JP6988643B2 - Wireless power receiving device and wireless power transmission system - Google Patents

Wireless power receiving device and wireless power transmission system Download PDF

Info

Publication number
JP6988643B2
JP6988643B2 JP2018064652A JP2018064652A JP6988643B2 JP 6988643 B2 JP6988643 B2 JP 6988643B2 JP 2018064652 A JP2018064652 A JP 2018064652A JP 2018064652 A JP2018064652 A JP 2018064652A JP 6988643 B2 JP6988643 B2 JP 6988643B2
Authority
JP
Japan
Prior art keywords
circuit
power transmission
power
voltage
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018064652A
Other languages
Japanese (ja)
Other versions
JP2019176684A (en
Inventor
和豊 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018064652A priority Critical patent/JP6988643B2/en
Publication of JP2019176684A publication Critical patent/JP2019176684A/en
Application granted granted Critical
Publication of JP6988643B2 publication Critical patent/JP6988643B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ワイヤレス受電装置、及びワイヤレス電力伝送システムに関する。 The present invention relates to a wireless power receiving device and a wireless power transmission system.

ワイヤレスによる電力の伝送であるワイヤレス電力伝送に関する技術の研究や開発が行われている。 Research and development of technologies related to wireless power transmission, which is the transmission of power by wireless, are being conducted.

これに関し、給電側コアと受電側コアが分割可能で、且つ、給電側コアに補助巻線を有する絶縁トランスと、給電側コアに巻回された給電側コイルに高周波電力を供給する高周波駆動回路と、給電側コアに設けられ、受電側の情報を機構的に認識する機構認識部と、補助巻線の出力電圧を検出する補助巻線電圧検出部と、補助巻線電圧検出部の検出出力と、機構認識部の認識情報によって、高周波駆動回路の出力制御を行う制御部とを備える非接触給電装置が知られている(特許文献1参照)。 In this regard, an insulating transformer in which the power feeding side core and the power receiving side core can be separated and having an auxiliary winding on the feeding side core, and a high frequency drive circuit that supplies high frequency power to the feeding side coil wound around the feeding side core. A mechanism recognition unit provided in the power feeding side core that mechanically recognizes information on the power receiving side, an auxiliary winding voltage detection unit that detects the output voltage of the auxiliary winding, and a detection output of the auxiliary winding voltage detection unit. A non-contact power feeding device including a control unit that controls the output of the high-frequency drive circuit based on the recognition information of the mechanism recognition unit is known (see Patent Document 1).

特開2011−078266号公報Japanese Unexamined Patent Publication No. 2011-078626

ここで、このような非接触給電装置では、受電側コアに巻回された受電側コイルに接続される負荷と受電側コイルとの間を接続する配線の抵抗である配線抵抗が、既知のものとして扱われている。しかしながら、当該非接触給電装置と負荷とは、互いに異なる製造元によって製造されることも少なくない。このため、当該非接触給電装置は、正確な当該配線抵抗を把握することができない場合があり、電力の伝送効率を向上させることが困難な場合があった。また、当該非接触給電装置は、給電側コイルと受電側コイルとの間に金属製の接点の露出がないため、温度、湿度等の環境因子の変化が生じやすい場所で使用されることが多い。このような場合、当該配線抵抗は、環境因子の変化によって変動することがある。その結果、当該非接触給電装置は、当該配線の製造元が、当該非接触給電装置の製造元と同じ場合であっても、正確な当該配線抵抗を把握することができない場合があり、電力の伝送効率を向上させることが困難な場合があった。 Here, in such a non-contact power feeding device, the wiring resistance which is the resistance of the wiring connecting between the load connected to the power receiving side coil wound around the power receiving side core and the power receiving side coil is known. It is treated as. However, the non-contact power feeding device and the load are often manufactured by different manufacturers. Therefore, the non-contact power feeding device may not be able to accurately grasp the wiring resistance, and it may be difficult to improve the power transmission efficiency. In addition, since the non-contact power feeding device has no exposed metal contacts between the power feeding side coil and the power receiving side coil, it is often used in a place where environmental factors such as temperature and humidity are likely to change. .. In such a case, the wiring resistance may fluctuate due to changes in environmental factors. As a result, the non-contact power feeding device may not be able to accurately grasp the wiring resistance even if the manufacturer of the wiring is the same as the manufacturer of the non-contact power feeding device, and the power transmission efficiency. It was sometimes difficult to improve.

本発明は、このような事情を考慮してなされたもので、配線抵抗に応じたワイヤレス電力伝送を効率よく行うことができるワイヤレス受電装置、及びワイヤレス電力伝送システムを提供することを課題とする。 The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a wireless power receiving device capable of efficiently performing wireless power transmission according to wiring resistance, and a wireless power transmission system.

本発明の一態様は、ワイヤレス送電装置が備える送電コイルから交流電力を受電するワイヤレス受電装置であって、前記送電コイルと磁気的に結合される受電コイルと、前記受電コイルから供給された交流電圧を整流して負荷に出力する整流平滑回路と、前記整流平滑回路の出力電圧を検出する電圧検出回路と、前記整流平滑回路の出力電流を検出する電流検出回路と、前記整流平滑回路と前記負荷とを接続する配線の抵抗である配線抵抗を検出する抵抗検出回路と、を備え、前記抵抗検出回路は、前記送電コイルから前記受電コイルに電力が伝送されていない第0期間において前記電圧検出回路が検出した第0検出電圧と、前記負荷に対して電力の供給を行う際に前記送電コイルから前記受電コイルに伝送される第1電力よりも小さな第2電力が前記送電コイルから前記受電コイルに伝送されている第2期間において前記電圧検出回路が検出した第2検出電圧と、前記第2期間において前記電流検出回路が検出した第2検出電流とに基づいて、前記配線抵抗を検出する、ワイヤレス受電装置である。 One aspect of the present invention is a wireless power receiving device that receives AC power from a power transmitting coil included in the wireless power transmitting device, and is a power receiving coil magnetically coupled to the power transmitting coil and an AC voltage supplied from the power receiving coil. A rectifying and smoothing circuit that rectifies and outputs to the load, a voltage detection circuit that detects the output voltage of the rectifying and smoothing circuit, a current detecting circuit that detects the output current of the rectifying and smoothing circuit, and the rectifying and smoothing circuit and the load. The voltage detection circuit includes a resistance detection circuit that detects a wiring resistance that is a resistance of the wiring that connects to and the voltage detection circuit in the 0th period in which power is not transmitted from the transmission coil to the power receiving coil. The 0th detected voltage detected by is and the second power smaller than the first power transmitted from the transmission coil to the power receiving coil when the power is supplied to the load is transmitted from the power transmission coil to the power receiving coil. Wireless that detects the wiring resistance based on the second detection voltage detected by the voltage detection circuit in the second period of transmission and the second detection current detected by the current detection circuit in the second period. It is a power receiving device.

本発明によれば、配線抵抗に応じたワイヤレス電力伝送を効率よく行うことができる。 According to the present invention, wireless power transmission according to wiring resistance can be efficiently performed.

実施形態に係るワイヤレス電力伝送システム1の構成の一例を示す図である。It is a figure which shows an example of the structure of the wireless power transmission system 1 which concerns on embodiment.

<実施形態>
以下、本発明の実施形態について、図面を参照して説明する。ここで、本実施形態では、説明の便宜上、ワイヤレスによる電力の伝送をワイヤレス電力伝送と称して説明する。また、本実施形態では、直流電力に応じた電気信号、又は交流電力に応じた電気信号を伝送する導体のことを、伝送路と称して説明する。伝送路は、例えば、基板上にプリントされた導体である。なお、伝送路は、当該導体に代えて、線状に形成された導体である導線等であってもよい。
<Embodiment>
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, in the present embodiment, for convenience of explanation, wireless power transmission will be referred to as wireless power transmission. Further, in the present embodiment, a conductor that transmits an electric signal corresponding to DC power or an electric signal corresponding to AC power will be referred to as a transmission line. The transmission line is, for example, a conductor printed on a substrate. In addition, the transmission line may be a conductor wire or the like which is a linearly formed conductor instead of the conductor.

<ワイヤレス電力伝送システムの概要>
まず、実施形態に係るワイヤレス電力伝送システム1の概要について説明する。図1は、実施形態に係るワイヤレス電力伝送システム1の構成の一例を示す図である。
<Overview of wireless power transmission system>
First, an outline of the wireless power transmission system 1 according to the embodiment will be described. FIG. 1 is a diagram showing an example of the configuration of the wireless power transmission system 1 according to the embodiment.

ワイヤレス電力伝送システム1は、ワイヤレス送電装置10と、ワイヤレス受電装置20を備える。 The wireless power transmission system 1 includes a wireless power transmission device 10 and a wireless power receiving device 20.

ワイヤレス電力伝送システム1では、ワイヤレス電力伝送によって電力がワイヤレス送電装置10からワイヤレス受電装置20に伝送される。より具体的には、ワイヤレス電力伝送システム1では、ワイヤレス電力伝送によって電力がワイヤレス送電装置10が備える送電コイルL1(図1において不図示)からワイヤレス受電装置20が備える受電コイルL2(図1において不図示)に伝送される。ワイヤレス電力伝送システム1は、例えば、磁界共鳴方式を用いてワイヤレス電力伝送を行う。なお、ワイヤレス電力伝送システム1は、磁界共鳴方式に代えて、他の方式を用いてワイヤレス電力伝送を行う構成であってもよい。 In the wireless power transmission system 1, power is transmitted from the wireless power transmission device 10 to the wireless power receiving device 20 by wireless power transmission. More specifically, in the wireless power transmission system 1, power is generated by wireless power transmission from the power transmission coil L1 (not shown in FIG. 1) included in the wireless power transmission device 10 to the power reception coil L2 (not shown in FIG. 1) included in the wireless power receiving device 20. (Illustrated). The wireless power transmission system 1 performs wireless power transmission by using, for example, a magnetic field resonance method. The wireless power transmission system 1 may be configured to perform wireless power transmission by using another method instead of the magnetic field resonance method.

磁界共鳴方式によるワイヤレス電力伝送では、ワイヤレス電力伝送システム1は、ワイヤレス送電装置10が備える図示しない送電側共振回路(この一例では、後述する送電コイルユニット13に備えられている)とワイヤレス受電装置20が備える図示しない受電側共振回路(この一例では、後述する受電コイルユニット21に備えられている)との間の共振周波数を近づけ(又は当該共振周波数を一致させ)、共振周波数付近の高周波電流及び電圧を送電コイルユニット13に印加し、電磁的に共振(共鳴)させた受電コイルユニット21に電力をワイヤレスで伝送(供給)する。 In wireless power transmission by the magnetic field resonance method, the wireless power transmission system 1 includes a transmission side resonance circuit (in this example, provided in a transmission coil unit 13 described later) included in the wireless transmission device 10 and a wireless power receiving device 20. The resonance frequency is brought closer (or the resonance frequency is matched) with the power receiving side resonance circuit (in this example, provided in the power receiving coil unit 21 described later) provided in the above, and the high frequency current near the resonance frequency and A voltage is applied to the power transmission coil unit 13, and power is wirelessly transmitted (supplied) to the power receiving coil unit 21 which is electromagnetically resonated (resonated).

このため、本実施形態のワイヤレス電力伝送システム1は、ケーブルによるワイヤレス送電装置10とワイヤレス受電装置20との接続を行わずに、ワイヤレス受電装置20に接続された負荷に対してワイヤレス電力伝送による電力の供給を行うことができる。 Therefore, in the wireless power transmission system 1 of the present embodiment, the power by wireless power transmission is applied to the load connected to the wireless power receiving device 20 without connecting the wireless power transmitting device 10 and the wireless power receiving device 20 by a cable. Can be supplied.

ここで、ワイヤレス電力伝送システム1と異なるワイヤレス電力伝送システム1Xとワイヤレス電力伝送システム1とを比較し、ワイヤレス電力伝送システム1について説明する。ワイヤレス電力伝送システム1Xは、例えば、従来のワイヤレス電力伝送システムのことである。ワイヤレス電力伝送システム1Xは、ワイヤレス送電装置10Xと、ワイヤレス受電装置20Xを備える。ワイヤレス送電装置10Xは、例えば、従来のワイヤレス送電装置のことである。ワイヤレス受電装置20Xは、例えば、従来のワイヤレス受電装置20のことである。 Here, the wireless power transmission system 1 will be described by comparing the wireless power transmission system 1X different from the wireless power transmission system 1 with the wireless power transmission system 1. The wireless power transmission system 1X is, for example, a conventional wireless power transmission system. The wireless power transmission system 1X includes a wireless power transmission device 10X and a wireless power receiving device 20X. The wireless power transmission device 10X is, for example, a conventional wireless power transmission device. The wireless power receiving device 20X is, for example, a conventional wireless power receiving device 20.

ワイヤレス電力伝送システム1Xでは、ワイヤレス受電装置20Xが備える受電コイルに接続される負荷と当該受電コイルとの間を接続する配線の抵抗である配線抵抗が、既知のものとして扱われている。しかしながら、ワイヤレス電力伝送システム1Xと当該負荷とは、互いに異なる製造元によって製造されることも少なくない。このため、ワイヤレス電力伝送システム1Xは、正確な当該配線抵抗を把握することができない場合があり、電力の伝送効率を向上させることが困難な場合があった。また、ワイヤレス電力伝送システム1Xは、ワイヤレス送電装置10Xが備える送電コイルと当該受電コイルとの間に金属製の接点の露出がないため、温度、湿度等の環境因子の変化が生じやすい場所で使用されることが多い。このような場合、当該配線抵抗は、環境因子の変化によって変動することがある。その結果、ワイヤレス電力伝送システム1Xは、当該配線の製造元が、当該非接触給電装置の製造元と同じ場合であっても、正確な当該配線抵抗を把握することができない場合があり、電力の伝送効率を向上させることが困難な場合があった。 In the wireless power transmission system 1X, the wiring resistance, which is the resistance of the wiring connected between the load connected to the power receiving coil included in the wireless power receiving device 20X and the power receiving coil, is treated as known. However, the wireless power transfer system 1X and the load are often manufactured by different manufacturers. Therefore, the wireless power transmission system 1X may not be able to accurately grasp the wiring resistance, and it may be difficult to improve the power transmission efficiency. Further, the wireless power transmission system 1X is used in a place where environmental factors such as temperature and humidity are likely to change because the metal contact is not exposed between the power transmission coil provided in the wireless power transmission device 10X and the power reception coil. Often done. In such a case, the wiring resistance may fluctuate due to changes in environmental factors. As a result, the wireless power transmission system 1X may not be able to accurately grasp the wiring resistance even if the manufacturer of the wiring is the same as the manufacturer of the non-contact power feeding device, and the power transmission efficiency. It was sometimes difficult to improve.

このようなワイヤレス電力伝送システム1Xに対し、ワイヤレス電力伝送システム1では、ワイヤレス受電装置20は、送電コイルL1と磁気的に結合される受電コイルL2と、受電コイルL2から供給された交流電圧を整流して負荷に出力する整流平滑回路と、整流平滑回路の出力電圧を検出する電圧検出回路と、整流平滑回路の出力電流を検出する電流検出回路と、整流平滑回路と負荷とを接続する配線の抵抗である配線抵抗を検出する抵抗検出回路と、を備える。また、ワイヤレス受電装置20では、抵抗検出回路は、送電コイルL1から受電コイルL2に電力が伝送されていない第0期間において電圧検出回路が検出した第0検出電圧と、負荷に対して電力の供給を行う際に送電コイルL1から受電コイルL2に伝送される第1電力よりも小さな第2電力が送電コイルL1から受電コイルL2に伝送されている第2期間において電圧検出回路が検出した第2検出電圧と、第2期間において電流検出回路が検出した第2検出電流とに基づいて、当該配線抵抗を検出する。これにより、ワイヤレス電力伝送システム1、及びワイヤレス受電装置20は、配線抵抗に応じたワイヤレス電力伝送を効率よく行うことができる。 In contrast to such a wireless power transmission system 1X, in the wireless power transmission system 1, the wireless power receiving device 20 rectifies the power receiving coil L2 magnetically coupled to the power transmitting coil L1 and the AC voltage supplied from the power receiving coil L2. The rectifying and smoothing circuit that outputs to the load, the voltage detection circuit that detects the output voltage of the rectifying and smoothing circuit, the current detection circuit that detects the output current of the rectifying and smoothing circuit, and the wiring that connects the rectifying and smoothing circuit and the load. It is provided with a resistance detection circuit for detecting a wiring resistance which is a resistance. Further, in the wireless power receiving device 20, the resistance detection circuit supplies power to the load and the 0th detection voltage detected by the voltage detection circuit in the 0th period when power is not transmitted from the transmission coil L1 to the power receiving coil L2. The second detection detected by the voltage detection circuit in the second period in which the second power smaller than the first power transmitted from the transmission coil L1 to the power receiving coil L2 is transmitted from the transmission coil L1 to the power receiving coil L2. The wiring resistance is detected based on the voltage and the second detection current detected by the current detection circuit in the second period. As a result, the wireless power transmission system 1 and the wireless power receiving device 20 can efficiently perform wireless power transmission according to the wiring resistance.

ここで、第1電力は、例えば、ワイヤレス受電装置20に接続された負荷に対してワイヤレス電力伝送による電力の供給を行う際に、ワイヤレス送電装置10がワイヤレス電力伝送によって送電コイルL1から受電コイルL2に送電する電力のことである。また、第2電力は、例えば、第2検出電圧及び第2検出電流を検出する際に、ワイヤレス送電装置10がワイヤレス電力伝送によって送電コイルL1から受電コイルL2に送電する電力のことである。以下では、一例として、第2電力が、第1電力の10%程度の電力である場合について説明する。なお、第2電力は、第1電力の10%程度の電力より小さな電力であってもよく、第1電力の10%程度の電力より大きな電力であってもよい。また、第1電力は、第2電力よりも大きな電力であれば、如何なる電力であってもよい。 Here, the first electric power is, for example, when the wireless power transmission device 10 supplies power by wireless power transmission to the load connected to the wireless power receiving device 20, the wireless power transmitting device 10 transmits power from the power transmitting coil L1 to the power receiving coil L2. It is the electric power to be transmitted to. Further, the second electric power is, for example, the electric power transmitted from the transmission coil L1 to the power receiving coil L2 by the wireless power transmission device 10 by wireless power transmission when detecting the second detection voltage and the second detection current. Hereinafter, as an example, a case where the second electric power is about 10% of the first electric power will be described. The second electric power may be smaller than about 10% of the first electric power, or may be larger than about 10% of the first electric power. Further, the first electric power may be any electric power as long as it is larger than the second electric power.

以下では、このようなワイヤレス電力伝送システム1、及びワイヤレス受電装置20の構成について詳しく説明する。 Hereinafter, the configurations of such a wireless power transmission system 1 and a wireless power receiving device 20 will be described in detail.

<ワイヤレス電力伝送システムの構成>
以下、図1を参照し、ワイヤレス電力伝送システム1の構成について説明する。
<Configuration of wireless power transmission system>
Hereinafter, the configuration of the wireless power transmission system 1 will be described with reference to FIG.

ワイヤレス送電装置10は、変換回路11と、送電回路12と、送電コイルユニット13と、送電側制御回路14と、送電側通信回路15を備える。一方、ワイヤレス受電装置20は、受電コイルユニット21と、整流平滑回路22と、電圧検出回路VDと、電流検出回路CDと、抵抗検出回路23と、受電側制御回路24と、受電側通信回路25を備える。そして、ワイヤレス受電装置20は、負荷Vloadと接続可能である。図1に示した例では、ワイヤレス受電装置20は、負荷Vloadと接続されている。なお、ワイヤレス受電装置20は、負荷Vloadを備える構成であってもよい。 The wireless power transmission device 10 includes a conversion circuit 11, a power transmission circuit 12, a power transmission coil unit 13, a power transmission side control circuit 14, and a power transmission side communication circuit 15. On the other hand, the wireless power receiving device 20 includes a power receiving coil unit 21, a rectifying smoothing circuit 22, a voltage detection circuit VD, a current detection circuit CD, a resistance detection circuit 23, a power receiving side control circuit 24, and a power receiving side communication circuit 25. To prepare for. Then, the wireless power receiving device 20 can be connected to the load Vload. In the example shown in FIG. 1, the wireless power receiving device 20 is connected to the load Vload. The wireless power receiving device 20 may be configured to include a load Vload.

変換回路11は、例えば、外部の商用電源Pと接続され、商用電源Pから入力される交流電圧を所望の直流電圧に変換するAC(Alternating Current)/DC(Direct Current)コンバーターである。変換回路11は、送電回路12と接続されている。変換回路11は、当該交流電圧を変換した直流電圧を送電回路12に供給する。 The conversion circuit 11 is, for example, an AC (Alternating Current) / DC (Direct Current) converter that is connected to an external commercial power supply P and converts an alternating current voltage input from the commercial power supply P into a desired direct current voltage. The conversion circuit 11 is connected to the power transmission circuit 12. The conversion circuit 11 supplies the DC voltage obtained by converting the AC voltage to the power transmission circuit 12.

なお、変換回路11は、送電回路12に対して直流電圧を出力するものであれば如何なるものであってもよい。例えば、変換回路11は、交流電圧を整流して直流電圧に変換する整流平滑回路であってもよく、当該整流平滑回路と力率改善を行うPFC(Power Factor Correction)回路とを組み合わせた変換回路であってもよく、送電回路12に対して直流電圧を出力する他の変換回路であってもよい。 The conversion circuit 11 may be any as long as it outputs a DC voltage to the power transmission circuit 12. For example, the conversion circuit 11 may be a rectification smoothing circuit that rectifies an AC voltage and converts it into a DC voltage, and is a conversion circuit that combines the rectification smoothing circuit and a PFC (Power Factor Correction) circuit that improves the power factor. It may be another conversion circuit that outputs a DC voltage to the transmission circuit 12.

送電回路12は、変換回路11から出力される直流電圧を駆動周波数の交流電圧に変換するインバーターを備える構成であってもよく、当該インバーターに加えて、変換回路11と当該インバーターとの間に設けられるDC/DCコンバーターを備える構成であってもよく、変換回路11から出力される直流電圧を駆動周波数の交流電圧に変換する他の回路を備える構成であってもよい。当該インバーターは、例えば、スイッチング素子がブリッジ接続されたスイッチング回路(フルブリッジ回路、ハーフブリッジ回路等)のことである。送電回路12は、送電コイルユニット13に接続されている。送電回路12は、送電コイルユニット13が備える送電側共振回路の共振周波数に基づいて駆動周波数が制御された交流電圧を送電コイルユニット13に供給する。 The transmission circuit 12 may be configured to include an inverter that converts the DC voltage output from the conversion circuit 11 into an AC voltage of the drive frequency, and is provided between the conversion circuit 11 and the inverter in addition to the inverter. It may be configured to include a DC / DC converter, or may be configured to include another circuit that converts the DC voltage output from the conversion circuit 11 into the AC voltage of the drive frequency. The inverter is, for example, a switching circuit (full-bridge circuit, half-bridge circuit, etc.) in which switching elements are bridge-connected. The power transmission circuit 12 is connected to the power transmission coil unit 13. The power transmission circuit 12 supplies the power transmission coil unit 13 with an AC voltage whose drive frequency is controlled based on the resonance frequency of the power transmission side resonance circuit included in the power transmission coil unit 13.

送電コイルユニット13は、送電側共振回路として、例えば、図示しない送電コイルL1とともに、図示しないコンデンサーを備えたLC共振回路を備える。この場合、送電コイルユニット13では、当該コンデンサーの静電容量を調整することにより、送電側共振回路の共振周波数を調整可能である。ワイヤレス送電装置10は、送電側共振回路の共振周波数を、受電コイルユニット21が備える受電側共振回路の共振周波数に近づけ(又は一致させ)、磁界共鳴方式のワイヤレス電力伝送を行う。当該コンデンサーは、例えば、送電コイルL1に直列に接続されたコンデンサーにより構成されてもよく、送電コイルL1に対して直列に接続されたコンデンサーと、送電コイルL1に対して並列に接続されたコンデンサーとにより構成されてもよく、他の態様により構成されてもよい。なお、送電コイルユニット13は、当該LC共振回路に代えて、送電コイルL1を備えた他の共振回路を送電側共振回路として備える構成であってもよい。また、送電コイルユニット13は、送電側共振回路に加えて、他の回路、他の回路素子等を備える構成であってもよい。また、送電コイルユニット13は、送電コイルL1と受電コイルL2との間の磁気的結合を高める磁性体、送電コイルL1が発生させる磁界の外部への漏洩を抑制する電磁気遮蔽体等を備える構成であってもよい。 The power transmission coil unit 13 includes, for example, a power transmission coil L1 (not shown) and an LC resonance circuit having a capacitor (not shown) as a power transmission side resonance circuit. In this case, in the power transmission coil unit 13, the resonance frequency of the power transmission side resonance circuit can be adjusted by adjusting the capacitance of the capacitor. The wireless power transmission device 10 brings the resonance frequency of the power transmission side resonance circuit close to (or matches with) the resonance frequency of the power reception side resonance circuit included in the power receiving coil unit 21 to perform magnetic power resonance type wireless power transmission. The capacitor may be composed of, for example, a capacitor connected in series with the power transmission coil L1, a capacitor connected in series with the power transmission coil L1, and a capacitor connected in parallel with the power transmission coil L1. It may be configured by, or may be configured by another aspect. The power transmission coil unit 13 may be configured to include another resonance circuit provided with the power transmission coil L1 as a power transmission side resonance circuit instead of the LC resonance circuit. Further, the power transmission coil unit 13 may be configured to include another circuit, another circuit element, or the like in addition to the power transmission side resonance circuit. Further, the power transmission coil unit 13 includes a magnetic material that enhances the magnetic coupling between the power transmission coil L1 and the power reception coil L2, an electromagnetic shield that suppresses leakage of the magnetic field generated by the power transmission coil L1 to the outside, and the like. There may be.

送電コイルL1は、例えば、銅、アルミニウム等からなるリッツ線をスパイラル状に巻き回したワイヤレス電力伝送用コイルである。 The power transmission coil L1 is, for example, a coil for wireless power transmission in which a litz wire made of copper, aluminum, or the like is spirally wound.

送電側制御回路14は、ワイヤレス送電装置10を制御する。送電側制御回路14は、例えば、各種の情報の送受信を、送電側通信回路15を介してワイヤレス受電装置20との間で行う。送電側制御回路14は、ワイヤレス受電装置20が算出した負荷Vloadの電圧Vを、送電側通信回路15を介してワイヤレス受電装置20から受信する。送電側制御回路14は、受信した負荷Vloadの電圧Vに基づいて、送電回路12が送電コイルL1に供給する交流電圧を制御する。 The power transmission side control circuit 14 controls the wireless power transmission device 10. For example, the power transmission side control circuit 14 transmits and receives various types of information to and from the wireless power receiving device 20 via the power transmission side communication circuit 15. The power transmission side control circuit 14 receives the voltage V of the load voltage calculated by the wireless power receiving device 20 from the wireless power receiving device 20 via the power transmission side communication circuit 15. The power transmission side control circuit 14 controls the AC voltage supplied to the power transmission coil L1 by the power transmission circuit 12 based on the received voltage V of the load voltage.

また、送電側制御回路14は、例えば、ワイヤレス受電装置20に送電を開始させる要求を示す情報を、送電側通信回路15を介してワイヤレス受電装置20から受信した場合、ワイヤレス送電装置10によるワイヤレス受電装置20への第2電力の送電を開始すると判定する。送電側制御回路14は、当該送電を開始すると判定した場合、第2期間において、送電コイルL1からワイヤレス受電装置20に第2電力が送電されるように、送電回路12から送電コイルL1に供給される交流電圧を制御する。ここで、第2期間は、例えば、ワイヤレス送電装置10によるワイヤレス受電装置20への第2電力の送電を開始すると判定したタイミングから予め決められた待機時間が経過するタイミングまでの期間のことである。なお、第2期間は、当該期間に代えて、送電コイルL1から第1電力が伝送されるよりも前の期間のうち送電コイルL1からワイヤレス受電装置20に第2電力が送電されている期間であれば、如何なる期間であってもよい。 Further, when the power transmission side control circuit 14 receives, for example, information indicating a request for the wireless power transmission device 20 to start power transmission from the wireless power reception device 20 via the power transmission side communication circuit 15, the wireless power transmission device 10 receives power wirelessly. It is determined that the transmission of the second electric power to the device 20 is started. When the power transmission side control circuit 14 determines that the power transmission is to be started, the power transmission side control circuit 14 is supplied from the power transmission circuit 12 to the power transmission coil L1 so that the second power is transmitted from the power transmission coil L1 to the wireless power receiving device 20 in the second period. Control the AC voltage. Here, the second period is, for example, a period from the timing when it is determined that the wireless power transmission device 10 starts transmitting the second electric power to the wireless power receiving device 20 to the timing when a predetermined standby time elapses. .. The second period is a period in which the second power is transmitted from the power transmission coil L1 to the wireless power receiving device 20 in the period before the first power is transmitted from the power transmission coil L1 instead of the period. If there is, it may be any period.

第2期間より後の期間である第1期間において、送電側制御回路14は、送電コイルL1からワイヤレス受電装置20に第1電力が送電されるように、送電回路12から送電コイルL1に供給される交流電圧を制御する。ここで、第1期間は、例えば、第2期間よりも後のタイミングにおいて送電コイルL1からワイヤレス受電装置20に第1電力が送電され始めてから、送電コイルL1からワイヤレス受電装置20に第1電力が送電され終わるまでの期間のことである。なお、第1期間は、当該期間に代えて、第2期間よりも後の期間のうち送電コイルL1からワイヤレス受電装置20に第1電力が送電されている期間であれば、如何なる期間であってもよい。 In the first period, which is a period after the second period, the power transmission side control circuit 14 is supplied from the power transmission circuit 12 to the power transmission coil L1 so that the first power is transmitted from the power transmission coil L1 to the wireless power receiving device 20. Control the AC voltage. Here, in the first period, for example, after the first power is transmitted from the power transmission coil L1 to the wireless power receiving device 20 at a timing after the second period, the first power is transmitted from the power transmission coil L1 to the wireless power receiving device 20. It is the period until the power transmission is completed. It should be noted that the first period is any period as long as the first power is transmitted from the power transmission coil L1 to the wireless power receiving device 20 in the period after the second period instead of the period. May be good.

また、送電側制御回路14は、例えば、ワイヤレス受電装置20に送電を終了させる要求を示す情報を、送電側通信回路15を介してワイヤレス受電装置20から受信した場合、ワイヤレス送電装置10によるワイヤレス受電装置20への第1電力の送電を終了すると判定する。送電側制御回路14は、当該送電を終了すると判定した場合、送電コイルL1からワイヤレス受電装置20への第1電力の送電を終了させる。 Further, when the power transmission side control circuit 14 receives, for example, information indicating a request for the wireless power transmission device 20 to end transmission from the wireless power reception device 20 via the power transmission side communication circuit 15, the wireless power transmission device 10 receives power wirelessly. It is determined that the transmission of the first electric power to the device 20 is terminated. When the power transmission side control circuit 14 determines that the power transmission is terminated, the power transmission side control circuit 14 terminates the transmission of the first electric power from the power transmission coil L1 to the wireless power receiving device 20.

送電側通信回路15は、無線通信を行う通信回路(又は通信装置)である。送電側通信回路15は、送電側制御回路14からの信号に応じて、各種の情報の送受信を、ワイヤレス受電装置20が備える受電側通信回路25との間で行う。なお、送電側通信回路15が受電側通信回路25との間で行う無線通信の通信規格は、Wi−Fi(登録商標)であってもよく、Bluetooth(登録商標)であってもよく、他の通信規格であってもよい。また、送電側通信回路15は、通信用のコイルを備え、受電側通信回路25が備える通信用のコイルとの間で通信用の信号を伝送することにより、各種の情報の送受信を行う構成であってもよい。また、送電側通信回路15は、光を用いた通信方法等の他の方法によって受電側通信回路25と各種の情報の送受信を行う構成であってもよい。 The power transmission side communication circuit 15 is a communication circuit (or communication device) that performs wireless communication. The power transmission side communication circuit 15 transmits and receives various types of information in response to the signal from the power transmission side control circuit 14 to and from the power reception side communication circuit 25 included in the wireless power receiving device 20. The communication standard for wireless communication performed by the power transmission side communication circuit 15 with the power reception side communication circuit 25 may be Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like. Communication standard may be used. Further, the power transmission side communication circuit 15 is provided with a communication coil, and is configured to transmit and receive various information by transmitting a communication signal to and from the communication coil included in the power reception side communication circuit 25. There may be. Further, the power transmission side communication circuit 15 may be configured to transmit and receive various information to and from the power reception side communication circuit 25 by another method such as a communication method using light.

受電コイルユニット21は、受電側共振回路として、例えば、図示しない受電コイルL2とともに、図示しないコンデンサーを備えたLC共振回路を備える。この場合、受電コイルユニット21では、当該コンデンサーの静電容量を調整することにより、受電側共振回路の共振周波数を調整可能である。ワイヤレス受電装置20は、受電側共振回路の共振周波数を送電側共振回路の共振周波数に近づける(一致させる場合も含む)ことにより、磁界共鳴方式のワイヤレス電力伝送を行う。当該コンデンサーは、例えば、受電コイルL2に直列に接続されたコンデンサーにより構成されてもよく、受電コイルL2に対して直列に接続されたコンデンサーと、受電コイルL2に対して並列に接続されたコンデンサーとにより構成されてもよく、他の態様により構成されてもよい。なお、受電コイルユニット21は、当該LC共振回路に代えて、受電コイルL2を備えた他の共振回路を受電側共振回路として備える構成であってもよい。また、受電コイルユニット21は、受電側共振回路に加えて、他の回路、他の回路素子等を備える構成であってもよい。また、受電コイルユニット21は、送電コイルL1と受電コイルL2との間の磁気的結合を高める磁性体、受電コイルL2が発生させる磁界の外部への漏洩を抑制する電磁気遮蔽体等を備える構成であってもよい。 The power receiving coil unit 21 includes, as a power receiving side resonance circuit, for example, an LC resonance circuit provided with a capacitor (not shown) together with a power receiving coil L2 (not shown). In this case, in the power receiving coil unit 21, the resonance frequency of the power receiving side resonance circuit can be adjusted by adjusting the capacitance of the capacitor. The wireless power receiving device 20 performs magnetic power resonance type wireless power transmission by bringing the resonance frequency of the power receiving side resonance circuit closer to (including the case of matching) the resonance frequency of the transmission side resonance circuit. The capacitor may be composed of, for example, a capacitor connected in series with the power receiving coil L2, a capacitor connected in series with the power receiving coil L2, and a capacitor connected in parallel with the power receiving coil L2. It may be configured by, or may be configured by another aspect. The power receiving coil unit 21 may be configured to include another resonance circuit provided with the power receiving coil L2 as the power receiving side resonance circuit instead of the LC resonance circuit. Further, the power receiving coil unit 21 may be configured to include another circuit, another circuit element, or the like in addition to the power receiving side resonance circuit. Further, the power receiving coil unit 21 is configured to include a magnetic body that enhances the magnetic coupling between the power transmitting coil L1 and the power receiving coil L2, an electromagnetic shield that suppresses leakage of the magnetic field generated by the power receiving coil L2 to the outside, and the like. There may be.

受電コイルL2は、例えば、銅、アルミニウム等からなるリッツ線をスパイラル状に巻き回したワイヤレス電力伝送用コイルである。 The power receiving coil L2 is, for example, a coil for wireless power transmission in which a litz wire made of copper, aluminum, or the like is spirally wound.

整流平滑回路22は、前述の整流平滑回路の一例である。整流平滑回路22は、受電コイルユニット21に接続され、受電コイルL2から供給される交流電圧を整流して直流電圧に変換する。また、整流平滑回路22は、負荷Vloadと接続可能である。図1に示した例では、整流平滑回路22は、負荷Vloadと接続されている。整流平滑回路22が負荷Vloadと接続されている場合、整流平滑回路22は、変換した直流電圧を負荷Vloadに供給する。 The rectifying / smoothing circuit 22 is an example of the above-mentioned rectifying / smoothing circuit. The rectifying smoothing circuit 22 is connected to the power receiving coil unit 21 and rectifies the AC voltage supplied from the power receiving coil L2 and converts it into a DC voltage. Further, the rectifying smoothing circuit 22 can be connected to the load Vload. In the example shown in FIG. 1, the rectifying smoothing circuit 22 is connected to the load Vload. When the rectifying smoothing circuit 22 is connected to the load Vload, the rectifying smoothing circuit 22 supplies the converted DC voltage to the load Vload.

ここで、負荷Vloadは、前述の負荷の一例である。負荷Vloadは、整流平滑回路22と接続されている場合、整流平滑回路22から直流電圧が供給される。負荷Vloadは、例えば、移動体に搭載されたバッテリー、移動体に搭載されたモーター等である。負荷Vloadは、電力の需要状態(貯蔵状態又は消費状態)によって、等価抵抗値が時間とともに変わる抵抗負荷である。なお、ワイヤレス受電装置20において、負荷Vloadは、当該バッテリー、当該モーター等に代えて、整流平滑回路22から直流電圧が供給される他の負荷であってもよい。 Here, the load Vload is an example of the above-mentioned load. When the load Vload is connected to the rectifying smoothing circuit 22, a DC voltage is supplied from the rectifying smoothing circuit 22. The load Vload is, for example, a battery mounted on the moving body, a motor mounted on the moving body, or the like. The load Vload is a resistance load in which the equivalent resistance value changes with time depending on the demand state (storage state or consumption state) of electric power. In the wireless power receiving device 20, the load voltage may be another load to which a DC voltage is supplied from the rectifying smoothing circuit 22 instead of the battery, the motor, and the like.

電圧検出回路VDは、前述の電圧検出回路の一例である。電圧検出回路VDは、整流平滑回路22の出力電圧を検出する。より具体的には、電圧検出回路VDは、整流平滑回路22の出力端子間の電圧を検出する。すなわち、電圧検出回路VDは、整流平滑回路22と負荷Vloadとを接続する2本の配線間の電圧ではなく、当該2本の配線それぞれの前段における当該出力端子間の電圧を検出する。電圧検出回路VDは、検出した電圧を受電側制御回路24に出力する。なお、電圧検出回路VDは、整流平滑回路22と一体に構成されてもよい。 The voltage detection circuit VD is an example of the voltage detection circuit described above. The voltage detection circuit VD detects the output voltage of the rectifying smoothing circuit 22. More specifically, the voltage detection circuit VD detects the voltage between the output terminals of the rectifying smoothing circuit 22. That is, the voltage detection circuit VD detects not the voltage between the two wirings connecting the rectifying smoothing circuit 22 and the load Vload, but the voltage between the output terminals in the previous stage of each of the two wirings. The voltage detection circuit VD outputs the detected voltage to the power receiving side control circuit 24. The voltage detection circuit VD may be integrally configured with the rectifying smoothing circuit 22.

電流検出回路CDは、前述の電流検出回路の一例である。電流検出回路CDは、整流平滑回路22の出力電流を検出する。より具体的には、電流検出回路CDは、整流平滑回路22の出力端子のうち高電位側の出力端子から、整流平滑回路22と負荷Vloadとを接続する配線を介して負荷Vloadに流れる電流を検出する。電流検出回路CDは、検出した電流を受電側制御回路24に出力する。なお、電流検出回路CDは、整流平滑回路22と一体に構成されてもよい。 The current detection circuit CD is an example of the above-mentioned current detection circuit. The current detection circuit CD detects the output current of the rectifying smoothing circuit 22. More specifically, the current detection circuit CD transfers the current flowing from the output terminal on the high potential side of the output terminals of the rectifying smoothing circuit 22 to the load Vload via the wiring connecting the rectifying smoothing circuit 22 and the load Vload. To detect. The current detection circuit CD outputs the detected current to the power receiving side control circuit 24. The current detection circuit CD may be integrally configured with the rectifying smoothing circuit 22.

抵抗検出回路23は、前述の抵抗検出回路の一例である。抵抗検出回路23は、整流平滑回路22と負荷Vloadとを接続する配線の配線抵抗Rを検出する。ここで、配線抵抗Rは、前述の整流平滑回路と負荷とを接続する配線の配線抵抗の一例である。 The resistance detection circuit 23 is an example of the above-mentioned resistance detection circuit. The resistance detection circuit 23 detects the wiring resistance R of the wiring connecting the rectifying smoothing circuit 22 and the load Vload. Here, the wiring resistor R is an example of the wiring resistance of the wiring connecting the above-mentioned rectifying smoothing circuit and the load.

より具体的には、抵抗検出回路23は、送電コイルL1から電力が伝送されていない第0期間において電圧検出回路VDが検出した第0検出電圧V0と、前述の第2期間において第2期間が始まったタイミングに電圧検出回路VDが検出した第2検出電圧V2と、第2期間において当該タイミングに電流検出回路CDが検出した第2検出電流I2とに基づいて、配線抵抗Rを検出する。すなわち、第2検出電圧V2が検出されるタイミングと、第2検出電流I2が検出されるタイミングとは、同じタイミングである。なお、本実施形態では、第2検出電圧V2が検出されたタイミングと、第2検出電流I2が検出されたタイミングとが誤差によってずれた場合であっても、第2検出電圧V2が検出されたタイミングと、第2検出電流I2が検出されたタイミングとは、同じタイミングであったと見做す。また、本実施形態では、第2検出電圧V2が検出されるタイミングと、第2検出電流I2が検出されるタイミングとが、誤差によって第2期間が始まったタイミングからずれてしまった場合であっても、第2検出電圧V2が検出されるタイミングと、第2検出電流I2が検出されるタイミングとは、第2期間が始まったタイミングと同じタイミングであると見做す。ここで、抵抗検出回路23は、以下に示した式(1)に基づいて配線抵抗Rを検出(算出)する。 More specifically, in the resistance detection circuit 23, the 0th detection voltage V0 detected by the voltage detection circuit VD in the 0th period when power is not transmitted from the transmission coil L1 and the second period in the above-mentioned second period are The wiring resistance R is detected based on the second detection voltage V2 detected by the voltage detection circuit VD at the start timing and the second detection current I2 detected by the current detection circuit CD at the timing in the second period. That is, the timing at which the second detection voltage V2 is detected and the timing at which the second detection current I2 is detected are the same timing. In the present embodiment, the second detection voltage V2 is detected even when the timing at which the second detection voltage V2 is detected and the timing at which the second detection current I2 is detected deviate due to an error. It is considered that the timing and the timing at which the second detection current I2 is detected are the same timing. Further, in the present embodiment, the timing at which the second detection voltage V2 is detected and the timing at which the second detection current I2 is detected deviate from the timing at which the second period starts due to an error. However, the timing at which the second detection voltage V2 is detected and the timing at which the second detection current I2 is detected are considered to be the same as the timing at which the second period starts. Here, the resistance detection circuit 23 detects (calculates) the wiring resistance R based on the equation (1) shown below.

R=(V2−V0)/I2 ・・・(1) R = (V2-V0) / I2 ... (1)

ここで、上記の第2検出電圧V2から第0検出電圧V0を差し引いた値は、第2期間において整流平滑回路22と負荷Vloadとを接続する配線の両端に印加される電圧を示す。また、第2検出電流I2は、当該配線を流れる電流を示す。このため、抵抗検出回路23は、上記の式(1)に基づいて配線抵抗Rを検出(算出)することができる。 Here, the value obtained by subtracting the 0th detection voltage V0 from the second detection voltage V2 indicates the voltage applied to both ends of the wiring connecting the rectifying smoothing circuit 22 and the load Vload in the second period. Further, the second detection current I2 indicates a current flowing through the wiring. Therefore, the resistance detection circuit 23 can detect (calculate) the wiring resistance R based on the above equation (1).

また、抵抗検出回路23は、検出した配線抵抗Rを受電側制御回路24に出力する。また、抵抗検出回路23は、検出した配線抵抗Rが基準抵抗値以上である場合、整流平滑回路22と負荷Vloadとを接続する配線に異常が生じたことを示す異常信号を受電側制御回路24に出力する。基準抵抗値は、予め決められた閾値であり、例えば、実験、シミュレーション等によって決められる値である。 Further, the resistance detection circuit 23 outputs the detected wiring resistance R to the power receiving side control circuit 24. Further, when the detected wiring resistance R is equal to or higher than the reference resistance value, the resistance detection circuit 23 sends an abnormal signal indicating that an abnormality has occurred in the wiring connecting the rectifying smoothing circuit 22 and the load Vload to the power receiving side control circuit 24. Output to. The reference resistance value is a predetermined threshold value, and is a value determined by, for example, an experiment, a simulation, or the like.

まて、抵抗検出回路23は、新たに検出した配線抵抗Rである配線抵抗RNと、過去に検出した配線抵抗ROとに基づいて、整流平滑回路22と負荷Vloadとを接続する配線の劣化の有無を判定する。例えば、抵抗検出回路23は、配線抵抗RNと配線抵抗ROとの差分が予め決められた閾値以上である場合、当該配線の劣化が有ると判定する。一方、抵抗検出回路23は、当該が当該閾値未満である場合、当該配線の劣化が無いと判定する。なお、抵抗検出回路23は、当該閾値を用いる方法に代えて、配線抵抗RNと配線抵抗ROとに基づく他の方法によって当該配線の劣化の有無を判定する構成であってもよい。当該閾値は、配線抵抗Rの誤差による変動幅よりも大きな値である。ここで、配線抵抗ROは、前回検出した配線抵抗Rであってもよく、予め決められた期間よりも前に検出した配線抵抗Rであってもよく、過去に検出した他の配線抵抗Rであってもよい。抵抗検出回路23は、判定した結果を示す判定結果情報を受電側制御回路24に出力する。 The resistance detection circuit 23 is based on the newly detected wiring resistance R, the wiring resistance RN, and the wiring resistance RO detected in the past, and the deterioration of the wiring connecting the rectifying smoothing circuit 22 and the load Vload is deteriorated. Determine the presence or absence. For example, when the difference between the wiring resistance RN and the wiring resistance RO is equal to or larger than a predetermined threshold value, the resistance detection circuit 23 determines that the wiring is deteriorated. On the other hand, when the resistance detection circuit 23 is less than the threshold value, the resistance detection circuit 23 determines that the wiring has not deteriorated. The resistance detection circuit 23 may be configured to determine the presence or absence of deterioration of the wiring by another method based on the wiring resistance RN and the wiring resistance RO instead of the method using the threshold value. The threshold value is a value larger than the fluctuation range due to the error of the wiring resistance R. Here, the wiring resistance RO may be the wiring resistance R detected last time, the wiring resistance R detected before a predetermined period, or another wiring resistance R detected in the past. There may be. The resistance detection circuit 23 outputs the determination result information indicating the determination result to the power receiving side control circuit 24.

受電側通信回路25は、前述の受電側制御回路の一例である。受電側制御回路24は、ワイヤレス受電装置20を制御する。受電側制御回路24は、例えば、各種の情報の送受信を、受電側通信回路25を介してワイヤレス送電装置10との間で行う。受電側制御回路24は、抵抗検出回路23から異常信号を取得した場合、送電コイルL1から受電コイルL2への電力の送電をワイヤレス送電装置10に停止させる要求を示す情報を、受電側通信回路25を介してワイヤレス送電装置10に送信する。そして、ワイヤレス送電装置10は、当該情報を受信した場合、ワイヤレス受電装置20への電力の伝送を停止する。 The power receiving side communication circuit 25 is an example of the above-mentioned power receiving side control circuit. The power receiving side control circuit 24 controls the wireless power receiving device 20. The power receiving side control circuit 24, for example, transmits and receives various types of information to and from the wireless power transmission device 10 via the power receiving side communication circuit 25. When the power receiving side control circuit 24 acquires an abnormal signal from the resistance detection circuit 23, the power receiving side communication circuit 25 sends information indicating a request to stop the power transmission from the power transmission coil L1 to the power receiving coil L2 to the wireless power transmission device 10. It is transmitted to the wireless power transmission device 10 via. Then, when the wireless power transmission device 10 receives the information, the wireless power transmission device 10 stops the transmission of electric power to the wireless power reception device 20.

また、受電側制御回路24は、前述の判定結果情報を取得した場合、取得した判定結果情報が示す結果に応じた処理を行う。例えば、受電側制御回路24は、当該判定結果情報が、整流平滑回路22と負荷Vloadとを接続する配線の劣化が無いことを示す情報であった場合、特に何もしない。一方、受電側制御回路24は、当該判定結果情報が、当該配線の劣化が有ることを示す情報であった場合、当該配線が劣化していることを示す情報を、受電側通信回路25を介して他の装置に送信する。これにより、ワイヤレス受電装置20は、当該配線が劣化した場合、当該配線の交換をユーザーに促すことができる。 Further, when the power receiving side control circuit 24 acquires the above-mentioned determination result information, the power receiving side control circuit 24 performs processing according to the result indicated by the acquired determination result information. For example, the power receiving side control circuit 24 does nothing in particular when the determination result information is information indicating that there is no deterioration of the wiring connecting the rectifying smoothing circuit 22 and the load Vload. On the other hand, when the determination result information is information indicating that the wiring is deteriorated, the power receiving side control circuit 24 transmits information indicating that the wiring is deteriorated via the power receiving side communication circuit 25. And send it to other devices. As a result, the wireless power receiving device 20 can urge the user to replace the wiring when the wiring is deteriorated.

また、受電側制御回路24は、抵抗検出回路23から取得した配線抵抗Rと、第2期間よりも後の期間のうち送電コイルL1から第1電力が伝送されている第1期間において電圧検出回路VDが検出した第1検出電圧V1と、第1期間において電流検出回路CDが検出した第1検出電流I1とに基づいて、負荷Vloadの電圧Vを算出する。より具体的には、受電側制御回路24は、以下に示した式(2)に基づいて負荷Vloadの電圧Vを算出する。 Further, the power receiving side control circuit 24 is a voltage detection circuit in the wiring resistance R acquired from the resistance detection circuit 23 and the first period in which the first power is transmitted from the transmission coil L1 in the period after the second period. The voltage V of the load voltage is calculated based on the first detection voltage V1 detected by the VD and the first detection current I1 detected by the current detection circuit CD in the first period. More specifically, the power receiving side control circuit 24 calculates the voltage V of the load Vload based on the equation (2) shown below.

V=V1−R×I1 ・・・(2) V = V1-R × I1 ... (2)

受電側制御回路24は、算出した負荷Vloadの電圧Vを、受電側通信回路25を介してワイヤレス送電装置10に送信する。なお、負荷Vloadの電圧Vは、負荷の電圧に基づく情報の一例である。 The power receiving side control circuit 24 transmits the calculated voltage V of the load Vload to the wireless power transmission device 10 via the power receiving side communication circuit 25. The voltage V of the load voltage is an example of information based on the voltage of the load.

受電側通信回路25は、前述の受電側通信回路の一例である。受電側通信回路25は、無線通信を行う通信回路(又は通信装置)である。受電側通信回路25は、受電側制御回路24からの信号に応じて、各種の情報の送受信を、送電側通信回路15との間で行う。 The power receiving side communication circuit 25 is an example of the above-mentioned power receiving side communication circuit. The power receiving side communication circuit 25 is a communication circuit (or communication device) that performs wireless communication. The power receiving side communication circuit 25 transmits and receives various types of information to and from the power transmission side communication circuit 15 in response to signals from the power receiving side control circuit 24.

なお、上記において説明した受電側制御回路24は、算出した負荷Vloadの電圧Vに基づいて、送電回路12が送電コイルL1に供給する交流電圧を制御する制御信号を生成し、生成した制御信号を受電側通信回路25を介してワイヤレス送電装置10に送信する構成であってもよい。この場合、送電側制御回路14は、取得した制御信号に基づいて、送電回路12が送電コイルL1に供給する交流電圧を制御する。なお、当該制御信号は、負荷の電圧に基づく情報の一例である。 The power receiving side control circuit 24 described above generates a control signal for controlling the AC voltage supplied by the power transmission circuit 12 to the power transmission coil L1 based on the calculated voltage V of the load voltage, and generates the generated control signal. It may be configured to transmit to the wireless power transmission device 10 via the power receiving side communication circuit 25. In this case, the power transmission side control circuit 14 controls the AC voltage supplied to the power transmission coil L1 by the power transmission circuit 12 based on the acquired control signal. The control signal is an example of information based on the voltage of the load.

また、上記において説明した抵抗検出回路23は、受電側制御回路24と一体に構成されてもよい。 Further, the resistance detection circuit 23 described above may be integrally configured with the power receiving side control circuit 24.

以上のように、実施形態に係るワイヤレス受電装置(この一例において、ワイヤレス受電装置20)は、ワイヤレス送電装置(この一例において、ワイヤレス送電装置)が備える送電コイル(この一例において、送電コイルL1)から交流電力を受電するワイヤレス受電装置であって、送電コイルと磁気的に結合される受電コイル(この一例において、受電コイルL2)と、受電コイルから供給された交流電圧を整流して負荷(この一例において、負荷Vload)に出力する整流平滑回路(この一例において、整流平滑回路22)と、整流平滑回路の出力電圧を検出する電圧検出回路(この一例において、電圧検出回路VD)と、整流平滑回路の出力電流を検出する電流検出回路(この一例において、電流検出回路CD)と、整流平滑回路と負荷とを接続する配線の抵抗である配線抵抗を検出する抵抗検出回路(この一例において、抵抗検出回路23)と、を備え、抵抗検出回路は、送電コイルから受電コイルに電力が伝送されていない第0期間において電圧検出回路が検出した第0検出電圧(この一例において、第0検出電圧V0)と、負荷に対して電力の供給を行う際に送電コイルから受電コイルに伝送される第1電力よりも小さな第2電力が送電コイルから受電コイルに伝送されている第2期間において電圧検出回路が検出した第2検出電圧(この一例において、第2検出電圧V2)と、第2期間において電流検出回路が検出した第2検出電流(この一例において、第2検出電流)とに基づいて、配線抵抗(この一例において、配線抵抗R)を検出する。これにより、ワイヤレス受電装置は、配線抵抗に応じたワイヤレス電力伝送を効率よく行うことができる。 As described above, the wireless power receiving device (in this example, the wireless power receiving device 20) according to the embodiment is from the transmission coil (in this example, the transmission coil L1) included in the wireless power transmission device (in this example, the wireless power transmission device). A wireless power receiving device that receives AC power, and is a power receiving coil that is magnetically coupled to the transmitting coil (in this example, the power receiving coil L2) and a load that rectifies the AC voltage supplied from the power receiving coil (this example). In, a rectifying and smoothing circuit (in this example, the rectifying and smoothing circuit 22) that outputs to the load voltage), a voltage detection circuit that detects the output voltage of the rectifying and smoothing circuit (in this example, the voltage detection circuit VD), and a rectifying and smoothing circuit. A current detection circuit that detects the output current of the voltage (current detection circuit CD in this example) and a resistance detection circuit that detects the wiring resistance that is the resistance of the wiring that connects the rectifying smoothing circuit and the load (resistance detection in this example). The circuit 23) and the resistance detection circuit include the 0th detection voltage detected by the voltage detection circuit in the 0th period when power is not transmitted from the transmission coil to the power receiving coil (in this example, the 0th detection voltage V0). And, in the second period when the second power, which is smaller than the first power transmitted from the transmission coil to the power receiving coil when supplying power to the load, is transmitted from the transmission coil to the power receiving coil, the voltage detection circuit Wiring resistance based on the detected second detection voltage (second detection voltage V2 in this example) and the second detection current detected by the current detection circuit in the second period (second detection current in this example). (In this example, the wiring resistance R) is detected. As a result, the wireless power receiving device can efficiently perform wireless power transmission according to the wiring resistance.

また、ワイヤレス受電装置では、ワイヤレス送電装置が備える送電側通信回路(この一例において、送電側通信回路15)との間で無線通信を行う受電側通信回路(この一例において、受電側通信回路25)と、受電側制御回路(この一例において、受電側制御回路24)と、を備え、抵抗検出回路は、検出した配線抵抗が基準抵抗値以上である場合、整流平滑回路と負荷とを接続する配線に異常が生じたことを示す異常信号を受電側制御回路に出力し、受電側制御回路は、異常信号を取得した場合、送電コイルから受電コイルへの電力の送電をワイヤレス送電装置に停止させる要求を示す情報を、受電側通信回路を介してワイヤレス送電装置に送信する、構成が用いられてもよい。これにより、ワイヤレス受電装置は、ワイヤレス電力伝送による電力の伝送効率が低下したままワイヤレス電力伝送を行い続けてしまうことを抑制することができる。 Further, in the wireless power receiving device, the power receiving side communication circuit (in this example, the power receiving side communication circuit 25) that performs wireless communication with the power transmitting side communication circuit (in this example, the power transmitting side communication circuit 15) included in the wireless power transmitting device. And a power receiving side control circuit (in this example, the power receiving side control circuit 24), the resistance detection circuit is a wiring that connects the rectifying smoothing circuit and the load when the detected wiring resistance is equal to or more than the reference resistance value. An abnormal signal indicating that an abnormality has occurred is output to the power receiving side control circuit, and when the power receiving side control circuit acquires the abnormal signal, a request to stop the transmission of power from the power transmitting coil to the power receiving coil to the wireless power transmission device. A configuration may be used in which the information indicating the above is transmitted to the wireless power transmission device via the power receiving side communication circuit. As a result, the wireless power receiving device can suppress the continuous wireless power transmission while the power transmission efficiency due to the wireless power transmission is lowered.

また、ワイヤレス受電装置では、抵抗検出回路は、検出した配線抵抗(この一例において、配線抵抗RN)と、過去に検出した配線抵抗(この一例において、配線抵抗RO)とに基づいて、整流平滑回路と負荷とを接続する配線の劣化の有無を判定する、構成が用いられてもよい。これにより、ワイヤレス受電装置は、整流平滑回路と負荷とを接続する配線が劣化した場合、当該配線の交換をユーザーに促すことができる。 Further, in the wireless power receiving device, the resistance detection circuit is a rectifying smoothing circuit based on the detected wiring resistance (wiring resistance RN in this example) and the wiring resistance detected in the past (wiring resistance RO in this example). A configuration may be used that determines the presence or absence of deterioration of the wiring connecting the load and the load. As a result, the wireless power receiving device can prompt the user to replace the wiring when the wiring connecting the rectifying smoothing circuit and the load is deteriorated.

また、ワイヤレス受電装置とワイヤレス送電装置を備えたワイヤレス電力伝送システム(この一例において、ワイヤレス電力伝送システム1)では、抵抗検出回路は、検出した配線抵抗を受電側制御回路に出力し、受電側制御回路は、抵抗検出回路から取得した配線抵抗と、第2期間よりも後の期間のうち送電コイルから第1電力が伝送されている第1期間において電圧検出回路が検出した第1検出電圧(この一例において、第1検出電圧V1)と、第1期間において電流検出回路が検出した第1検出電流(この一例において、第1検出電流I1)とに基づいて、負荷の電圧(この一例において、負荷Vloadの電圧V)を算出し、算出した負荷の電圧に基づく情報(この一例において、負荷Vloadの電圧V、負荷Vloadの電圧Vに基づいて生成された制御信号)を、受電側通信回路を介してワイヤレス送電装置に送信し、ワイヤレス送電装置は、送電側通信回路と、供給された直流電圧を駆動周波数の交流電圧に変換し、変換した交流電圧を送電コイルに供給する送電回路(この一例において、送電回路12)と、送電回路が送電コイルに供給する交流電圧を制御する送電側制御回路(この一例において、送電側制御回路14)と、を備え、送電側制御回路は、送電側通信回路を介してワイヤレス受電装置から負荷の電圧に基づく情報を受信し、受信した負荷の電圧に基づく情報に基づいて、送電回路が送電コイルに供給する交流電圧を制御する、構成が用いられてもよい。これにより、ワイヤレス電力伝送システムは、既知ではない配線抵抗を有する配線によってワイヤレス受電装置に負荷が接続された場合であっても、あるいは、ワイヤレス受電装置と負荷とを接続する配線の配線抵抗が変動する場合であっても、ワイヤレス受電装置が受電する電力を精度よく安定化させることができる。 Further, in a wireless power transmission system provided with a wireless power receiving device and a wireless power transmitting device (in this example, the wireless power transmission system 1), the resistance detection circuit outputs the detected wiring resistance to the power receiving side control circuit to control the power receiving side. The circuit includes the wiring resistance acquired from the resistance detection circuit and the first detection voltage detected by the voltage detection circuit in the first period in which the first power is transmitted from the transmission coil in the period after the second period (this). In one example, the load voltage (in this example, the load) is based on the first detection voltage V1) and the first detection current (in this example, the first detection current I1) detected by the current detection circuit in the first period. The voltage V of the Vload) is calculated, and the information based on the calculated load voltage (in this example, the control signal generated based on the voltage V of the load Vload and the voltage V of the load Vload) is transmitted via the power receiving side communication circuit. The wireless transmission device transmits to the wireless transmission device, and the wireless transmission device converts the supplied DC voltage into an AC voltage of the drive frequency and supplies the converted AC voltage to the transmission coil (in this example). , A transmission circuit 12) and a transmission side control circuit (in this example, the transmission side control circuit 14) that controls the AC voltage supplied by the transmission circuit to the transmission coil, and the transmission side control circuit is a transmission side communication circuit. A configuration may be used in which information based on the voltage of the load is received from the wireless power receiving device via the device, and the AC voltage supplied by the transmission circuit to the transmission coil is controlled based on the information based on the voltage of the received load. .. As a result, the wireless power transfer system may change the wiring resistance of the wiring connecting the wireless power receiving device and the load even when the load is connected to the wireless power receiving device by a wiring having an unknown wiring resistance. Even if this is the case, the power received by the wireless power receiving device can be stabilized with high accuracy.

以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない限り、変更、置換、削除等されてもよい。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and changes, substitutions, deletions, etc. are made as long as the gist of the present invention is not deviated. May be done.

1、1X…ワイヤレス電力伝送システム、10、10X…ワイヤレス送電装置、11…変換回路、12…送電回路、13…送電コイルユニット、14…送電側制御回路、15…送電側通信回路、15…送電側通信回路、20、20X…ワイヤレス受電装置、21…受電コイルユニット、22…整流平滑回路、23…抵抗検出回路、24…受電側制御回路、25…受電側通信回路、CD…電流検出回路、I1…第1検出電流、I2…第2検出電流、L1…送電コイル、L2…受電コイル、P…商用電源、R、RN、RO…配線抵抗、V…電圧、V0…第0検出電圧、V1…第1検出電圧、V2…第2検出電圧、VD…電圧検出回路、Vload…負荷 1, 1X ... wireless power transmission system, 10, 10X ... wireless power transmission device, 11 ... conversion circuit, 12 ... power transmission circuit, 13 ... power transmission coil unit, 14 ... power transmission side control circuit, 15 ... power transmission side communication circuit, 15 ... power transmission Side communication circuit, 20, 20X ... Wireless power receiving device, 21 ... Power receiving coil unit, 22 ... Rectification smoothing circuit, 23 ... Resistance detection circuit, 24 ... Power receiving side control circuit, 25 ... Power receiving side communication circuit, CD ... Current detection circuit, I1 ... 1st detection current, I2 ... 2nd detection current, L1 ... transmission coil, L2 ... power receiving coil, P ... commercial power supply, R, RN, RO ... wiring resistance, V ... voltage, V0 ... 0th detection voltage, V1 ... 1st detection voltage, V2 ... 2nd detection voltage, VD ... Voltage detection circuit, Vload ... Load

Claims (4)

ワイヤレス送電装置が備える送電コイルから交流電力を受電するワイヤレス受電装置であって、
前記送電コイルと磁気的に結合される受電コイルと、
前記受電コイルから供給された交流電圧を整流して負荷に出力する整流平滑回路と、
前記整流平滑回路の出力電圧を検出する電圧検出回路と、
前記整流平滑回路の出力電流を検出する電流検出回路と、
前記整流平滑回路と前記負荷とを接続する配線の抵抗である配線抵抗を検出する抵抗検出回路と、
を備え、
前記抵抗検出回路は、
前記送電コイルから前記受電コイルに電力が伝送されていない第0期間において前記電圧検出回路が検出した第0検出電圧と、前記負荷に対して電力の供給を行う際に前記送電コイルから前記受電コイルに伝送される第1電力よりも小さな第2電力が前記送電コイルから前記受電コイルに伝送されている第2期間において前記電圧検出回路が検出した第2検出電圧と、前記第2期間において前記電流検出回路が検出した第2検出電流とに基づいて、前記配線抵抗を検出する、
ワイヤレス受電装置。
It is a wireless power receiving device that receives AC power from the power transmission coil of the wireless power transmission device.
A power receiving coil that is magnetically coupled to the power transmission coil,
A rectifying smoothing circuit that rectifies the AC voltage supplied from the power receiving coil and outputs it to the load.
A voltage detection circuit that detects the output voltage of the rectifying smoothing circuit, and
A current detection circuit that detects the output current of the rectifying smoothing circuit, and
A resistance detection circuit that detects wiring resistance, which is the resistance of the wiring that connects the rectifying smoothing circuit and the load,
Equipped with
The resistance detection circuit is
The 0th detection voltage detected by the voltage detection circuit in the 0th period when power is not transmitted from the power transmission coil to the power reception coil, and the power reception coil from the power transmission coil when power is supplied to the load. The second detected voltage detected by the voltage detection circuit in the second period in which the second power smaller than the first power transmitted to the power is transmitted from the transmitting coil to the receiving coil, and the current in the second period. The wiring resistance is detected based on the second detection current detected by the detection circuit.
Wireless power receiving device.
前記ワイヤレス送電装置が備える送電側通信回路との間で無線通信を行う受電側通信回路と、
受電側制御回路と、
を備え、
前記抵抗検出回路は、検出した前記配線抵抗が基準抵抗値以上である場合、前記配線に異常が生じたことを示す異常信号を前記受電側制御回路に出力し、
前記受電側制御回路は、前記異常信号を取得した場合、前記送電コイルから前記受電コイルへの電力の送電を前記ワイヤレス送電装置に停止させる要求を示す情報を、前記受電側通信回路を介して前記ワイヤレス送電装置に送信する、
請求項1に記載のワイヤレス受電装置。
A power receiving side communication circuit that performs wireless communication with the power transmitting side communication circuit included in the wireless power transmission device, and a power receiving side communication circuit.
Power receiving side control circuit and
Equipped with
When the detected wiring resistance is equal to or higher than the reference resistance value, the resistance detection circuit outputs an abnormal signal indicating that an abnormality has occurred in the wiring to the power receiving side control circuit.
When the power receiving side control circuit acquires the abnormal signal, the power receiving side control circuit transmits information indicating a request to stop the power transmission from the power transmission coil to the power receiving coil to the wireless power transmission device via the power receiving side communication circuit. Send to wireless power transmission,
The wireless power receiving device according to claim 1.
前記抵抗検出回路は、検出した前記配線抵抗と、過去に検出した前記配線抵抗とに基づいて、前記配線の劣化の有無を判定する、
請求項1又は2に記載のワイヤレス受電装置。
The resistance detection circuit determines whether or not the wiring has deteriorated based on the detected wiring resistance and the wiring resistance detected in the past.
The wireless power receiving device according to claim 1 or 2.
請求項2に記載のワイヤレス受電装置と、
前記ワイヤレス送電装置と、
を備えたワイヤレス電力伝送システムであって、
前記抵抗検出回路は、検出した前記配線抵抗を前記受電側制御回路に出力し、
前記受電側制御回路は、前記抵抗検出回路から取得した前記配線抵抗と、前記第2期間よりも後の期間のうち前記送電コイルから第1電力が伝送されている第1期間において前記電圧検出回路が検出した第1検出電圧と、前記第1期間において前記電流検出回路が検出した第1検出電流とに基づいて、前記負荷の電圧を算出し、算出した前記負荷の電圧に基づく情報を、前記受電側通信回路を介して前記ワイヤレス送電装置に送信し、
前記ワイヤレス送電装置は、
前記送電側通信回路と、
供給された直流電圧を駆動周波数の交流電圧に変換し、変換した交流電圧を前記送電コイルに供給する送電回路と、
前記送電回路が前記送電コイルに供給する交流電圧を制御する送電側制御回路と、
を備え、
前記送電側制御回路は、前記送電側通信回路を介して前記ワイヤレス受電装置から前記負荷の電圧に基づく情報を受信し、受信した前記負荷の電圧に基づく情報に基づいて、前記送電回路が前記送電コイルに供給する交流電圧を制御する、
ワイヤレス電力伝送システム。
The wireless power receiving device according to claim 2 and
With the wireless power transmission device
It is a wireless power transmission system equipped with
The resistance detection circuit outputs the detected wiring resistance to the power receiving side control circuit, and outputs the detected wiring resistance to the power receiving side control circuit.
The power receiving side control circuit includes the wiring resistance acquired from the resistance detection circuit and the voltage detection circuit in the first period in which the first power is transmitted from the transmission coil in the period after the second period. Calculates the voltage of the load based on the first detection voltage detected by the device and the first detection current detected by the current detection circuit in the first period, and obtains the information based on the calculated voltage of the load. It is transmitted to the wireless power transmission device via the power receiving side communication circuit, and is transmitted to the wireless power transmission device.
The wireless power transmission device is
The power transmission side communication circuit and
A power transmission circuit that converts the supplied DC voltage into an AC voltage of the drive frequency and supplies the converted AC voltage to the power transmission coil.
A power transmission side control circuit that controls the AC voltage supplied by the power transmission circuit to the power transmission coil,
Equipped with
The power transmission side control circuit receives information based on the voltage of the load from the wireless power receiving device via the power transmission side communication circuit, and the power transmission circuit transmits the power based on the information based on the received voltage of the load. Control the AC voltage supplied to the coil,
Wireless power transfer system.
JP2018064652A 2018-03-29 2018-03-29 Wireless power receiving device and wireless power transmission system Active JP6988643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018064652A JP6988643B2 (en) 2018-03-29 2018-03-29 Wireless power receiving device and wireless power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018064652A JP6988643B2 (en) 2018-03-29 2018-03-29 Wireless power receiving device and wireless power transmission system

Publications (2)

Publication Number Publication Date
JP2019176684A JP2019176684A (en) 2019-10-10
JP6988643B2 true JP6988643B2 (en) 2022-01-05

Family

ID=68167518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018064652A Active JP6988643B2 (en) 2018-03-29 2018-03-29 Wireless power receiving device and wireless power transmission system

Country Status (1)

Country Link
JP (1) JP6988643B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6071655B2 (en) * 2013-03-06 2017-02-01 株式会社東芝 Wireless power transmission device
CN105393432B (en) * 2013-07-31 2018-12-28 松下电器产业株式会社 Wireless power transmission system and power transmission device
JPWO2015093188A1 (en) * 2013-12-20 2017-03-16 日立オートモティブシステムズ株式会社 Diagnostic device for determining abnormality of power transmission path
JP2015136274A (en) * 2014-01-20 2015-07-27 日立マクセル株式会社 Non-contact power transmission device
JP2019054560A (en) * 2016-02-03 2019-04-04 株式会社ヘッズ Non-contact charging facility

Also Published As

Publication number Publication date
JP2019176684A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
EP3731371B1 (en) Apparatus and method for detecting foreign object in wireless power transmitting system
US20190088412A1 (en) Wireless Power Transmitter and Method of Controlling Power Thereof
WO2012014482A1 (en) Resonance type non-contact power supply system
US20180138756A1 (en) Wireless power transmission system and method for driving same
CN107852041B (en) Wireless power transmission system and driving method thereof
US20140103711A1 (en) Contactless power receiving device, vehicle equipped with the same, contactless power transmitting device, and contactless power transfer system
KR20190038947A (en) Power receiver and power transmitter
WO2013077326A1 (en) Non-contact power supply apparatus and non-contact power supply system
US20220278554A1 (en) Contactless power transmission system capable of controlling power transmitter apparatus to stably supply load device with required power
JP6094204B2 (en) Wireless power transmission system
JP2016092986A (en) Non-contact power transmission device and power reception equipment
CN110336389B (en) Wireless power receiving device and wireless power transmission system
JP6988643B2 (en) Wireless power receiving device and wireless power transmission system
JP6907041B2 (en) Contactless charging system
WO2014069148A1 (en) Non-contact power transmission device, and power reception apparatus
CN111937267A (en) Power transmission system for electric vehicle and control method thereof
WO2016006470A1 (en) Power transmission device and non-contact power transmission apparatus
JP6778906B2 (en) Contactless power supply system and contactless power transmission system
US11515730B2 (en) Contactless power transmission system for transmitting power from power transmitter apparatus to power receiver apparatus, and supplying load device with desired voltage
US11515731B2 (en) Contactless power transmission system for transmitting power from power transmitter apparatus to power receiver apparatus, and detecting foreign object
CN111712992B (en) Non-contact power supply device
JP2023088134A (en) Non-contact power supply device
JP2017212854A (en) Non-contact power supply system and non-contact power transmission system
WO2015064361A1 (en) Contactless power transfer apparatus, power transmission device, and power reception device
WO2014103280A1 (en) Non-contact power supply apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201229

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R150 Certificate of patent or registration of utility model

Ref document number: 6988643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150