JP6742884B2 - Power supply - Google Patents

Power supply Download PDF

Info

Publication number
JP6742884B2
JP6742884B2 JP2016210085A JP2016210085A JP6742884B2 JP 6742884 B2 JP6742884 B2 JP 6742884B2 JP 2016210085 A JP2016210085 A JP 2016210085A JP 2016210085 A JP2016210085 A JP 2016210085A JP 6742884 B2 JP6742884 B2 JP 6742884B2
Authority
JP
Japan
Prior art keywords
secondary battery
gas
temperature sensor
gas flow
buffer chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016210085A
Other languages
Japanese (ja)
Other versions
JP2018073559A (en
Inventor
直剛 吉田
直剛 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2016210085A priority Critical patent/JP6742884B2/en
Publication of JP2018073559A publication Critical patent/JP2018073559A/en
Application granted granted Critical
Publication of JP6742884B2 publication Critical patent/JP6742884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、二次電池から排出されるガス温度を検出する温度センサを備える電源装置に関する。 The present invention relates to a power supply device including a temperature sensor that detects the temperature of gas discharged from a secondary battery.

二次電池を備える電源装置は、電池の外装缶が破裂するのを防止するために外装缶に排気弁を設けている。排気弁は、外装缶の内圧が閾値圧力よりも高くなると開弁して、内圧上昇による外装缶の破裂を防止する。開弁する排気弁から排出されるガスは温度が極めて高いので、安全性を確保するために排出ダクトを介して外部に排出される。この構造の電源装置は開発されている。(特許文献1参照) A power supply device including a secondary battery is provided with an exhaust valve on the outer can in order to prevent the outer can of the battery from bursting. The exhaust valve opens when the internal pressure of the outer can becomes higher than the threshold pressure, and prevents the outer can from bursting due to an increase in the inner pressure. Since the temperature of the gas discharged from the opened exhaust valve is extremely high, the gas is discharged to the outside through the discharge duct to ensure safety. Power supplies of this structure have been developed. (See Patent Document 1)

これ等従来の電源装置は、電池の排気弁に排気ダクトを連結して高温のガスを外部に排出する。図10は、円筒型のリチウムイオン二次電池の排気弁から排出される高温ガスの温度変化を示している。この図に示すように、排気弁から排出されるガスは、最高温度が700℃以上と極めて高くなる。 In these conventional power supply devices, an exhaust duct is connected to an exhaust valve of a battery to discharge hot gas to the outside. FIG. 10 shows the temperature change of the high temperature gas discharged from the exhaust valve of the cylindrical lithium ion secondary battery. As shown in this figure, the maximum temperature of the gas discharged from the exhaust valve is 700° C. or higher, which is extremely high.

一方、二次電池が異常状態となり、排気弁からガスが排出されると、排出されたガスは排気ダクトを通して外部へ排出される。そのため、排気ダクト内の温度を検出することで、排気弁の作動状態を判定し、二次電池の異常状態を検出することができる。しかしながら、特許文献1の電源装置のように、複数の二次電池の排気弁を共通の排気ダクトと連結する場合、排気弁から排出されたガスが温度センサまで到達するまでのガス流路の長さが、各々の電池セルで異なる構成となる。このような構成の場合、各二次電池と温度センサとのガス流路の長さが異なるので、電池によって排気弁から排出されたガスの検出温度が変わるという欠点がある。具体的には、ガス流路が長い二次電池から排出されたガスは、温度センサが検出するガスの検出温度が低くなる。一方、ガスを外部に排出する場合には、排気ダクト内を流れる間にガスの温度が充分に低下するように排気ダクトを設計する必要がある。このような場合、正常な状態で温度センサが検出する温度とガス流路が長い二次電池が異常状態となった場合に温度センサが検出する温度との差が少なくなり、温度センサが検出する温度に基づいてガス流路が長い二次電池の異常状態を検出することができなくなるおそれがある。 On the other hand, when the secondary battery is in an abnormal state and gas is discharged from the exhaust valve, the discharged gas is discharged to the outside through the exhaust duct. Therefore, by detecting the temperature in the exhaust duct, the operating state of the exhaust valve can be determined and the abnormal state of the secondary battery can be detected. However, when the exhaust valves of a plurality of secondary batteries are connected to a common exhaust duct as in the power supply device of Patent Document 1, the length of the gas flow path until the gas discharged from the exhaust valves reaches the temperature sensor However, each battery cell has a different configuration. In the case of such a configuration, since the length of the gas flow path between each secondary battery and the temperature sensor is different, there is a drawback in that the detected temperature of the gas discharged from the exhaust valve changes depending on the battery. Specifically, in the gas discharged from the secondary battery having a long gas flow path, the temperature detected by the temperature sensor is low. On the other hand, when exhausting the gas to the outside, it is necessary to design the exhaust duct so that the temperature of the gas is sufficiently lowered while flowing in the exhaust duct. In such a case, the difference between the temperature detected by the temperature sensor in a normal state and the temperature detected by the temperature sensor when the secondary battery having a long gas flow path is in an abnormal state is small, and the temperature sensor detects It may not be possible to detect an abnormal state of the secondary battery having a long gas flow path based on the temperature.

特開2011−65906号公報JP, 2011-65906, A

本発明は、従来の電源装置が有する以上の欠点を解決することを主な目的として開発されたものである。本発明の重要な目的は、ガス流路の経路長が異なる各二次電池から排出されるガス温度に基づいて二次電池の異常状態を正確に検出できる電源装置を提供することにある。
The present invention was developed mainly for overcoming the above drawbacks of conventional power supply devices. An important object of the present invention is to provide a power supply device capable of accurately detecting an abnormal state of a secondary battery based on the temperature of gas discharged from each secondary battery having different gas flow path lengths.

課題を解決するための手段及び効果Means and effects for solving the problems

電源装置は、閾値圧力より高くなると開弁してガスを排出する排気弁を有する複数の二次電池と、二次電池の排気弁から排出されるガス温度を検出する温度センサと、温度センサと二次電池との間に接続している排出ダクトとを備える。排出ダクトは排気弁からの排出ガスを通過させる緩衝チャンバーを備える。緩衝チャンバーは、排出ガスの流入口と、流入口から流入されるガスの排出口と、二次電池の排気弁から温度センサまでのガス流路の最短距離でガスの流動抵抗を特定する抵抗部を備える。抵抗部は、二次電池と温度センサとのガス流路の最短距離が短くなるにしたがって、ガスの流動抵抗を大きくする。 The power supply device includes a plurality of secondary batteries each having an exhaust valve that opens when a pressure becomes higher than a threshold pressure to exhaust gas, a temperature sensor that detects a gas temperature exhausted from the exhaust valve of the secondary battery, and a temperature sensor. And a discharge duct connected to the secondary battery. The exhaust duct comprises a buffer chamber through which the exhaust gas from the exhaust valve passes. The buffer chamber is a resistance part that identifies the gas flow resistance at the shortest distance of the gas inlet from the exhaust gas, the gas outlet from the inlet, and the gas passage from the exhaust valve of the secondary battery to the temperature sensor. Equipped with. The resistance portion increases the gas flow resistance as the shortest distance of the gas flow path between the secondary battery and the temperature sensor becomes shorter.

以上の電源装置は、ガス流路の流路長が異なる二次電池から排出されるガス温度に基づいて二次電池の異常状態を正確に検出できる特徴がある。それは、以上の電源装置が、排出ダクトに緩衝チャンバーを設けて、この緩衝チャンバーに、二次電池から排出されるガス流動抵抗を、二次電池と温度センサとのガス流路の最短距離で特定する抵抗部を設けており、この抵抗部が、二次電池と温度センサとのガス流路の最短距離が短くなるにしたがって、ガス流動抵抗を大きくする構造としているからである。 The above power supply device is characterized in that the abnormal state of the secondary battery can be accurately detected based on the temperature of the gas discharged from the secondary battery having different gas flow passage lengths. This is because the above power supply device provides a buffer chamber in the exhaust duct and specifies the gas flow resistance discharged from the secondary battery in this buffer chamber by the shortest distance of the gas flow path between the secondary battery and the temperature sensor. This is because the resistance part has a structure that increases the gas flow resistance as the shortest distance of the gas flow path between the secondary battery and the temperature sensor becomes shorter.

ひとつの温度センサで複数の二次電池の排気弁から排出されるガスの温度を検出する従来の電源装置は、温度センサ近くの二次電池からの排出ガスの温度を高く、遠くの二次電池からの排出ガスの温度を低く検出するので、ガス流路の流路長が異なる二次電池から排出されるガス温度を正確に検出できない。近くの二次電池から排出される排出ガスは、温度低下することなく温度センサに到達するが、遠くの二次電池から排出される排出ガスは、排出ダクトで温度が低下して温度センサに到達するからである。 A conventional power supply device that detects the temperature of the gas exhausted from the exhaust valves of multiple secondary batteries with one temperature sensor has a high temperature of the exhaust gas from the secondary battery near the temperature sensor, Since the temperature of the exhaust gas from the battery is detected low, the temperature of the gas discharged from the secondary batteries having different gas flow path lengths cannot be accurately detected. Exhaust gas discharged from a nearby secondary battery reaches the temperature sensor without lowering the temperature, but exhaust gas discharged from a distant secondary battery cools down in the discharge duct and reaches the temperature sensor. Because it does.

上述のとおり、本発明のある態様の電源装置は、排出ダクトに経路長で流動抵抗を制御する抵抗部を備える緩衝チャンバーを設けて、二次電池と温度センサとの流路長による検出誤差を解消することができるようになっている。抵抗部は、二次電池と温度センサとの経路長の最短距離が長くなるにしたがって、ガスの流動抵抗を小さくする構造としている。そのため、温度センサの近くの二次電池からの排出ガスは、流動抵抗の大きい抵抗部を通過して温度センサに到達する。一方、温度センサから離れている二次電池からの排出ガスは、流動抵抗の小さい抵抗部をスムーズに通過して温度センサに到達する。これにより、温度センサに到達するまでの経路長の違いに起因する温度低下の差を少なくすることができ、温度センサによって検出されるガスの温度分布を狭めることができる。したがって、温度センサの検出温度に基づいて、二次電池の異常状態を正確に検出することができる。 As described above, in the power supply device according to an aspect of the present invention, the exhaust duct is provided with the buffer chamber including the resistance unit that controls the flow resistance by the path length, and the detection error due to the flow path length between the secondary battery and the temperature sensor is eliminated. It can be resolved. The resistance part has a structure in which the flow resistance of gas decreases as the shortest path length between the secondary battery and the temperature sensor increases. Therefore, the exhaust gas from the secondary battery near the temperature sensor reaches the temperature sensor after passing through the resistance portion having a large flow resistance. On the other hand, the exhaust gas from the secondary battery, which is separated from the temperature sensor, smoothly passes through the resistance portion having a small flow resistance and reaches the temperature sensor. As a result, it is possible to reduce the difference in temperature decrease due to the difference in the path length until reaching the temperature sensor, and it is possible to narrow the temperature distribution of the gas detected by the temperature sensor. Therefore, the abnormal state of the secondary battery can be accurately detected based on the temperature detected by the temperature sensor.

本発明の電源装置は、緩衝チャンバーの流入口を各々の二次電池の排気弁に直接又は間接に連結して、抵抗部を流入口に設けている絞り開口とし、絞り開口が、温度センサまでの最短距離が短い二次電池との間に設けてなる流入口の開口面積を、温度センサまでの最短距離の長い二次電池との間に設けてなる流入口の開口面積よりも小さくすることができる。 In the power supply device of the present invention, the inlet of the buffer chamber is directly or indirectly connected to the exhaust valve of each secondary battery, and the resistance portion is a throttle opening provided at the inlet, and the throttle opening is up to the temperature sensor. The opening area of the inlet provided between the secondary battery with the shortest distance to the temperature sensor is smaller than the opening area of the inlet provided with the secondary battery with the shortest distance to the temperature sensor. You can

以上の電源装置は、緩衝チャンバーに設けている抵抗部を、緩衝チャンバーに設けている各々の流入口に設けてなる絞り開口とし、この絞り開口の開口面積で流動抵抗を制御する。絞り開口は、温度センサから二次電池までの最短距離が短くなる流入口の開口面積を小さくしている流動抵抗を大きく、二次電池までの最短距離が長くなる流入口の開口面積を大きくして流動抵抗を小さくして、ガス流路の流路長が異なる二次電池から排出されるガス温度を温度センサで正確に検出する。温度センサの近くの二次電池から温度センサに流動する排出ガスは、開口面積の小さい絞り開口を通過するので、流入口を通過するガスの流速が速くなって、緩衝チャンバー内の空気を十分に撹拌し、撹拌されてチャンバー内の常温空気とガスとが十分に混合されて温度センサに到達する。緩衝チャンバー内の空気は排出ガスの温度よりも相当に低いので、排出ガスがチャンバー内の空気と撹拌されて温度が低下して温度センサに到達して、検出温度は低下される。 In the above power supply device, the resistance portion provided in the buffer chamber is a throttle opening provided at each inflow port provided in the buffer chamber, and the flow resistance is controlled by the opening area of the throttle opening. The throttle opening reduces the opening area of the inlet where the shortest distance from the temperature sensor to the secondary battery is small.The flow resistance is large, and the opening area of the inlet where the shortest distance to the secondary battery is long is large. By reducing the flow resistance, the temperature of the gas discharged from the secondary batteries having different gas flow path lengths is accurately detected by the temperature sensor. The exhaust gas flowing from the secondary battery near the temperature sensor to the temperature sensor passes through the throttle opening with a small opening area, so the flow velocity of the gas passing through the inlet becomes fast and the air in the buffer chamber is sufficiently filled. The mixture is stirred, and the ambient temperature air and gas in the chamber are sufficiently mixed and reach the temperature sensor. Since the air in the buffer chamber is considerably lower than the temperature of the exhaust gas, the exhaust gas is agitated with the air in the chamber to lower the temperature and reach the temperature sensor, and the detected temperature is lowered.

反対に温度センサから遠く離れた二次電池からの排出ガスは、開口面積の大きい絞り開口の流入口を通過して温度センサに到達するので、流入口を高速流動することなく通過して、緩衝チャンバー内の空気との混合による温度の低下が少なく排出口から排出される。温度センサに近い二次電池からの排出ガスは、開口面積の小さい流入口を高速流動して緩衝チャンバー内の空気に十分に混合されて温度が低下し、温度センサから離れた二次電池からの排出ガスは、高速流動することなく流入口を通過して緩衝チャンバー内の空気の混合が少なくなって、混合される空気による温度低下が少なくなるので、ガス流路の経路長が異なる二次電池であっても、温度センサの検出温度に基づいて二次電池の異常状態を正確に検出できる。 On the contrary, the exhaust gas from the secondary battery far away from the temperature sensor reaches the temperature sensor through the inlet of the throttle opening with a large opening area, so it passes through the inlet without high-speed flow and is buffered. The temperature is less likely to drop due to mixing with the air in the chamber, and is discharged from the discharge port. Exhaust gas from the secondary battery close to the temperature sensor flows at high speed through the inlet with a small opening area and is sufficiently mixed with the air in the buffer chamber to lower the temperature. The exhaust gas passes through the inflow port without flowing at high speed, the amount of air mixed in the buffer chamber is reduced, and the temperature drop due to the mixed air is reduced. Even in this case, the abnormal state of the secondary battery can be accurately detected based on the temperature detected by the temperature sensor.

本発明の電源装置は、緩衝チャンバーの流入口を、各々の二次電池の排気弁に直接又は間接に連結し、抵抗部を、流入口のガス流動抵抗を制限する濾材とし、温度センサに近い二次電池との間の流入口に設けてなる濾材のガス流動抵抗を、温度センサに遠い二次電池との間の流入口のガス流動抵抗よりも大きくすることができる。 In the power supply device of the present invention, the inlet of the buffer chamber is directly or indirectly connected to the exhaust valve of each secondary battery, and the resistance portion is a filter medium that limits the gas flow resistance of the inlet, and is close to the temperature sensor. The gas flow resistance of the filter medium provided at the inlet to the secondary battery can be made larger than the gas flow resistance at the inlet to the secondary battery far from the temperature sensor.

以上の電源装置は、ガス流動抵抗を制御する濾材を抵抗部として緩衝チャンバーに設けているので、ガス流路の経路長が異なる二次電池であっても、温度センサの検出温度に基づいて二次電池の異常状態を正確に検出できる特徴がある。それは、温度センサに近い二次電池との間の流入口に設けている濾材のガス流動抵抗が、温度センサに遠い二次電池との間の流入口のガス流動抵抗よりも大きい濾材としているからである。温度センサの近くの二次電池から温度センサに流動する排出ガスは、ガス流動抵抗の大きい濾材を通過するので、濾材を通過して拡散され、また流速が低下してチャンバー内の空気と十分に混合されて温度センサに到達する。緩衝チャンバー内の空気は排出ガスの温度よりも相当に低いので、排出ガスがチャンバー内の空気と混合されて温度が低下して温度センサに到達して、検出温度は低下する。 In the above power supply device, since the filter medium for controlling the gas flow resistance is provided in the buffer chamber as a resistance portion, even if the secondary batteries have different path lengths of the gas flow paths, the secondary battery is detected based on the temperature detected by the temperature sensor. It has a feature that can accurately detect the abnormal state of the secondary battery. This is because the gas flow resistance of the filter medium provided at the inlet between the secondary battery near the temperature sensor and the secondary battery is larger than the gas flow resistance at the inlet between the secondary battery far from the temperature sensor. Is. Exhaust gas flowing from the secondary battery near the temperature sensor to the temperature sensor passes through the filter medium having a large gas flow resistance, and is diffused through the filter medium. It is mixed and reaches the temperature sensor. Since the air in the buffer chamber is considerably lower than the temperature of the exhaust gas, the exhaust gas is mixed with the air in the chamber to lower the temperature and reach the temperature sensor, which lowers the detected temperature.

反対に温度センサから遠く離れた二次電池からの排出ガスは、ガス流動抵抗の小さい濾材を通過して温度センサに到達するので、濾材を通過しながら速やかに温度センサに到達して検出温度が低くなるのが防止される。 On the contrary, the exhaust gas from the secondary battery far away from the temperature sensor reaches the temperature sensor by passing through the filter medium having a small gas flow resistance. It is prevented from becoming low.

温度センサに近い二次電池からの排出ガスは、濾材でチャンバー内の空気と混合されて温度が低下し、温度センサから離れた二次電池からの排出ガスは濾材を通過しながらスムーズに温度センサに到達するので、ガス流路の経路長が異なる二次電池であっても、温度センサの検出温度に基づいて二次電池の異常状態をより正確に検出できる。 The exhaust gas from the secondary battery close to the temperature sensor is mixed with the air in the chamber by the filter medium and the temperature drops, and the exhaust gas from the secondary battery away from the temperature sensor passes through the filter medium and smoothly flows into the temperature sensor. Therefore, even in the case of secondary batteries having different gas flow path lengths, the abnormal state of the secondary battery can be detected more accurately based on the temperature detected by the temperature sensor.

本発明の電源装置は、緩衝チャンバーの流入口を、各々の二次電池の排気弁に直接又は間接に連結し、抵抗部を、流入口から緩衝チャンバーに流入されるガスの通路にあって、ガスの流動方向に交差する姿勢で配置してなる邪魔板とし、温度センサとの最短距離が短い二次電池に連結してなる流入口と排出口との間に設けている邪魔板によるガス流動抵抗を、温度センサとの最短距離が長い二次電池に連結してなる流入口と排出口との間に設けてなる邪魔板のガス流動抵抗よりも大きくすることができる。 In the power supply device of the present invention, the inflow port of the buffer chamber is directly or indirectly connected to the exhaust valve of each secondary battery, and the resistance part is provided in the passage of gas flowing into the buffer chamber from the inflow port. Gas flow by a baffle plate that is placed between the inlet and outlet that is connected to a secondary battery that has a shortest distance to the temperature sensor, and that is a baffle plate that is placed in a posture that intersects the gas flow direction. The resistance can be made larger than the gas flow resistance of the baffle plate provided between the inlet and the outlet connected to the secondary battery having the shortest distance from the temperature sensor.

以上の電源装置は、ガス流動抵抗を制御する邪魔板を抵抗部として緩衝チャンバーに設けているので、ガス流路の経路長が異なる二次電池であっても、温度センサの検出温度に基づいて二次電池の異常状態を正確に検出できる特徴がある。それは、従来の装置では、温度が高く検出されて検出誤差が発生していた温度センサに近い二次電池からの排出ガスを、流入口と排出口との間に設けたガスの流動抵抗の大きい邪魔板でに通過させて温度センサに検出させるので、邪魔板を通過することによってストレートに温度センサに到達することなく、ガス流動抵抗の大きい邪魔板で十分に拡散されて、緩衝チャンバー内の空気と十分に混合されて温度センサに到達する。緩衝チャンバー内の空気は排出ガスの温度よりも低いので、排出ガスがガス流動抵抗の大きい邪魔板でチャンバー内の空気と混合されることで、温度が低下して温度センサに到達して、検出温度が低下される。 In the above power supply device, since the baffle plate for controlling the gas flow resistance is provided in the buffer chamber as the resistance portion, even if the secondary batteries have different gas flow path lengths, the temperature sensor detects the temperature based on the temperature detected by the temperature sensor. It has a feature that can accurately detect the abnormal state of the secondary battery. In the conventional device, the exhaust gas from the secondary battery, which is close to the temperature sensor where a high temperature is detected and a detection error occurs, has a large flow resistance of the gas provided between the inlet and the outlet. Since the temperature sensor detects by passing it through the baffle plate, it does not reach the temperature sensor straight by passing through the baffle plate, but it is sufficiently diffused by the baffle plate with a large gas flow resistance, and the air in the buffer chamber Is mixed well with and reaches the temperature sensor. Since the air in the buffer chamber is lower than the temperature of the exhaust gas, the exhaust gas is mixed with the air in the chamber by the baffle plate with high gas flow resistance, and the temperature drops and reaches the temperature sensor for detection. The temperature is reduced.

反対に温度センサから遠く離れた二次電池からの排出ガスは、ガス流動抵抗を小さくしている邪魔板をスムーズに通過して温度センサに到達し、邪魔板による空気との混合が少なくなって温度が低くなるのが防止される。 On the contrary, the exhaust gas from the secondary battery far away from the temperature sensor passes smoothly through the baffle plate that reduces the gas flow resistance, reaches the temperature sensor, and the baffle plate mixes less with the air. The lowering of the temperature is prevented.

したがって、温度センサに近い二次電池からの排出ガスは、邪魔板でチャンバー内の空気と混合されて温度が低下して温度センサに温度検出され、温度センサから離れた二次電池からの排出ガスは邪魔板をスムーズに通過して温度センサに到達するので、邪魔板による温度低下が少なくなる。したがって、ガス流路の経路長が異なる二次電池であっても、温度センサの検出温度に基づいて二次電池の異常状態を、正確に検出できる。 Therefore, the exhaust gas from the secondary battery close to the temperature sensor is mixed with the air in the chamber by the baffle to lower the temperature and the temperature is detected by the temperature sensor, and the exhaust gas from the secondary battery far from the temperature sensor is detected. Passes through the baffle plate and reaches the temperature sensor smoothly, so that the temperature drop due to the baffle plate is reduced. Therefore, even in secondary batteries having different gas flow path lengths, the abnormal state of the secondary battery can be accurately detected based on the temperature detected by the temperature sensor.

本発明の電源装置は、緩衝チャンバーの流入口を、各々の二次電池の排気弁に直接又は間接に連結し、抵抗部を、流入口から緩衝チャンバーに流入するガスの流路に設けてなる邪魔板とし、この邪魔板でもって、流入口と邪魔板との間隔でガス流動抵抗を特定し、ガス流動抵抗の大きい邪魔板は、ガス流動抵抗の小さい邪魔板よりも流入口に接近させることができる。 In the power supply device of the present invention, the inlet of the buffer chamber is directly or indirectly connected to the exhaust valve of each secondary battery, and the resistor is provided in the flow path of the gas flowing from the inlet to the buffer chamber. As a baffle plate, the gas flow resistance is specified by the distance between the inlet and the baffle plate with this baffle plate, and the baffle plate with a large gas flow resistance should be closer to the inflow port than the baffle plate with a small gas flow resistance. You can

以上の電源装置は、邪魔板を流入口に接近させる間隔でガス流動抵抗を特定し、邪魔板を流入口に接近してガス流動抵抗を大きく、流入口から離してガス流動抵抗を小さくしているので、邪魔板を配置する位置を二次電池と温度センサとの最短距離で特定して、ガス流路の経路長が異なる二次電池であっても、温度センサの検出温度に基づいて二次電池の異常状態を正確に検出できる特徴がある。 The above power supply device specifies the gas flow resistance at the interval at which the baffle plate approaches the inflow port, increases the gas flow resistance by approaching the baffle plate to the inflow port, and reduces the gas flow resistance by moving away from the inflow port. Therefore, the position where the baffle is placed is specified by the shortest distance between the secondary battery and the temperature sensor, and even if the secondary battery has a different gas flow path length, the secondary battery is detected based on the temperature detected by the temperature sensor. It has a feature that can accurately detect the abnormal state of the secondary battery.

本発明の電源装置は、緩衝チャンバーの流入口を、各々の二次電池の排気弁に直接又は間接に連結し、抵抗部を、流入口から緩衝チャンバーに流入するガスの流路に設けてなる邪魔板とし、邪魔板の面積でガス流動抵抗を特定して、ガス流動抵抗の大きい邪魔板は、ガス流動抵抗の小さい邪魔板よりも大面積とすることができる。 In the power supply device of the present invention, the inlet of the buffer chamber is directly or indirectly connected to the exhaust valve of each secondary battery, and the resistor is provided in the flow path of the gas flowing from the inlet to the buffer chamber. A baffle plate is used, and the gas flow resistance is specified by the area of the baffle plate, and the baffle plate having a large gas flow resistance can have a larger area than the baffle plate having a small gas flow resistance.

以上の電源装置は、邪魔板の面積でガス流動抵抗を特定し、邪魔板を大きくしてガス流動抵抗を大きく、小さくしてガス流動抵抗を小さくするので、邪魔板の大きさを二次電池と温度センサとの最短距離で特定することで、ガス流路の経路長が異なる二次電池であっても、温度センサの検出温度に基づいて二次電池の異常状態を正確に検出できる特徴がある。 In the above power supply device, the gas flow resistance is specified by the area of the baffle plate, and the baffle plate is increased to increase the gas flow resistance and reduced to reduce the gas flow resistance. By specifying the shortest distance between the temperature sensor and the temperature sensor, it is possible to accurately detect the abnormal state of the secondary battery based on the temperature detected by the temperature sensor, even if the battery has different gas flow path lengths. is there.

本発明の電源装置は、緩衝チャンバーの流入口を、各々の二次電池の排気弁に直接又は間接に連結し、抵抗部を、流入口から緩衝チャンバーに流入するガスの流路に設けてなる邪魔板とい、邪魔板のガスの流動方向に対する角度でガス流動抵抗を特定して、ガス流動抵抗の大きい邪魔板のガスの流動方向に対する角度を、ガス流動抵抗の小さい邪魔板よりもガスの流動方向に対して直交する姿勢とすることができる。 In the power supply device of the present invention, the inlet of the buffer chamber is directly or indirectly connected to the exhaust valve of each secondary battery, and the resistor is provided in the flow path of the gas flowing from the inlet to the buffer chamber. The baffle plate is a gas flow resistance that is specified by the angle of the baffle plate with respect to the gas flow direction. The posture can be orthogonal to the direction.

以上の電源装置は、邪魔板をガスの流動方向に対する角度でガス流動抵抗を特定し、邪魔板をガスの流動方向に直交する姿勢としてガス流動抵抗を大きく、ガスの流動方向に平行な姿勢としてガス流動抵抗を小さくしているので、邪魔板を配置する姿勢を二次電池と温度センサとの最短距離で特定して、ガス流路の経路長が異なる二次電池であっても、温度センサの検出温度に基づいて二次電池の異常状態を正確に検出できる特徴がある。 The above power supply device identifies the gas flow resistance by the angle of the baffle plate with respect to the gas flow direction, and sets the baffle plate as a posture orthogonal to the gas flow direction to increase the gas flow resistance and as a posture parallel to the gas flow direction. Since the gas flow resistance is reduced, the posture of disposing the baffle plate can be specified by the shortest distance between the secondary battery and the temperature sensor, and even if the secondary battery has different gas flow path lengths, There is a feature that the abnormal state of the secondary battery can be accurately detected based on the detected temperature of.

本発明の電源装置は、緩衝チャンバーの抵抗部を、流入口から排出口までの流路長を変更する壁体とし、温度センサに近い流入口の流路に設けてなる壁体を、温度センサに遠い流入口の流路に設けてなる壁体よりも流路を長くする位置に配置することができる。 In the power supply device of the present invention, the resistance part of the buffer chamber is a wall body that changes the flow path length from the inflow port to the exhaust port, and the wall body provided in the inflow path near the temperature sensor is used as the temperature sensor. It can be arranged at a position where the flow path is made longer than the wall body provided in the flow path of the inlet far away.

以上の電源装置は、抵抗部の流路長を変更する壁体で特定し、邪魔板をガスの流動方向に直交する姿勢としてガス流動抵抗を大きく、ガスの流動方向に平行な姿勢としてガス流動抵抗を小さくしているので、邪魔板を配置する姿勢を二次電池と温度センサとの最短距離で特定して、ガス流路の経路長が異なる二次電池であっても、温度センサの検出温度に基づいて二次電池の異常状態を正確に検出できる特徴がある。 The above power supply device is specified by the wall that changes the flow path length of the resistance part, and the gas flow resistance is increased by setting the baffle plate in a posture orthogonal to the gas flow direction, and the gas flow is set in a posture parallel to the gas flow direction. Since the resistance is small, the orientation of arranging the baffle can be specified by the shortest distance between the secondary battery and the temperature sensor, and even if the secondary battery has a different gas flow path length, the temperature sensor can detect it. There is a feature that the abnormal state of the secondary battery can be accurately detected based on the temperature.

以上の電源装置は、温度センサを温度ヒューズとすることができる。 In the above power supply device, the temperature sensor can be a thermal fuse.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電源装置を例示するものであって、本発明は電源装置を以下のものに特定しない。 Embodiments of the present invention will be described below with reference to the drawings. However, the embodiments described below exemplify the power supply device for embodying the technical idea of the present invention, and the present invention does not specify the power supply device to the following.

さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。 Further, in this specification, for easier understanding of the claims, the numbers corresponding to the members shown in the examples are shown in "Claims" and "Means for Solving Problems". It is added to the parts that are used. However, the members shown in the claims are not limited to the members of the embodiment.

図1と図2に示す電源装置は、複数の二次電池1と、各々の二次電池1の排気弁4から排出される排出ガスの温度を検出する温度センサ2と、この温度センサ2と二次電池1との間に連結されて、排出ガスを外部に排出する排出ダクト3とを備える。 1 and 2, a plurality of secondary batteries 1, a temperature sensor 2 for detecting the temperature of exhaust gas discharged from an exhaust valve 4 of each secondary battery 1, and a temperature sensor 2 An exhaust duct 3 that is connected to the secondary battery 1 and discharges exhaust gas to the outside is provided.

二次電池1は直列に接続して出力電圧を高く、並列に接続して出力電流を大きくできるので、電源装置の用途に最適な出力電圧と出力電流とするために、二次電池1を直列に接続する個数と、並列に接続する数とを特定している。たとえば、ハイブリッドカーや電動車両に搭載されて走行モータに電力を供給する電源装置は、出力電圧を数百V、最大出力電流を数百Aとするように二次電池1を接続している。電源装置は、温度センサ2はヒューズとし、設定温度よりも高い状態で温度ヒューズを溶断して安全に使用できる。ただ、温度センサ2は温度ヒューズには特定せず、たとえば、温度センサ2をサーミスタ等の温度検出素子とし、温度センサ2で検出される温度で別に設けたヒューズを溶断し、あるいは出力側に接続している出力リレーを遮断することもできる。 The secondary batteries 1 can be connected in series to increase the output voltage and connected in parallel to increase the output current. Therefore, in order to obtain the optimum output voltage and output current for the power supply device, the secondary batteries 1 are connected in series. And the number of parallel connections. For example, a power supply device that is installed in a hybrid car or an electric vehicle and supplies electric power to a traveling motor is connected with a secondary battery 1 so that the output voltage is several hundred V and the maximum output current is several hundred A. In the power supply device, the temperature sensor 2 is a fuse, and the temperature fuse can be melted and used safely in a state higher than the set temperature. However, the temperature sensor 2 is not specified as a temperature fuse. For example, the temperature sensor 2 is used as a temperature detection element such as a thermistor, and a fuse separately provided at the temperature detected by the temperature sensor 2 is blown or connected to the output side. It is also possible to cut off the output relay that is operating.

二次電池1はリチウムイオン二次電池である。リチウムイオン二次電池などの非水系電解液二次電池は重量と体積に対する充放電容量が大きく、電源装置を小型軽量化して充放電容量を大きくできる。ただし、本発明の電源装置は、二次電池をリチウムイオン二次電池などの非水系電解液二次電池には特定せず、現在使用されあるいはこれから開発される全ての二次電池を使用できる。リチウムイオン二次電池などの非水系電解液二次電池は排出されるガスの温度が特に高いので、ガスの温度を低くして排出して安全に排出できるが、他の二次電池においても、排気弁は異常な使用環境で開弁することから、排気弁4から排出されるガスは、ガス温度を低下して排出することは安全性を向上できる効果がある。 The secondary battery 1 is a lithium ion secondary battery. A non-aqueous electrolyte secondary battery such as a lithium-ion secondary battery has a large charge/discharge capacity with respect to weight and volume, and can reduce the size and weight of a power supply device to increase the charge/discharge capacity. However, the power supply device of the present invention does not specify the secondary battery as a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, but can use all secondary batteries currently used or to be developed. Non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries have a particularly high temperature of the discharged gas, so they can be discharged safely by lowering the temperature of the gas, but also with other secondary batteries, Since the exhaust valve opens in an abnormal use environment, reducing the temperature of the gas discharged from the exhaust valve 4 to discharge the gas has the effect of improving safety.

排出ダクト3は、ひとつの温度センサ2でもって、ガス流路の流路長が異なる複数の二次電池1の排気弁4から排出されるガス温度を正確に検出するために緩衝チャンバー5を設けている。排出ガスは、緩衝チャンバー5を通過して温度センサ2でガス温度が検出される。従って、温度センサ2は緩衝チャンバー5の排出側に設けられて緩衝チャンバー5から排出されるガスの温度を検出する。図の排出ダクト3は、緩衝チャンバー5の排出側に膨張チャンバー6を連結し、緩衝チャンバー5から排出されるガスの温度を膨張チャンバー6で低下させて外部に排出する。 The exhaust duct 3 is provided with a buffer chamber 5 in order to accurately detect the temperature of the gas exhausted from the exhaust valves 4 of the plurality of secondary batteries 1 having different gas flow path lengths with one temperature sensor 2. ing. The exhaust gas passes through the buffer chamber 5, and the temperature sensor 2 detects the gas temperature. Therefore, the temperature sensor 2 is provided on the discharge side of the buffer chamber 5 and detects the temperature of the gas discharged from the buffer chamber 5. The exhaust duct 3 shown in the figure connects the expansion chamber 6 to the exhaust side of the buffer chamber 5, and lowers the temperature of the gas exhausted from the buffer chamber 5 in the expansion chamber 6 and exhausts it to the outside.

図1と図2の緩衝チャンバー5は、複数の二次電池1の排気弁4を流入口7に連結して、開弁する排気弁4から排出されるガスを緩衝チャンバー5に流入して、排出口8に配置している温度センサ2で排出ガスの温度を検出する。緩衝チャンバーは、二次電池の排気弁を直接に流入口に連結し、あるいは、図示しないが、流入口に二次電池の排気弁を直接には連結することなく、ダクトを介して連結し、あるいは複数の二次電池を電池ユニットとして、電池ユニットに連結している排出ダクトを流入口に連結して、複数の電池ユニットから排出されるガス温度を温度センサで検出することもできる。 In the buffer chamber 5 of FIGS. 1 and 2, the exhaust valves 4 of the plurality of secondary batteries 1 are connected to the inflow port 7, and the gas discharged from the exhaust valve 4 that opens is introduced into the buffer chamber 5. The temperature of the exhaust gas is detected by the temperature sensor 2 arranged at the exhaust port 8. The buffer chamber directly connects the exhaust valve of the secondary battery to the inflow port, or, although not shown, connects the exhaust valve of the secondary battery to the inflow port through the duct without directly connecting, Alternatively, a plurality of secondary batteries may be used as a battery unit, an exhaust duct connected to the battery unit may be connected to the inlet, and the temperature of gas discharged from the plurality of battery units may be detected by a temperature sensor.

さらに、これ等の図の緩衝チャンバー5は、側面に複数の流入口7を設けて、端部に排出口8を設けている。図1の緩衝チャンバー5は、一端に排出口8を設けてここに温度センサ2を配置し、図2の緩衝チャンバー5は両端に排出口8を設けて各々の排出口8に温度センサ2を配置している。これ等の図に示す緩衝チャンバー5は端部に排出口8を設けて、排出口8に設けた温度センサ2で各二次電池1から排出される排出ガスの温度を検出しているが、排出口8は緩衝チャンバー5の中央部に設けることもできる。 Further, the buffer chamber 5 in these figures is provided with a plurality of inlets 7 on the side surface and an outlet 8 at the end. The buffer chamber 5 of FIG. 1 is provided with a discharge port 8 at one end and the temperature sensor 2 is arranged therein, and the buffer chamber 5 of FIG. 2 is provided with discharge ports 8 at both ends thereof and the temperature sensor 2 is provided at each discharge port 8. It is arranged. The buffer chamber 5 shown in these figures is provided with an exhaust port 8 at its end, and the temperature sensor 2 provided at the exhaust port 8 detects the temperature of the exhaust gas exhausted from each secondary battery 1. The discharge port 8 may be provided in the center of the buffer chamber 5.

図1に示すように、ひとつの温度センサ2で全ての二次電池1からの排出ガスの温度を検出する装置は、温度センサ2から各二次電池1の排気弁4までの距離(L1〜L2)を最短距離とし、図2に示すように、複数の温度センサ2で全ての二次電池1からの排出ガスの温度を検出する装置は、各々の二次電池1の排気弁4から各温度センサ2までの距離(L1〜L2、L1’〜L2’)であって、短い距離を最短距離として、抵抗部のガスの流動抵抗を特定する。また、二次電池1の排気弁4から温度センサ2までの間に複数の経路がある装置にあっても、最短経路における距離を最短距離として抵抗部のガスの流動抵抗を特定する。排気弁4から最短距離にある通過を通過するガスが、最初に温度センサ2に到達して最高温度として検出されるからである。 As shown in FIG. 1, the device for detecting the temperature of the exhaust gas from all the secondary batteries 1 with one temperature sensor 2 is a distance (L1 to the exhaust valve 4 of each secondary battery 1 from the temperature sensor 2). L2) is set as the shortest distance, and as shown in FIG. 2, the device for detecting the temperature of the exhaust gas from all the secondary batteries 1 by the plurality of temperature sensors 2 includes the exhaust valves 4 of the respective secondary batteries 1. The distance (L1 to L2, L1′ to L2′) to the temperature sensor 2 and the short distance is set as the shortest distance, and the gas flow resistance of the resistance portion is specified. Further, even in a device having a plurality of paths from the exhaust valve 4 of the secondary battery 1 to the temperature sensor 2, the gas flow resistance of the resistance part is specified with the distance in the shortest path as the shortest distance. This is because the gas passing through the passage having the shortest distance from the exhaust valve 4 first reaches the temperature sensor 2 and is detected as the maximum temperature.

図3ないし図9は緩衝チャンバー5の概略断面図である。これらの図に示す緩衝チャンバー5は、中央部に排出口8を設けて各流入口7から流入されるガスを中央部の排出口8から排出する。緩衝チャンバー5は、ガス流路の最短距離で抵抗部のガスの流動抵抗を調整しているが、この最短距離は、図1と図2の鎖線で示すように、抵抗部を設けない緩衝チャンバー5において流入口7から温度センサ2に至る最短距離(L1〜L6、L1’〜L6’)である。 3 to 9 are schematic sectional views of the buffer chamber 5. The buffer chamber 5 shown in these figures is provided with an exhaust port 8 in the central portion, and the gas flowing in from each inflow port 7 is exhausted from the exhaust port 8 in the central portion. The buffer chamber 5 adjusts the flow resistance of the gas in the resistance portion at the shortest distance of the gas flow path. 5 is the shortest distance (L1 to L6, L1′ to L6′) from the inflow port 7 to the temperature sensor 2.

緩衝チャンバー5は、二次電池1の排気弁4から温度センサ2までのガス流路の最短距離でもって、ガスの流動抵抗を制御する抵抗部9を備える。抵抗部9は、二次電池1と温度センサ2とのガス流路の最短距離が短くなるにしたがって、ガスの流動抵抗を大きくする構造として、温度センサ2が、ガス流路の流路長が異なる各二次電池1から排出されるガスの温度を正確に検出する。抵抗部9を設けることなく温度センサ2にガス温度を検出すると、最短距離の短い温度センサ2に近い位置の二次電池1から排出されるガスの温度を高く検出し、最短距離の長い温度センサ2から離れた位置の二次電池1から排出されるガス温度を低く検出するからである。 The buffer chamber 5 includes a resistance unit 9 that controls the gas flow resistance with the shortest distance of the gas flow path from the exhaust valve 4 of the secondary battery 1 to the temperature sensor 2. The resistance portion 9 has a structure in which the flow resistance of the gas increases as the shortest distance of the gas flow path between the secondary battery 1 and the temperature sensor 2 decreases. The temperature of the gas discharged from each different secondary battery 1 is accurately detected. When the gas temperature is detected by the temperature sensor 2 without providing the resistance portion 9, the temperature of the gas discharged from the secondary battery 1 located near the temperature sensor 2 having the shortest distance is detected high, and the temperature sensor having the shortest distance is detected. This is because the temperature of the gas discharged from the secondary battery 1 at a position away from 2 is detected low.

以下、緩衝チャンバー5の具体例を図1〜図7に示す。
図3の緩衝チャンバー5は、各流入口7に抵抗部9を設けて、抵抗部9で通過するガスの流動抵抗を制御する。流入口7の抵抗部9は、開口面積でガスの流動抵抗を特定する絞り開口9Aである。絞り開口9Aは、開口面積を大きくしてガスの流動抵抗を小さく、開口面積を小さくしてガスの流動抵抗を大きくする。温度センサ2は、温度センサ2までの最短距離が短い二次電池1から排出されるガスの温度を高く検出するので、抵抗部9の絞り開口9Aは、最短距離の短い二次電池1に連結している流入口7の開口面積を小さくしてガスの流動抵抗を大きくしている。反対に、温度センサ2は、最短距離が長い二次電池1から排出されるガスの温度を低く検出するので、抵抗部9の絞り開口9Aは、最短距離の長い二次電池1に連結している流入口7の開口面積を大きくして、ガスの流動抵抗を大きくしている。
Hereinafter, specific examples of the buffer chamber 5 are shown in FIGS.
In the buffer chamber 5 of FIG. 3, a resistance part 9 is provided at each inflow port 7 to control the flow resistance of the gas passing through the resistance part 9. The resistance portion 9 of the inflow port 7 is a throttle opening 9A that specifies the gas flow resistance by the opening area. The throttle opening 9A increases the opening area to reduce the gas flow resistance, and reduces the opening area to increase the gas flow resistance. Since the temperature sensor 2 detects a high temperature of the gas discharged from the secondary battery 1 having the shortest distance to the temperature sensor 2, the throttle opening 9A of the resistor portion 9 is connected to the secondary battery 1 having the shortest distance. The opening area of the inflow port 7 is reduced to increase the gas flow resistance. On the contrary, since the temperature sensor 2 detects the temperature of the gas discharged from the secondary battery 1 having the longest short distance low, the throttle opening 9A of the resistance portion 9 is connected to the secondary battery 1 having the longest shortest distance. The opening area of the inflow port 7 is increased to increase the gas flow resistance.

図3の緩衝チャンバー5は、温度センサ2の近くの二次電池1から排出されるガスを、ガスの流動抵抗の大きい開口面積の小さい絞り開口9Aに通過させて緩衝チャンバー5に流入させる。小さい流入口7を通過する排出ガスは高速流動して緩衝チャンバー5内に流入される。高速流動して緩衝チャンバー5に流入される排出ガスは、温度の低い緩衝チャンバー5内の空気を撹拌し、十分に混合されて温度が低下して排出口8から排出される。反対に温度センサ2から遠く離れた二次電池1からの排出ガスは、ガスの流動抵抗の小さい大きな流入口7から緩衝チャンバー5内に高速流動することなく流入されて、緩衝チャンバー5内の空気との混合が少なく、緩衝チャンバー5内の空気に混合されて温度が低下することなく排出口8から排出される。 In the buffer chamber 5 of FIG. 3, the gas discharged from the secondary battery 1 near the temperature sensor 2 is passed through the throttle opening 9A having a small opening area having a large gas flow resistance and flown into the buffer chamber 5. The exhaust gas passing through the small inflow port 7 flows at high speed and flows into the buffer chamber 5. The exhaust gas that flows at high speed and flows into the buffer chamber 5 stirs the air in the buffer chamber 5 having a low temperature, is sufficiently mixed, the temperature is lowered, and the exhaust gas is exhausted from the exhaust port 8. On the contrary, the exhaust gas from the secondary battery 1 which is far away from the temperature sensor 2 flows into the buffer chamber 5 from the large inflow port 7 having a small gas flow resistance without flowing at high speed, and the air in the buffer chamber 5 is discharged. Is mixed with the air in the buffer chamber 5 and the temperature is not lowered and the gas is discharged from the discharge port 8.

以上の緩衝チャンバー5は、二次電池1からの排出ガスを、緩衝チャンバー5内の常温空気に混合して排出するが、温度センサ2に近い二次電池1からの排出ガスは常温空気との混合率が高くなって、常温空気による温度低下が大きく、反対に温度センサ2から離れた二次電池1からの排出ガスは常温空気との混合率が少なく、常温空気による温度低下が小さくなる。温度センサ2に近くてガス温度を高く検出される二次電池1からの排出ガスは、緩衝チャンバー5での温度低下が大きく、温度センサ2から離れてガス温度を低く検出する二次電池1からの排出ガスは、緩衝チャンバー5で温度低下が小さくなるので、温度センサ2は最短距離が異なる複数の二次電池1からの排出ガスの温度を正確に検出する。 The above-mentioned buffer chamber 5 mixes the exhaust gas from the secondary battery 1 with the room temperature air in the buffer chamber 5 and discharges it. However, the exhaust gas from the secondary battery 1 near the temperature sensor 2 is not the room temperature air. The mixing ratio becomes high and the temperature drop due to the room temperature air is large. On the contrary, the exhaust gas from the secondary battery 1 which is separated from the temperature sensor 2 has a small mixing ratio with the room temperature air, and the temperature drop due to the room temperature air is small. The exhaust gas from the secondary battery 1 which is close to the temperature sensor 2 and whose gas temperature is detected high has a large temperature drop in the buffer chamber 5, and is separated from the temperature sensor 2 to detect a low gas temperature from the secondary battery 1. Since the temperature of the exhaust gas decreases in the buffer chamber 5, the temperature sensor 2 accurately detects the temperature of the exhaust gas from the plurality of secondary batteries 1 having different shortest distances.

図4の緩衝チャンバー5は、各流入口7に抵抗部9を設けて、抵抗部9で通過するガスの流動抵抗を制御するが、抵抗部9は流入口7のガス流動抵抗を制限する濾材9Bである。この緩衝チャンバー5は、温度センサ2に近い二次電池1との間の流入口7に設けている濾材9Bのガス流動抵抗を、温度センサ2に遠い二次電池1との間の流入口7に設けている濾材9Bよりもガスの流動抵抗を大きくしている。なお、本発明の実施形態において濾材は、流路抵抗を増加させる構造、例えばメッシュ構造などを有するものであればよく、特に濾材を構成する材料はどのようなものであっても良い。 In the buffer chamber 5 of FIG. 4, a resistance part 9 is provided at each inflow port 7 to control the flow resistance of the gas passing through the resistance part 9, but the resistance part 9 limits the gas flow resistance of the inflow port 7. 9B. In the buffer chamber 5, the gas flow resistance of the filter medium 9B provided at the inlet 7 between the secondary battery 1 near the temperature sensor 2 and the inlet 7 between the secondary battery 1 remote from the temperature sensor 2 is detected. The flow resistance of gas is made larger than that of the filter medium 9B provided in the above. In the embodiment of the present invention, the filter medium may have any structure that increases the flow path resistance, such as a mesh structure, and in particular, any material may be used to form the filter medium.

濾材9Bは、ガスを通過させる空隙の大きさや空隙率でガスの流動抵抗を調整している。濾材9Bは空隙を小さく、空隙率を小さくしてガスの流動抵抗を大きくする。温度センサ2は、温度センサ2までの最短距離が短い二次電池1から排出されるガスの温度を高く検出するので、抵抗部9の絞り開口9Aは、最短距離の短い二次電池1に連結している流入口7の濾材9Bのガスの流動抵抗を大きくしている。反対に、温度センサ2は、最短距離が長い二次電池1から排出されるガスの温度を低く検出するので、抵抗部の絞り開口9Aは、最短距離の長い二次電池1に連結している流入口7の濾材9Bのガスの流動抵抗を小さくしている。 The filter medium 9B adjusts the flow resistance of the gas by the size and porosity of the voids through which the gas passes. The filter material 9B has a small void and a low void ratio to increase the gas flow resistance. Since the temperature sensor 2 detects a high temperature of the gas discharged from the secondary battery 1 having the shortest distance to the temperature sensor 2, the throttle opening 9A of the resistance portion 9 is connected to the secondary battery 1 having the shortest distance. The flow resistance of the gas of the filter medium 9B at the inflow port 7 is increased. On the contrary, since the temperature sensor 2 detects the temperature of the gas discharged from the secondary battery 1 having the longest short distance low, the throttle opening 9A of the resistance portion is connected to the secondary battery 1 having the longest shortest distance. The gas flow resistance of the filter medium 9B at the inlet 7 is reduced.

以上の緩衝チャンバー5は、流入口7に濾材9Bを設けて、濾材9Bを抵抗部9としてガスの流動抵抗を特定する。この緩衝チャンバー5は、温度センサ2の近くの二次電池1から排出ガスを、ガス流動抵抗の大きい濾材9Bに通過させる。通過抵抗の大きい網目の小さい濾材9Bは、排出ガスを勢いよくストレートに通過させることなく、ガスを拡散して通過させて、チャンバー内の常温空気と十分に混合して、常温空気での温度低下を大きくする。 In the buffer chamber 5 described above, a filter medium 9B is provided at the inflow port 7, and the filter medium 9B is used as the resistance portion 9 to specify the gas flow resistance. The buffer chamber 5 allows exhaust gas from the secondary battery 1 near the temperature sensor 2 to pass through the filter medium 9B having a large gas flow resistance. The filter medium 9B having a small mesh having a large passage resistance diffuses and allows the exhaust gas to pass without vigorously and straightly passing the exhaust gas, and sufficiently mixes with the room temperature air in the chamber to lower the temperature at the room temperature air. To increase.

反対に温度センサ2から遠く離れた二次電池1からの排出ガスは、ガス流動抵抗の小さい、すなわち網目の大きい濾材9Bをスムーズに通過するので、濾材9Bを通過して緩衝チャンバー5内の常温空気に十分に混合されず、常温空気に混合されることによる温度低下が少なくなる。温度センサ2に近い二次電池1からの排出ガスは、濾材9Bを通過して常温空気との混合による温度低下が大きく、温度センサ2から離れた二次電池1からの排出ガスは濾材9Bを通過して常温空気との混合による温度低下が小さくなるので、ひとつの温度センサ2で、ガス流路の流路長が異なる複数の二次電池1の排出ガスの温度をより正確に検出できる。 On the contrary, the exhaust gas from the secondary battery 1 far away from the temperature sensor 2 smoothly passes through the filter medium 9B having a small gas flow resistance, that is, a large mesh, and therefore passes through the filter medium 9B to reach the normal temperature in the buffer chamber 5. It is not sufficiently mixed with air, and the temperature decrease due to mixing with room temperature air is reduced. Exhaust gas from the secondary battery 1 close to the temperature sensor 2 passes through the filter medium 9B and has a large temperature drop due to mixing with room temperature air, and exhaust gas from the secondary battery 1 away from the temperature sensor 2 passes through the filter medium 9B. Since the temperature drop due to mixing with normal temperature air after passing through is reduced, the temperature of the exhaust gas of the plurality of secondary batteries 1 having different gas flow path lengths can be more accurately detected with one temperature sensor 2.

図5の緩衝チャンバー5は、二次電池1の排気弁4から温度センサ2までのガス流路の最短距離によって、ガスの流動抵抗を調整するために、邪魔板9Cからなる抵抗部を備える。邪魔板9Cは、流入口7から緩衝チャンバー5に流入されるガスの通路にあって、流入ガスを衝突させる状態でガスの流動抵抗を制御する。 The buffer chamber 5 of FIG. 5 is provided with a resistance portion including a baffle plate 9C in order to adjust the gas flow resistance according to the shortest distance of the gas flow path from the exhaust valve 4 of the secondary battery 1 to the temperature sensor 2. The baffle plate 9C is in the passage of the gas flowing into the buffer chamber 5 from the inflow port 7, and controls the flow resistance of the gas in a state where the inflowing gas collides.

図の邪魔板9Cは、流入ガスを衝突させるために流動方向に交差する姿勢であって、流入口7との対向位置に配置される。この邪魔板9Cは、流入口7に接近して流入口7との隙間を狭くしてガスの流動抵抗を大きく、流入口7から離されて流入口7との隙間を広くしてガスの流動抵抗を小さくしている。 The baffle plate 9C shown in the drawing has a posture intersecting with the flow direction in order to collide the inflowing gas, and is arranged at a position facing the inflow port 7. The baffle plate 9C approaches the inflow port 7 to narrow the gap with the inflow port 7 to increase the gas flow resistance, and is separated from the inflow port 7 to widen the gap with the inflow port 7 to flow the gas. The resistance is reduced.

邪魔板9Cは、排気弁4から温度センサ2までのガス流路の最短距離が短い二次電池1に連結してる流入口7の対向位置に配置している邪魔板9Cのガス流動抵抗を、ガス流路の最短距離が長い二次電池1に連結している流入口7の対向位置に配置している邪魔板9Cのガス流動抵抗よりも大きくしている。図3の緩衝チャンバー5は、流入口7と邪魔板9Cとの間隔でガス流動抵抗を特定するので、ガス流路の最短距離が短い二次電池1に連結している流入口7の対向位置に配置している邪魔板9Cは流入口7に接近して、ガスの流動抵抗を大きく、ガス流路の最短距離が長い二次電池1に連結している流入口7の対向位置に配置している邪魔板9Cは流入口7から離してガスの流動抵抗を小さくしている。 The baffle plate 9C measures the gas flow resistance of the baffle plate 9C arranged at a position facing the inflow port 7 connected to the secondary battery 1 having a shortest gas flow path distance from the exhaust valve 4 to the temperature sensor 2, The gas flow resistance is set to be larger than the gas flow resistance of the baffle plate 9C arranged at the position facing the inflow port 7 connected to the secondary battery 1 having the shortest gas flow path distance. In the buffer chamber 5 of FIG. 3, the gas flow resistance is specified by the distance between the inflow port 7 and the baffle plate 9C. The baffle plate 9C disposed at the position close to the inflow port 7 has a large gas flow resistance, and is disposed at a position opposite to the inflow port 7 connected to the secondary battery 1 having a long gas channel shortest distance. The baffle plate 9C is separated from the inflow port 7 to reduce the gas flow resistance.

以上の緩衝チャンバー5は、ガス流路の最短距離が短い二次電池1からの排出ガスを、流入口7と邪魔板9Cとの狭い隙間に通過させて、すなわちガスの流動抵抗の大きい抵抗部9を通過させて、排出ガスの温度を低くして温度センサ2に至らせる。排出ガスが流入口7と邪魔板9Cとの狭い隙間を通過して、緩衝チャンバー5にある温度の低い空気、すなわち常温空気に強く拡散され、常温空気と十分に混合されるからである。 The above buffer chamber 5 allows the exhaust gas from the secondary battery 1 having the shortest gas flow path to pass through a narrow gap between the inflow port 7 and the baffle plate 9C, that is, a resistance portion having a large gas flow resistance. 9 is passed to lower the temperature of the exhaust gas to reach the temperature sensor 2. This is because the exhaust gas passes through a narrow gap between the inflow port 7 and the baffle plate 9C, is strongly diffused into the air having a low temperature in the buffer chamber 5, that is, room temperature air, and is sufficiently mixed with room temperature air.

反対にガス流路の最短距離の長い二次電池1から排出されるガスは、二次電池1からの排出ガスを、流入口7と邪魔板9Cとの広い隙間に通過させて、すなわちガスの流動抵抗の小さい抵抗部9を通過して温度センサ2に到達する。広い隙間を通過して温度センサ2に至る排出ガスは、緩衝チャンバー5内の常温空気に十分に混合されず、常温空気に混合されて温度が低下する割合が少なく、抵抗部9による温度低下が小さい状態で温度センサ2で温度検出される。 On the contrary, the gas discharged from the secondary battery 1 having the longest distance of the gas flow path passes the exhaust gas from the secondary battery 1 through a wide gap between the inflow port 7 and the baffle plate 9C, that is, the gas The temperature sensor 2 is reached through the resistance portion 9 having a small flow resistance. The exhaust gas that passes through the wide gap and reaches the temperature sensor 2 is not sufficiently mixed with the room temperature air in the buffer chamber 5, and there is a small rate that the temperature is decreased by being mixed with the room temperature air. The temperature is detected by the temperature sensor 2 in a small state.

したがって、ガス流路の最短距離の短い二次電池1からの排出ガスは、緩衝チャンバー5内の常温空気に十分に混合されて温度が低下して温度センサ2に検出され、ガス流路の最短距離の長い二次電池1からの排出ガスは、常温空気との混合による温度の低下を少なくして緩衝チャンバー5を通過して温度センサ2に温度検出される。以上の電源装置は、温度センサ2の近くにあって検出温度が高く検出されていた排出ガスの温度を緩衝チャンバー5で大きく低下し、温度センサ2から離れて検出温度が低く検出されていた排出ガスの温度低下を小さくして、温度センサ2は最短距離の長さの違いによらず正確に検出できる。 Therefore, the exhaust gas from the secondary battery 1 having the shortest distance of the gas flow path is sufficiently mixed with the room temperature air in the buffer chamber 5 to lower the temperature and is detected by the temperature sensor 2, and the shortest distance of the gas flow path is detected. Exhaust gas from the secondary battery 1 having a long distance passes through the buffer chamber 5 with a decrease in temperature due to mixing with room temperature air being reduced, and is detected by the temperature sensor 2. In the power supply device described above, the temperature of the exhaust gas, which has been detected close to the temperature sensor 2 and whose detection temperature is high, is greatly reduced in the buffer chamber 5, and the exhaust gas whose detection temperature is detected low apart from the temperature sensor 2 is discharged. By reducing the temperature drop of the gas, the temperature sensor 2 can detect accurately regardless of the difference in the length of the shortest distance.

図6の緩衝チャンバー5の抵抗部9は、流入口7の対向位置に設けた邪魔板9Dの大きさでガスの流動抵抗を調整する。この緩衝チャンバー5は、邪魔板9Dの大きさでガス流動抵抗を特定するので、ガス流路の最短距離が短い二次電池1に連結している流入口7の対向位置に配置している邪魔板9Dは大きくしてガスの流動抵抗を大きく、ガス流路の最短距離が長い二次電池1に連結している流入口7の対向位置に配置している邪魔板9Dは小さくしてガスの流動抵抗を小さくする。 The resistance portion 9 of the buffer chamber 5 in FIG. 6 adjusts the flow resistance of gas by the size of the baffle plate 9D provided at the position facing the inflow port 7. Since the buffer chamber 5 specifies the gas flow resistance by the size of the baffle plate 9D, the baffle chamber 5 is located at the position opposite to the inlet port 7 connected to the secondary battery 1 having the shortest gas flow path. The plate 9D is made large to increase the gas flow resistance, and the baffle plate 9D arranged at the position opposite to the inflow port 7 connected to the secondary battery 1 having the longest gas flow path length is made small to reduce the gas flow. Reduce flow resistance.

以上の緩衝チャンバー5は、ガス流路の最短距離が短い二次電池1からの排出ガスは、大きな邪魔板9Dに衝突させてガスの流動抵抗を大きくする。大きい邪魔板9Dに衝突した排出ガスは、両側に分散され、緩衝チャンバー5内の常温空気により効果的に混合させて大きく温度低下する。反対にガス流路の最短距離の長い二次電池1から排出されるガスは、二次電池1からの排出ガスを、小さい邪魔板9Dに衝突させるので、緩衝チャンバー5内の常温空気に十分に混合されず、常温空気に混合されて温度が低下する割合が少なくなる。 In the buffer chamber 5 described above, the exhaust gas from the secondary battery 1 having the shortest gas flow path collides with the large baffle plate 9D to increase the flow resistance of the gas. The exhaust gas that has collided with the large baffle plate 9D is dispersed on both sides, and is effectively mixed by the room temperature air in the buffer chamber 5 to greatly reduce the temperature. On the contrary, the gas discharged from the secondary battery 1 having a long shortest distance of the gas flow path causes the exhaust gas from the secondary battery 1 to collide with the small baffle plate 9D. It is not mixed, but the ratio of the temperature being lowered by being mixed with normal temperature air is reduced.

したがって、ガス流路の最短距離の短い二次電池1からの排出ガスは、緩衝チャンバー5内の常温空気に十分に混合されて温度が低下して温度センサ2に検出され、ガス流路の最短距離の長い二次電池1からの排出ガスは、常温空気との混合による温度の低下を少なくして緩衝チャンバー5を通過して温度センサ2に温度検出される。以上の電源装置は、温度センサ2の近くにあって検出温度が高く検出されていた排出ガスの温度を緩衝チャンバー5で大きく低下し、温度センサ2から離れて検出温度が低く検出されていた排出ガスの温度低下を小さくして、温度センサ2は最短距離の長さの違いによらず正確に検出できる。 Therefore, the exhaust gas from the secondary battery 1 having the shortest distance of the gas flow path is sufficiently mixed with the room temperature air in the buffer chamber 5 to lower the temperature and is detected by the temperature sensor 2, and the shortest distance of the gas flow path is detected. Exhaust gas from the secondary battery 1 having a long distance passes through the buffer chamber 5 with a decrease in temperature due to mixing with room temperature air being reduced, and is detected by the temperature sensor 2. In the power supply device described above, the temperature of the exhaust gas, which has been detected close to the temperature sensor 2 and whose detection temperature is high, is greatly reduced in the buffer chamber 5, and the exhaust gas whose detection temperature is detected low apart from the temperature sensor 2 is discharged. By reducing the temperature drop of the gas, the temperature sensor 2 can detect accurately regardless of the difference in the length of the shortest distance.

図7の緩衝チャンバー5の抵抗部9は、流入口7の対向位置に設けた邪魔板9Eの姿勢、すなわちガスの流動方向に対する角度でガスの流動抵抗を調整する。この緩衝チャンバー5は、邪魔板9Eの角度でガス流動抵抗を特定するので、ガス流路の最短距離が短い二次電池1に連結している流入口7の対向位置に配置している邪魔板9Eは、排出ガスの衝突による運動のエネルギーの損失が大きく、衝突後に流速を低下させて排出口8に流動させるために、ガスの流動方向に対して垂直方向となる姿勢としてガスの流動抵抗を大きくする。ガス流路の最短距離の長い二次電池1に連結している邪魔板9Eは、衝突して方向転換する排出ガスの流動方向が排出口8に向くように、ガスの流動方向に対して垂直方向から傾斜する角度として、ガスの流動抵抗を小さくする。 The resistance portion 9 of the buffer chamber 5 in FIG. 7 adjusts the flow resistance of gas by the posture of the baffle plate 9E provided at the position facing the inflow port 7, that is, the angle with respect to the flow direction of gas. Since the buffer chamber 5 specifies the gas flow resistance by the angle of the baffle plate 9E, the baffle plate arranged at the position opposite to the inflow port 7 connected to the secondary battery 1 having the shortest gas flow path distance. 9E has a large loss of kinetic energy due to the collision of exhaust gas, and in order to reduce the flow velocity after the collision and cause it to flow to the exhaust port 8, the flow resistance of gas is set to be a direction perpendicular to the flow direction of gas. Enlarge. The baffle plate 9E connected to the secondary battery 1 having the longest gas flow path is perpendicular to the flow direction of the gas so that the flow direction of the exhaust gas that collides and changes its direction is toward the discharge port 8. The flow resistance of the gas is reduced by setting the angle of inclination from the direction.

以上の緩衝チャンバー5は、ガス流路の最短距離が短い二次電池1からの排出ガスは、ガスの流動方向に対して垂直方向の邪魔板9Eに衝突して両側に分散され、緩衝チャンバー5内の常温空気により効果的に混合させて大きく温度低下する。反対にガス流路の最短距離の長い二次電池1から排出されるガスは、二次電池1からの排出ガスの流動方向を排出口8の方向に方向転換するので、緩衝チャンバー5内の常温空気に十分に混合されず、常温空気による温度低下の割合が少なくなる。 In the buffer chamber 5 described above, the exhaust gas from the secondary battery 1 having the shortest gas flow path collides with the baffle plate 9E that is perpendicular to the gas flow direction and is dispersed on both sides. The room temperature air in the mixture effectively mixes and the temperature drops significantly. On the contrary, since the gas discharged from the secondary battery 1 having the longest gas flow path has the flow direction of the exhaust gas from the secondary battery 1 changed to the discharge port 8, the temperature in the buffer chamber 5 is kept at room temperature. It is not sufficiently mixed with air, and the rate of temperature decrease due to room temperature air is reduced.

したがって、ガス流路の最短距離の短い二次電池1からの排出ガスは、緩衝チャンバー5内の常温空気に十分に混合されて温度が低下して温度センサ2に検出され、ガス流路の最短距離の長い二次電池1からの排出ガスは、常温空気との混合による温度の低下を少なくして緩衝チャンバー5を通過して温度センサ2に温度検出される。以上の電源装置は、温度センサ2の近くにあって検出温度が高く検出されていた排出ガスの温度を緩衝チャンバー5で大きく低下し、温度センサ2から離れて検出温度が低く検出されていた排出ガスの温度低下を小さくして、温度センサ2は最短距離の長さによらず正確に検出できる。 Therefore, the exhaust gas from the secondary battery 1 having the shortest distance of the gas flow path is sufficiently mixed with the room temperature air in the buffer chamber 5 to lower the temperature and is detected by the temperature sensor 2, and the shortest distance of the gas flow path is detected. Exhaust gas from the secondary battery 1 having a long distance passes through the buffer chamber 5 with a decrease in temperature due to mixing with room temperature air being reduced, and is detected by the temperature sensor 2. In the power supply device described above, the temperature of the exhaust gas, which has been detected close to the temperature sensor 2 and whose detection temperature is high, is greatly reduced in the buffer chamber 5, and the exhaust gas whose detection temperature is detected low apart from the temperature sensor 2 is discharged. By reducing the temperature drop of the gas, the temperature sensor 2 can detect accurately regardless of the length of the shortest distance.

図8の緩衝チャンバー5の抵抗部9は、流入口7の対向位置に設けた複数の邪魔板9Fでガスの流動抵抗を調整する。この緩衝チャンバー5は、ガス流路に複数の邪魔板9Fを設け、邪魔板9Fの間にガスを通過させてガス流動抵抗を特定する。この緩衝チャンバー5は、ガス流路に多数の邪魔板9Fを設け、ガスを狭い邪魔板9F間に通過させてガスの流動抵抗を大きくする。したがって、最短距離の短い二次電池1に連結している流入口7と排出口8との間には多数の邪魔板9Fを設けて邪魔板9F間の隙間を狭くして、排出ガスを狭い邪魔板9Fの間に通過させてガスの流動抵抗を大きくする。ガス流路の最短距離の大きい二次電池1のガス流路には、邪魔板9Fを配置することなく、あるいは少ない邪魔板9Fを設けて邪魔板9Fの間の隙間を広くしてガスの流動抵抗を小さくする。 The resistance portion 9 of the buffer chamber 5 shown in FIG. 8 adjusts the flow resistance of gas with a plurality of baffles 9F provided at the positions facing the inflow port 7. This buffer chamber 5 is provided with a plurality of baffles 9F in the gas flow path, and gas is passed between the baffles 9F to specify the gas flow resistance. The buffer chamber 5 is provided with a large number of baffles 9F in the gas flow path, and allows the gas to pass between the narrow baffles 9F to increase the flow resistance of the gas. Therefore, a large number of baffles 9F are provided between the inlet 7 and the outlet 8 connected to the secondary battery 1 having the shortest distance to narrow the gap between the baffles 9F to narrow the exhaust gas. It is passed between the baffles 9F to increase the flow resistance of gas. In the gas flow path of the secondary battery 1 having the largest shortest distance of the gas flow path, no baffle plate 9F is provided, or a small number of baffle plates 9F are provided to widen the gap between the baffle plates 9F to allow gas flow. Reduce the resistance.

以上の緩衝チャンバー5は、ガス流路の最短距離が小さい二次電池1からの排出ガスは、多数の邪魔板9Fの間を通過することで、長い経路を通過し、また長い経路を流れて緩衝チャンバー5内の常温空気と十分に混合されて大きく温度低下する。反対にガス流路の最短距離の大きい二次電池1から排出されるガスは、邪魔板9Fの間を通過することなく、あるいは少ない邪魔板9Fの広い隙間を通過してガス流路が短くなり、さらに緩衝チャンバー5内の常温空気と混合が少なくなって、常温空気による温度低下の割合が少なくなる。 In the buffer chamber 5 described above, the exhaust gas from the secondary battery 1 having a shortest gas flow path passes between a large number of baffles 9F to pass a long path and a long path. The temperature of the air in the buffer chamber 5 is sufficiently mixed with the normal temperature air to greatly reduce the temperature. On the contrary, the gas discharged from the secondary battery 1 having a large shortest distance of the gas passage does not pass between the baffles 9F or passes through a wide gap of the small baffles 9F to shorten the gas passage. Further, the mixing with the normal temperature air in the buffer chamber 5 is reduced, and the rate of temperature decrease due to the normal temperature air is reduced.

したがって、ガス流路の最短距離の小さい二次電池1からの排出ガスは、長い流路を通過し、また緩衝チャンバー5内の常温空気に十分に混合されて温度が低下して温度センサ2に検出され、ガス流路の最短距離の長い二次電池1からの排出ガスは、邪魔板9Fでガス流路が長くなることがなく、また常温空気との混合による温度の低下を少なくして緩衝チャンバー5を通過して温度センサ2に温度検出される。したがつて、以上の電源装置は、温度センサ2の近くにあって検出温度が高く検出されていた排出ガスの温度を緩衝チャンバー5で大きく低下し、温度センサ2から離れて検出温度が低く検出されていた排出ガスの温度低下を小さくして、温度センサ2は最短距離の大きさによらずガス温度を正確に検出できる。 Therefore, the exhaust gas from the secondary battery 1 having the shortest distance of the gas flow path passes through the long flow path, and is sufficiently mixed with the room temperature air in the buffer chamber 5 to lower the temperature, and the temperature sensor 2 The exhaust gas detected and discharged from the secondary battery 1 having the longest gas flow path is buffered by the baffle plate 9F without causing the gas flow path to become long and reducing the temperature decrease due to the mixing with room temperature air. The temperature is detected by the temperature sensor 2 after passing through the chamber 5. Therefore, in the above power supply device, the temperature of the exhaust gas, which has been detected close to the temperature sensor 2 and whose detection temperature is high, is greatly reduced in the buffer chamber 5, and the detection temperature is detected low apart from the temperature sensor 2. By reducing the temperature drop of the exhaust gas that has been performed, the temperature sensor 2 can accurately detect the gas temperature regardless of the size of the shortest distance.

図9の緩衝チャンバー5の抵抗部9は、各流入口7から排出口8までの流路長を壁体10で変更してガスの流動抵抗を調整する。壁体10は、ガス流路の最短距離が小さい流入口7から排出口8までの流路長を、ガス流路の最短距離の大きい流入口7から排出口8までの流路長よりも長くしている。排出ガスは、緩衝チャンバー5内の流路を流れるときに周囲に熱が奪われて温度が低下する。このことから、排出ガスが長い流路を流れて温度センサ2に温度検出されると、温度センサ2の検出温度は低くなり、反対に排出ガスが短い流路を流れて温度センサ2に温度検出されると、温度センサ2の検出温度は高く検出される。このため、温度センサ2までの最短距離が短い二次電池1からの排出ガスは、温度センサ2で高く検出され、温度センサ2までの最短距離が長い二次電池1からの排出ガスは、温度センサ2で低く検出されるので、図の緩衝チャンバー5は、内部に設けた壁体10でもって、ガス流路の最短距離が小さい流入口7から排出口8までの流路長を、ガス流路の最短距離の大きい流入口7から排出口8までの流路長よりも長くして、複数の二次電池1からの排出ガスの温度を少ない検出誤差で正確に検出する。 The resistance part 9 of the buffer chamber 5 of FIG. 9 adjusts the flow resistance of gas by changing the flow path length from each inflow port 7 to the exhaust port 8 with the wall body 10. In the wall body 10, the flow path length from the inflow port 7 with the shortest distance of the gas flow path to the exhaust port 8 is longer than the flow path length from the inflow port 7 with the shortest gas flow path distance to the exhaust port 8. doing. When the exhaust gas flows through the flow path in the buffer chamber 5, heat is taken by the surroundings and the temperature of the exhaust gas lowers. Therefore, when the exhaust gas flows through the long flow path and the temperature is detected by the temperature sensor 2, the temperature detected by the temperature sensor 2 becomes low, and conversely, the exhaust gas flows through the short flow path and the temperature sensor 2 detects the temperature. Then, the temperature detected by the temperature sensor 2 is detected high. Therefore, the exhaust gas from the secondary battery 1 having the shortest distance to the temperature sensor 2 is detected high by the temperature sensor 2, and the exhaust gas from the secondary battery 1 having the longest shortest distance to the temperature sensor 2 has the temperature Since the buffer chamber 5 shown in the figure has a wall body 10 provided therein, the buffer chamber 5 shown in the figure has a flow path length from the inlet port 7 to the outlet port 8 where the shortest distance of the gas channel is small. The length of the flow path from the inflow port 7 to the exhaust port 8 having the shortest path length is made longer to accurately detect the temperature of the exhaust gas from the plurality of secondary batteries 1 with a small detection error.

本発明の電源装置は、多数の二次電池1を備える大出力の電源装置として有効に使用できる。 The power supply device of the present invention can be effectively used as a high output power supply device including a large number of secondary batteries 1.

本発明の実施例にかかる電源装置の概略断面図である。It is a schematic sectional drawing of the power supply device concerning the Example of this invention. 本発明の他の実施例にかかる電源装置の概略断面図である。It is a schematic sectional drawing of the power supply device concerning the other Example of this invention. 本発明の実施例にかかる緩衝チャンバーの断面図である。It is a sectional view of a buffer chamber concerning an example of the present invention. 本発明の他の実施例にかかる緩衝チャンバーの断面図である。FIG. 6 is a sectional view of a buffer chamber according to another embodiment of the present invention. 本発明の他の実施例にかかる緩衝チャンバーの断面図である。FIG. 6 is a sectional view of a buffer chamber according to another embodiment of the present invention. 本発明の他の実施例にかかる緩衝チャンバーの断面図である。FIG. 6 is a sectional view of a buffer chamber according to another embodiment of the present invention. 本発明の他の実施例にかかる緩衝チャンバーの断面図である。FIG. 6 is a sectional view of a buffer chamber according to another embodiment of the present invention. 本発明の他の実施例にかかる緩衝チャンバーの断面図である。FIG. 6 is a sectional view of a buffer chamber according to another embodiment of the present invention. 本発明の他の実施例にかかる緩衝チャンバーの断面図である。FIG. 6 is a sectional view of a buffer chamber according to another embodiment of the present invention. 二次電池から排出される排出ガスの温度変化を示すグラフである。5 is a graph showing a temperature change of exhaust gas discharged from a secondary battery.

1…二次電池
2…温度センサ
3…排出ダクト
4…排気弁
5…緩衝チャンバー
6…膨張チャンバー
7…流入口
8…排出口
9…抵抗部
9A…絞り開口
9B…濾材
9C…邪魔板(図5)
9D…邪魔板(図6)
9E…邪魔板(図7)
9F…邪魔板(図8)
10…壁体
1...Secondary battery 2...Temperature sensor 3...Exhaust duct 4...Exhaust valve 5...Buffer chamber 6...Expansion chamber 7...Inflow port 8...Exhaust port 9...Resistance part
9A... Aperture opening 9B... Filter medium 9C... Baffle plate (Fig. 5)
9D... Baffle plate (Fig. 6)
9E... Baffle plate (Fig. 7)
9F...Baffle plate (Fig. 8)
10... Wall

Claims (9)

閾値圧力より高くなると開弁してガスを排出する排気弁を有する複数の二次電池と、
前記二次電池の前記排気弁から排出されるガス温度を検出する温度センサと、
前記温度センサと前記二次電池との間に接続してなる排出ダクトとを備える電源装置であって、
前記排出ダクトが前記排気弁からの排出ガスを通過させる緩衝チャンバーを備え、
前記緩衝チャンバーは、前記排出ガスの流入口と、前記流入口から流入されるガスの排出口と、前記二次電池の前記排気弁から前記温度センサまでのガス流路の最短距離でガスの流動抵抗を特定する抵抗部を備え、
前記抵抗部が、前記二次電池と前記温度センサとのガス流路の最短距離が短くなるにしたがって、ガスの流動抵抗を大きくする構造としてなることを特徴とする電源装置。
A plurality of secondary batteries having an exhaust valve that opens and discharges gas when the pressure becomes higher than a threshold pressure;
A temperature sensor for detecting the temperature of the gas discharged from the exhaust valve of the secondary battery;
A power supply device comprising an exhaust duct connected between the temperature sensor and the secondary battery,
The exhaust duct comprises a buffer chamber for passing exhaust gas from the exhaust valve,
The buffer chamber has an inlet for the exhaust gas, an outlet for the gas introduced from the inlet, and a gas flow at the shortest distance of the gas flow path from the exhaust valve of the secondary battery to the temperature sensor. Equipped with a resistance part that specifies the resistance,
A power supply device characterized in that the resistance portion has a structure in which the gas flow resistance increases as the shortest distance of the gas flow path between the secondary battery and the temperature sensor decreases.
請求項1に記載される電源装置であって、
前記緩衝チャンバーの前記流入口が、各々の二次電池の排気弁に直接又は間接に連結され、
前記抵抗部が、前記流入口に設けてなる絞り開口で、
前記絞り開口が、前記温度センサまでの最短距離が小さい前記二次電池との間に設けてなる前記流入口の開口面積を、前記温度センサまでの最短距離の大きい前記二次電池との間に設けてなる前記流入口の開口面積よりも小さくしてなることを特徴とする電源装置。
The power supply device according to claim 1, wherein
The inlet of the buffer chamber is directly or indirectly connected to an exhaust valve of each secondary battery,
The resistance portion is a throttle opening provided at the inflow port,
The throttle opening has an opening area of the inlet provided between the secondary battery having a shortest distance to the temperature sensor and the secondary battery having a shortest distance to the temperature sensor. A power supply device characterized in that it is smaller than the opening area of the inflow port provided.
請求項1に記載される電源装置であって、
前記緩衝チャンバーの前記流入口が、各々の二次電池の排気弁に直接又は間接に連結され、
前記抵抗部が、前記流入口のガス流動抵抗を制限する濾材で、
前記温度センサに近い前記二次電池との間の前記流入口に設けてなる濾材のガス流動抵抗が、前記温度センサに遠い前記二次電池との間の前記流入口のガス流動抵抗よりも大きいことを特徴とする電源装置。
The power supply device according to claim 1, wherein
The inlet of the buffer chamber is directly or indirectly connected to an exhaust valve of each secondary battery,
The resistance portion is a filter medium that limits the gas flow resistance of the inlet,
The gas flow resistance of the filter medium provided at the inlet between the secondary battery near the temperature sensor and the secondary battery is greater than the gas flow resistance at the inlet between the secondary battery far from the temperature sensor. A power supply device characterized by the above.
請求項1に記載される電源装置であって、
前記緩衝チャンバーの前記流入口が、各々の二次電池の排気弁に直接又は間接に連結され、
前記抵抗部が、前記流入口から緩衝チャンバーに流入されるガスの通路にあって、ガスの流動方向に交差する姿勢で配置してなる邪魔板で、
前記温度センサとの最短距離が短い二次電池に連結してなる前記流入口と排出口との間に設けている邪魔板によるガス流動抵抗が、前記温度センサとの最短距離が長い二次電池に連結してなる前記流入口と排出口との間に設けてなる邪魔板のガス流動抵抗よりも大きいことを特徴とする電源装置。
The power supply device according to claim 1, wherein
The inlet of the buffer chamber is directly or indirectly connected to an exhaust valve of each secondary battery,
A baffle plate in which the resistance portion is in a passage of gas flowing into the buffer chamber from the inflow port, and is arranged in a posture intersecting a flow direction of gas
The secondary battery having a shortest distance from the temperature sensor has a gas flow resistance due to a baffle plate provided between the inlet and the outlet which is connected to the secondary battery having a shortest distance from the temperature sensor. A power supply device characterized in that it is larger than the gas flow resistance of the baffle plate provided between the inflow port and the exhaust port connected to the.
請求項4に記載される電源装置であって、
前記緩衝チャンバーの前記流入口が、各々の二次電池の排気弁に直接又は間接に連結され、
前記抵抗部が、前記流入口から緩衝チャンバーに流入するガスの流路に設けてなる邪魔板で、
前記邪魔板が、前記流入口と前記邪魔板との間隔でガス流動抵抗を特定しており、
ガス流動抵抗の大きい邪魔板は、ガス流動抵抗の小さい邪魔板よりも流入口に接近してなることを特徴とする抵抗部。
The power supply device according to claim 4, wherein
The inlet of the buffer chamber is directly or indirectly connected to an exhaust valve of each secondary battery,
The resistance portion is a baffle plate provided in a flow path of gas flowing into the buffer chamber from the inlet,
The baffle specifies the gas flow resistance in the interval between the inlet and the baffle,
The resistance part is characterized in that the baffle plate having a large gas flow resistance is closer to the inlet than the baffle plate having a small gas flow resistance.
請求項4記載される電源装置であって、
前記緩衝チャンバーの前記流入口が、各々の二次電池の排気弁に直接又は間接に連結され、
前記抵抗部が、前記流入口から緩衝チャンバーに流入するガスの流路に設けてなる邪魔板で、
前記邪魔板の面積でガス流動抵抗を特定しており、
ガス流動抵抗の大きい邪魔板は、ガス流動抵抗の小さい邪魔板よりも大面積としてなることを特徴とする電源装置。
The power supply device according to claim 4, wherein
The inlet of the buffer chamber is directly or indirectly connected to an exhaust valve of each secondary battery,
The resistance portion is a baffle plate provided in a flow path of gas flowing into the buffer chamber from the inlet,
The gas flow resistance is specified by the area of the baffle,
The power supply device is characterized in that the baffle plate having a large gas flow resistance has a larger area than the baffle plate having a small gas flow resistance.
請求項4に記載される電源装置であって、
前記緩衝チャンバーの前記流入口が、各々の二次電池の排気弁に直接又は間接に連結され、
前記抵抗部が、前記流入口から緩衝チャンバーに流入するガスの流路に設けてなる邪魔板で、
前記邪魔板のガスの流動方向に対する角度でガス流動抵抗を特定しており、
ガス流動抵抗の大きい邪魔板のガスの流動方向に対する角度が、ガス流動抵抗の小さい邪魔板よりもガスの流動方向に対して直交する姿勢としてなることを特徴とする電源装置。
The power supply device according to claim 4, wherein
The inlet of the buffer chamber is directly or indirectly connected to an exhaust valve of each secondary battery,
The resistance portion is a baffle plate provided in a flow path of gas flowing into the buffer chamber from the inlet,
The gas flow resistance is specified by the angle with respect to the gas flow direction of the baffle plate,
A power supply device characterized in that an angle of a baffle plate having a large gas flow resistance with respect to a gas flow direction is orthogonal to a gas flow direction of a baffle plate having a small gas flow resistance.
請求項1に記載される電源装置であって、
前記緩衝チャンバーの抵抗部が、前記流入口から前記排出口までの流路長を変更する壁体で、
前記温度センサに近い前記流入口の流路に設けてなる壁体が、前記温度センサに遠い前記流入口の流路に設けてなる壁体よりも流路を長くする位置に配置されてなることを特徴とする電源装置。
The power supply device according to claim 1, wherein
The resistance portion of the buffer chamber is a wall body that changes the flow path length from the inflow port to the exhaust port,
The wall body provided in the flow passage of the inlet close to the temperature sensor is arranged at a position where the flow passage is longer than the wall body provided in the flow passage of the inlet far from the temperature sensor. Power supply device characterized by.
請求項1ないし8のいずれかに記載される電源装置であって、
前記温度センサが温度ヒューズである電源装置。
The power supply device according to any one of claims 1 to 8, wherein
A power supply device in which the temperature sensor is a thermal fuse.
JP2016210085A 2016-10-26 2016-10-26 Power supply Active JP6742884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016210085A JP6742884B2 (en) 2016-10-26 2016-10-26 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016210085A JP6742884B2 (en) 2016-10-26 2016-10-26 Power supply

Publications (2)

Publication Number Publication Date
JP2018073559A JP2018073559A (en) 2018-05-10
JP6742884B2 true JP6742884B2 (en) 2020-08-19

Family

ID=62115556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016210085A Active JP6742884B2 (en) 2016-10-26 2016-10-26 Power supply

Country Status (1)

Country Link
JP (1) JP6742884B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210313650A1 (en) * 2018-08-23 2021-10-07 Panasonic Intellectual Property Management Co., Ltd. Battery module
US20220140434A1 (en) * 2019-03-19 2022-05-05 Sanyo Electric Co., Ltd. Battery module
EP3944359A4 (en) * 2019-03-22 2022-05-18 SANYO Electric Co., Ltd. Battery module
EP3944358A4 (en) * 2019-03-22 2022-05-11 SANYO Electric Co., Ltd. Battery module
JP7291014B2 (en) * 2019-07-01 2023-06-14 株式会社豊田自動織機 storage module
JP7322719B2 (en) 2020-01-17 2023-08-08 Tdk株式会社 battery pack
CN111403657B (en) * 2020-03-31 2022-04-01 重庆长安新能源汽车科技有限公司 Battery thermal runaway gas discharging equipment, battery module and car
US20220416359A1 (en) * 2021-06-24 2022-12-29 Rivian Ip Holdings, Llc Directional venting cover for a battery system
CN117691271A (en) * 2024-02-04 2024-03-12 蜂巢能源科技股份有限公司 Battery and battery module

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103931020B (en) * 2011-11-11 2016-08-17 松下知识产权经营株式会社 Set of cells
WO2014065110A1 (en) * 2012-10-25 2014-05-01 日産自動車株式会社 Gas discharge structure for battery module
JP2014192092A (en) * 2013-03-28 2014-10-06 Sanyo Electric Co Ltd Battery module
JP5759649B1 (en) * 2013-08-26 2015-08-05 日本碍子株式会社 Exhaust treatment device and storage device
JP2015118811A (en) * 2013-12-18 2015-06-25 日産自動車株式会社 Secondary battery
JP2016015253A (en) * 2014-07-02 2016-01-28 トヨタ自動車株式会社 Power storage module
US9614210B2 (en) * 2014-09-30 2017-04-04 Johnson Controls Technology Company Battery module vent system and method
WO2016136193A1 (en) * 2015-02-25 2016-09-01 パナソニックIpマネジメント株式会社 Battery module
KR101799238B1 (en) * 2017-06-09 2017-11-17 김국현 Battery cover assembly

Also Published As

Publication number Publication date
JP2018073559A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6742884B2 (en) Power supply
JP6855211B2 (en) Power supply
CN113224444B (en) Box body, battery, electric equipment and manufacturing method of battery
JP5052057B2 (en) Power supply
JP5030500B2 (en) Power supply
CN101685872B (en) On-board battery assembly
JP5409635B2 (en) Uniform air cooling structure for high capacity battery system
JP5776735B2 (en) Battery temperature control device
JP2009129730A (en) Battery cooling device
JP6098610B2 (en) Power storage device
JP6350812B2 (en) Battery temperature control device
JPWO2020039722A1 (en) Battery module
JP5326503B2 (en) Battery cooling device
JP5528825B2 (en) Cooling system
US11075426B2 (en) Battery pack
US10147985B2 (en) Battery pack
JP2017037775A (en) Battery cooling device
JP2006185788A (en) Battery cooling device
CN116349063A (en) Box body, battery, electric equipment and manufacturing method of battery
JP2014187807A (en) Power storage system
JP2020161219A (en) Cooling structure of battery pack
CN106953133A (en) Battery pack flow control system with fan assembly
JP5878502B2 (en) Cooling device and power supply device
JP6507951B2 (en) Battery pack
KR101750069B1 (en) Battery pack with optimized inlet and outlet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200729

R150 Certificate of patent or registration of utility model

Ref document number: 6742884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150