JPS6324445B2 - - Google Patents

Info

Publication number
JPS6324445B2
JPS6324445B2 JP56155671A JP15567181A JPS6324445B2 JP S6324445 B2 JPS6324445 B2 JP S6324445B2 JP 56155671 A JP56155671 A JP 56155671A JP 15567181 A JP15567181 A JP 15567181A JP S6324445 B2 JPS6324445 B2 JP S6324445B2
Authority
JP
Japan
Prior art keywords
girder structure
manufacturing
corner
bag
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56155671A
Other languages
Japanese (ja)
Other versions
JPS5856824A (en
Inventor
Shunichi Bando
Katsuji Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP56155671A priority Critical patent/JPS5856824A/en
Publication of JPS5856824A publication Critical patent/JPS5856824A/en
Publication of JPS6324445B2 publication Critical patent/JPS6324445B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、繊維と合成樹脂を組合わせたいわゆ
る樹脂系複合材料によつて製造される桁構造物の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a girder structure made of a so-called resin-based composite material that combines fibers and synthetic resin.

従来、樹脂系複合材料、たとえば、ガラス繊
維、有機繊維、炭素繊維等をエポキシ樹脂、ポリ
エステル樹脂、ポリイミド樹脂等で含浸したシー
ト状材料の積層材を用いた構造物の製造方法とし
ては、オートクレーブ法やホツトプレス法等があ
る。これらの方法は、いずれも比較的薄く大面積
の平板状成形物の成形に適しているが、立体構造
物には不適である。
Conventionally, the autoclave method has been used to manufacture structures using laminated sheets of resin-based composite materials, such as glass fibers, organic fibers, carbon fibers, etc., impregnated with epoxy resins, polyester resins, polyimide resins, etc. There are methods such as hot press method and hot press method. All of these methods are suitable for molding relatively thin, large-area flat molded products, but are unsuitable for molding three-dimensional structures.

詳述するならば、従来のオートクレーブ法やホ
ツトプレス法では、まず、平面パネルを製作し、
これを組立てて構造物を製作する。しかし、オー
トクレーブ成形では片面の寸法精度が出ないの
で、組立時の精度が不良になる。また、平面構造
物は、複合材料特有の異方性のために成形歪が発
生しがちである。そして、接着組立の場合には、
接着剤厚を0.1mm程度の精度でコントロールする
必要があるが、上述した2つの理由のために、正
確な位置決めは困難である。更に、複合材料は応
力集中に弱いので、ボルトナツト、リベツト等で
組立てる方式を全面的に用いることとすると、重
量と加工費が増大する。
To be more specific, in the conventional autoclave method and hot press method, first, a flat panel is manufactured,
Assemble these to create a structure. However, autoclave molding does not provide dimensional accuracy on one side, resulting in poor assembly accuracy. Furthermore, flat structures tend to suffer from molding distortion due to the anisotropy characteristic of composite materials. In the case of adhesive assembly,
Although it is necessary to control the adhesive thickness with an accuracy of about 0.1 mm, accurate positioning is difficult for the two reasons mentioned above. Furthermore, since composite materials are susceptible to stress concentration, if an assembly method using bolts/nuts, rivets, etc. is used throughout, the weight and processing cost will increase.

これに対して、航空機の翼や補助翼、各種プロ
ペラ、フアンブレード等は、いずれも複雑な内部
構造を有する中空物体であり、その外周寸法精度
が性能を左右するという特徴を持つており、上述
したオートクレーブ法やホツトプレス法で成形す
ることは不適当である。
On the other hand, aircraft wings, ailerons, various propellers, fan blades, etc. are all hollow objects with complex internal structures, and their performance is determined by the accuracy of their outer circumferential dimensions. It is inappropriate to mold using the autoclave method or hot press method.

そこで、外形寸法を正確に与えるような密閉金
型を用い、内部に加圧膨張し得る加圧袋を入れて
内部から外方へ被成形物を押し付ける方法で成形
する方法が、米国特許第3713753号、特開昭50―
16298号公報等で提案されている。しかし、この
方法でも、内部構造を正確に成形することは困難
であつた。特に、内部にウエブのような隔壁があ
る桁構造物の場合は問題であつた。
Therefore, there is a method of molding in which a closed mold with accurate external dimensions is used, a pressurized bag that can be expanded under pressure is placed inside, and the object to be molded is pressed outward from the inside, as disclosed in US Pat. No. 3,713,753. No., Japanese Patent Application Publication No. 1973-
This is proposed in Publication No. 16298, etc. However, even with this method, it was difficult to accurately mold the internal structure. This was particularly a problem in the case of girder structures that had internal partition walls such as webs.

すなわち、この方法においては、加圧袋は薄く
柔軟であるために、第1A図の如く、下型10に
未硬化複合材料の積層材12とウエブ用未硬化複
合材14を置き、加圧袋16を入れて、上型18
を乗せ、加圧袋に加圧を加えて成形すると、常に
同じ割合には膨張しないので、第1B図に示す如
く、ウエブ14は傾き、コーナー部には空洞20
が生じる。
That is, in this method, since the pressurized bag is thin and flexible, as shown in FIG. 16 and upper mold 18
When molded by applying pressure to a pressurized bag, the web 14 does not always expand at the same rate, so as shown in FIG.
occurs.

また、第2A図に示す如く、ウエブ12をあら
かじめH型に積層しておき、成形する方法では、
初め加圧力が小さいと、第2B図に示す如く、コ
ーナー部22に加圧袋16が密着せず、そして加
圧力増大にともなう袋16の膨張と移動につれ
て、第2C図に示す状態を経て第2D図に示す如
くウエブ14にシワ24を発生させることがあ
る。また、第2E図の加圧袋16Aの如くはじめ
からウエブ14のコーナーに密着しておらず且つ
加圧袋の伸びに余裕がないとウエブにシワが入ら
ない代りに、第2E図の加圧袋16Bの如く中吊
状態となり、圧力を薄い加圧袋自身で支えること
になるため、加圧力増大により、第2F図に参照
番号26で示す如く加圧袋が破れるという事故が
発生する。
Further, as shown in FIG. 2A, in the method of laminating the web 12 in an H-shape in advance and forming it,
If the pressurizing force is initially small, the pressurizing bag 16 will not come into close contact with the corner portion 22, as shown in FIG. 2B, and as the bag 16 expands and moves as the pressurizing force increases, it will pass through the state shown in FIG. As shown in the 2D diagram, wrinkles 24 may occur in the web 14. In addition, if the pressure bag 16A shown in FIG. 2E is not in close contact with the corner of the web 14 from the beginning and there is not enough room for the pressure bag to stretch, the web will not wrinkle. Since the bag 16B is in a suspended state and the pressure is supported by the thin pressurized bag itself, an accident occurs in which the pressurized bag ruptures as shown by reference numeral 26 in FIG. 2F due to the increased pressurizing force.

以上の不具合をなくすためには、まずあらかじ
め加圧袋を各コーナー部に密着させることが必要
である。そのために、加圧袋自身の剛性をやや高
くして加圧袋自体でその形状を保ち、最初から最
終形状にする方法が、特開昭54―13571号(特願
昭52―78631号)によつて提案されている。この
方法ではあらかじめ加圧袋の形状を精確に成形す
るための成形型が必要となる。このため、次のよ
うな問題が生じる。即ち、航空機の如き、多品種
少量生産の場合、成形型も何種類も準備する必要
があり、高価になる。また、わずかな小部品の設
計変更にも、型を作りなおす必要が生ずる。通
常、外形は空気力学的、又は構造上の要求によつ
て定められ、複合材構造物の肉厚や配置も力学的
要求によつて決められるので、内側の形状はきわ
めて複雑なものになる。このような複雑な形状を
持つ型の製作には多額の費用を必要とする。そし
て、そのような複雑な形状をつくるための内型の
各部品の寸法にはばらつきがあると、それは内型
全体で次々と累積されてゆくので、内型の寸法精
度は悪くならざるを得ず、かならずしも前記不具
合を解決するとはいえなかつた。
In order to eliminate the above-mentioned problems, it is first necessary to bring the pressurized bag into close contact with each corner portion in advance. For this purpose, a method was proposed in JP-A-54-13571 (Japanese Patent Application No. 52-78631) that made the pressure bag itself slightly more rigid so that it could maintain its shape and form the final shape from the beginning. It has been proposed. This method requires a mold to accurately shape the pressurized bag in advance. This causes the following problems. That is, in the case of high-mix low-volume production such as aircraft, it is necessary to prepare many types of molds, which increases the cost. Furthermore, even slight design changes to small parts require the mold to be remade. Typically, the outer shape is determined by aerodynamic or structural requirements, and the wall thickness and placement of the composite structure are also determined by mechanical requirements, making the inner shape extremely complex. Manufacturing a mold with such a complicated shape requires a large amount of cost. If there are variations in the dimensions of each part of the inner mold to create such a complex shape, this will accumulate throughout the entire inner mold, and the dimensional accuracy of the inner mold will inevitably deteriorate. However, it could not necessarily be said that the above-mentioned problems could be solved.

更に、特開昭54―13571号の方法では、加力袋
自体によつて複合材構造物の内部形状を決めるよ
うに被成形物を内側から支えるので、袋を軟弱で
ないようにするために、ある程度厚いフイルムを
用いる必要があり、その特許公開報の発明でも
0.1mm以上としている。しかし、小型機の構造物
では、これでも重いといえる。また、加圧袋の形
状と、複合構造物の形状が不一致の場合、加圧袋
がつぶれ、形が大きく狂うことがある。そして加
圧袋は比較的厚いので、小半径の角部などは袋自
身が圧力を支持し、複合材構造物に圧力がかから
ず、気泡のある製品ができることもあつた。
Furthermore, in the method of JP-A-54-13571, since the material to be formed is supported from the inside so that the internal shape of the composite material structure is determined by the force-applying bag itself, in order to prevent the bag from becoming soft, It is necessary to use a film that is somewhat thick, and even with the invention disclosed in the patent publication,
It is set to be 0.1mm or more. However, even this can be said to be heavy for the structure of a small aircraft. Further, if the shape of the pressure bag and the shape of the composite structure do not match, the pressure bag may be crushed and the shape may be greatly distorted. Since the pressurized bag is relatively thick, the bag itself supports the pressure at corners with a small radius, and no pressure is applied to the composite structure, resulting in a product with bubbles.

また、加圧袋として、薄い熱可塑性プラスチツ
クフイルムを用いこれを分解組立式の型にかぶせ
た後、内部に挿入するという方法がある。しか
し、この方法にも次のような欠点がある。すなわ
ち、複合材構造物の成形完了後、この型を開口部
より引き抜くことが必要になるが、このため、非
常に複雑な構成の型を必要とした。例えば、傘の
ように展開、折りたたみのできるようにした型と
か、寄せ木細工のように分割可能にするとか、ま
た例えば石こうで型を作り成形完了後、開口部か
ら棒でつついて、石こうを破壊して取り去る等の
方法もあつた。しかし、これらの方法はいずれ
も、特開昭54―13571号の場合と同様に、型その
ものを製作するのに非常に手間がかかる。特に、
航空機の翼のように外形は空気力学的に決めら
れ、部材の構造や厚さは強度的に決められる場
合、内部の寸法、形状はきわめて複雑な形状にな
るが、このような複雑な外形を持つ型を作ること
か困難で多額の費用を必要とし、そして、型自体
の熱容量が大きく、加熱成形時の温度分布がムラ
になり、その温度のムラは、成形物の歪や、強度
のばらつきを大きくする。更に、試作時の設計変
更に対して、型の修正に多額の費用と時間を必要
とする。また、型が複雑であるため、複合材料構
造物と干渉することも多く、薄い加圧袋を傷つけ
て破裂させたり、内部構造をゆがませてしまうこ
ともある。
Another method is to use a thin thermoplastic film as the pressurized bag, cover it with a mold that can be disassembled, and then insert it inside. However, this method also has the following drawbacks. That is, after the molding of the composite material structure is completed, it is necessary to pull out the mold from the opening, which requires a mold with a very complicated structure. For example, you can make a mold that can be expanded and folded like an umbrella, or it can be divided like parquet, or you can make a mold out of plaster and after the molding is completed, break the plaster by poking it with a stick through the opening. There were other methods such as removing it. However, in all of these methods, as in the case of JP-A-54-13571, it is very time-consuming to produce the mold itself. especially,
When the external shape of an aircraft wing is determined by aerodynamics, and the structure and thickness of the parts are determined by strength, the internal dimensions and shape become extremely complex. It is difficult and expensive to make a mold that holds the mold, and the heat capacity of the mold itself is large, resulting in uneven temperature distribution during hot molding. Make it bigger. Furthermore, it requires a large amount of money and time to modify the mold in response to design changes during prototype production. Additionally, because the mold is complex, it often interferes with the composite material structure, damaging the thin pressurized bag and causing it to burst, or distorting the internal structure.

更に、第3A図に示す如く、内部がウエブ14
のような隔壁で仕切られた立体構造物の内部に成
形硬化終了後に発泡性材料28を注入して発泡さ
せて、内部を発泡材料で満たすような場合、従来
のウエブはその構造上座屈強度が低いため、第3
B図に示す如く、発泡性材料が発泡して膨張する
ときの圧力Pでウエブ14がたわむ。このように
ウエブ14がたわめば、たとえ周囲を金型10及
び18で囲んでいても、外形が歪むのは避けられ
ない。
Furthermore, as shown in FIG. 3A, the inside is made of a web 14.
When the foamable material 28 is injected into the interior of a three-dimensional structure partitioned by partition walls and foamed after molding and hardening to fill the interior with the foamed material, the buckling strength of the conventional web is low due to its structure. Because it is low, the third
As shown in Figure B, the web 14 is bent by the pressure P when the foamable material foams and expands. If the web 14 bends in this way, it is inevitable that the outer shape will be distorted even if the web 14 is surrounded by the molds 10 and 18.

そこで、本発明は、前述した様々な欠点を解消
して、安価で且つ高精度で複合材桁構造物を製造
できる方法を提供せんとするものである。
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide a method for manufacturing a composite girder structure at low cost and with high precision by eliminating the various drawbacks mentioned above.

更に、本発明は、一回で成形でき且つ内部形状
を高精度で希望の形にできる複合材桁構造物の製
造方法を提供せんとするものである。
Furthermore, it is an object of the present invention to provide a method for manufacturing a composite girder structure that can be molded in one step and can have a desired internal shape with high precision.

また、本発明は、加圧袋の破裂の心配なく且つ
加圧袋が薄くてよい複合材桁構造物の製造方法を
提供せんとするものである。
Further, the present invention aims to provide a method for manufacturing a composite material girder structure without worrying about the pressure bag bursting and which allows the pressure bag to be thin.

そしてまた、本発明は、加圧袋を内部形状と同
一の形につくる必要のない複合材桁構造物の製造
方法を提供せんとするものである。
Another object of the present invention is to provide a method for manufacturing a composite girder structure that does not require the pressurized bag to have the same shape as the internal shape.

即ち、本発明による複合材桁構造物の製造方法
は、所要の形状を与える剛性金型の中に、合成樹
脂と強化繊維からなる上下のフランジ部材材料
と、合成樹脂と強化繊維からなりフランジ部材材
料との間に小空間をつくるようにフランジ部材材
料に接合するウエブ部材材料と、フランジ部材材
料とウエブ部材材料との間の前記小空間に、底面
がフランジ部材材料に接するように置かれる隅部
材と、フランジ部材材料とウエブ部材材料との間
に置かれる薄い加圧袋とを封入し、その加圧袋の
内部を加圧しつつ加熱成形し、そして、前記隅部
材は、成形された桁構造物の上下のフランジ間距
離の2割以上の高さを持ち、且つ、成形された桁
構造物の上下のフランジ部材間の距離を直径とし
て互に接する2つの仮想円の各々にそれぞれの側
面が接するような断面がほぼ三角形の形状になさ
れていることを特徴とする。
That is, in the method for manufacturing a composite girder structure according to the present invention, upper and lower flange member materials made of synthetic resin and reinforcing fibers, and flange members made of synthetic resin and reinforcing fibers are placed in a rigid mold giving a desired shape. A web member material joined to the flange member material to create a small space between the web member material and a corner placed in the small space between the flange member material and the web member material so that the bottom surface is in contact with the flange member material. The member and a thin pressurized bag placed between the flange member material and the web member material are enclosed, and the inside of the pressurized bag is heated and molded while pressurizing, and the corner member is attached to the molded girder. Each side surface of two imaginary circles that have a height of 20% or more of the distance between the upper and lower flanges of the structure and that touch each other with the distance between the upper and lower flange members of the molded girder structure as the diameter. It is characterized by having a nearly triangular cross section where the two touch each other.

以上のような方法によれば、隅部材が、成形桁
構造物の上下のフランジ部材間距離の2割以上の
十分な高さを持ち、且つその上下フランジ部材間
距離を直径として互に接する2つの仮想円の各々
にそれぞれの側面が接するようなほぼ三角形に断
面がなされているので、隅部材は、内部加圧され
ている加圧袋を自然な形で十分支えることがで
き、互に隣接する加圧袋の一方が他方を押しのけ
るようにウエブを傾けたりすることがなく、従つ
て、内部形状を希望の形にすることができる。更
に加圧袋は隅部材によつて自然な形で支えられる
ので、空洞ができやすいコーナー部はなく、ま
た、加圧袋の破裂の心配はなく、且つ十分薄くす
ることができる。このように加圧袋を薄くできれ
ば、圧力はどのようなところにも伝達され、従つ
て、加圧袋の入口を極端に小さくできる。そし
て、内部形状はフランジ部材と隅部材とによつて
主に規定され且つ加圧袋は自然な形で加圧膨張さ
せられるので、加圧袋を内部形状通りに正確に作
る必要はない。そしてまた、内型の必要がないの
で、構造物内部の設計変更しても、外形の変更が
なければ、何ら特別の治具を用いることなく簡単
につくることができる。更に、複合材構造物はそ
の異方性のために成形歪が避けられないが、一回
で立体的な剛性の高い構造物を製作できるので、
外形の精度がよく、特に航空機の翼など高性能が
要求されるものの製造に効果を発揮できる。
According to the method described above, the corner members have a sufficient height of 20% or more of the distance between the upper and lower flange members of the molded girder structure, and are in contact with each other with the distance between the upper and lower flange members as a diameter. Since the corner members have a substantially triangular cross section with each side touching each of the two virtual circles, the corner members can sufficiently support the internally pressurized pressure bag in a natural shape, and The webs are not tilted so that one of the pressurized bags displaces the other, and therefore the internal shape can be shaped as desired. Furthermore, since the pressure bag is supported in a natural manner by the corner members, there are no corners where cavities are likely to form, there is no fear of the pressure bag bursting, and it can be made sufficiently thin. If the pressure bag can be made thin in this way, pressure can be transmitted anywhere, and therefore the entrance of the pressure bag can be made extremely small. Further, since the internal shape is mainly defined by the flange member and the corner member, and the pressurized bag is pressurized and expanded in a natural manner, it is not necessary to make the pressurized bag exactly according to the internal shape. Further, since there is no need for an inner mold, even if the internal design of the structure is changed, the structure can be easily manufactured without using any special jig as long as the external shape remains unchanged. Furthermore, although molding distortion is unavoidable in composite structures due to their anisotropy, it is possible to fabricate three-dimensional structures with high rigidity in one go.
It has good external precision and is particularly effective in manufacturing items that require high performance, such as aircraft wings.

本発明の製造方法の実施態様によれば、隅部材
は、頂角が直角な二等辺三角形の断面形状を有し
ていてもよく、また、隅部材の各側面は、なめら
かな凹曲面をなしていても、または、ヘこむよう
に互に鈍角をなして接する2つの平面を有してい
てもよい。更に、隅部材は、中空球を樹脂で固め
た材料で作られていてもよい。この場合、中空球
には、例えばガラスで作られたものがある。そし
てまた、隅部材は、熱硬化性発泡材で作られても
よい。
According to an embodiment of the manufacturing method of the present invention, the corner member may have an isosceles triangular cross-sectional shape with a right angle apex, and each side surface of the corner member has a smooth concave curved surface. Alternatively, it may have two planes that touch each other at an obtuse angle so as to be concave. Furthermore, the corner members may be made of a material made of hollow spheres hardened with resin. In this case, the hollow sphere may be made of glass, for example. And also, the corner members may be made of thermosetting foam.

以下、添付図面を参照して本発明による方法の
実施例を説明する。
Embodiments of the method according to the invention will now be described with reference to the accompanying drawings.

第4A図から第4F図は、本発明の方法により
航空機の固定翼を作る工程を示すものである。ま
ず、第4A図に示す如く、外形を与える金型の下
型30の上に、45゜の方向に繊維の方向が向くよ
うに外皮材料32をおく。この外皮材料は、例え
ば、強化繊維を含む合成樹脂シートである。その
上に、連続繊維と合成樹脂とからなり繊維方向の
みに強い一方向材料層よりなる未硬化の主桁部材
材料34と、ハニカム材料36とからなるフラン
ジ部材材料を重ね、更に、第4B図に示す如く、
内側の外皮材料38を重ねる。そして、主桁部材
材料34の上に、断面がほぼ三角形の隅部材40
をのせ、更に、ウエブ部材材料42を第4C図の
如くのせる。そのあと、ウエブ部材材料42の間
に、薄いフイルムで作られた加圧袋44を第4D
図の如く挿入する。そのように用意された下型3
0の上に、ウエブ部材材料を除く各材料が下型と
同様に積層された上型46を第4E図の如く重ね
て、閉じる。そして、金型30と46の内部を減
圧して、未硬化の主桁部材材料34及びハニカム
材料36等を金型内に押し付け且つ予定の位置に
落ち付かせる。そのあと、加圧袋44に圧力を加
えつつ、金型30及び46を加熱して、成形す
る。そして、金型を外すと、第4F図の断面部分
図の如き断面を持つ翼ができ上がる。
Figures 4A to 4F illustrate the process of making a fixed wing for an aircraft according to the method of the present invention. First, as shown in FIG. 4A, a skin material 32 is placed on a lower die 30 of a mold giving an outer shape so that the fibers are oriented at 45 degrees. This outer skin material is, for example, a synthetic resin sheet containing reinforcing fibers. On top of that, an uncured main girder member material 34 made of a unidirectional material layer made of continuous fibers and synthetic resin and strong only in the fiber direction, and a flange member material made of a honeycomb material 36 are layered, and further, as shown in FIG. 4B. As shown in
Layer the inner skin material 38. A corner member 40 having a substantially triangular cross section is placed on top of the main girder member material 34.
Then, the web member material 42 is placed as shown in FIG. 4C. After that, a pressure bag 44 made of a thin film is placed between the web member materials 42 in the fourth D.
Insert as shown. Lower mold 3 prepared as such
An upper mold 46, in which each material except the web member material is laminated in the same way as the lower mold, is placed on top of the mold 46 as shown in FIG. 4E, and the upper mold 46 is closed. Then, the pressure inside the molds 30 and 46 is reduced to force the uncured main spar member material 34, honeycomb material 36, etc. into the molds and allow them to settle at predetermined positions. Thereafter, the molds 30 and 46 are heated and molded while applying pressure to the pressure bag 44. Then, when the mold is removed, a wing having a cross section as shown in the partial cross-sectional view of FIG. 4F is completed.

そして以上の如き方法において使用する隅部材
は、上下のフランジ部材間距離Hの2割以上の高
さを有している例えば断面二等辺直角三角形であ
る。即ち、第6A図及び第6B図を参照して説明
するならば、距離Hのフランジ部材48及び50
の間で加圧袋44A及び44Bを加圧膨張させる
ならば、加圧袋の端は始め直径Hの円を描く。そ
して、加圧袋44A,44Bは必ずしも内容積は
同一ではないので、膨張速度は同じではない。従
つて、隅部材40が小さいと、第6B図の如く、
隅部材を結ぶ線Aを越えて一方の加圧袋44Aが
他方の加圧袋44Bの側に入り込んで、2つの加
圧袋が接触する。この状態で更に加圧すると、加
圧袋は、参照番号42A及び42Bで示す如くに
ウエブ部材材料を押しつけ、ウエブ部材が、隅部
材を結ぶ線からはずれた位置にきてしまい且つ空
胴部52もできる。一方、隅部材を大きくして、
その両側面が直径Hの仮想円に接するようにする
と、第6A図に示す如く、隅部材は、自然な形に
膨張した加圧袋の端即ち直径Hの円を描く加圧袋
の端をその形を保つように拘束する。従つて、加
圧袋の膨張速度が異なつても、早く膨張する加圧
袋44Aは第6A図の如く隅部材40により拘束
される。従つて、その時、他方の加圧袋44Bが
十分膨張していなくとも、加圧されるに従いその
加圧袋44Bも参照番号44bで示されるように
隅部材を結ぶ線Aまで膨張する。従つて、ウエブ
部材は隅部材を結ぶ線A上に常に位置させること
ができ、且つ、傾斜することもない。この隅部材
の高さは、様々な実験の結果、0.2H以上あるこ
とが必要であることがわかつた。
The corner members used in the above method have a height that is 20% or more of the distance H between the upper and lower flange members, and have, for example, an isosceles right triangular cross section. That is, referring to FIGS. 6A and 6B, flange members 48 and 50 of distance H
If the pressure bags 44A and 44B are inflated under pressure between the two ends, the ends of the pressure bags initially draw a circle with a diameter H. Since the pressurized bags 44A and 44B do not necessarily have the same internal volume, their inflation speeds are not the same. Therefore, if the corner member 40 is small, as shown in FIG. 6B,
One pressure bag 44A enters the other pressure bag 44B beyond the line A connecting the corner members, and the two pressure bags come into contact. If further pressure is applied in this state, the pressurized bag presses the web member material as shown by reference numerals 42A and 42B, and the web member is in a position deviated from the line connecting the corner members and the cavity 52. You can also do it. On the other hand, by increasing the size of the corner members,
When both sides thereof touch an imaginary circle with a diameter H, the corner member will touch the end of the pressurized bag that is inflated in a natural shape, that is, the end of the pressurized bag that draws a circle with a diameter H, as shown in FIG. 6A. Restrain it to keep its shape. Therefore, even if the inflation speeds of the pressure bags are different, the pressure bag 44A that expands faster is restrained by the corner member 40 as shown in FIG. 6A. Therefore, even if the other pressure bag 44B is not fully inflated at that time, as it is pressurized, the pressure bag 44B will also expand to the line A connecting the corner members, as shown by reference numeral 44b. Therefore, the web member can always be positioned on the line A connecting the corner members and will not be tilted. As a result of various experiments, it was found that the height of this corner member needs to be 0.2H or more.

更に、この隅部材は次のような効果も発揮す
る。
Furthermore, this corner member also exhibits the following effects.

材料力学によれば円筒状の内圧容器に作用する
円周方向の膜応力σは、内圧をp膜厚をt、半径
をRとしたとき σ=pR/t で与えられる。単位巾当りの薄膜が、膨張しよう
とする力Fは F=σt=pR である。
According to the mechanics of materials, the membrane stress σ in the circumferential direction acting on a cylindrical internal pressure vessel is given by σ=pR/t, where p is the internal pressure and t is the membrane thickness, and R is the radius. The force F that causes the thin film to expand per unit width is F=σt=pR.

したがつて、第7図の如く、加圧袋44の半径
が大きい場合には、膜がフランジ部材48,50
に沿つて膨張しようとする力Fも大きく、加圧袋
44にシワ54などがあつても、これを引き伸ば
すほどの力を持つている。
Therefore, when the radius of the pressure bag 44 is large as shown in FIG.
The force F that tends to expand along the .

一方、第7B図の如く、膜が十分伸びて、偶の
方に小さな半径の部分が残る様になると、この部
分の膜力F′は、偶の曲率半径をrとするとprにす
ぎず、膜に作用する粘着力やまさつ力とつり合う
様になると、たとえ加圧袋の寸法に十分余裕があ
つても、これ以上は膨張しない。それは、圧力上
昇にともなつて、加圧袋がますます強く複合材料
に押しつけられ、袋に作用するまさつ力(粘着
力)も大きくなり、膜力F′につりあうからであ
る。
On the other hand, as shown in Fig. 7B, when the membrane is sufficiently stretched so that a portion with a small radius remains on the even side, the membrane force F' of this portion is only pr, where r is the radius of curvature of the even side. Once the adhesive force and the tension force acting on the membrane are balanced, it will not expand any further, even if the pressure bag has sufficient dimensions. This is because as the pressure increases, the pressurized bag is pressed more and more strongly against the composite material, and the sheer force (adhesive force) acting on the bag also increases to balance the membrane force F'.

すなわち、まさつ係数をμ、加圧袋と複合材の
接触長さLとするとまさつ力FFは FF=μpL である。一方、膜力は先にも述べたように F=pR である。膜が膨張するためにはF>FFであるこ
とが必要だが F―FF=pR―μpL=p(R―μL)>0 となつて、圧力pには関係なく、R=μLの状態
で停止する。更に考えるならば、まさつ係数μは
未硬化の樹脂の場合一般的に言われるような一定
の値ではなく、温度(すなわち樹脂の粘度)によ
つて変化する。なお、常温であれば、加圧袋の最
小半径は、圧力が数気圧になつても、あまり変化
しない。すなわち、常温では加圧袋の材料である
熱可塑性プラスチツクフイルムはかなりの強度を
持つているし、複合材料の樹脂も粘着力が大き
く、比較的大きな半径rの状態でつり合つてい
る。
That is, assuming that the massing coefficient is μ and the contact length between the pressure bag and the composite material is L, the massing force F F is F F =μpL. On the other hand, as mentioned earlier, the membrane force is F=pR. In order for the membrane to expand, it is necessary that F> FF , but F-F F = pR-μpL=p(R-μL)>0, so R = μL regardless of the pressure p. Stop at. If you think about it further, the mass coefficient μ is not a constant value as is generally said in the case of uncured resins, but changes depending on the temperature (ie, the viscosity of the resin). Note that at room temperature, the minimum radius of the pressurized bag does not change much even when the pressure reaches several atmospheres. That is, at room temperature, the thermoplastic film that is the material of the pressurized bag has considerable strength, and the resin of the composite material also has high adhesive strength, and is balanced with a relatively large radius r.

これをオートクレーブに入れて圧力を増大さ
せ、加熱してゆくと、熱可塑性プラスチツクは軟
化し、膜は再び少しづつ膨張を始める。一方、温
度上昇にともなつて複合材料の樹脂も粘度を下
げ、互いにズレ動くことになる。加熱は急激には
行なわれないので、このプロセスはゆつくりとし
た速度で進展する。このときに、先に述べたよう
な不具合が従来の場合色々な形で出現する。しか
し、本発明では、隅部材が加圧袋の半径を大きく
保ち、常温、低圧力の状態で加圧袋を加圧したと
きにほとんど最終形状に近い形状になるようにし
ているので、前記不具合は発生せず、内部構造も
安定する。
When this is placed in an autoclave, the pressure is increased, and the thermoplastic is heated, the thermoplastic softens and the membrane begins to expand again little by little. On the other hand, as the temperature rises, the viscosity of the resins in the composite material also decreases, causing them to shift relative to each other. Since the heating is not rapid, the process develops at a slow rate. At this time, the above-mentioned problems appear in various forms in the conventional case. However, in the present invention, the corner members keep the radius of the pressure bag large so that when the pressure bag is pressurized at room temperature and low pressure, it takes on a shape that is almost close to the final shape. will not occur and the internal structure will be stable.

以上の如き機能を隅部材が十分発揮するために
は、隅部材は、成形時の圧力と温度に耐えられ、
且つ、ウエブを支持し、座屈を防止できなければ
ならない。このためには圧縮剛性がある程度なく
てはならない。そこで、隅部材は、例えば、微少
なガラスの中空球(ガラスマイクロバルーン)を
樹脂で固めた成形物でつくる。これは、静水圧的
な圧力に非常に強い特性を持ち、且つ軽量である
ので、好ましい材料である。更に、この材料は、
容易に加工できるので、ブロツクから切削加工し
て切出すこともでき、また、所要の形状を持つ型
に注型することもできる。マイクロバルーンは、
ガラスに限らず、フエノールやシラス等の材料で
作られたものでもよい。また、隅部材は、例え
ば、発泡密度の比較的高い熱硬化性樹脂、例えば
ウレタンフオームの発泡材から切り出したり、ま
たは型に注入してつくつてもよい。更にまた、例
えば、複合材料自身を所要の形状に成形しておい
て、隅部材とすることも可能であり、更に一方向
材を用いて、繊維方向を荷重方向にすれば、引張
り荷重の大きな構造物では効果がある。
In order for the corner members to fully exhibit the above functions, the corner members must be able to withstand the pressure and temperature during molding, and
Additionally, it must be able to support the web and prevent buckling. For this purpose, a certain degree of compressive stiffness is required. Therefore, the corner member is made of, for example, a molded product made of a minute glass hollow sphere (glass microballoon) hardened with resin. This is a preferred material because it has very strong hydrostatic pressure properties and is lightweight. Furthermore, this material
Since it can be easily processed, it can be cut out from a block by cutting, or it can be cast into a mold with the desired shape. The micro balloon is
It is not limited to glass, and may be made of materials such as phenol and shirasu. Further, the corner members may be made by cutting out a foamed material of a thermosetting resin having a relatively high foaming density, such as urethane foam, or by pouring it into a mold. Furthermore, for example, it is possible to form the composite material itself into a desired shape and use it as a corner member.Furthermore, if a unidirectional material is used and the fiber direction is the load direction, it can be used to handle large tensile loads. Effective for structures.

以上の如き隅部材を使用する本発明の方法によ
れば、複合材構造物の外部形状だけでなく、内部
構造も正確に定まる。従つて、構造のばらつきが
少ない高品質の製品ができる。更に、加圧袋はそ
の自然な膨張形に保持されるので、加圧袋の破裂
などの不具合がなくなる。加圧袋が破裂すれば、
どのような小さな穴であつても、加圧力は激減し
構造物は全く、その形を成し得なくなる。特に、
複合材料では、一度硬化した樹脂は二度と軟化さ
せることができない熱硬化性樹脂を用いることが
多いので、破裂するということは、その構造物の
全ての部品がスクラツプになることを意味してお
り被害は甚大である。
According to the method of the present invention using the corner members as described above, not only the external shape but also the internal structure of the composite material structure can be determined accurately. Therefore, high quality products with less variation in structure can be produced. Furthermore, because the pressurized bag is maintained in its natural inflated configuration, problems such as bursting of the pressurized bag are eliminated. If the pressure bag ruptures,
No matter how small the hole is, the pressing force will be drastically reduced and the structure will no longer be able to take its shape. especially,
Composite materials often use thermosetting resins, which cannot be softened once they harden, so a rupture means that all parts of the structure are scrapped, causing no damage. is enormous.

更に、加圧袋の製作が簡単で安価である。本発
明の方法によれば、加圧袋にはあらかじめ特別な
形を与える必要がない。単に内周寸法にほぼ一致
するか、大き目の袋を作つておけば良く、大き過
ぎて内部に袋のシワができても薄いフイルムであ
るから重量損失もきわめて少ない。したがつて、
成形に必要な治具としては外形を与える金型だけ
で良く、安価である。特に、航空機の翼の如き構
造物では、外形が複雑な曲面であるというだけで
なく、その寸法精度もきわめて厳しいので、成形
金型製作には巨額の費用を要する。さらに、構造
物の厚さや内部構造に、軽量化を第一としている
関係上、きわめて複雑な変化をする場合がある。
したがつて、構造物の内部寸法は非常に複雑なも
のとなるので、加圧袋に製造上の制約のある方法
は、逆に重量の増大や費用の増加をもたらすこと
になる。従つて、この本発明の特徴は、航空機の
翼などの製造に特に適している。
Furthermore, the pressurized bag is easy and inexpensive to manufacture. According to the method of the invention, there is no need to give the pressurized bag a special shape in advance. Simply make a bag that roughly matches the inner circumference or is larger, and even if the bag is too large and wrinkles form inside, the weight loss is extremely small because the film is thin. Therefore,
The only jig required for molding is a mold that gives the outer shape, and it is inexpensive. In particular, structures such as aircraft wings not only have a complex curved outer shape, but also have extremely strict dimensional accuracy, so manufacturing a mold requires a huge amount of cost. Furthermore, the thickness and internal structure of the structure may undergo extremely complex changes because weight reduction is the top priority.
Therefore, since the internal dimensions of the structure are very complex, methods that impose manufacturing constraints on the pressurized bag will result in increased weight and cost. Therefore, this feature of the invention is particularly suitable for manufacturing aircraft wings and the like.

この特徴は、単に加圧袋自身の加工費用のみに
とどまらない。例えば、複雑な内部形状の構造物
でも、加圧袋の形状は直線状で良い。すなわち、
本発明の方法は、単に桁構造部分の製造が容易に
なるだけではなく、従来、不定形加圧袋を用いた
一体成形法の問題点であつた桁構造部分の成形上
の問題をも解決して、一体成形法が真に実用的な
ものとなり、そのいくたの効果が生かされること
になつた。
This feature is not just limited to the processing cost of the pressurized bag itself. For example, even if the structure has a complicated internal shape, the pressurized bag may have a linear shape. That is,
The method of the present invention not only facilitates the manufacture of the girder structure, but also solves the problem of molding the girder structure, which was a problem with the conventional integral molding method using an irregularly shaped pressurized bag. As a result, the integral molding method became truly practical, and many of its effects were put to use.

更に、本発明によれば、構造物を設計変更して
も、外形の変更をともなわない場合には、何ら変
更する治工具はなく、試作が容易で優れた製品を
短時間に安価に提供できる。例えば、ウエブの数
が増加しても、加圧袋は簡単に作れ、治工具も増
加しない。治工具は、先にも述べた如く、高価で
あるだけではなく、耐及力の問題もある。治工具
の数が増加すれば、それらの耐及力の問題は急激
に増大する。
Further, according to the present invention, even if the design of a structure is changed, if the external shape is not changed, there are no jigs or tools required to make the change, and it is possible to easily produce prototypes and provide excellent products in a short time and at low cost. . For example, even if the number of webs increases, pressurized bags can be easily made without increasing the number of jigs and tools. As mentioned above, jigs and tools are not only expensive, but also have the problem of durability. As the number of jigs and tools increases, the problem of their durability increases rapidly.

そしてまた、加圧袋に接着性熱可塑性フイルム
を使用すると、内部に接着され、除去する必要が
ない。構造物の奥行きが深く、複雑な場合は、た
とえ、十分な離型処理を施してあつても、加圧袋
は簡単には除去できないので、これは、好ましい
特徴といえる。更に成形後も加圧袋がそのまま構
造物内部に接着してしまえば、除去にともなう不
具合がないだけでなく、内部から湿気が侵入する
のを防止して、耐候性を向上させることもでき
る。加圧袋は薄いフイルムでよいので、圧力はど
のように狭い空間でも伝達され、加圧袋の入口が
極端に小さくてもさしつかえない。通常、開口部
の大きさは小さく制限されることが多いので、本
発明の方法はこの点で複合材構造物の設計に広範
囲の自由度を与えることができる。しかし、加圧
袋の除去が容易にできるような比較的奥行きの浅
い構造物では、加圧袋の材料として接着性のない
耐熱性プラスチツクフイルムや、耐熱ゴムシート
でも使用可能である。
And also, when an adhesive thermoplastic film is used in the pressure bag, it is glued inside and does not need to be removed. This is a desirable feature because if the structure is deep and complex, the pressurized bag cannot be easily removed, even with sufficient demolding treatment. Furthermore, if the pressure bag is adhered to the inside of the structure after molding, not only will there be no problems associated with removal, but it will also be possible to prevent moisture from entering from the inside and improve weather resistance. Since the pressurized bag can be a thin film, pressure can be transmitted no matter how narrow the space, and it does not matter even if the entrance of the pressurized bag is extremely small. Since the size of the opening is usually limited to a small size, the method of the present invention can provide a wide range of flexibility in the design of composite structures in this respect. However, in a relatively shallow structure where the pressure bag can be easily removed, non-adhesive heat-resistant plastic film or heat-resistant rubber sheet can also be used as the material for the pressure bag.

また、本発明の方法によれば、複合材構造物
は、その異方性のために成形歪をさけることがで
きないが、一回で立体的な剛性の高い構造物を製
作できるので、外形の精度が良く、航空機の翼な
どでは高い性能を発揮する。
In addition, according to the method of the present invention, although molding distortion cannot be avoided due to the anisotropy of the composite material structure, it is possible to fabricate a three-dimensional structure with high rigidity in one step, so the external shape can be reduced. It has good accuracy and exhibits high performance on aircraft wings.

更に本発明の方法によれば、ウエブの座屈強度
が増大する。
Additionally, the method of the invention increases the buckling strength of the web.

すなわち、第9A図において、ウエブの剪断座
屈強度τCRは、 τCR=KE(t/h)2 E:材料のヤング率 K:座屈条件によつて与えられる定数 で与えられ、ウエブ高さhが高くなれば座屈強度
は急激に低下する。金属材料では、ウエブが座屈
してシワが入つてもさらに高い応力に耐えるとし
て、設計するが、複合材料では、それはできない
ので、ウエブを波板状にして座屈強度を上げる
か、又は第9B図の如くハニカムサンドイツチ構
造56とすることがある。しかし、本発明によれ
ば、第4F図の如くウエブ高さhは、隅部材のた
めにフランジ部材間距離の3/5以下となるから、 座屈強度τCRは、少なくとも4倍近く増加する。
したがつて、波板状やハニカムサンドイツチ構造
とせずとも、単なる平板状でも耐えることがで
き、構造が単純化し、成形が楽になる。
That is, in Fig. 9A, the shear buckling strength τ CR of the web is given by τ CR = KE (t/h) 2 E: Young's modulus of the material K: a constant given by the buckling condition, and the web height As the height h increases, the buckling strength decreases rapidly. Metal materials are designed to withstand higher stress even if the web buckles and wrinkles, but this is not possible with composite materials, so the web is designed to have a corrugated shape to increase its buckling strength, or As shown in the figure, a honeycomb sandwich structure 56 may be used. However, according to the present invention, as shown in Fig. 4F, the web height h is 3/5 or less of the distance between the flange members due to the corner members, so the buckling strength τ CR increases by at least 4 times. .
Therefore, even a simple flat plate structure can be used without a corrugated plate structure or a honeycomb sandwich structure, simplifying the structure and making molding easier.

すなわち、複雑な形状のウエブを用いれば、一
体成形製造法は適用できないが、本発明の方式で
は強度上の制約もなく、優れた利点を持つ一体成
形法を適用することができる。
That is, if a web with a complicated shape is used, the integral molding manufacturing method cannot be applied, but with the method of the present invention, there are no restrictions on strength, and the integral molding method, which has excellent advantages, can be applied.

更に、第4G図の如く、ハニカム材料を使用せ
ずに、外皮32とウエブ42の間の空洞部に、成
形後発泡材料を注入して発泡させても、ウエブ高
さが低く、かつ全体として圧力に耐える形状にな
つているので、ウエブがたわんだりして全体の形
状が歪むような不具合がない。
Furthermore, as shown in FIG. 4G, even if the foam material is injected and foamed into the cavity between the outer skin 32 and the web 42 after molding without using the honeycomb material, the height of the web is low and the overall height is low. Since the shape is designed to withstand pressure, there is no problem of the web bending or distorting the overall shape.

以上、本発明の実施例を説明したが、隅部材4
0は、例えば、第8A図の如く、直角二等辺三角
形の二辺を、加圧袋の自然な形状に近い円弧状の
なめらかな凹曲面とすることも可能である。ま
た、隅部材を、第8B図の如く、上部分40aと
下部分40bの二個の部分に分割し、下の部分4
0bには、ハニカムコアを用いて軽量化を図ると
いう構成も考えられる。この場合、部分40aと
40bの側面は、へこむように互に鈍角をなして
いる。
Although the embodiments of the present invention have been described above, the corner member 4
For example, as shown in FIG. 8A, the two sides of the right-angled isosceles triangle can be a smooth concave curved surface in the shape of an arc, which is close to the natural shape of the pressure bag. In addition, the corner member is divided into two parts, an upper part 40a and a lower part 40b, as shown in FIG. 8B, and the lower part 40a is divided into two parts.
For 0b, a configuration in which a honeycomb core is used to reduce the weight is also considered. In this case, the side surfaces of the portions 40a and 40b form an obtuse angle to each other so as to be concave.

また、本発明の上記実施例では、全ての翼構造
部分を1回で成形したが、例えば、翼内部の点検
のため開口部が必要な場合には、第5A図及び第
5B図の如く、曲げ強度に影響ない部分を一部切
欠いて開口部58を作ることが考えられる。この
ように配置することにより、翼構造としての剛性
はほとんど確保され、一体成形による高精度の外
形は十分保たれる。
In addition, in the above embodiment of the present invention, all the wing structural parts were molded in one step, but for example, if an opening is required for inspecting the inside of the wing, as shown in FIGS. 5A and 5B, It is conceivable to create the opening 58 by cutting out a portion of the portion that does not affect the bending strength. By arranging it in this way, the rigidity of the wing structure is almost ensured, and the high precision external shape achieved by integral molding is sufficiently maintained.

以上述べたように、本発明によれば、内部構造
に高い外形精度を要求する構造物を、高価な治具
を使うことなく、わずかな費用で製造することが
可能になつた。また、本発明の方法は、その精神
を脱することなく種々の変形を行なうことがで
き、その構造が簡単で済み、成形も容易で安価に
提供できるなど実用性極めて大である。
As described above, according to the present invention, it has become possible to manufacture a structure requiring high external precision in its internal structure at a small cost without using expensive jigs. Furthermore, the method of the present invention can be modified in various ways without departing from its spirit, has a simple structure, is easy to mold, and can be provided at low cost, making it highly practical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図及び第1B図並びに第2A図から第2
F図は、中空の複合材構造物を製造する従来の方
法を図解する図、第3A図及び第3B図は、従来
の構造物内を発泡材料を満す例を図解する図、第
4A図から第4F図は、本発明による方法の各工
程を示す図、第4G図は、発泡材料を充填した本
発明により作られた構造物の断面図、第5A図及
び第5B図は、本発明により作られる別の桁構造
物の斜視図と断面図、第6A図及び第6B図は、
隅部材の働きを図解した図、第7A図及び第7B
図は、加圧袋の延びを図解した図、第8A図及び
第8B図は、隅部材の変形例を示す図、そして、
第9A図及び第9B図は、従来のウエブ構造の断
面図である。 10,18……金型、12……複合材料、14
……ウエブ、16……加圧袋、20……空洞、2
2……コーナー、24……ウエブのしわ、26…
…破れ、28……発泡性材料、30……下型、3
2……外皮、34……主桁部材材料、36……ハ
ニカム材料、38……内側外皮、40……隅部
材、42……ウエブ部材材料、44……加圧袋、
46……上型、48,50……フランジ部材、5
2……空洞部、54……シワ、56……ハニカム
部材、58……開口部。
Figures 1A and 1B and Figures 2A to 2
Figure F is a diagram illustrating a conventional method of manufacturing a hollow composite structure; Figures 3A and 3B are diagrams illustrating an example of filling a conventional structure with foam material; Figure 4A; 4F to 4F illustrate the steps of the method according to the invention, FIG. 4G is a cross-sectional view of a structure made according to the invention filled with foam material, and FIGS. 5A and 5B show the steps of the method according to the invention. A perspective view and a cross-sectional view of another girder structure made by FIGS. 6A and 6B are
Diagrams illustrating the function of corner members, Figures 7A and 7B
The figure is a diagram illustrating the extension of the pressurized bag, FIGS. 8A and 8B are diagrams showing a modified example of the corner member, and
9A and 9B are cross-sectional views of conventional web structures. 10, 18... Mold, 12... Composite material, 14
... Web, 16 ... Pressure bag, 20 ... Hollow, 2
2...Corner, 24...Wrinkle in the web, 26...
...Tear, 28...Foamable material, 30...Lower mold, 3
2... Outer skin, 34... Main girder member material, 36... Honeycomb material, 38... Inner outer skin, 40... Corner member, 42... Web member material, 44... Pressure bag,
46... Upper mold, 48, 50... Flange member, 5
2...Cavity portion, 54...Wrinkle, 56...Honeycomb member, 58...Opening.

Claims (1)

【特許請求の範囲】 1 所要の形状を与える剛性金型の中に、合成樹
脂と強化繊維からなる上下のフランジ部材材料
と、合成樹脂と強化繊維からなり前記フランジ部
材材料との間に小空間をつくるように該フランジ
部材材料に接合するウエブ部材材料と、前記フラ
ンジ部材材料と前記ウエブ部材材料との間の前記
小空間に、底面がフランジ部材材料に接するよう
に置かれる隅部材と、前記フランジ部材材料と前
記ウエブ部材材料との間に置かれる薄い加圧袋と
を封入し、該加圧袋の内部を加圧しつつ加熱成形
し、そして、前記隅部材は、成形された桁構造物
の上下のフランジ間距離の2割以上の高さを持
ち、且つ、成形された桁構造物の上下のフランジ
部材間の距離を直径として互に接する2つの仮想
円の各々にそれぞれの側面が接するような断面が
ほぼ三角形の形状になされていることを特徴とす
る複合材桁構造物の製造方法。 2 前記隅部材は、頂角が直角な二等辺三角形の
断面形状を有している特許請求の範囲第1項記載
の複合材桁構造物の製造方法。 3 前記隅部材の各側面は、なめらかな凹曲面を
なしている特許請求の範囲第1項記載の複合材桁
構造物の製造方法。 4 前記隅部材の各側面は、へこむように互に鈍
角をなして接する2つの平面を有している特許請
求の範囲第1項記載の複合材桁構造物の製造方
法。 5 前記隅部材は、中空球を樹脂で固めた材料で
作られている特許請求の範囲第1項から第4項の
いずれかに記載の複合材桁構造物の製造方法。 6 前記中空球は、ガラスで作られている特許請
求の範囲第5項記載の複合材桁構造物の製造方
法。 7 前記隅部材は、熱硬化性発泡材で作られてい
る特許請求の範囲第1項から第4項のいずれかに
記載の複合材桁構造物の製造方法。
[Scope of Claims] 1. A small space is provided between upper and lower flange member materials made of synthetic resin and reinforcing fibers and the flange member material made of synthetic resin and reinforcing fibers in a rigid mold that provides a desired shape. a corner member placed in the small space between the flange member material and the web member material so that its bottom surface contacts the flange member material; A thin pressurized bag placed between the flange member material and the web member material is enclosed, and the inside of the pressurized bag is heated and molded while pressurizing, and the corner member is formed into a molded girder structure. The height is 20% or more of the distance between the upper and lower flanges of the molded girder structure, and each side surface touches each of two imaginary circles that touch each other with the diameter being the distance between the upper and lower flange members of the molded girder structure. A method for manufacturing a composite girder structure, characterized in that the cross section is approximately triangular. 2. The method for manufacturing a composite material girder structure according to claim 1, wherein the corner member has an isosceles triangular cross-sectional shape with a right angle apex. 3. The method for manufacturing a composite girder structure according to claim 1, wherein each side surface of the corner member has a smooth concave curved surface. 4. The method for manufacturing a composite girder structure according to claim 1, wherein each side surface of the corner member has two planes that touch each other at an obtuse angle so as to be concave. 5. The method for manufacturing a composite girder structure according to any one of claims 1 to 4, wherein the corner members are made of a material made of hollow spheres hardened with resin. 6. The method of manufacturing a composite girder structure according to claim 5, wherein the hollow sphere is made of glass. 7. The method for manufacturing a composite girder structure according to any one of claims 1 to 4, wherein the corner members are made of a thermosetting foam material.
JP56155671A 1981-09-30 1981-09-30 Production of girder structure of composite material Granted JPS5856824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56155671A JPS5856824A (en) 1981-09-30 1981-09-30 Production of girder structure of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56155671A JPS5856824A (en) 1981-09-30 1981-09-30 Production of girder structure of composite material

Publications (2)

Publication Number Publication Date
JPS5856824A JPS5856824A (en) 1983-04-04
JPS6324445B2 true JPS6324445B2 (en) 1988-05-20

Family

ID=15611034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56155671A Granted JPS5856824A (en) 1981-09-30 1981-09-30 Production of girder structure of composite material

Country Status (1)

Country Link
JP (1) JPS5856824A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890145A (en) * 1981-11-17 1983-05-28 カ−ル・シエンク・アクチエンゲゼルシヤフト Vertical and shearing stacked load introducing device to test piece
JP3690744B2 (en) * 2002-04-26 2005-08-31 本田技研工業株式会社 Manufacturing method of fiber reinforced plastic parts
JP4929147B2 (en) * 2007-12-19 2012-05-09 三菱重工業株式会社 How to repair resin products
US9333713B2 (en) * 2012-10-04 2016-05-10 The Boeing Company Method for co-curing composite skins and stiffeners in an autoclave
GB2533582A (en) 2014-12-22 2016-06-29 Airbus Operations Ltd Aircraft wing box, aircraft wing, aircraft and supporting member for use therein
US9770864B2 (en) * 2015-06-10 2017-09-26 The Boeing Company Methods of internally insulating a fluted core sandwich structure
JP6774856B2 (en) * 2016-11-22 2020-10-28 三菱重工業株式会社 Molding method for bladder bags and composite materials

Also Published As

Publication number Publication date
JPS5856824A (en) 1983-04-04

Similar Documents

Publication Publication Date Title
CA1243177A (en) Forming fibre-plastics composites
EP3115185B1 (en) Reducing wrinkling of contoured hat stiffeners formed from a single composite charge
JP5745081B2 (en) Method for forming an integral composite part using an SMP apparatus
JPH0351203B2 (en)
US5112663A (en) Method of manufacturing composite structures
JP5583969B2 (en) Method for making a composite fiber component using a foldable molded core and the molded core
US3629030A (en) Method for forming a mandrel and fabricating a duct thereabout
GB2096530A (en) A tubular hollow member and a method for its manufacture and a device for carrying out the method
JP2014504218A5 (en)
WO2009064581A1 (en) Method and tools for fabricating composite beams
JP2014502223A (en) Method and system for interconnecting or mutually curing composite parts using a rigid / malleable SMP apparatus
JP2003523297A (en) Free male / female mold for surfboard custom production
JP2014502223A5 (en)
JPH06506885A (en) Reinforcement parts with elliptical ends for composite structural members and forming methods for their production
JPS6324445B2 (en)
JP2003071864A (en) Method for manufacturing composite material reinforced panel
EP1762355B1 (en) Use of a helical tool and a method for producing a surface member comprising at least one stiffening member
JPS6021061B2 (en) Lightweight buckling-resistant structure and method for manufacturing the structure
US3205288A (en) Method of manufacture of hollow reinforced plastic articles
JPH0437764B2 (en)
JPS6324446B2 (en)
JP2011102013A (en) Carbon fiber-reinforced resin material and method for manufacturing the same
JPH0669733B2 (en) Shaft-shaped member combining heat-foamable resin and carbon fiber and method for manufacturing the same
US7083753B2 (en) Honeycomb core composite article and method and apparatus for making same
EP3663196A1 (en) Landing gear for rotary-wing aircraft