JP6747213B2 - Coal crushing method - Google Patents

Coal crushing method Download PDF

Info

Publication number
JP6747213B2
JP6747213B2 JP2016186790A JP2016186790A JP6747213B2 JP 6747213 B2 JP6747213 B2 JP 6747213B2 JP 2016186790 A JP2016186790 A JP 2016186790A JP 2016186790 A JP2016186790 A JP 2016186790A JP 6747213 B2 JP6747213 B2 JP 6747213B2
Authority
JP
Japan
Prior art keywords
coal
particle size
crushing
current value
crusher
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016186790A
Other languages
Japanese (ja)
Other versions
JP2018051425A (en
Inventor
大樹 原
大樹 原
恵治 松枝
恵治 松枝
八ケ代 健一
健一 八ケ代
克利 小島
克利 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61834592&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6747213(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016186790A priority Critical patent/JP6747213B2/en
Publication of JP2018051425A publication Critical patent/JP2018051425A/en
Application granted granted Critical
Publication of JP6747213B2 publication Critical patent/JP6747213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コークスの製造に使用される石炭を粉砕機で粉砕する方法に関する。 The present invention relates to a method for crushing coal used for producing coke with a crusher.

高炉製鉄法に使用されるコークスは、炉内の通気性を確保するため高強度のものが要求される。そのため、高強度コークスの製造では、石炭が軟化溶融した際に石炭粒子間に強固な接着が生じるように、コークス炉に装入する石炭の嵩密度を上げて、隣接する石炭粒子同士の接触状態を改善することが行われている。 The coke used in the blast furnace steelmaking method is required to have high strength in order to ensure air permeability in the furnace. Therefore, in the production of high-strength coke, to increase the bulk density of the coal to be charged into the coke oven, the contact state between adjacent coal particles, so that strong adhesion occurs between coal particles when coal softens and melts. Is being improved.

石炭装入時の嵩密度を向上させる方法としては、石炭の粒度分布を制御して理想粒度分布(ファーナス分布)に近づける方法が知られている。理想粒度分布を実現するためには、粒径の大きな石炭粒子も使用することが好ましいが、大粒径の石炭粒子、特に劣質な非粘結炭の大粒径粒子が存在すると、加熱処理時に、隣接する石炭粒子間の収縮率差により接触界面に割れが発生し、コークス強度が低下する。 As a method of improving the bulk density at the time of charging coal, there is known a method of controlling the particle size distribution of coal to bring it closer to the ideal particle size distribution (furnace distribution). In order to achieve the ideal particle size distribution, it is preferable to also use large-sized coal particles, but large-sized coal particles, especially the presence of inferior non-caking coal large-sized particles, during heat treatment. Due to the difference in shrinkage ratio between adjacent coal particles, cracks occur at the contact interface and the coke strength decreases.

従って、コークス用石炭の粉砕処理では、粉砕後の石炭粒度を、目標とする粒度範囲に調整することにより、石炭装入時の嵩密度の向上と加熱処理時における大粒径粒子に起因した割れ抑制とを両立することが求められる。 Therefore, in the crushing treatment of coal for coke, by adjusting the coal particle size after crushing to a target particle size range, it is possible to improve the bulk density during coal charging and cracks caused by large particle size during heat treatment. It is required to achieve both suppression and control.

石炭粒度の調整方法としては、衝撃式粉砕機におけるハンマと摩砕板の間隙調整や、インペラーブレーカーにおける粉砕刃の粉砕スリット幅調整(特許文献1参照)、あるいはクラッシャーの回転数変更(特許文献2参照)によって、粉砕後の石炭粒度を、目標とする粒度範囲に合わせ込む方法が一般的である。
上記2件の特許文献では、粉砕後の石炭粒度を測定して演算処理し、石炭の粉砕粒度が設定目標値に一致するよう、粉砕機の運転条件を変更する方法が記載されている。
As a method of adjusting the coal particle size, a gap between a hammer and a grinding plate in an impact type crusher, a crushing slit width of a crushing blade in an impeller breaker (see Patent Document 1), or a rotation speed change of a crusher (Patent Document 2). In general, the method of adjusting the particle size of coal after crushing to a target particle size range according to the above method.
The above two patent documents describe a method in which the particle size of coal after crushing is measured and arithmetic processing is performed, and the operating conditions of the crusher are changed so that the crushed particle size of coal matches the set target value.

特開平6−212169号公報JP-A-6-212169 特開2004−16983号公報JP, 2004-16983, A

従来の方法は、粉砕後の石炭粒度によって石炭の粉砕条件を変更するものであり、粉砕前の石炭粒度のバラツキを考慮していない。しかし、本発明者らは、例えば、粉砕前の石炭粒度が大きくなると、粉砕後の石炭粒度が目標粒度よりも一般に大きくなるという知見を得ている。粉砕前の石炭粒度が大きく変動した場合、粉砕後の石炭粒度に基づいて石炭の粉砕条件を変更したとしても、目標粒度よりも大きな粒度を有する粉砕石炭が多く製造されてしまう。 The conventional method changes the crushing conditions of coal according to the particle size of the crushed coal, and does not consider the variation in the particle size of the coal before crushing. However, the present inventors have found that, for example, when the coal particle size before pulverization increases, the coal particle size after pulverization generally becomes larger than the target particle size. When the coal particle size before crushing changes greatly, even if the crushing conditions of coal are changed based on the coal particle size after crushing, many crushed coals having a particle size larger than the target particle size will be produced.

粉砕前の石炭粒度は石炭貯蔵の都合によって時々刻々変動するため、特許文献1、2記載の方法を用いた場合、粉砕後の石炭粒度が変動する。そのため、特許文献1、2記載の方法は、粉砕後の石炭粒度の安定性の観点で課題を有している。
粉砕後の石炭粒度にバラツキが発生すると、コークス品質の一つであるコークス強度が変動する原因となり、低強度コークスを含むコークスが製造されることになる。
Since the particle size of coal before crushing varies from moment to moment due to the convenience of coal storage, when the method described in Patent Documents 1 and 2 is used, the particle size of coal after crushing varies. Therefore, the methods described in Patent Documents 1 and 2 have a problem from the viewpoint of stability of coal particle size after pulverization.
If the coal particle size after crushing varies, the coke strength, which is one of the coke quality, fluctuates, and coke containing low-strength coke is produced.

本発明はかかる事情に鑑みてなされたもので、粉砕後の石炭粒度のバラツキを従来に比べて抑制することが可能な石炭粉砕方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a coal crushing method capable of suppressing variations in the particle size of coal after crushing as compared with the conventional method.

上記目的を達成するため、本発明に係る石炭粉砕方法は、
ケーシング内を回転するハンマの打撃と摩砕板の反撥衝撃により前記ハンマと前記摩砕板の間で石炭を粉砕する石炭粉砕機の入側と出側にそれぞれ石炭粒度測定器を設置し、
前記ハンマを回転させるモータの電流値をパラメータとして、粉砕前の石炭粒度と粉砕後の石炭粒度との相関関係を、前記石炭粉砕機の入側及び出側に設置した前記石炭粒度測定器の測定結果を用いて予め求めておき、
前記石炭粉砕機の入側に設置した前記石炭粒度測定器の測定結果を前記相関関係に適用して、粉砕後の石炭粒度が目標粒度となる際の前記モータの目標電流値I0(A)を決定し、前記モータに流す電流値I1(A)を前記目標電流値I0(A)に設定して石炭を粉砕した後、前記石炭粉砕機の出側に設置した前記石炭粒度測定器の測定結果と前記目標粒度との偏差に応じて前記電流値I1(A)を補正することを特徴としている。
In order to achieve the above object, the coal crushing method according to the present invention,
Coal particle size measuring instruments are installed on the inlet side and the outlet side of a coal crusher for crushing coal between the hammer and the crush plate by the impact of the hammer rotating in the casing and the repulsive impact of the crush plate .
With the current value of the motor rotating the hammer as a parameter, the correlation between the coal particle size before crushing and the coal particle size after crushing is measured by the coal particle sizer installed on the inlet side and the outlet side of the coal crusher. Use the results in advance,
The target current value I0(A) of the motor when the coal particle size after crushing is the target particle size is applied by applying the measurement result of the coal particle size measuring device installed on the inlet side of the coal crusher to the correlation. After determining and setting the current value I1(A) flowing through the motor to the target current value I0(A) to crush the coal, the measurement result of the coal particle sizer installed on the outlet side of the coal crusher It is characterized in that the current value I1(A) is corrected according to the deviation between the target grain size and the target grain size.

石炭粉砕機の粉砕動力(モータ電流値)は石炭粉砕負荷に依存する。石炭粉砕負荷は、ハンマの回転数(単位時間当たりの回転回数)や、ハンマと摩砕板の間隔などによって決定される。また、石炭粉砕負荷は、石炭粉砕機への単位時間当たりの石炭供給量によっても変動する。従って、モータ電流値は、ハンマの回転数や、ハンマと摩砕板の間隔、石炭粉砕機への石炭供給量などの粒度変動要因を反映した物理量であると見做すことができる。 The crushing power (motor current value) of the coal crusher depends on the coal crushing load. The coal crushing load is determined by the number of revolutions of the hammer (the number of revolutions per unit time), the distance between the hammer and the grinding plate, and the like. The coal crushing load also varies depending on the amount of coal supplied to the coal crusher per unit time. Therefore, the motor current value can be regarded as a physical quantity that reflects particle size variation factors such as the rotational speed of the hammer, the distance between the hammer and the grinding plate, and the amount of coal supplied to the coal crusher.

本発明では、石炭粉砕機の入側に設置した石炭粒度測定器の測定結果を、粉砕前後の石炭粒度の相関関係に適用して、粉砕後の石炭粒度が目標粒度となる際のモータの目標電流値を決定することにより、粉砕前の石炭粒度のバラツキを考慮すると共に、石炭強度や石炭の含水量などによって粉砕後の石炭粒度が変動するため、出側に設置した石炭粒度測定器の測定結果と目標粒度との偏差に応じて当該モータ電流値を補正するようにしている。 In the present invention, the measurement result of the coal particle sizer installed on the inlet side of the coal crusher is applied to the correlation of the coal particle size before and after crushing, and the target of the motor when the coal particle size after crushing becomes the target particle size. By determining the current value, the variation in the coal particle size before crushing is taken into consideration, and the coal particle size after crushing varies depending on the coal strength and the water content of the coal. The motor current value is corrected according to the deviation between the result and the target grain size.

また、本発明に係る石炭粉砕方法では、粉砕する石炭に含まれる水分は、内数で7〜15質量%であることを好適とする。 Moreover, in the coal crushing method according to the present invention, it is preferable that the water content of the crushed coal is 7 to 15 mass% in the internal number.

粉砕前後の石炭粒度の相関関係に基づいて決定したモータの電流値が、粉砕する石炭に含まれる水分の変動によって若干増減する場合がある。
本発明者らは、粉砕する石炭に含まれる水分を所定範囲に収めることにより、粉砕後の石炭粒度のバラツキをさらに抑制できることを見出した。含有水分の所定範囲としては、内数で7〜15質量%が好ましく、9〜12質量%であればなお良い。
The electric current value of the motor determined based on the correlation of the coal particle size before and after the pulverization may slightly increase or decrease due to the fluctuation of the water content in the pulverized coal.
The present inventors have found that by keeping the water content in the coal to be ground within a predetermined range, it is possible to further suppress the variation in the particle size of the coal after grinding. The predetermined range of the water content is preferably 7 to 15% by mass, and more preferably 9 to 12% by mass.

また、本発明に係る石炭粉砕方法では、粉砕する石炭は、ホッパに貯蔵され、フィーダにより切り出されたものであることを好適とする。 Further, in the coal crushing method according to the present invention, it is preferable that the crushed coal is stored in a hopper and cut out by a feeder.

石炭粉砕機のモータ電流値が一定の場合、石炭粉砕機へ供給する石炭量(例えば、単位時間当たりに供給する石炭の量)が変動すると、粉砕後の石炭粒度が変動する。
当該構成では、単位時間当たりの石炭切り出し量を一定とすることができるフィーダを用いることにより、石炭粉砕機へ供給する石炭量の変動を防止して、粉砕後の石炭粒度のバラツキを一層抑制する。
When the motor current value of the coal crusher is constant, if the amount of coal supplied to the coal crusher (for example, the amount of coal supplied per unit time) changes, the coal particle size after crushing changes.
With this configuration, by using a feeder that can keep the amount of coal cut out per unit time constant, fluctuations in the amount of coal supplied to the coal crusher are prevented, and variations in coal particle size after crushing are further suppressed. ..

本発明に係る石炭粉砕方法では、石炭粉砕機の入側に設置した石炭粒度測定器の測定結果を、粉砕前後の石炭粒度の相関関係に適用して、粉砕後の石炭粒度が目標粒度となる際のモータの目標電流値を決定し、さらに出側に設置した石炭粒度測定器の測定結果と目標粒度との偏差に応じて当該モータ電流値を補正することにより、粉砕前の石炭粒度のバラツキその他の粒度変動要因を吸収する。その結果、従来に比べて、粉砕後の石炭粒度のバラツキを抑制することができる。 In the coal crushing method according to the present invention, the measurement result of the coal particle size measuring device installed on the inlet side of the coal crusher is applied to the correlation of the coal particle size before and after crushing, and the coal particle size after crushing becomes the target particle size. When the target current value of the motor is determined and the motor current value is corrected according to the deviation between the target particle size and the measurement result of the coal particle size measuring instrument installed on the outlet side, the variation in the coal particle size before crushing is determined. Absorb other particle size fluctuation factors. As a result, it is possible to suppress variation in the particle size of coal after crushing, as compared with the conventional case.

本発明の一実施の形態に係る石炭粉砕方法に使用する石炭粉砕設備の模式図である。It is a schematic diagram of the coal crushing equipment used for the coal crushing method which concerns on one embodiment of this invention. 同石炭粉砕設備を構成する石炭粉砕機の模式図である。It is a schematic diagram of the coal crusher which comprises the same coal crushing facility. 石炭粉砕機のモータ電流値をパラメータとして、粉砕前の石炭粒度と粉砕後の石炭粒度との相関関係を求めたグラフの一例である。It is an example of the graph which calculated|required the correlation of the coal particle size before crushing and the coal particle size after crushing using the motor current value of a coal crusher as a parameter.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。 Next, an embodiment of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.

粉砕後の石炭粒度は、粉砕前の石炭粒度や石炭強度等の性状によって決定され、粉砕前の石炭粒度は、製鉄所における保管方法の影響を受ける。
粉砕前の石炭は、一般に、ヤードにおいて山脈状に積み付けて保管される。石炭粒度は積み付け山の頂部と山裾で異なり、積み付けにより粒度偏析が発生する。具体的には、積み付け山の頂部では粒径が小さい石炭が多く、積み付け山の山裾では粒径が大きい石炭が多い。
積み付け山で保管している石炭は、リクレーマ等により払い出し、石炭粉砕機へ供給されるが、順次払い出すため、積み付け山での石炭採取位置(頂部から採取、山裾から採取等)は変動する。その結果、粉砕後の石炭粒度に影響が出る程度に、粉砕前の石炭粒度は変動する。
The particle size of coal after crushing is determined by properties such as the particle size of coal before crushing and the strength of coal, and the particle size of coal before crushing is affected by the storage method at the steel mill.
Coal before crushing is generally stacked and stored in a mountain range in a yard. Coal grain size is different at the top and bottom of the pile, and segregation causes grain size segregation. Specifically, there are many coals with a small grain size at the top of the stacking pile and many coals with a large grain size at the bottom of the stacking pile.
The coal stored in the stacking pile is discharged by a reclaimer etc. and supplied to the coal crusher, but since it is sequentially discharged, the coal collection position (collecting from the top, collecting from the mountain hem, etc.) in the stacking pile changes. To do. As a result, the coal particle size before crushing varies to such an extent that the coal particle size after crushing is affected.

[従来の石炭粉砕方法]
石炭粉砕機による粉砕後の石炭の粒度を測定し、測定した粉砕後の石炭粒度の実績値と目標粒度との差異に応じて粉砕条件(ハンマ回転速度、ハンマと摩砕板の間隔等)を変更して粉砕後の石炭粒度の安定化を図る方法が知られている。
しかし、粉砕前の石炭粒度が変動する場合に上記方法を実施すると、粉砕後の石炭の粒度測定結果が粉砕条件の変更に反映されるまで粉砕後の石炭粒度が変動する結果(目標粒度から外れる場合が多い。)となり、粉砕後の石炭粒度にバラツキが生じる。例えば、含有水分が内数で10質量%の石炭をフィーダで切り出し、上記方法を用いて粉砕したところ、3mmアンダーが89質量%という目標粒度に対して、粉砕後の石炭粒度の実績値は85〜93質量%であった(以下、「従来例」と呼ぶ。)。
[Conventional coal crushing method]
Measure the particle size of the coal after crushing with a coal crusher and set the crushing conditions (hammer rotation speed, distance between hammer and grinding plate, etc.) according to the difference between the actual value of the measured coal particle size after crushing and the target particle size. A method of changing the particle size to stabilize the coal particle size after crushing is known.
However, if the above method is carried out when the coal particle size before pulverization changes, the result of the coal particle size after pulverization fluctuating (the deviation from the target particle size) until the result of particle size measurement of the coal after pulverization is reflected in the change in the pulverization conditions. In many cases, the coal particle size after crushing will vary. For example, when coal having a content of water of 10% by mass is cut out by a feeder and pulverized by the above method, the actual value of the pulverized coal particle size is 85 with respect to the target particle size of 3% under 89% by mass. It was ˜93% by mass (hereinafter referred to as “conventional example”).

[本実施の形態に係る石炭粉砕方法]
本発明の一実施の形態に係る石炭粉砕方法に使用する石炭粉砕設備を図1に示す。
本石炭粉砕設備は、石炭を粉砕する石炭粉砕機10と、石炭を貯蔵するホッパ11及びホッパ11内の石炭を切り出すフィーダ12を上流部に備え、フィーダ12によって切り出された石炭を石炭粉砕機10に搬送するコンベア13と、石炭粉砕機10によって粉砕された石炭を搬送するコンベア14とを備えている。
コンベア13の下流部及びコンベア14の上流部には、搬送される石炭の粒度を測定する石炭粒度測定器15、16がそれぞれ設置されている。なお、粉塵によって石炭粒度測定器15、16が汚染されないようにするため、石炭粒度測定器15、16は石炭粉砕機10から水平方向に5m以上離れた位置に設置されている。
[Coal crushing method according to the present embodiment]
FIG. 1 shows a coal crushing facility used in a coal crushing method according to an embodiment of the present invention.
The present coal crushing facility is provided with a coal crusher 10 for crushing coal, a hopper 11 for storing coal, and a feeder 12 for cutting out the coal in the hopper 11, at the upstream portion, and the coal cut out by the feeder 12 is used for the coal crusher 10. It is provided with a conveyor 13 for carrying the coal and a conveyor 14 for carrying the coal crushed by the coal crusher 10.
Coal particle size measuring devices 15 and 16 for measuring the particle size of the conveyed coal are installed at the downstream part of the conveyor 13 and the upstream part of the conveyor 14, respectively. In order to prevent the coal particle size measuring devices 15 and 16 from being contaminated by the dust, the coal particle size measuring devices 15 and 16 are installed at a position apart from the coal crusher 10 by 5 m or more in the horizontal direction.

図2に石炭粉砕機10の模式図を示す。
石炭粉砕機10は衝撃式粉砕機であり、箱形のケーシング23内に、水平方向に配置され水平軸回りに回転するロータ25と、ロータ25の外周面から放射状に延びる複数のハンマ24と、ロータ25を挟んで左右に配置された一対の摩砕板26とを備えている。ケーシング23の上面には、石炭を投入するための投入口21が、ケーシング23の底面には、粉砕された石炭を排出するための排出口22がそれぞれ設けられている。
FIG. 2 shows a schematic diagram of the coal crusher 10.
The coal crusher 10 is an impact crusher, and includes a box-shaped casing 23, a rotor 25 arranged in a horizontal direction and rotating about a horizontal axis, and a plurality of hammers 24 radially extending from an outer peripheral surface of the rotor 25. It is provided with a pair of grinding plates 26 arranged on the left and right with the rotor 25 interposed therebetween. A charging port 21 for charging coal is provided on the upper surface of the casing 23, and a discharging port 22 for discharging the crushed coal is provided on the bottom surface of the casing 23.

ロータ25には、ロータ25を回転させるためのモータ(図示省略)が連結されている。このモータの電流値を制御することにより、粉砕された石炭の粒度を調節することができる。
ハンマ24は、基端部がロータ25に連結されロータ25の外周面から放射状に延びるハンマアーム24aと、ハンマアーム24aの先端部に連結されたハンマヘッド24bとから構成されている。
摩砕板26は、複数のハンマ24を包み込むように円弧状とされ、摩砕板26の内周面には、摩砕、衝撃に有効な山形をした摩砕板ライナー26aが取り付けられている。また、摩砕板26はシリンダー27により水平方向(ロータ25の水平軸と直交する方向)に移動可能とされ、ハンマ24と摩砕板26の間隔を調整できるようになっている。
A motor (not shown) for rotating the rotor 25 is connected to the rotor 25. By controlling the current value of this motor, the particle size of the crushed coal can be adjusted.
The hammer 24 includes a hammer arm 24a whose base end is connected to the rotor 25 and extends radially from the outer peripheral surface of the rotor 25, and a hammer head 24b which is connected to the tip end of the hammer arm 24a.
The grinding plate 26 is formed in an arc shape so as to enclose the plurality of hammers 24, and a mountain-shaped grinding plate liner 26a effective for grinding and impact is attached to the inner peripheral surface of the grinding plate 26. .. Further, the grinding plate 26 is movable in the horizontal direction (direction orthogonal to the horizontal axis of the rotor 25) by the cylinder 27, and the distance between the hammer 24 and the grinding plate 26 can be adjusted.

モータを作動させてロータ25を一方向に回転させ、投入口21から石炭を投入すると、石炭は、ロータ25の外周に設けられた多数のハンマ24による打撃と摩砕板26の摩砕板ライナー26aでの反撥衝撃により、ハンマ24と摩砕板26の間で繰り返し摩砕、衝撃作用を受けて効果的に粉砕され、排出口22から排出される。 When the motor is operated to rotate the rotor 25 in one direction and coal is charged from the charging port 21, the coal is hit by a number of hammers 24 provided on the outer periphery of the rotor 25 and the grinding plate liner of the grinding plate 26. Due to the repulsive impact at 26 a, the hammer 24 and the grinding plate 26 are repeatedly ground and impacted, and are effectively crushed and discharged from the discharge port 22.

石炭粒度測定器15、16には、例えば光学式測定器を用いると良い。
石炭の粒度を光学的に測定する方法としては、搬送される粉砕前後の石炭を撮像して画像解析により石炭の粒度を測定する方法や、搬送される粉砕前後の石炭を採取(例えば自動採取)し、透過する光(例えばレーザー光)を用いて、液体中を落下する石炭の粒度を測定する方法などがある。
Optical measuring devices may be used for the coal particle size measuring devices 15 and 16, for example.
As a method of optically measuring the particle size of the coal, a method of measuring the particle size of the coal before and after being conveyed by crushing the coal, and a method of measuring the particle size of the coal before and after being collected (for example, automatic collection) However, there is a method of measuring the particle size of coal falling in a liquid using light that passes through (for example, laser light).

なお、測定する粒度とは、個々の石炭粒子の粒径を測定して粒径ごとに算出した含有量(質量%)を指す。あるいは簡略化して、特定の大きさの粒子の含有量(質量%)を指す(例えば3mmアンダーが85質量%等)ものとする。 In addition, the particle size to measure refers to the content (mass %) calculated for each particle size by measuring the particle size of each coal particle. Alternatively, in a simplified manner, the content (mass %) of particles having a specific size is indicated (for example, 3 mm under is 85 mass %).

次に、上記構成を有する石炭粉砕設備を用いて石炭を粉砕する方法について説明する。
(1)STEP−1
ハンマ24を回転させるモータの電流値をパラメータとして、粉砕前の石炭粒度と粉砕後の石炭粒度との相関関係を、石炭粉砕機10の入側及び出側に設置した石炭粒度測定器15、16の測定結果を用いて予め求めておく。
粉砕する石炭の粒度は、3mmアンダーが20〜70質量%程度とする。
Next, a method for crushing coal using the coal crushing equipment having the above configuration will be described.
(1) STEP-1
Using the current value of the motor that rotates the hammer 24 as a parameter, the correlation between the coal particle size before crushing and the coal particle size after crushing is determined by the coal particle size measuring devices 15, 16 installed on the inlet side and the outlet side of the coal crusher 10. It is obtained in advance using the measurement result of.
The particle size of the coal to be crushed is about 20 to 70% by mass when 3 mm under.

粉砕前の石炭粒度と粉砕後の石炭粒度との相関関係の一例を図3に示す。同図は、石炭の粉砕操業に際し、事前に調査した結果であり、モータの電流値(Iγ>Iβ>Iα)に応じた粉砕前後の石炭粒度の相関関係を示している。なお、グラフの根拠となるプロット点は省略している。 FIG. 3 shows an example of the correlation between the particle size of coal before crushing and the particle size of coal after crushing. This figure is the result of a preliminary investigation at the time of coal crushing operation, and shows the correlation of the coal particle size before and after crushing according to the motor current value (Iγ>Iβ>Iα). The plot points that are the basis of the graph are omitted.

(2)STEP−2
石炭粉砕機10の入側に設置した石炭粒度測定器15を用いて粉砕前の石炭粒度を測定する。
(3)STEP−3
目標粒度を決定する。
図3の例では、目標粒度を、3mmアンダーが89質量%としている。
目標粒度を決定する場合、粉砕後の石炭を用いてコークスを製造し、製造されたコークスの強度に応じて目標粒度を決定すると良い。
(2) STEP-2
The coal particle size before crushing is measured using the coal particle size measuring device 15 installed on the inlet side of the coal crusher 10.
(3) STEP-3
Determine the target granularity.
In the example of FIG. 3, the target particle size is 89% by mass when 3 mm under.
When deciding the target particle size, it is advisable to produce coke using the crushed coal and determine the target grain size according to the strength of the produced coke.

(4)STEP−4
STEP−2で求めた粉砕前の石炭粒度をSTEP−1で求めた相関関係に適用して、粉砕後の石炭粒度が目標粒度となる際のモータの目標電流値I0(A)を決定する。
STEP−1で求めた相関関係に目標粒度と粉砕前の石炭粒度をプロットし、モータの目標電流値I0(A)を設定する。図3の例では、目標粒度(3mmアンダーが89質量%)となる粉砕前の石炭粒度(3mmアンダーの質量割合)が40質量%であれば、モータの目標電流値I0を電流値Iβとし、目標粒度となる粉砕前の石炭粒度が48質量%であれば、モータの目標電流値I0を電流値Iαとする。
(4) STEP-4
The target grain size I0(A) of the motor when the coal grain size after crushing becomes the target grain size is determined by applying the coal grain size before crushing determined in STEP-2 to the correlation determined in STEP-1.
The target particle size and the coal particle size before crushing are plotted in the correlation obtained in STEP-1, and the target current value I0(A) of the motor is set. In the example of FIG. 3, if the coal particle size before crushing to obtain the target particle size (89% by mass of 3 mm under) (mass ratio of 3 mm under) is 40% by mass, the target current value I0 of the motor is set as the current value Iβ, If the coal grain size before crushing, which is the target grain size, is 48 mass %, the target current value I0 of the motor is set as the current value Iα.

なお、目標粒度となる粉砕前の石炭粒度が44質量%の場合、40質量%と48質量%の中間値であるため、例えば比例配分で電流値Iαと電流値Iβの中間値としてモータの目標電流値I0を定めると良い。あるいは、比例配分を用いず、モータの電流値を小刻みに設定して(例えば、電流値Iαと電流値Iβの2種ではなく、電流値Iαと電流値Iβの間に10種の電流値)、最も近い電流値をモータの目標電流値I0としてもよい。 If the coal particle size before crushing, which is the target particle size, is 44% by mass, it is an intermediate value between 40% by mass and 48% by mass. It is preferable to set the current value I0. Alternatively, the current value of the motor is set in small increments without using proportional distribution (for example, not the two types of the current value Iα and the current value Iβ, but the ten types of current values between the current value Iα and the current value Iβ). , The closest current value may be the target current value I0 of the motor.

(5)STEP−5
モータに流す電流値I1(A)を目標電流値I0(A)に設定して石炭を粉砕し、石炭粉砕機10の出側に設置した石炭粒度測定器16により、粉砕した石炭の粒度測定結果を得る。
図3の例では、目標粒度(3mmアンダーが89質量%)と粉砕前の石炭粒度(3mmアンダーが40質量%)よりモータに流す電流値I1を電流値Iβとして石炭を粉砕する。
モータに流す電流値I1によって粉砕された石炭の粒度は、モータを作動してから一定の時間(石炭が石炭粉砕機10を通過する時間と粉砕後の石炭が出側の石炭粒度測定器16に搬送される時間の和)を経た後、石炭粉砕機10の出側の石炭粒度測定器16によって得られる。
(5) STEP-5
The current value I1(A) flowing through the motor is set to the target current value I0(A) to crush the coal, and the particle size measurement result of the crushed coal is measured by the coal particle sizer 16 installed on the outlet side of the coal crusher 10. To get
In the example of FIG. 3, the coal is crushed with the current value I1 flowing through the motor as the current value Iβ based on the target particle size (89% by mass of 3 mm under) and the coal particle size before crushing (40% by mass of 3 mm under).
The particle size of the coal crushed by the current value I1 flowing through the motor is fixed for a certain period of time after the motor is operated (the time during which the coal passes through the coal crusher 10 and the coal after crushing is measured by the coal particle sizer 16 on the outgoing side). It is obtained by the coal particle size measuring device 16 on the outlet side of the coal crusher 10 after the passage (sum of transportation time).

(6)STEP−6
石炭粉砕機10の出側に設置した石炭粒度測定器16の測定結果と目標粒度との偏差に応じて電流値I1(A)を補正する。
モータに流す電流値I1を電流値Iβとして粉砕した石炭の粒度測定結果が、目標粒度を下回った場合(図3の◆プロット)、粉砕前の石炭粒度を●プロットと見做し、粉砕前の石炭粒度●プロットを目標粒度に粉砕できるモータの電流値Iγ(▲を通過するグラフ)を選定し、電流値I1を電流値Iβから電流値Iγに補正する。
(6) STEP-6
The current value I1(A) is corrected according to the deviation between the measurement result of the coal particle size measuring device 16 installed on the outlet side of the coal crusher 10 and the target particle size.
If the particle size measurement result of the crushed coal with the current value I1 flowing through the motor as the current value Iβ is less than the target particle size (◆ plot in FIG. 3), the coal particle size before crushing is regarded as a ● plot, and Coal grain size ● Select a motor current value Iγ (graph passing through ▲) that can crush the plot to the target grain size, and correct the current value I1 from the current value Iβ to the current value Iγ.

なお、上述した比例配分等の手順を用いて、モータの電流値Iγ(▲を通過するグラフ)を決定してもよい。
また、上述した例では、モータに流す電流値I1を電流値Iβから電流値Iγへ補正したが、電流値I1を電流値Iβと電流値Iγの中間値(例えば(Iβ+Iγ)÷2)に変更し、再度上記手順により電流値I1の補正値を決定してもよい。
The current value Iγ (graph passing through ▲) of the motor may be determined by using the procedure such as the proportional distribution described above.
Further, in the above-described example, the current value I1 passed through the motor is corrected from the current value Iβ to the current value Iγ, but the current value I1 is changed to an intermediate value between the current value Iβ and the current value Iγ (for example, (Iβ+Iγ)/2). Then, the correction value of the current value I1 may be determined again by the above procedure.

含有水分が内数で6〜16質量%である石炭をフィーダ12で切り出し、3mmアンダーが89質量%という目標粒度を設定し、上記手順を実施したところ、粉砕後の石炭の粒度は86質量%〜92質量%であった(以下、「実施例1」と呼ぶ。)。従来例よりも、粉砕する石炭の含有水分がばらついていたにもかかわらず、粉砕後の石炭粒度を改善することができた。 Coal having a water content of 6 to 16% by mass is cut out by the feeder 12 and the target particle size of 3 mm under is set to 89% by mass, and the above procedure is carried out. As a result, the particle size of the coal after grinding is 86% by mass. ˜92% by mass (hereinafter referred to as “Example 1”). Compared with the conventional example, although the water content of the crushed coal varied, the coal particle size after crushing could be improved.

一方、粉砕した石炭の粒度測定結果が目標粒度を上回っている場合(例えば、粉砕した石炭の粒度が90質量%)も、上記と同様の手順によりモータに流す電流値I1(A)を補正すれば良い。 On the other hand, when the particle size measurement result of the crushed coal exceeds the target particle size (for example, the particle size of the crushed coal is 90% by mass), the current value I1(A) flowing through the motor can be corrected by the same procedure as above. Good.

さらにまた、図3の例では、目標粒度を、3mmアンダーが89質量%としたが、目標粒度を数値範囲(例えば3mmアンダーが89質量%以上、あるいは3mmアンダーが87質量%以上91質量%以下等)で設定してもよい。 Furthermore, in the example of FIG. 3, the target particle size was set to 89% by mass for 3 mm under, but the target particle size is in the numerical range (for example, 89% by mass or more for 3 mm under, or 87% by mass or more and 91% by mass or less for 3 mm under). Etc.).

[粉砕する石炭の含有水分について]
粉砕前後の石炭粒度の相関関係を用いて予め求めたモータの目標電流値が、含有水分の変動により増減する場合がある。
本発明者らは、水分を所定範囲に安定させると、粉砕後の石炭粒度のバラツキが抑制できることを見出した。本発明者らの知見では、前述した実施例1に対して、含有水分を内数で7〜15質量%とすると、粉砕後の石炭粒度の実績値が87〜91質量%となり(以下、「実施例2」と呼ぶ。)、粉砕後の石炭粒度のバラツキが実施例1よりも改善された。なお、含有水分は内数で9〜12質量%であればなお良い。
[About water content of crushed coal]
The target current value of the motor, which is obtained in advance using the correlation between the coal particle sizes before and after crushing, may increase or decrease due to fluctuations in the water content.
The present inventors have found that stabilizing the water content within a predetermined range can suppress variations in coal particle size after crushing. According to the knowledge of the inventors, when the water content is 7 to 15% by mass in the above-mentioned Example 1, the actual value of the coal particle size after crushing is 87 to 91% by mass (hereinafter, " It is referred to as "Example 2"), and the variation in the particle size of coal after pulverization is improved as compared with Example 1. In addition, it is more preferable that the contained water content is 9 to 12% by mass.

[粉砕する石炭を石炭粉砕機へ供給する手段について]
石炭粉砕機10のモータ電流値が一定の場合、石炭粉砕機10へ供給する石炭量が変動すると、粉砕後の石炭の粒度が変動する。そのため、本実施の形態では、フィーダ12で切り出された石炭を石炭粉砕機10に供給するようにしている。
[About means for supplying coal to be crushed to a coal crusher]
When the motor current value of the coal crusher 10 is constant and the amount of coal supplied to the coal crusher 10 changes, the particle size of the crushed coal changes. Therefore, in the present embodiment, the coal cut out by the feeder 12 is supplied to the coal crusher 10.

石炭粉砕機へ供給する石炭量の変動に応じて石炭粉砕機のモータ電流値を変動させるようにしても、粉砕後の石炭粒度のバラツキを抑制できる可能性があるが、石炭量が短時間で変動する場合があるため現実的ではない。
例えば、コンベアAで石炭を搬送し、コンベアAの終端で、落下する石炭にダンパーを作用させて一定量の石炭を取り出してコンベアBに載置して石炭粉砕機Bへ供給すると共に、残部をコンベアCに載置して石炭粉砕機Cへ供給する方法が考えられる。
しかし、この方法では、石炭に含まれる水分に応じて、ダンパーによって取り出される石炭量及び残部の石炭量が変動する。また、ダンパーによって取り出された石炭がコンベアBに載置される際に、コンベアBに積まれる石炭の高さに変動が発生する場合があり、コンベアによって石炭粉砕機に供給される石炭量が変動する原因ともなる。
Even if the motor current value of the coal crusher is changed according to the change in the amount of coal supplied to the coal crusher, it is possible to suppress the variation in the coal particle size after crushing, but the amount of coal can be reduced in a short time. It is not realistic because it may fluctuate.
For example, the coal is conveyed on the conveyor A, and at the end of the conveyor A, a damper is applied to the falling coal to take out a certain amount of the coal, and the coal is placed on the conveyor B and supplied to the coal crusher B. A method of placing it on the conveyor C and supplying it to the coal crusher C can be considered.
However, in this method, the amount of coal taken out by the damper and the amount of remaining coal vary depending on the water content of the coal. Further, when the coal taken out by the damper is placed on the conveyor B, the height of the coal stacked on the conveyor B may vary, and the amount of coal supplied to the coal crusher by the conveyor varies. It also causes

本発明者らの知見では、含有水分が10質量%である実施例1の石炭を粉砕する際、フィーダを用いて石炭を切り出した場合、3mmアンダーの石炭は概ね目標粒度通りの89質量%(88.5〜89.5質量%の範囲)であったのに対し、ダンパーによる石炭の切り出しを行った場合、88〜90質量%程度となった。従来例よりも粉砕後の石炭粒度のバラツキは改善されたが、フィーダによる切り出しに比べて粉砕後の石炭粒度のバラツキ改善効果は劣るものであった。 According to the knowledge of the present inventors, when the coal of Example 1 having a water content of 10% by mass is crushed using a feeder, the coal of 3 mm under is 89% by mass (corresponding to the target particle size). The range was 88.5 to 89.5% by mass), while the amount of coal cut out by the damper was about 88 to 90% by mass. Although the variation in the particle size of the coal after crushing was improved compared to the conventional example, the effect of improving the variation in the particle size of the coal after crushing was inferior to that obtained by cutting with a feeder.

以上、本発明の一実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば上記実施の形態におけるSTEP−1〜3の順序は固定ではなく、自由に変更して良い。 Although one embodiment of the present invention has been described above, the present invention is not limited to the configuration described in the above-mentioned embodiment at all, and within the scope of matters described in the claims. It also includes other possible embodiments and modifications. For example, the order of STEP-1 to STEP-3 in the above embodiment is not fixed and may be changed freely.

10:石炭粉砕機、11:ホッパ、12:フィーダ、13、14:コンベア、15、16:石炭粒度測定器、21:投入口、22:排出口、23:ケーシング、24:ハンマ、24a:ハンマアーム、24b:ハンマヘッド、25:ロータ、26:摩砕板、26a:摩砕板ライナー、27:シリンダー 10: Coal crusher, 11: Hopper, 12: Feeder, 13, 14: Conveyor, 15, 16: Coal particle sizer, 21: Input port, 22: Discharge port, 23: Casing, 24: Hammer, 24a: Hammer Arm, 24b: Hammer head, 25: Rotor, 26: Grinding plate, 26a: Grinding plate liner, 27: Cylinder

Claims (3)

ケーシング内を回転するハンマの打撃と摩砕板の反撥衝撃により前記ハンマと前記摩砕板の間で石炭を粉砕する石炭粉砕機の入側と出側にそれぞれ石炭粒度測定器を設置し、
前記ハンマを回転させるモータの電流値をパラメータとして、粉砕前の石炭粒度と粉砕後の石炭粒度との相関関係を、前記石炭粉砕機の入側及び出側に設置した前記石炭粒度測定器の測定結果を用いて予め求めておき、
前記石炭粉砕機の入側に設置した前記石炭粒度測定器の測定結果を前記相関関係に適用して、粉砕後の石炭粒度が目標粒度となる際の前記モータの目標電流値I0(A)を決定し、前記モータに流す電流値I1(A)を前記目標電流値I0(A)に設定して石炭を粉砕した後、前記石炭粉砕機の出側に設置した前記石炭粒度測定器の測定結果と前記目標粒度との偏差に応じて前記電流値I1(A)を補正することを特徴とする石炭粉砕方法。
Coal particle size measuring devices are installed on the inlet side and the outlet side of a coal crusher for crushing coal between the hammer and the crush plate by the impact of a hammer rotating in the casing and the repulsive impact of the crush plate .
With the current value of the motor rotating the hammer as a parameter, the correlation between the coal particle size before crushing and the coal particle size after crushing, the measurement of the coal particle sizer installed on the inlet side and the outlet side of the coal crusher Use the results in advance,
The target current value I0(A) of the motor when the coal particle size after crushing reaches the target particle size is applied by applying the measurement result of the coal particle size measuring device installed on the inlet side of the coal crusher to the correlation. After determining and setting the current value I1(A) flowing through the motor to the target current value I0(A) to crush the coal, the measurement result of the coal particle sizer installed on the outlet side of the coal crusher And the current value I1(A) is corrected according to the deviation between the target grain size and the target grain size.
請求項1記載の石炭粉砕方法において、粉砕する石炭に含まれる水分は、内数で7〜15質量%であることを特徴とする石炭粉砕方法。 The coal crushing method according to claim 1, wherein the content of water contained in the crushed coal is 7 to 15 mass% in the internal number. 請求項1又は2記載の石炭粉砕方法において、粉砕する石炭は、ホッパに貯蔵され、フィーダにより切り出されたものであることを特徴とする石炭粉砕方法。 The coal crushing method according to claim 1 or 2, wherein the crushed coal is stored in a hopper and cut out by a feeder.
JP2016186790A 2016-09-26 2016-09-26 Coal crushing method Active JP6747213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016186790A JP6747213B2 (en) 2016-09-26 2016-09-26 Coal crushing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016186790A JP6747213B2 (en) 2016-09-26 2016-09-26 Coal crushing method

Publications (2)

Publication Number Publication Date
JP2018051425A JP2018051425A (en) 2018-04-05
JP6747213B2 true JP6747213B2 (en) 2020-08-26

Family

ID=61834592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016186790A Active JP6747213B2 (en) 2016-09-26 2016-09-26 Coal crushing method

Country Status (1)

Country Link
JP (1) JP6747213B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106090A1 (en) * 2021-12-09 2023-06-15 Jfeスチール株式会社 Coal grinding method and grinding facility
JP7255766B1 (en) * 2021-12-09 2023-04-11 Jfeスチール株式会社 Coal grinding method and grinding equipment
WO2023171765A1 (en) * 2022-03-11 2023-09-14 Jfeスチール株式会社 Coal grinding method, method of manufacturing coal for coke, and coal grinding apparatus

Also Published As

Publication number Publication date
JP2018051425A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6747213B2 (en) Coal crushing method
KR101667237B1 (en) Vertical mill roll
CN1129484C (en) Crusher and crushing method
CN108499669A (en) Paddle type mill dynamic circulation screening crusher
JPWO2008090923A1 (en) Method and apparatus for controlling vertical crusher
KR20130066120A (en) Crushing appartus for raw coal
US20230166270A1 (en) Grinding Method and System with Material Inlet Detection
JP4771207B2 (en) How to operate the vertical crusher
CN105251571B (en) A kind of ball mill ball grinding method of low milling unit consumption
JP6291190B2 (en) Powder and granular material supply system and combustion apparatus
KR20060098436A (en) Apparatus and method of controlling grain input amount in pulverizer
JP5004558B2 (en) Grinding equipment, control device therefor, and raw material supply method in grinding equipment
JP2018187551A (en) Impact crusher
CN105057080A (en) Swelling pre-judgment and control system and method for semi-autogenous mill
JP7327129B2 (en) Vertical grinder
JP7080970B2 (en) Crushing device and control method of crushing device
JP6236249B2 (en) Equipment for supplying crushed materials to incinerators
EP3119524B1 (en) Method for controlling the operation of a crusher, a mineral material processing plant and a control system
CN207324971U (en) A kind of end grinding vertical
JP6206679B2 (en) Coal grinding method
JP7255766B1 (en) Coal grinding method and grinding equipment
WO2023106090A1 (en) Coal grinding method and grinding facility
WO2023171765A1 (en) Coal grinding method, method of manufacturing coal for coke, and coal grinding apparatus
JPWO2023106090A5 (en)
JP2023131703A (en) Crushed stone generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R151 Written notification of patent or utility model registration

Ref document number: 6747213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151