巻いた積層体LMをオーブンOVから取り出して、図6に示すようにマンドレルMDを引き抜く。積層体LMの外周にテープTPが所定の張力で巻かれており、また第3工程にて積層体LMの熱硬化性樹脂が30%以上の硬化度で加熱されているので、積層体LMは、マンドレルMDを引き抜いても筒形状を維持できる剛性を持つ。この筒形状をプリフォーム体という。
(Fourth step)
The fourth step of the manufacturing method will be described. FIG. 6 is a diagram schematically showing the fourth step. The laminated body LM wound with the tape TP is taken out from the oven OV, and the mandrel MD is pulled out as shown in FIG. Since the tape TP is wound around the outer periphery of the laminated body LM with a predetermined tension, and the thermosetting resin of the laminated body LM is heated with the degree of curing of 30% or more in the third step, the laminated body LM is The rigidity is such that the tubular shape can be maintained even if the mandrel MD is pulled out. This tubular shape is called a preform body.
未加熱の積層体LMは、樹脂材料の劣化を防ぐべく、冷蔵庫や冷凍庫での保存が必要である。一方、第4工程を経て形成されたプリフォーム体は、樹脂材料の硬化度が調整されたものであり、常温で保管しても樹脂材料の劣化が殆どない。したがって、プリフォーム体を量産して保存しておくことで、急な需要にも対応して製品の供給が可能になる。 The unheated laminate LM needs to be stored in a refrigerator or a freezer to prevent deterioration of the resin material. On the other hand, in the preform body formed through the fourth step, the degree of curing of the resin material is adjusted, and there is almost no deterioration of the resin material even when stored at room temperature. Therefore, by mass-producing and storing preforms, it becomes possible to supply products in response to sudden demand.
また、1種類のプリフォーム体から複数種類の構造体を形成できるため、製造コスト低減を図れる。 Moreover, since a plurality of types of structures can be formed from one type of preform, manufacturing cost can be reduced.
(第5工程)
本製造方法の第5工程について説明する。図7〜9は、第5工程を模式的に示す図である。まず、図7に示すように、マンドレルMDを引き抜いた積層体LM内に、円筒状のゴム体GMを挿入する。マンドレルMDとほぼ同径の円筒状であるゴム体GMは、加熱すると膨張する特性を有する。
(Fifth step)
The fifth step of the manufacturing method will be described. 7 to 9 are diagrams schematically showing the fifth step. First, as shown in FIG. 7, the cylindrical rubber body GM is inserted into the laminated body LM from which the mandrel MD is pulled out. The rubber body GM, which has a cylindrical shape having substantially the same diameter as the mandrel MD, has a characteristic of expanding when heated.
更に、図8に示すように、ゴム体GMを内挿した積層体LMを、板状の上型UDと、樋状の下型LDとの間に配置する。上型UDと下型LDとで成形型を構成する。
ここで、下型LDにおける樋底面の幅をWとし、樋内壁の高さをHとし、テープTPを巻いた積層体LMの外径をDとしたときに、πD≒2(W+H)であると、型の内周長と、最終の構造体の外周長とを略一致させることができ、それにより安定した形状を持つ構造体を得られる。
Further, as shown in FIG. 8, the laminated body LM in which the rubber body GM is inserted is arranged between the plate-shaped upper mold UD and the gutter-shaped lower mold LD. A molding die is composed of the upper die UD and the lower die LD.
Here, when the width of the gutter bottom surface in the lower die LD is W, the height of the gutter inner wall is H, and the outer diameter of the laminated body LM around which the tape TP is wound is D, πD≈2 (W+H). And the inner peripheral length of the mold and the outer peripheral length of the final structure can be made substantially equal to each other, whereby a structure having a stable shape can be obtained.
その後、図9に示すように、上型UDと下型LDとを相対接近させて型締めを行う。このとき、先の第3工程で積層体LMの熱硬化性樹脂が90%以下の硬化度で加熱されているので、上型UDと下型LDとで形成される内壁形状に倣うように、積層体LMを変形させることができる。一方、所定の張力でテープTPを巻いているので、積層体LMが上型UDと下型LDの圧力でつぶれることはない。 After that, as shown in FIG. 9, the upper mold UD and the lower mold LD are relatively brought close to each other to perform mold clamping. At this time, since the thermosetting resin of the laminated body LM is heated at the degree of cure of 90% or less in the third step, the inner wall shape formed by the upper mold UD and the lower mold LD is imitated. The laminated body LM can be deformed. On the other hand, since the tape TP is wound with a predetermined tension, the laminated body LM is not crushed by the pressure of the upper mold UD and the lower mold LD.
更に、不図示のヒータを用いて上型UDと下型LDの内部を加熱することにより、ゴム体GMが膨張し、それにより積層体LMの内圧が高まる。これにより、積層体LMは、上型UDと下型LDとの内壁面に向かって押圧され、特に上型UDと下型LDとの内壁形状の角部CRと、積層体LMとの間隙が詰まり、積層体LMを角筒状とするよう精度よく変形させることができる。また、積層体LMを加熱することにより、完全に硬化させることができる。 Further, by heating the inside of the upper die UD and the lower die LD using a heater (not shown), the rubber body GM expands, thereby increasing the internal pressure of the laminated body LM. As a result, the laminated body LM is pressed toward the inner wall surfaces of the upper die UD and the lower die LD, and in particular, the gap between the laminated body LM and the corner portion CR of the inner wall shape of the upper die UD and the lower die LD. It can be clogged and can be accurately deformed so that the laminated body LM has a rectangular tube shape. Moreover, by heating the laminated body LM, it can be completely cured.
このとき、内圧を受けた積層体LMの周囲に摺動性が高いテープTPが巻かれているので、ゴム体GMの膨張に伴って、積層体LMの外表面と成形型の内壁面との間に相対変位が生じた場合にも、両者間に殆ど抵抗なく滑りを生じさせることができる。これにより積層体LMの型馴染み性が向上し、安定した製品形状を得られる。また、仮に積層体LMと上型UDあるいは下型LDとの間に隙間が生じたとしても、積層体LMの外周に巻かれたテープTPがゴム体GMの内圧受けることができるため、特に角部CRの近傍において生じることが多い、積層体LMのシワやボイド、樹脂リッチなどの不具合を効果的に抑制できる。 At this time, since the tape TP having high slidability is wound around the laminated body LM that has received the internal pressure, the outer surface of the laminated body LM and the inner wall surface of the molding die are expanded as the rubber body GM expands. Even if a relative displacement occurs between them, it is possible to cause a slip between the two with almost no resistance. Thereby, the mold familiarity of the laminated body LM is improved and a stable product shape can be obtained. Even if a gap is formed between the laminated body LM and the upper die UD or the lower die LD, the tape TP wound around the outer periphery of the laminated body LM can receive the internal pressure of the rubber body GM, and therefore, the corners are particularly sharp. It is possible to effectively suppress defects such as wrinkles, voids, and resin richness of the stacked body LM, which often occur in the vicinity of the portion CR.
一方、積層体LMの型馴染み性が向上することで、成形型の圧力を小さくできるとともに、型の強度や剛性を下げることができるから、使用可能な型材料の選択自由度が広がる。また成形型を駆動する設備も簡素化できるので、設備コスト低減を図れる。 On the other hand, since the mold familiarity of the laminated body LM is improved, the pressure of the molding die can be reduced, and the strength and rigidity of the die can be reduced, so that the degree of freedom in selection of usable die materials is expanded. Further, the equipment for driving the molding die can be simplified, so that equipment cost can be reduced.
またテープTPが持つ形状保持機能によって、直角の角部CRに強く押し付けることで形成される積層体LMの側面(第1の面)と上下面(第1の面とは法線方向が異なる第2の面)との交差部が、その曲率が一定もしくは徐々に変化する曲面を持つ(すなわち交差部にエッジが形成されない)。また、その交差部における強化繊維が折れずに曲がる(繊維の連続性が維持される)ことで、構造体の強度を確保できる。 Further, due to the shape retaining function of the tape TP, the side surface (first surface) and the upper and lower surfaces (first surface of which the normal direction differs from the first surface) of the laminated body LM formed by being strongly pressed against the right angle corner CR. 2) has a curved surface whose curvature is constant or gradually changes (that is, no edge is formed at the intersection). Moreover, the strength of the structure can be secured by bending the reinforcing fibers at the intersections without breaking (continuity of the fibers is maintained).
(第6工程)
その後、加熱を中止し上型UDと下型LDとを離間させて、各筒状に変形した積層体LMを取り出す。ゴム体GMは、冷えると収縮するので、硬化した積層体LMから容易に抜き出すことができる。さらに積層体LMからテープTPを剥がすことで、図10に一部を示すごとき構造体ST1が完成する。
なお、ゴム体GMの代わりに、空気などを注入することで膨らむエアバッグなどを用いてもよい。
(Sixth step)
Then, the heating is stopped, the upper mold UD and the lower mold LD are separated from each other, and the laminated body LM deformed into each cylindrical shape is taken out. Since the rubber body GM contracts when cooled, it can be easily extracted from the cured laminated body LM. Further, by peeling off the tape TP from the laminated body LM, the structure ST1 shown in part in FIG. 10 is completed.
Instead of the rubber body GM, an airbag that inflates by injecting air or the like may be used.
(変形例)
以上のようにして形成した構造体ST1に、取付部材を取り付けることで、他部品との連結が可能になる。図11は、変形例にかかる第5工程を模式的に示す図である。ここでは、予め金属製などの取付部材ATを準備する。
(Modification)
By attaching the attachment member to the structure body ST1 formed as described above, connection with other components becomes possible. FIG. 11: is a figure which shows the 5th process concerning a modification typically. Here, a mounting member AT made of metal or the like is prepared in advance.
取付部材ATは、リング状の頭部RGに、先細形状の板部PTが一体的に接合した形状を有する。板部PTの上下面には、それぞれ溝GVが形成されている。 The attachment member AT has a shape in which a tapered plate portion PT is integrally joined to a ring-shaped head portion RG. Grooves GV are formed on the upper and lower surfaces of the plate portion PT, respectively.
図7を参照して、ゴム体を介装することなく積層体LMを上型UDと下型LDとの間に配置する際に、その両端に取付部材ATの板部PTを対向させ(図11(a))、板部PTを積層体LMに差し入れる(図11(b))。 Referring to FIG. 7, when the laminated body LM is arranged between the upper die UD and the lower die LD without interposing a rubber body, the plate portions PT of the attachment member AT are opposed to both ends thereof (see FIG. 11(a)), and the plate portion PT is inserted into the laminated body LM (FIG. 11(b)).
その後、図9に示すように、上型と下型との型締めを行って、加熱しながら積層体LMを板部PTに密着させると、まだ比較的柔らかい積層体LMの内周面の一部が突起PJとなって、板部PTの溝GV内に進入し、その状態で固化する。突起PJが係合部を構成する(図11(c))。 Then, as shown in FIG. 9, when the upper die and the lower die are clamped and the laminate LM is brought into close contact with the plate portion PT while heating, one of the inner peripheral surfaces of the laminate LM which is still relatively soft. The portion becomes a projection PJ, enters the groove GV of the plate portion PT, and solidifies in that state. The protrusion PJ constitutes an engaging portion (FIG. 11(c)).
これにより、取付部材ATは積層体LMに対して抜けなくなる。その後は、第6工程でテープを剥がすことで、図12に示すようなビーム状の構造体ST1を得ることができる。 As a result, the attachment member AT does not come off from the stacked body LM. After that, the tape is peeled off in the sixth step to obtain a beam-shaped structure ST1 as shown in FIG.
図12に示す構造体ST1は、取付部材ATの頭部RGと、不図示の他部品とをボルト締結を行うことで、設置が可能になる。 The structure ST1 shown in FIG. 12 can be installed by bolting the head portion RG of the attachment member AT and another component (not shown).
[第2の実施形態]
第2の実施形態にかかる構造体の製造方法について説明する。図13、14は、第2実施形態にかかる第5工程を模式的に示す図である。第2の実施形態においては、第1工程〜第4工程までは、第1の実施形態と同様である。つまり、第1工程〜第4工程で形成したプリフォーム体を共通に用いることができる。
[Second Embodiment]
A method of manufacturing the structure according to the second embodiment will be described. 13 and 14 are diagrams schematically showing a fifth step according to the second embodiment. In the second embodiment, the first to fourth steps are the same as those in the first embodiment. That is, the preform bodies formed in the first to fourth steps can be commonly used.
(第5工程)
第4工程で形成され、マンドレルMDを引き抜いたプリフォーム体である積層体LMを、ゴム体など挿入することなく、図13に示すように、板状の上型UDと板状の下型LDとの間に配置する。
(Fifth step)
As shown in FIG. 13, the laminated body LM, which is the preform body obtained by pulling out the mandrel MD and formed in the fourth step, is inserted into the plate-shaped upper die UD and the plate-shaped lower die LD as shown in FIG. Place it between and.
その後、上型UDと下型LDとを平行状態のまま相対接近させて型締めを行う。積層体LMの内部は空洞になっているので、図14に示すように、上型UDの下平面と下型LDの上平面とに押しつぶされ、積層体LMは板状となって、内部の空洞はなくなる。 After that, the upper mold UD and the lower mold LD are relatively brought close to each other in a parallel state to perform mold clamping. Since the inside of the stacked body LM is hollow, it is crushed by the lower plane of the upper die UD and the upper plane of the lower die LD as shown in FIG. The cavity disappears.
このとき、先の第3工程で積層体LMの熱硬化性樹脂が90%以下の硬化度で加熱されているので、積層体LMが平板状に押しつぶされるような大きな変形も許容される。 At this time, since the thermosetting resin of the laminated body LM is heated at a curing degree of 90% or less in the third step, a large deformation such as the laminated body LM being crushed into a flat plate shape is allowed.
またテープTPが持つ形状保持機能によって、積層体LMが平板状に押しつぶされても、積層体LMの上面(第1の面)と下面(第1の面とは法線方向が異なる第2の面)の交差部となる積層体LMの両縁EDの外表面は、曲率が一定もしくは徐々に変化する曲面を持つ。このため、構造体の外観品質、及び曲げやねじれに対する強度を向上できる。また、両縁EDを通る強化繊維も折れずに曲がる(繊維の連続性が維持される)ことで、更に高い強度を確保できる。 Further, even if the laminated body LM is crushed into a flat plate shape by the shape retaining function of the tape TP, the upper surface (first surface) and the lower surface (first surface) of the laminated body LM are different from each other in the second direction. The outer surface of both edges ED of the laminated body LM, which is the intersection of the surfaces), has a curved surface with a constant curvature or a gradual change. Therefore, the appearance quality of the structure and the strength against bending and twisting can be improved. Further, the reinforcing fibers passing through the both edges ED are also bent (the continuity of the fibers is maintained) without breaking, so that higher strength can be secured.
(第6工程)
その後、上型UDと下型LDとを離間させて、板状に変形した積層体LMを取り出し、さらに積層体LMからテープTPを剥がすことで、図15に一部を示すごとき構造体ST2が完成する。構造体ST2は、その両端近傍に穴をあけて、他部品にボルト締結することができる。
(Sixth step)
After that, the upper mold UD and the lower mold LD are separated from each other, the laminated body LM deformed into a plate shape is taken out, and the tape TP is further peeled off from the laminated body LM. Complete. The structure ST2 can be bolted to other parts by drilling holes near both ends thereof.
図16は、構造体ST2の上面図であって、1本の連続する強化繊維FBを、表面側を通過するものを実線で、裏面側を通過するものを点線で示している。本実施形態では円筒状の積層体LMを押しつぶすことで、構造体ST2を形成している。したがって、円筒状の積層体LMの周囲に螺旋状に巻き付けられた強化繊維FBは、いずれの位置で押しつぶされても、幾何学的関係より、図16に示すように表面側の強化繊維FBの傾斜角θ1と、裏面側の強化繊維FBの傾斜角θ2は等しくなる。これにより、構造体ST2のゆがみが抑制され、精度良い平板形状を維持できる。 FIG. 16 is a top view of the structure ST2, in which one continuous reinforcing fiber FB passing through the front surface side is shown by a solid line, and one passing through the back surface side is shown by a dotted line. In the present embodiment, the structure ST2 is formed by crushing the cylindrical laminated body LM. Therefore, even if the reinforcing fiber FB spirally wound around the cylindrical laminated body LM is crushed at any position, the reinforcing fiber FB of the surface side FB as shown in FIG. The inclination angle θ1 is equal to the inclination angle θ2 of the reinforcing fiber FB on the back surface side. As a result, the distortion of the structure ST2 is suppressed, and the flat plate shape with high accuracy can be maintained.
(変形例)
図17、18は、第2の実施形態の変形例を示す断面図である。筒状の積層体LMを押しつぶす成形型の形状を変えることで、図17に示すように、断面がL字状の構造体ST2を形成したり、図18に示すように、断面がC字形状の構造体ST2を形成できる。
(Modification)
17 and 18 are cross-sectional views showing a modified example of the second embodiment. By changing the shape of the molding die that crushes the cylindrical laminated body LM, a structure ST2 having an L-shaped cross section is formed as shown in FIG. 17, or a C-shaped cross section is formed as shown in FIG. The structure ST2 can be formed.
本発明は、以上の実施形態に限られることはない。例えば構造体に取り付ける取付部材には、溝以外に孔やディンプルなど任意の凹凸形状を設け、構造体には凹凸形状に係合する凹状または凸状の係合部を設けることができる。 The present invention is not limited to the above embodiment. For example, the mounting member to be attached to the structure may be provided with an arbitrary concavo-convex shape such as a hole or dimple in addition to the groove, and the structure may be provided with a concave or convex engaging portion that engages with the concavo-convex shape.
PS1〜PS6 プリプレグシート
MD マンドレル
TP テープ
OV オーブン
RD 回転駆動体
GM ゴム体
UD 上型
LD 下型
AT 取付部材
ST1,ST2 構造体
PS1 to PS6 prepreg sheet MD mandrel TP tape OV oven RD rotation driver GM rubber body UD upper mold LD lower mold AT mounting member ST1, ST2 structure
Claims (13)
前記積層体の全周を、テープまたはフィルムにより圧迫する第2工程と、
前記熱硬化性樹脂が完全硬化する前の状態まで、前記積層体を加熱する第3工程と、
前記積層体より前記マンドレルを抜き出す第4工程と、
前記テープまたはフィルムを巻き付けた前記積層体を、成形型内に配置して加圧し、前記熱硬化性樹脂が完全硬化するまで前記積層体を加熱する第5工程と、を有する、
構造体の製造方法。 A first step of forming a tubular laminate by winding a plurality of sheets and/or tapes containing reinforcing fibers and an uncured thermosetting resin around a mandrel;
A second step of pressing the entire circumference of the laminate with a tape or a film,
A third step of heating the laminate to a state before the thermosetting resin is completely cured,
A fourth step of extracting the mandrel from the laminate,
A fifth step of heating the laminated body until the thermosetting resin is completely cured by placing the laminated body around which the tape or film is wound in a molding die and pressurizing the laminated body.
Method of manufacturing structure.
請求項1に記載の構造体の製造方法。 Further comprising a sixth step of taking out the laminate from the mold and peeling off the tape or film.
The method for manufacturing the structure according to claim 1.
請求項1又は2に記載の構造体の製造方法。 The sheet is a prepreg obtained by impregnating the reinforcing fibers with the thermosetting resin,
A method for manufacturing the structure according to claim 1.
請求項1〜3のいずれか1項に記載の構造体の製造方法。 In the second step, while rotating the mandrel, a tape is wrapped around the laminate while applying a predetermined tension.
The manufacturing method of the structure according to any one of claims 1 to 3.
請求項1〜3のいずれか1項に記載の構造体の製造方法。 In the second step, a tube made of a heat-shrinkable film is arranged around the laminate to heat the heat-shrinkable film,
The manufacturing method of the structure according to any one of claims 1 to 3.
請求項1〜5のいずれか1項に記載の構造体の製造方法。 In the third step, the laminate is heated so that the degree of cure of the thermosetting resin is in the range of 30% to 90%.
The method for manufacturing the structure according to claim 1.
請求項1〜6のいずれか1項に記載の構造体の製造方法。 In the fifth step, pressure is applied in the molding die so as to provide a space inside the laminate.
A method for manufacturing the structure according to any one of claims 1 to 6.
請求項1〜6のいずれか1項に記載の構造体の製造方法。 In the fifth step, pressure is applied in the molding die so that no space is provided inside the laminate.
A method for manufacturing the structure according to any one of claims 1 to 6.
前記第1の平面と前記第2の平面との交差部は、曲率が一定もしくは徐々に変化する曲面を持ち、前記交差部を通過する前記強化繊維が折れることなく連続している、
構造体。 Is formed of a thermosetting resin impregnated into reinforcing fibers, the outer and the first flat surface and a second planar surface has an outer surface, in a cross section perpendicular to the axis of the structure, from the first plane A structure in which a normal line extending in one direction and a normal line extending outward from the second plane are directed in different directions ,
Intersections of the first flat surface and the second planar surface has a curved surface curvature changes constant or gradually, the reinforcing fibers passing through the intersection is continuous without break it,
Structure.
請求項9に記載の構造体。 The structure is plate-shaped and has no space inside.
The structure according to claim 9.
請求項9に記載の構造体。 The structure has a tubular shape, is joined to a mounting member for connecting to another component, and has a concave or convex engaging portion that engages with the mounting member inside,
The structure according to claim 9.
請求項9に記載の構造体。 The outer surface of another member inserted inside the tubular thermosetting resin, the thermosetting resin is in close contact,
The structure according to claim 9.
前記積層体の全周を、テープまたはフィルムにより圧迫し、
前記熱硬化性樹脂が完全硬化する前の状態まで、前記積層体を加熱し、
前記積層体より前記マンドレルを抜き出し、
前記テープまたはフィルムを巻き付けた前記積層体を、成形型内に配置して加圧し、前記熱硬化性樹脂が完全硬化するまで前記積層体を加熱することにより形成される、
構造体。
A plurality of sheets and/or tapes containing reinforcing fibers and an uncured thermosetting resin are wound around a mandrel to form a tubular laminate.
The entire circumference of the laminate is pressed with a tape or a film,
The laminate is heated to a state before the thermosetting resin is completely cured,
Extracting the mandrel from the laminate,
The laminated body wound with the tape or film is placed in a molding die and pressed, and the laminated body is formed by heating the laminated body until the thermosetting resin is completely cured.
Structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019016729A JP6747722B2 (en) | 2019-02-01 | 2019-02-01 | Method of manufacturing structure and structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019016729A JP6747722B2 (en) | 2019-02-01 | 2019-02-01 | Method of manufacturing structure and structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020124810A JP2020124810A (en) | 2020-08-20 |
JP6747722B2 true JP6747722B2 (en) | 2020-08-26 |
Family
ID=72083776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019016729A Active JP6747722B2 (en) | 2019-02-01 | 2019-02-01 | Method of manufacturing structure and structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6747722B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12083752B2 (en) | 2019-08-26 | 2024-09-10 | Graphite Design Inc. | Method for manufacturing structure and structure |
-
2019
- 2019-02-01 JP JP2019016729A patent/JP6747722B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12083752B2 (en) | 2019-08-26 | 2024-09-10 | Graphite Design Inc. | Method for manufacturing structure and structure |
Also Published As
Publication number | Publication date |
---|---|
JP2020124810A (en) | 2020-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7854874B2 (en) | Apparatus and methods for forming hat stiffened composite parts using thermally expansive tooling cauls | |
US11383458B2 (en) | Epoxy core with expandable microspheres | |
US6820654B2 (en) | High performance composite tubular structures | |
CA2718456C (en) | Blade constructs and methods of forming blade constructs | |
JP2004502571A (en) | Shaped metal structural member and method of manufacturing the same | |
JP2005324340A (en) | Fiber reinforced plastic and its manufacturing method | |
JP6747722B2 (en) | Method of manufacturing structure and structure | |
JP6185356B2 (en) | FRP molded product manufacturing method and mold | |
US20100122763A1 (en) | Composites and Methods of Making the Same | |
US20170225383A1 (en) | Method of manufacturing shaft-shape composite member | |
JP3045659B2 (en) | Golf club shaft and method of manufacturing the same | |
JP4227299B2 (en) | Manufacturing method of flanged tubular product made of fiber reinforced plastic | |
US20220024153A1 (en) | Structural body manufacturing method and structural body | |
CN114055804A (en) | Method for manufacturing structure and structure | |
JPH0669733B2 (en) | Shaft-shaped member combining heat-foamable resin and carbon fiber and method for manufacturing the same | |
JPS6324445B2 (en) | ||
JPH1016068A (en) | Manufacture of tube body constituted of fiber-reinforced thermoplastic resin | |
JP6763625B1 (en) | Structure manufacturing method and structure | |
JP5238152B2 (en) | Laminate and automobile bonnet using the same | |
JP4088093B2 (en) | Molding method of fiber reinforced resin molding | |
JP2005231132A (en) | Hermetically closed molded product manufacturing method | |
JP2024028003A (en) | Manufacturing method of tubular body | |
JPH10278162A (en) | Laminate type composite material and interlaminar reinforcing method thereof | |
JPH06190931A (en) | Fiber-reinforced thermoplastic resin pipe and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200130 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200130 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20200130 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20200205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200310 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200428 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200525 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200707 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200803 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6747722 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |