JP6746446B2 - Fiber reinforced composite - Google Patents

Fiber reinforced composite Download PDF

Info

Publication number
JP6746446B2
JP6746446B2 JP2016182013A JP2016182013A JP6746446B2 JP 6746446 B2 JP6746446 B2 JP 6746446B2 JP 2016182013 A JP2016182013 A JP 2016182013A JP 2016182013 A JP2016182013 A JP 2016182013A JP 6746446 B2 JP6746446 B2 JP 6746446B2
Authority
JP
Japan
Prior art keywords
resin
fiber
expanded particles
reinforced composite
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016182013A
Other languages
Japanese (ja)
Other versions
JP2018043487A (en
Inventor
能宜 藤野
能宜 藤野
始基 近藤
始基 近藤
智幸 谷口
智幸 谷口
裕美子 加藤
裕美子 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2016182013A priority Critical patent/JP6746446B2/en
Priority to DE102017116896.6A priority patent/DE102017116896B4/en
Priority to CN201710789157.0A priority patent/CN107825726B/en
Publication of JP2018043487A publication Critical patent/JP2018043487A/en
Application granted granted Critical
Publication of JP6746446B2 publication Critical patent/JP6746446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3415Heating or cooling
    • B29C44/3426Heating by introducing steam in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/42Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using pressure difference, e.g. by injection or by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • B29C44/445Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form in the form of expandable granules, particles or beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/048Expandable particles, beads or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0257Polyamide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/08Closed cell foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2535/00Medical equipment, e.g. bandage, prostheses, catheter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Description

本発明は、熱時剛性及び外観に優れた繊維強化複合体に関する。 The present invention relates to a fiber-reinforced composite having excellent rigidity and appearance when heated.

繊維で強化された繊維強化合成樹脂は、軽量で且つ高い機械的強度を有していることから、近年、自動車分野、船舶分野、航空分野、医療分野等の軽量性及び高い機械的強度が求められている分野において、使用が拡大されている。
繊維強化合成樹脂を有する複合体として、芯材に発泡体を用い、芯材の表面に繊維強化樹脂を積層一体化させてなる繊維強化複合体が提案されている(特許文献1、2参照)。
Since fiber-reinforced synthetic resin reinforced with fibers is lightweight and has high mechanical strength, in recent years, lightness and high mechanical strength have been demanded in the fields of automobile, ship, aviation, medical, etc. The field of use is expanding.
As a composite having a fiber-reinforced synthetic resin, a fiber-reinforced composite has been proposed in which a foam is used as a core material and the fiber-reinforced resin is laminated and integrated on the surface of the core material (see Patent Documents 1 and 2). ..

特開2015−83365号公報JP, 2005-83365, A 特開2005−313613号公報JP, 2005-313613, A

周辺等のさらなる高温環境下における使用に耐え得る繊維強化複合体や、その成形サイクル短縮に対する要求が増えてきており、特許文献1、2に開示されている繊維強化複合体では、上記要求を満たすことができていない。 There is an increasing demand for a fiber-reinforced composite that can withstand use in a higher temperature environment such as the periphery and a shortening of the molding cycle thereof. The fiber-reinforced composites disclosed in Patent Documents 1 and 2 satisfy the above requirements. I haven't been able to.

例えば、ポリプロピレン樹脂からなる発泡体の芯材を有する複合体では、100℃環境下における熱時剛性が不良であり、芯材と表層材との剥離が発生するため、複合体は十分な強度を得ることができない。また、ポリスチレン樹脂やポリウレタン樹脂からなる発泡体の芯材を有する複合体では、100℃環境下においては、芯材の発泡体に収縮が発生する。また、成形サイクルを短縮するためには、加工温度を130〜150℃にする必要があり、成形加工時に芯材の収縮等が発生し、表面外観が悪くなる。 For example, a composite having a foamed core material made of polypropylene resin has poor rigidity at the time of heating in a 100° C. environment and peeling between the core material and the surface layer material occurs, so that the composite body has sufficient strength. Can't get Further, in a composite having a foam core made of polystyrene resin or polyurethane resin, shrinkage occurs in the core foam under an environment of 100°C. Further, in order to shorten the molding cycle, it is necessary to set the processing temperature to 130 to 150° C., which causes shrinkage of the core material during the molding process, resulting in poor surface appearance.

ほかに、ポリメタクリルイミド樹脂からなる発泡体の芯材を有する複合体では、芯材の発泡体は耐熱性に優れるものの、その製法が特殊であるため、発泡体の形状が平板に限られ、所望の形状とすることができず、複合体の外観が悪い。 In addition, in a composite having a foam core made of a polymethacrylimide resin, the foam of the core is excellent in heat resistance, but since the manufacturing method is special, the shape of the foam is limited to a flat plate, The desired shape cannot be obtained, and the appearance of the composite is poor.

そこで、本発明は、高温(例えば、100℃)の環境下での剛性、美的な外観、及び高温成形時の表面美粧性を得ることが可能な繊維強化複合体を提供することを目的とする。 Therefore, an object of the present invention is to provide a fiber reinforced composite body which can obtain rigidity in a high temperature environment (for example, 100° C.), an aesthetic appearance, and a surface cosmetic property during high temperature molding. ..

本発明者らは、上記課題を解決するため、ポリアミド樹脂を含み、特定の結晶子サイズと結晶化度を有する発泡樹脂を含む芯材の表面の少なくとも一部に、特定の表皮材が配置された複合体を用いることによって、高温(例えば、100℃等)の環境下における優れた剛性、美的な外観、及び高温成形時の表面美粧性が得られることを見出し、本発明をなすに至った。 In order to solve the above problems, the present inventors include a polyamide resin, and a specific skin material is disposed on at least a part of the surface of a core material containing a foamed resin having a specific crystallite size and crystallinity. It was found that excellent rigidity, aesthetic appearance, and surface cosmetics at the time of high temperature molding can be obtained by using such a composite, and the present invention has been completed. ..

すなわち、本発明は以下の通りである。
(1)
発泡樹脂を含む芯材の表面の少なくとも一部に、繊維及び樹脂を含む表皮材が配置された複合体であり、前記発泡樹脂は、ポリアミド系樹脂を含み、X線回折プロファイルにおいて最も狭いピーク幅を有するピークに基づいて算出したとき、結晶子サイズDが10nm以上であり、結晶化度Xが10〜50%である、ことを特徴とする、繊維強化複合体。
That is, the present invention is as follows.
(1)
A composite material in which a skin material containing fibers and a resin is arranged on at least a part of the surface of a core material containing a foamed resin, wherein the foamed resin contains a polyamide resin and has the narrowest peak width in an X-ray diffraction profile. A fiber-reinforced composite having a crystallite size D of 10 nm or more and a crystallinity X of 10 to 50% when calculated based on a peak having

(2)
前記発泡樹脂が予備発泡粒子を含む、(1)に記載の繊維強化複合体。
(2)
The fiber-reinforced composite according to (1), wherein the foamed resin contains pre-expanded particles.

(3)
前記ポリアミド系樹脂が、脂肪族ポリアミド樹脂を50質量%超含む、(1)又は(2)に記載の繊維強化複合体。
(3)
The fiber-reinforced composite according to (1) or (2), wherein the polyamide-based resin contains more than 50% by mass of an aliphatic polyamide resin.

(4)
前記芯材と前記表皮材とを加熱・加圧することによって同時成形することを特徴とする、(1)〜(3)のいずれかに記載の繊維強化複合体の製造方法。
(4)
The method for producing a fiber-reinforced composite body according to any one of (1) to (3), characterized in that the core material and the skin material are simultaneously molded by heating and pressurizing.

本発明の繊維強化複合体は、高温(例えば、100℃)の環境下での剛性、美的な外観、及び高温成形時の表面美粧性を得ることが可能な繊維強化複合体を提供することができる。 INDUSTRIAL APPLICABILITY The fiber-reinforced composite of the present invention can provide a fiber-reinforced composite capable of obtaining rigidity in a high temperature environment (for example, 100° C.), an aesthetic appearance, and a surface cosmetic property during high temperature molding. it can.

以下、本発明を実施するための形態(以下、「本実施形態」ともいう。)について詳細に説明する。以下の実施形態は、本発明を説明するための例示であり、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, modes for carrying out the present invention (hereinafter, also referred to as “the present embodiment”) will be described in detail. The following embodiments are examples for explaining the present invention, and the present invention is not limited to the following embodiments and can be variously modified and implemented within the scope of the gist.

(繊維強化複合体)
本実施形態の繊維強化複合体は、発泡樹脂を含む芯材の表面の少なくとも一部に、繊維及び樹脂を含む表皮材が配置された複合体である。
(Fiber reinforced composite)
The fiber-reinforced composite body of the present embodiment is a composite body in which a skin material containing fibers and a resin is arranged on at least a part of the surface of a core material containing a foamed resin.

本実施形態の繊維強化複合体における発泡樹脂は、ポリアミド系樹脂を含み、X線回折プロファイルにおいて最も狭いピーク幅を有するピークに基づいて算出したとき、結晶子サイズDが10nm以上であり、結晶化度Xが10〜50%である。 The foamed resin in the fiber-reinforced composite of the present embodiment contains a polyamide resin, has a crystallite size D of 10 nm or more when calculated based on a peak having the narrowest peak width in an X-ray diffraction profile, and is crystallized. The degree X is 10 to 50%.

本実施形態の繊維強化複合体では、芯材の表面のうち表皮材を配置する部分は、芯材の形状に応じて適宜定められてよく、例えば、シート状の場合(後述の実施例参照)には、片面又は両面の全部又は一部としてよく、塊状の場合には、静置状態で特定方向から見える面の全部又は一部としてもよく、線状の場合には、一端から延在方向に所定長さについての表面の全部又は一部としてよい。 In the fiber-reinforced composite of the present embodiment, the portion of the surface of the core material on which the skin material is arranged may be appropriately determined according to the shape of the core material, for example, in the case of a sheet shape (see Examples described later). , May be all or part of one side or both sides, in the case of a block, may be all or part of the surface seen from a specific direction in a stationary state, and in the case of a line, the extending direction from one end May be all or part of the surface for a given length.

−芯材−
本実施形態の繊維強化複合体における芯材は、発泡樹脂を含むものである。芯材には、目的や用途に応じて、発泡樹脂以外の部材が含まれていてもよい。発泡樹脂の特性が得られやすい観点から、芯材は発泡樹脂のみからなることが好ましい。
-Core material-
The core material in the fiber-reinforced composite body of the present embodiment contains a foamed resin. The core material may include a member other than the foamed resin depending on the purpose and application. From the viewpoint that the characteristics of the foamed resin are easily obtained, the core material is preferably composed of the foamed resin only.

−−発泡樹脂−−
上記発泡樹脂は、ポリアミド系樹脂を含み、更に、任意選択的に、その他の成分、微量のガス等を含んでいてもよい。
上記発泡樹脂は、ポリアミド系樹脂を含むポリアミド系樹脂発泡体であることが好ましい。
---Foamed resin---
The foamed resin includes a polyamide resin, and may further optionally include other components, a trace amount of gas, and the like.
The foamed resin is preferably a polyamide resin foam containing a polyamide resin.

−−−ポリアミド系樹脂−−−
ポリアミド系樹脂としては、例えば、ポリアミド、ポリアミド共重合体、これらの混合物が挙げられる。
--- Polyamide resin ---
Examples of the polyamide-based resin include polyamide, polyamide copolymer, and a mixture thereof.

ポリアミドとしては、例えば、ジアミンとジカルボン酸との重縮合により得られる、ナイロン66、ナイロン610、ナイロン612、ナイロン46、ナイロン1212等;ラクタムの開環重合により得られる、ナイロン6、ナイロン12等;等が挙げられる。ポリアミド共重合体としては、例えば、ナイロン6/66、ナイロン66/6、ナイロン66/610、ナイロン66/612、ナイロン66/6T(Tは、テレフタル酸成分を表す)、ナイロン66/6I(Iは、イソフタル酸成分を表す)、ナイロン6T/6I等が挙げられる。中でも、脂肪族ポリアミドが好ましく、ナイロン6、ナイロン66、ナイロン6/66、ナイロン66/6等がより好ましい。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the polyamide include nylon 66, nylon 610, nylon 612, nylon 46, nylon 1212 and the like obtained by polycondensation of diamine and dicarboxylic acid; nylon 6, nylon 12 and the like obtained by ring-opening polymerization of lactam; Etc. Examples of polyamide copolymers include nylon 6/66, nylon 66/6, nylon 66/610, nylon 66/612, nylon 66/6T (T represents a terephthalic acid component), and nylon 66/6I (I Represents an isophthalic acid component), nylon 6T/6I, and the like. Among them, aliphatic polyamide is preferable, and nylon 6, nylon 66, nylon 6/66, nylon 66/6 and the like are more preferable. These may be used alone or in combination of two or more.

これらの混合物としては、例えば、ナイロン66とナイロン6との混合物、ナイロン66とナイロン612との混合物、ナイロン66とナイロン610との混合物、ナイロン66とナイロン6Iとの混合物、ナイロン66とナイロン6Tとの混合物、ナイロン6とナイロン6I/6Tとの混合物等が挙げられる。中でも、発泡樹脂の結晶化度を高めて、耐熱性及び複合体の表面美粧性を十分にする観点から、混合物の場合のポリアミド系樹脂は、脂肪族ポリアミドを50質量%超含むものであることが好ましく、60質量%以上含むものであることがより好ましい。 Examples of the mixture include a mixture of nylon 66 and nylon 6, a mixture of nylon 66 and nylon 612, a mixture of nylon 66 and nylon 610, a mixture of nylon 66 and nylon 6I, a mixture of nylon 66 and nylon 6T. And a mixture of nylon 6 and nylon 6I/6T. Among them, from the viewpoint of increasing the crystallinity of the foamed resin and sufficiently improving the heat resistance and the surface beauty of the composite, the polyamide resin in the case of the mixture is preferably one containing more than 50% by mass of the aliphatic polyamide. It is more preferable that the content is 60 mass% or more.

また、ポリアミド系樹脂の融点は、芯材及び繊維強化複合体の耐熱性を十分にする観点から、150℃以上であることが好ましく、180℃以上であることが更に好ましく、また、発泡樹脂の成形プロセスにおいて予備発泡粒子同士の融着率を向上させる観点から、270℃以下であることが好ましく、250℃以下であることが更に好ましい。 Further, the melting point of the polyamide-based resin is preferably 150° C. or higher, more preferably 180° C. or higher, from the viewpoint of ensuring sufficient heat resistance of the core material and the fiber-reinforced composite. From the viewpoint of improving the fusion rate of the pre-expanded particles in the molding process, it is preferably 270°C or lower, and more preferably 250°C or lower.

なお、本明細書において、ポリアミド系樹脂の融点は、JIS K7121に準じて、示差走査熱量測定(DSC)により測定した値を指す。測定で現れた吸熱を示すピークを樹脂の融解を示すピークとし、最も高温側に現れた吸熱を示すピークにおける温度を、融点とする。
測定装置としては、市販の示差走査熱量計を用いてよく、例えば、パーキンエルマー社製のDSC7等が挙げられる。
測定条件としては、通常の条件を用いてよく、例えば、窒素雰囲気下、温度条件:樹脂をその融点超の温度(例えば300℃で5分)で保持し、その後、20℃/分で50℃程度まで急冷し、次いで、融点超の温度(例えば300℃)まで20℃/分で昇温させるという条件等が挙げられる。
In the present specification, the melting point of the polyamide resin refers to a value measured by differential scanning calorimetry (DSC) according to JIS K7121. The endothermic peak that appears in the measurement is taken as the melting peak of the resin, and the temperature at the highest endothermic peak that appears is taken as the melting point.
A commercially available differential scanning calorimeter may be used as the measuring device, and examples thereof include DSC7 manufactured by Perkin Elmer.
As the measurement conditions, usual conditions may be used, for example, under a nitrogen atmosphere, temperature conditions: the resin is kept at a temperature above its melting point (for example, 300° C. for 5 minutes), and then at 20° C./minute at 50° C. The conditions include the rapid cooling to a certain degree, and then raising the temperature above the melting point (for example, 300° C.) at 20° C./min.

ポリアミド系樹脂が末端に有する高反応性の官能基(アミノ基及びカルボキシル基)を、ポリアミド系樹脂の合成において末端封止剤を添加することによって、低反応性の官能基に変える(ポリアミド系樹脂の末端を封鎖する)ことができる。
この場合、末端封止剤を添加する時期としては、原料仕込み時、重合開始時、重合中後期、又は重合終了時が挙げられる。
末端封止剤としては、ポリアミド系樹脂のアミノ基又はカルボキシル基との間で反応し得る単官能性の化合物である限り、特に制限されることなく、例えば、モノカルボン酸、モノアミン、酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類等が挙げられる。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
A highly reactive functional group (amino group and carboxyl group) at the end of the polyamide resin is converted into a low-reactivity functional group by adding an end-capping agent in the synthesis of the polyamide resin (polyamide resin). Can be blocked).
In this case, examples of the timing of adding the terminal blocking agent include the time of charging the raw materials, the start of polymerization, the latter half of polymerization, or the end of polymerization.
The terminal blocking agent is not particularly limited as long as it is a monofunctional compound capable of reacting with an amino group or a carboxyl group of a polyamide resin, for example, a monocarboxylic acid, a monoamine, an acid anhydride. , Monoisocyanates, monoacid halides, monoesters, monoalcohols and the like. These may be used alone or in combination of two or more.

ポリアミド系樹脂の形状としては、特に限定されることなく、例えば、ビーズ状、ペレット状、球体、不定形の粉砕物等が挙げられ、その大きさは、発泡後の予備発泡粒子の大きさを適度なものとし、予備発泡粒子の取り扱いやすさを高め、成形時の充填をより密にする観点から、0.2〜3mmであることが好ましい。 The shape of the polyamide-based resin is not particularly limited, and examples thereof include beads, pellets, spheres, and irregularly pulverized products, and the size thereof is the size of the pre-expanded particles after foaming. The thickness is preferably 0.2 to 3 mm from the viewpoint of making it moderate, improving the handleability of the pre-expanded particles and making the packing during molding more dense.

−−−その他の成分−−−
上記発泡樹脂に含まれるポリアミド系樹脂以外のその他の成分としては、安定剤、衝撃改良材、難燃剤、滑剤、顔料、染料、耐候性改良剤、帯電防止剤、耐衝撃改質剤、結晶核剤、ガラスビーズ、無機充填材、架橋剤、タルク等の核剤や他の熱可塑性樹脂を、本発明の目的を損なわない範囲で添加してもよい。上記発泡樹脂におけるその他の成分の含有量は、ポリアミド系樹脂100質量部に対して、15質量部以下としてよく、6質量部以下であることが好ましい。3質量部以下であることがさらに好ましい。
--- Other ingredients ---
Other components other than the polyamide-based resin contained in the foamed resin include stabilizers, impact modifiers, flame retardants, lubricants, pigments, dyes, weather resistance improvers, antistatic agents, impact modifiers, crystal nuclei. Agents, glass beads, inorganic fillers, cross-linking agents, nucleating agents such as talc, and other thermoplastic resins may be added within a range that does not impair the object of the present invention. The content of other components in the foamed resin may be 15 parts by mass or less, and preferably 6 parts by mass or less, with respect to 100 parts by mass of the polyamide resin. It is more preferably 3 parts by mass or less.

特に、安定剤としては、特に限定されることなく、例えば、ヒンダードフェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤、ホスファイト化合物、チオエーテル系化合物等の有機系酸化防止剤や熱安定剤;ヒンダードアミン系、ベンゾフェノン系、イミダゾール系等の光安定剤や紫外線吸収剤;金属不活性化剤等が挙げられる。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 In particular, the stabilizer is not particularly limited, and examples thereof include hindered phenol antioxidants, sulfur antioxidants, phosphorus antioxidants, phosphite compounds, thioether compounds, and other organic antioxidants. And heat stabilizers; hindered amine-based, benzophenone-based, imidazole-based light stabilizers and ultraviolet absorbers; metal deactivators and the like. These may be used alone or in combination of two or more.

熱安定剤としては、120℃以上の高温環境下で長期熱老化を効果的に防止する観点から、銅化合物が好ましく、この銅化合物とハロゲン化アルカリ金属化合物との組み合わせも好ましい。ここで、ハロゲン化アルカリ金属化合物としては、塩化リチウム、臭化リチウム、ヨウ化リチウム、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム等が挙げられる。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the heat stabilizer, a copper compound is preferable from the viewpoint of effectively preventing long-term heat aging in a high temperature environment of 120° C. or higher, and a combination of this copper compound and an alkali metal halide compound is also preferable. Here, as the alkali metal halide compound, lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, sodium bromide, sodium iodide, potassium fluoride, potassium chloride, potassium bromide, iodide Examples thereof include potassium. These may be used alone or in combination of two or more.

他の熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、EVA(エチレン−酢酸ビニル共重合体)等のポリオレフィン系樹脂;ポリビニルアルコール;ポリ塩化ビニル;ポリ塩化ビニリデン;ポリフェニレンエーテル系樹脂;メタクリル系樹脂;ポリカーボネート系樹脂;ポリイミド系樹脂;ポリアセタール系樹脂;ポリエステル系樹脂;アクリル系樹脂;セルロース系樹脂;ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、1,2−ポリブタジエン系、フッ素ゴム系等の熱可塑性エラストマー;ポリアセタール系、ポリエステル系、フッ素系の熱可塑性エンジニアリングプラスチック;等が挙げられる。また本発明の目的を損なわない範囲で、変性、架橋された樹脂を用いてもよい。
これらは、1種単独で用いても、2種以上を組み合わせて用いてもよい。
Examples of other thermoplastic resins include polyolefin resins such as polyethylene, polypropylene, EVA (ethylene-vinyl acetate copolymer); polyvinyl alcohol; polyvinyl chloride; polyvinylidene chloride; polyphenylene ether resin; methacrylic resin; Polycarbonate type resin; Polyimide type resin; Polyacetal type resin; Polyester type resin; Acrylic type resin; Cellulose type resin; Polyvinyl chloride type, polyurethane type, polyester type, 1,2-polybutadiene type, fluoroelastomer type thermoplastic elastomer A polyacetal-based, polyester-based, fluorine-based thermoplastic engineering plastic; and the like. Further, a modified or crosslinked resin may be used as long as the object of the present invention is not impaired.
These may be used alone or in combination of two or more.

なお、上記発泡樹脂に含まれるポリアミド系樹脂のアミノ基又はカルボキシル基と反応する置換基(以下、反応性の置換基ともいう。)を有する化合物や重合体等を用いて、ポリアミド系樹脂の分子内においてかかる置換基を介した架橋構造を形成させることによって、ポリアミド系樹脂の架橋度を高めてもよい。
反応性の置換基としては、例えば、グリシジル基、カルボキシル基、カルボン酸金属塩、エステル基、ヒドロキシル基、アミノ基、カルボジイミド基等の官能基等が挙げられ、特に、反応の速さの観点から、グリシジル基、カルボジイミド基が好ましい。
これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、化合物や重合体等は、1分子中に複数種の官能基を有していてもよい。
なお、反応性の置換基のポリアミド系樹脂への導入量は、架橋により樹脂にゲル化等が生じない程度とするのがよい。
The molecule of the polyamide resin is prepared by using a compound or polymer having a substituent (hereinafter, also referred to as a reactive substituent) that reacts with an amino group or a carboxyl group of the polyamide resin contained in the foamed resin. The degree of cross-linking of the polyamide-based resin may be increased by forming a cross-linking structure via such a substituent inside.
Examples of the reactive substituent include a glycidyl group, a carboxyl group, a metal salt of a carboxylic acid, an ester group, a hydroxyl group, an amino group, a functional group such as a carbodiimide group, and the like, and particularly from the viewpoint of reaction speed. , A glycidyl group and a carbodiimide group are preferred.
These may be used alone or in combination of two or more. Further, the compound, the polymer and the like may have plural kinds of functional groups in one molecule.
The amount of the reactive substituent introduced into the polyamide-based resin is preferably such that crosslinking does not cause gelation of the resin.

−−−ガス−−−
ガスとは、発泡樹脂の製造過程(後述)において含まれることとなるものである。
ガスとしては、特に限定されないが、空気、炭酸ガス、発泡剤として用いられる各種ガス、脂肪族炭化水素系ガス等が挙げられる。
脂肪族炭化水素系ガスとしては、具体的には、ブタン、ペンタン等が挙げられる。
--- Gas ---
The gas is to be contained in the manufacturing process (described later) of the foamed resin.
The gas is not particularly limited, but examples thereof include air, carbon dioxide gas, various gases used as a foaming agent, and aliphatic hydrocarbon gas.
Specific examples of the aliphatic hydrocarbon-based gas include butane and pentane.

−−発泡樹脂の物性−−
以下に、本実施形態の繊維強化複合体における発泡樹脂の物性について記載する。
--- Physical properties of foamed resin ---
The physical properties of the foamed resin in the fiber-reinforced composite body of the present embodiment will be described below.

上記発泡樹脂は、X線回折プロファイルにおいて最も狭いピーク幅を有するピークに基づいて算出したとき、結晶子サイズDが、10nm以上であり、結晶化度Xが、10〜50%である。
上記発泡樹脂のX線回折プロファイルは、X線散乱装置を用いた透過法により得ることができる。
The foamed resin has a crystallite size D of 10 nm or more and a crystallinity X of 10 to 50% when calculated based on the peak having the narrowest peak width in the X-ray diffraction profile.
The X-ray diffraction profile of the foamed resin can be obtained by a transmission method using an X-ray scattering device.

上記発泡樹脂は、X線回折プロファイルにおいて最も狭いピーク幅を有するピークに基づいて算出したときの結晶子サイズDが、得られる発泡樹脂や繊維強化複合体の耐熱性を向上する観点、及び高温成形時の熱収縮を抑制する観点から、10nm以上であり、11nm以上であることが好ましく、12nm以上であることが更に好ましく、また、得られる発泡樹脂の融着率の低下を抑制する観点から、50nm以下であることが好ましく、40nm以下であることが更に好ましい。 In the foamed resin, the crystallite size D calculated based on the peak having the narrowest peak width in the X-ray diffraction profile improves the heat resistance of the foamed resin or fiber-reinforced composite obtained, and high temperature molding. From the viewpoint of suppressing heat shrinkage at the time, it is 10 nm or more, preferably 11 nm or more, more preferably 12 nm or more, and from the viewpoint of suppressing a decrease in the fusion rate of the obtained foamed resin, The thickness is preferably 50 nm or less, more preferably 40 nm or less.

また、上記発泡樹脂は、X線回折プロファイルに基づいて算出したときの結晶化度Xが、得られる発泡樹脂や繊維強化複合体の耐熱性や高温成形時の熱収縮を抑制する観点から、10%以上であり、20%以上であることが好ましく、25%以上であることが更に好ましく、また、得られる発泡樹脂の融着率の低下を抑制する観点から、50%以下であり、45%以下であることが好ましい。 Further, in the foamed resin, the crystallinity X calculated based on the X-ray diffraction profile is 10 from the viewpoint of suppressing the heat resistance of the foamed resin or the fiber reinforced composite to be obtained and the heat shrinkage during high temperature molding. % Or more, preferably 20% or more, more preferably 25% or more, and 50% or less, 45% from the viewpoint of suppressing a decrease in the fusion rate of the resulting foamed resin. The following is preferable.

結晶子サイズD及び結晶化度Xは、下記の通り求められるものを指す。
ここで、X線回折により得られたX線回折プロファイルを、結晶由来の回折ピークと非晶由来の回折ピークとについてガウス関数を仮定してピーク分離する。
結晶子サイズDは、下記式(1)で表されるシェラーの式により決定される。

Figure 0006746446
式中、βは、結晶由来の回折ピークの半価全幅(rad)であり、bは、X線の広がりの半価半幅(rad)であり、λは、X線の波長(単位:nm)であり、θは、ピーク位置におけるブラッグ角(単位:°)である。
結晶化度Xは、下記式(2)で表される式により算出される。
Figure 0006746446
式中、Aci(i=1〜n)は、ピーク分離した際に得られるn個の結晶由来の回折ピークの面積であり、Aaは、ピーク分離した際に得られる非晶由来の回折ピークの面積である。 The crystallite size D and the crystallinity X refer to those obtained as follows.
Here, the X-ray diffraction profile obtained by X-ray diffraction is subjected to peak separation on the assumption of a Gaussian function for the diffraction peaks derived from crystals and the diffraction peaks derived from amorphous.
The crystallite size D is determined by Scherrer's formula represented by the following formula (1).
Figure 0006746446
In the formula, β is the full width at half maximum (rad) of the diffraction peak derived from the crystal, b is the full width at half maximum of the X-ray (rad), and λ is the wavelength of the X-ray (unit: nm). And θ is the Bragg angle (unit: °) at the peak position.
The crystallinity X is calculated by the formula represented by the following formula (2).
Figure 0006746446
In the formula, Aci (i=1 to n) is an area of n crystal-derived diffraction peaks obtained when the peaks are separated, and Aa is an amorphous-derived diffraction peak obtained when the peaks are separated. Area.

なお、上記式(1)では光学系による補正がなされているが、光学系以外にも試料形状等(試料厚み等)によってもβは影響を受ける。適切な条件でX線回折を測定する、適切な補正を行う等によって、測定条件に依存しないDを算出する必要があるのは言うまでもない。 Note that although the correction is performed by the optical system in the above formula (1), β is also influenced by the sample shape and the like (sample thickness and the like) other than the optical system. Needless to say, it is necessary to calculate D that does not depend on the measurement conditions by measuring X-ray diffraction under appropriate conditions, performing appropriate correction, and the like.

上記発泡樹脂の密度は、発泡樹脂の強度を適度にして、気泡膜を破膜しにくくすることによって、発泡樹脂や繊維強化複合体の外観を向上させる観点から、20kg/m3以上であることが好ましく、50kg/m3以上であることが更に好ましく、また、繊維強化複合体の軽量性を高める観点から、800kg/m3以下であることが好ましく、500kg/m3以下であることが更に好ましい。 The density of the foamed resin is 20 kg/m 3 or more from the viewpoint of improving the appearance of the foamed resin or the fiber-reinforced composite by making the strength of the foamed resin moderate and making it difficult for the cell membrane to break. Is more preferable, 50 kg/m 3 or more is more preferable, and 800 kg/m 3 or less is preferable and 500 kg/m 3 or less is further preferable from the viewpoint of enhancing the lightness of the fiber-reinforced composite. preferable.

上記発泡樹脂の独立気泡率Sは、発泡樹脂の強度を向上させると共に、連続気泡部分において生じ得る発泡樹脂中への水の取り込みを生じにくくして、発泡樹脂の密度を低下しにくくする観点から、80%以上であることが望ましく、85%以上であることが更に望ましい。
なお、独立気泡率S(%)は、下記式(3)で表される式により算出される。
S(%)={(Vx−W/ρ)/(Va−W/ρ)}×100
・・・(3)
式中、Vxは、発泡樹脂の真の体積(cm3)であり、Vaは、発泡樹脂の見かけの体積(cm3)であり、Wは、発泡樹脂の重量(g)であり、ρは、発泡樹脂の基材樹脂の密度(g/cm3)である。
From the viewpoint that the closed cell rate S of the foamed resin improves the strength of the foamed resin and makes it difficult for water to be taken into the foamed resin that may occur in the open-cell portion, thereby making it difficult to reduce the density of the foamed resin. , 80% or more, and more preferably 85% or more.
The closed cell rate S (%) is calculated by the formula represented by the following formula (3).
S(%)={(Vx−W/ρ)/(Va−W/ρ)}×100
...(3)
In the formula, Vx is the true volume of the foamed resin (cm 3 ), Va is the apparent volume of the foamed resin (cm 3 ), W is the weight of the foamed resin (g), and ρ is , Density of the base resin of the foamed resin (g/cm 3 ).

上記発泡樹脂は、高温環境下での物性低下や熱収縮を抑制する観点から、150℃における寸法変化率が、1.5%以下であることが好ましく、1.0%以下であることが更に好ましい。
なお、寸法変化率は、JIS K6767の寸法安定性評価・B法に準拠して、測定した値を指す。
The foamed resin preferably has a dimensional change rate at 150° C. of 1.5% or less, and more preferably 1.0% or less, from the viewpoint of suppressing deterioration of physical properties and heat shrinkage in a high temperature environment. preferable.
The dimensional change rate refers to a value measured according to JIS K6767 dimensional stability evaluation/method B.

上記発泡樹脂の融着率は、複合体に曲げ歪み等の応力が加わった際の剛性を高める観点、及び、発泡樹脂を切断した際に予備発泡粒子の成形体からの欠落を抑制する観点から、60%以上であることが好ましく、70%以上であることが更に好ましく、80%以上であることが最も好ましい。
なお、融着率の測定方法は、実施例に記載の通りである。
The fusion rate of the foamed resin, from the viewpoint of increasing the rigidity when stress such as bending strain is applied to the composite, and from the viewpoint of suppressing the lack of pre-expanded particles from the molded body when the foamed resin is cut. , 60% or more, more preferably 70% or more, most preferably 80% or more.
The method for measuring the fusion rate is as described in Examples.

−表皮材−
本実施形態の繊維強化複合体における表皮材は、繊維及び樹脂を含み、任意選択的に、添加剤等を含む。
-Skin material-
The skin material in the fiber-reinforced composite of the present embodiment includes fibers and resins, and optionally additives and the like.

−−繊維−−
繊維としては、高強度、高弾性率の繊維が挙げられ、具体的には、炭素繊維、ガラス繊維、有機繊維(例えば、米国デュポン(株)社製の「ケブラー(登録商標)」に代表されるポリアラミド繊維)、アルミナ繊維、シリコンカーバイド繊維、ボロン繊維、炭化ケイ素繊維等が挙げられる。
中でも、高い剛性を保持したまま軽量性を確保するために、弾性率と密度の比である比弾性率が高いもの、具体的には、炭素繊維が好ましい。
これら繊維は、1種単独で用いてもよく、2種以上を併用してもよい。
--- Fiber ---
Examples of the fibers include fibers having high strength and high elastic modulus, and specifically, carbon fibers, glass fibers, and organic fibers (for example, represented by “Kevlar (registered trademark)” manufactured by DuPont, USA). Polyaramid fiber), alumina fiber, silicon carbide fiber, boron fiber, silicon carbide fiber and the like.
Among them, those having a high specific elastic modulus, which is the ratio of the elastic modulus to the density, specifically, carbon fibers are preferable in order to secure the lightness while maintaining the high rigidity.
These fibers may be used alone or in combination of two or more.

本実施形態における繊維の、JIS−K7127に準拠して測定される引張弾性率は、高い剛性を確保する観点から、200〜850GPaであることが好ましい。 The tensile elastic modulus of the fiber in the present embodiment measured according to JIS-K7127 is preferably 200 to 850 GPa from the viewpoint of ensuring high rigidity.

本実施形態における繊維の含有量は、表皮材100質量%に対して、40〜80質量%であることが好ましい。 The fiber content in the present embodiment is preferably 40 to 80 mass% with respect to 100 mass% of the skin material.

本実施形態における繊維の目付量は、剛性を高め、軽量化を図る観点から、発泡樹脂を含む芯材の表面において、50〜4000g/m2が好ましく、より好ましくは100〜1000g/m2である。 Basis weight of the fiber in the present embodiment, the rigidity, in terms of weight reduction, the surface of the core material includes a foamed resin is preferably 50~4000g / m 2, more preferably 100 to 1000 g / m 2 is there.

−−樹脂−−
樹脂としては、熱硬化性樹脂や熱可塑性樹脂が挙げられ、エポキシ樹脂、フェノール樹脂、シアネート樹脂、ベンゾオキサジン樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ABS樹脂、ポリエチレンテレフタレート樹脂、ナイロン樹脂、マレイミド樹脂等が挙げられる。中でも、熱、光、電子線等の外部からのエネルギー付加により硬化する熱硬化性樹脂が好ましく、具体的には、エポキシ樹脂が好ましい。
これら樹脂は、1種単独で用いてもよく、2種以上を併用してもよい。
−− Resin−−
Examples of the resin include thermosetting resins and thermoplastic resins. Epoxy resin, phenol resin, cyanate resin, benzoxazine resin, polyimide resin, unsaturated polyester resin, vinyl ester resin, ABS resin, polyethylene terephthalate resin, nylon resin. , Maleimide resin and the like. Among them, a thermosetting resin that is cured by the addition of external energy such as heat, light, or electron beam is preferable, and specifically, an epoxy resin is preferable.
These resins may be used alone or in combination of two or more.

樹脂のガラス転移温度は、芯材との接着性、変形や反りの観点から、80〜250℃であることが好ましく、より好ましくは、80〜180℃である。
なお、ガラス転移温度は、ASTM−D−3418に準拠して中点法により測定することができる。
The glass transition temperature of the resin is preferably 80 to 250° C., and more preferably 80 to 180° C., from the viewpoint of adhesion with the core material, deformation and warpage.
The glass transition temperature can be measured by the midpoint method according to ASTM-D-3418.

樹脂が熱硬化性樹脂である場合、その硬化温度は、芯材との接着性、変形や反りの観点から、80〜250℃であることが好ましく、より好ましくは、80〜150℃である。 When the resin is a thermosetting resin, the curing temperature is preferably 80 to 250° C., more preferably 80 to 150° C., from the viewpoint of adhesion to the core material, deformation and warpage.

本実施形態における樹脂の含有量は、芯材との接着性、変形や反りの観点から、表皮材100質量%に対して、20〜60質量%であることが好ましく、より好ましくは、30〜50質量%である。 The content of the resin in the present embodiment is preferably 20 to 60% by mass, and more preferably 30 to 60% by mass with respect to 100% by mass of the skin material, from the viewpoint of adhesiveness to the core material, deformation and warpage. It is 50% by mass.

(繊維強化複合体の製造方法)
以下、本実施形態の繊維強化複合体の製造方法について記載する。
(Method for producing fiber reinforced composite)
Hereinafter, the method for producing the fiber-reinforced composite body of the present embodiment will be described.

本実施形態の繊維強化複合体の製造方法の一例としては、芯材(例えば、ポリアミド系樹脂発泡体のみからなる芯材)と表皮材とを成形機内で加熱・加圧することによって同時成形する方法が挙げられる。
本実施形態では、芯材に含まれる発泡樹脂としてのポリアミド系樹脂発泡体は、発泡成形品、ビーズ粒子等を用いてよい。
As an example of the method for producing the fiber-reinforced composite body of the present embodiment, a method of simultaneously molding a core material (for example, a core material composed only of a polyamide-based resin foam) and a skin material by heating and pressing in a molding machine Is mentioned.
In the present embodiment, as the polyamide resin foam as the foamed resin contained in the core material, a foamed molded product, bead particles, or the like may be used.

−発泡樹脂の製造方法−
発泡樹脂を製造する方法としては、例えば、押出発泡法、発泡射出成形法、型内発泡成形法(ビーズ発泡成形法ともいう。)等が挙げられる。
-Method for producing foamed resin-
Examples of the method for producing the foamed resin include an extrusion foaming method, a foam injection molding method, and an in-mold foam molding method (also referred to as a bead foam molding method).

押出発泡法は、押出機を用いて溶融状態の樹脂に有機又は無機発泡剤を圧入し、押出機出口で圧力を開放することによって、一定の断面形状を有する、板状、シート状、又は柱状の発泡体を得て、これを金型に入れて熱加工する、又は切り貼りにより目的形状に成形する方法である。 In the extrusion foaming method, an organic or inorganic foaming agent is press-fitted into a resin in a molten state by using an extruder, and the pressure is released at the extruder outlet to have a plate-shaped, sheet-shaped, or columnar shape. This is a method in which the foamed product is obtained, and the foamed product is placed in a mold and heat-processed, or cut and pasted to form a desired shape.

発泡射出成形法は、発泡性を備える樹脂を射出成形し、金型内にて発泡させることによって、空孔を有する発泡成形品(発泡樹脂)を得る方法である。 The foam injection molding method is a method in which a resin having foamability is injection-molded and foamed in a mold to obtain a foam-molded article (foam resin) having pores.

型内発泡成形法は、発泡性を備える樹脂粒子を型内に充填し、水蒸気等で加熱し、粒子を発泡させると同時に粒子同士を熱融着させることによって、発泡成形品(発泡樹脂)を得る方法である。この型内発泡成形法は、製品形状を自由に設定しやすく、高発泡倍率の発泡成形品を得やすい等の利点がある。
上記発泡樹脂は、発泡倍率の観点から型内発泡成形法で製造されることが好ましい。
The in-mold foam molding method is to fill a foamed resin particle in a mold and heat the same with steam or the like to foam the particles and at the same time heat-bond the particles together to form a foamed molded product (foamed resin). Is the way to get. This in-mold foam molding method has advantages that the product shape can be easily set freely, and a foam molded article having a high expansion ratio can be easily obtained.
The foamed resin is preferably produced by an in-mold foam molding method from the viewpoint of expansion ratio.

以下、上記発泡樹脂を製造する際に用いられる、予備発泡粒子の製造方法について記載する。例えば、ポリアミド系樹脂発泡体を製造する際には、ポリアミド系予備発泡粒子を用いることができる。
なお、本明細書において、予備発泡粒子とは、最終段階の発泡を行っていない発泡性の粒子(ビーズ等)を指す。
Hereinafter, a method for producing pre-expanded particles used when producing the foamed resin will be described. For example, polyamide-based pre-expanded particles can be used when producing a polyamide-based resin foam.
In the present specification, the pre-expanded particles refer to expandable particles (such as beads) that have not been expanded in the final stage.

上記予備発泡粒子は、前述のポリアミド系樹脂に発泡剤を含有(含浸)させて、発泡を生じさせることによって得ることができる。
ポリアミド系樹脂に発泡剤を含有(含浸)させる方法としては、特に限定されることなく、一般的に用いられている方法としてよい。
かかる方法としては、水等の懸濁系で水性媒体を用いて行う方法(懸濁含浸)や、重炭酸ナトリウム等の熱分解型発泡剤を用いる方法(発泡剤分解)、ガスを臨界圧力以上の雰囲気とし液相状態にして、基材樹脂に接触させる方法(液相含浸)、ガスを臨界圧力未満の雰囲気とし気相状態にして、基材樹脂に接触させる方法(気相含浸)等が挙げられる。発泡剤を含有させる方法としては、特に気相含浸が好ましい。
The pre-expanded particles can be obtained by containing (impregnating) the above-mentioned polyamide resin with a foaming agent to cause foaming.
The method of incorporating (impregnating) the foaming agent into the polyamide resin is not particularly limited and may be a commonly used method.
As such a method, a method of using an aqueous medium in a suspension system such as water (suspension impregnation), a method of using a pyrolytic foaming agent such as sodium bicarbonate (foaming agent decomposition), or a gas having a critical pressure or higher The method of contacting the base resin with the base material resin in the liquid state (liquid phase impregnation), and the method of contacting the base resin with the gas in the gas phase state under the critical pressure (liquid phase impregnation), etc. Can be mentioned. Gas phase impregnation is particularly preferable as the method of incorporating the foaming agent.

気相含浸では、高温条件下で実施される懸濁含浸の場合と比較して、ガスの樹脂への溶解度がより高く、発泡剤の含有量を高くしやすい。そのため、気相含浸では、高発泡倍率を達成しやすく、予備発泡粒子内の気泡サイズが均一になりやすい。 In the gas phase impregnation, the solubility of the gas in the resin is higher and the content of the foaming agent is likely to be higher than in the case of suspension impregnation performed under high temperature conditions. Therefore, in the gas phase impregnation, it is easy to achieve a high expansion ratio, and the bubble sizes in the pre-expanded particles are likely to be uniform.

また、発泡剤分解法も、懸濁含浸と同様に高温条件下で実施される点で不都合がある。また、この方法では、加えた熱分解型発泡剤全てがガスになるわけではないため、ガス発生量が相対的に少なくなりやすい。そのため、気相含浸では、発泡剤含有量を高くしやすいという利点がある。
更に、気相含浸では、液相含浸の場合と比較して、耐圧装置や冷却装置等の設備がよりコンパクトになりやすく、設備費を低減しやすい。
Further, the foaming agent decomposition method is also inconvenient in that it is carried out under high temperature conditions as in the suspension impregnation. Further, in this method, not all of the added pyrolyzable foaming agent becomes a gas, so the amount of gas generated tends to be relatively small. Therefore, the vapor phase impregnation has an advantage that the content of the foaming agent can be easily increased.
Furthermore, in the vapor phase impregnation, the equipment such as the pressure resistance device and the cooling device is likely to be more compact, and the equipment cost is easily reduced, as compared with the case of the liquid phase impregnation.

気相含浸の条件としては、特には限定されることなく、例えば、ガスの樹脂への溶解をより効率的に進める観点から、雰囲気圧力としては、0.5〜6.0MPaであることが好ましく、雰囲気温度としては、5〜30℃であることが好ましい。 The conditions for vapor phase impregnation are not particularly limited, and for example, from the viewpoint of more efficiently promoting the dissolution of gas into the resin, the atmospheric pressure is preferably 0.5 to 6.0 MPa. The ambient temperature is preferably 5 to 30°C.

ここで、上記予備発泡粒子を製造する際に使用される発泡剤としては、特に限定されることなく、空気やガスとし得る化合物等が挙げられる。
ガスとし得る化合物の例としては、二酸化炭素、窒素、酸素、水素、アルゴン、ヘリウム、ネオン等の無機化合物;トリクロロフルオロメタン(R11)、ジクロロジフルオロメタン(R12)、クロロジフルオロメタン(R22)、テトラクロロジフルオロエタン(R112)ジクロロフルオロエタン(R141b)クロロジフルオロエタン(R142b)、ジフルオロエタン(R152a)、HFC−245fa、HFC−236ea、HFC−245ca、HFC−225ca等のフルオロカーボン;HFO−1234y、HFO−1234ze(E)等のハイドロフルオロオレフィン;プロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、ネオペンタン等の飽和炭化水素;ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n−ブチルエーテル、ジイソプロピルエーテル、フラン、フルフラール、2−メチルフラン、テトラヒドロフラン、テトラヒドロピラン等のエーテル類;塩化メチル、塩化エチル等の塩素化炭化水素類;メタノール、エタノール等のアルコール類;等が挙げられる。
これらの空気やガスとし得る化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Here, the foaming agent used when producing the pre-expanded particles is not particularly limited, and examples thereof include compounds that can be air or gas.
Examples of the compound that can be used as a gas include inorganic compounds such as carbon dioxide, nitrogen, oxygen, hydrogen, argon, helium, and neon; trichlorofluoromethane (R11), dichlorodifluoromethane (R12), chlorodifluoromethane (R22), tetra Fluorocarbons such as chlorodifluoroethane (R112) dichlorofluoroethane (R141b) chlorodifluoroethane (R142b), difluoroethane (R152a), HFC-245fa, HFC-236ea, HFC-245ca, HFC-225ca; HFO-1234y, HFO-1234ze(E). ) And other hydrofluoroolefins; saturated hydrocarbons such as propane, n-butane, i-butane, n-pentane, i-pentane, neopentane; dimethyl ether, diethyl ether, methyl ethyl ether, isopropyl ether, n-butyl ether, diisopropyl ether. , Furan, furfural, 2-methylfuran, tetrahydrofuran, tetrahydropyran and the like; chlorinated hydrocarbons such as methyl chloride and ethyl chloride; alcohols such as methanol and ethanol; and the like.
These air or gas compounds may be used alone or in combination of two or more.

発泡剤としては、環境への影響が少なく、可燃性や支燃性がないものが好ましく、取り扱い時の安全性の観点から、可燃性及び支燃性のない無機化合物が更に好ましく、樹脂への溶解性、取り扱いの容易性の観点から、二酸化炭素ガス(炭酸ガス)が特に好ましい。 As the foaming agent, those having little influence on the environment and having no flammability or flammability are preferable, and from the viewpoint of safety during handling, an inorganic compound having no flammability and a flammability is further preferable, From the viewpoint of solubility and ease of handling, carbon dioxide gas (carbon dioxide gas) is particularly preferable.

発泡剤を含有(含浸)させたポリアミド系樹脂(発泡剤含浸ポリアミド系樹脂)に発泡を生じさせる方法としては、特に限定されないが、例えば、発泡剤含浸ポリアミド系樹脂を高圧雰囲気下から低圧雰囲気下に一気に持ち込むことによって、発泡剤含浸ポリアミド系樹脂中に溶解している発泡剤としてのガスを膨張させて、発泡を生じさせる方法や、圧力蒸気等を用いて加熱することによって、発泡剤含浸ポリアミド系樹脂中のガスを膨張させて、発泡を生じさせる方法等を用いることができ、特に、生成物である成形体内部の気泡の大きさ(セルサイズ)を均一にするという利点、及び発泡倍率を制御して低発泡倍率の成形体の作製を容易にするという利点が得られるため、後者の加熱・発泡を行う方法を用いることが好ましい。 The method of causing foaming in the polyamide resin containing (impregnating) the foaming agent (foaming agent-impregnated polyamide resin) is not particularly limited. For example, the foaming agent-impregnated polyamide resin is changed from a high pressure atmosphere to a low pressure atmosphere. The foaming agent-impregnated polyamide resin is expanded by expanding the gas as a foaming agent dissolved in the foaming agent-impregnated polyamide resin by blowing it into It is possible to use a method of expanding the gas in the system resin to cause foaming, and in particular, the advantage that the size (cell size) of the cells inside the molded article that is the product is uniform, and the expansion ratio. It is preferable to use the latter method of heating/foaming, because the advantage of controlling the temperature and facilitating the production of a molded product having a low expansion ratio can be obtained.

ここで、予備発泡粒子を所望の発泡倍率になるまで発泡させる際、一段階の発泡を行ってもよく、二次発泡、三次発泡等からなる多段階の発泡を行ってもよい。なお、多段階の発泡を行った場合、高発泡倍率の予備発泡粒子を調製しやすく、成形に用いられる予備発泡粒子は、単位体積当たりに使用される樹脂量を低減する観点から、三次発泡まで行った予備発泡粒子であることが好ましい。
特に、多段階の発泡の場合、各段階での発泡前に予備発泡粒子に対してガスによる加圧処理を行うことが好ましい。加圧処理に用いるガスとしては、ポリアミド系樹脂に対して不活性である限り、特には限定されないが、ガスの安全性が高く、ガスの地球温暖化係数の小さい、無機ガスやハイドロフルオロオレフィンが好ましい。無機ガスとしては、例えば、空気、炭酸ガス、窒素ガス、酸素ガス、アンモニアガス、水素ガス、アルゴンガス、ヘリウムガス、ネオンガス等が挙げられ、また、ハイドロフルオロオレフィンとしては、例えば、HFO−1234y、HFO−1234ze(E)等が挙げられ、特に、取り扱い容易性及び経済性の観点から、空気や炭酸ガスが好ましい。加圧処理の手法としては、特には限定されないが、予備発泡粒子を加圧タンク内に充填し、該タンク内にガスを供給する手法等が挙げられる。
Here, when the pre-expanded particles are expanded to a desired expansion ratio, one-stage expansion may be performed, or multi-stage expansion including secondary expansion and tertiary expansion may be performed. In addition, when multi-stage foaming is performed, it is easy to prepare pre-expanded particles having a high expansion ratio, and the pre-expanded particles used for molding are from the viewpoint of reducing the amount of resin used per unit volume, up to tertiary foaming. The pre-expanded particles obtained are preferably.
In particular, in the case of multi-stage foaming, it is preferable to subject the pre-foamed particles to a gas pressure treatment before the foaming in each stage. The gas used for the pressure treatment is not particularly limited as long as it is inert to the polyamide resin, but the gas is highly safe, and the global warming potential of the gas is small, such as inorganic gas and hydrofluoroolefin. preferable. Examples of the inorganic gas include air, carbon dioxide gas, nitrogen gas, oxygen gas, ammonia gas, hydrogen gas, argon gas, helium gas, neon gas and the like, and examples of the hydrofluoroolefin include HFO-1234y, HFO-1234ze(E) and the like can be mentioned, and in particular, air and carbon dioxide gas are preferable from the viewpoint of easy handling and economical efficiency. The method of pressurizing treatment is not particularly limited, and examples thereof include a method of filling pre-expanded particles in a pressure tank and supplying gas into the tank.

上記発泡樹脂は、上記予備発泡粒子(例えば、上記ポリアミド系樹脂を含むポリアミド系樹脂予備発泡粒子)を含むことが好ましく、例えば、前述の予備発泡粒子(例えば、ポリアミド系樹脂予備発泡粒子)を成形することによって得ることができる。 It is preferable that the foamed resin contains the pre-expanded particles (for example, polyamide-based resin pre-expanded particles containing the polyamide-based resin). Can be obtained by doing.

予備発泡粒子を成形する方法としては、特に限定されないが、例えば、予備発泡粒子を成形用金型のキャビティ内に充填し、加熱することによって、発泡を生じさせると同時に予備発泡粒子同士を熱融着させた後、冷却により生成物を固化し、成形することができる。ここで、予備発泡粒子の充填方法は、特には限定されないが、例えば、金型を多少開けた状態で予備発泡粒子を充填するクラッキング法、金型を閉じたままの状態で加圧圧縮した予備発泡粒子を充填する圧縮法、金型に加圧圧縮した予備発泡粒子を充填した後に上記クラッキング法を行う圧縮クラッキング法等が挙げられる。 The method for molding the pre-expanded particles is not particularly limited, but for example, the pre-expanded particles are filled in the cavity of the molding die and heated to cause foaming, and at the same time the pre-expanded particles are melted by heat. After deposition, the product can be solidified by cooling and shaped. Here, the method for filling the pre-expanded particles is not particularly limited, for example, a cracking method for filling the pre-expanded particles in a state where the mold is opened a little, a preliminary compression by pressing with the mold closed. Examples include a compression method of filling expanded particles, a compression cracking method of filling the mold with pre-expanded particles that have been compressed and compressed, and then performing the cracking method.

予備発泡粒子の気泡に一定のガス圧力を付与して、粒子内部の気泡の大きさ(セルサイズ)を均一にする観点から、予備発泡粒子を成形用金型のキャビティ内に充填する前に、予備発泡粒子に対してガスによる加圧処理を行うことが好ましい。加圧処理に用いるガスとしては、特には限定されないが、難燃性、耐熱性、寸法安定性の観点から、無機ガス等が挙げられる。無機ガス及び加圧処理の方法については、多段階発泡の場合に予備発泡粒子に対して施されるガスによる加圧処理の場合と同様である。 Before filling the pre-expanded particles into the cavity of the molding die, from the viewpoint of applying a constant gas pressure to the bubbles of the pre-expanded particles to make the size (cell size) of the bubbles inside the particles uniform, It is preferable to subject the pre-expanded particles to a pressure treatment with a gas. The gas used for the pressure treatment is not particularly limited, but examples thereof include an inorganic gas from the viewpoint of flame retardancy, heat resistance, and dimensional stability. The method of the inorganic gas and the pressure treatment is the same as the pressure treatment with the gas applied to the pre-expanded particles in the case of multi-stage foaming.

予備発泡粒子を成形する際に用いられる熱媒体は、汎用の熱媒体としてよく、発泡樹脂の酸化劣化を抑制する観点から、飽和水蒸気や過熱水蒸気であることが好ましく、発泡樹脂に対して均一な加熱を可能にする観点から、飽和水蒸気が更に好ましい。 The heat medium used when molding the pre-expanded particles may be a general-purpose heat medium, and is preferably saturated steam or superheated steam from the viewpoint of suppressing oxidative deterioration of the foamed resin, and is uniform with respect to the foamed resin. From the viewpoint of enabling heating, saturated steam is more preferable.

上記発泡樹脂の製造方法は、例えば、予備発泡粒子を金型のキャビティ内に充填する充填工程と、キャビティ内に予備発泡粒子の熱融着温度以下の水蒸気を5〜30秒間供給して、上記予備発泡粒子を予備的に加熱する予熱工程と、キャビティ内に予備発泡粒子の熱融着温度以上の水蒸気を20〜120秒間供給して、予備発泡粒子を発泡させ、且つ熱融着させることによって、発泡樹脂を得る融着工程と、を有する方法が好ましい。 The method for producing the foamed resin includes, for example, a filling step of filling the pre-expanded particles into the cavity of the mold, and supplying steam having a temperature not higher than the heat fusion temperature of the pre-expanded particles to the cavity for 5 to 30 seconds. By a preheating step of preliminarily heating the pre-expanded particles and supplying steam for 20 to 120 seconds or more to the temperature of the heat-sealing temperature of the pre-expanded particles to foam the pre-expanded particles and heat-bond them. And a fusion-bonding step of obtaining a foamed resin are preferable.

また、上記発泡樹脂は、予備発泡粒子を、予熱工程と融着工程において、二段階で加熱して得ることが好ましい。
この方法によれば、一段階目に、予備発泡粒子の熱融着温度以下の水蒸気で予備発泡粒子を予備的に加熱することによって、予備発泡粒子の集合体全体における温度分布をより均一にすることができる。そして、この一段階目の予備的な加熱により、二段階目に、熱融着温度以上の水蒸気で予備発泡粒子を加熱した際に、予備発泡粒子における発泡がより均一なものとなり、予備発泡粒子を発泡体に成形しやすくなる。
また、この方法によれば、得られる発泡樹脂において、樹脂の結晶子サイズがより大きくなり、また、結晶化度がより高くなり、ひいては、耐熱性に優れた芯材を得ることができる。
Moreover, it is preferable that the foamed resin is obtained by heating the pre-expanded particles in two steps in the preheating step and the fusion step.
According to this method, in the first step, the pre-expanded particles are preliminarily heated with water vapor having a temperature not higher than the heat-sealing temperature of the pre-expanded particles, so that the temperature distribution in the entire aggregate of the pre-expanded particles is made more uniform. be able to. Then, by the preliminary heating in the first step, in the second step, when the pre-expanded particles are heated with steam having a heat fusion temperature or higher, the foaming in the pre-expanded particles becomes more uniform, resulting in the pre-expanded particles. Makes it easier to form a foam.
Further, according to this method, in the obtained foamed resin, the crystallite size of the resin becomes larger, the crystallinity becomes higher, and by extension, the core material having excellent heat resistance can be obtained.

予備発泡粒子を加熱する際の温度としては、前述の通り、予備発泡粒子の熱融着温度(Tf)近傍であることが望ましい。
なお、本明細書において、熱融着温度とは、予備発泡粒子を飽和水蒸気内において加熱し、予備発泡粒子同士が融着する温度を指す。熱融着温度の測定方法は下記に記載の通りである。
予備発泡粒子を、気泡内部の圧力が大気圧であり、炭化水素等の発泡剤を含んでいない状態にする。この予備発泡粒子10gを金属メッシュの容器に予備発泡粒子同士が接触するように入れ、次いで、所定温度の飽和蒸気で30秒間加熱した。そして、加熱後に予備発泡粒子同士が全体で80%以上融着していた温度のうちの最低の温度(℃)を、予備発泡粒子の熱融着温度とする。
As described above, the temperature at which the pre-expanded particles are heated is preferably in the vicinity of the heat-sealing temperature (Tf) of the pre-expanded particles.
In the present specification, the heat fusion temperature refers to a temperature at which the pre-expanded particles are heated in saturated steam and the pre-expanded particles are fused to each other. The method for measuring the heat fusion temperature is as described below.
The pre-expanded particles are brought into a state in which the pressure inside the bubbles is atmospheric pressure and does not include a blowing agent such as hydrocarbon. 10 g of the pre-expanded particles were placed in a metal mesh container so that the pre-expanded particles were in contact with each other, and then heated with saturated steam at a predetermined temperature for 30 seconds. Then, the lowest temperature (° C.) of the temperatures at which the pre-expanded particles are fused to each other by 80% or more after heating is set as the heat-fusion temperature of the pre-expanded particles.

一段階目の加熱温度は、Tf(℃)より低い温度であることが望ましく、Tf−20℃以上であることが好ましく、Tf−15℃以上であることが更に好ましく、また、Tf−2℃以下であることが好ましく、Tf−5℃以下であることが更に好ましい。
一段階目の加熱時間は、2秒以上であることが望ましく、3秒以上であることが更に望ましく、20秒以下であることが望ましく、15秒以下であることが更に望ましい。
The heating temperature in the first step is desirably lower than Tf (°C), preferably Tf-20°C or higher, more preferably Tf-15°C or higher, and Tf-2°C. It is preferably below, and more preferably below Tf-5°C.
The heating time in the first stage is preferably 2 seconds or longer, more preferably 3 seconds or longer, further preferably 20 seconds or shorter, and further preferably 15 seconds or shorter.

二段階目の加熱温度は、Tf(℃)より高い温度であり、Tf+15℃以下であることが好ましく、Tf+10℃以下であることが更に好ましく、Tf+5℃以下であることが特に好ましい。
二段階目の加熱時間は、10秒以上であることが望ましく、15秒以上であることが更に望ましく、60秒以下であることが望ましく、45秒以下であることが更に望ましい。
The heating temperature in the second step is higher than Tf (° C.), preferably Tf+15° C. or lower, more preferably Tf+10° C. or lower, and particularly preferably Tf+5° C. or lower.
The heating time in the second step is preferably 10 seconds or longer, more preferably 15 seconds or longer, further preferably 60 seconds or shorter, and further preferably 45 seconds or shorter.

一段階目及び二段階目の加熱温度及び加熱時間を、上記範囲とすれば、予備発泡粒子同士を十分に熱融着させることができ、また、樹脂の結晶化がより促進された芯材を得ることができる。 When the heating temperature and the heating time of the first step and the second step are in the above ranges, the pre-expanded particles can be sufficiently heat-sealed to each other, and the core material in which the crystallization of the resin is further promoted can be obtained. Obtainable.

上記芯材としては、上述の方法で得られた上記発泡樹脂を芯材として使用してもよい。芯材に発泡樹脂以外の部材が含まれる場合、上記芯材の製造方法としては、例えば、上述の方法で得られた上記発泡樹脂に、発泡樹脂以外の部材を積層する等の方法が挙げられる。 As the core material, the foamed resin obtained by the above method may be used as the core material. When the core material includes a member other than the foamed resin, examples of the method for manufacturing the core material include a method of laminating a member other than the foamed resin on the foamed resin obtained by the above method. ..

−表皮材の調製工程−
表皮材調製工程では、溶融状態の樹脂中に繊維を浸漬させたり、溶融状態の樹脂を繊維に吹き付けたりして、樹脂に繊維を含浸させて、表皮材を得る。表皮材は、クロスプリプレグとして調製してよい。なお、樹脂に繊維を含浸させた後に、光や熱により樹脂の硬化を進ませておいてもよい。
-Preparation process of skin material-
In the skin material preparation step, the resin is impregnated with the fibers by immersing the fibers in the resin in the molten state or spraying the resin in the molten state onto the fibers to obtain the skin material. The skin material may be prepared as a cloth prepreg. The resin may be impregnated with the fibers and then the resin may be cured by light or heat.

特にシート状の表皮材における繊維の目付量は、50〜4000g/m2が好ましく、より好ましくは100〜1000g/m2であり、例えば200g/m2としてよい。
繊維強化複合体の形状もシート状である場合には、本実施形態の繊維強化複合体について記載した通りとしてもよい。
In particular basis weight of the fibers in the sheet-shaped surface material is preferably 50~4000g / m 2, more preferably from 100 to 1000 g / m 2, for example as a 200 g / m 2.
When the shape of the fiber-reinforced composite is also sheet-like, it may be as described for the fiber-reinforced composite of the present embodiment.

−成形工程−
成形工程では、芯材と表皮材とを、所望の配置状態で、成形機内に充填して、同時に成形を行ってよい。
なお、芯材は、成形工程においてさらに発泡されてもよい。
-Molding process-
In the molding step, the core material and the skin material may be filled in a molding machine in a desired arrangement state and simultaneously molded.
The core material may be further foamed in the molding step.

この成形工程では、例えば、両面が表皮材で覆われたシート状の複合体を製造する場合には、2枚のシート状の表皮材の間にシート状の芯材が位置するように、これらを成形機内に充填してよく、表皮材で覆われた塊状の複合体を製造する場合には、塊状の芯材がシート状の表皮材で包まれるように、これらを成形機内に充填してよく、表皮材で覆われた線状の複合体を製造する場合には、線状の芯材がシート状の表皮材で包まれるように、これらを成形機内に充填してよい。 In this molding step, for example, when a sheet-shaped composite body whose both surfaces are covered with a skin material is manufactured, the sheet-shaped core material is placed between two sheet-shaped skin materials. May be filled in a molding machine, and when producing a lump-shaped composite covered with a skin material, these are filled in the molding machine so that the lump core material is wrapped with a sheet-shaped skin material. Of course, when manufacturing a linear composite covered with a skin material, these may be filled in a molding machine so that the linear core material is wrapped with the sheet-shaped skin material.

成形工程では、初めに、圧力をかけずに、80〜150℃、好適には100〜120℃の温度で、0〜5分間、好適には1〜3分間保持して、その後、0〜3MPa、好適には0.1〜1MPaの圧力、80〜150℃、好適には100〜140℃の温度で、5〜30分間、好適には10〜20分間保持することが好ましい。
このように、加圧前に、圧力をかけずに高温条件下で保持することによって、表皮材に均一に熱を加えて、表面平滑性を得ることができる。
In the molding step, first, without pressure, the temperature is maintained at 80 to 150° C., preferably 100 to 120° C. for 0 to 5 minutes, preferably 1 to 3 minutes, and then 0 to 3 MPa. It is preferable to hold at a pressure of 0.1 to 1 MPa and a temperature of 80 to 150° C., preferably 100 to 140° C. for 5 to 30 minutes, preferably 10 to 20 minutes.
As described above, by holding the material under high temperature conditions without applying pressure before pressurizing, it is possible to uniformly apply heat to the skin material and obtain surface smoothness.

以下、本実施形態の繊維強化複合体の物性について記載する。
本実施形態の繊維強化複合体の、JIS−K7221に準拠して測定される、100℃環境下での曲げ弾性率は、高温環境下において優れた剛性を得る観点から、1〜50GPaであることが好ましい。
Hereinafter, the physical properties of the fiber-reinforced composite body of the present embodiment will be described.
The flexural modulus of the fiber-reinforced composite of the present embodiment measured in accordance with JIS-K7221 under a 100° C. environment is 1 to 50 GPa from the viewpoint of obtaining excellent rigidity in a high temperature environment. Is preferred.

本実施形態の繊維強化複合体の、JIS−K7221に準拠して測定される、23℃環境下での曲げ弾性率は、優れた剛性を得る観点から、1〜100GPaであることが好ましく、より好ましくは10〜100GPaである。 The flexural modulus of the fiber-reinforced composite body of the present embodiment measured in accordance with JIS-K7221 under a 23° C. environment is preferably 1 to 100 GPa from the viewpoint of obtaining excellent rigidity, and It is preferably 10 to 100 GPa.

本実施形態の繊維強化複合体の、JIS−K7221に準拠して測定される、100℃環境下での曲げ強度は、高温環境下において優れた剛性を得る観点から、10〜300MPaであることが好ましく、より好ましくは35〜200MPaである。 The flexural strength of the fiber-reinforced composite body of the present embodiment measured in accordance with JIS-K7221 under a 100° C. environment is 10 to 300 MPa from the viewpoint of obtaining excellent rigidity in a high temperature environment. It is more preferably 35 to 200 MPa.

本実施形態の繊維強化複合体の、JIS−K7221に準拠して測定される、23℃環境下での曲げ強度は、優れた剛性を得る観点から、10〜400MPaであることが好ましく、より好ましくは70〜300MPaである。 The bending strength of the fiber-reinforced composite body of the present embodiment measured in accordance with JIS-K7221 under a 23° C. environment is preferably 10 to 400 MPa, more preferably from the viewpoint of obtaining excellent rigidity. Is 70 to 300 MPa.

本実施形態の繊維強化複合体の見かけ密度は、50〜1000kg/m3であることが好ましい。なお、繊維強化複合体の見かけ密度とは、繊維強化複合体の体積Vに対する、繊維強化複合体の質量Wの割合(W/V)をいう。 The apparent density of the fiber-reinforced composite body of the present embodiment is preferably 50 to 1000 kg/m 3 . The apparent density of the fiber-reinforced composite means the ratio (W/V) of the mass W of the fiber-reinforced composite to the volume V of the fiber-reinforced composite.

本実施形態の繊維強化複合体の寸法は、目的や用途に応じて適宜定められてよい。表皮材の厚さとしては、概して、0.1〜2mmとしてよい。 The dimensions of the fiber-reinforced composite body of the present embodiment may be appropriately determined depending on the purpose and application. The skin material may generally have a thickness of 0.1 to 2 mm.

以下、本発明を実施例及び比較例に基づいて説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described based on Examples and Comparative Examples, but the present invention is not limited thereto.

ポリアミド系樹脂、予備発泡粒子、発泡樹脂の物性の測定方法(A)〜(F)を以下に示す。 The methods (A) to (F) for measuring the physical properties of the polyamide resin, pre-expanded particles and expanded resin are shown below.

(A)結晶子サイズ、結晶化度
得られた発泡樹脂のX線回折(XRD)測定を、X線散乱装置(商品名:NanoViewer、リガク社製)を用いた透過法により、行った。測定条件は、第一スリット:0.4mmφ、第二スリット:0.2mmφ、X線波長:0.154nm、カメラ長:78.8mm、とした。検出器にはイメージングプレート(IP)を用いた。試料には試料厚みが0.2mm程度になるようにスライスした芯材を用いた。IPにより得られた二次元X線回折パターンを円環平均により一次元化した。また、空セル散乱補正も実施した。
こうして得られた一次元X線回折プロファイルを、ソフトウェア(商品名:Igor Pro Version6.3.2.3、Wavemetrics社製)を用いて、ピーク形状としてガウス関数を仮定して、結晶由来の回折ピークと非晶由来の回折ピークとにピーク分離を行った。
(A−1)結晶子サイズ
ピーク分離により得られたピークのうち、最も狭いピーク幅を有するピークの半価全幅β(rad)を計算し、該半価全幅βを用いて前述の式(1)に従って、芯材の結晶子サイズDを算出した。
(A−2)結晶化度
ピーク分離により得られた各ピークの面積を計算し、該面積を用いて前述の式(2)に従って、芯材の結晶化度Xを算出した。
(A) Crystallite size and crystallinity X-ray diffraction (XRD) measurement of the obtained foamed resin was performed by a transmission method using an X-ray scattering device (trade name: NanoViewer, manufactured by Rigaku Corporation). The measurement conditions were: first slit: 0.4 mmφ, second slit: 0.2 mmφ, X-ray wavelength: 0.154 nm, camera length: 78.8 mm. An imaging plate (IP) was used as the detector. A core material sliced to have a sample thickness of about 0.2 mm was used as the sample. The two-dimensional X-ray diffraction pattern obtained by IP was made one-dimensional by the ring average. The empty cell scattering correction was also performed.
Using the software (trade name: Igor Pro Version 6.3.2.3, manufactured by Wavemetrics), the one-dimensional X-ray diffraction profile thus obtained was assumed to be a Gaussian function as a peak shape, and a diffraction peak derived from a crystal was obtained. And a diffraction peak derived from amorphous were separated.
(A-1) Crystallite size Of the peaks obtained by peak separation, the full width at half maximum β (rad) of the peak having the narrowest peak width is calculated, and the full width at half maximum β is used to calculate the above formula (1). ), the crystallite size D of the core material was calculated.
(A-2) Crystallinity The area of each peak obtained by peak separation was calculated, and the crystallinity X of the core material was calculated using the area according to the above formula (2).

(B)密度
得られた発泡樹脂について、重量W(kg)を測定し、その後、水没法により、芯材の見かけの体積Va(m3)を測定した。そして、その重量Wを見かけの体積Vaで除した値W/Va(kg/m3)を、芯材の密度とした。
(B) Density Regarding the obtained foamed resin, the weight W (kg) was measured, and then the apparent volume Va (m 3 ) of the core material was measured by the water immersion method. Then, the value W/Va (kg/m 3 ) obtained by dividing the weight W by the apparent volume Va was taken as the density of the core material.

(C)独立気泡率S
前述の(B)において見かけの体積Vaを測定した発泡樹脂について、その真の体積(Vx)を空気比較式比重計(ベックマン(株)社製)を用いて測定した。そして、前述の式(3)に従って、独立気泡率S(%)を算出した。
(C) Closed cell rate S
The true volume (Vx) of the foamed resin for which the apparent volume Va was measured in (B) above was measured using an air-comparison hydrometer (manufactured by Beckman Co., Ltd.). Then, the closed cell rate S (%) was calculated according to the above-mentioned formula (3).

(D)融着率
縦:300mm、横:300mm、厚み:20mmの板状の発泡樹脂の表面にカッターナイフを用いて縦に2等分するように5mmの深さの切り込み線を入れ、この線に沿って発泡樹脂を分割した。この分割面に現れた予備発泡粒子に関して、予備発泡粒子が粒子内で破断している(予備発泡粒子が分割面により破壊されている)ものの数(a)と、予備発泡粒子同士の界面に沿って破断している(予備発泡粒子同士の界面が分割面になっている)ものの数(b)とを測定し、下記式(4)に従って融着率(%)を算出した。
融着率(%)={a/(a+b)}×100
・・・(4)
(D) Fusing rate: A cutting line having a depth of 5 mm is cut into two parts vertically using a cutter knife on the surface of a plate-shaped foamed resin having a length of 300 mm, a width of 300 mm and a thickness of 20 mm. The foamed resin was divided along the line. Regarding the pre-expanded particles appearing on the divided surface, the number (a) of the pre-expanded particles broken in the particles (the pre-expanded particles are broken by the divided surface) and the pre-expanded particles along the interface The number (b) of those that were broken (the interface between the pre-expanded particles was a dividing surface) was measured, and the fusion rate (%) was calculated according to the following formula (4).
Fusion rate (%)={a/(a+b)}×100
...(4)

(E)融点
ポリアミド系樹脂の融点の測定を、JIS K7121に準じて、示差走査熱量計(商品名:DSC7、パーキンエルマー社製)を用いて、行った。試料8mgを精秤し、これを測定に用いた。測定条件は、窒素雰囲気下、温度条件:300℃で5分間保持、その後、降温速度:20℃/分で50℃まで降温、次いで、昇温速度:20℃/分で50℃から300℃まで昇温、とした。
そして、現れた吸熱を示すピークを樹脂の融解を示すピークとし、最も高温側に現れた吸熱を示すピークにおける温度(℃)を、ポリアミド系樹脂の融点とした。
(E) Melting point The melting point of the polyamide-based resin was measured according to JIS K7121 using a differential scanning calorimeter (trade name: DSC7, manufactured by Perkin Elmer Co., Ltd.). An 8 mg sample was precisely weighed and used for the measurement. Measurement conditions are as follows: under nitrogen atmosphere, temperature condition: 300° C. for 5 minutes, then temperature decrease rate: 20° C./min to 50° C., then temperature increase rate: 20° C./min from 50° C. to 300° C. The temperature was raised.
The peak indicating the endotherm that appeared was taken as the peak indicating the melting of the resin, and the temperature (° C.) at the peak showing the endotherm that appeared on the highest temperature side was taken as the melting point of the polyamide resin.

(F)熱融着温度
得られたポリアミド系樹脂予備発泡粒子を、気泡内部の圧力が大気圧であり、炭化水素等の発泡剤を含んでいない状態にした。この予備発泡粒子10gを金属メッシュの容器に予備発泡粒子同士が接触するように入れ、次いで、所定温度の飽和蒸気で30秒間加熱した。そして、加熱後に予備発泡粒子同士が全体で80%以上融着していた温度のうちの最低の温度(℃)を、予備発泡粒子の熱融着温度とした。
(F) Thermal Fusion Temperature The obtained polyamide resin pre-expanded particles were put in a state where the pressure inside the cells was atmospheric pressure and did not contain a blowing agent such as hydrocarbon. 10 g of the pre-expanded particles were placed in a metal mesh container so that the pre-expanded particles were in contact with each other, and then heated with saturated steam at a predetermined temperature for 30 seconds. Then, the lowest temperature (° C.) of the temperatures at which the pre-expanded particles were fused to each other by 80% or more after heating was set as the heat-fusion temperature of the pre-expanded particles.

後述する実施例及び比較例の繊維強化複合体の評価方法(1)〜(6)について、以下に説明する。 The evaluation methods (1) to (6) of the fiber-reinforced composite bodies of Examples and Comparative Examples described below will be described below.

(1)曲げ弾性率
JIS−K7221に準拠し、実施例及び比較例で得られた繊維強化複合体の曲げ弾性率(GPa)を求めた。具体的には、標準状態として、温度23℃、相対湿度50%に制御した室内に24時間静置して状態調整した繊維強化複合体を、AUTOGRAPH AG−5000D(島津製作所製)での測定に供し、JISに規定する計算式から、曲げ弾性率(23℃雰囲気下)(GPa)を算出した。また、標準状態として、温度23℃、相対湿度50%に制御した室内に24時間静置し、その後、恒温槽内にて100℃に1時間静置して状態調整した繊維強化複合体を、恒温槽内にて100℃に1時間静置して状態調整した複合体を、100℃恒温槽内にて、AUTOGRAPH AG−5000D(島津製作所製)での測定に供し、JISに規定する計算式から曲げ弾性率(100℃雰囲気下)(GPa)を算出した。
結果を表1に示す。
(1) Bending elastic modulus Based on JIS-K7221, the bending elastic modulus (GPa) of the fiber reinforced composite body obtained by the Example and the comparative example was calculated|required. Specifically, as a standard state, the fiber-reinforced composite body which was left standing in a room controlled at a temperature of 23° C. and a relative humidity of 50% for 24 hours to adjust the state was measured by AUTOGRAPH AG-5000D (manufactured by Shimadzu Corporation). Then, the bending elastic modulus (in an atmosphere of 23° C.) (GPa) was calculated from the formula defined in JIS. In addition, as a standard state, the fiber reinforced composite body was left standing in a room controlled at a temperature of 23° C. and a relative humidity of 50% for 24 hours, and then left in a constant temperature bath at 100° C. for 1 hour to adjust the condition. The composite prepared by allowing the composite to stand in a constant temperature bath at 100° C. for 1 hour and adjusting the condition is subjected to measurement with AUTOGRAPH AG-5000D (manufactured by Shimadzu Corporation) in a 100° C. constant temperature bath, and is defined by JIS. The flexural modulus (under 100° C. atmosphere) (GPa) was calculated from the above.
The results are shown in Table 1.

(2)曲げ強度
JIS−K7221に準拠し、実施例及び比較例で得られた繊維強化複合体の曲げ強度(MPa)を求めた。具体的には、標準状態として、温度23℃、相対湿度50%に制御した室内に24時間静置して状態調整した繊維強化複合体を、AUTOGRAPH AG−5000D(島津製作所製)での測定に供し、JISに規定する計算式から、曲げ強度(23℃雰囲気下)(MPa)を算出した。また、標準状態として、温度23℃、相対湿度50%に制御した室内に24時間静置し、その後、恒温槽内にて100℃に1時間静置して状態調整した繊維強化複合体を、100℃恒温槽内にて、AUTOGRAPH AG−5000D(島津製作所製)での測定に供し、JISに規定する計算式から曲げ強度(100℃雰囲気下)(MPa)を算出した。
結果を表1に示す。
(2) Bending strength Based on JIS-K7221, the bending strength (MPa) of the fiber-reinforced composite body obtained by the Example and the comparative example was calculated|required. Specifically, as a standard state, the fiber-reinforced composite body which was left standing in a room controlled at a temperature of 23° C. and a relative humidity of 50% for 24 hours to adjust the state was measured by AUTOGRAPH AG-5000D (manufactured by Shimadzu Corporation). Then, the bending strength (in an atmosphere of 23° C.) (MPa) was calculated from the formula defined in JIS. In addition, as a standard state, the fiber reinforced composite body was left standing in a room controlled at a temperature of 23° C. and a relative humidity of 50% for 24 hours, and then left in a constant temperature bath at 100° C. for 1 hour to adjust the condition. In a 100° C. constant temperature bath, it was subjected to measurement with AUTOGRAPH AG-5000D (manufactured by Shimadzu Corp.), and the bending strength (in a 100° C. atmosphere) (MPa) was calculated from the formula defined in JIS.
The results are shown in Table 1.

(3)外観
(3−1)表面平滑性
実施例及び比較例で得られた繊維強化複合体を(1)曲げ弾性率の測定と同様にして、標準状態として、温度23℃、相対湿度50%に制御した室内に24時間静置し、その後、恒温槽内にて100℃に1時間静置して状態調整した繊維強化複合体の表面を目視にて観察し、表皮材と芯材との接着状態を以下のように評価した。
結果を表1に示す。
◎(優れる):表面平滑性、表皮材と芯材との接着性ともに良好。
○(良好):表面平滑性は、実用上問題ないが、表皮材と芯材との間に一部浮(ウキ)が観られた。
×(劣る):表皮材と芯材との間に浮(ウキ)が観られ、実用上問題がある。
(3) Appearance (3-1) Surface smoothness The fiber-reinforced composites obtained in Examples and Comparative Examples were subjected to the same conditions as in (1) Measurement of flexural modulus, and as standard conditions, a temperature of 23° C. and a relative humidity of 50. %, and allowed to stand in a room controlled at 24% for 24 hours, then allowed to stand in a constant temperature bath at 100° C. for 1 hour to visually observe the surface of the fiber-reinforced composite, and to observe the surface material and the core material. The adhesive state of was evaluated as follows.
The results are shown in Table 1.
⊚ (excellent): The surface smoothness and the adhesiveness between the skin material and the core material are good.
◯ (Good): The surface smoothness has no problem in practical use, but some floating (blown) was observed between the skin material and the core material.
Poor (poor): Floating is seen between the skin material and the core material, which is a problem in practical use.

(3−2)表面美粧性
実施例及び比較例で得られた繊維強化複合体の表面を目視にて観察し、表層の状態を以下のように評価した。
結果を表1に示す。
○(良好):表皮材の樹脂が十分硬化し、繊維強化複合体の表面に、樹脂不足や凹凸がない。
×(劣る):表皮材の樹脂が芯材側へ入り込み、繊維強化複合体の表面に、樹脂不足により繊維の露出や凹凸形状ができている。
(3-2) Surface aesthetics The surface of the fiber-reinforced composites obtained in Examples and Comparative Examples was visually observed, and the state of the surface layer was evaluated as follows.
The results are shown in Table 1.
Good (good): The resin of the skin material is sufficiently cured, and the surface of the fiber-reinforced composite has no resin shortage or unevenness.
Poor (poor): The resin of the skin material penetrated into the core material side, and the surface of the fiber-reinforced composite body was exposed to fibers and had irregular shapes due to lack of resin.

(4)厚み
実施例及び比較例で得られた繊維強化複合体の厚み(mm)、及び表皮材の総厚み(mm)を、ノギスを用いて測定した。
結果を表1に示す。
(4) Thickness The thickness (mm) of the fiber-reinforced composites obtained in Examples and Comparative Examples and the total thickness (mm) of the skin material were measured using a caliper.
The results are shown in Table 1.

(5)見かけ密度
実施例及び比較例で得られた繊維強化複合体の重量W(kg)を測定した後、ノギスにてシート状の繊維強化複合体の3辺を測定し、その体積V(m3)を計算した。そして、体積Vに対する重量Wの割合(W/V)(kg/m3)を見かけ密度とした。
結果を表1に示す。
(5) Apparent Density After measuring the weight W (kg) of the fiber-reinforced composites obtained in Examples and Comparative Examples, three sides of the sheet-shaped fiber-reinforced composite were measured with a caliper, and the volume V( m 3 ) was calculated. The ratio of the weight W to the volume V (W/V) (kg/m 3 ) was used as the apparent density.
The results are shown in Table 1.

(実施例1)
引張弾性率が250GPaの炭素繊維と硬化温度が80℃であるエポキシ樹脂とで構成される、繊維目付が200g/m2、炭素繊維含有量が60質量%のクロスプリプレグを作製し、表皮材として2枚用意した。
次に、芯材としてのポリアミド系樹脂発泡体を下記の方法で用意した。
ポリアミド系樹脂としてのナイロン6(商品名:UBEナイロン 1022B、宇部興産(株)製)100質量部、核剤としてのタルク0.8質量部、ヒンダードフェノール系酸化防止剤(Irganox1098、BASF製)0.3質量部を、押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、ペレット形状の基材樹脂を作製した。
これに、特開2011−105879号公報の実施例に記載の方法に準じて、基材樹脂に発泡剤としての炭酸ガスを含有させた。そして、炭酸ガスを含めた基材樹脂を加熱することによって、発泡を生じさせて、密度:300kg/m3の予備発泡粒子を得た。
得られた予備発泡粒子をオートクレーブ中に封入し、オートクレーブ内の圧力が0.5MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.5MPaに24時間保持することによって、予備発泡粒子に加圧処理を施した。
加圧処理した予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:3mm)内に充填し、その後、型締めした。そして、この金型を型内発泡成形機に取り付けた。
その後、キャビティ内に135℃の飽和水蒸気を10秒間供給し(一段階目の加熱)、その後、キャビティ内に144℃の飽和水蒸気を30秒間供給して(二段階目の加熱)、予備発泡粒子を発泡させ、且つ熱融着させることによって、予備発泡粒子を成形した。
金型のキャビティ内に冷却水を供給することによって、得られた成形体を冷却し、その後、型開きを行い、芯材としてのポリアミド系樹脂発泡体を取り出した。
得られた発泡体を芯材として用い、芯材の上下両面に表皮材を1枚ずつ積層し、次いで、この積層体を、圧力をかけずに、100℃で3分間保持した後、面圧0.4MPaで加圧しながら、15分間保持することによって、表皮材と芯材とを同時成形して繊維強化複合体を得た。繊維強化複合体は、標準状態及び100℃の高温環境下のいずれにおいても、良好な曲げ弾性率を備え、良好な外観を有していた。
実施例1の詳細を表1に示す。
(Example 1)
A cross prepreg having a fiber areal weight of 200 g/m 2 and a carbon fiber content of 60% by mass, which is composed of carbon fibers having a tensile elastic modulus of 250 GPa and an epoxy resin having a curing temperature of 80° C., is prepared as a skin material. I prepared two.
Next, a polyamide resin foam as a core material was prepared by the following method.
Nylon 6 as polyamide resin (trade name: UBE Nylon 1022B, manufactured by Ube Industries, Ltd.) 100 parts by mass, talc 0.8 parts by mass as a nucleating agent, hindered phenolic antioxidant (Irganox 1098, manufactured by BASF) 0.3 part by mass was melt-kneaded under heating conditions with an extruder, then extruded into a strand, cooled with water in a cold water tank, and cut to prepare a pellet-shaped base resin.
Carbon dioxide gas as a foaming agent was added to the base resin according to the method described in the example of JP2011-105879A. Then, the base resin containing carbon dioxide gas was heated to cause foaming to obtain pre-expanded particles having a density of 300 kg/m 3 .
By sealing the obtained pre-expanded particles in an autoclave and introducing compressed air over 1 hour until the pressure in the autoclave reached 0.5 MPa, and then maintaining the pressure at 0.5 MPa for 24 hours, The pre-expanded particles were subjected to a pressure treatment.
The pre-expanded particles subjected to the pressure treatment were filled in the cavity (cavity dimensions: length: 300 mm, width: 300 mm, height: 3 mm) of the in-mold molding die, and then the mold was clamped. Then, this mold was attached to an in-mold foam molding machine.
Then, 135° C. saturated steam was supplied for 10 seconds into the cavity (first-stage heating), and then 144° C. saturated steam was supplied for 30 seconds (second-stage heating) to produce pre-expanded particles. The pre-expanded particles were molded by foaming and heat-sealing.
The molded body obtained was cooled by supplying cooling water into the cavity of the mold, and then the mold was opened to take out the polyamide resin foam as the core material.
Using the obtained foam as a core material, one skin material was laminated on each of the upper and lower surfaces of the core material, and the laminated body was kept at 100° C. for 3 minutes without applying pressure, By holding for 15 minutes while pressurizing at 0.4 MPa, the skin material and the core material were simultaneously molded to obtain a fiber-reinforced composite. The fiber-reinforced composite had a good flexural modulus and a good appearance both in the standard state and in a high temperature environment of 100°C.
The details of Example 1 are shown in Table 1.

(実施例2)
上下両面それぞれに、表皮材を2枚ずつ積層した以外は実施例1と同様にして製造及び評価を行った。
実施例2の繊維強化複合体は、実施例1以上に優れた曲げ弾性率を示した。
実施例2の詳細を表1に示す。
(Example 2)
Production and evaluation were performed in the same manner as in Example 1 except that two skin materials were laminated on each of the upper and lower surfaces.
The fiber-reinforced composite of Example 2 exhibited a flexural modulus superior to that of Example 1.
Details of Example 2 are shown in Table 1.

(実施例3)
引張弾性率が250GPaの炭素繊維と硬化温度が140℃であるエポキシ樹脂とで構成される、繊維目付が200g/m2、炭素繊維含有量が60質量%のクロスプリプレグを作製し、表皮材として2枚用意した以外は実施例1と同様にして製造及び評価を行った。
実施例3の詳細を表1に示す。
(Example 3)
A cross prepreg having a fiber areal weight of 200 g/m 2 and a carbon fiber content of 60% by mass, which is composed of carbon fibers having a tensile elastic modulus of 250 GPa and an epoxy resin having a curing temperature of 140° C., is prepared as a skin material. Production and evaluation were performed in the same manner as in Example 1 except that two sheets were prepared.
Details of Example 3 are shown in Table 1.

(実施例4)
実施例1と同様に密度:300kg/m3の予備発泡粒子を得た後、得られた予備発泡粒子をオートクレーブ中に封入し、オートクレーブ内の圧力が0.3MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.3MPaに24時間保持する、という加圧処理を実施し、その後に、230℃で加熱することによって、更に発泡を生じさせて、密度:150kg/m3とした点以外は、実施例1と同様にして製造及び評価を行った。
実施例4の詳細を表1に示す。
(Example 4)
After obtaining pre-expanded particles having a density of 300 kg/m 3 in the same manner as in Example 1, the pre-expanded particles obtained were enclosed in an autoclave, and compressed air was kept at 1 MPa until the pressure in the autoclave reached 0.3 MPa. It is introduced over a period of time, and then a pressure treatment of maintaining the pressure at 0.3 MPa for 24 hours is performed, and thereafter, by heating at 230° C., further foaming is caused and a density: 150 kg/m 2. except 3 and the point was produced and evaluated in the same manner as in example 1.
Details of Example 4 are shown in Table 1.

(実施例5)
実施例4と同様に、密度:150kg/m3の予備発泡粒子を得た後、得られた予備発泡粒子をオートクレーブ中に封入し、オートクレーブ内の圧力が0.3MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.3MPaに24時間保持する、という加圧処理を実施し、その後に、230℃で加熱することによって、更に発泡を生じさせて、密度:60kg/m3とした点以外は、実施例4と同様にして製造及び評価を行った。
実施例5の詳細を表1に示す。
(Example 5)
As in Example 4, after obtaining pre-expanded particles having a density of 150 kg/m 3 , the pre-expanded particles obtained were enclosed in an autoclave, and compressed air was supplied until the pressure in the autoclave reached 0.3 MPa. After introducing for 1 hour, the pressure is maintained at 0.3 MPa for 24 hours, and then pressure treatment is performed, and then by heating at 230° C., further foaming is caused, and the density: 60 kg/ Production and evaluation were performed in the same manner as in Example 4 except that m 3 was used.
Details of Example 5 are shown in Table 1.

(実施例6)
芯材としてのポリアミド系樹脂発泡体を下記の方法で用意した以外は、実施例1と同様にして製造及び評価を行った。
ポリアミド系樹脂としてナイロン666(ナイロン66/6)(商品名:Novamid 2430A、(株)DSM製)100質量部、核剤としてのタルク0.8質量部、ヒンダードフェノール系酸化防止剤(Irganox1098、BASF製)0.3質量部を、押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、ペレット形状の基材樹脂を作製した。
これに、特開2011−105879号公報の実施例に記載の方法に準じて、基材樹脂に発泡剤としての炭酸ガスを含有させた。そして、炭酸ガスを含めた基材樹脂を加熱することによって、発泡を生じさせて、密度:300kg/m3の予備発泡粒子を得た。
得られた予備発泡粒子をオートクレーブ中に封入し、オートクレーブ内の圧力が0.4MPaとなるまで、圧縮空気を1時間かけて導入し、その後、圧力を0.4MPaに24時間保持することによって、予備発泡粒子に加圧処理を施した。
加圧処理した予備発泡粒子を、型内成形金型のキャビティ(キャビティ寸法は、縦:300mm、横:300mm、高さ:3mm)内に充填し、その後、型締めした。そして、この金型を型内発泡成形機に取り付けた。
その後、キャビティ内に105℃の飽和水蒸気を10秒間供給し、その後、キャビティ内に116℃の飽和水蒸気を30秒間供給して、予備発泡粒子を発泡させ、且つ熱融着させることによって、予備発泡粒子を成形した。
金型のキャビティ内に冷却水を供給することによって、得られた成形体を冷却し、その後、型開きを行い、芯材としてのポリアミド系樹脂発泡体を取り出した。
実施例6の詳細を表1に示す。
(Example 6)
Production and evaluation were carried out in the same manner as in Example 1 except that a polyamide resin foam as a core material was prepared by the following method.
As a polyamide resin, nylon 666 (nylon 66/6) (trade name: Novamid 2430A, manufactured by DSM Co., Ltd.) 100 parts by mass, talc 0.8 parts by mass as a nucleating agent, hindered phenolic antioxidant (Irganox 1098, 0.3 parts by mass (manufactured by BASF) was melt-kneaded under heating conditions with an extruder, then extruded into a strand, cooled with water in a cold water tank, and cut to produce a pellet-shaped base resin.
Carbon dioxide gas as a foaming agent was added to the base resin according to the method described in the example of JP2011-105879A. Then, the base resin containing carbon dioxide gas was heated to cause foaming to obtain pre-expanded particles having a density of 300 kg/m 3 .
By sealing the obtained pre-expanded particles in an autoclave and introducing compressed air over 1 hour until the pressure in the autoclave reached 0.4 MPa, and then maintaining the pressure at 0.4 MPa for 24 hours, The pre-expanded particles were subjected to a pressure treatment.
The pressure-treated pre-expanded particles were filled into the cavity (cavity dimensions: vertical length: 300 mm, horizontal length: 300 mm, height: 3 mm) of the in-mold molding die, and then the mold was clamped. Then, this mold was attached to an in-mold foam molding machine.
Thereafter, 105° C. saturated steam was supplied into the cavity for 10 seconds, and then 116° C. saturated steam was supplied into the cavity for 30 seconds to foam the pre-expanded particles and heat-seal the pre-expanded particles. The particles were shaped.
The molded body obtained was cooled by supplying cooling water into the cavity of the mold, and then the mold was opened to take out the polyamide resin foam as the core material.
Details of Example 6 are shown in Table 1.

(実施例7)
ポリアミド系樹脂としてのナイロン6(商品名:UBEナイロン 1022B、宇部興産(株)製)50質量部、ナイロン6I/6T(商品名:Grivory G16、EMS製)50質量部を用いた以外は、実施例4と同様にして製造及び評価を行った。
実施例7の詳細を表1に示す。
(Example 7)
Other than using 50 parts by mass of nylon 6 (trade name: UBE nylon 1022B, Ube Industries, Ltd.) and nylon 6I/6T (trade name: Grivory G16, manufactured by EMS) as polyamide resins. Production and evaluation were carried out in the same manner as in Example 4.
Details of Example 7 are shown in Table 1.

(比較例1)
予備発泡粒子の成形を一段階で行った点以外は、実施例1と同様にして製造及び評価を行った。
比較例1の詳細を表1に示す。
(Comparative Example 1)
Production and evaluation were performed in the same manner as in Example 1 except that the pre-expanded particles were molded in one step.
Details of Comparative Example 1 are shown in Table 1.

(比較例2)
引張弾性率が250GPaの炭素繊維と硬化温度が140℃であるエポキシ樹脂とで構成される、繊維目付が200g/m2、炭素繊維含有量が60質量%のクロスプリプレグを用いた点以外は、比較例1と同様にして製造及び評価を行った。
比較例2の詳細を表1に示す。
(Comparative example 2)
Except for using a cross prepreg having a tensile elastic modulus of 250 GPa and an epoxy resin having a curing temperature of 140° C., a fiber basis weight of 200 g/m 2 , and a carbon fiber content of 60% by mass. Production and evaluation were performed in the same manner as in Comparative Example 1.
Details of Comparative Example 2 are shown in Table 1.

(比較例3)
ポリアミド系樹脂としてナイロン6(商品名:UBEナイロン 1022B、宇部興産(株)製)30質量部、ナイロン6I/6T(商品名:Grivory G16、EMS製)70質量部を用いた以外は実施例7と同様にして製造及び評価を行った。
比較例3の詳細を表1に示す。
(Comparative example 3)
Example 7 except that 30 parts by mass of nylon 6 (trade name: UBE nylon 1022B, manufactured by Ube Industries, Ltd.) and 70 parts by mass of nylon 6I/6T (trade name: Grivory G16, manufactured by EMS) were used as the polyamide resin. Production and evaluation were performed in the same manner as in.
Details of Comparative Example 3 are shown in Table 1.

Figure 0006746446
Figure 0006746446

本実施形態の繊維強化複合体は、100℃等の高温の環境下における優れた剛性と美的な外観、ならびに高温成形時の表面美粧性に優れる。本発明の繊維強化複合体は、特に自動車分野で好適に利用できる。 The fiber-reinforced composite body of the present embodiment has excellent rigidity and aesthetic appearance in a high temperature environment such as 100° C., and excellent surface aesthetics during high temperature molding. The fiber-reinforced composite of the present invention can be suitably used particularly in the automobile field.

Claims (4)

発泡樹脂を含む芯材の表面の少なくとも一部に、繊維及び樹脂を含む表皮材が配置された複合体であり、
前記発泡樹脂は、ポリアミド系樹脂を含み、X線回折プロファイルにおいて最も狭いピーク幅を有するピークに基づいて算出したとき、結晶子サイズDが10nm以上であり、結晶化度Xが10〜50%である、
ことを特徴とする、繊維強化複合体。
At least a part of the surface of the core material containing a foamed resin is a composite in which a skin material containing fibers and a resin is arranged,
The foamed resin contains a polyamide-based resin and has a crystallite size D of 10 nm or more and a crystallinity X of 10 to 50% when calculated based on a peak having the narrowest peak width in an X-ray diffraction profile. is there,
A fiber-reinforced composite characterized by the following.
前記発泡樹脂が予備発泡粒子を含む、請求項1に記載の繊維強化複合体。 The fiber-reinforced composite according to claim 1, wherein the foamed resin contains pre-expanded particles. 前記ポリアミド系樹脂が、脂肪族ポリアミド樹脂を50質量%超含む、請求項1又は2に記載の繊維強化複合体。 The fiber-reinforced composite according to claim 1 or 2, wherein the polyamide-based resin contains more than 50% by mass of an aliphatic polyamide resin. 前記芯材と前記表皮材とを加熱・加圧することによって同時成形する
ことを特徴とする、請求項1〜3のいずれか1項に記載の繊維強化複合体の製造方法。
The method for producing a fiber-reinforced composite body according to any one of claims 1 to 3, wherein the core material and the skin material are simultaneously molded by heating and pressurizing.
JP2016182013A 2016-09-16 2016-09-16 Fiber reinforced composite Active JP6746446B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016182013A JP6746446B2 (en) 2016-09-16 2016-09-16 Fiber reinforced composite
DE102017116896.6A DE102017116896B4 (en) 2016-09-16 2017-07-26 Fiber reinforced composite material and manufacturing process
CN201710789157.0A CN107825726B (en) 2016-09-16 2017-09-05 Fiber-reinforced composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016182013A JP6746446B2 (en) 2016-09-16 2016-09-16 Fiber reinforced composite

Publications (2)

Publication Number Publication Date
JP2018043487A JP2018043487A (en) 2018-03-22
JP6746446B2 true JP6746446B2 (en) 2020-08-26

Family

ID=61302402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016182013A Active JP6746446B2 (en) 2016-09-16 2016-09-16 Fiber reinforced composite

Country Status (3)

Country Link
JP (1) JP6746446B2 (en)
CN (1) CN107825726B (en)
DE (1) DE102017116896B4 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208313A1 (en) * 2018-04-23 2019-10-31 旭化成株式会社 Cellulose nanofiber-containing aqueous dispersion
KR102504438B1 (en) * 2018-08-08 2023-02-27 아사히 가세이 가부시키가이샤 Polyamide pre-expanded particles, polyamide expanded molded article and manufacturing method thereof
WO2020049802A1 (en) * 2018-09-04 2020-03-12 株式会社ジェイエスピー Polyamide resin foamed particles and method for producing same
JP7178251B2 (en) 2018-12-17 2022-11-25 株式会社イノアックコーポレーション CARBON FIBER REINFORCED MOLDED PRODUCT AND METHOD FOR MANUFACTURING THE SAME
EP3950794A4 (en) * 2019-03-28 2022-05-11 Asahi Kasei Kabushiki Kaisha Polyamide resin prefoamed particle, polyamide resin foamed molded article, and method for manufacturing polyamide resin foamed molded article
CN113858720B (en) * 2021-09-30 2023-10-03 深圳雷木新材料科技有限公司 Carbon fiber composite board and preparation method thereof
JP7203256B1 (en) 2022-03-15 2023-01-12 株式会社ジェイエスピー Expanded polyamide resin particles for core material of fiber reinforced resin composite

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2606763B2 (en) * 1991-07-26 1997-05-07 東海ゴム工業株式会社 Anti-vibration rubber composition
JP2003096228A (en) * 2001-09-26 2003-04-03 Teijin Ltd Foam precursor, foamed product and production method therefor
JP4042378B2 (en) * 2001-10-12 2008-02-06 東レ株式会社 Polyamide resin composition and polyamide resin molded product
JP3927100B2 (en) * 2002-08-29 2007-06-06 東レ・デュポン株式会社 Polyamide resin composite material
US7348059B2 (en) * 2004-03-18 2008-03-25 E. I. Du Pont De Nemours And Company Modacrylic/aramid fiber blends for arc and flame protection and reduced shrinkage
JP5098132B2 (en) 2004-03-29 2012-12-12 東レ株式会社 Fiber reinforced resin sandwich panel
TWI353303B (en) * 2004-09-07 2011-12-01 Toray Industries Sandwich structure and integrated molding using th
CN101704998A (en) * 2009-09-30 2010-05-12 东莞市上洲塑胶科技有限公司 Precision injection molding polyamide composite and preparation method thereof
JP2011105879A (en) * 2009-11-19 2011-06-02 Asahi Kasei Chemicals Corp Polyamide foamed particle, method for manufacturing the same, group of polyamide foamed particles and foam molded product
US8133584B2 (en) * 2010-04-08 2012-03-13 E.I. Du Pont De Nemours And Company Crystallized meta-aramid blends for flash fire and arc protection having improved comfort
KR20130066618A (en) * 2010-04-20 2013-06-20 우베 고산 가부시키가이샤 Polyamide microparticles, manufacturing method therefor, optical film using said polyamide microparticles, and liquid-crystal display device
DE102012022970A1 (en) * 2012-01-13 2013-07-18 Engel Austria Gmbh Preparing a foamed plastic component, comprises injecting a to-be-processed plastic provided with a physical blowing agent including carbon dioxide and nitrogen into a mold cavity of an injection molding machine
CN104325756A (en) * 2013-07-22 2015-02-04 上海杰事杰新材料(集团)股份有限公司 Carbon fiber reinforced composite material used for notebook housing and preparation method thereof
JP2015083365A (en) * 2013-09-18 2015-04-30 東レプラスチック精工株式会社 Sandwich structure, production method thereof and structure formed by processing sandwich structure
JP6346817B2 (en) * 2014-07-30 2018-06-20 積水化成品工業株式会社 FIBER-REINFORCED COMPOSITE AND METHOD FOR PRODUCING FIBER-REINFORCED COMPOSITE
JP6431546B2 (en) * 2014-09-30 2018-11-28 積水化成品工業株式会社 Resin composite
US10167373B2 (en) * 2015-03-18 2019-01-01 Asahi Kasei Kabushiki Kaisha Polyamide resin foam shaped product and method of producing polyamide resin foam shaped product

Also Published As

Publication number Publication date
CN107825726A (en) 2018-03-23
DE102017116896A1 (en) 2018-03-22
JP2018043487A (en) 2018-03-22
CN107825726B (en) 2019-10-29
DE102017116896B4 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
JP6746446B2 (en) Fiber reinforced composite
TWI585122B (en) Polyamide-based resin foamed molded article, and polyamide-based resin foamed molded article
JP6861001B2 (en) Polyamide-based resin foam molded product
JP4761916B2 (en) Polylactic acid resin foam molding
CN112384558B (en) Pre-expanded polyamide particles, expanded polyamide molding, and process for producing same
JP6161563B2 (en) Fiber reinforced composite
JP7085059B2 (en) Method for Manufacturing Polyamide-based Resin Pre-foamed Particles, Polyamide-based Resin Foamed Mold, and Polyamide-based Resin Foamed Mold
JP2007169394A (en) Method for producing polylactic acid resin expanded particle for in-mold expansion molding
JP2018144462A (en) Fiber composite body and method for producing the same
JP6746447B2 (en) Insulator
JP2021020468A (en) Core material for fiber-reinforced composite and fiber-reinforced composite using the same
JP2017141476A (en) Foaming particle for in-mold foam molding, in-mold foam molded body and fiber reinforced composite
JP4761917B2 (en) Process for producing pre-expanded particles of polylactic acid resin
JP6962716B2 (en) Fiber complex
WO2020201935A1 (en) Biodegradable polyester-based resin expanded particle, method for producing biodegradable polyester-based resin expanded particle, biodegradable polyester-based resin expanded molded article, and method for producing biodegradable polyester-based resin expanded molded article
JP2021130754A (en) Polyamide-based resin foam particle, and method for producing polyamide-based resin foam particle
JP2021001255A (en) Polypropylene resin foam particles and polypropylene resin foam particle compact
TW202020014A (en) Foamed particles, foamed molded article, method for producing the same, and fiber-reinforced composite
JP7058315B2 (en) Fiber complex and its manufacturing method
JP7203198B2 (en) Resin composition for manufacturing expanded beads, expanded beads, expanded moldings and composite structural members
TWI675865B (en) Foam material and fabricating method thereof
JP2022129943A (en) Foam particle, foam molding and composite structure member
TW202126737A (en) Molded foam body and its use
TW482798B (en) Crystal aromatic polyester resin pre-foamed particles
JP2012188560A (en) Polyester resin foamed particle, polyester resin foamed molded product using the foamed particle, and method of producing the molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200805

R150 Certificate of patent or registration of utility model

Ref document number: 6746446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150