JP6743812B2 - Organic photoelectric conversion element - Google Patents

Organic photoelectric conversion element Download PDF

Info

Publication number
JP6743812B2
JP6743812B2 JP2017517950A JP2017517950A JP6743812B2 JP 6743812 B2 JP6743812 B2 JP 6743812B2 JP 2017517950 A JP2017517950 A JP 2017517950A JP 2017517950 A JP2017517950 A JP 2017517950A JP 6743812 B2 JP6743812 B2 JP 6743812B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
organic
organic photoelectric
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017517950A
Other languages
Japanese (ja)
Other versions
JPWO2016181962A1 (en
Inventor
ジョバンニ フェララ
ジョバンニ フェララ
崇広 清家
崇広 清家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of JPWO2016181962A1 publication Critical patent/JPWO2016181962A1/en
Application granted granted Critical
Publication of JP6743812B2 publication Critical patent/JP6743812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、有機光電変換素子に関する。 The present invention relates to an organic photoelectric conversion element.

有機半導体を含む活性層を有する有機光電変換素子は、安価な塗布法で活性層を作製することができるため、近年、着目されている。有機光電変換素子の特性を向上させるため、陰極と活性層の間に、電子を選択的に取り出し正孔をブロックする機能を有する電子輸送層を設ける有機光電変換素子が提案されている。電子輸送層としては、例えばポリエチレンイミンエトキシレート(PEIE)を用いた電子輸送層が知られている。(非特許文献1)。 An organic photoelectric conversion element having an active layer containing an organic semiconductor has recently attracted attention because the active layer can be produced by an inexpensive coating method. In order to improve the characteristics of the organic photoelectric conversion device, an organic photoelectric conversion device has been proposed in which an electron transport layer having a function of selectively taking out electrons and blocking holes is provided between the cathode and the active layer. As the electron transport layer, for example, an electron transport layer using polyethyleneimine ethoxylate (PEIE) is known. (Non-patent document 1).

Ping Li、「Physical Chemistry and Chemical Physics」、2014年9月18日、第16巻、p.23792−p.23799Ping Li, "Physical Chemistry and Chemical Physics", September 18, 2014, Volume 16, p. 23792-p. 23799

非特許文献1に記載された電子輸送層を用いた有機光電変換素子は、変換効率が必ずしも十分ではなかった。 The conversion efficiency of the organic photoelectric conversion element using the electron transport layer described in Non-Patent Document 1 was not always sufficient.

本発明は、以下のとおりである。
[1] 陽極および陰極からなる一対の電極間に設けられた有機半導体を含む活性層と、
陰極及び活性層の間に設けられた窒素を含むポリマーを含む電子輸送層とを有する有機光電変換素子であって、
該ポリマーが含む窒素原子の数(N)と窒素カチオンの数(N)とが(N)/{(N)+(N)}≧0.2の関係を満たす有機光電変換素子。
[2] 窒素を含むポリマーが、アミノ基を含むポリマーである、[1]記載の有機光電変換素子。
[3] アミノ基を含むポリマーが、ポリアルキレンイミンの誘導体である、[2]記載の有機光電変換素子。
[4] 基板、陰極、電子輸送層、活性層及び陽極がこの順で積層されている、[1]〜[3]のいずれか一項に記載の有機光電変換素子。
[5] 前記陰極が酸化物である、[1]〜[4]のいずれか一項に記載の有機光電変換素子。
[6] [1]〜[5]のいずれか一項に記載の有機光電変換素子を含む有機薄膜太陽電池。
[7] [1]〜[5]のいずれか一項に記載の有機光電変換素子を含む有機光センサ。
[8] 陰極上に窒素原子を含むポリマーを含む溶液を塗布することにより塗布膜を形成する工程と、該塗布膜表面を洗浄する工程と、該洗浄された塗布膜上に活性層を形成する工程と、陽極を形成する工程とを含む有機光電変換素子の製造方法。
活性層を形成する工程の後、陽極を形成する工程の前に活性層上に正孔輸送層を形成する工程を含んでいてもよい。
[9] 前記洗浄する工程が、有機酸を用いて洗浄する工程である、[8]記載の有機光電変換素子の製造方法。
The present invention is as follows.
[1] An active layer containing an organic semiconductor provided between a pair of electrodes consisting of an anode and a cathode,
An organic photoelectric conversion device having an electron transport layer containing a polymer containing nitrogen provided between the cathode and the active layer,
An organic photoelectric conversion element in which the number (N) of nitrogen atoms and the number (N + ) of nitrogen cations contained in the polymer satisfy the relationship of (N + )/{(N + )+(N)}≧0.2.
[2] The organic photoelectric conversion element according to [1], wherein the polymer containing nitrogen is a polymer containing an amino group.
[3] The organic photoelectric conversion element according to [2], wherein the polymer containing an amino group is a derivative of polyalkyleneimine.
[4] The organic photoelectric conversion element according to any one of [1] to [3], in which a substrate, a cathode, an electron transport layer, an active layer and an anode are laminated in this order.
[5] The organic photoelectric conversion element according to any one of [1] to [4], wherein the cathode is an oxide.
[6] An organic thin film solar cell including the organic photoelectric conversion element according to any one of [1] to [5].
[7] An organic photosensor including the organic photoelectric conversion element according to any one of [1] to [5].
[8] A step of forming a coating film by coating a solution containing a polymer containing a nitrogen atom on the cathode, a step of cleaning the surface of the coating film, and forming an active layer on the washed coating film A method for manufacturing an organic photoelectric conversion element, which includes a step and a step of forming an anode.
After the step of forming the active layer, the step of forming a hole transport layer on the active layer may be included before the step of forming the anode.
[9] The method for producing an organic photoelectric conversion element according to [8], wherein the washing step is a step of washing with an organic acid.

<有機光電変換素子>
本発明は、一対の電極間に設けられた有機半導体を含む活性層と、陰極及び活性層の間に設けられた窒素原子を含むポリマーを含む電子輸送層とを含む有機光電変換素子であって、該ポリマーに存在する窒素原子(即ち、非荷電窒素原子)の数(N)と窒素カチオン(即ち、カチオン性窒素原子)の数(N)とが(N)/{(N)+(N)}≧0.2の関係にある有機光電変換素子に関する。
<Organic photoelectric conversion element>
The present invention is an organic photoelectric conversion element comprising an active layer containing an organic semiconductor provided between a pair of electrodes, and an electron transport layer containing a polymer containing a nitrogen atom provided between a cathode and an active layer. , The number (N) of nitrogen atoms (that is, uncharged nitrogen atoms) and the number (N + ) of nitrogen cations (that is, cationic nitrogen atoms) present in the polymer are (N + )/{(N + ) It relates to an organic photoelectric conversion element having a relationship of +(N)}≧0.2.

<有機光電変換素子の構成>
本発明の有機光電変換素子は、陰極及び活性層の間に窒素を含むポリマーを含む電子輸送層を有する。以下基板、陰極、窒素を含むポリマーを含む電子輸送層、活性層、及び陽極がこの順で積層された光電変換素子について説明する。本発明は上記の順序で積層された光電変換素子に限定されるものではない。
<Structure of organic photoelectric conversion element>
The organic photoelectric conversion element of the present invention has an electron transport layer containing a polymer containing nitrogen between a cathode and an active layer. A photoelectric conversion element in which a substrate, a cathode, an electron transport layer containing a polymer containing nitrogen, an active layer, and an anode are laminated in this order will be described below. The present invention is not limited to the photoelectric conversion elements stacked in the above order.

(基板)
本発明の有機光電変換素子は基板を含んでいてもよい。
基板の材料は、基板上に電極を形成することができ、有機化合物を含有する層を形成する際に化学的に変化しないものであれば、特に限定されるものではない。基板としては、例えば、ガラス、プラスチック、高分子フィルム、シリコン、アルミ箔、銅箔、ステンレス合金等を含み、対向する2面の主面を有する平板状のものを用いることができる。基板の一方の主面に、インジウム・スズ酸化物等の陰極の材料となり得る導電性材料の薄膜が予め設けられている基板を用いてもよい。
(substrate)
The organic photoelectric conversion element of the present invention may include a substrate.
The material of the substrate is not particularly limited as long as it can form an electrode on the substrate and does not chemically change when forming a layer containing an organic compound. As the substrate, for example, a flat plate-like substrate including glass, plastic, polymer film, silicon, aluminum foil, copper foil, stainless alloy, etc., having two main surfaces facing each other can be used. It is also possible to use a substrate in which a thin film of a conductive material such as indium tin oxide, which can be a material for the cathode, is previously provided on one main surface of the substrate.

(電極)
本発明の有機光電変換素子は、陽極及び陰極からなる一対の電極を含む。
陽極及び陰極の少なくとも一方は、透明又は半透明の電極であることが好ましい。透明又は半透明の電極から入射した光は、活性層中において、後述の電子受容性化合物及び電子供与性化合物からなる群より選ばれる1以上の化合物に吸収され、それによって電子と正孔とが結合した励起子が生成される。この励起子が活性層中を移動し、電子受容性化合物と電子供与性化合物とが隣接するヘテロ接合界面に達すると、界面でのそれぞれのHOMOエネルギー及びLUMOエネルギーの違いにより電子と正孔とが分離し、独立して移動することのできる電荷(電子と正孔)が発生する。発生した電荷は、それぞれ電極へ移動することにより外部へ電気エネルギー(電流)として取り出される。
(electrode)
The organic photoelectric conversion element of the present invention includes a pair of electrodes composed of an anode and a cathode.
At least one of the anode and the cathode is preferably a transparent or semitransparent electrode. Light incident from the transparent or semi-transparent electrode is absorbed in the active layer by one or more compounds selected from the group consisting of an electron-accepting compound and an electron-donating compound described later, whereby electrons and holes are separated from each other. Bound excitons are generated. When the excitons move in the active layer and reach the heterojunction interface where the electron accepting compound and the electron donating compound are adjacent to each other, electrons and holes are separated due to the difference in HOMO energy and LUMO energy at the interface. Charges (electrons and holes) that separate and can move independently are generated. The generated electric charges are taken out as electric energy (current) by moving to the respective electrodes.

本発明の有機光電変換素子が基板を含む場合、基板側に設ける電極は、陰極であっても陽極であってもよい。 When the organic photoelectric conversion element of the present invention includes a substrate, the electrode provided on the substrate side may be a cathode or an anode.

電極材料としては、金属、導電性高分子等を用いることができる。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウムからなる群より選ばれる1種以上の金属又は合金が上げられる。合金の具体例としては、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金等が挙げられる。 A metal, a conductive polymer, or the like can be used as the electrode material. For example, one or more selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, and ytterbium. Of metals or alloys. Specific examples of the alloy include a magnesium-indium alloy, a magnesium-aluminum alloy, a lithium-aluminum alloy, a lithium-magnesium alloy, a lithium-indium alloy, and a calcium-aluminum alloy.

電極材料としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、及びイッテルビウムからなる群より選ばれる1種以上の金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群より選ばれる1種以上の金属との合金を用いてもよい。該合金の具体例としては、マグネシウム−銀合金、インジウム−銀合金等が挙げられる。 The electrode material is selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, and ytterbium. An alloy of one or more metals selected from the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin may be used. Specific examples of the alloy include a magnesium-silver alloy and an indium-silver alloy.

電極材料としては、グラファイト、グラファイト層間化合物、ポリアニリン及びその誘導体、並びにポリチオフェン及びその誘導体等を用いてもよい。 As the electrode material, graphite, a graphite intercalation compound, polyaniline and its derivatives, polythiophene and its derivatives and the like may be used.

電極材料としては、導電性材料のナノ粒子、ナノワイヤ及びナノチューブ等の分散液を用いてもよい。 As the electrode material, a dispersion liquid of conductive material nanoparticles, nanowires, nanotubes or the like may be used.

本発明の有機光電変換素子に用いる窒素を含むポリマーが、水酸基、カルボキシル基等の水素結合を形成し得る官能基を含む場合、該官能基と水素結合を形成し得る官能基を有する電極材料を用いることが好ましい。このような電極材料を用いることで、窒素を有するポリマーが電極表面に強固に密着し、プロセス耐性が向上する傾向がある。このような電極材料としては、インジウム・スズ酸化物(ITO)、インジウム・亜鉛酸化物(IZO)及び酸化スズ等の酸化物(好ましくは金属酸化物)である導電性材料が好ましい。 When the polymer containing nitrogen used in the organic photoelectric conversion element of the present invention contains a functional group capable of forming a hydrogen bond such as a hydroxyl group or a carboxyl group, an electrode material having a functional group capable of forming a hydrogen bond with the functional group is used. It is preferable to use. By using such an electrode material, the nitrogen-containing polymer firmly adheres to the electrode surface, and the process resistance tends to be improved. As such an electrode material, a conductive material which is an oxide (preferably a metal oxide) such as indium tin oxide (ITO), indium zinc oxide (IZO) and tin oxide is preferable.

透明又は半透明である電極としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、酸化チタン、それらの複合体であるITO、IZO、金、白金、銀及び銅等の導電性材料を用いて作製された膜等が挙げられる。ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。電子輸送層を形成するための塗布膜上を洗浄する工程において洗浄溶液に水を用いる場合には、窒素を含むポリマー中の窒素原子が、電極表面の水酸基と反応して窒素カチオンに転化される観点から、陰極は大気中の水分と反応し水酸基を形成しやすい金属酸化物が好ましく、具体的には酸化スズ、酸化亜鉛、または酸化チタンを含む酸化物が好ましい。 Examples of the transparent or semitransparent electrode include a conductive metal oxide film and a semitransparent metal thin film. Specific examples include a film made of a conductive material such as indium oxide, zinc oxide, tin oxide, titanium oxide, or a composite material thereof such as ITO, IZO, gold, platinum, silver, and copper. .. You may use the organic transparent conductive film of polyaniline and its derivative, polythiophene, its derivative, etc. When water is used as the cleaning solution in the step of cleaning the coating film for forming the electron transport layer, the nitrogen atom in the polymer containing nitrogen is converted to the nitrogen cation by reacting with the hydroxyl group on the electrode surface. From the viewpoint, the cathode is preferably a metal oxide that easily reacts with moisture in the atmosphere to form a hydroxyl group, and specifically, an oxide containing tin oxide, zinc oxide, or titanium oxide is preferable.

電極は、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等により、前記基板の一方の主面に前記導電性材料の薄膜を形成し、次いで該導電性材料の薄膜をパターニングし、形成することができる。パターニングは、任意好適な方法でおこなうことができるが、例えば、フォトリソグラフィ、エッチング等によりおこなうことができる。 The electrode is formed by forming a thin film of the conductive material on one main surface of the substrate by a vacuum deposition method, a sputtering method, an ion plating method, a plating method, etc., and then patterning the thin film of the conductive material. can do. The patterning can be performed by any suitable method, for example, photolithography, etching and the like.

(電子輸送層) (Electron transport layer)

本発明の有機光電変換素子に含まれる電子輸送層は、窒素を含むポリマーを含む。該窒素を含むポリマーにおける窒素原子の数(N)及び窒素カチオンの数(N)は、(N)/{(N)+(N)}≧0.2の関係にあり、(N)/{(N)+(N)}≧0.5が好ましい。
(N)/{(N)+(N)}の値は、窒素を含むポリマーを含む電子輸送層をX線光電子分光法(XPS)に供することにより求めることができる。
窒素を有するポリマーにおける窒素原子の数は(N)は、該ポリマーが含む1級アミノ基、2級アミノ基および3級アミノ基の合計数に該当し、窒素カチオンの数(N)は、該ポリマーが含む置換または非置換のアンモニウムカチオンの数に該当する。
The electron transport layer included in the organic photoelectric conversion element of the present invention contains a polymer containing nitrogen. The number of nitrogen atoms (N) and the number of nitrogen cations (N + ) in the nitrogen-containing polymer have a relationship of (N + )/{(N + )+(N)}≧0.2, and (N + )/{(N + )+(N)}≧0.5 is preferable.
The value of (N + )/{(N + )+(N)} can be determined by subjecting an electron transport layer containing a polymer containing nitrogen to X-ray photoelectron spectroscopy (XPS).
The number of nitrogen atoms in a polymer having nitrogen (N) corresponds to the total number of primary amino groups, secondary amino groups and tertiary amino groups contained in the polymer, and the number of nitrogen cations (N + ) is It corresponds to the number of substituted or unsubstituted ammonium cations contained in the polymer.

窒素を有するポリマーは、一部又は全部がブレンステッド酸で中和されていてもよい。ブレンステッド酸としては、塩酸、臭化水素酸等の無機酸、ギ酸、酢酸、シュウ酸及びマロン酸等の有機酸があげられる。
窒素を含むポリマーは、アミノ基を含むポリマーであることが好ましい。
アミノ基を含むポリマーにおけるアミノ基の窒素原子は、ヒドロキシル基、カルボキシル基、スルホン酸基またはリン酸基置換基(例えばヒドロキシル基、カルボキシル基、スルホン酸基またはリン酸基)を有していてもよいアルキル基等の基と結合していてもよい。

アミノ基は1級アミノ基、2級アミノ基、3級アミノ基のいずれであってもよい。アミノ基を含むポリマーは、1級アミノ基、2級アミノ基および3級アミノ基からなる群より選ばれる1種以上のアミノ基を有する1種または2種以上の繰り返し単位が、ランダム、ブロック、交互又はグラフト共重合したポリマーである。また、アミノ基を含むポリマーは、アミノ基を有しない繰り返し単位を有していてもよい。アミノ基を含むポリマーは、一部又は全部がブレンステッド酸で中和されていてもよい。
A part or all of the nitrogen-containing polymer may be neutralized with a Bronsted acid. Examples of Bronsted acid include inorganic acids such as hydrochloric acid and hydrobromic acid, and organic acids such as formic acid, acetic acid, oxalic acid and malonic acid.
The nitrogen-containing polymer is preferably a polymer containing an amino group.
A nitrogen atom of an amino group in a polymer containing an amino group may have a hydroxyl group, a carboxyl group, a sulfonic acid group or a phosphoric acid group substituent (for example, a hydroxyl group, a carboxyl group, a sulfonic acid group or a phosphoric acid group). It may be bound to a group such as a good alkyl group.

The amino group may be any of a primary amino group, a secondary amino group and a tertiary amino group. The polymer containing an amino group has one or more kinds of repeating units having one or more kinds of amino groups selected from the group consisting of a primary amino group, a secondary amino group and a tertiary amino group, random, block, It is an alternating or graft copolymerized polymer. Further, the polymer containing an amino group may have a repeating unit having no amino group. The polymer containing an amino group may be partially or wholly neutralized with a Bronsted acid.

アミノ基を含むポリマーとしては、ポリビニルアミン、ポリビニルアルキルアミン、ポリアルキレンイミン、ポリアニリン、ポリヌクレオチド、ポリアリルアミン、ポリアルキレンアミン、ポリビニルアミンの誘導体、ポリビニルアルキルアミンの誘導体、ポリアルキレンイミンの誘導体、ポリアニリンの誘導体、ポリヌクレオチドの誘導体、ポリアリルアミンの誘導体及びポリアルキレンアミンの誘導体からなる群より選ばれる少なくとも1種が好適に用いられる。これらのポリマーを構成する繰り返し単位が2種以上共重合した共重合体も好適に用いることができる。中でも、ポリビニルアミン、ポリアリルアミン、ポリアルキレンアミン、ポリビニルアミンの誘導体、ポリアリルアミンの誘導体及びポリアルキレンアミンの誘導体からなる群より選ばれる少なくとも1種がより好ましい。とりわけ、ポリアルキレンイミンの誘導体が、アミノ基の密度が高く、好ましい。
ポリビニルアミンの誘導体としては、ポリビニルアミンが有する水素原子(例えば、窒素原子に結合した水素原子)の一部又は全部が置換基(例えばヒドロキシル基、カルボキシル基、スルホン酸基またはリン酸基)を有していてもよいアルキル基等で置換されたポリマー(置換ポリビリルアミン)、ポリビニルアミンが有する窒素の一部または全部がカチオン性窒素原子であるポリマー、置換ポリビニルアミンが有する窒素の一部または全部がカチオン性窒素原子であるポリマーがあげられる。
ポリビニルアルキルアミンの誘導体、ポリアルキレンイミンの誘導体、ポリアニリンの誘導体、ポリヌクレオチドの誘導体、ポリアリルアミンの誘導体及びポリアルキレンアミンの誘導体についても同様である。
Examples of the polymer containing an amino group include polyvinylamine, polyvinylalkylamine, polyalkyleneimine, polyaniline, polynucleotide, polyallylamine, polyalkyleneamine, polyvinylamine derivatives, polyvinylalkylamine derivatives, polyalkyleneimine derivatives, and polyaniline At least one selected from the group consisting of a derivative, a polynucleotide derivative, a polyallylamine derivative and a polyalkyleneamine derivative is preferably used. Copolymers obtained by copolymerizing two or more kinds of repeating units constituting these polymers can also be suitably used. Among them, at least one selected from the group consisting of polyvinylamine, polyallylamine, polyalkyleneamine, polyvinylamine derivative, polyallylamine derivative and polyalkyleneamine derivative is more preferable. Above all, a derivative of polyalkyleneimine is preferable since it has a high density of amino groups.
As a derivative of polyvinylamine, some or all of hydrogen atoms (eg, hydrogen atoms bonded to nitrogen atoms) of polyvinylamine have a substituent (eg, hydroxyl group, carboxyl group, sulfonic acid group or phosphoric acid group). A polymer substituted with an optionally substituted alkyl group or the like (substituted polybrylamine), a polymer in which a part or all of the nitrogen of polyvinylamine is a cationic nitrogen atom, a part or all of the nitrogen of a substituted polyvinylamine Is a polymer in which is a cationic nitrogen atom.
The same applies to polyvinyl alkylamine derivatives, polyalkyleneimine derivatives, polyaniline derivatives, polynucleotide derivatives, polyallylamine derivatives and polyalkyleneamine derivatives.

ポリアルキレンイミンとは、例えば、エチレンイミン、プロピレンイミン、ブチレンイミン、ジメチルエチレンイミン、ペンチレンイミン、ヘキシレンイミン、ヘプチレンイミン、オクチレンイミンといった炭素数2〜8のアルキレンイミン、特に炭素数2〜4のアルキレンイミンの1種または2種以上を常法により重合して得られるポリマーである。
ポリアルキレンイミンは、製法を選択することによって様々な分子量のものを合成することができ、また直鎖状あるいは分岐状のものを合成することができる。例えば、直鎖状のポリエチレンイミンは式:
The polyalkyleneimine, for example, ethyleneimine, propyleneimine, butyleneimine, dimethylethyleneimine, pentyleneimine, hexyleneimine, heptyleneimine, octyleneimine, such as alkyleneimine having 2 to 8 carbon atoms, especially alkyleneimine having 2 to 4 carbon atoms. It is a polymer obtained by polymerizing one or more imines by a conventional method.
Polyalkyleneimines having various molecular weights can be synthesized by selecting a production method, and linear or branched ones can be synthesized. For example, a linear polyethyleneimine has the formula:

Figure 0006743812
(式中、nは7〜10000の範囲である)で表すことができる。また、分岐状のポリエチレンイミンは例えば式:




Figure 0006743812
(In the formula, n is in the range of 7 to 10,000). The branched polyethyleneimine has, for example, the formula:




Figure 0006743812
で表すことができる。ポリアルキレンイミンは、分子骨格中に1級アミノ基、2級アミノ基および3級アミノ基を含む。
ポリアルキレンイミンの誘導体としては、ポリアルキレンイミンが有する水素原子(例えば、窒素原子に結合した水素原子)の一部又は全部が置換基(例えばヒドロキシル基、カルボキシル基、スルホン酸基またはリン酸基)を有していてもよいアルキル基等で置換されたポリマー(置換ポリアルキレンイミン)、ポリアルキレンイミンが有する窒素の一部または全部がカチオン性窒素原子であるポリマー、置換ポリアルキレンイミンが有する窒素の一部または全部がカチオン性窒素原子であるポリマーがあげられる。
ポリアルキレンイミンの誘導体は、例えば、ポリアルキレンイミンを種々の化合物と反応させて化学的に変性させたポリマーである。
ポリアルキレンイミンの誘導体は、例えば、ポリアルキレンイミンを、アルデヒド、ケトン、アルキルハライド、イソシアネート、チオイソシアネート、アルケン、アルキン、ビニル化合物(アクリロニトリル等)、エポキシ化合物(エピクロルヒドリン等)、シアナマイド、グアニジン、尿素、有機酸(脂肪酸等)、酸無水物、アシルハライドと反応させて変性させることにより製造できる。
ポリアルキレンイミンの誘導体は、例えば、ポリアルキレンイミンまたはポリアルキレンイミンを種々の化合物と反応させて化学的に変性させたポリマーを、ブレンステッド酸、金属酸化物等と反応させて変性させることにより製造できる。
ポリアルキレンイミンおよびポリアルキレンイミンの誘導体は製法によって様々な構造をとり得るが、本発明におけるポリアルキレンイミンおよびポリアルキレンイミンの誘導体は直鎖あるいは分岐鎖のいずれでもよい。またポリアルキレンイミンおよびポリアルキレンイミンの誘導体は様々な分子量をとりうるが、本発明で用いるポリアルキレンイミンおよびポリアルキレンイミンの誘導体の重量平均分子量は通常300〜400,000の範囲内である。特に重量平均分子量が10,000〜400,000、とりわけ50,000〜200,000の範囲であるとより好ましい。 ポリアルキレンイミンの誘導体としては、ポリアルキレンイミン鎖に、直鎖状または分岐状の置換基を有する重合体を用いることができる。
ポリアルキレンイミンの誘導体の中では、ポリエチレンイミンの誘導体が好ましい。ポリエチレンイミンの誘導体としては、ポリエチレンイミンにアルキル基、アルキレンオキサイド基、アミノ基あるいはアリール基を導入したポリエチレンイミン誘導体、ポリエチレンイミンに水酸基等の架橋性基を導入して得られるポリエチレンイミン誘導体等を挙げることができる。中でも、エチレンオキサイド基を導入したエトキシ化ポリエチレンイミンが好ましい。
Figure 0006743812
Can be expressed as Polyalkyleneimine contains a primary amino group, a secondary amino group, and a tertiary amino group in the molecular skeleton.
As the derivative of polyalkyleneimine, a part or all of hydrogen atoms (for example, hydrogen atom bonded to nitrogen atom) of polyalkyleneimine are substituents (for example, hydroxyl group, carboxyl group, sulfonic acid group or phosphoric acid group). A polymer substituted with an alkyl group which may have (substituted polyalkyleneimine), a polymer in which a part or all of the nitrogen of the polyalkyleneimine is a cationic nitrogen atom, a nitrogen of the substituted polyalkyleneimine Examples thereof include polymers having a part or all of which are cationic nitrogen atoms.
The derivative of polyalkyleneimine is, for example, a polymer obtained by reacting polyalkyleneimine with various compounds to chemically modify them.
Derivatives of polyalkyleneimine, for example, polyalkyleneimine, aldehydes, ketones, alkyl halides, isocyanates, thioisocyanates, alkenes, alkynes, vinyl compounds (such as acrylonitrile), epoxy compounds (such as epichlorohydrin), cyanamide, guanidine, urea, It can be produced by reacting with an organic acid (fatty acid, etc.), an acid anhydride and an acyl halide to modify.
A derivative of polyalkyleneimine is produced, for example, by reacting polyalkyleneimine or a polymer obtained by reacting polyalkyleneimine with various compounds to chemically modify it, and reacting it with Bronsted acid, a metal oxide or the like to modify it. it can.
The polyalkyleneimine and the polyalkyleneimine derivative may have various structures depending on the production method, but the polyalkyleneimine and the polyalkyleneimine derivative in the present invention may be linear or branched. Although the polyalkyleneimine and the polyalkyleneimine derivative can have various molecular weights, the weight average molecular weight of the polyalkyleneimine and the polyalkyleneimine derivative used in the present invention is usually in the range of 300 to 400,000. In particular, the weight average molecular weight is more preferably 10,000 to 400,000, and particularly preferably 50,000 to 200,000. As the polyalkyleneimine derivative, a polymer having a linear or branched substituent in the polyalkyleneimine chain can be used.
Among the polyalkyleneimine derivatives, polyethyleneimine derivatives are preferred. Examples of the polyethyleneimine derivative include a polyethyleneimine derivative obtained by introducing an alkyl group, an alkylene oxide group, an amino group or an aryl group into polyethyleneimine, and a polyethyleneimine derivative obtained by introducing a crosslinkable group such as a hydroxyl group into polyethyleneimine. be able to. Among them, ethoxylated polyethyleneimine having an ethylene oxide group introduced therein is preferable.

電子輸送層の厚さは、通常、5nm以下が好ましく、2nm以下がより好ましい。 The thickness of the electron transport layer is usually preferably 5 nm or less, more preferably 2 nm or less.

(活性層)
活性層は、一対の電極の間に挟持される。活性層は、電子受容性化合物(n型半導体)と電子供与性化合物(p型半導体)との混合物を用いることができる。例えば、バルクヘテロ型の活性層が挙げられる。活性層は、入射光のエネルギーを利用して電荷(正孔及び電子)を生成する役割を担うため、有機光電変換素子にとって本質的な機能を有する層である。
(Active layer)
The active layer is sandwiched between the pair of electrodes. For the active layer, a mixture of an electron-accepting compound (n-type semiconductor) and an electron-donating compound (p-type semiconductor) can be used. For example, a bulk hetero type active layer can be mentioned. The active layer plays a role of generating charges (holes and electrons) by utilizing the energy of incident light, and is a layer having an essential function for the organic photoelectric conversion element.

光電変換素子に含まれる活性層は、電子供与性化合物と電子受容性化合物とを含むことが好ましい。 The active layer included in the photoelectric conversion element preferably contains an electron donating compound and an electron accepting compound.

電子供与性化合物及び電子受容性化合物は、これらの化合物のエネルギー準位のエネルギーレベルから相対的に決定されるため、1つの化合物が電子供与性化合物、電子受容性化合物のいずれともなり得る。 Since the electron donating compound and the electron accepting compound are relatively determined from the energy level of the energy level of these compounds, one compound can be either the electron donating compound or the electron accepting compound.

電子供与性化合物としては、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体等が挙げられる。 Examples of the electron donating compound include a pyrazoline derivative, an arylamine derivative, a stilbene derivative, a triphenyldiamine derivative, an oligothiophene and its derivative, a polyvinylcarbazole and its derivative, a polysilane and its derivative, an aromatic amine in a side chain or a main chain. And polyaniline and its derivatives, polythiophene and its derivatives, polypyrrole and its derivatives, polyphenylene vinylene and its derivatives, polythienylene vinylene and its derivatives, and the like.

電子受容性化合物としては、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン類及びその誘導体、バソクプロイン等のフェナントレン誘導体、酸化チタンなどの金属酸化物、カーボンナノチューブ等が挙げられる。電子受容性化合物としては、酸化チタン、カーボンナノチューブ、フラーレン、フラーレン誘導体が好ましく、フラーレン、フラーレン誘導体がより好ましい。Examples of the electron accepting compound include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, Diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, polyfluorene and its derivatives, fullerenes such as C 60 and its derivatives, bathocuproine, etc. Examples thereof include metal oxides such as titanium oxide and carbon nanotubes. As the electron-accepting compound, titanium oxide, carbon nanotube, fullerene and fullerene derivative are preferable, and fullerene and fullerene derivative are more preferable.

フラーレンの例としては、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレンなどが挙げられる。Examples of fullerenes include C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene, C 84 fullerene and the like.

フラーレン誘導体としては、C60フラーレン誘導体、C70フラーレン誘導体、C76フラーレン誘導体、C78フラーレン誘導体、C84フラーレン誘導体等が挙げられる。該フラーレン誘導体の具体的構造としては、以下のようなものが挙げられる。Examples of the fullerene derivative include a C 60 fullerene derivative, a C 70 fullerene derivative, a C 76 fullerene derivative, a C 78 fullerene derivative and a C 84 fullerene derivative. Examples of the specific structure of the fullerene derivative include the following.

Figure 0006743812
Figure 0006743812

Figure 0006743812
Figure 0006743812

フラーレン誘導体の例としては、[6,6]フェニル−C61酪酸メチルエステル(C60PCBM、[6,6]-Phenyl C61 butyric acid methyl ester)、[6,6]フェニル−C71酪酸メチルエステル(C70PCBM、[6,6]-Phenyl C71 butyric acid
methyl ester)、[6,6]フェニル−C85酪酸メチルエステル(C84PCBM、[6,6]-Phenyl C85 butyric acid methyl ester)、[6,6]チエニル−C61酪酸メ
チルエステル([6,6]-Thienyl C61 butyric acid methyl ester)などが挙げられる。
Examples of fullerene derivatives include [6,6]phenyl-C 61 butyric acid methyl ester (C 60 PCBM, [6,6]-Phenyl C 61 butyric acid methyl ester), [6,6]phenyl-C 71 butyric acid methyl ester. Ester (C 70 PCBM, [6,6]-Phenyl C 71 butyric acid
methyl ester), [6,6]phenyl-C 85 butyric acid methyl ester (C 84 PCBM, [6,6]-Phenyl C 85 butyric acid methyl ester), [6,6] thienyl-C 61 butyric acid methyl ester ([ 6,6]-Thienyl C 61 butyric acid methyl ester).

電子受容性化合物としてフラーレン誘導体を用いる場合には、フラーレン誘導体の割合が、電子供与性化合物100重量部に対して、10〜1000重量部であることが好ましく、20〜500重量部であることがより好ましい。 When a fullerene derivative is used as the electron-accepting compound, the proportion of the fullerene derivative is preferably 10 to 1000 parts by weight, and more preferably 20 to 500 parts by weight, relative to 100 parts by weight of the electron-donating compound. More preferable.

活性層の厚さは、通常、1nm〜100μmであり、2nm〜1000nmが好ましく、5nm〜500nmがより好ましく、20nm〜200nmがさらに好ましい。 The thickness of the active layer is usually 1 nm to 100 μm, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, even more preferably 20 nm to 200 nm.

活性層は、前述のとおり電子受容性化合物と電子供与性化合物とが混合されたバルクヘテロ型の単層であってもよく、複数の層により構成されていてもよい。複数の層により構成される場合、電子受容性化合物を含む電子受容性層と、電子供与性化合物を含む電子供給性層とが接合されたヘテロジャンクション型としてもよい。例えば、フラーレン誘導体を含む電子受容性層と、P3HTを含む電子供与性層とが接合されたヘテロジャンクション型が挙げられる。 The active layer may be a bulk hetero-type single layer in which an electron-accepting compound and an electron-donating compound are mixed as described above, or may be composed of a plurality of layers. When it is composed of a plurality of layers, it may be of a heterojunction type in which an electron-accepting layer containing an electron-accepting compound and an electron-donating layer containing an electron-donating compound are joined. For example, a heterojunction type in which an electron-accepting layer containing a fullerene derivative and an electron-donating layer containing P3HT are joined to each other can be mentioned.

電子受容性化合物及び電子供与性化合物を含有するバルクヘテロ型の活性層における電子受容性化合物の割合は、電子供与性化合物100重量部に対して、10〜1000重量部とすることが好ましく、50〜500重量部とすることがより好ましい。
本発明の有機光電変換素子は、正孔輸送層等の付加的な層を有していてもよい。
The ratio of the electron-accepting compound in the bulk hetero type active layer containing the electron-accepting compound and the electron-donating compound is preferably 10 to 1000 parts by weight, and 50 to 100 parts by weight with respect to 100 parts by weight of the electron-donating compound. More preferably, it is 500 parts by weight.
The organic photoelectric conversion element of the present invention may have an additional layer such as a hole transport layer.

(正孔輸送層)
正孔輸送層は、陽極と活性層の間に設けられ、正孔の選択的な取出しや電子ブロックの機能等を有する。正孔輸送層を設けることで、より高効率な光電変換素子を得ることができる。正孔輸送層に用いられる化合物としては、PEDOT:PSS、ポリアニリン、ポリチオフェン等の高分子化合物、あるいは酸化モリブデン、酸化タングステン等の酸化物が例示される。
(Hole transport layer)
The hole transport layer is provided between the anode and the active layer, and has a function of selectively extracting holes, an electron blocking function, and the like. By providing the hole transport layer, a more efficient photoelectric conversion element can be obtained. Examples of the compound used for the hole transport layer include polymer compounds such as PEDOT:PSS, polyaniline and polythiophene, and oxides such as molybdenum oxide and tungsten oxide.

(構成)
本発明の有機光電変換素子のとりうる構成の例を以下に示す。
a)陽極/活性層/電子輸送層/陰極
b)陽極/正孔輸送層/活性層/電子輸送層/陰極
c)陽極/電子供給性層/電子受容性層/電子輸送層/陰極
d)陽極/正孔輸送層/電子供給性層/電子受容性層/電子輸送層/陰極
(ここで、記号「/」は、記号「/」を挟む層同士が隣接して積層されていることを示す。)
(Constitution)
Examples of possible configurations of the organic photoelectric conversion element of the present invention are shown below.
a) Anode/active layer/electron transport layer/cathode b) Anode/hole transport layer/active layer/electron transport layer/cathode c) Anode/electron supply layer/electron accepting layer/electron transport layer/cathode d) Anode/hole transport layer/electron supply layer/electron accepting layer/electron transport layer/cathode (where the symbol “/” means that the layers sandwiching the symbol “/” are laminated adjacent to each other. Show.)

上記構成は、陽極が基板により近い側に設けられる形態、及び陰極が基板により近い側に設けられる形態のいずれであってもよい。上記各層は、単層で構成されるのみならず、2層以上の積層体として構成されていてもよい。 The above configuration may be either a form in which the anode is provided closer to the substrate or a form in which the cathode is provided closer to the substrate. Each of the above layers may be configured not only as a single layer but also as a laminated body of two or more layers.

本発明の有機光電変換素子は、活性層と陰極の間に位置する電子輸送層が、窒素を含むポリマーを含む層であり、且つ窒素原子の数(N)と窒素カチオンの数(N)とが(N)/{(N)+(N)}≧0.2の関係にあることで、高い電子取出し効率が得られ、光電変換特性を高めることができる。In the organic photoelectric conversion device of the present invention, the electron transport layer located between the active layer and the cathode is a layer containing a polymer containing nitrogen, and the number of nitrogen atoms (N) and the number of nitrogen cations (N + ) are included. Since and have a relationship of (N + )/{(N + )+(N)}≧0.2, high electron extraction efficiency can be obtained and photoelectric conversion characteristics can be improved.

<製造方法>
本発明の有機光電変換素子は、陰極上に窒素を含むポリマーを含む溶液を塗布することにより塗布膜を形成する工程と、該塗布膜表面を洗浄する工程と、該洗浄された塗布膜上に活性層を形成する工程と、陽極を形成する工程とを含む製造方法により製造できる。
本発明の有機光電変換素子は、典型的には、上記構成a)〜d)を有する。
構成b)を有する有機光電変換素子が好ましいため、以下構成b)を有する有機光電変換素子の製造方法について説明するが、本発明は該構成に限定されるものではない。
以下、陰極上に窒素を有するポリマーを含む溶液を塗布することにより塗布膜を形成する工程と、該塗布膜表面を洗浄する工程と、該塗布膜上に活性層を形成する工程と、該活性層上に正孔輸送層を形成する工程と、該正孔輸送層上に陽極を形成する工程とを含む有機光電変換素子の製造方法について説明する
<Manufacturing method>
The organic photoelectric conversion element of the present invention comprises a step of forming a coating film by coating a solution containing a polymer containing nitrogen on the cathode, a step of cleaning the surface of the coating film, and a step of cleaning the coating film on the cleaned coating film. It can be manufactured by a manufacturing method including a step of forming an active layer and a step of forming an anode.
The organic photoelectric conversion element of the present invention typically has the above configurations a) to d).
Since the organic photoelectric conversion device having the structure b) is preferable, the method for producing the organic photoelectric conversion device having the structure b) will be described below, but the present invention is not limited to the structure.
Hereinafter, a step of forming a coating film by coating a solution containing a polymer having nitrogen on the cathode, a step of cleaning the surface of the coating film, a step of forming an active layer on the coating film, the activity A method for producing an organic photoelectric conversion element including a step of forming a hole transport layer on a layer and a step of forming an anode on the hole transport layer will be described.

(塗布膜を形成する工程)
電子輸送層は、例えば、陰極上に前述の窒素を含むポリマーを含む溶液を塗布することにより塗布膜を形成する工程と、該塗布膜表面を洗浄する工程とから得ることができる。
(Process of forming coating film)
The electron transport layer can be obtained by, for example, a step of forming a coating film by coating the solution containing the polymer containing nitrogen on the cathode and a step of cleaning the surface of the coating film.

前記塗布膜を形成する方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、スロットダイコート法、キャピラリーコート法、等の塗布法があげられる。 Examples of the method for forming the coating film include spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, and screen printing. Coating methods such as gravure printing, flexographic printing, offset printing, inkjet printing, dispenser printing, nozzle coating, slot die coating, capillary coating and the like.

窒素を含むポリマーを含む溶液に用いられる溶媒としては、水又は有機溶剤を用いることができる。窒素を含むポリマーの種類に応じて、溶解性が高く、溶液として長時間の保管安定性が高い溶媒を選択することができる。有機溶剤としては、例えば、アルコールがあげられる。アルコールとしてはメトキシエタノールや2−プロパノール等があげられる。 Water or an organic solvent can be used as the solvent used in the solution containing the nitrogen-containing polymer. Depending on the type of polymer containing nitrogen, it is possible to select a solvent having a high solubility and a long-term storage stability as a solution. Examples of the organic solvent include alcohol. Examples of alcohols include methoxyethanol and 2-propanol.

塗布後の膜は、未乾燥の状態で次の洗浄工程に付すことが好ましい。完全に乾燥させた場合、洗浄工程により窒素を含むポリマーが固化するため、洗浄により電極近傍に存在する窒素カチオン濃度の高い領域を露出させることが困難になる傾向にある。未乾燥の状態を保持する方法として、塗布膜の保管や移送時に密閉容器を用いることが好ましい。 The coated film is preferably subjected to the next washing step in an undried state. When completely dried, the nitrogen-containing polymer is solidified by the washing step, so that it tends to be difficult to expose the region having a high nitrogen cation concentration existing near the electrode by the washing. As a method for maintaining the undried state, it is preferable to use a closed container when storing or transferring the coating film.

(塗布膜表面上を洗浄する工程)
前記塗布膜表面は、洗浄処理を施すことで窒素カチオンの含有率を高めることができる。窒素を含むポリマー中の窒素原子は、下層の電極表面の水酸基と水素結合することで窒素カチオンに転化され、電極近傍に、より窒素カチオン濃度の高い領域が存在する。その窒素カチオン濃度の高い領域を露出させる工程として洗浄処理は有効である。ここで洗浄処理とは、洗浄溶液と塗布膜表面とを接触させる工程と、その後塗布膜表面に残った洗浄溶液を除去する工程とを含む。洗浄溶液と塗布膜表面を接触させる方法としては、洗浄溶液中に浸漬する方法、洗浄溶液をノズルから注ぐ方法又は洗浄溶液を噴霧する方法等を用いることができる。洗浄溶液としては、窒素を含むポリマーを溶解する溶媒を用いることができる。洗浄溶液としては、例えば水又は酸性水溶液を用いることができる。酸性の水溶液を用いる場合には、下層の電極等を溶解させない程度の酸性が好ましく、酢酸、酪酸、ギ酸、クエン酸等の有機酸を含む溶液が好ましい。有機酸として酢酸を用いる場合、酢酸濃度が、5〜90重量%の酢酸水溶液が好ましく、酢酸濃度が25〜80重量%の酢酸水溶液がより好ましく、酢酸濃度が50〜70重量%の酢酸水溶液がさらに好ましい。塗布膜表面から洗浄溶液を除去する方法としては、風乾による自然乾燥、減圧乾燥、窒素を含むポリマーが分解しない温度以下での加熱乾燥等の乾燥方法を用いることができる。
(N)/{(N)+(N)}の値は、得られた窒素を含むポリマーを含む電子輸送層をX線光電子分光法(XPS)に供することにより求めることができる。
(Process of cleaning the coating film surface)
The surface of the coating film may be subjected to a cleaning treatment to increase the content of nitrogen cations. A nitrogen atom in a polymer containing nitrogen is converted into a nitrogen cation by hydrogen bonding with a hydroxyl group on the surface of the lower electrode, and a region having a higher nitrogen cation concentration exists near the electrode. The cleaning treatment is effective as a step of exposing the region having a high nitrogen cation concentration. Here, the cleaning treatment includes a step of bringing the cleaning solution into contact with the surface of the coating film, and a step of removing the cleaning solution remaining on the surface of the coating film thereafter. As a method of bringing the cleaning solution into contact with the surface of the coating film, a method of dipping in the cleaning solution, a method of pouring the cleaning solution from a nozzle, a method of spraying the cleaning solution, or the like can be used. As the cleaning solution, a solvent that dissolves the nitrogen-containing polymer can be used. As the cleaning solution, for example, water or acidic aqueous solution can be used. When an acidic aqueous solution is used, it is preferably acidic enough not to dissolve the lower electrode and the like, and a solution containing an organic acid such as acetic acid, butyric acid, formic acid or citric acid is preferable. When acetic acid is used as the organic acid, an acetic acid aqueous solution having an acetic acid concentration of 5 to 90% by weight is preferable, an acetic acid aqueous solution having an acetic acid concentration of 25 to 80% by weight is more preferable, and an acetic acid aqueous solution having an acetic acid concentration of 50 to 70% by weight is preferable. More preferable. As a method for removing the cleaning solution from the surface of the coating film, a drying method such as natural drying by air drying, reduced pressure drying, or heat drying below a temperature at which a polymer containing nitrogen is not decomposed can be used.
The value of (N + )/{(N + )+(N)} can be determined by subjecting the obtained electron transport layer containing a polymer containing nitrogen to X-ray photoelectron spectroscopy (XPS).

(活性層を形成する工程)
次いで、電子輸送層上に常法に従って活性層を形成する。上記構成a)またはb)を有する有機光電変換素子を製造する場合には、活性層を形成する工程は、電子輸送層上に電子受容性化合物と電子供与性化合物とが混合された塗工液を塗布する工程を含む。上記構成c)またはd)を有する有機光電変換素子を製造する場合には、電子輸送層上に電子受容性化合物を含む塗工液を塗布することで電子受容性層を形成する工程と、該電子受容性層上に電子供与性化合物を含む塗工液を塗布することで電子供給性層を形成する工程とを含む。活性層は、前述の任意好適な活性層の材料と、溶媒とを混合した塗工液を電子輸送層上に塗布することによって形成することができる。該溶媒としては、例えばトルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n−ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン等の不飽和炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル類系溶媒が挙げられる。上記溶媒を主溶媒として、塗布性や溶質成分の溶解性、保管安定性等の観点から、2種類以上の溶媒を添加してもよい。
(Process of forming active layer)
Then, an active layer is formed on the electron transport layer by a conventional method. In the case of producing an organic photoelectric conversion device having the above constitution a) or b), the step of forming an active layer is performed by a coating liquid in which an electron accepting compound and an electron donating compound are mixed on an electron transporting layer. Is included. In the case of producing an organic photoelectric conversion element having the above configuration c) or d), a step of forming an electron-accepting layer by applying a coating liquid containing an electron-accepting compound on the electron-transporting layer, And a step of applying a coating liquid containing an electron-donating compound onto the electron-accepting layer to form an electron-donating layer. The active layer can be formed by applying a coating liquid, which is a mixture of any of the materials for the active layer described above, and a solvent, onto the electron transport layer. Examples of the solvent include unsaturated hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, and tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, Halogenated saturated hydrocarbon solvents such as dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, and halogenated unsaturated hydrocarbon solvents such as chlorobenzene, dichlorobenzene, and trichlorobenzene. , Ethers such as tetrahydrofuran, tetrahydropyran, and the like. From the viewpoint of coating properties, solubility of solute components, storage stability, and the like, two or more kinds of solvents may be added using the above solvent as a main solvent.

活性層の形成法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、スロットダイコート法、キャピラリーコート法、等の塗布法を用いることができる。 Examples of the method for forming the active layer include spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing, and gravure. Coating methods such as printing, flexographic printing, offset printing, inkjet printing, dispenser printing, nozzle coating, slot die coating, capillary coating and the like can be used.

(正孔輸送層を形成する工程)
次に、活性層上に正孔輸送層を形成する。高分子型の正孔輸送層を形成する場合には、前記高分子と溶媒とを含む塗工液を塗布することにより、正孔輸送層を形成することができる。正孔輸送層の塗工液としては、PEDOT:PSS、ポリアニリン、ポリチオフェン等を含む水または有機溶媒に分散した液を用いることができる。塗布方法としては、活性層に用いられるものと同様のものが挙げられる。酸化モリブデン等のナノ粒子分散液を用いる場合にも、同様に塗布法で形成できる。酸化モリブデン等は真空蒸着法により形成することもできる。
(Process of forming hole transport layer)
Next, a hole transport layer is formed on the active layer. When forming a polymer type hole transport layer, the hole transport layer can be formed by applying a coating solution containing the polymer and a solvent. As the coating liquid for the hole transport layer, a liquid containing PEDOT:PSS, polyaniline, polythiophene, or the like dispersed in water or an organic solvent can be used. The coating method may be the same as that used for the active layer. Even when a nanoparticle dispersion liquid such as molybdenum oxide is used, it can be similarly formed by a coating method. Molybdenum oxide or the like can also be formed by a vacuum evaporation method.

(陽極)
次に、正孔輸送層上に陽極となる電極を形成する。陽極に、導電性材料のナノ粒子、ナノワイヤ及びナノチューブ等の分散液を用いる場合には、活性層同様に塗布法により形成することができる。アルミニウムや銀等の金属膜を陽極とする場合は、真空蒸着法により形成することもできる。
(anode)
Next, an electrode serving as an anode is formed on the hole transport layer. When a dispersion of conductive material nanoparticles, nanowires, nanotubes, or the like is used for the anode, it can be formed by a coating method like the active layer. When a metal film such as aluminum or silver is used as the anode, it can be formed by a vacuum vapor deposition method.

<動作>
有機光電変換素子の動作機構を簡単に説明する。透明又は半透明の電極を透過して活性層に入射した入射光のエネルギーが、電子受容性化合物及び電子供与性化合物からなる群より選ばれる1以上で吸収され、電子と正孔とが結合した励起子を生成される。生成した励起子が移動して、電子受容性化合物と電子供与性化合物とが接合しているヘテロ接合界面に達すると、界面でのそれぞれのHOMOエネルギー及びLUMOエネルギーの違いにより電子と正孔とが分離し、独立に動くことができる電荷(電子及び正孔)が発生する。発生した電荷がそれぞれ電極(陰極、陽極)に移動することにより素子外部へ電気エネルギー(電流)として取り出すことができる。
<Operation>
The operating mechanism of the organic photoelectric conversion element will be briefly described. The energy of incident light that has passed through the transparent or semitransparent electrode and is incident on the active layer is absorbed by at least one selected from the group consisting of an electron-accepting compound and an electron-donating compound, and an electron and a hole are bound to each other. Excitons are generated. When the generated excitons move and reach the heterojunction interface where the electron-accepting compound and the electron-donating compound are joined, electrons and holes are separated by the difference in HOMO energy and LUMO energy at the interface. Charges (electrons and holes) that separate and can move independently are generated. The generated charges move to the electrodes (cathode, anode), respectively, and can be taken out as electric energy (current) to the outside of the device.

<用途>
本発明の製造方法により製造される有機光電変換素子は、透明又は半透明の陰極及び陽極からなる群より選ばれる1以上から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
<Use>
The organic photoelectric conversion element manufactured by the manufacturing method of the present invention, by irradiating light such as sunlight from one or more selected from the group consisting of a transparent or semitransparent cathode and an anode, a photovoltaic force is generated between the electrodes. It can be generated and operated as an organic thin film solar cell. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.

本発明の製造方法により製造される有機光電変換素子では、陰極及び陽極の間に電圧を印加した状態、あるいは無印加の状態で、光が透明又は半透明である電極を透過して素子内に入射することにより、光電流が流れる。よって本発明の製造方法により製造される有機光電変換素子は、有機光センサとして動作させることができる。有機光センサを複数集積することにより有機イメージセンサとして用いることもできる。 In the organic photoelectric conversion element manufactured by the manufacturing method of the present invention, in a state in which a voltage is applied between the cathode and the anode, or in a state in which no voltage is applied, light is transmitted through the transparent or semitransparent electrode into the element. Upon incidence, photocurrent flows. Therefore, the organic photoelectric conversion element manufactured by the manufacturing method of the present invention can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic optical sensors.

以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。 Examples will be shown below for illustrating the present invention further in detail, but the present invention is not limited thereto.

実施例1
(有機薄膜太陽電池の作製及び評価)
スパッタ法により150nmの厚みでITO膜を付けたガラス基板を、アセトンにて洗浄した後、紫外線オゾン処理を施し、清浄な表面をもつITO電極を作製した。窒素を含むポリマーとして、ポリエチレンイミンエトキシレート(PEIE)(アルドリッチ社製、商品名ポリエチレンイミン、80%エトキシ化溶液、重量平均分子量〜70000)を脱イオン水で1/50倍に希釈した溶液を、スピンコートによりITO基板上に塗布した。該PEIE塗布膜の厚みは、約5nmであった。続けて、スピンコーター装置を用い、該PEIE膜表面に脱イオン水を滴下しながら、回転数300rpmで30秒間、洗浄処理を行った。洗浄処理後の基板を、ホットプレートを用い120℃、10分間加熱処理を施し、電子輸送層1を得た。
Example 1
(Preparation and evaluation of organic thin film solar cell)
A glass substrate having an ITO film with a thickness of 150 nm attached by a sputtering method was washed with acetone and then subjected to ultraviolet ozone treatment to produce an ITO electrode having a clean surface. As a nitrogen-containing polymer, a solution obtained by diluting polyethyleneimine ethoxylate (PEIE) (manufactured by Aldrich, trade name polyethyleneimine, 80% ethoxylated solution, weight average molecular weight ~70,000) 1/50 times with deionized water, It was applied onto the ITO substrate by spin coating. The thickness of the PEIE coating film was about 5 nm. Subsequently, using a spin coater, a deionized water was dropped on the surface of the PEIE film, and a cleaning process was performed at a rotation speed of 300 rpm for 30 seconds. The substrate after the cleaning treatment was heat-treated at 120° C. for 10 minutes using a hot plate to obtain the electron transport layer 1.

以下の方法で、得られた電子輸送層1における、全窒素原子の数(即ち窒素原子と窒素カチオンの合計数)に対する窒素カチオンの数の比率を求めた。
(1)X線光電子分光法(XPS)(x−ray photoelectron spectroscopy、Ulvac PHI社製、装置名:Quantera SXM)を用いる。
(2)束縛エネルギー(BE)約400eVに見られるN1sのシグナルピークに関して、波形解析を行い、窒素原子(BE=400eV)と窒素カチオン(BE=401±0.1eV)それぞれに由来する2つのピークに分離する。
(3)各ピーク面積の比率から、全窒素原子に対する窒素カチオンの比率を求めた。

結果を表1に記載する。

次に、p型半導体材料に相当するポリマーである高分子化合物Aと、n型半導体材料に相当するC60PCBM(フロンティアカーボン社製、商品名nanom spectra E100)をオルトジクロロベンゼン溶媒に添加し(高分子化合物A:0.5質量%、PCBM:1.0質量%)、80℃で3時間撹拌した後、活性層用の塗工液を得た。高分子化合物Aは、国際公開番号W2013/051676の実施例1に記載の合成方法で得られたものである。該塗工液を用い、スピンコートにより前記電子輸送層1上に塗布して、高分子化合物A及びC60PCBMを含む活性層を作製した。該活性層の膜厚は、約120nmであった。
The ratio of the number of nitrogen cations to the total number of nitrogen atoms (that is, the total number of nitrogen atoms and nitrogen cations) in the obtained electron transport layer 1 was obtained by the following method.
(1) X-ray photoelectron spectroscopy (XPS) (x-ray photoelectron spectroscopy, manufactured by Ulvac PHI, device name: Quantera SXM) is used.
(2) Waveform analysis was performed on the N1s signal peak found at a binding energy (BE) of about 400 eV, and two peaks were derived from the nitrogen atom (BE=400 eV) and nitrogen cation (BE=401±0.1 eV). To separate.
(3) The ratio of nitrogen cations to all nitrogen atoms was calculated from the ratio of each peak area.

The results are shown in Table 1.

Next, a polymer compound A, which is a polymer corresponding to a p-type semiconductor material, and C 60 PCBM (manufactured by Frontier Carbon Co., trade name nanom spectrum E100) corresponding to an n-type semiconductor material, were added to an orthodichlorobenzene solvent ( Polymer compound A: 0.5% by mass, PCBM: 1.0% by mass), and the mixture was stirred at 80° C. for 3 hours to obtain a coating liquid for active layer. The polymer compound A was obtained by the synthetic method described in Example 1 of International Publication No. W2013/051676. The coating liquid was applied onto the electron transport layer 1 by spin coating to prepare an active layer containing the polymer compound A and C60PCBM. The film thickness of the active layer was about 120 nm.

次に、ポリチオフェン誘導体(Solvay社製、製品名:AQ1300)をスピンコートにより活性層上に塗布した後、ホットプレート上で70℃、5分間熱処理を施すことで、正孔輸送層1を形成した。該正孔輸送層1の膜厚は、約70nmであった。 Next, a polythiophene derivative (manufactured by Solvay, product name: AQ1300) was applied on the active layer by spin coating and then heat-treated at 70° C. for 5 minutes on a hot plate to form the hole transport layer 1. .. The film thickness of the hole transport layer 1 was about 70 nm.

次に、銀ナノワイヤー分散液(Cambrios社製、商品名Clear−Ohm Ink−N)をスピンコートにより前記正孔輸送層1上に塗布した後、ホットプレート上で70℃、5分間処理することで、陽極を形成し、有機薄膜太陽電池1を得た。 Next, a silver nanowire dispersion liquid (Cambrios, trade name: Clear-Ohm Ink-N) is applied onto the hole transport layer 1 by spin coating, and then treated at 70° C. for 5 minutes on a hot plate. Then, the anode was formed to obtain the organic thin film solar cell 1.

得られた有機薄膜太陽電池1の形状は、10mm×10mmの正方形であった。得られた有機薄膜太陽電池にソーラシミュレーター(分光計器製、商品名CEP−2000:AM1.5Gフィルター、放射照度100mW/cm)を用いて一定の光を照射し、発生する電流と電圧を測定して光電変換効率、短絡電流密度、開放端電圧及びフィルファクター(曲線因子)を求めた。測定結果を表2に記載する。The shape of the obtained organic thin-film solar cell 1 was a square of 10 mm×10 mm. The obtained organic thin-film solar cell is irradiated with constant light using a solar simulator (manufactured by Spectrometer, trade name CEP-2000: AM1.5G filter, irradiance 100 mW/cm 2 ) and the generated current and voltage are measured. Then, the photoelectric conversion efficiency, the short circuit current density, the open end voltage and the fill factor (curve factor) were determined. The measurement results are shown in Table 2.

実施例2
電子輸送層作製におけるPEIE塗布膜の洗浄処理において、脱イオン水の代わりに酢酸を5重量%含む水溶液を用いた以外には、実施例1と同じ方法で電子輸送層2を作製した。XPS解析結果を表1に記載する。
Example 2
An electron transport layer 2 was produced in the same manner as in Example 1 except that an aqueous solution containing 5% by weight of acetic acid was used instead of deionized water in the cleaning treatment of the PEIE coating film in the electron transport layer production. The XPS analysis results are shown in Table 1.

実施例3
電子輸送層作製におけるPEIE塗布膜の洗浄処理において、酢酸を25重量%含む水溶液を用いた以外には、実施例1と同じ方法で電子輸送3を作製した。さらに、それを含む有機薄膜太陽電池を実施例1と同様に作製した。電子輸送層3のXPS解析結果を表1に、得られた有機薄膜太陽電池の光電変換特性を表2に記載する。
Example 3
Electron transport 3 was produced in the same manner as in Example 1 except that an aqueous solution containing 25% by weight of acetic acid was used in the cleaning treatment of the PEIE coating film in producing the electron transport layer. Further, an organic thin film solar cell containing the same was manufactured in the same manner as in Example 1. The XPS analysis results of the electron transport layer 3 are shown in Table 1, and the photoelectric conversion characteristics of the obtained organic thin film solar cell are shown in Table 2.

実施例4
電子輸送層作製におけるPEIE塗布膜の洗浄処理において、酢酸を50重量%含む水溶液を用いた以外には、実施例1と同じ方法で電子輸送層4を作製した。さらに、それを含む有機薄膜太陽電池を実施例1と同様に作製した。電子輸送層4のXPS解析結果を表1に、得られた有機薄膜太陽電池の光電変換特性を表2に記載する。
Example 4
The electron transport layer 4 was produced by the same method as in Example 1 except that an aqueous solution containing 50% by weight of acetic acid was used in the cleaning treatment of the PEIE coating film in the production of the electron transport layer. Further, an organic thin film solar cell containing the same was manufactured in the same manner as in Example 1. The XPS analysis results of the electron transport layer 4 are shown in Table 1, and the photoelectric conversion characteristics of the obtained organic thin film solar cell are shown in Table 2.

実施例5
活性層において、p型半導体材料に相当するPCE10(1−Material社製、商品名:OS010)と、n型半導体材料に相当するC70PCBM(American dye source社製、商品名ADS71BFA)とを用い、かつ陽極において真空蒸着によりAg(膜厚60nm)を用いた以外には、実施例1と同じ方法で有機薄膜太陽電池を作製した。得られた有機薄膜太陽電池の光電変換特性を表2に記載する。
Example 5
In the active layer, PCE10 (manufactured by 1-Material Co., trade name: OS010) corresponding to a p-type semiconductor material and C 70 PCBM (American dye source, trade name ADS71BFA) corresponding to an n-type semiconductor material were used. Moreover, an organic thin film solar cell was prepared by the same method as in Example 1 except that Ag (film thickness 60 nm) was used for the anode by vacuum vapor deposition. Table 2 shows the photoelectric conversion characteristics of the obtained organic thin film solar cell.

実施例6
実施例2記載の電子輸送2を用いると以外は、実施例5と同じ方法で有機薄膜太陽電池を作製した。得られた有機薄膜太陽電池の光電変換特性を表2に記載する。
Example 6
An organic thin-film solar cell was produced in the same manner as in Example 5, except that the electron transport 2 described in Example 2 was used. Table 2 shows the photoelectric conversion characteristics of the obtained organic thin film solar cell.

実施例7
p型半導体に相当するポリマーとして、化合物Aを用いた以外は、実施例5と同じ方法で有機薄膜太陽電池を作製した。得られた有機薄膜太陽電池の光電変換特性を、表2に記載する。
Example 7
An organic thin-film solar cell was produced in the same manner as in Example 5, except that Compound A was used as the polymer corresponding to the p-type semiconductor. Table 2 shows the photoelectric conversion characteristics of the obtained organic thin film solar cell.

実施例8
p型半導体に相当するポリマーとして、化合物Aを用いた以外は、実施例6と同じ方法で有機薄膜太陽電池を作製した。得られた有機薄膜太陽電池の光電変換特性を、表2に記載する。
Example 8
An organic thin-film solar cell was produced in the same manner as in Example 6 except that Compound A was used as the polymer corresponding to the p-type semiconductor. Table 2 shows the photoelectric conversion characteristics of the obtained organic thin film solar cell.

実施例9
正孔輸送層として、真空蒸着により三酸化モリブデン(膜厚は約15nm)を用いた以外は、実施例5と同じ方法で有機薄膜太陽電池を作製した。得られた有機薄膜太陽電池の光電変換特性を表2に記載する。
Example 9
An organic thin-film solar cell was produced in the same manner as in Example 5, except that molybdenum trioxide (having a thickness of about 15 nm) was used as the hole-transporting layer by vacuum evaporation. Table 2 shows the photoelectric conversion characteristics of the obtained organic thin film solar cell.

実施例10
正孔輸送層として、真空蒸着により三酸化モリブデン(膜厚は約15nm)を用いた以外は、実施例6と同じ方法で有機薄膜太陽電池を作製した。得られた有機薄膜太陽電池の光電変換特性を表2に記載する。
Example 10
An organic thin-film solar cell was produced in the same manner as in Example 6 except that molybdenum trioxide (having a thickness of about 15 nm) was used as the hole-transporting layer by vacuum evaporation. Table 2 shows the photoelectric conversion characteristics of the obtained organic thin film solar cell.

比較例1
PEIE層を塗布した後、洗浄処理が施されていない電子輸送層5を用いた以外は、実施例1と同じ方法で、有機薄膜太陽電池を作製した。電子輸送層5のXPS解析結果を表1、得られた有機薄膜太陽電池の光電変換特性を表2に記載する。
Comparative Example 1
After coating the PEIE layer, an organic thin-film solar cell was produced by the same method as in Example 1 except that the electron transport layer 5 that was not subjected to the cleaning treatment was used. The XPS analysis results of the electron transport layer 5 are shown in Table 1, and the photoelectric conversion characteristics of the obtained organic thin film solar cell are shown in Table 2.

比較例2
PEIE層を脱イオン水で1/100倍に希釈した溶液から得られた電子輸送層6を用いた以外は、比較例1と同じ方法で、電子輸送層6を作製した。さらに、それらを含む有機薄膜太陽電池を比較例1と同様に作製した。得られた有機薄膜太陽電池の光電変換特性を表2に記載する。
Comparative example 2
An electron transport layer 6 was produced in the same manner as in Comparative Example 1 except that the electron transport layer 6 obtained from a solution obtained by diluting the PEIE layer 1/100 times with deionized water was used. Further, an organic thin film solar cell containing them was produced in the same manner as in Comparative Example 1. Table 2 shows the photoelectric conversion characteristics of the obtained organic thin film solar cell.

比較例3
PEIE層を脱イオン水で1/300倍に希釈した溶液から得られた電子輸送層7を用いた以外は、比較例1と同じ方法で、電子輸送層7を作製した。さらに、それを含む有機薄膜太陽電池を比較例1と同様に作製した。得られた有機薄膜太陽電池の光電変換特性を表2に記載する。
Comparative Example 3
An electron transport layer 7 was produced in the same manner as in Comparative Example 1 except that the electron transport layer 7 obtained from a solution obtained by diluting the PEIE layer 1/300 times with deionized water was used. Further, an organic thin film solar cell including the same was manufactured in the same manner as in Comparative Example 1. Table 2 shows the photoelectric conversion characteristics of the obtained organic thin film solar cell.

Figure 0006743812
Figure 0006743812

Figure 0006743812
Figure 0006743812

本発明によれば、優れた光電変換効率を有する有機光電変換素子を提供することができる。 According to the present invention, it is possible to provide an organic photoelectric conversion element having excellent photoelectric conversion efficiency.

Claims (7)

陽極および陰極からなる一対の電極間に設けられた有機半導体を含む活性層と、
陰極及び活性層の間に設けられた窒素を含むポリマーを含む電子輸送層とを有する有機光電変換素子であって、
窒素を含むポリマーが、ポリアルキレンイミンの誘導体である、
該ポリマーが含む窒素原子の数(N)と窒素カチオンの数(N)とが(N)/{(N)+(N)}≧0.2の関係を満たす有機光電変換素子。
An active layer containing an organic semiconductor provided between a pair of electrodes consisting of an anode and a cathode,
An organic photoelectric conversion device having an electron transport layer containing a polymer containing nitrogen provided between the cathode and the active layer,
The nitrogen-containing polymer is a derivative of polyalkyleneimine,
An organic photoelectric conversion element in which the number (N) of nitrogen atoms and the number (N + ) of nitrogen cations contained in the polymer satisfy the relationship of (N + )/{(N + )+(N)}≧0.2.
基板、陰極、電子輸送層、活性層及び陽極がこの順で積層されている、請求項1に記載の有機光電変換素子。 The organic photoelectric conversion element according to claim 1, wherein the substrate, the cathode, the electron transport layer, the active layer, and the anode are laminated in this order. 前記陰極が酸化物である、請求項1または2に記載の有機光電変換素子。 The organic photoelectric conversion element according to claim 1, wherein the cathode is an oxide. 請求項1〜3いずれか一項に記載の有機光電変換素子を含む有機薄膜太陽電池。 An organic thin-film solar cell comprising the organic photoelectric conversion element according to claim 1. 請求項1〜3いずれか一項に記載の有機光電変換素子を含む有機光センサ。 An organic photosensor including the organic photoelectric conversion element according to claim 1. 陰極上にポリアルキレンイミンの誘導体と水とからなる溶液を塗布することにより塗布膜を形成する工程と、該塗布膜表面を洗浄する工程と、該洗浄された塗布膜上に活性層を形成する工程と、陽極を形成する工程とを含む有機光電変換素子の製造方法。 Forming a coating film by coating a solution of a polyalkyleneimine derivative and water on the cathode; cleaning the coating film surface; and forming an active layer on the washed coating film. A method for manufacturing an organic photoelectric conversion element, which includes a step and a step of forming an anode. 前記洗浄する工程が、有機酸を用いて洗浄する工程である、請求項6記載の有機光電変換素子の製造方法。 The method for manufacturing an organic photoelectric conversion element according to claim 6, wherein the step of washing is a step of washing with an organic acid.
JP2017517950A 2015-05-12 2016-05-10 Organic photoelectric conversion element Active JP6743812B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015097120 2015-05-12
JP2015097120 2015-05-12
PCT/JP2016/063866 WO2016181962A1 (en) 2015-05-12 2016-05-10 Organic photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPWO2016181962A1 JPWO2016181962A1 (en) 2018-03-01
JP6743812B2 true JP6743812B2 (en) 2020-08-19

Family

ID=57248212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017517950A Active JP6743812B2 (en) 2015-05-12 2016-05-10 Organic photoelectric conversion element

Country Status (2)

Country Link
JP (1) JP6743812B2 (en)
WO (1) WO2016181962A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3249709A1 (en) * 2007-04-27 2017-11-29 Merck Patent GmbH Organic photovoltaic cells
CN102439092B (en) * 2009-05-22 2014-10-08 松下电器产业株式会社 Light-absorbing material and photoelectric conversion element
US20140239284A1 (en) * 2011-10-07 2014-08-28 Sumitomo Chemical Company, Limited Polymer compound and electronic device
KR101787539B1 (en) * 2012-05-29 2017-10-18 광주과학기술원 Functional layer comprising nonconjugated polymer with amine group for organic electronic devices and organic electronic device comprising the same
JP6135668B2 (en) * 2012-06-15 2017-05-31 コニカミノルタ株式会社 Tandem organic photoelectric conversion device and solar cell using the same
WO2015001984A1 (en) * 2013-07-01 2015-01-08 コニカミノルタ株式会社 Photoelectric conversion element module and method for manufacturing same
KR101500669B1 (en) * 2013-11-18 2015-03-09 한국기계연구원 Method of manufacturing a quantum dot solar cell

Also Published As

Publication number Publication date
JPWO2016181962A1 (en) 2018-03-01
WO2016181962A1 (en) 2016-11-17

Similar Documents

Publication Publication Date Title
Po et al. The role of buffer layers in polymer solar cells
JP5553727B2 (en) Organic photoelectric conversion device and manufacturing method thereof
US9722197B2 (en) Inverted organic electronic device and method for manufacturing the same
JP5075283B1 (en) Organic thin film solar cell
JP6697886B2 (en) Photoelectric conversion element
Wang et al. Efficient polymer solar cells by lithium sulfonated polystyrene as a charge transport interfacial layer
WO2011052568A1 (en) Organic photoelectric conversion element
WO2010024157A1 (en) Organic photoelectric conversion element and fabrication method therefor
WO2011052509A1 (en) Method for production of organic photoelectric conversion element
WO2011052583A1 (en) Organic photoelectric conversion element
JP5715796B2 (en) Manufacturing method of organic photoelectric conversion element
WO2011052546A1 (en) Organic photoelectric conversion element and manufacturing method thereof
JP5298961B2 (en) Manufacturing method of organic photoelectric conversion element
JP2013026483A (en) Organic photoelectric conversion element, method for manufacturing the same, and solar cell
JP6743812B2 (en) Organic photoelectric conversion element
JP5665839B2 (en) Solar cell and method for manufacturing the same
JP6032284B2 (en) Manufacturing method of organic photoelectric conversion element
KR102092272B1 (en) Electron Transport Body, Perovskite Solar Cell including the Same, and the Fabrication Method Thereof
Singh et al. Organic Photovoltaic Cells: Opportunities and Challenges
JP6697816B2 (en) Photoelectric conversion element
JP2014241369A (en) Photoelectric conversion element and method for manufacturing the same
Shakutsui et al. Bulk-heterojunction photovoltaic cells with donor–acceptor ratio varied across the film prepared by evaporative spray deposition using ultradilute solution method
JP2016171317A (en) Organic photoelectric conversion device and solar battery
JP2016066645A (en) Photoelectric conversion element and manufacturing method for photoelectric conversion element
Oh et al. Role of a [6, 6]-phenyl C61 butyric acid methyl ester homologue buffer layer for bulk-heterojunction solar cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R151 Written notification of patent or utility model registration

Ref document number: 6743812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350