JP6746622B2 - Non-contact charging facility - Google Patents

Non-contact charging facility Download PDF

Info

Publication number
JP6746622B2
JP6746622B2 JP2017565384A JP2017565384A JP6746622B2 JP 6746622 B2 JP6746622 B2 JP 6746622B2 JP 2017565384 A JP2017565384 A JP 2017565384A JP 2017565384 A JP2017565384 A JP 2017565384A JP 6746622 B2 JP6746622 B2 JP 6746622B2
Authority
JP
Japan
Prior art keywords
charging
voltage
control unit
signal
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017565384A
Other languages
Japanese (ja)
Other versions
JPWO2017134838A1 (en
Inventor
啓一 本田
啓一 本田
稔 吉谷
稔 吉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heads Corp
Original Assignee
Heads Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heads Corp filed Critical Heads Corp
Publication of JPWO2017134838A1 publication Critical patent/JPWO2017134838A1/en
Application granted granted Critical
Publication of JP6746622B2 publication Critical patent/JP6746622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Description

本発明は、例えば工場内や一般道路を移動する搬送台車(例えば、AGV)又は自動車の電池等に非接触で電力を供給する非接触充電設備(通常、0.5kW以上の送電電力に使用する)に関する。 INDUSTRIAL APPLICABILITY The present invention is used, for example, in a contactless charging facility for supplying electric power to a carrier vehicle (for example, AGV) moving in a factory or a general road or a battery of an automobile in a contactless manner (usually used for transmission power of 0.5 kW or more). ) Concerning.

例えば、工場等で電池で動く搬送台車は、定期的に電池を充電する必要があり、所定の場所に配置された充電器の近くに搬送台車を止めて、接続コードを用いて搬送台車の電池と充電器を接続し、電池への充電が行われていた。ところが、接続コードを用いて電池へ充電する場合、接続コードを電力供給源に接続する等、極めて手間であるので、例えば、特許文献1〜3に示すように、搬送台車に非接触で電力を供給することが行われている。 For example, a battery-powered carrier truck in a factory or the like needs to be charged periodically, so stop the carrier truck near a charger placed at a predetermined location and use the connection cord to charge the battery of the carrier truck. And the charger was connected and the battery was being charged. However, when the battery is charged using the connection cord, it is extremely troublesome to connect the connection cord to the power supply source, and therefore, for example, as shown in Patent Documents 1 to 3, the contact cart is supplied with electric power in a non-contact manner. Supply is taking place.

特開2005−94862号公報JP 2005-94862 A 特開2006−325350号公報JP, 2006-325350, A WO2006/022365号公報WO2006/022365 特許第5707543号公報Japanese Patent No. 5707543

しかしながら、特許文献1〜3に記載のように、一次コイル側又は二次コイル側に共振回路を組み込むと、共振回路に大きな電流が流れ、発熱するという問題があった。
そこで、特許文献4に示すように、二次コイルの共振電流をスイッチング素子を用いて制御し、二次側共振電流を一定に保ち二次側回路の発熱を抑制した非接触電力供給装置が提案されている。
However, as described in Patent Documents 1 to 3, when a resonance circuit is incorporated on the primary coil side or the secondary coil side, there is a problem that a large current flows in the resonance circuit and heat is generated.
Therefore, as disclosed in Patent Document 4, a contactless power supply device is proposed in which the resonance current of the secondary coil is controlled using a switching element to keep the secondary resonance current constant and suppress the heat generation of the secondary circuit. Has been done.

ところが、二次側に電流の制御部を設けると、全ての二次側機器を備えた搬送台車に電流を一定に制御する装置が必要であり、経済上好ましくない。
また、特許文献4に記載する装置は、二次側機器の状態に関わらず一次側機器が作動する場合もあり、無駄な電力が消費される場合があった。
本発明はかかる事情に鑑みてなされたもので、二次側で電池の電圧及び電流を測定して、一次側で的確に充電電流及び充電電圧を制御する非接触充電設備を提供することを目的とする。
However, if a current control unit is provided on the secondary side, a transport carriage equipped with all the secondary side devices needs a device for controlling the current to be constant, which is economically undesirable.
Further, in the device described in Patent Document 4, the primary device may operate regardless of the state of the secondary device, and wasteful power may be consumed in some cases.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-contact charging facility that measures the voltage and current of a battery on the secondary side and accurately controls the charging current and charging voltage on the primary side. And

前記目的に沿う発明に係る非接触充電設備は、構築物の側壁、床部又は天井部に固定状態で設けられ、インバータを含む高周波電源から電力供給を受ける一次コイルを有する給電装置と、自動車又は搬送台車に設けられ、前記給電装置に対して隙間を有して横移動可能に配置され、前記一次コイルと電磁結合する二次コイル及び共振コイルを有する受電装置とを備え、給電時には前記給電装置から前記受電装置に接続された電池に充電する非接触充電設備において、
1)前記受電装置の制御部(B)及び前記給電装置の制御部(A)にそれぞれ接続され、かつ対向配置されて、可視光を用いる光信号の授受を行う第2、第1の光通信部と、
2)前記制御部(B)に設けられ、電圧計測手段で測定した前記電池の充電電圧、電流計測手段で測定した前記電池の充電電流、及び温度計で測定した前記共振コイルの作動温度の信号を前記第2の光通信部から前記第1の光通信部に送る光信号処理手段と、
3)前記制御部(A)に設けられ、前記第1の光通信部からの信号を受けて前記充電電圧及び前記充電電流を検知し、固定周波数で発振する前記インバータのPWM制御を行って、前記充電電圧が規定電圧より低い場合は、前記電池への定電流制御を行い、前記充電電圧が前記規定電圧となった場合は、前記電池への定電圧制御を行う充電制御手段と、
4)前記制御部(A)に設けられ、前記第1の光通信部からの信号を受けて前記作動温度が所定温度値を超えた場合には、前記インバータの動作を停止する第1の保護手段と、
5)前記制御部(A)に設けられ、前記第1の光通信部からの信号により、前記充電電流が最大電流値を超えた場合、又は前記充電電圧が最大電圧値を超えた場合、前記インバータの動作を停止する第2の保護手段と、
6)前記制御部(A)に設けられ、前記電池への定電圧制御の完了を確認して、前記インバータの動作を停止する第3の保護手段が設けられ
前記受電装置は、フェライト製の二次側Eコアと該二次側Eコアの中央磁極部に巻かれた前記二次コイルと前記共振コイルを有し、該共振コイルには共振コンデンサが接続され、
前記給電装置は、平面視して円形の平面部と該平面部の中央に突出して形成された円柱状の直立磁極部とを有するフェライト製の一次側コアと、前記直立磁極部に巻かれた前記一次コイルとを有し、しかも、前記平面部の直径は、平面視して前記二次側Eコア、前記二次コイル、及び前記共振コイルを囲む円のうち最大円の直径の1倍を超え1.6倍以下の範囲にある。
The non-contact charging equipment according to the present invention in accordance with the above-mentioned object is provided in a fixed state on a side wall, a floor or a ceiling of a building, and has a primary coil that receives power from a high frequency power source including an inverter, an automobile, or The power feeding device is provided in a carrier, is provided so as to be laterally movable with a gap with respect to the power feeding device, and has a power receiving device having a secondary coil and a resonance coil electromagnetically coupled to the primary coil. In a non-contact charging facility for charging a battery connected to the power receiving device from
1) Second and first optical communications, which are respectively connected to and opposed to the control unit (B) of the power receiving device and the control unit (A) of the power feeding device to exchange optical signals using visible light. Department,
2) A signal of the charging voltage of the battery measured by voltage measuring means, the charging current of the battery measured by current measuring means, and the operating temperature of the resonance coil measured by a thermometer provided in the control unit (B). An optical signal processing means for sending from the second optical communication unit to the first optical communication unit,
3) The control unit (A) is provided, receives the signal from the first optical communication unit, detects the charging voltage and the charging current, and performs PWM control of the inverter that oscillates at a fixed frequency, When the charging voltage is lower than a specified voltage, a constant current control for the battery is performed, and when the charging voltage is the specified voltage, a charge control unit that performs a constant voltage control for the battery,
4) A first protection which is provided in the control unit (A) and stops the operation of the inverter when the operating temperature exceeds a predetermined temperature value upon receiving a signal from the first optical communication unit. Means and
5) When the charging current exceeds a maximum current value or the charging voltage exceeds a maximum voltage value, which is provided in the control unit (A), and the signal from the first optical communication unit, Second protection means for stopping the operation of the inverter;
6) provided in the control unit (A), to verify the completion of the constant voltage control to the battery, and a third protecting means for stopping the operation of the inverter is provided,
The power receiving device has a secondary side E core made of ferrite, the secondary coil wound around a central magnetic pole portion of the secondary side E core, and the resonance coil, and a resonance capacitor is connected to the resonance coil. ,
The power feeding device is wound around the primary magnetic core made of ferrite having a circular flat surface portion in plan view and a column-shaped upright magnetic pole portion formed to project in the center of the flat surface portion, and the upright magnetic pole portion. It has the primary coil, and the diameter of the plane portion is one time the diameter of the largest circle among the circles surrounding the secondary side E core, the secondary coil, and the resonance coil in plan view. Exceeding 1.6 times or less.

なお、第3の保護手段は、1)定電流(充電)制御の後、充電電流が所定電流以下になるまで定電圧(充電)制御を行って前記インバータの動作を止める場合、2)更に、この定電圧(充電)制御の完了後、一定時間経過後に前記インバータの動作を止める場合、3)定電流(充電)制御の後、タイマーでカウントして定電圧(充電)制御を行い、該タイマーのカウントアップによって、前記インバータの動作を止めるようにする場合等がある。 The third protection means is: 1) After constant current (charging) control, constant voltage (charging) control is performed until the charging current becomes a predetermined current or less to stop the operation of the inverter. 2) Further, When the operation of the inverter is stopped after a lapse of a certain time after the completion of the constant voltage (charge) control, 3) After the constant current (charge) control, the timer is counted to perform the constant voltage (charge) control, and the timer is operated. There is a case where the operation of the inverter is stopped by counting up.

発明に係る非接触充電設備において、前記光信号処理手段は、前記電圧計測手段及び前記電流計測手段並びに前記温度計でそれぞれ測定したデータをデジタル信号に変換し、変換したデジタルデータを更にシリアル信号に変換して、前記第2の光通信部から光信号として送信し、該光信号を前記第1の光通信部で受信して、前記充電制御手段で復調し、該充電制御手段で前記インバータのPWM制御を行うのが好ましい。 In the contactless charging equipment according to the present invention, the optical signal processing means converts the data measured by the voltage measuring means, the current measuring means and the thermometer into a digital signal, and further converts the converted digital data into a serial signal. Converted into the optical signal transmitted from the second optical communication unit as an optical signal, the optical signal is received by the first optical communication unit, demodulated by the charging control unit, and the inverter by the charging control unit. It is preferable to perform the PWM control.

以上に記載した非接触充電設備において、前記した第1、第2の光通信部の代わりに、電波や超音波を媒体とする第1、第2の無線通信部とすることもできる。この場合、前記した光信号は、電波や超音波を媒体とした無線信号となり、前記光信号手段は電波や超音波を媒体とした無線信号手段となる(即ち、読み替えることになる)。 In the non-contact charging facility described above, the first and second wireless communication units that use radio waves or ultrasonic waves as mediums may be used instead of the first and second optical communication units described above. In this case, the above-mentioned optical signal becomes a radio signal using radio waves or ultrasonic waves as a medium, and the optical signal means becomes a radio signal means using radio waves or ultrasonic waves as a medium (that is, to be replaced).

発明に係る非接触充電設備において、制御部(B)に設けられ、電圧計測手段及び電流計測手段で測定した電池の充電電圧及び充電電流と、温度計で測定した受電装置の作動温度との信号を変換して、第1の光通信部に送る光信号処理手段と、制御部(A)に設けられ、第1の光通信部からの信号を受けて充電電圧及び充電電流を検知し、固定周波数で発振するインバータのPWM制御を行って、充電電圧が規定電圧より低い場合は、電池への定電流制御を行い、充電電圧が規定電圧となった場合は、電池への定電圧制御を行う充電制御手段とを有するので、二次側の電圧及び電流を見ながら、インバータの出力を制御できる。 In the non-contact charging facility according to the present invention, the charging voltage and charging current of the battery, which are provided in the control unit (B) and are measured by the voltage measuring unit and the current measuring unit, and the operating temperature of the power receiving device, which is measured by the thermometer, are provided. An optical signal processing unit that converts a signal and sends the signal to the first optical communication unit and a control unit (A) are provided, and receives a signal from the first optical communication unit to detect a charging voltage and a charging current, Performs PWM control of the inverter that oscillates at a fixed frequency, performs constant current control on the battery when the charging voltage is lower than the specified voltage, and performs constant voltage control on the battery when the charging voltage reaches the specified voltage. Since it has a charging control means for performing, the output of the inverter can be controlled while observing the voltage and current on the secondary side.

更に、発明に係る非接触充電設備は、制御部(A)に設けられ、第1の光通信部からの信号を受けて作動温度が所定温度値を超えた場合に、インバータの動作を停止する第1の保護手段を設けているので、受電側の温度異常を感知して充電動作を止めることができる。 Further, the non-contact charging equipment according to the present invention is provided in the control unit (A), and stops the operation of the inverter when the operating temperature exceeds a predetermined temperature value by receiving a signal from the first optical communication unit. Since the first protection means is provided, it is possible to detect the temperature abnormality on the power receiving side and stop the charging operation.

そして、発明に係る非接触充電設備は、制御部(A)に設けられ、第1の光通信部からの信号により、充電電流が最大電流値を超えた場合、又は充電電圧が最大電圧値を超えた場合、インバータの動作を停止する第2の保護手段を有しているので、受電側の異常な状態を未然に察知して、給電装置の保護及び受電装置の保護をなし得る。 And the non-contact charging equipment which concerns on this invention is provided in a control part (A), and when a charging current exceeds a maximum current value by a signal from a 1st optical communication part, or a charging voltage has a maximum voltage value. When it exceeds, the second protection means for stopping the operation of the inverter is provided. Therefore, it is possible to detect the abnormal state on the power receiving side in advance and protect the power feeding device and the power receiving device.

また、発明に係る非接触充電設備は、制御部(A)に設けられ、電池への定電圧制御の完了を確認した後、インバータの動作を停止する第3の保護手段が設けられているので、電池の過充電を防止できると共に、給電装置、受電装置又は外部に充電の完了を知らせることができる。この場合、ランプ又はブザーを起動するのが好ましい。 Further, the contactless charging equipment according to the present invention is provided in the control unit (A), and is provided with a third protection means for stopping the operation of the inverter after confirming the completion of the constant voltage control for the battery. Therefore, it is possible to prevent the battery from being overcharged and notify the power supply device, the power reception device, or the outside of the completion of charging. In this case, it is preferable to activate the lamp or buzzer.

発明に係る非接触充電設備において、光信号処理手段が、電圧計測手段及び電流計測手段並びに温度計でそれぞれ測定したデータをデジタル信号に変換し、変換したデジタルデータを更にシリアル信号に変換して、第2の光通信部から光信号として送信し、光信号を第1の光通信部で受信して、充電制御手段で復調し、インバータのPWM制御を行う場合は、信号処理が簡略化し、誤動作が少ない。 In the contactless charging equipment according to the present invention, the optical signal processing means converts the data measured by the voltage measuring means, the current measuring means and the thermometer into digital signals, and further converts the converted digital data into serial signals. , The optical signal is transmitted from the second optical communication unit, the optical signal is received by the first optical communication unit, demodulated by the charging control unit, and PWM control of the inverter is performed, the signal processing is simplified, There are few malfunctions.

特に、発明に係る非接触充電設備は、給電装置の制御部(A)、受電装置の制御部(B)にそれぞれ接続され、かつ対向配置されて光通信を行う第1、第2の光通信部を有するので、光(紫外線、可視光線、赤外線、遠赤外線を含む)は指向性を有し、給電装置と受電装置とを、電波に比較して混信の少ない状態で信号連結できる。 In particular, the contactless charging facility according to the present invention is connected to the control unit (A) of the power feeding device and the control unit (B) of the power receiving device, respectively, and is arranged opposite to each other to perform the first and second optical communication. Since the communication unit is included, light (including ultraviolet rays, visible rays, infrared rays, and far infrared rays) has directivity, and the power feeding device and the power receiving device can be signal-coupled with less interference compared to radio waves.

そして、発明に係る非接触充電設備において、受電装置が、フェライト製の二次側Eコアと二次側Eコアの中央磁極部に巻かれた二次コイルと共振コイルを有し、共振コイルには共振コンデンサが接続され、給電装置が、平面視して円形の平面部と該平面部の中央に突出して形成された円柱状の直立磁極部とを有するフェライト製の一次側コアと、直立磁極部に巻かれた一次コイルとを有するので、一次コイルと二次コイルの磁気結合がより強くなって、電力の伝達効率が増加する。更に、二次側Eコアの長手方向の平面視した向きが変わってもその他の条件が同じであれば、同一の伝達効率で給電できる。 In the contactless charging equipment according to the present invention, the power receiving device has a secondary E core made of ferrite, a secondary coil wound around a central magnetic pole portion of the secondary E core, and a resonance coil. A resonance capacitor is connected to the power supply device, and the power feeding device includes a ferrite primary-side core having a circular flat surface portion in plan view and a cylindrical upright magnetic pole portion formed to project in the center of the flat surface portion; Since it has the primary coil wound around the magnetic pole portion, the magnetic coupling between the primary coil and the secondary coil becomes stronger, and the power transmission efficiency increases. Furthermore, even if the longitudinal direction of the secondary side E core in plan view changes, if the other conditions are the same, power can be supplied with the same transmission efficiency.

本発明の一実施例に係る非接触充電設備の概略ブロック図である。It is a schematic block diagram of the non-contact charging equipment which concerns on one Example of this invention. 同非接触充電設備の説明図である。It is explanatory drawing of the same non-contact charging equipment. 同非接触充電設備の受電装置を底から見た二次コイル周りの説明図である。It is explanatory drawing of the secondary coil circumference|surroundings which looked at the power receiving apparatus of the same non-contact charging equipment from the bottom. 同非接触充電設備の一次コイル及び二次コイル周りの説明図である。It is explanatory drawing around the primary coil and secondary coil of the same non-contact charging equipment. 同非接触充電設備を用いた場合の充電電流と時間との関係を示すグラフである。It is a graph which shows the relationship between charging current and time at the time of using the same non-contact charging equipment.

続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
図1、図2に示すように、本発明の一実施例に係る非接触充電設備10は、構築物の側壁、床部又は天井部に固定状態で設けられ、インバータ11を含む高周波電源から電力供給を受ける一次コイル12を有する給電装置13と、給電装置13に対して横移動可能な自動車又は搬送台車に設けられ、一次コイル12と電磁結合する二次コイル14及び共振コイル15を有する受電装置16とを備え、給電時には、給電装置13に対して受電装置16が隙間を有して横移動可能に配置され、給電装置13の一次コイル12の直上(又は直下、真横に)二次コイル14及び共振コイル15を配置した状態で、給電装置13から受電装置16に接続された電池17に充電する。ここで、横移動可能な隙間とは、固定状態で配置されている一次コイル12に対して二次コイル14及び共振コイル15が自由に横移動できる空間をいう。
Next, an embodiment of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
As shown in FIG. 1 and FIG. 2, a non-contact charging facility 10 according to an embodiment of the present invention is fixedly provided on a side wall, floor or ceiling of a building, and is supplied with power from a high frequency power source including an inverter 11. A power feeding device 13 having a primary coil 12 for receiving the power, and a power receiving device 16 having a secondary coil 14 and a resonance coil 15 which are provided in an automobile or a carriage that can move laterally with respect to the power feeding device 13 and are electromagnetically coupled to the primary coil 12. When power is supplied, the power receiving device 16 is arranged so as to be laterally movable with respect to the power feeding device 13 with a gap, and the secondary coil 14 and the primary coil 12 of the power feeding device 13 are provided directly above (or just below, directly beside) the primary coil 12. With the resonance coil 15 arranged, the battery 17 connected to the power receiving device 16 is charged from the power feeding device 13. Here, the laterally movable gap means a space in which the secondary coil 14 and the resonance coil 15 can freely laterally move with respect to the primary coil 12 arranged in a fixed state.

そして、非接触充電設備10は、給電装置13の制御部(A)19、及び受電装置16の制御部(B)20にそれぞれ接続され、かつ対向配置されて光信号(無線信号一例)の授受を行う第1、第2の光通信部(第1、第2の無線通信部の一例)21、22を有している。ここで、第1、第2の光通信部21、22はそれぞれ図示しない発光部(例えば、LED)と受光部(例えば、フォトダイオード)を有し、給電装置13から光信号(A)を受電装置16に、受電装置16から光信号(B)を給電装置13に送るようになっている。 Then, the non-contact charging facility 10 is connected to the control unit (A) 19 of the power feeding device 13 and the control unit (B) 20 of the power receiving device 16 respectively, and is arranged to face each other to exchange optical signals (one example of a wireless signal). It has the 1st, 2nd optical communication part (an example of a 1st, 2nd wireless communication part) 21 and 22 which performs. Here, each of the first and second optical communication units 21 and 22 has a light emitting unit (for example, LED) and a light receiving unit (for example, photodiode) (not shown), and receives the optical signal (A) from the power feeding device 13. An optical signal (B) is transmitted from the power receiving device 16 to the device 16 to the power feeding device 13.

制御部(B)20には、電圧計測手段23及び電流計測手段24で測定した電池17の充電電圧及び充電電流と、温度計25で測定した受電装置16(特に、共振コイル15)の作動温度との信号を変換して、第2の光通信部22に送る光信号処理手段(無線信号処理手段の一例)26が設けられている。 In the control unit (B) 20, the charging voltage and charging current of the battery 17 measured by the voltage measuring unit 23 and the current measuring unit 24, and the operating temperature of the power receiving device 16 (in particular, the resonance coil 15) measured by the thermometer 25. An optical signal processing unit (an example of a wireless signal processing unit) 26 for converting the signal of and is sent to the second optical communication unit 22 is provided.

制御部(A)19には、第1の光通信部21からの信号を受けて、含まれる充電電圧及び充電電流の信号を検知し、固定周波数で発振するインバータ11のPWM制御を行って、充電電圧が規定電圧(Vc、図5参照)より低い場合は、電池17への定電流制御を行い、充電電圧が規定電圧(Vc)となった場合は、電池17への定電圧制御を行う充電制御手段28が設けられている。規定電圧は通常電池の定格電圧の1.1〜1.15倍程度が好ましいが、本発明はこの数字に限定されるものではない。 The control unit (A) 19 receives the signal from the first optical communication unit 21, detects the contained charging voltage and charging current signals, and performs PWM control of the inverter 11 that oscillates at a fixed frequency, When the charging voltage is lower than the specified voltage (Vc, see FIG. 5), the constant current control for the battery 17 is performed, and when the charging voltage becomes the specified voltage (Vc), the constant voltage control for the battery 17 is performed. Charging control means 28 is provided. Usually, the specified voltage is preferably about 1.1 to 1.15 times the rated voltage of the battery, but the present invention is not limited to this number.

ここで、光信号処理手段26は、電圧計測手段23及び電流計測手段24並びに温度計25でそれぞれ測定したデータをアナログ信号からデジタル信号に変換し、変換したデジタルデータを更にシリアル信号に変換して、第2の光通信部22から光信号として送信し、光信号を第1の光通信部21で受信して、充電制御手段28で復調し、充電制御手段28で電圧、電流及び温度の信号を記憶し、この電圧及び電流を用いてインバータ(高周波電源)11のPWM制御を行う。
ここで、インバータ11の電源は商用電源(例えば、三相交流)30を整流回路31で直流に変換することによって得る。
Here, the optical signal processing means 26 converts the data measured by the voltage measuring means 23, the current measuring means 24, and the thermometer 25 from an analog signal into a digital signal, and further converts the converted digital data into a serial signal. , The optical signal is transmitted from the second optical communication unit 22, the optical signal is received by the first optical communication unit 21, demodulated by the charge control unit 28, and the voltage, current, and temperature signals are generated by the charge control unit 28. Is stored, and the PWM control of the inverter (high frequency power supply) 11 is performed by using this voltage and current.
Here, the power source of the inverter 11 is obtained by converting a commercial power source (for example, three-phase alternating current) 30 into a direct current by a rectifier circuit 31.

また、制御部(A)19は、第1の光通信部21からの信号を受けて作動温度が所定温度値(Tc)を超えた場合に、充電制御手段28を介してインバータ11の動作を停止する第1の保護手段33を有している。 Further, the control unit (A) 19 operates the inverter 11 via the charging control unit 28 when the operating temperature exceeds the predetermined temperature value (Tc) in response to the signal from the first optical communication unit 21. It has a first protection means 33 for stopping.

そして、制御部(A)19には、第1の光通信部21からの信号により、充電電流が最大電流値(Imax)を超えた場合、又は充電電圧が最大電圧値(Vmax)を超えた場合、充電制御手段28を介してインバータ11の動作を停止する第2の保護手段34が設けられている。なお、充電電流が最小電流値(Imin)未満の場合、又は充電電圧が最小電圧値(Vmin)未満の場合、充電制御手段28から警報を発することもできる。 Then, in the control unit (A) 19, when the charging current exceeds the maximum current value (Imax) or the charging voltage exceeds the maximum voltage value (Vmax) by the signal from the first optical communication unit 21. In this case, the second protection means 34 for stopping the operation of the inverter 11 via the charge control means 28 is provided. If the charging current is less than the minimum current value (Imin), or if the charging voltage is less than the minimum voltage value (Vmin), the charging control means 28 can also issue an alarm.

制御部(A)19には、電池17への定電圧制御の完了を確認した後、直ちに又は一定時間(タイマーでカウント)を経過すると、インバータ11の動作を充電制御手段28を介して停止する第3の保護手段35が設けられている。この第3の保護手段35は、ランプ出力を有すると共に、電波、超音波、光による無線信号、又は接点信号を有して、受電装置16を有している搬送台車の一例である自動運搬車(AGV)又は自動車が充電を完了したことを検知し、発進させることが可能となる。 The control unit (A) 19 stops the operation of the inverter 11 via the charging control means 28 immediately or after a lapse of a certain time (counted by a timer) after confirming the completion of the constant voltage control for the battery 17. A third protection means 35 is provided. The third protection means 35 has a lamp output and also has a radio signal, an ultrasonic wave, a wireless signal by light, or a contact signal, and is an example of a carrier vehicle having the power receiving device 16 and is an automatic carrier. It is possible to detect that (AGV) or the vehicle has completed charging and start the vehicle.

共振コイル15には共振用のコンデンサ37が接続され、二次コイル15の出力は整流器39を介して負荷である電池17に接続されている。なお、図2に示す非接触充電設備10は実験用であるので、一次側に三相交流用の電圧計40及び電流計41、インバータ11の出力電圧及び出力電流をそれぞれ測定する高周波電圧計42及び高周波電流計43を有している。
また、受電装置16には、電池17の充電電圧を測定する直流電圧計44、電池17の充電電流を測定する直流電流計45が設けられている。
A resonance capacitor 37 is connected to the resonance coil 15, and an output of the secondary coil 15 is connected to a battery 17 which is a load via a rectifier 39. Since the non-contact charging equipment 10 shown in FIG. 2 is for experimental use, a voltmeter 40 and an ammeter 41 for three-phase AC on the primary side, and a high-frequency voltmeter 42 for measuring the output voltage and the output current of the inverter 11, respectively. And a high frequency ammeter 43.
The power receiving device 16 is also provided with a DC voltmeter 44 for measuring the charging voltage of the battery 17 and a DC ammeter 45 for measuring the charging current of the battery 17.

インバータ11の動作周波数は、可聴周波数を超える20〜100kHz程度が好ましいが、この実施例では20kHzに固定している。共振コイル15とコンデンサ37との組み合わせによる共振周波数において過大な電流が流れるので、次式で表されるI(共振電流)が、共振コイル15に使用される許容電流以下となるように、ω(=2πf)を決める。 The operating frequency of the inverter 11 is preferably about 20 to 100 kHz, which exceeds the audible frequency, but is fixed to 20 kHz in this embodiment. An excessive current flows at the resonance frequency due to the combination of the resonance coil 15 and the capacitor 37, so that I (resonance current) represented by the following equation becomes ω( = 2πf).

I=V/{(R2 +(ωL−1/ωC)2 }0.5
但し、Rは回路抵抗、Lは共振コイル15のインダクタンス、Cは共振コンデンサのキャパシタンス、fは周波数を示す。
具体的には、実際に測定して、例えば共振電流を電池17の充電電流の0.5〜1倍とするのがよい。共振回路の共振周波数は、インバータ11の発振周波数より大きいのが好ましいが、小さくすることもできる。
I=V/{(R2 +(ωL-1/ωC)2}0.5
Where R is the circuit resistance, L is the inductance of the resonance coil 15, C is the capacitance of the resonance capacitor, and f is the frequency.
Specifically, it is preferable to actually measure the resonance current to be 0.5 to 1 times the charging current of the battery 17, for example. The resonance frequency of the resonance circuit is preferably higher than the oscillation frequency of the inverter 11, but it can also be lower.

次に、この非接触充電設備10に使用する一次コイル12周りと、二次コイル14及び共振コイル15周りについて、具体例を図3、図4を参照しながら説明する。
給電装置13において、一次コイル12が巻かれている一次側コア46は、図4に示すように、円形又は角部が丸くなった角形形状の平面部(板状部の一例)47と、平面部47の中央にある円柱状(半径r)の直立磁極部(棒状部の一例)48とを有し、材質はフェライトコアからなっている。直立磁極部48は一次コイル12の磁束が飽和しない断面積を有し、平面部47の厚みgは、0.5r〜rとなって磁気飽和しないようになっている。なお、一次コイル12にはリッツ線が使用され、直立磁極部48に10〜30ターン程度巻かれている。直立磁極部48と平面部47とは継ぎ目無しの一体構造であるのが好ましいが、分割した構造からなり接着剤等で接合されるものであってもよい。この場合、接着剤としては磁性粉入りのものを使用するのがよい。
Next, specific examples of the surroundings of the primary coil 12 and the surroundings of the secondary coil 14 and the resonance coil 15 used in the non-contact charging facility 10 will be described with reference to FIGS. 3 and 4.
In the power feeding device 13, the primary-side core 46 around which the primary coil 12 is wound has, as shown in FIG. 4, a flat surface portion (an example of a plate-shaped portion) 47 having a circular shape or a rounded corner portion, and a flat surface. It has a columnar (radius r) upright magnetic pole portion (an example of a rod-shaped portion) 48 at the center of the portion 47, and is made of a ferrite core. The upright magnetic pole portion 48 has a cross-sectional area in which the magnetic flux of the primary coil 12 is not saturated, and the thickness g of the plane portion 47 is 0.5r to r so that magnetic saturation does not occur. A litz wire is used for the primary coil 12, and is wound around the upright magnetic pole portion 48 for about 10 to 30 turns. The upright magnetic pole portion 48 and the flat surface portion 47 preferably have a seamless integral structure, but may have a divided structure and be joined by an adhesive or the like. In this case, it is preferable to use an adhesive containing magnetic powder as the adhesive.

受電装置16には図3、図4に示すフェライトコア材を用いた二次側Eコア49が使用され、Eコア49の中央磁極部50に二次コイル14及び共振コイル15が巻かれている。共振コイル15は例えば10〜50ターン程度巻かれ、二次コイル14は例えば5〜20ターン程度となっている。このEコア49の断面積も十分に大きく、二次コイル14及び共振コイル15に流れる電流で磁気飽和しないようになっている。 A secondary side E core 49 using a ferrite core material shown in FIGS. 3 and 4 is used for the power receiving device 16, and the secondary coil 14 and the resonance coil 15 are wound around the central magnetic pole portion 50 of the E core 49. .. The resonance coil 15 has, for example, about 10 to 50 turns, and the secondary coil 14 has, for example, about 5 to 20 turns. The cross-sectional area of this E core 49 is also sufficiently large so that it will not be magnetically saturated by the current flowing through the secondary coil 14 and the resonance coil 15.

一次側コア46の平面部47の最大直径dは、二次側コア、即ちEコア49の平面視した最大直径及び二次コイル14及び共振コイル15の平面視した最大直径の、例えば、1倍を超え1.6倍以下の範囲で大きく、一次側コア46とEコア49の磁気的結合度を増すと共に、一次側コア46の背面側に逃げる漏洩磁束を少なくしている。更に、二次側にEコア49を一次側コア46の平面部47で覆うように使用しているので、Eコア49の軸心と、一次側コア46の軸心を略合わせることによって、Eコア49の平面的向きに関係なく、一次側から二次側への効率の良い非接触給電が可能となる。なお、図4において、51は非磁性及び絶縁体からなり、一次コイル12の全部を覆うカバー材である。 The maximum diameter d of the plane portion 47 of the primary side core 46 is, for example, 1 times the maximum diameter of the secondary side core, that is, the E core 49 in plan view and the maximum diameter of the secondary coil 14 and the resonance coil 15 in plan view. It is large in the range of more than 1.6 times and less than 1.6 times, increasing the degree of magnetic coupling between the primary side core 46 and the E core 49, and reducing the leakage magnetic flux escaping to the back side of the primary side core 46. Furthermore, since the E core 49 is used on the secondary side so as to be covered with the flat surface portion 47 of the primary side core 46, the axial center of the E core 49 and the axial center of the primary side core 46 are substantially aligned to each other. Regardless of the planar orientation of the core 49, efficient non-contact power feeding from the primary side to the secondary side is possible. In FIG. 4, reference numeral 51 is a cover material which is made of a non-magnetic material and an insulator and covers the entire primary coil 12.

続いて、この非接触充電設備10の動作について説明する。
図1、図2に示すように、給電装置13を所定位置に配置し、受電装置16を有する搬送台車(例えば、AGV)を所定位置に配置する。この場合、給電装置13は、構築物の天井部、側壁、又は床部に配置し、受電装置16は給電装置13に少しの隙間を有して、給電装置13に対して受電装置16が横移動可能に対向配置されるのがよい。
搬送台車が所定の位置に停止したことをセンサで検知すると、給電装置13及び受電装置16が作動し、初期状態となる。
Then, operation|movement of this non-contact charging equipment 10 is demonstrated.
As shown in FIGS. 1 and 2, the power feeding device 13 is arranged at a predetermined position, and a carrier vehicle (eg, AGV) having the power receiving device 16 is arranged at a predetermined position. In this case, the power feeding device 13 is disposed on the ceiling portion, the side wall, or the floor portion of the structure, the power receiving device 16 has a small gap in the power feeding device 13, and the power receiving device 16 moves laterally with respect to the power feeding device 13. It is preferable that they are arranged opposite to each other.
When the sensor detects that the carrier vehicle has stopped at a predetermined position, the power feeding device 13 and the power receiving device 16 are activated to be in the initial state.

次に、電池17の充電電圧と充電電流が、電圧計測手段23と電流計測手段24で計測され、温度計25の出力と共に、光信号処理手段26を介して第2の光通信部22から光信号として外部に放出される。放出された光信号は第1の光通信部21で受信し、充電制御手段28によって、電流、電圧、温度の信号に復調される。 Next, the charging voltage and the charging current of the battery 17 are measured by the voltage measuring means 23 and the current measuring means 24, and the output of the thermometer 25 and the light from the second optical communication unit 22 are transmitted via the optical signal processing means 26. It is emitted to the outside as a signal. The emitted optical signal is received by the first optical communication unit 21, and demodulated by the charge control unit 28 into current, voltage, and temperature signals.

図5に示すように、電圧計測手段23によって検出された電圧(充電電圧V)が規定電圧(Vc)より低い場合は、電池17への定電流制御(CC領域)を行い、電池17の電圧が規定電圧となった場合は、電池17への定電圧制御(CV領域)を行う。なお、規定電圧としては電池17の定格電圧(Vs)より少しの範囲(例えば、5〜15%)で高い範囲とするのが好ましい。 As shown in FIG. 5, when the voltage (charging voltage V) detected by the voltage measuring means 23 is lower than the specified voltage (Vc), constant current control (CC region) to the battery 17 is performed to determine the voltage of the battery 17. When the voltage reaches the specified voltage, the constant voltage control (CV region) to the battery 17 is performed. In addition, it is preferable that the specified voltage is set to a range higher than the rated voltage (Vs) of the battery 17 in a range (eg, 5 to 15%).

この仕上げ充電(CV領域)が完了した後、所定時間約10分(0〜20分が好ましい)を経過すると、充電完了の信号を受電装置16から給電装置13に光通信を用いて送り、充電作業が完了する。なお、ここで、定電流制御を行った後、タイマーを作動させて(即ち、タイマー制御により)定電圧(充電)制御を行って充電制御を完了してもよい。
なお、電池17への充電電圧又は充電電流が平常値から外れて異常状態にある場合は、給電装置13が停止し、警報(ランプ、ベル、その他の信号)を発する。
When a predetermined time of about 10 minutes (preferably 0 to 20 minutes) elapses after completion of the finish charging (CV area), a signal indicating completion of charging is sent from the power receiving device 16 to the power feeding device 13 using optical communication to perform charging. The work is completed. Note that, here, after performing the constant current control, the timer may be operated (that is, by the timer control) to perform the constant voltage (charging) control to complete the charging control.
When the charging voltage or charging current to the battery 17 is out of the normal value and is in an abnormal state, the power supply device 13 is stopped and an alarm (lamp, bell, other signal) is issued.

なお、以上の発明において、磁気材料としてフェライトコアを用いたが、高周波特性がよく鉄損が少ない材料であれば、他の素材を使用することもできる。
また、本発明は以上の実施例に限定されるものではなく、本発明の要旨を変更しない程度の改良や、構成要素を追加する場合も本発明は適用される。例えば、前記実施例においては、信号の媒体手段として、光を用いたが、電波や超音波であっても適用可能である。
In the above invention, the ferrite core is used as the magnetic material, but other materials can be used as long as they have good high frequency characteristics and little iron loss.
Further, the present invention is not limited to the above-described embodiments, and the present invention can be applied to an improvement to the extent that the gist of the present invention is not changed or a case where a component is added. For example, in the above-described embodiment, light is used as the signal medium means, but radio waves or ultrasonic waves are also applicable.

本発明に係る非接触充電設備は、受電側の電圧、電流、温度の状態を検知して、無線で給電側に伝え、受電側の電圧、電流を制御しているので、受電側の装置が簡略化して軽量化が図れ、結果として省エネとなる。 The non-contact charging equipment according to the present invention detects the voltage, current, and temperature states on the power receiving side and wirelessly transmits them to the power feeding side, and controls the voltage and current on the power receiving side. It can be simplified and reduced in weight, resulting in energy savings.

10:非接触充電設備、11:インバータ、12:一次コイル、13:給電装置、14:二次コイル、15:共振コイル、16:受電装置、17:電池、19:制御部(A)、20:制御部(B)、21:第1の光通信部、22:第2の光通信部、23:電圧計測手段、24:電流計測手段、25:温度計、26:光信号処理手段、28:充電制御手段、30:商用電源、31:整流回路、33:第1の保護手段、34:第2の保護手段、35:第3の保護手段、37:コンデンサ、39:整流器、40:電圧計、41:電流計、42:高周波電圧計、43:高周波電流計、44:直流電圧計、45:直流電流計、46:一次側コア、47:平面部、48:直立磁極部、49:Eコア、50:中央磁極部、51:カバー材 10: Non-contact charging equipment, 11: Inverter, 12: Primary coil, 13: Power supply device, 14: Secondary coil, 15: Resonance coil, 16: Power receiving device, 17: Battery, 19: Control part (A), 20 : Control part (B), 21: first optical communication part, 22: second optical communication part, 23: voltage measuring means, 24: current measuring means, 25: thermometer, 26: optical signal processing means, 28 : Charging control means, 30: Commercial power supply, 31: Rectifier circuit, 33: First protection means, 34: Second protection means, 35: Third protection means, 37: Capacitor, 39: Rectifier, 40: Voltage 41: ammeter, 42: high frequency voltmeter, 43: high frequency ammeter, 44: direct current voltmeter, 45: direct current ammeter, 46: primary side core, 47: flat surface portion, 48: upright magnetic pole portion, 49: E Core, 50: Central magnetic pole part, 51: Cover material

Claims (2)

構築物の側壁、床部又は天井部に固定状態で設けられ、インバータを含む高周波電源から電力供給を受ける一次コイルを有する給電装置と、自動車又は搬送台車に設けられ、前記給電装置に対して隙間を有して横移動可能に配置され、前記一次コイルと電磁結合する二次コイル及び共振コイルを有する受電装置とを備え、給電時には前記給電装置から前記受電装置に接続された電池に充電する非接触充電設備において、
1)前記受電装置の制御部(B)及び前記給電装置の制御部(A)にそれぞれ接続され、かつ対向配置されて、可視光を用いる光信号の授受を行う第2、第1の光通信部と、
2)前記制御部(B)に設けられ、電圧計測手段で測定した前記電池の充電電圧、電流計測手段で測定した前記電池の充電電流、及び温度計で測定した前記共振コイルの作動温度の信号を前記第2の光通信部から前記第1の光通信部に送る光信号処理手段と、
3)前記制御部(A)に設けられ、前記第1の光通信部からの信号を受けて前記充電電圧及び前記充電電流を検知し、固定周波数で発振する前記インバータのPWM制御を行って、前記充電電圧が規定電圧より低い場合は、前記電池への定電流制御を行い、前記充電電圧が前記規定電圧となった場合は、前記電池への定電圧制御を行う充電制御手段と、
4)前記制御部(A)に設けられ、前記第1の光通信部からの信号を受けて前記作動温度が所定温度値を超えた場合には、前記インバータの動作を停止する第1の保護手段と、
5)前記制御部(A)に設けられ、前記第1の光通信部からの信号により、前記充電電流が最大電流値を超えた場合、又は前記充電電圧が最大電圧値を超えた場合、前記インバータの動作を停止する第2の保護手段と、
6)前記制御部(A)に設けられ、前記電池への定電圧制御の完了を確認して、前記インバータの動作を停止する第3の保護手段が設けられ
前記受電装置は、フェライト製の二次側Eコアと該二次側Eコアの中央磁極部に巻かれた前記二次コイルと前記共振コイルを有し、該共振コイルには共振コンデンサが接続され、
前記給電装置は、平面視して円形の平面部と該平面部の中央に突出して形成された円柱状の直立磁極部とを有するフェライト製の一次側コアと、前記直立磁極部に巻かれた前記一次コイルとを有し、しかも、前記平面部の直径は、平面視して前記二次側Eコア、前記二次コイル、及び前記共振コイルを囲む円のうち最大円の直径の1倍を超え1.6倍以下の範囲にあることを特徴とする非接触充電設備。
Provided in a fixed state on the side wall, floor or ceiling of the structure, and a power feeding device having a primary coil that receives power from a high frequency power source including an inverter, and a car or a carriage provided with a gap with respect to the power feeding device. And a power receiving device having a secondary coil electromagnetically coupled to the primary coil and a resonant coil, the non-contact charging a battery connected to the power receiving device from the power feeding device. In charging equipment,
1) Second and first optical communications, which are respectively connected to and opposed to the control unit (B) of the power receiving device and the control unit (A) of the power feeding device to exchange optical signals using visible light. Department,
2) A signal of the charging voltage of the battery measured by voltage measuring means, the charging current of the battery measured by current measuring means, and the operating temperature of the resonance coil measured by a thermometer provided in the control unit (B). An optical signal processing means for sending from the second optical communication unit to the first optical communication unit,
3) The control unit (A) is provided, receives the signal from the first optical communication unit, detects the charging voltage and the charging current, and performs PWM control of the inverter that oscillates at a fixed frequency, When the charging voltage is lower than a specified voltage, a constant current control for the battery is performed, and when the charging voltage is the specified voltage, a charge control unit that performs a constant voltage control for the battery,
4) A first protection that is provided in the control unit (A) and that stops the operation of the inverter when the operating temperature exceeds a predetermined temperature value in response to a signal from the first optical communication unit. Means and
5) When the charging current exceeds a maximum current value or the charging voltage exceeds a maximum voltage value, which is provided in the control unit (A), and the signal from the first optical communication unit, Second protection means for stopping the operation of the inverter;
6) provided in the control unit (A), to verify the completion of the constant voltage control to the battery, and a third protecting means for stopping the operation of the inverter is provided,
The power receiving device has a secondary side E core made of ferrite, the secondary coil wound around a central magnetic pole portion of the secondary side E core, and the resonance coil, and a resonance capacitor is connected to the resonance coil. ,
The power feeding device is wound around the primary magnetic core made of ferrite having a circular flat surface portion in plan view and a column-shaped upright magnetic pole portion formed to project in the center of the flat surface portion, and the upright magnetic pole portion. It has the primary coil, and the diameter of the plane portion is one time the diameter of the largest circle among the circles surrounding the secondary side E core, the secondary coil, and the resonance coil in plan view. A non-contact charging facility that is in the range of over 1.6 times .
請求項記載の非接触充電設備において、前記光信号処理手段は、前記電圧計測手段及び前記電流計測手段並びに前記温度計でそれぞれ測定したデータをデジタル信号に変換し、変換したデジタルデータを更にシリアル信号に変換して、前記第2の光通信部から光信号として送信し、該光信号を前記第1の光通信部で受信して、前記充電制御手段で復調し、該充電制御手段で前記インバータのPWM制御を行うことを特徴とする非接触充電設備。 The non-contact charging equipment according to claim 1 , wherein the optical signal processing means converts the data measured by the voltage measuring means, the current measuring means, and the thermometer into a digital signal, and the converted digital data is further serialized. The signal is converted into a signal and transmitted as an optical signal from the second optical communication unit, the optical signal is received by the first optical communication unit, demodulated by the charging control unit, and then the charging control unit is operated by the charging control unit. A contactless charging facility characterized by performing PWM control of an inverter.
JP2017565384A 2016-02-03 2016-03-22 Non-contact charging facility Active JP6746622B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016019045A JP2019054560A (en) 2016-02-03 2016-02-03 Non-contact charging facility
PCT/JP2016/059008 WO2017134838A1 (en) 2016-02-03 2016-03-22 Non-contact charging equipment

Publications (2)

Publication Number Publication Date
JPWO2017134838A1 JPWO2017134838A1 (en) 2019-04-11
JP6746622B2 true JP6746622B2 (en) 2020-08-26

Family

ID=59499479

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016019045A Pending JP2019054560A (en) 2016-02-03 2016-02-03 Non-contact charging facility
JP2017565384A Active JP6746622B2 (en) 2016-02-03 2016-03-22 Non-contact charging facility

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016019045A Pending JP2019054560A (en) 2016-02-03 2016-02-03 Non-contact charging facility

Country Status (2)

Country Link
JP (2) JP2019054560A (en)
WO (1) WO2017134838A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7185227B2 (en) * 2017-12-06 2022-12-07 長崎県 Contactless power feeder
JP6988643B2 (en) * 2018-03-29 2022-01-05 Tdk株式会社 Wireless power receiving device and wireless power transmission system
CN108544945B (en) * 2018-04-16 2021-04-06 国网河北电动汽车服务有限公司 Remote interactive charging facility charging and fault processing system and method for electric automobile
CN108382256A (en) * 2018-04-28 2018-08-10 唐先萍 A kind of New-energy electric vehicle wireless charging system and method
JP7185692B2 (en) 2018-05-31 2022-12-07 オッポ広東移動通信有限公司 Charging method and charging device
CN111515582A (en) * 2019-02-01 2020-08-11 本田技研工业株式会社 Machining device and machining method
JP7331647B2 (en) 2019-11-11 2023-08-23 日油株式会社 Radio detonation system and installation method of radio detonation system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11341694A (en) * 1998-05-28 1999-12-10 Fuji Film Celltec Kk Charging method of secondary battery
WO2010137495A1 (en) * 2009-05-26 2010-12-02 有限会社日本テクモ Contactless electric-power supplying device
JP2013115859A (en) * 2011-11-25 2013-06-10 Hitachi Maxell Ltd Wireless power transmission device
JP2013172507A (en) * 2012-02-20 2013-09-02 Sumitomo Electric Ind Ltd Non-contact power supply system, non-contact power supply unit, non-contact power receiving unit and non-contact power supply method
EP2953235B1 (en) * 2013-01-29 2018-09-12 Fujitsu Limited Wireless power transfer system, power receiver, and wireless power transfer method
JP6040196B2 (en) * 2014-05-15 2016-12-07 株式会社ダイヘン DC power supply equipment
JP2015226400A (en) * 2014-05-28 2015-12-14 株式会社東芝 Non-contact charger and non-contact charging method
JP2016015862A (en) * 2014-07-03 2016-01-28 株式会社Ihi Power reception device

Also Published As

Publication number Publication date
WO2017134838A1 (en) 2017-08-10
JPWO2017134838A1 (en) 2019-04-11
JP2019054560A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
JP6746622B2 (en) Non-contact charging facility
JP5348183B2 (en) Battery built-in equipment and charger
JP5340017B2 (en) Built-in battery and charging stand
JP6067211B2 (en) Non-contact power feeding device
EP2973939B1 (en) Systems and methods for extending the power capability of a wireless charger
EP3093957B1 (en) Foreign object detecting device, wireless power transmitting apparatus, and wireless power transfer system
JP5355783B2 (en) A system to transmit energy wirelessly
US20090278505A1 (en) Battery-containing unit and charging base
JP6260262B2 (en) Non-contact power transmission system and control method thereof
KR102125722B1 (en) Coil structure for inductive and resonant wireless charging transmitter and integral control method for the same
JP6079026B2 (en) Coil unit and wireless power feeder using the same
JP6090172B2 (en) Contactless charging method
JP2009247194A (en) Battery charger cradle
KR102649618B1 (en) Wireless power transmission device for vehicle and wireless charging method
KR102039495B1 (en) Wireless power transmitter and method for controlling thereof
WO2013011905A1 (en) Charging stand, battery pack and charging stand, and battery pack
KR20160051502A (en) Wireless power transmission and charging system
JP2012023913A (en) Non-contact power feeding device
TW201405997A (en) Device alignment and identification in inductive power transfer systems
JP2012044735A (en) Wireless charging system
JP2013172506A (en) Non-contact power supply system, non-contact power supply unit, non-contact power receiving unit and non-contact power supply method
WO2013047260A1 (en) Apparatus having built-in battery with charging stand, and apparatus having built-in battery
KR20230129621A (en) Contactless power reception device and reception method
JP2011167009A (en) Noncontact power supply
JP5394135B2 (en) Charging stand

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180410

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20181016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200805

R150 Certificate of patent or registration of utility model

Ref document number: 6746622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250