JP6744382B2 - ワイヤレス充電装置 - Google Patents

ワイヤレス充電装置 Download PDF

Info

Publication number
JP6744382B2
JP6744382B2 JP2018219761A JP2018219761A JP6744382B2 JP 6744382 B2 JP6744382 B2 JP 6744382B2 JP 2018219761 A JP2018219761 A JP 2018219761A JP 2018219761 A JP2018219761 A JP 2018219761A JP 6744382 B2 JP6744382 B2 JP 6744382B2
Authority
JP
Japan
Prior art keywords
power
antenna
impedance
charging
transmitting antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018219761A
Other languages
English (en)
Other versions
JP2019050728A (ja
Inventor
マノヴァ−エリッシボニー,アサフ
Original Assignee
ヒューマヴォックス リミテッド
ヒューマヴォックス リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヒューマヴォックス リミテッド, ヒューマヴォックス リミテッド filed Critical ヒューマヴォックス リミテッド
Publication of JP2019050728A publication Critical patent/JP2019050728A/ja
Application granted granted Critical
Publication of JP6744382B2 publication Critical patent/JP6744382B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • H04B5/79
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices

Description

関連出願の相互参照
本PCT出願は、2013年8月15日に出願された“High Efficient Charging System Based On Electromagnetic Parameters Analysis And Method Of Use”と題された米国特許仮出願第61/866,337号、および2014年6月1日に出願された“Method And Apparatus For Efficient Delivery Of RF Energy In A Wireless Charging Device”と題された米国特許仮出願第62/006,209号に対する優先権を主張し、それらの出願日および開示全体は参照によってその全体が本明細書に組み込まれる。
本発明は、一般に、装置のワイヤレス充電に関し、特に、送電装置から充電すべき受電装置への無線周波数信号を用いて効率的にエネルギを伝達することに関する。本発明はまた、ワイヤレス充電装置とともに用いるための受電器、およびワイヤレス充電装置および受電器を備えるワイヤレス充電システムにも関する。
ワイヤレス充電システムは、送電ユニットと受電ユニットとの間の無線周波数電磁界によるエネルギの伝搬を利用するものであり、充電可能な装置内に組み込まれ、あるいは充電が必要な時にそのような装置に結合され得る。受電ユニットは、電磁界における電力レベルの変動、および送電ユニットとの距離の変化に対応しなければならない。
通常、受電ユニットのインピーダンスは、変動する電力レベル、および/または、受電ユニットと送電ユニットとの間の距離の変化によってもたらされ得る受電アンテナにおけるインピーダンスの変化を補正するために変化する。受電装置は、充電プロセスを通して充電の電流および電圧を制御するための充電管理ユニットを含むこともある。
本発明の一態様によると、少なくとも1つの送電アンテナに結合され、少なくとも1つの送電アンテナに電磁放射を放出させるように動作可能な送電器と、電磁放射を充電ゾーンに閉じ込めるように適合される導電構造と、送電器と少なくとも1つの送電アンテナとのインピーダンス不整合の度合いを検出するための検出器とを備えるワイヤレス充電装置が提供される。
送電器と少なくとも1つの送電アンテナとのインピーダンス不整合の度合いを測定することによって、送電器は、ワイヤレス充電システム全体にわたるインピーダンス不整合を検出し得る。それによって、受電器自体の知能を必要とせずに、例えばバッテリ充電状態における変化に起因して受電器に生じる変動を考慮することが可能である。従って、所望によっては、受電器は完全に非能動的であってよい。
本明細書において「閉じ込める」とは、電磁放射が、自由空間において伝搬するように充電ゾーンを越えて自由に伝搬しないことを意味する。それは必ずしも、充電ゾーンを越えて伝搬する電磁放射がないことを意味するものではなく、例えば導電構造がファラデーケージである場合などもあり得る。
一実施形態において、導電構造は、その中に少なくとも1つの送電アンテナが位置付けられる無線周波数遮蔽構造であり、充電ゾーンは無線周波数遮蔽構造の内側容積内に位置する。
無線周波数遮蔽構造は、充電ゾーン内に充電すべき装置を挿入することができる取り外し可能部分を有してよい。無線周波数構造はファラデーケージであってよい。充電ゾーンは、内部容積全体か、あるいはその一部のみを占めてよい。充電すべき装置は通常、無線周波数遮蔽構造の内部容積内に挿入される前に、電磁放射を受け取るための受電器に結合されることになる。
別の実施形態において、導電構造は、その中に少なくとも1つの送電アンテナが位置付けられる部分的に閉じられた容積を定め、それは、部分的に閉じられた容積内に充電すべき装置を挿入することを可能にする開領域を有し、充電容積がその部分的に閉じられた容積の少なくとも一部を占める。
(以下で「充電ゾーン」とも称される)充電容積は、その全体が部分的に閉じられた容積内に位置するか、あるいは例えば開領域の近傍など部分的に閉じられた容積を越えて広がり得る。
また別の実施形態において、導電構造は、その上に少なくとも1つの送電アンテナが位置付けられる平面構造であり、それによって充電ゾーンは少なくとも1つの送電アンテナを取り巻く容積を占める。
充電すべき装置は、充電ゾーン内の平面構造上に載置され得る。充電ゾーンは、その全体が平面構造の上にあってよい。あるいは充電ゾーンは平面構造の端部に、またはそれを越えて広がり得る。
充電ゾーンは好適には、充電ゾーンの残りと比べて電磁放射が集中する領域が含まれる。この領域は最大エネルギ容積(MEV)と称し、本明細書の後半部分で説明するが、WO2013/179284として公開されたPCT出願に詳しく示されており、その内容が参照によって本明細書に組み込まれる。
少なくとも1つのアンテナはアンテナのアレイを備えてよく、その各々は、充電ゾーンを修正するための電磁放射を放出するために選択され得る。
アレイ内の各アンテナは、送電器内の専用電力増幅器に結合され得る。あるいはアレイ内の各アンテナは、単一の電力増幅器に切換え可能に結合され得る。充電ゾーンの修正は、充電ゾーンの位置および/または形状に対する修正を含んでよい。
少なくとも1つのアンテナは適応インピーダンス送電アンテナであってよく、そのインピーダンスは、充電ゾーンを修正するために可変である。
充電ゾーンの修正は、充電ゾーンの位置および/または形状に対する修正を含んでよい。
上述したような充電ゾーンの修正は、送電アンテナと受電器との結合の度合いに影響を及ぼす。従って、装置は、送電アンテナに対して受電器を正確に配置する必要なく、例えば周囲温度の変化や充電ゾーン内の寄生(すなわち、非充電可能)負荷の存在など他の要因を考慮に入れるように、送電器と受電器との結合の強度を高めることができる。
検出器は通常、少なくとも1つの送電アンテナへ伝送される入射電力および少なくとも1つの送電アンテナから受け取る反射電力を監視し、それらの比は、送電器と少なくとも1つの送電アンテナとのインピーダンス不整合を示す。
反射電力と入射電力との比は、反射係数S11と同じである。比は、コントローラによって計算されるか、あるいは検出器自体によって導出されてよく、振幅および/または位相、またはその両方で称され得る。
ワイヤレス充電装置は通常、検出器からのインピーダンス不整合の度合いを示す信号を受け取るように検出器に結合されるコントローラを更に備える。
コントローラは、インピーダンス不整合の度合いから反射係数S11を計算し、反射係数S11が閾値を上回る場合、充電ゾーン内に充電すべき装置が不在であることを装置に表示させるように適合され得る。インピーダンス不整合が減少すると、S11の値は増加し、ゼロデシベルに近づく傾向がある。これは、それが反射エネルギと伝送エネルギとの比の対数であるためである。これら2つの数が近づくと、S11の値はゼロデシベルに近づく傾向がある。
コントローラは、周波数範囲にわたって送電器が少なくとも1つの送電アンテナに電磁放射を放出させる送電周波数を変化させること、および周波数範囲全域の複数の周波数でインピーダンス不整合の度合いを測定することによって、インピーダンス不整合の度合いが閾値を下回ることに応答するように適合され得る。
閾値は所定の値であり、充電装置の設定の一部であってよい。あるいは閾値は、充電セッションの状態に従ってコントローラによって設定され得る。
S11パラメータは、様々な方法で文献に示される。本発明によると、S11は、反射電力と入射電力との対数比として表される。従って、閾値もまた対数目盛として表され、閾値を下回る、または上回る値に対して設けられる基準も同じ対数目盛を参照する。従って、反射係数S11は通常、インピーダンス不整合の度合いの測定値として用いられることになる。
コントローラは、充電ゾーン内の非充電可能な寄生負荷の存在を装置に表示させることによって、複数の周波数の少なくともいくつかにおいてインピーダンス不整合の度合いが閾値を下回ることに応答するように適合され得る。このように、コントローラはこの方法で、複数の周波数の各々においてインピーダンス不整合の度合いが閾値を下回ることに応答するように適合され得る。
コントローラは、充電プロセスを開始することによって周波数範囲よりも狭い周波数領域内の複数の周波数のセットの各々においてインピーダンス不整合の度合いが閾値を下回ることに応答するように適合され得る。周波数領域は、周波数範囲内の周波数の連続的波及を定める。
この場合、コントローラは、充電プロセスの開始時、インピーダンス不整合の度合いがピークを示す電力レベルを決定するためにインピーダンス不整合の度合いを監視し、その後電力レベルをその値に設定すると同時に、送電器が少なくとも1つの送電アンテナに電磁放射を放出させる電力レベルを修正するように更に適合され得る。
更に、コントローラは、充電プロセス中、インピーダンス不整合の度合いを監視し、a)送電器が少なくとも1つの送電アンテナに電磁放射を放出させる電力レベルを変化させること、b)送電器が少なくとも1つの送電アンテナに電磁放射を放出させる周波数を変化させること、c)送電器および送電アンテナのインピーダンスを整合するために、送電器および送電アンテナに結合される適応インピーダンス整合ユニットを制御すること、およびd)アンテナアレイの少なくとも1つのアンテナを送電器に結合すること、および/または適応インピーダンスアンテナのインピーダンスを適合させることを含む方法の少なくとも1つによって、インピーダンス不整合の度合いにおける変化に応答するように適合され得る。
一例として、ワイヤレス充電装置に電磁的に結合される受電器に接続されたバッテリの充電が進行すると、通常、インピーダンス不整合は増加し、コントローラは、送電器が少なくとも1つの送電アンテナに電磁放射を放出させる電力レベルおよび/または適応インピーダンス整合を変更/修正することによってこれに応答し得る。
コントローラは、複数の周波数の2つのセットの各々においてインピーダンス不整合の度合いが閾値を下回ることに応答するように適合されてよく、各セットは、複数の装置の充電プロセスを開始することによって周波数範囲よりも狭い周波数領域内にある。
この場合、コントローラは、充電プロセスの開始時、送電器が少なくとも1つの送電アンテナに電磁放射を放出させる周波数および電力レベルを、インピーダンス不整合がピークを示す各セット内の周波数値の間の値に設定するように更に適合され得る。周波数および電力レベルの変更に加え、コントローラは更に、送電器と送電アンテナとの適応インピーダンス不整合を調整してよく、および/または、適応インピーダンスアンテナが充電装置内に組み込まれる場合、適応インピーダンスアンテナのインピーダンスを更に適合させてよい。
コントローラは更に、送電器が少なくとも1つの送電アンテナに電磁放射を放出させる周波数および電力レベルを、2つのピークの1つに他方よりも近い値に調整すること、および/または適応インピーダンスアンテナのインピーダンスを適合させることによって、インピーダンス不整合における変化に応答するように適合され得る。
コントローラは更に、電力レベルを開始値に戻す前の所定の期間、送電器が少なくとも1つの送電アンテナに電磁放射を放出させる電力レベルを開始値から減少させるように適合され得る。
これは、後に詳述するように、ワイヤレス充電装置と受電器との間に相互作用が一切なくとも、全てがワイヤレス充電装置による挿入ロスS21の測定を可能にする。
本発明の第2の態様において、充電可能ユニットを充電するためのワイヤレス充電装置が提供され、装置は、充電可能ユニットへエネルギを伝送するための送電アンテナに結合される電力送電器と、送電アンテナの反射係数S11を監視するためのモニタと、a)電力送電器が送電アンテナにエネルギを伝送させる電力レベルを変化させること、b)電力送電器が送電アンテナにエネルギを伝送させる周波数を変化させること、c)送電器および送電アンテナのインピーダンスを整合するために電力送電器および送電アンテナに結合される適応インピーダンス整合ユニットを制御すること、およびd)アンテナアレイの少なくとも1つのアンテナを電力送電器に結合すること、および/または電力送電器に結合される適応インピーダンスアンテナのインピーダンスを適合させることを含む方法の少なくとも1つによって、監視されたS11値に応答するように適合されるコントローラとを備える。
本発明の第3の態様において、第1および第2の態様のいずれかに係るワイヤレス充電装置と併用するための受電器が提供され、受電器は、受電アンテナと、受電アンテナからの電気信号を受け取り、電気信号を負荷への充電すなわち電力供給に適した形式に調整するように適用される電力調整回路と、使用中、電力調整回路を負荷に結合するためのコネクタとを備える。
通常、電力調整回路は、交流(AC)電気信号をバッテリの充電に適した直流(DC)に調整する。
電力調整回路は、受動電気部品のみを有するインピーダンス整合回路を備え得る。
受電器は更に、電力調整回路によって受電アンテナからの電気出力を受け取ることを中断するためのスイッチを備え得る。
これは、後に詳述するように、ワイヤレス充電装置と受電器との相互接続が一切なくとも、全てがワイヤレス充電装置による挿入ロスS21の測定を可能にする別の方法である。
本発明の第4の態様において、第1および第2の態様のいずれかに係るワイヤレス充電装置と、第3の態様に係る少なくとも1つの受電器とを備えるワイヤレス充電システムが提供される。
充電ゾーンは、充電ゾーンの残りと比べて電磁放射が集中する領域を含む。
この領域は、上述の最大エネルギ容積である。これは、充電ゾーン内の受電ユニットの位置に伴って、受電器によって受け取られる電力レベル(これは受電器内の電力調整回路の動作点による)および送電器が少なくとも1つの送電アンテナに電磁放射を放出させる周波数や送電器と送電アンテナとのインピーダンス不整合の度合いの変化に伴って、および/または充電プロセス中の適応インピーダンスアンテナの適合されたインピーダンスによって、(充電ゾーンに伴って)移動し、および/または形状を変化させる。
ワイヤレス充電装置内のコントローラは更に、インピーダンス不整合の度合いの変化を監視することによって受電器に結合される充電可能ユニット内のバッテリの充電状態を監視し、送電器が少なくとも1つの送電アンテナに電磁放射を放出させる電力レベルおよび/または周波数を変化させ、および/または適応インピーダンスアンテナを適合させ、および/または送電器および送電アンテナのインピーダンスを整合するために送電器および送電アンテナに結合される適応インピーダンス整合ユニットを制御するように適合され得る。
ワイヤレス充電装置内のコントローラは更に、電力レベルを開始値に戻す前の所定の期間、送電器が少なくとも1つの送電アンテナに電磁放射を放出させる電力レベルを開始値から減少させるように適合され得る。
これは、後に詳述するように、ワイヤレス充電装置と受電器との間に相互作用が一切なくとも、全てがワイヤレス充電装置による挿入ロスS21の測定を可能にする。
ワイヤレス充電装置内のコントローラは、所定の期間中および所定の期間より前のS11の値の差と、所定の期間より前のS11の値との比を計算することによって、挿入ロスS21値を決定するように適合され得る。所定の期間中および所定の期間より前のS11の値の差は、充電中の装置によって実際に受け取られるエネルギの表示を提供し、この差と所定の期間より前のS11の値との比の計算の結果、挿入ロスS21の表示がもたらされる。
本発明は、(通常、送電電力および反射電力を監視および分析することによって)インピーダンス不整合の度合いを検出することによって、充電ユニットと受電器との最適な結合を保証するために受電器に伝送されるエネルギの周波数および/または電力を制御してよく、それによって、充電ユニットから受電器への効率的な電力伝送を保証する。
これらの問題および現在使用可能な解決策に関する他の起こり得る問題に対処するために、本主題事項の1または複数の実装は、考えられる利点の中でもとりわけ、受電ユニット内のあらゆる能動部品(CPU、コントローラなど)の必要性を排除する充電可能装置および充電ユニットに関する非能動的基本設計を提供し得る方法、システム、物品、または製品などを提供する。システムおよび方法は、受電ユニット内に能動ユニットや制御ユニットを含む必要性がなく受動的かつ基本的な受電ユニットを使用し得る。本主題事項の実装の利点は、エネルギ転送効率の向上、電力消費の低減、および充電すべき装置や充電ユニットの回路および設計のサイズおよび複雑性の低減を含み得る。
本明細書に組み込まれ、その一部をなす添付図面は、本明細書に開示される主題事項の特定の態様を示し、その説明とともに、開示される実装に関連する原理の一部を説明する助けとなる。
装置をワイヤレス充電するためのワイヤレス充電システムの構成要素を示す略図である。 充電ゾーン内に位置する、充電不足の装置またはバッテリを備える、図1のワイヤレス充電システムを示す略図である。 詳細な構成要素の表現を伴う、図1のワイヤレス充電システムを示す略図である。 図3の閉導電ワイヤレス充電装置を示す略図である。 充電ゾーンのサイズ、形状、および位置や最大エネルギ容積に周囲の環境要因が及ぼし得る影響を示す略図である。 充電ゾーンのサイズ、形状、および位置や最大エネルギ容積に周囲の環境要因が及ぼし得る影響を示す略図である。 充電ゾーンのサイズ、形状、および位置や最大エネルギ容積に周囲の環境要因が及ぼし得る影響を示す略図である。 充電ゾーンのサイズ、形状、および位置や最大エネルギ容積に周囲の環境要因が及ぼし得る影響を示す略図である。 2つの送電サブユニットおよび2つの送電アンテナを有する送電ユニットを備える充電システムを示す略図である。 受電アンテナからの同じ距離を維持しつつアンテナのサイズおよびインピーダンスを変化させることができるように構成される適応インピーダンス送電アンテナを備えるワイヤレス充電システムを示す略図である。 図1の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 図1の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 図1の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 図1の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 図1の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 充電不足の装置が充電ゾーン内に位置する図2の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 充電不足の装置が充電ゾーン内に位置する図2の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 充電不足の装置が充電ゾーン内に位置する図2の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 充電不足の装置が充電ゾーン内に位置する図2の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 充電不足の装置が充電ゾーン内に位置する図2の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 図17Aおよび図17Bは、それぞれ図1および図2に示す2つの構成に係る、図3の充電システムの送電ユニットと受電ユニットとの間のエネルギ転送効率を示すグラフである。 図17Aおよび図17Bは、それぞれ図1および図2に示す2つの構成に係る、図3の充電システムの送電ユニットと受電ユニットとの間のエネルギ転送効率を示すグラフである。 2つの送電サブユニットを伴う送電アンテナアレイを有する充電システムを示し、両方のユニットが充電ゾーン内に位置し、かつ送電アンテナと受電アンテナとの間に結合および相互影響が存在する場合の、図5の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 2つの送電サブユニットを伴う送電アンテナアレイを有する充電システムを示し、両方のユニットが充電ゾーン内に位置し、かつ送電アンテナと受電アンテナとの間に結合および相互影響が存在する場合の、図5の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 2つの送電サブユニットを伴う送電アンテナアレイを有する充電システムを示し、両方のユニットが充電ゾーン内に位置し、かつ送電アンテナと受電アンテナとの間に結合および相互影響が存在する場合の、図5の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 2つの送電サブユニットを伴う送電アンテナアレイを有する充電システムを示し、両方のユニットが充電ゾーン内に位置し、かつ送電アンテナと受電アンテナとの間に結合および相互影響が存在する場合の、図5の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 2つの送電サブユニットを伴う送電アンテナアレイを有する充電システムを示し、両方のユニットが充電ゾーン内に位置し、かつ送電アンテナと受電アンテナとの間に結合および相互影響が存在する場合の、図5の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 2つの送電サブユニットを伴う送電アンテナアレイを有する充電システムを示し、両方のユニットが充電ゾーン内に位置し、かつ送電アンテナと受電アンテナとの間に結合および相互影響が存在する場合の、図5の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 2つの送電サブユニットを伴う送電アンテナアレイを有する充電システムを示し、両方のユニットが充電ゾーン内に位置し、かつ送電アンテナと受電アンテナとの間に結合および相互影響が存在する場合の、図5の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 2つの送電サブユニットを伴う送電アンテナアレイを有する充電システムを示し、両方のユニットが充電ゾーン内に位置し、かつ送電アンテナと受電アンテナとの間に結合および相互影響が存在する場合の、図5の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 2つの送電サブユニットを伴う送電アンテナアレイを有する充電システムを示し、両方のユニットが充電ゾーン内に位置し、かつ送電アンテナと受電アンテナとの間に結合および相互影響が存在する場合の、図5の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 送電ユニットと受電ユニットとの間のエネルギ転送効率を示す略図である。 送電ユニットと受電ユニットとの間のエネルギ転送効率を示す略図である。 図6の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 図6の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 図6の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 図6の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 図6の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。 送電ユニットと受電ユニットとの間のエネルギ転送効率を示すグラフである。 システムの電磁パラメータが全て設定された後に実行される適応インピーダンス整合プロセスの後の図1のワイヤレス充電システムの略図である。 システムの電磁パラメータが全て設定された後に実行される適応インピーダンス整合プロセスの後の図1のワイヤレス充電システムの略図である。 システムの電磁パラメータが全て設定された後に実行される適応インピーダンス整合プロセスの後の図1のワイヤレス充電システムの略図である。 システムの電磁パラメータが全て設定された後に実行される適応インピーダンス整合プロセスの後の図1のワイヤレス充電システムの略図である。 システムの電磁パラメータが全て設定された後に実行される適応インピーダンス整合プロセスの後の図1のワイヤレス充電システムの略図である。 充電シナリオ下にある複数の装置における2つの受電器に関するリターンロスを示すグラフである。 充電シナリオ下にある複数の装置における2つの受電器に関するリターンロスを示すグラフである。 送電ユニットリターンロスを示すグラフである。 リターンロス図における両方の受電ユニットに理想的な共通コンプライアンス点を示すグラフである。
実用に際して、同様の参照番号は同様の構成、特徴、または要素を表す。
本明細書で説明される主題事項は、装置をワイヤレス充電するためのシステムおよび方法に関する。無線周波数エネルギは、装置に電力を供給するためにワイヤレス伝達され得る。電磁エネルギは、充電ユニットから伝送され、充電中の装置で受け取られ、装置のバッテリを充電するために適した直流(DC)電圧に変換され得る。エネルギ転送および充電プロセス中のエネルギロスを最小化するために、ワイヤレス充電システムにおける電力転送効率を向上させる必要がある。これは、ワイヤレス充電中の装置への充電を実行しているユニットによってエネルギ転送プロセスを制御し適合させることによって実現され得る。
電力転送効率は、電磁エネルギを受け取る装置のアンテナにおけるインピーダンスを様々な入力電力レベルに調整するために用いられ得る適応インピーダンス整合回路を用いて向上させることができる。適応インピーダンス整合は、RFからDCへの変換効率を最大に維持するために充電ユニットをその最適動作点に保つために、能動手順を必要とする。
当業界において、ワイヤレス充電に用いられる装置および構成要素の複雑性を最小限にし、また、充電すべき装置内の受信回路の電力消費を最小化するという需要がある。
以下は、本主題事項を実際に実行する1つの方法を、単に例示として、図式的表現である添付図面を参照して説明するものである。
図1は、装置をワイヤレス充電するためのワイヤレス充電システム100の構成要素を示す略図である。システム100は、少なくとも送電ユニット101および少なくとも1つの受電ユニット102を含んでよい。
送電ユニット101は、別の装置をワイヤレス充電するために用いられる充電装置であってよい。あるいは送電ユニット101は、充電装置の構成要素であってよい。送電ユニット101は、少なくとも送電アンテナ110および送電サブユニット112を含んでよい。送電サブユニット112は、周波数範囲内の異なる様々な周波数で無線周波数(RF)信号を生成し、送電アンテナ110へRF信号を転送するように構成され、動作可能であってよい。送電アンテナ110はその後、充電ゾーン内に物理的に存在する受電アンテナ120へRF信号を伝送してよい。
受電ユニット102は、充電可能な装置である。あるいは受電ユニット102は、充電され得る装置(充電不足の装置「DUC」)300の構成要素であるか、またはそれに結合され得る。受電ユニット102は、少なくとも受電アンテナ120および受電サブユニット122を含んでよい。受電ユニット102は、任意選択的な二次電池すなわちバッテリ124に機能的に接続され得る。受電ユニット102および二次電池124は、好適には、充電不足の装置(DUC)300内に位置する。代替的な実装では、受電ユニット102および二次電池124は、充電不足の装置300の外側に位置してよく、ケーブルやコネクタなどによって充電不足の装置300に物理的に接続され得る。受電サブユニット122は、受電アンテナ120からのRF信号を受け取るように構成され動作可能であってよく、それをDC電力に変換し得る。
「受電ユニット」という用語は、送電ユニットから伝送される電磁エネルギを受け取り、受け取ったエネルギを、二次電池を充電する、および/または電子装置を動作させるのに適したDC電圧に変換するように構成され動作可能なユニットおよび回路を指す。
図1において、装置300およびバッテリ124は、ワイヤレス充電システム100の充電ゾーン130の外側に配置されるように示される。この構成において、受電ユニット102を含む装置300は、主に送電アンテナ110に関して定められ得る充電ゾーン130の外側に位置する。このシナリオでは、送電アンテナ110と受電アンテナ120との結合は存在せず、アンテナ間の相互作用が存在しない。その結果、機能的な充電は生じないであろう。
図2は、充電不足の装置300(またはバッテリ)が充電ゾーン130内に配置された、図1のワイヤレス充電システムの一部を示す略図である。このシナリオでは、送電アンテナ110と受電アンテナ120との間に結合および相互影響が存在する。このように、充電ユニットからの無線周波数エネルギは、近接場および/または結合領域内の受電ユニットに接続されたバッテリのエネルギ転送および充電プロセスを監視、調整、および制御する機能を備える受電ユニットに伝送され得る。充電ユニット内の送電ユニット101、および充電不足の装置に取り付けられ/装置内に備えられる受電ユニット102が、互換性ワイヤレス充電プロトコルを用いて実装される限り、受電ユニットは、充電のためのインタフェースおよび互換コネクタを接続する必要なく充電され得る。代わりに、非能動受電ユニットは、ワイヤレス充電ゾーン130内に配置されることのみが必要である。
受電ユニット102は、能動/適応型/プログラム素子の必要性を充電すべき装置の受電ユニット102から排除してよいように実装され得る。送電ユニット101から受電ユニット102へのエネルギ転送、および受電ユニットによる二次電池の充電プロセスは、送電プロファイルをシステム全体の条件および要件に適合させることによって全体的に制御および管理され得る。
ワイヤレス充電システムにおける送電ユニット101から受電ユニット102へのエネルギ転送プロセスは、送電ユニット内、好適にはワイヤレス充電装置内に機能的に配置される制御ユニットを介して、受電ユニットによって二次電池の充電プロセス全体を監視するために制御および適合され得る。
エネルギ転送効率は、充電プロセス中、所与の状況に関して、送電ユニットと受電ユニットとの間の最大電力転送効率をリアルタイムで維持することによって向上し得る。従って、充電プロセスはリアルタイムで更新され得る。
電力消費は、電源回路の動作に必要な受電ユニット内の能動ユニットを排除することによって低減され得る。能動ユニットが存在する場合、受電器は、バッテリを充電するために必要な電力量を上回る電力を消費し得る。従って、非能動受電部品は、電力消費が大幅に低減されることを可能にし得る。更に、充電プロセスは必ずしも一定の電力量を用いて実行されるわけではないので、電力消費が低減され得る。むしろ充電は、リアルタイムでバッテリ充電プロファイルおよび条件を調整してそれに従い、供給される電力は、特定の時点で必要な電力量丁度である。それによって、余分な電力が浪費されずエネルギが節約される。
多くの更に小さな装置内に収まるように、受電ユニット102は可能な限り小さい必要がある。例えば、人間の耳に収まり得る補聴器に取り付けられるほど小さい。能動部品は、管理のためのコントローラ/CPUを必要とするため、小さな回路や小さなチップに能動部品を設計および実装することは困難である。従って、受動受電部品を用いると、回路およびチップのサイズ要件が低減され得る。
図3は、詳細な構成要素の表現を伴う、図1のワイヤレス充電システムを示す略図である。送電ユニット101の送電サブユニット112は、少なくとも送電器113、コントローラ114、(例えば双方向結合器などの)反射係数/リターンロス(S11)モニタ116、およびAIM(適応インピーダンス整合)ユニット118を含んでよい。S11モニタ116は、送電器113に動作可能に接続されてよく、送電器113からの信号およびデータを受け取り得る。S11モニタはまた、AIMユニット118に動作可能に接続されてよく、AIMユニット118からの信号およびデータを受け取り、またAIMユニット118へ信号およびデータを伝送し得る。S11モニタはその後、送電器リターンロスS11を測定および監視するために送電器113および/または送電アンテナ110から受け取る信号およびデータを用い得る。S11モニタ116はまた、コントローラ114に動作可能に接続され得る。またコントローラ114およびAIMユニット118は互いに動作可能に接続されてよく、それによってS11モニタ116と、コントローラ114と、AIMユニット118との間のフィードバックループを生成し、それによってS11モニタ116、AIMユニット118、およびコントローラ114は、インピーダンスを適合させ、従って送電器113のS11リターンロスを適合させ得る。送電器113、S11モニタ116、コントローラ114、およびAIMユニット118は、プロセッサおよびプログラム可能命令を含む1つの演算装置に実装され得ることが理解される。あるいは、上記の構成要素は、各々がプロセッサおよびプログラム可能命令を含む複数の接続された演算装置に実装され得る。
更に詳細には、送電サブユニット112は、S11モニタ116(双方向結合器)および適応インピーダンス整合ユニット118を介して送電アンテナ110に結合された送電器113を備える。(適切に構成されたマイクロコントローラやフィールドプログラマブルゲートアレイなどの)コントローラ114は、S11モニタ116からのS11の値を示す信号を受け取り、送電器113によって送電アンテナ110および結果的に適応インピーダンス整合ユニット118へ発行される信号の周波数および電力を制御する。
コントローラ114は、送電アンテナ110がアンテナのアレイである場合、送電器113からの信号を伝送するために異なるまたは追加の送電アンテナ素子を選択してもよい。同様に、アンテナ110のインピーダンスは、それが適応インピーダンスアンテナである場合、変化し得る。いずれの場合も、それは、充電ゾーンの形状およびサイズの制御をもたらす。
S11の値、および周波数および/または電力によるその変動を監視することによって、コントローラ114は、充電ゾーン内の装置が寄生負荷であるか、充電されることができる正規装置、すなわち受電ユニット102であるかを判定し得る。
受電ユニット102は、(それが充電ゾーン内にある場合)送電ユニット101から伝送される電磁エネルギを受け取り、それを、受電器123内の二次電池124を充電するために適した形式に変換する。受電器123は、この機能を実行する電力調整回路を備える。通常、電力調整回路は、受電アンテナ120のインピーダンスを二次電池124の充電のための充電回路のインピーダンスと整合するための受動回路を備える。充電回路は通常、アンテナ120から受け取った交流信号を整流し、二次電池124の充電に適した直流に変換するために、例えば整流ダイオードなどの能動回路を備える。
受電ユニット102の受電サブユニット122は、少なくとも受電器123を含んでよい。受電サブユニット122は、受電アンテナ120に接続され得る。受電ユニット102は、二次電池/バッテリ124に機能的に接続され得る。またこの図には充電ゾーン130も示され、充電不足の装置300の充電を可能にするためにゾーン内に受電アンテナが存在しなければならない。
送電ユニット101の設計に含まれ得る構成要素は、それぞれのインピーダンスを有し得る。例えば、送電アンテナ110は「Zta」で表されるインピーダンスを有し、送電器113は「Ztran」で表されるインピーダンスを有し得る。送電ユニット101は、「Ztx」で表されるトータルインピーダンスを有し得る。送電ユニット101の一部であり得る様々な構成要素間のインピーダンスの不整合や他の要因の結果、送電ユニット101は、送電ユニット101から信号を伝送する際、「S11」で表されるリターンロスを有し得る。すなわち「S11」は、信号または電力を伝送する際の送電ユニット101のリターンロス全体を表し得る。
同様に、受電ユニット102の設計に含まれ得る構成要素は、それぞれのインピーダンスを有し得る。例えば、受電アンテナ120は「Zra」で表されるインピーダンスを有し、(バッテリ124を含む)受電器123は「Zrecv」で表されるインピーダンスを有し得る。受電ユニット102は、「Zrx」で表されるトータルインピーダンスを有し得る。受電ユニット102の一部であり得る様々な構成要素間のインピーダンスの不整合や他の要因の結果、受電ユニット102は、信号を受け取る際、「S22」で表されるリターンロスを有し得る。すなわち「S22」は、信号または電力を受け取る際の受電ユニット102のリターンロス全体を表し得る。
充電装置は、実際にS22の測定値を出すのではなく、S11の測定値のみによって機能することに留意することが重要である。S22の測定は、受電ユニット102における追加の機能、および送電ユニット101と受電ユニット102との間の通信を必要とするであろう。充電ゾーン内に受電ユニット102が存在しない場合、送電器113から伝送されるエネルギ全体が反射される。しかし、充電ゾーン内に受電ユニット102が存在する場合、それが送電器113からのエネルギを受け取り、反射エネルギの量は著しく低減する。これは、送電サブユニット112内のS11モニタ116を用いてS11のみから検出可能である。従って、S22を測定する必要はないが、その作用はS11の測定値から(本明細書に示されるように)推測され得る。
内部送電ユニット101ロス(S11)および内部受電ユニット102ロス(S22)に加えて、信号が送電ユニット101から受電ユニット102へ伝送される際、送電ユニット101トータルインピーダンス(Ztx)と受電ユニット102トータルインピーダンス(Zrx)との不整合インピーダンスに起因する追加のロスが存在し得る。これらの挿入ロスは、それぞれ「S21」および「S12」と表され得る送電ユニットと受電ユニットとの間の信号の転送効率に影響を及ぼす。
充電プロセスの開始時、送電ユニット101は、ある特定の周波数、および受電ユニット102の周波数に整合するように構成され得る。この動作状態において、リターンロスS11およびS22の値は、伝送信号から反射している戻り波が小さいために小さくなり得る。従って、伝送された信号が全て、あるいはほぼ全て転送され、受電アンテナ120によって受け取られるため、転送効率S21およびS12の値は高い。二次電池124が電荷を蓄積し抵抗を得る充電プロセス中、受電器123のインピーダンスは変化し得るので、その結果、受電ユニット102のトータルインピーダンス(Zrx)も変化し、それに伴い受電ユニットロスS22の値が変化する。システム100において受電ユニット102および送電ユニット101は互いに非常に近接して動作するので、受電ユニットロスS22の値における変化は、転送効率S21およびS12の値、および送電ユニットロスS11の値に影響を及ぼす。その結果、システム100はインピーダンス不整合になるので、伝送された信号の跳ね返りを招くことがあり、ロスが増加し、充電プロセスの効率の低下がもたらされる。
受電ユニット102のトータルインピーダンス(Zrt)は、多数の要因によって影響を及ぼされ得る。それらの要因は、充電負荷(二次電池124)のあらゆる状態変化、あるいは、動作的または電気的変化(例えば、電流、電圧、またはインピーダンス)や機械的変化(例えば、温度や、その存在を理由としてアンテナインピーダンス(Zra)における変化をもたらし得る受電アンテナの近傍に配置される他の物理的対象物)による受電ユニット102のあらゆるオフセットを含んでよい。このように、受電ユニットのトータルインピーダンス(Zrt)に生じるあらゆる変化が、受電ユニットのリターンロス(S22)における変化をもたらし得る。
更に、受電ユニット102リターンロス(S22)の変化は、アンテナとユニット全体との間の転送効率(S21)に関する結合係数を変化させ得る。変更された結合係数(S21’)は送電ユニット101へ反映されてよく、その結果、リターンロス(S11’)および送電ユニット101のインピーダンス(Ztx’)を変化させ得る。よって、変更された送電ユニットリターンロス(S11’)に起因する送電ユニットのインピーダンス(Ztx’)の変化は、送電器インピーダンス(Ztran)と送電アンテナ(Zta)とのインピーダンス不整合を招き得る。
この不整合インピーダンス状態を防ぐため、またシステム100を整合した高い転送効率状態に保つために、方法は、送電ユニット101と受電ユニット102との作用的電磁接続を復号することによって二次電池124の充電プロセスを監視および制御するために、本主題事項に従って実行され得る。これは、送電器インピーダンス(Ztran)と送電アンテナインピーダンス(Zta)とのインピーダンス不整合を招く送電ユニットリターンロス(S11およびS11’)を監視する送電ユニット101のコントローラによって実現され得る。コントローラは、二次電池124、受電器123、および受電アンテナ120のロス、および受電ユニット102の全体の状態を監視し得る。
充電プロセス中S11モニタ116によって測定されるS11の値は、このパラメータの値における変化を検出すると、S11およびS22の値が減少するように送電ユニット101のインピーダンスを整合するために適応インピーダンス整合(AIM)ユニット118を制御することができるコントローラ114へ伝達され得る。その結果、結合係数は、高い転送効率(S21/S12)状態に戻され得る。コントローラ114は更に送電器113に接続され、検出された充電プロセスの状態および二次電池124の特定の需要およびその充電プロファイルに従って送電プロファイルを制御するように構成され得る。
従って、得られた情報に基づいて、コントローラ114は、送電器113インピーダンス(Ztrans’)と送電アンテナ110インピーダンス(Zta’)との間のインピーダンス整合ネットワークにおける必要な変更を追跡および実行し得る。このように、受電ユニット102は、自身の新たな条件/要件に従って二次電池124を充電するために必要な電力量を供給されてよく、送電ユニットと受電ユニット、および送電アンテナと受電アンテナとの間で最も高い転送効率係数(S21)が実現され(強い結合係数を維持し)得る。
図4Aは、図3の閉導電ワイヤレス充電装置の実装を示す略図である。システム400は、送電アンテナ110を有する図3の送電ユニット101(不図示)を含む、閉充電装置410を含む。充電ゾーン130は円柱容積として示される。最適な充電容積である、最大エネルギ容積(MEV)132が示される。充電ゾーンは、充電が生じ得る面積または容積(すなわち、送電アンテナ110と受電アンテナ120との結合)である。閉充電装置410において、装置410の寸法および形状は、送電周波数に基づいて、充電ゾーン130を定め得る。充電ゾーン130内で、最大エネルギ容積(MEV)132が生じてよく、これは、送電アンテナによって伝送される総エネルギから最大エネルギが集中し得る容積である。従って、充電ゾーン130内で充電が生じ得る間、最大エネルギ容積(MEV)132は、充電が物理的に生じ得る機能領域である。MEV132は、使用されているアンテナの種類、すなわち、それらのインピーダンスやアンテナ間の距離、および充電の頻度にも影響される。
充電プロセスは、参照によって本明細書に組み込まれる、同発明者のWO2013/179284号に示されるように、閉ワイヤレス充電装置410において実行され得る。本発明の他の態様によると、充電は、図4B−1、図4B−2、図4C−1、および図4C−2に示すような半閉ワイヤレス充電装置または開充電台で行われてよい。これらの図は、同じ送電アンテナ110および受電アンテナ120の構成に関して、周囲の環境要因が充電ゾーン130のサイズ、形状、および位置や最大エネルギ容積MEV132にもたらし得る影響を示す略図である。図4B−1および図4B−2は半閉充電装置420を示し、図4B−2は充電ゾーン130の位置を示す。図4C−1および図4C−2は充電台440を示し、図4C−2は複数の充電ゾーン130の位置を示す。閉充電装置では、半閉充電装置および開充電台と比べて、充電ゾーンの寸法がワイヤレス充電装置のサイズによって制限される。図4B−2および図4C−2は、充電ゾーン130内で充電すべき装置の様々な位置に対応するようにコントローラ114によってなされる調整の影響を受けて充電ゾーン130がどのように移動し、および/または容積を変化させ得るかを示す。
閉電磁導電充電装置410において、次の3つの基本的配慮が考慮され得る。閉充電装置の内部空間設計(すなわち、サイズおよび形状)が送電周波数に適さなければならず、閉充電装置410が二次電池または充電不足の装置300に適合する寸法を有さなければならず、閉充電装置410の内部空間の寸法が充電ゾーン130に対応するように適さなければならない。
配慮され得る別のパラメータは、送電アンテナ110および受電アンテナ120の特性に関する。これらのアンテナ特性は、送電ユニット101から受電ユニット102へRFエネルギを伝達するために選択される周波数で動作可能であること、および、充電ゾーン内でアンテナが互いに相互影響を有し得るように、充電ゾーン130内で動作可能であることを含んでよい。
本主題事項の別の実装によると、送電ユニット101は、充電ゾーン130内の少なくとも1つの充電すべき装置を認識し得る。従って、本主題事項のシステムおよび方法は、充電装置410が空であるか、あるいは充電すべき装置が充電ゾーン130内に存在するかを認識し得る。
送電ユニット101および受電ユニット102が互いに隣接しない場合、送電器113がRFエネルギを伝送させず、受電器123がRFエネルギを受け取らず、リターンロスパラメータS11およびS22の値はいずれも0dbになることがある。
送電器113が送電アンテナ110に接続される場合、充電ゾーン130は、送電ユニット101と受電ユニット102との間で可能な接続が確立され得る容積によって定められ得る。この電位量は、送電アンテナ110と受電アンテナ120との間の「有効距離」に依存する。本明細書で用いられる「有効距離」とは、受電アンテナ120の存在が送電アンテナ110に電磁的に影響を及ぼし得る、またその逆も同様の、送電アンテナ110と受電アンテナ120との間の最大距離を意味する。有効距離は、充電ゾーン130を定める外周である。アンテナの充電ゾーンは、アンテナの周囲環境によって影響を及ぼされることもあり、同じアンテナが様々な環境において様々な充電ゾーンを生じ得る。例えば様々な環境は、それぞれ図4A〜図4Cに示すような閉金属ボックス、半閉金属ボックス、および開充電ボックスを含んでよい。この送電アンテナ110と受電アンテナ120との相互影響は、周囲環境における様々な条件を識別するために用いられ得る。
送電ユニット101を含むが、充電不足の装置300(DUC)または別の対象物を内部に有さない(すなわち、受電ユニット102が存在しない)閉充電装置410において、送電アンテナ110のインピーダンス(Zta)は不整合である。送電アンテナ110インピーダンス(Zta)は非常に低くなり、ゆえに送電ユニットリターンロスS11はゼロになる傾向がある。
Figure 0006744382
式中、Pfは伝送される順方向電力であり、Pbは送電ユニット101へ反射されて戻る逆方向電力である。(すなわち、送電アンテナ110は任意の消費装置に結合されていないので、送電ユニット101と不整合になり得る)。従って、伝送されるべき入射電力(順方向)全てが送電ユニット101へ(逆方向に)反射される。このシナリオでは、充電不足の装置(DUC)300は、充電装置410の外側に配置される。従って、受電アンテナ120は任意の送電アンテナ110に結合されないので、受電アンテナのインピーダンス(Zra)は不整合である。受電アンテナインピーダンスZraは非常に高くなり、
Figure 0006744382
である。
送電ユニットリターンロスS11値がゼロである場合、送電ユニット101のコントローラ114は、この状況を、近傍における充電すべき装置の不在と解釈する。更に、コントローラ114は、送電ユニットリターンロスS11の値がゼロに等しいと判定すると、充電すべき装置300が充電ゾーン130の外側にある(S22=0db)と判断し得る。
充電不足の装置(DUC)300または受電ユニット102に接続されたバッテリを閉充電装置410内に載置すると、送電ユニット101から受電ユニット102へのRFエネルギの伝送が可能になる。送電アンテナ110および受電アンテナ120は互いに相互影響を有してよく、それらのインピーダンスZtaおよびZraは変化し得る。アンテナ間の結合が確立されてよく、以下のようにユニット間の最大エネルギ転送を可能にし得る送電ユニット101と受電ユニット102との整合条件をもたらし得る。
一旦、アンテナ間の相互影響に起因して送電アンテナ110と受電アンテナ120との結合が生じると、各アンテナのインピーダンスは変化し得る。送電アンテナ110インピーダンスZtaおよび受電アンテナ120インピーダンスZraは、開/短絡回路としてではなく、アンテナ間の整合条件の生成をもたらし得るインピーダンスとして反映され得る。
この送電アンテナ110と受電アンテナ120との整合条件は、エネルギ経路の挿入ロス(
Figure 0006744382
)を減少させ得る。従って、受電アンテナ端子で受け取られる出力電力と、送電アンテナ端子に伝達される入力電力との比(
Figure 0006744382
)は、S21値(db)がより小さい負の値(→0db)になり得るように増加し得る。
新たな送電アンテナインピーダンス条件Ztaは、送電アンテナ110と送電サブユニット112との整合条件をもたらし得る。この整合条件は、送電ユニット101全体のリターンロスS11を減少させ得る。従って、反射電力(逆方向)と入射電力(順方向)との比(
Figure 0006744382
)は、反射される電力量の低減によって減少し得る。送電ユニット101リターンロスS11値(db)は、より大きな負の値(<<0db)になってよく、送電ユニット101から送電アンテナ110へより多くのエネルギが転送され得る。
新たな受電アンテナインピーダンスZraは、電力調整回路がその動作点を満たす場合のみ、受電アンテナ120と受電サブユニット122との整合条件をもたらし得る。この整合条件は、受電ユニット102全体のリターンロスを減少させ得る。従って、反射受電電力(逆方向)と入射受電電力(順方向)との比は、反射される電力の低減によって減少し得る。従ってS22(db)値は、より大きな負の値(<<0db)になり、受電アンテナから受電サブユニットへより多くのエネルギが転送され得る。
送電ユニット101を含む充電装置410、420、または440に受電ユニット102を挿入すると、最初は2つのユニット間の結合は不良であり得る。このシナリオでは、2つのユニット間で効率的にエネルギを伝達することはできないだろう。送電器113のコントローラ114による制御(例えば、送電の電力および/または周波数)および/またはアンテナのアレイ内の異なるまたは追加のアンテナの選択により2つのユニット間の相互影響が確立すると、および/または、適応インピーダンス整合ユニット118によって、アンテナのインピーダンスを調整および/または送電器113とアンテナのインピーダンスを整合すると、エネルギの効率的な転送が可能になり得る。
本主題事項の別の実装によると、送電ユニット101は、充電可能装置と非充電可能装置とを判別し得る。送電ユニット101は、受電ユニット102を備える充電可能装置300の存在を認識してよく、そのような充電可能装置と、本主題事項のシステムおよび方法に係る充電に適さない他の装置とを判別し得る。
充電すべき装置300が充電ゾーン130内に配置される場合、パラメータS11およびS22の両方は、それぞれ図14および図16に示すような周波数プロファイルを有する。各プロファイルは、それぞれ受電ユニットおよび送電ユニットからの応答に対応する。図示するように、S11およびS22は、通常2.4〜2.4835GHzの範囲内である動作周波数にピークを有するが、異なる実施形態では、異なる周波数を中心とする可能性がある、より広いまたはより狭い範囲が用いられてよい。
非充電可能装置が充電ゾーン内に配置されるシナリオでは、S11プロファイルは、送電周波数または他の周波数のいずれかにピーク値を有してもよい。あるいは、物体が伝送されるエネルギを吸収する場合、プロファイルは、周波数依存ではなく一定であってよい。送電ユニット101は、周波数のスペクトルを介して信号を伝送することによる掃引を実行することによって識別プロセスを実行し得る。具体的には、送電ユニット101のコントローラ114は、送電器が少なくとも1つの送電アンテナに周波数範囲にわたり電磁放射を放出させる送電周波数を変化させること、および周波数範囲全域の複数の周波数でインピーダンス不整合の度合いを測定することによって、インピーダンス不整合の度合いが閾値を下回ることに応答するように適合される。これは、得られた信号が、送電ユニット101に対応するように定められた範囲内にあることに基づいて、装置が充電可能受電ユニット102を含むかを識別するために実行される。
このように、S11パラメータを監視することによって充電可能装置と非充電可能装置とを判別することが可能である。充電ゾーン130が空である場合、S11パラメータは図9に示すとおりである。充電すべき装置が充電ゾーン130内に載置されると、S11は変化する。充電ゾーン130内に載置された装置が非充電可能装置である場合、可能な2つのシナリオが起こり得る。第1に、S11が、周波数範囲全域にわたり、同じか、または実質的に同じ値を有することになる。この場合、装置は、周波数範囲全域における全ての周波数で同様に動作し、周波数および送電電力レベルに関わらず電力を受け取る。これを判定するために、コントローラ114は送電器113に、周波数によってS11が変化するかを確かめるために周波数掃引を実行させ、電力レベルの変化に従ってS11が変化するかを確かめるために送電器113の電力レベルを増加させる。受電ユニット102は、インピーダンスが受電電力レベルに依存する整流ユニットを含むので、整流ユニットに導電を開始させる送電電力レベルの変化はS22を低減し、その結果S11も低減される。しかし、S11の値が周波数および電力によって変化しない場合、コントローラ114は、充電ゾーン内の装置が非充電可能でありただの寄生負荷であると判定し得る。
第2のシナリオは、S11の測定値が、充電ゾーン内の装置が充電可能であることを示す応答を示す(図14)(すなわち、S11の値が周波数および/または電力によって変化する)場合である。この場合、コントローラ114は送電器113に、最適なS11の結果をもたらす周波数で電力掃引を適用させる。装置が充電可能である場合、受電ユニット102の導電において整流器は受電電力レベルに依存することになり、そのためS22の値は電力レベルによって変化することになる。これは、充電ゾーン内の装置が充電可能であることを裏付ける、S11の変動としてコントローラ114によって検出され得る。
得られた信号が、受電ユニット102のプロファイルに適した所定の範囲内である場合、識別プロセスに追加のステップが存在する。このステップは、2つのパラメータに基づいてよい。
第1のパラメータは、S11のコンプライアンス範囲である。S11のコンプライアンス範囲を見出すために、コントローラ114は、ピークイベントがどこに位置するか(すなわち、ピークの周波数範囲はどこか)を検査し得る。
送電ユニット101内のコントローラ114は、インピーダンス不整合の度合いによる反射係数S11に応答し、反射係数S11が所定の閾値を上回る場合、充電ゾーン内に充電すべき装置が不在であることを充電装置に表示させるように適合される。上述したように、S11は、デシベルで表される反射エネルギと伝送エネルギとの比であるため、(充電ゾーン内に充電すべき装置が存在しない場合に生じるように)伝送されたエネルギのより多くが反射されるほど、S11の値はゼロに近づく傾向がある。
S11と閾値とを比較すると、コントローラ114は、2つの方法のうち1つで動作する。初めに、S11の周波数プロファイルにおけるピークを検出するために、S11の値が所定の閾値と比較される。この場合、コントローラ114は、送電器113に、動作周波数帯域(通常2.4GHz〜2.4835GHz)にわたり掃引させ、所定の閾値を下回るS11の測定値を受信した場合。ピークの検出の精度を高めるために、コントローラ114によるS11値との比較のために用いられ得るいくつかの異なる所定の閾値レベルがあってよい。
最初の比較が行われピークが検出された後、コントローラ114は送電器113に、動作周波数帯域にわたって掃引させ、現在のS11値と以前の値とを比較させる。この場合、システムは、S11周波数プロファイルにおけるピークを検出するために、S11値の変化を探索している。
このように、S11値と閾値との比較は、充電すべき装置が充電ゾーン内に存在するかを判定し、更に、送電アンテナ110による送電の周波数および/または電力、(適応インピーダンス整合ユニット118を用いる)送電器113と送電アンテナ110とのインピーダンス整合、およびアンテナインピーダンスの制御および/またはアンテナアレイにおけるアンテナの選択の観点から充電プロセスのために正しい条件を検出(し、それらへの適合を可能に)するために用いられ得る。
閾値は、S11値と以前の値とを比較し続けることによって初期条件に従ってリアルタイムで適合され得る。
第2のパラメータは、以下の方法で決定される、周波数に関するコンプライアンスの持続期間である。S11パラメータがコンプライアンス範囲全域にわたって散在する場合、これは、送電周波数に依存せず定期的なエネルギの不在があることを意味する。具体的には、送電ユニット101のコントローラ114は、複数の周波数の各々におけるS11リターンロスに関してインピーダンス不整合の度合いが閾値を下回ることに応答するように適合され、それによって装置に、充電ゾーン内の非充電可能な寄生負荷の存在を表示させる。そのような作用は、プラスチックおよび/または金属の塊に適しており、充電に関係がない。
更に、コントローラ114は、充電プロセスを開始することによって周波数範囲よりも狭い周波数領域内の複数の周波数のセットの各々においてインピーダンス不整合の度合いが閾値を下回ることに応答するように適合される。
システムは特定の電力で動作するように構成されるので、受電アンテナ120は、最適動作点を有する。従って、他の周波数と比べて受電ユニット102がより多くのRFエネルギを受け取るように構成される特定の周波数が存在する。すなわち、システムは周波数依存であり、ゆえに特定の周波数においてのみ、システムは最適動作点に至るのである。受電アンテナ120が充電ゾーン130内に入ると、S11パラメータの変化が生じ、それに応答して、送電ユニット101は送電電力を引き上げてよく、それがS11値の増加をもたらす。これは、転送効率の向上をもたらす電力調整回路の能動化の結果として生じる。(その結果、S22パラメータの値も増加する。)この点における順方向電力と反射電力との差は最大になる。電力値に依存するS11およびS22の変化は、充電ゾーン内に挿入された充電すべき物体が本主題事項の有効な受電ユニット102を備える場合のみ起こり得る。他の全ての非充電可能な物体において、S11の値は変化しないままである。
本主題事項の別の実装によると、システム100は、送電ユニット101と受電ユニット102との間のエネルギ伝達を監視し得る。これは、S11値を監視および分析することによって実行することができ、S11の値が低いほど、伝達されるエネルギ量は多く、エネルギ転送の効率が良い。S11パラメータは、充電効率を測定するために、提案される主題方法に従って用いられ得る。このように、伝送されるRFエネルギが受電ユニットに到達すること、および充電ゾーン内の別のユニット(寄生負荷)によって吸収されないことを確実にする必要がある。これは、S11パラメータが、総送電電力に対する(充電不足の装置を含む)システム全体によって受け取られる電力量の表示を提供するためである(システムによって受け取られる電力は送電器に反射し戻らない電力であり、Preceive=Ptotal−Preflectである。)本主題事項は、受電ユニット102によって機能的に受け取られるエネルギの監視を可能にし得る2つの例示的な構成および方法を提供し得る。
第1の構成において、S11は、専らコントローラによって送電ユニットにおける電力を変化させることによって監視され、それにより、受電ユニット102内のダイオードや他の整流ユニットは(受電ユニット102が、受け取ったRFエネルギを、バッテリを充電するためのDCに効率的に変換することができる)自身の動作点に到達する。この構成では、受電ユニット102が、システムのインピーダンスが整合する自身の動作点に到達した後、コントローラは、送電電力を大幅に低下させることを送電ユニットに指示し得るように、切換えユニットとして機能するように構成され得る。それによって、所定の期間、ダイオードが自身の動作点から抜け出すこと(S22=0db)が確実になる。この構成では、測定されたS11の値は、システムのトータルロスの表示を提供する(ロスは、機能的に接続が切られた受電ユニット以外の充電不足の装置(DUC)の構成要素の結果として生じる充電装置の取り込み(ロスの発生)によって生じる)。得られた値は、最大送電電力において得られたS11値と比較されてよく、2つの値の差は、受電ユニットによって受け取られる実際のエネルギ量の大きさを提供する。
第2の構成において、S11値は、受電ユニット内の電力管理集積回路(PMIC)またはコントローラを用いて受電アンテナをスイッチオフすることによって監視される。この構成では、受電ユニットが最適動作モードに到達し(ダイオードが動作点に到達し)、システムのインピーダンスが整合すると、受電ユニット内のPMICまたは他のコントローラは、受電アンテナをスイッチオフするように動作される。この時点で得られた新たなS11’値は、システムのトータルロスを反映し得る(ロスは、充電装置の取り込みに起因して、および機能的に接続を切られた受電ユニット以外の充電不足の装置(DUC)の構成要素によって生じる)。得られたS11’値は、最大送電電力において得られたS11値と比較されてよく、2つの値の差は、受電ユニットによって受け取られる実際のエネルギ量を提供する。
本主題事項によると、充電装置の寸法は、それが閉導電ボックスであるか半閉ボックスであるか開充電台であるかに関わらず、予め定められるので、定数パラメータと見なされてよい。従って、アンテナのインピーダンスは、それらの相互影響およびインピーダンスに影響を及ぼし得る送電アンテナと受電アンテナとの間の距離に主に基づいて決定される。これは、アンテナインピーダンスへの電磁的影響を及ぼし得る周囲環境における例えば金属や誘電体などの周囲環境要因に加えたものであってよい。例えば、充電ゾーンの内側の導電性部品や誘導体部品の存在は、アンテナインピーダンスおよびアンテナ間の結合係数S12およびS21に影響を及ぼし得る。導電性部品および誘導体部品の影響は、定数と見なされてもよい。アンテナのインピーダンスに生じるあらゆる変化は、送電ユニット101および受電ユニット102のトータルインピーダンスに影響し得る。これらの変化は、送電ユニット101のコントローラによって一定条件として解釈され、送電サブユニット112の適応インピーダンス整合ユニットへ提供され得る。適応インピーダンス整合ユニット118は、送電ユニット101のインピーダンスを受電ユニット102に適合させ整合する際、自身が受け取る一定条件を考慮に入れる。送電ユニット101および受電ユニット102が最適に整合すると、充電不足の装置(DUC)300内に位置する受電ユニット102の周囲に最大エネルギ容積(MEV)が生じ、充電不足の装置300は、この位置で最も効率的に充電される。
このように、充電の効率を決定する最も有力なパラメータは、充電装置の送電アンテナ110と、充電不足の装置300の受電アンテナ120との結合係数S12およびS21であってよい。
最大エネルギ転送(充電効率)を得るために、次の3つの相互作用が考慮され得る。送電サブユニットのインピーダンスと送電アンテナのインピーダンスとの相互作用Ztr⇔Zta、受電アンテナと整流ユニットとの相互作用Zra⇔Zrec、および送電ユニット101のインピーダンスと受電ユニット102との相互作用Ztx⇔Zrx。
最適なエネルギ転送および充電を得るために充電システムを適合させる能力は、相互影響効果を用いて送電アンテナと受電アンテナとの結合係数S21およびS12を変化させる能力によって実現され得る。本主題事項の実施形態によると、これは、例えばアンテナアレイを用いて、あるいは調整可能インピーダンスアンテナを用いてなど、様々な方法を用いて実現され得る。2つのアンテナ間の結合を修正し得る他の方法もまた、以下で詳述されるように本主題事項の範囲内であることが理解される。
図5は、2つの送電サブユニット112および112’を有する送電ユニットを備える充電システム500を示す略図である。送電サブユニットの各々は、RF信号を生成し、それぞれ送電サブユニット112および112’に接続される送電アンテナ110および110’にそれらを転送するように構成され得る。充電ゾーン130は、それぞれ送電アンテナ110および送電アンテナ110’に対応して定められ得る。充電システム500は更に、充電不足の装置(DUC)300内に位置する、受電サブユニット122を含む受電ユニット102(不図示)を含む。充電不足の装置DUC300は、充電ゾーン130内に載置される。送電アンテナ110と受電アンテナ120との間、および送電アンテナ110’と受電アンテナ120との間には結合および相互影響が存在し得る。
送電ユニットがアンテナアレイ(この例では送電アンテナ110および110’)を備え得る構成では、アレイ内の各アンテナの距離が異なるため、あるいはアンテナの異なる特性に起因して、アレイ内の各アンテナは受電ユニットに関して異なるインピーダンス(Z)値を有し得る。充電不足の装置(DUC)300が閉、半閉、または開充電台に挿入されると、充電システムは、アレイ内の各アンテナのそれぞれのS11リターンロスインピーダンスを測定し得る。(適応インピーダンス整合(AIM)ユニット118による、周波数、電力レベル、およびインピーダンスの調整後)最も低いS11値を提供するアンテナが、RFエネルギを伝送するために選択され得る。
Figure 0006744382
図6は、受電アンテナ120からの同じ距離を維持しつつ送電アンテナ110’’のサイズおよびインピーダンスを変更することができるように構成された適応インピーダンス送電アンテナ110’’(修正された送電アンテナ)を備えるワイヤレス充電システム600を示す略図である。これは、充電不足の装置300の充電の効率を最適化し得るエネルギ転送を実現することができる。送電サブユニット112は、RF信号を生成し、それを送電アンテナ110’’へ転送する。充電ゾーン130は、送電アンテナ110’’に対応してそれぞれ定められ得る。充電不足の装置300は、受電アンテナ120からRF信号を受け取ることができる受電サブユニット122を含む。
調整可能送電アンテナ110’’を用いる構成は、充電を向上させることができ、より正確にS11値を調整し得る。本明細書で用いられる「修正された送電アンテナ」という用語は、アンテナの様々なインピーダンス特性を生成するために動作可能に接続および接続を切断され得る複数の部分から構成され得る送電アンテナを指す。送電アンテナ110’’のサイズを変更することによって、送電アンテナのインピーダンス(Zta)は変化し得る。更に、送電アンテナ110’’は、機能的に他のブランチに付随し、あるいは他のブランチから切り離され得るブランチを備えてよく、「ブランチ」の任意の組み合わせが、様々なインピーダンス値(Zta)を伴う送電アンテナを提供し得る。
要するに、送電アンテナ110’’と受電アンテナ120との結合、およびそれに伴う充電不足の装置300の充電効率は、(最適なS11値およびS21値を得るための)送電アンテナの選択および調整によって向上し得る。充電効率はまた、最適なS11(およびS21)値を得るために各送電アンテナ構成に関して送電サブユニット112間のインピーダンス整合を調整することによっても向上し得る。このように、充電装置(閉、半閉、開)内に充電不足の装置(DUC)300を配置すると、コントローラ114は、充電システム内で使用可能なアンテナ(送電アンテナアレイまたは単一の送電アンテナのいずれか)の全ての可能な組み合わせをスウィフト(swift)し、アンテナの各々にインピーダンスを適合させ得る。得られた最適なS11値はその後、充電不足の装置(DUC)300へRFエネルギを伝送するそれぞれのアンテナを選択するためにコントローラによって用いられ得る。
図1、図2、図5、および図6に提供される充電システム構成に関する送電および受電アンテナインピーダンスは、添付図面の図7〜図32に示され、それらを参照して説明されるようなスミスチャートおよびユニットリターンロスグラフとして図示され得る。
図7〜図11は、図1の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。図7は、送電アンテナ110および受電アンテナ120の条件を示し、図中、Zta142は送電アンテナ110の入力インピーダンスを示し、Zra144は受電アンテナ120の入力インピーダンスを示す。図7において、受電ユニット102は、充電ゾーン130の外側に位置する。各アンテナのインピーダンスは、図8および図10のスミスチャートによってグラフ表示され得る。スミスチャートは、伝送路および整合回路に関する問題の解決を支援するために、無線周波数(RF)工学を専門とする電気電子技術者のために設計されたグラフ支援すなわちモノグラムである。スミスチャートの使用は、問題解決支援としてのみならず、1または複数の周波数で様々なRFパラメータがどのように作用するかを示すグラフデモンストレータとしても更に広く用いられる。スミスチャートは、機械振動分析を含む、インピーダンス、アドミタンス、反射係数、Snn散乱パラメータ、雑音指数円、ゲイン一定輪郭および無条件安定性に関する領域を含む複数のパラメータを表示するために用いられ得る。スミスチャートは、単一半径領域において、またはその内側で最も頻繁に用いられる。
図8および図10では、図1に示す構成に係り、Ztaインピーダンス1421は送電アンテナ110のインピーダンスを表し、Zraインピーダンス1441は受電アンテナ120のインピーダンスを表す。送電ユニット101および受電ユニット101の両方がインピーダンスを整合するように設計されると仮定すると、スミスチャートは、両方のアンテナが充電ゾーン内に位置しアンテナ間の結合および相互影響が生じる場合に得られるような適切なエネルギ転送および充電に関して、スミスチャートの中心点Z0 1401をグラフ表示する。しかし、受電アンテナが充電ゾーンの外側に位置する場合、Ztaインピーダンス1421は、所与の周波数帯域に関して短絡回路として特徴付けられ得る。更に、Zraインピーダンス1441は、それぞれ図8および図10に示すような所与の周波数帯域に関して開回路として特徴付けられ得る。それらのアンテナのインピーダンス条件は、送電アンテナ110と送電サブユニット112との間に不整合条件があり、かつ受電アンテナ120と受電サブユニット122との間に別の不整合があることを示す。
図9は、送電ユニット101における、送電アンテナ110と送電サブユニット112との不整合条件を示す。送電ユニットリターンロスS11 1425は、所与の周波数帯域に関する送電アンテナ110と送電サブユニット112とのインピーダンス不整合に起因する、送電アンテナから反射されて戻る反射電力と送電ユニットによって伝達される入射電力との比としてデシベル単位でグラフ表示される。
図11は、受電ユニット102における、受電アンテナ120と受電サブユニット122との不整合条件を示す。受電ユニットリターンロスS22 1445は、所与の周波数帯域に関する受電アンテナ120と受電サブユニット122とのインピーダンス不整合に起因する、受電ユニットから反射されて戻る反射電力と受電アンテナによって伝達される入射電力との比としてデシベル単位でグラフ表示される。
図12〜図16は、図2の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートであり、図中、充電不足の装置(DUC)300は充電ゾーン130内に位置する。図12は、送電アンテナ110および受電アンテナ120の条件を示す。図12に示すように、Zta142は送電アンテナ110の入力インピーダンスを示し、Zra144は受電アンテナ120の入力インピーダンスを示す。アンテナの各々のインピーダンスはスミスチャートによってグラフ表示される。Ztaインピーダンス1421は、送電アンテナ110インピーダンスのグラフ表示である。Zraインピーダンス1441は、同じシステム構成における受電アンテナ120インピーダンスのグラフ表示である。送電ユニット101および受電ユニット102が、ユニット間の適切なエネルギ転送および充電に関してスミスチャートの中心点Z0 1401によってグラフに示すZ0のインピーダンス値を整合するように設計されたとする場合、送電アンテナと受電アンテナとの結合および相互影響が生じる。従って、Ztaインピーダンス1421は、所与の周波数帯域に関するスミスチャートの中心点Z0 1401との整合と特徴付けられ(図13)、Zraインピーダンス1441は、所与の周波数帯域に関するスミスチャートの中心点Z0 1401との整合として特徴付けられる(図15)。図13および図15におけるアンテナのインピーダンス条件に関しては(ユニット101および102の両方が、スミスチャートの中心点Z0 1401としてグラフ表示される特定のインピーダンスを整合するように設計されるという仮定に基づいて)、送電アンテナ110と送電サブユニット112との整合条件、および受電アンテナ120と受電サブユニット122との整合条件が生じる。
送電ユニット101における整合は、デシベル単位のリターンロスS11 1425値(図14)によって表現される。リターンロスは、送電アンテナ110と送電サブユニット112とのインピーダンス整合に起因する、送電アンテナから反射して戻る反射電力と、送電サブユニットによって伝達される入射電力との比である。
受電ユニット102における整合は、デシベル単位のリターンロス(S22)1445値(図16)によって表現され、受電アンテナ120と受電サブユニット122とのインピーダンス整合に起因する、受電サブユニットから反射して戻る反射電力と、受電アンテナによって伝達される入射電力との比として表される。
図17Aおよび図17Bは、それぞれ図1および図2に示す2つの構成に係る、図3の充電システムの送電ユニット101と受電ユニット102との間のエネルギ転送効率を示すグラフである。(すなわち、充電ゾーン130の外側に配置されるDUC300(不整合システム(図17A))および充電ゾーン130内に配置されるDUC300(整合システム(図17B)))。これらの図に示すように、挿入ロス(S21)1450として示されるエネルギ転送効率は、受電電力と送電電力との比、すなわち受電ユニット102によって受け取られるエネルギ量と送電ユニット101によって伝送される電力量との比の表示を提供する。送電アンテナ110と受電アンテナ120との間に結合および相互影響条件が存在しない不整合条件では、挿入ロス1450値は図17Aにグラフ表示するように非常に高く、すなわち、エネルギ転送効率S21が非常に低い。しかし、送電アンテナ110と受電アンテナ120との間に結合および相互影響条件が存在する整合条件では、挿入ロス1450値は(図17Bに示すように)非常に低く、すなわち、エネルギ転送効率S21が非常に高い。
図18〜図22は、2つの送電アンテナ110および110’を伴う送電アンテナアレイを有する充電システムを示す、図5の充電システム構成のユニットリターンロスを示すグラフおよびアンテナインピーダンスを示すスミスチャートである。また、アレイ内の送電ユニットの各々の動作によって得られる挿入ロス値も示される(図27Aおよび図27B)。充電不足の装置の最も効率的な充電をもたらすエネルギ転送を実現するために、本主題事項の充電システムの送電ユニットは、説明されるとおり可変である。送電アンテナアレイは様々な数の送電ユニットおよびそれらの種類を備え得ることが理解される。
図5に提供されるこの構成では、図5の構成に係る送電アンテナ110、送電アンテナ110’、および受電アンテナ120の条件が図18に示される。図18に示すように、Zta1 142は送電アンテナ110の入力インピーダンスを示し、Zta2 142’は送電アンテナ110’の入力インピーダンスを示し、Zra144は受電アンテナ120の入力インピーダンスを示す。この例において受電ユニットは充電ゾーン130内に位置する。
図19および図21は、アンテナの各々のインピーダンスを示すスミスチャート図であり、図中、図5で説明されるシステム構成に従って、Zta1インピーダンス1421−1は、所与の周波数帯域に関してスミスチャートの中心点Z0 1401に整合する送電アンテナ110のインピーダンスを表し、Zraインピーダンス1441−1は、同じ所与の周波数帯域に関してスミスチャートの中心点Z0 1401に整合する受電アンテナ120のインピーダンスを表しており、送電ユニットおよび受電ユニットの両方は、適切なエネルギ転送および充電の場合、すなわち両方のユニットが充電ゾーン内に位置し送電アンテナと受電アンテナとの間に結合および相互影響が生じる場合、スミスチャートの中心点Z0 1401によって示されるインピーダンスを整合するように設計されていると仮定する。
この構成におけるアンテナのインピーダンス条件に関して、全てのユニットが、スミスチャートの中心点Z0 1401としてグラフ表示される特定のインピーダンスを整合するように設計されるという仮定に基づいて、アンテナアレイの送電アンテナ110と送電サブユニット112、および受電アンテナ120と受電サブユニット122との間に安定した整合条件は生じない。送電ユニット101における送電アンテナ110と送電サブユニット112との整合条件は、図20に示される。デシベル単位で測定されるリターンロス(S11)1425−1は、送電アンテナ110と送電サブユニット112との不適切なインピーダンス整合に起因する、送電アンテナから反射して戻る反射電力と送電ユニットによって伝達される入射電力との比である。図22に示す受電ユニットリターンロス(S22)1445−1は、受電アンテナ120と受電サブユニット122との不適切なインピーダンス整合に起因する、受電サブユニットから反射して戻る反射電力と受電アンテナによって伝達される入射電力との比である。
図23および図25は、それぞれ送電アンテナ110’のインピーダンスZta2 1421−2および受電アンテナ120のインピーダンスZra1441−2を示すスミスチャートであり、送電ユニット101’および受電ユニット102の両ユニットは、適切なエネルギ転送および充電の場合、すなわち、両方のユニットが充電ゾーン内に位置しアンテナ間の結合および相互影響が生じる場合、スミスチャートの中心点Z0 1401によってグラフに示されるインピーダンスを整合するように設計される。すなわち、図5に示す構成に関して、それぞれ図23および図25に示すように、Zta2インピーダンス1421−2は、所与の周波数帯域に関してスミスチャートの中心点Z0 1401との整合として特徴付けられ、Zraインピーダンス1441−2は、所与の周波数帯域に関してスミスチャートの中心点Z0 1401との整合として特徴付けられる。図5に示されるシナリオに係る図23および図25のアンテナのインピーダンス条件は、ユニット101’および102の両方が、スミスチャートの中心点Z0 1401としてグラフ表示される特定のインピーダンスを整合するように設計されており、送電アンテナ110’と送電サブユニット112’、および受電アンテナ120と受電サブユニット122との整合条件が生じるという仮定に基づく。
送電ユニット101’における送電アンテナ110’と送電サブユニット112’との整合条件は、図24に示される。送電ユニット101’リターンロス1425−2(デシベル単位)は、送電アンテナ110’と送電サブユニット112’とのインピーダンス整合に起因する、送電アンテナから反射して戻る反射電力と送電ユニットによって伝達される入射電力との比である。図26に示される受電ユニットリターンロス1445−2(デシベル単位)は、受電アンテナ120と受電サブユニット122とのインピーダンス整合に起因する、受電ユニットから反射されて戻る反射電力と受電アンテナによって伝達される入射電力との比である。
上述したように、図27Aおよび図27Bは、図5に示す充電システム構成に関する、送電ユニット101と受電ユニット102との間のエネルギ転送効率および送電ユニット101’と受電ユニット102との間のエネルギ転送効率を図示する。エネルギ転送効率は、受電電力と送電電力との比、すなわち、それぞれ受電ユニット102によって受け取られるエネルギ量と送電ユニット101によって伝送される電力量との比に関して示す挿入ロス152−1としてグラフに示される。図20および図22に示す不適切な整合条件によると、送電アンテナ110と受電アンテナ120との間に適切な結合および相互影響が存在しない場合、挿入ロス152−1は図27Aに示すようにさほど低くなく、すなわちエネルギ転送効率S21はさほど高くない。
図23および図25に示す整合条件によると、送電アンテナ110’と受電アンテナ120との間に結合および相互影響が存在する場合、挿入ロス152−2は図27Bに示すように非常に低く、すなわちエネルギ転送効率S21が非常に高い。その場合、充電システム500のコントローラは、送電ユニット101’が受電ユニット102へRFエネルギを転送することを決定するであろう。
図28〜図32は、図6の充電システム構成のユニットリターンロスおよびアンテナインピーダンスのスミスチャート表示を示す。図28は、図6の構成における送電アンテナ110’’および受電アンテナ120の条件を示す。受電ユニット102が充電ゾーン130内に位置するシナリオによると、Ztaai146は、特定の調整されたインピーダンス状態における送電アンテナ110’’の入力インピーダンスを示し、Zra144は受電アンテナ120の入力インピーダンスを示す。
図29および図31は、それぞれアンテナの各々のインピーダンスのスミスチャート図であり、図中、Ztaaiインピーダンス1461は、図6を参照して示されるシナリオに係る送電アンテナ110’’の多数のインピーダンス調整状態のグラフ表示である。Zraaiインピーダンス1441は、送電ユニット101および受電ユニット102の両方が、適切なエネルギ転送および充電の場合、すなわち両方が充電ゾーン内に位置しアンテナ間の結合および相互影響が生じる場合、スミスチャートの中心点Z0 1401によってグラフに示されるインピーダンスを整合するように設計されると仮定する、図6に示されるシナリオに係る送電アンテナ110’’の状態に対するそれぞれ受電アンテナ120インピーダンス状態のグラフ表示である。
Ztaaiインピーダンス1461は、所与の周波数帯域に関する特定のアンテナ適応インピーダンス状態におけるスミスチャートの中心点Z0 1401との整合と特徴付けられ、Zraaiインピーダンス1441は、それぞれ所与の周波数帯域に関する送電アンテナ110’’の適応インピーダンス状態に対するスミスチャートの中心点Z0 1401との整合と特徴付けられる。
図29および図31におけるアンテナのインピーダンス条件は、図6の構成に従って、かつ両方のユニットがスミスチャートの中心点Z0 1401としてグラフに示される特定のインピーダンスを整合するように設計されたという仮定に基づき、送電アンテナ110’’と送電サブユニット112、および受電アンテナ120と受電サブユニット122とのいくつかの整合条件が生じる。
送電ユニット101における送電アンテナ110’’と送電サブユニット112とのいくつかの整合条件は、図30に示される。送電ユニット(Txaai)リターンロス152aaiは、送電アンテナ110’’と送電サブユニット112とのいくつかのインピーダンス整合状態に起因する、送電アンテナから反射されて戻る反射電力と送電ユニットによって伝達される入射電力との比である。受電ユニットリターンロス1445は、それぞれ送電アンテナ110’’の適応インピーダンス状態に対する、受電アンテナ120と受電ユニット122とのいくつかのインピーダンス整合状態に起因する、受電ユニットから反射して戻る反射電力と受電アンテナによって伝達される入射電力との比である(図32)。
図33は、図6に示す充電シナリオに関する、それぞれ送電アンテナ110’’の適応インピーダンス状態に対する送電ユニット101と受電ユニット102との間のエネルギ転送効率を示すグラフである。エネルギ転送効率S21は挿入ロス1448としてグラフ表示され、受電電力と送電電力との比、すなわち、送電アンテナ110’’のいくつかの適応インピーダンス状態においてと送電ユニット101によって伝送される電力量に対してそれぞれ受電ユニット102によって受け取られるエネルギ量の比を示す。図29および図31に示すいくつかの整合状態条件によると、それぞれ送電アンテナ110’’の適応インピーダンス状態に対して送電アンテナ110’’と受電アンテナ120との間にいくつかの結合および相互影響条件が存在する場合、送電アンテナ110’’の特定の適応インピーダンスの状態に関して挿入ロス1448は図33にグラフ表示するように非常に低く、すなわちエネルギ転送効率S21が非常に高い。充電システム600のコントローラは、最も高いエネルギ転送効率S21値を提供した修正されたアンテナ101’の組み合わせを受電ユニット102へのRFエネルギ転送に決定するであろう。
図34〜図38は、システムの電磁パラメータが全て設定された後に実行される適応インピーダンス整合プロセスの後の図3のワイヤレス充電システム100の略図である。これらの図に示される充電システムのインピーダンス整合は、ワイヤレス充電システムの電磁部品構成に従って選択された好適な構成において充電プロセスの最大効率を可能にするように、ワイヤレス充電システムの電気部品の最終適合を提供するように構成される。
図34は、インピーダンス整合の前後の送電ユニットのインピーダンス条件のスミスチャート表示である。このグラフ表示では、送電ユニットのインピーダンスZtxaimは、適切なエネルギ転送および充電に関して、すなわち、送電ユニット102および受電ユニット102の両ユニットが充電ゾーン内に位置しアンテナ間の結合および相互影響が生じる場合、かつインピーダンス整合Ztx1491がZ0点を取り巻く点線円1490内に位置付けられる前、スミスチャートの中心点Z0 1401によってグラフに示されるインピーダンスに整合する。同様に、インピーダンス整合Zraimの前後の受電ユニットのインピーダンス条件が図36に示される。受電ユニットのインピーダンスZraimは、適切なエネルギ転送および充電に関して、すなわち、送電ユニット102および受電ユニット102の両ユニットが充電ゾーン内に位置しアンテナ間の結合および相互影響が生じる場合、かつインピーダンス整合Zrx1495がZ0点を取り巻く点線円1490内に位置付けられる前、スミスチャートの中心点Z0 1401によってグラフに示されるインピーダンスに整合する。
図35および図37は、ユニットの適応インピーダンス整合後(実線)、かつその前の様々な部分整合状況下(点線)における、それぞれ送電ユニットTxのリターンロスS11および受電ユニットRxのリターンロスS22の略図である。図示するように、ユニット間でインピーダンスを整合すると、S11およびS22の(デシベル単位の)レベルは、ワイヤレス充電システムの特定の構成におけるエネルギ転送および充電プロセスが最適になるように向上する。図から分かるように、送電アンテナと受電アンテナとが結合すると、送電パターンがピークとして特徴付けられるように非常に狭い周波数帯域で送電ユニットから受電ユニットへエネルギが転送する。システム内の一定ロスは、通常、ロスを反映する広域周波数帯(−dB)値によって定数として表現される。受電ユニット102は特定の電力に適合される、すなわち、挿入される電力がシステムインピーダンスに整合する場合のみ所望の効率が得られることになる。そのようなシナリオでは、システムのコンプライアンスは、受電ユニットがエネルギを取り込むことができる電力調整回路のダイオードの開点に至るまで段階的である。ダイオードの開通前、充電装置およびDUCの一定ロスはどの送電値においても小さい。ダイオードが開通すると、S11の絶対値は、システムの最適動作点を反映するフル通電に達するまで増加する。
充電プロセス中、システムが最大エネルギ転送条件(実線)を得ていた間、いくつかの変化が生じ得る(点線)。二次電池のインピーダンスは、充電プロセス中に変化し、それらのインピーダンス変化は、受電アンテナと受電ユニットとの整合条件を反映し、もたらす。すなわち、S22は、受電アンテナから受電ユニットへの反射電力の増加に起因して変化する(点線)。S22に生じる変化は、アンテナ間の結合条件に起因して転送効率S21および送電ユニットのリターンロスS11を減少させることによってS21を反映し、それに影響する。リターンロスS11における変化(点線)は、このシナリオにおける送電アンテナと送電サブユニットとの不整合を招き、送電ユニット内の適応インピーダンスユニットは、受電ユニットとの最大エネルギ転送効率条件を維持および復元するために、送電サブユニットおよび送電アンテナを新たな条件に調整する。
図38は、最適なインピーダンス整合が実現されるまでのユニットの適応インピーダンス状態に対する送電ユニットと受電ユニットとの間のエネルギ転送効率をそれぞれ示す。エネルギ転送効率は挿入ロス1448としてグラフ表示され、受電電力と送電電力との比、すなわち、それぞれ受電ユニット102によって受け取られるエネルギ量と、送電アンテナのいくつかの適応インピーダンス状態において送電ユニット101によって伝送される電力量との比である。図38にグラフ表示するように、最適な適応インピーダンス整合に達すると、挿入ロス1448は非常に低く、すなわちエネルギ転送効率S21が非常に高い。
図39および図40は、充電シナリオ下にある複数の装置における、2つの充電ユニットに関するリターンロスを示すグラフである。このシナリオでは、充電ゾーン内に複数の受電ユニット102が存在し得る。送電ユニットは、(2つの異なる受電ユニットに関して図39および図40に示される)各受電ユニットのコンプライアンス状態(周波数およびインピーダンス)を個別に認識してよく、認識した値を保存し得る。その後、上述した方法を用いて、送電ユニットのインピーダンスは、両方の受電器に理想的な共通コンプライアンス点を生成し得る。図41は、送電ユニットリターンロスS11を示すグラフである。図42は、リターンロス図上の、両方の受電ユニットに理想的な共通コンプライアンス点を示すグラフである。この点において、2つの受電ユニットは、送電ユニットがS11値における変化を検出するまでの充電を開始し得る。そのような変化が生じると、送電ユニットは再び、(図39および図40に示すような)受電ユニットの各々のコンプライアンスを個別に検査し始めてよく、それらの各々における変化(受電ユニットの各々のS11値に基づくそれらの充電状態)を分析し得る。受電器の各々のために必要な電力量を維持するために、送電ユニットは、他方よりも多くの電力を必要とする受電ユニットの方への共通コンプライアンス点の変更および切替えを実行し得る。送電ユニット102内のコントローラ114は、インピーダンス不整合の度合いが、複数の周波数の2つのセットの各々における閾値を下回ることに応答して適合され、各セットは複数の装置の充電プロセスを開始することによって周波数範囲よりも狭い周波数領域内にある。
送電ユニットは、受電器の各々に関して必要な電力を一斉に伝送するために、個別に受電器の各々の2つのコンプライアンス点の間に生じる重複エリアにおける共通送電の特質を適合させ得る。送電ユニットが変化を測定する度に、各特定の充電不足の装置(DUC)における変化を観察し各受電ユニットのために必要な充電期間を分析するために、受電ユニットの各々について(同じ受電ユニットの過去の測定で得られたデータに従って)個別に測定が行われる。分析に従って、送電ユニットは、共通コンプライアンス点から、より多くの電力を必要とする受電ユニットのコンプライアンス点へ送電パラメータを変更し、他の受電ユニットの要求に従ってそれらに対する低電力の伝送を維持する。
本明細書において説明される実施形態および添付図面の説明は、本発明をより良く理解する目的のみのために提供され、その範囲を限定するものではないことが明らかである。また、当業者は、本明細書の読了後、添付図面および上述した実施形態に調整または修正を加えることができ、それらもまた本主題事項によって包括されることが明らかである。

Claims (4)

  1. 少なくとも1つの送電アンテナに結合され、前記少なくとも1つの送電アンテナに電磁放射を放出させるように動作可能な送電器と、
    前記電磁放射を充電ゾーンに閉じ込めるように適合される導電構造と、
    前記送電器と前記少なくとも1つの送電アンテナとのインピーダンス不整合の度合いを検出するための検出器と
    を備え、
    前記検出器からの前記インピーダンス不整合の度合いを示す少なくとも1つの信号を受信するように前記検出器に結合されるコントローラを更に備え、
    前記コントローラは、周波数範囲にわたり前記送電器が前記少なくとも1つの送電アンテナに電磁放射を放出させる送電周波数を変化させること、および前記周波数範囲全域の複数の周波数における前記インピーダンス不整合の度合いを測定することによって、前記インピーダンス不整合のが閾値を下回る周波数に調整され
    前記コントローラは、装置に、前記充電ゾーン内の充電可能でない寄生負荷の存在を表示させることによって、前記複数の周波数のうち少なくともいくつかにおいて前記インピーダンス不整合の度合いが前記閾値を下回ることに応答するように適合される、ワイヤレス充電装置。
  2. 少なくとも1つの送電アンテナに結合され、前記少なくとも1つの送電アンテナに電磁放射を放出させるように動作可能な送電器と、
    前記電磁放射を充電ゾーンに閉じ込めるように適合される導電構造と、
    前記送電器と前記少なくとも1つの送電アンテナとのインピーダンス不整合の度合いを検出するための検出器と
    を備え、
    前記検出器からの前記インピーダンス不整合の度合いを示す少なくとも1つの信号を受信するように前記検出器に結合されるコントローラを更に備え、
    前記コントローラは、周波数範囲にわたり前記送電器が前記少なくとも1つの送電アンテナに電磁放射を放出させる送電周波数を変化させること、および前記周波数範囲全域の複数の周波数における前記インピーダンス不整合の度合いを測定することによって、前記インピーダンス不整合のが閾値を下回る周波数に調整され
    前記コントローラは、充電プロセスを開始することによって前記周波数範囲よりも狭い周波数領域内の前記複数の周波数のセットの各々において前記インピーダンス不整合の度合いが前記閾値を下回ることに応答するように適合され、
    前記コントローラは、前記充電プロセスの開始時、前記インピーダンス不整合の度合いがピークを示す電力レベルを決定するために前記インピーダンス不整合の度合いを監視し、その後前記電力レベルをその値に設定すると同時に、前記送電器が前記少なくとも1つの送電アンテナに電磁放射を放出させる前記電力レベルを修正するように更に適合される、ワイヤレス充電装置。
  3. 少なくとも1つの送電アンテナに結合され、前記少なくとも1つの送電アンテナに電磁放射を放出させるように動作可能な送電器と、
    前記電磁放射を充電ゾーンに閉じ込めるように適合される導電構造と、
    前記送電器と前記少なくとも1つの送電アンテナとのインピーダンス不整合の度合いを検出するための検出器と
    を備え、
    前記検出器からの前記インピーダンス不整合の度合いを示す少なくとも1つの信号を受信するように前記検出器に結合されるコントローラを更に備え、
    前記コントローラは、周波数範囲にわたり前記送電器が前記少なくとも1つの送電アンテナに電磁放射を放出させる送電周波数を変化させること、および前記周波数範囲全域の複数の周波数における前記インピーダンス不整合の度合いを測定することによって、前記インピーダンス不整合のが閾値を下回る周波数に調整され
    前記コントローラは、充電プロセスを開始することによって前記周波数範囲よりも狭い周波数領域内の前記複数の周波数のセットの各々において前記インピーダンス不整合の度合いが前記閾値を下回ることに応答するように適合され、
    前記コントローラは、前記充電プロセス中、前記インピーダンス不整合の度合いを監視し、
    a)前記送電器が前記少なくとも1つの送電アンテナに電磁放射を放出させる電力レベルを変化させること、
    b)前記送電器が前記少なくとも1つの送電アンテナに電磁放射を放出させる前記周波数を変化させること、
    c)前記送電器および前記送電アンテナのインピーダンスを整合するために前記送電器および前記送電アンテナに結合される適応インピーダンス整合ユニットを制御すること、および
    d)アンテナアレイの少なくとも1つのアンテナを前記送電器に結合すること、および/または前記送電器に結合される適応インピーダンスアンテナのインピーダンスを適合させること
    を含む方法の少なくとも1つによって前記インピーダンス不整合の度合いにおける変動に応答するように適合され、
    前記コントローラは更に、前記充電プロセスの開始時、前記送電器が前記少なくとも1つの送電アンテナに電磁放射を放出させる前記周波数を、前記インピーダンス不整合がピークを示す各セット内の周波数値の間の値に設定するように適合される、ワイヤレス充電装置。
  4. 少なくとも1つの送電アンテナに結合され、前記少なくとも1つの送電アンテナに電磁放射を放出させるように動作可能な送電器と、
    前記電磁放射を充電ゾーンに閉じ込めるように適合される導電構造と、
    前記送電器と前記少なくとも1つの送電アンテナとのインピーダンス不整合の度合いを検出するための検出器と
    を備え、
    前記検出器からの前記インピーダンス不整合の度合いを示す少なくとも1つの信号を受信するように前記検出器に結合されるコントローラを更に備え、
    前記コントローラは、周波数範囲にわたり前記送電器が前記少なくとも1つの送電アンテナに電磁放射を放出させる送電周波数を変化させること、および前記周波数範囲全域の複数の周波数における前記インピーダンス不整合の度合いを測定することによって、前記インピーダンス不整合のが閾値を下回る周波数に調整され
    前記コントローラは、充電プロセスを開始することによって前記周波数範囲よりも狭い周波数領域内の前記複数の周波数のセットの各々において前記インピーダンス不整合の度合いが前記閾値を下回ることに応答するように適合され、
    前記コントローラは、前記充電プロセス中、前記インピーダンス不整合の度合いを監視し、
    a)前記送電器が前記少なくとも1つの送電アンテナに電磁放射を放出させる電力レベルを変化させること、
    b)前記送電器が前記少なくとも1つの送電アンテナに電磁放射を放出させる前記周波数を変化させること、
    c)前記送電器および前記送電アンテナのインピーダンスを整合するために前記送電器および前記送電アンテナに結合される適応インピーダンス整合ユニットを制御すること、および
    d)アンテナアレイの少なくとも1つのアンテナを前記送電器に結合すること、および/または前記送電器に結合される適応インピーダンスアンテナのインピーダンスを適合させること
    を含む方法の少なくとも1つによって前記インピーダンス不整合の度合いにおける変動に応答するように適合され、
    前記コントローラは更に、前記送電器が前記少なくとも1つの送電アンテナに電磁放射を放出させる前記周波数を、2つのピークの1つに他方よりも近い値に調整することによって、インピーダンス不整合における変化に応答するように適合される、ワイヤレス充電装置。
JP2018219761A 2013-08-15 2018-11-22 ワイヤレス充電装置 Expired - Fee Related JP6744382B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361866337P 2013-08-15 2013-08-15
US61/866,337 2013-08-15
US201462006209P 2014-06-01 2014-06-01
US62/006,209 2014-06-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016533992A Division JP2016530864A (ja) 2013-08-15 2014-08-14 ワイヤレス充電装置

Publications (2)

Publication Number Publication Date
JP2019050728A JP2019050728A (ja) 2019-03-28
JP6744382B2 true JP6744382B2 (ja) 2020-08-19

Family

ID=52468114

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016533992A Pending JP2016530864A (ja) 2013-08-15 2014-08-14 ワイヤレス充電装置
JP2018219761A Expired - Fee Related JP6744382B2 (ja) 2013-08-15 2018-11-22 ワイヤレス充電装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016533992A Pending JP2016530864A (ja) 2013-08-15 2014-08-14 ワイヤレス充電装置

Country Status (10)

Country Link
US (6) US10050463B2 (ja)
EP (1) EP3033817B1 (ja)
JP (2) JP2016530864A (ja)
KR (1) KR102344779B1 (ja)
CN (1) CN105637727B (ja)
AU (2) AU2014307619A1 (ja)
CA (1) CA2920761A1 (ja)
RU (1) RU2016104111A (ja)
SG (1) SG11201601010UA (ja)
WO (1) WO2015022690A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
FR3010836B1 (fr) * 2013-09-18 2016-12-09 Centre Nat Rech Scient Dispositif de reflexion d'une onde, dispositif mobile, et systeme
US20170070079A1 (en) * 2014-02-22 2017-03-09 Humavox Ltd. A Wireless Charging Device and Methods of Use
JP2017536792A (ja) 2014-10-01 2017-12-07 ヒューマヴォックス リミテッド Rf充電・通信複合モジュール、及び、使用方法
US9632554B2 (en) 2015-04-10 2017-04-25 Ossia Inc. Calculating power consumption in wireless power delivery systems
WO2016164846A1 (en) * 2015-04-10 2016-10-13 Ossia Inc. Calculating power consumption in wireless power delivery systems
GB201518859D0 (en) * 2015-10-23 2015-12-09 Airbus Defence & Space Ltd High-efficiency amplifier
CN105244967A (zh) * 2015-11-04 2016-01-13 上海斐讯数据通信技术有限公司 充电方法及移动终端
US10651670B1 (en) 2016-02-19 2020-05-12 Apple Inc. Electronic devices with wireless charging antenna arrays
WO2017171440A1 (ko) * 2016-03-31 2017-10-05 삼성전자 주식회사 무선 전력 송신 장치 및 그 제어 방법
US10698079B2 (en) * 2016-04-01 2020-06-30 Intel IP Corporation Method and apparatus for proximity radar in phased array communications
KR102572577B1 (ko) * 2016-04-15 2023-08-30 삼성전자주식회사 무선 충전을 제어하는 충전 장치 및 방법
US10122204B2 (en) * 2016-09-28 2018-11-06 Intel Corporation Techniques for wire-free charging
TWI772330B (zh) * 2016-10-14 2022-08-01 荷蘭商蜆殼國際研究所 用於定量分析氣態製程流之方法及設備
KR102349607B1 (ko) * 2016-12-12 2022-01-12 에너저스 코포레이션 전달되는 무선 전력을 최대화하기 위한 근접장 충전 패드의 안테나 존들을 선택적으로 활성화시키는 방법
DE102017101982A1 (de) 2017-02-01 2018-08-02 Zollner Elektronik Ag Einrichtung zum Erfassen von Objekten insbesondere für Ladesysteme
US10483802B2 (en) * 2017-03-14 2019-11-19 Texas Instruments Incorporated Peak voltage detection in a differentially driven wireless resonant transmitter
US10854960B2 (en) * 2017-05-02 2020-12-01 Richard A. Bean Electromagnetic energy harvesting devices and methods
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
EP3447994B1 (en) * 2017-07-03 2020-05-06 Grupo Antolin Ingenieria, S.A.U. Wireless coupling for coupling a vehicle with an electronic device disposed in an interior part of the vehicle
US10680572B2 (en) * 2017-08-31 2020-06-09 Nxp B.V. Methods and apparatuses for testing inductive coupling circuitry
CN109839102B (zh) * 2017-11-27 2021-05-04 灵踪科技(深圳)有限公司 光曲面定位方法和装置
EP3618227B1 (en) * 2018-08-29 2024-01-03 Oticon A/s Wireless charging of multiple rechargeable devices
CA3112281C (en) 2018-09-29 2023-06-20 Huawei Technologies Co., Ltd. Wireless charging method and electronic device
EP3884563A4 (en) * 2018-11-22 2022-08-24 Humavox Ltd. ANTENNA FOR WIRELESS CHARGING SYSTEM
US11799324B2 (en) * 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11757494B2 (en) * 2020-11-12 2023-09-12 Hand Held Products, Inc. RFID reader with configuration for either an internal antenna or external antenna
CN116438713A (zh) * 2020-11-20 2023-07-14 歌尔股份有限公司 用于无线装置和电子设备的充电壳体
KR102609634B1 (ko) * 2021-10-22 2023-12-05 한국전자기술연구원 로트만 렌즈를 이용한 초고주파 무선전력전송장치, 방법 및 시스템
CN116073531A (zh) * 2021-11-02 2023-05-05 Oppo广东移动通信有限公司 无线充电系统、方法、装置、电子设备以及存储介质
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050107042A1 (en) * 2002-01-31 2005-05-19 De Graauw Antonius J.M. Transmitter and/or receiver module
JP3719510B2 (ja) * 2002-04-08 2005-11-24 アルプス電気株式会社 非接触式充電器を有する保管庫
DE602005013635D1 (de) * 2005-02-04 2009-05-14 Research In Motion Ltd Vorrichtung und Verfahren für das Aufladen einer Batterie über kapazitiver Kopplung
KR100663574B1 (ko) * 2006-02-06 2007-01-02 삼성전자주식회사 이동통신 단말기에서 안테나의 임피던스 변화에 따른 rf성능 열화를 방지하기 위한 장치 및 방법
US20070290654A1 (en) * 2006-06-14 2007-12-20 Assaf Govari Inductive charging of tools on surgical tray
US9129741B2 (en) * 2006-09-14 2015-09-08 Qualcomm Incorporated Method and apparatus for wireless power transmission
US20090001941A1 (en) * 2007-06-29 2009-01-01 Microsoft Corporation Inductive Powering Surface for Powering Portable Devices
WO2009070195A1 (en) * 2007-11-27 2009-06-04 Extremely Ingenious Engineering, Llc Methods and systems for wireless energy and data transmission
TWI364895B (en) * 2008-06-09 2012-05-21 Univ Nat Taipei Technology Wireless power transmitting apparatus
US8068798B2 (en) * 2008-08-15 2011-11-29 Sony Ericsson Mobile Communications Ab Full closed loop auto antenna tuning for wireless communications
US9473209B2 (en) * 2008-08-20 2016-10-18 Intel Corporation Wireless power transfer apparatus and method thereof
JP5258521B2 (ja) * 2008-11-14 2013-08-07 トヨタ自動車株式会社 給電システム
JP5320184B2 (ja) * 2009-06-26 2013-10-23 三菱重工業株式会社 無線送電システム
US8374545B2 (en) * 2009-09-02 2013-02-12 Qualcomm Incorporated De-tuning in wireless power reception
US8774743B2 (en) * 2009-10-14 2014-07-08 Blackberry Limited Dynamic real-time calibration for antenna matching in a radio frequency receiver system
JP2011167009A (ja) * 2010-02-12 2011-08-25 Nippon Tekumo:Kk 非接触給電装置
JP5307073B2 (ja) * 2010-05-14 2013-10-02 株式会社豊田自動織機 非接触受電システム及び非接触電力伝送システム
JP4996722B2 (ja) * 2010-06-30 2012-08-08 株式会社東芝 電力伝送システム及び送電装置
US20130147430A1 (en) * 2010-08-23 2013-06-13 Mhoamed Zied Chaari Design and production of a system for wirelessly charging the batteries of a robot
EP2641333B1 (en) * 2010-11-19 2018-08-22 BlackBerry Limited Dynamic real-time calibration for antenna matching in a radio frequency receiver system
KR101222749B1 (ko) * 2010-12-14 2013-01-16 삼성전기주식회사 무선 전력 전송 장치 및 그 전송 방법
NO332520B1 (no) * 2010-12-28 2012-10-08 Techni As Anordning for overforing av elektriske signaler og/eller elektrisk energi
JP5439416B2 (ja) * 2011-03-04 2014-03-12 株式会社東芝 無線電力伝送装置
WO2013015416A1 (ja) * 2011-07-28 2013-01-31 本田技研工業株式会社 ワイヤレス送電方法
KR101305597B1 (ko) * 2011-08-08 2013-09-09 엘지이노텍 주식회사 임피던스 정합장치 및 방법
US8712355B2 (en) * 2011-08-30 2014-04-29 Motorola Mobility Llc Antenna tuning on an impedance trajectory
US20130062966A1 (en) * 2011-09-12 2013-03-14 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
FR2980925B1 (fr) * 2011-10-03 2014-05-09 Commissariat Energie Atomique Systeme de transfert d'energie par couplage electromagnetique
US20130175874A1 (en) * 2012-01-09 2013-07-11 Witricity Corporation Wireless energy transfer for promotional items
KR101921494B1 (ko) * 2012-04-23 2018-11-23 삼성전자주식회사 무선 통신 시스템에서 안테나 임피던스 매칭 장치 및 방법
JP2015521459A (ja) 2012-05-29 2015-07-27 ヒューマヴォックス リミテッド 無線充電装置
US20140084688A1 (en) * 2012-09-21 2014-03-27 Samsung Electronics Co. Ltd Method and apparatus for wireless power transmission
WO2014066707A2 (en) * 2012-10-26 2014-05-01 Mediatek Singapore Pte. Ltd. Wireless power transfer in-band communication system
KR101462993B1 (ko) * 2012-12-27 2014-11-19 전자부품연구원 다수 기기 무선 충전을 위한 무선 전력 전송 시스템
US9601933B2 (en) 2014-03-25 2017-03-21 Apple Inc. Tessellated inductive power transmission system coil configurations
JP6446477B2 (ja) 2014-03-26 2018-12-26 アップル インコーポレイテッドApple Inc. 誘導充電システムのための温度管理
US9997836B2 (en) * 2014-04-02 2018-06-12 Lg Electronics Inc. Reradiation antenna and wireless charger
US9852843B2 (en) * 2014-07-14 2017-12-26 Qualcomm Incorporated Method and apparatus for adjustable coupling for improved wireless high Q resonant power transfer
AU2015339303A1 (en) 2014-10-28 2017-06-15 The Wiremold Company Wireless power charging station
US9859729B1 (en) 2015-11-02 2018-01-02 Counter Power Products, LLC Universal cell charging station system

Also Published As

Publication number Publication date
US20190006876A1 (en) 2019-01-03
EP3033817A1 (en) 2016-06-22
AU2018247302A1 (en) 2018-11-08
JP2019050728A (ja) 2019-03-28
AU2014307619A1 (en) 2016-02-25
US20190006877A1 (en) 2019-01-03
KR20160042117A (ko) 2016-04-18
US10608459B2 (en) 2020-03-31
EP3033817A4 (en) 2017-02-15
US20180375370A1 (en) 2018-12-27
US10050463B2 (en) 2018-08-14
US20190020211A1 (en) 2019-01-17
KR102344779B1 (ko) 2021-12-29
US10608460B2 (en) 2020-03-31
RU2016104111A3 (ja) 2018-05-08
CA2920761A1 (en) 2015-02-19
US20160204643A1 (en) 2016-07-14
CN105637727A (zh) 2016-06-01
US20180375369A1 (en) 2018-12-27
CN105637727B (zh) 2020-09-22
SG11201601010UA (en) 2016-03-30
JP2016530864A (ja) 2016-09-29
EP3033817B1 (en) 2019-10-09
WO2015022690A1 (en) 2015-02-19
RU2016104111A (ru) 2017-09-20
US10608461B2 (en) 2020-03-31
US10615628B2 (en) 2020-04-07

Similar Documents

Publication Publication Date Title
JP6744382B2 (ja) ワイヤレス充電装置
KR102042113B1 (ko) 무선 전력 송수신 시스템에서의 수신기의 무선 전력 제어 방법 및 장치
US10714984B2 (en) Systems, methods, and devices for using a battery as an antenna for receiving wirelessly delivered power from radio frequency power waves
US9627915B2 (en) Sweep frequency mode for multiple magnetic resonant power transmission
KR102042094B1 (ko) 교차 연결된 무선 전력 수신기를 배제하기 위한 무선 전력 송신기 및 그 제어 방법
US9425863B2 (en) Apparatus and method for wirelessly receiving power, and apparatus and method for wirelessly transmitting power
US20140253028A1 (en) Wireless power transmitter and method for controlling same
KR20110050920A (ko) 로드 임피던스 결정 장치, 무선 전력 전송 장치 및 그 방법
CN110692177A (zh) 无线充电装置、接收机装置及其操作方法
KR20180022522A (ko) 무선으로 전력을 수신하는 전자 장치 및 그 제어 방법
US20170163101A1 (en) Methods and devices for protection in wireless power systems
Kim et al. Advanced power control scheme in wireless power transmission for human protection from EM field
KR101943082B1 (ko) 무선 전력 송신 장치, 무선 전력 수신 장치, 및 무선 전력 전송 시스템
Talla et al. An experimental technique for design of practical wireless power transfer systems
US9246339B2 (en) Battery and charging system using the same
KR20210146571A (ko) 무선으로 전력을 수신하는 전자 장치 및 그 동작 방법
Novotny A look at the emissions of three low-power wireless charging devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181122

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20181226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200303

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200730

R150 Certificate of patent or registration of utility model

Ref document number: 6744382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees