JP6742793B2 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP6742793B2
JP6742793B2 JP2016087508A JP2016087508A JP6742793B2 JP 6742793 B2 JP6742793 B2 JP 6742793B2 JP 2016087508 A JP2016087508 A JP 2016087508A JP 2016087508 A JP2016087508 A JP 2016087508A JP 6742793 B2 JP6742793 B2 JP 6742793B2
Authority
JP
Japan
Prior art keywords
cam
intake
lock
cam shaft
intake cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016087508A
Other languages
Japanese (ja)
Other versions
JP2017198100A (en
Inventor
陽介 清
陽介 清
Original Assignee
株式会社エッチ・ケー・エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エッチ・ケー・エス filed Critical 株式会社エッチ・ケー・エス
Priority to JP2016087508A priority Critical patent/JP6742793B2/en
Publication of JP2017198100A publication Critical patent/JP2017198100A/en
Application granted granted Critical
Publication of JP6742793B2 publication Critical patent/JP6742793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Description

本発明は内燃機関に関する。 The present invention relates to internal combustion engines.

内燃機関では、気筒の吸気行程で、吸気バルブを吸気下死点よりも遅いタイミングで閉じることにより、実効的に圧縮行程のストローク長を膨張行程のストローク長よりも短くするミラーサイクルが知られている。 In an internal combustion engine, a Miller cycle is known in which the stroke length of the compression stroke is effectively made shorter than the stroke length of the expansion stroke by closing the intake valve at a timing later than the intake bottom dead center in the intake stroke of the cylinder. There is.

実圧縮比よりも実膨張比を大きくとるミラーサイクルは、実圧縮比と実膨張比とが概ね等しいオットーサイクルに比して、ポンピングロスを低減しながら排熱量を減少させ熱効率を高めることができる点で有利である。 The Miller cycle, which has a larger actual expansion ratio than the actual compression ratio, can reduce pumping loss and reduce the amount of exhaust heat to improve thermal efficiency, compared to the Otto cycle in which the actual compression ratio and the actual expansion ratio are substantially equal. It is advantageous in terms.

従来、内燃機関のミラーサイクル化の技術として、特許文献1に記載の如くの可変バルブタイミング機構を用いるものがある。この可変バルブタイミング機構は、カムプロフィルを相互に異なるものとし、吸気バルブの閉鎖時期を異ならせた2種の吸気カムを用意し、油圧ピストン機構等によってそれらの2種の吸気カムのいずれかを吸気バルブのロッカーアームに連携させるものである。ミラーサイクルに適したカムプロフィルを備えた吸気カムによれば、ミラーサイクルを実現できる。オットーサークルに適したカムプロフィルを備えた吸気カムによれば、オットーサイクル実現できる。 2. Description of the Related Art Conventionally, as a technique for forming a mirror cycle of an internal combustion engine, there is one that uses a variable valve timing mechanism as described in Patent Document 1. This variable valve timing mechanism has two different intake cams with different cam profiles and different intake valve closing timings, and one of these two intake cams is provided by a hydraulic piston mechanism or the like. It is linked to the rocker arm of the intake valve. An intake cam having a cam profile suitable for the mirror cycle can realize the mirror cycle. An intake cam equipped with a cam profile suitable for the Otto circle can realize the Otto cycle.

特開2004-183510号公報JP 2004-183510 JP

特許文献1に記載の内燃機関では、オットーサイクルとミラーサイクルのそれぞれを実現するために、吸気バルブの開閉構造として、カムプロフィルの異なる2種の吸気カムを用意する必要があり、複雑である。 The internal combustion engine described in Patent Document 1 is complicated because it is necessary to prepare two types of intake cams having different cam profiles as the opening/closing structure of the intake valve in order to realize each of the Otto cycle and the Miller cycle.

本発明の課題は、内燃機関において、吸気バルブの開閉構造を可及的に簡易にしながら、オットーサイクルとミラーサイクルを実現することにある。 An object of the present invention is to realize an Otto cycle and a Miller cycle in an internal combustion engine while simplifying the opening/closing structure of an intake valve as much as possible.

請求項1に係る発明は、カム軸に枢支された吸気カムにより吸気バルブをばね力に抗して駆動し、この吸気バルブによって吸気ポートを開閉するものであり、吸気カムがカム軸に相対回転可能に枢支され、カム軸に設けた係合部が、吸気カムに設けた空動許容部のカム軸回転方向に沿う一端側の進み側端部と他端側の反進み側端部とに挟まれる空動可能範囲で空動可能にされ、カム軸に設けた係合部が吸気カムに設けた空動許容部の進み側端部に係合する状態下で、カム軸と吸気カムとを相対回転不能に固定するロック位置と、固定しない非ロック位置とに切換設定可能にされるロック部を有し、ロック部が非ロック位置に設定されたとき、吸気カムが吸気バルブを全開するまでは、カム軸の駆動回転力によってカム軸に設けた係合部が吸気カムにおける空動許容部の進み側端部に押付けられ、吸気カムが吸気バルブを全開してからは、吸気バルブのばね力によって吸気カムにおける空動許容部の進み側端部をカム軸に設けた係合部から離隔させ、空動許容部の反進み側端部をカム軸に設けた係合部に押付けるまで、該吸気カムを該カム軸に対しカム軸回転方向に空動角αだけ空動させ、吸気カムが吸気バルブを全閉するまでは、吸気バルブのばね力によって吸気カムにおける空動許容部の反進み側端部がカム軸に設けた係合部に押付けられ、吸気カムが吸気バルブを全閉してからは、カム軸の駆動回転力によってカム軸に設けた係合部を吸気カムにおける空動許容部の反進み側端部から離隔させ、空動許容部の進み側端部に押付けるまで、該カム軸を該吸気カムに対しカム軸回転方向に空動角αだけ空動させるように構成され、ロック部がロック位置に設定されたとき、吸気カムはカム軸に相対回転不能に固定される内燃機関であって、前記ロック部がカム軸に設けられ、ロック位置に設定された該ロック部が吸気カムに設けた空動許容部の反進み側端部に係合可能にされ、ロック部がロック位置に設定されたとき、カム軸に設けた係合部が吸気カムにおける空動許容部の進み側端部に係合するとともに、カム軸に設けたロック部が吸気カムにおける空動許容部の反進み側端部に係合し、吸気カムはカム軸に相対回転不能に固定され、前記ロック部が、カム軸に設けた中空部に挿通されて該カム軸の軸方向に移動可能にされ、その軸方向に沿う非ロック位置とロック位置とに切換設定可能にされるスプールと、カム軸の中空部を囲む外周壁に設けたロール装填部に装填され、スプールの軸方向に並設されている凹部と凸部に交互に係合してカム軸の外周壁の内外に没入又は突出するロックボールと、スプールを非ロック位置とロック位置とに切換操作するアクチュエータとを有し、アクチュエータがスプールを非ロック位置に設定したとき、ロックボールがカム軸の外周壁に没入されて吸気カムにおける空動許容部の反進み側端部に非係合とされ、スプールをロック位置に設定したとき、ロックボールがカム軸の外周壁から突出されて吸気カムにおける空動許容部の反進み側端部に係合されるようにしたものである。 Invention drives against the intake valve spring force by the intake cam pivotally supported on the camshaft, which opens and closes the intake port by the intake valve, the intake cam relative to the cam shaft according to claim 1 The engagement portion rotatably supported on the cam shaft has an advancing end portion on one end side and an anti-advancing side end portion on the other end side along the cam shaft rotation direction of the idling allowance portion provided on the intake cam. When the cam shaft and the intake shaft are connected to each other, the camshaft and the intake It has a lock part that can be switched between a lock position that locks the cam so that it cannot rotate relative to the lock position and a non-lock position that does not lock it.When the lock part is set to the non-lock position, the intake cam locks the intake valve. Until fully opened, the driving torque of the camshaft pushes the engagement part provided on the camshaft against the end of the intake cam on the advancing side of the idle motion permitting part, and the intake cam fully opens the intake valve. Due to the spring force of the valve, the lead-side end of the idle motion permitting part of the intake cam is separated from the engaging part provided on the cam shaft, and the anti-leading-side end of the idle motion permitting part becomes the engaging part provided on the cam shaft. Until it is pressed, the intake cam is idled with respect to the camshaft in the camshaft rotation direction by an idle angle α, and until the intake cam fully closes the intake valve, the intake cam spring force causes the intake cam to idle. After the end portion of the allowance portion on the non-advancing side is pressed against the engagement portion provided on the cam shaft and the intake cam fully closes the intake valve, the engagement portion provided on the cam shaft is driven by the driving torque of the cam shaft. Until the air cam is separated from the anti-advance side end of the idling allowance part and pressed against the advancing end of the idling allowance part, the camshaft is moved by the idling angle α with respect to the intake cam in the camshaft rotation direction. The intake cam is an internal combustion engine that is configured to idle, and is fixed to the cam shaft so that the intake cam is relatively non-rotatable when the lock part is set to the lock position. When the lock portion is set to the lock position, the engagement portion provided on the camshaft is The intake cam engages with the advancing side end of the idling allowance part, and the lock part provided on the cam shaft engages with the anti-advancing side end of the idling allowance part of the intake cam. The lock portion is fixed so that it cannot rotate relative to the lock shaft, and the lock portion is inserted into a hollow portion provided in the cam shaft so as to be movable in the axial direction of the cam shaft, and the lock position is switched between an unlocked position and a locked position along the axial direction. Inside the spool, with the spool enabled A lock that is loaded in a roll loading portion provided on an outer peripheral wall surrounding an empty portion and alternately engages with a concave portion and a convex portion that are arranged side by side in the axial direction of the spool, and that is inserted into or protruded from the outer peripheral wall of the cam shaft. It has a ball and an actuator for switching the spool between an unlocked position and a locked position, and when the actuator sets the spool to the unlocked position, the lock ball is sunk in the outer peripheral wall of the cam shaft and becomes empty in the intake cam. When the spool is set to the lock position, the lock ball is projected from the outer peripheral wall of the cam shaft and disengages from the anti-advance side end of the intake cam when the spool is set to the lock position. It is adapted to be engaged with .

請求項2に係る発明は、請求項1に係る発明において更に、前記ロック部が非ロック位置に設定されたときに吸気カムが吸気バルブを駆動する作用角θ1が、該ロック部がロック位置に設定されたときに吸気カムが吸気バルブを駆動する作用角θ2よりも、カム軸に設けた係合部の空動角αだけ小さいようにしたものである。 The invention according to claim 2 is the invention according to claim 1, further comprising: an operating angle θ1 at which the intake cam drives the intake valve when the lock portion is set to the unlocked position, and the lock portion is at the lock position. When set, the intake cam is made smaller than the operating angle θ2 for driving the intake valve by the idling angle α of the engaging portion provided on the cam shaft.

(a)ロック部が非ロック位置に設定されたとき、カム軸に設けた係合部が吸気カムを押動し、この吸気カムが吸気バルブを開き操作している過程で、吸気カムが吸気バルブを全開してからは、吸気カムがカム軸回転方向に空動角αだけ空動する。これにより、吸気カムの作用角θ1は、吸気カムが空動しない場合(ミラーサイクル)に比して、上記空動角αだけ小さくなって、吸気バルブが早いタイミングで閉じるものになり、オットーサイクルを実現する。 (a) When the lock part is set to the unlocked position, the engaging part provided on the cam shaft pushes the intake cam, and the intake cam opens the intake valve while the intake cam opens. After the valve is fully opened, the intake cam idles in the camshaft rotation direction by the idle angle α. As a result, the working angle θ1 of the intake cam becomes smaller by the above-mentioned idling angle α than when the intake cam does not idle (Miller cycle), and the intake valve closes at an earlier timing. To realize.

ロック部がロック位置に設定され、吸気カムが空動しない場合には、吸気カムの作用角θ2が上記空動角αだけ大きくなって、吸気バルブが遅いタイミングで閉じるものになり、ミラーサイクルを実現する。 When the lock part is set to the lock position and the intake cam does not run idly, the working angle θ2 of the intake cam increases by the above-mentioned idling angle α, and the intake valve closes at a later timing. Realize.

(b)前記ロック部がカム軸に設けられ、ロック位置に設定された該ロック部が吸気カムに設けた空動許容部の反進み側端部に係合可能になる。これにより、ロック部がロック位置に設定されたとき、カム軸に設けた係合部が吸気カムにおける空動許容部の進み側端部に係合するとともに、カム軸に設けたロック部が吸気カムにおける空動許容部の反進み側端部に係合し、吸気カムは確実かつ簡易にカム軸に相対回転不能に固定される。 (b) The lock portion is provided on the cam shaft, and the lock portion set to the lock position can be engaged with the end portion on the opposite side of the idle motion permitting portion provided on the intake cam. As a result, when the lock portion is set to the lock position, the engagement portion provided on the cam shaft engages with the leading side end portion of the idle motion allowance portion of the intake cam, and the lock portion provided on the cam shaft causes the intake air to move. The intake cam is securely and easily fixed to the cam shaft so as not to rotate relative to it, by engaging with the end of the cam on the side opposite to the advancing end of the idle motion permitting portion.

(c)アクチュエータによりスプールをロック位置又は非ロック位置に切換操作することにより、このスプールの凹部又は凸部に係合することとなるロックボールを、吸気カムにおける空動許容部の反進み側端部に簡易に非係合又は係合させることができる。 (c) When the spool is switched to the locked position or the unlocked position by the actuator, the lock ball that engages with the concave portion or the convex portion of the spool is moved to the anti-advance side end of the idling allowance portion of the intake cam. The part can be easily disengaged or engaged.

図1はオットーサイクルモードのバルブ開閉状態を示す模式図である。FIG. 1 is a schematic diagram showing a valve open/close state in the Otto cycle mode. 図2はオットーサイクルモードのバルブ開閉状態を示す模式図である。FIG. 2 is a schematic view showing a valve open/close state in the Otto cycle mode. 図3はオットーサイクルモードのバルブ開閉状態を示す模式図である。FIG. 3 is a schematic diagram showing a valve open/close state in the Otto cycle mode. 図4はオットーサイクルモードのバルブ開閉状態を示す模式図である。FIG. 4 is a schematic diagram showing a valve open/close state in the Otto cycle mode. 図5はオットーサイクルモードのバルブ開閉状態を示す模式図である。FIG. 5 is a schematic view showing a valve open/close state in the Otto cycle mode. 図6はミラーサイクルモードのバルブ開閉状態を示す模式図である。FIG. 6 is a schematic diagram showing a valve open/close state in the Miller cycle mode. 図7はミラーサイクルモードのバルブ開閉状態を示す模式図である。FIG. 7 is a schematic diagram showing a valve open/close state in the Miller cycle mode. 図8はミラーサイクルモードのバルブ開閉状態を示す模式図である。FIG. 8 is a schematic diagram showing a valve open/close state in the Miller cycle mode. 図9はミラーサイクルモードのバルブ開閉状態を示す模式図である。FIG. 9 is a schematic diagram showing a valve open/close state in the Miller cycle mode. 図10はミラーサイクルモードのバルブ開閉状態を示す模式図である。FIG. 10 is a schematic diagram showing a valve open/close state in the Miller cycle mode. 図11はオットーサイクルモードを示し、(A)はバルブ全開前状態を示す断面図、(B)はバルブ全開後状態を示す断面図である。FIG. 11 shows the Otto cycle mode, (A) is a sectional view showing a state before the valve is fully opened, and (B) is a sectional view showing a state after the valve is fully opened. 図12はミラーサイクルモードを示し、(A)は断面図、(B)は(A)のB−B線に沿う断面図である。12A and 12B show the mirror cycle mode. FIG. 12A is a sectional view and FIG. 12B is a sectional view taken along the line BB of FIG. 図13は吸気カムの作用角を示し、(A)はオットーサイクルモードの作用角を示す模式図、(B)はミラーサイクルモードの作用角を示す模式図である。FIG. 13 shows the working angle of the intake cam, (A) is a schematic diagram showing the working angle in the Otto cycle mode, and (B) is a schematic diagram showing the working angle in the Miller cycle mode. 図14は排気バルブと吸気バルブのバルブタイミング線図である。FIG. 14 is a valve timing diagram of the exhaust valve and the intake valve.

図1は、本実施形態の車両等に用いられる内燃機関10の要部を示すものであり、天然ガス、軽油、ガソリン等を燃料とし、オットーサイクルモードとミラーサイクルモードに切換えて運転できる。 FIG. 1 shows a main part of an internal combustion engine 10 used in a vehicle or the like according to the present embodiment, which can be operated by switching between Otto cycle mode and Miller cycle mode using natural gas, light oil, gasoline or the like as fuel.

内燃機関10のシリンダヘッド11には、気筒毎に点火プラグ(不図示)及び燃料噴射弁(不図示)が配設されるとともに、当該気筒に向けて吸気が流入する吸気ポート12と、当該気筒から排気が流出する排気ポート(不図示)とを設けている。吸気ポート12にはこれを開閉する吸気バルブ13が配設され、排気ポートにはこれを開閉する排気バルブ(不図示)が配設されている。 A spark plug (not shown) and a fuel injection valve (not shown) are provided for each cylinder in a cylinder head 11 of the internal combustion engine 10, and an intake port 12 into which intake air flows toward the cylinder and the cylinder concerned. An exhaust port (not shown) through which exhaust gas flows out is provided. The intake port 12 is provided with an intake valve 13 that opens and closes it, and the exhaust port is provided with an exhaust valve (not shown) that opens and closes it.

以下、吸気バルブ13の開閉構造について詳述する。
本実施形態の内燃機関10は、クランク軸からもたらされる駆動回転力が伝達されるカム軸20を有し、このカム軸20に枢支された吸気カム30により、バルブスプリング40のばね力に抗して吸気バルブ13を駆動し、この吸気バルブ13によって吸気ポート12を開閉する。尚、吸気バルブ13は、そのバルブステム13Aに取付けられたバルブスプリングリテーナ41と、シリンダヘッド11の上面との間に介装されたバルブスプリング40のばね力により、吸気ポート12を閉じる方向に付勢されている。
Hereinafter, the opening/closing structure of the intake valve 13 will be described in detail.
The internal combustion engine 10 of the present embodiment has a cam shaft 20 to which a driving torque generated from a crank shaft is transmitted, and an intake cam 30 pivotally supported by the cam shaft 20 resists the spring force of the valve spring 40. Then, the intake valve 13 is driven, and the intake port 12 is opened and closed by the intake valve 13. The intake valve 13 is attached in a direction in which the intake port 12 is closed by the spring force of a valve spring 40 interposed between the valve spring retainer 41 attached to the valve stem 13A and the upper surface of the cylinder head 11. It is energized.

ここで、吸気カム30は、図11に示す如く、カム軸20に相対回転可能に枢支され、カム軸20に設けた係合部50が、該吸気カム30に設けた空動許容部31のカム軸回転方向Nに沿う一端側の進み側端部31Aと、他端側の反進み側端部31Bとに挟まれる空動可能範囲Rで空動可能にされる。 Here, as shown in FIG. 11, the intake cam 30 is rotatably supported by the cam shaft 20 so that the engagement portion 50 provided on the cam shaft 20 can move the engaging portion 50 provided on the intake cam 30. Is allowed to move in the idling range R which is sandwiched between the advancing side end portion 31A on one end side and the anti-advancing side end portion 31B on the other end side along the camshaft rotation direction N.

尚、カム軸20は、中空状をなし、中空部Hを囲む円筒状外周壁21の軸直角断面内における周方向の単一位置に設けられて径方向の外向きに拡開する半円弧状溝22をその軸方向に延在し、丸棒状係合部50の円弧状断面の一部(略半断面)を該半円弧状溝22に嵌着し、該係合部50の円弧状断面の残部を該カム軸20の該円筒状外周壁21から外方に突設させる。 The camshaft 20 is hollow and has a semi-arcuate shape that is provided at a single circumferential position in a cross section perpendicular to the axis of the cylindrical outer peripheral wall 21 that surrounds the hollow portion H and expands outward in the radial direction. The groove 22 extends in the axial direction, and a part (substantially half cross section) of the arc-shaped cross section of the round bar-shaped engaging portion 50 is fitted into the semi-arc shape groove 22, and the arc-shaped cross section of the engaging portion 50. The remaining part of the above is projected outward from the cylindrical outer peripheral wall 21 of the cam shaft 20.

また、吸気カム30は、カム軸20における円筒状外周壁21に相対回転可能に嵌合する内周面に空動許容部31を凹設して備える。空動許容部31はカム軸20の円筒状外周壁21の外周面に臨み、かつその外周面の周方向に沿う上述空動可能範囲Rに渡って延在される。空動許容部31における進み側端部31Aと反進み側端部31Bの間の溝面はカム軸20の円筒状外周壁21から突設されている係合部50が微小隙間を介して摺接し得る溝深さを備え、進み側端部31Aと反進み側端部31Bにおける溝面はカム軸20の円筒状外周壁21から突設されている係合部50が圧接して係合し得る円弧状をなす。 Further, the intake cam 30 is provided with a hollow motion permitting portion 31 which is recessed on the inner peripheral surface of the cam shaft 20 which is fitted to the cylindrical outer peripheral wall 21 so as to be relatively rotatable. The idling allowance portion 31 faces the outer peripheral surface of the cylindrical outer peripheral wall 21 of the cam shaft 20 and extends over the above-mentioned idle movable range R along the circumferential direction of the outer peripheral surface. On the groove surface between the advancing side end portion 31A and the anti-advancing side end portion 31B of the idle motion allowing portion 31, the engaging portion 50 protruding from the cylindrical outer peripheral wall 21 of the cam shaft 20 slides through a minute gap. The groove surfaces of the advancing side end portion 31A and the anti-advancing side end portion 31B have contactable groove depths, and the engaging portions 50 projecting from the cylindrical outer peripheral wall 21 of the camshaft 20 are brought into pressure contact with and engaged with each other. Make an arc shape to get.

更に、内燃機関10は、カム軸20に設けた係合部50が吸気カム30に設けた空動許容部31の進み側端部31Aに係合する状態下で、カム軸20と吸気カム30とを相対回転不能に固定するロック位置(図12(A))と、固定しない非ロック位置(図11(A))とに切換設定可能にされるロック部60を有する。 Further, in the internal combustion engine 10, the engagement portion 50 provided on the cam shaft 20 is engaged with the advance side end portion 31A of the idling allowance portion 31 provided on the intake cam 30, and the cam shaft 20 and the intake cam 30 are provided. It has a lock portion 60 that can be set to be switched between a locked position (Fig. 12(A)) that locks and are locked so that they cannot rotate relative to each other and an unlocked position (Fig. 11(A)) that does not lock them.

本実施形態において、ロック部60は、図12に示す如く、スプール61と、ロックボール62と、アクチュエータ63とを有して構成される。スプール61は、カム軸20に設けた中空部Hに挿通されて該カム軸20の軸方向に移動可能にされ、その軸方向に沿う非ロック位置(図11)とロック位置(図12)とに切換設定可能にされる。ロックボール62は、カム軸20の中空部Hを囲む円筒状外周壁21に設けたボール装填部23に装填され、スプール61の軸方向に並設されている凹部61Aと凸部61Bに交互に係合してカム軸20の円筒状外周壁21の内外に没入(図11)又は突出(図12)する。本実施形態では、カム軸20における円筒状外周壁21の軸方向に沿う3位置のそれぞれに孔状のボール装填部23が装填され、複数個(本実施例では3個)のロックボール62のそれぞれがそれらのボール装填部23に装填されている。これに応じて、スプール61は、その軸方向に相並ぶ環状凹部61Aと環状凸部61Bの組が、その軸方向に3組配設されている。アクチュエータ63は、電力(電気力等)又は流体圧(油圧等)によってスプール61を軸方向に往復動させ、スプール61を非ロック位置とロック位置とに切換操作する。従って、ロック部60は、アクチュエータ63がスプール61を非ロック位置に設定したとき(図11)、ロックボール62がカム軸20の円筒外周壁21に没入され、吸気カム30における空動許容部31の反進み側端部31Bに非係合とされる。他方、アクチュエータ63がスプール61をロック位置に設定したとき(図12)、ロックボール62がカム軸20の円筒状外周壁21から突出され、吸気カム30における空動許容部31の反進み側端部31Bに係合される。 In the present embodiment, as shown in FIG. 12, the lock portion 60 is configured to have a spool 61, a lock ball 62, and an actuator 63. The spool 61 is inserted into a hollow portion H provided in the cam shaft 20 to be movable in the axial direction of the cam shaft 20, and has an unlocked position (FIG. 11) and a locked position (FIG. 12) along the axial direction. It can be set to switch to. The lock balls 62 are loaded in the ball loading portion 23 provided on the cylindrical outer peripheral wall 21 surrounding the hollow portion H of the cam shaft 20, and are alternately arranged in the concave portions 61A and the convex portions 61B arranged side by side in the axial direction of the spool 61. It engages and it immerses in (FIG. 11) or protrudes (FIG. 12) in and out of the cylindrical outer peripheral wall 21 of the camshaft 20. In the present embodiment, hole-shaped ball loading portions 23 are loaded at each of three positions along the axial direction of the cylindrical outer peripheral wall 21 of the cam shaft 20, and a plurality of (three in this embodiment) lock balls 62 are provided. Each is loaded in the ball loading unit 23. Accordingly, the spool 61 is provided with three sets of an annular recess 61A and an annular protrusion 61B, which are aligned in the axial direction of the spool 61, in the axial direction. The actuator 63 axially reciprocates the spool 61 by electric power (electrical force or the like) or fluid pressure (hydraulic pressure or the like) to switch the spool 61 between an unlocked position and a locked position. Therefore, in the lock portion 60, when the actuator 63 sets the spool 61 to the unlocked position (FIG. 11 ), the lock ball 62 is sunk in the cylindrical outer peripheral wall 21 of the cam shaft 20, and the idling allowance portion 31 of the intake cam 30. It is disengaged from the anti-advance side end portion 31B. On the other hand, when the actuator 63 sets the spool 61 to the lock position (FIG. 12 ), the lock ball 62 is projected from the cylindrical outer peripheral wall 21 of the cam shaft 20, and the end of the intake cam 30 on the side opposite to the advancing side of the idling allowance portion 31. The portion 31B is engaged.

しかるに、(A)内燃機関10にあっては、ロック部60(ロックボール62)がアクチュエータ63により非ロック位置に設定されたとき(オットーサイクルモード)(図11)、
i.吸気カム30が吸気バルブ13を全開するまでは(吸気カム30が回転方向Nでプロフィルの基礎円から頂部に至る上り勾配面をバルブステム13Aに圧接する)、カム軸20を駆動回転力によって、カム軸20に設けた係合部50が吸気カム30における空動許容部31の進み側端部31Aに押付けられ、
ii.吸気カム30が吸気バルブ13を全開してからは(吸気カム30が回転方向Nでプロフィルの頂部から基礎円に至る下り勾配面をバルブステム13Aに圧接する)、吸気バルブ13におけるバルブスプリング40のばね力によって、吸気カム30における空動許容部31の進み側端部31Aをカム軸20に設けた係合部50から離隔させ、空動許容部31の反進み側端部31Bをカム軸20に設けた係合部50に押付けるまで、吸気カム30をカム軸20に対しカム軸回転方向Nに空動角αだけ空動させ、
iii.吸気カム30が吸気バルブ13を全閉(吸気カム30が回転方向Nでプロフィルの基礎円をバルブステム13Aに圧接する)までは、吸気バルブ13におけるバルブスプリング40のばね力によって吸気カム30における空動許容部31の反進み側端部31Bがカム軸20に設けた係合部50に押付けられ、
iv.吸気カム30が吸気バルブ13を全閉(吸気カム30が回転方向Nでプロフィルの基礎円をバルブステム13Aに圧接する)してからは、カム軸20の駆動回転力によって、カム軸20に設けた係合部50を吸気カム30における空動許容部31の反進み側端部31Bから離隔させ、空動許容部31の進み側端部31Aに押付けるまで、カム軸20を吸気カム30に対しカム軸回転方向Nに空動角αだけ空動させる。
However, in (A) the internal combustion engine 10, when the lock portion 60 (lock ball 62) is set to the unlocked position by the actuator 63 (Otto cycle mode) (FIG. 11),
i. Until the intake cam 30 fully opens the intake valve 13 (the intake cam 30 presses the upslope surface from the basic circle of the profile to the top in the rotational direction N to the valve stem 13A), the cam shaft 20 is driven to rotate. By this, the engaging portion 50 provided on the cam shaft 20 is pressed against the leading side end portion 31A of the idle motion allowing portion 31 of the intake cam 30,
ii. The valve spring in the intake valve 13 after the intake cam 30 fully opens the intake valve 13 (the intake cam 30 presses the downward slope surface from the top of the profile to the basic circle in the rotation direction N to the valve stem 13A). By the spring force of 40, the advancing side end 31A of the idling allowance portion 31 of the intake cam 30 is separated from the engaging portion 50 provided on the cam shaft 20, and the anti-advancing side end 31B of the idling allowance portion 31 is cammed. Until the intake cam 30 is pressed against the engaging portion 50 provided on the shaft 20, the intake cam 30 is made to idle with respect to the cam shaft 20 in the cam shaft rotation direction N by an idle angle α.
iii. Until the intake cam 30 fully closes the intake valve 13 (the intake cam 30 presses the basic circle of the profile against the valve stem 13A in the rotation direction N), the intake cam 30 is pressed by the spring force of the valve spring 40 in the intake valve 13. The anti-advance side end portion 31B of the idling allowance portion 31 is pressed against the engaging portion 50 provided on the cam shaft 20,
iv. After the intake cam 30 fully closes the intake valve 13 (the intake cam 30 presses the basic circle of the profile against the valve stem 13A in the rotation direction N), the camshaft 20 is driven by the driving torque of the camshaft 20. The camshaft 20 until the engaging portion 50 provided in the intake cam 30 is separated from the anti-advance side end portion 31B of the idling allowance portion 31 of the intake cam 30 and is pressed against the advancing side end portion 31A of the idling allowance portion 31. The cam 30 is made to idle by the idle angle α in the camshaft rotation direction N.

尚、上述ivで、カム軸20に設けた係合部50を吸気カム30における空動許容部31の反進み側端部31Bから離隔させ、空動許容部31の進み側端部31Aに押付けるように該吸気カム30に作用させる力として、カム軸20の駆動回転力に加え、該カム軸20と該吸気カム30との間に介在させたねじりコイルばね等からなる戻しばねのばね力を用いるものであっても良い。この戻しばねのばね力は吸気カム30をカム軸20に対してカム軸回転方向Nと反対方向に回動させる。 In the above iv, the engaging portion 50 provided on the cam shaft 20 is separated from the anti-advance side end portion 31B of the idling allowance portion 31 of the intake cam 30 and pushed to the advancing side end portion 31A of the idle allowance portion 31. As the force to be applied to the intake cam 30 so as to apply, in addition to the driving rotational force of the cam shaft 20, a spring force of a return spring formed of a torsion coil spring or the like interposed between the cam shaft 20 and the intake cam 30. May be used. The spring force of the return spring causes the intake cam 30 to rotate with respect to the cam shaft 20 in the direction opposite to the cam shaft rotation direction N.

他方、(B)ロック部60(ロックボール62)がアクチュエータ63によりロック位置に設定されたとき(ミラーサイクルモード)(図12)、カム軸20に設けた係合部50が吸気カム30における空動許容部31の進み側端部31Aに係合するとともに、カム軸20に設けたロック部60(ロックボール62)が吸気カム30における空動許容部31の反進み側端部31Bに係合し、吸気カム30はカム軸20に相対回転不能に固定される。 On the other hand, (B) When the lock portion 60 (lock ball 62) is set to the lock position by the actuator 63 (mirror cycle mode) (FIG. 12), the engaging portion 50 provided on the cam shaft 20 causes the empty portion of the intake cam 30 to move. The lock portion 60 (lock ball 62) provided on the camshaft 20 is engaged with the lead-side end portion 31A of the motion permitting portion 31, and is engaged with the anti-lead end portion 31B of the air-moving permitting portion 31 of the intake cam 30. The intake cam 30 is fixed to the cam shaft 20 so as not to rotate relative to it.

図13は、ロック部60(ロックボール62)が非ロック位置に設定されたとき(オットーサイクルモード)に吸気カム30が吸気バルブ13を駆動する作用角θ1(図13(A))と、ロック部60(ロックボール62)がロック位置に設定されたとき(ミラーサイクルモード)に吸気カム30が吸気バルブ13を駆動する作用角θ2(図13(B))とを対比して表わしたものである。空動していない吸気カム30のプロフィル(実線)において、aは基礎円と上り勾配面との境界点、bは頂部、cは基礎円と下り勾配面との境界点を示す。バルブスプリング40のばね力Fによって空動した後の吸気カム30のプロフィル(2点鎖線)において、b´は頂部、c´は基礎円と下り勾配面との境界点を示す。oは吸気カム30の中心点を示す。図13によって明らかな如く、ロック部60(ロックボール62)が非ロック位置に設定されたときに吸気カム30が吸気バルブ13を駆動する作用角θ1(∠aoc´)は、ロック部60(ロックボール62)がロック位置に設定されたときに吸気カム30が吸気バルブ13を駆動する作用角θ2(∠aoc)よりも、図13に示す如く、カム軸20に設けた係合部50の上述した空動角αだけ小さい。 FIG. 13 shows an operating angle θ1 (FIG. 13A) at which the intake cam 30 drives the intake valve 13 when the lock portion 60 (lock ball 62) is set to the unlocked position (Otto cycle mode), and When the portion 60 (lock ball 62) is set to the lock position (mirror cycle mode), the operating angle θ2 (FIG. 13B) at which the intake cam 30 drives the intake valve 13 is shown in comparison. is there. In the profile of the intake cam 30 that is not idling (solid line), a indicates a boundary point between the basic circle and the upward slope surface, b indicates a top portion, and c indicates a boundary point between the basic circle and the downward slope surface. In the profile (two-dot chain line) of the intake cam 30 after idling due to the spring force F of the valve spring 40, b'denotes a top portion and c'denotes a boundary point between the base circle and the descending slope surface. o indicates the center point of the intake cam 30. As is clear from FIG. 13, the operating angle θ1 (∠aoc′) at which the intake cam 30 drives the intake valve 13 when the lock portion 60 (lock ball 62) is set to the unlocked position is equal to the lock portion 60 (lock As shown in FIG. 13, the engagement portion 50 provided on the cam shaft 20 is more than the working angle θ2 (∠aoc) at which the intake cam 30 drives the intake valve 13 when the ball 62) is set to the lock position. It is smaller by the aerodynamic angle α.

従って、吸気バルブ13のバルブタイミングは、図14に示す如く、ロック部60が非ロック位置に設定されたバルブタイミングA(オットーサイクルモード)の閉鎖時期を、ロック部60がロック位置に設定されたバルブタイミングB(ミラーサイクルモード)の閉鎖時期より、上述した空動角α分早くする。換言すれば、ミラーサイクルモードのバルブタイミングBの閉弁時期は、オットーサイクルモードのバルブタイミングAによる閉弁時期より、上述した空動角α分遅くなる。 Therefore, as shown in FIG. 14, the intake valve 13 has the valve timing A (Otto cycle mode) at which the lock portion 60 is set at the unlocked position and the lock portion 60 is set at the locked position. The valve timing B (Miller cycle mode) is closed earlier than the closing timing by the above-mentioned aerodynamic angle α. In other words, the valve closing timing of the valve timing B in the Miller cycle mode is later than the valve closing timing of the valve timing A in the Otto cycle mode by the above-mentioned idling angle α.

よって、内燃機関10のECU(制御手段)70がエンジン回転数センサ、アクセルポジションセンサ、車速センサ等の検出結果に基づき、例えば機関運転状態が低回転域にある等によりオットーサイクル化が必要であると判断したときには、ECU70はロック部60(ロックボール62)を非ロック位置に設定するようにアクチュエータ63を制御し、吸気バルブ13のバルブタイミングをオットーサイクルモードとする。他方、例えば機関運転状態が中高回転域にある等によりミラーサイクル化が必要であると判断したときには、ECU70はロック部60(ロックボール62)をロック位置に設定するようにアクチュエータ63を制御し、吸気バルブ13のバルブタイミングをミラーサイクルモードとする。 Therefore, the ECU (control means) 70 of the internal combustion engine 10 needs to have an Otto cycle based on the detection results of the engine speed sensor, the accelerator position sensor, the vehicle speed sensor, etc., for example, when the engine operating state is in the low speed range. If so, the ECU 70 controls the actuator 63 to set the lock portion 60 (lock ball 62) to the unlocked position, and sets the valve timing of the intake valve 13 to the Otto cycle mode. On the other hand, when it is determined that the mirror cycle is necessary because the engine operating state is in the medium-high speed range, the ECU 70 controls the actuator 63 to set the lock portion 60 (lock ball 62) to the lock position, The valve timing of the intake valve 13 is set to the Miller cycle mode.

以下、オットーサイクルモードとミラーサイクルモードについて詳述する。
(A)オットーサイクルモード(図1乃至図5)
アクチュエータ63によりロック部60(ロックボール62)が非ロック位置に設定される(図11)。
Hereinafter, the Otto cycle mode and the Miller cycle mode will be described in detail.
(A) Otto cycle mode (Figs. 1 to 5)
The actuator 63 sets the lock portion 60 (lock ball 62) to the unlocked position (FIG. 11).

(1)吸気カム30が吸気バルブ13を全閉状態から全開するまでは、図1、図2に示す如く、駆動回転力を受けたカム軸20が該カム軸20に設けた係合部50を吸気カム30における空動許容部31の進み側端部31Aに押付けつつ該吸気カム30を回転し、該吸気カム30のプロフィルの基礎円から頂部に至る上り勾配面がバルブスプリング40のばね力に抗してバルブステム13Aを押し下げ、吸気バルブ13を開く。 (1) Until the intake cam 30 fully opens the intake valve 13 from the fully closed state, as shown in FIGS. 1 and 2, the cam shaft 20 that receives the driving rotational force is the engaging portion 50 provided on the cam shaft 20. Of the intake cam 30 is pressed against the advancing side end portion 31A of the idling allowance portion 31 of the intake cam 30, and the intake cam 30 is rotated. The valve stem 13A is pushed down against and the intake valve 13 is opened.

(2)吸気カム30が吸気バルブ13を全開してからは、図3、図4に示す如く、バルブスプリング40のばね力を受けたバルブステム13Aが該吸気カム30のプロフィルの頂部から基礎円に至る下り勾配面にカム軸回転方向Nで圧接し、吸気カム軸30における空動許容部31の進み側端部31Aをカム軸20に設けた係合部50から離隔させ、空動許容部31の反進み側端部31Bをカム軸20に設けた係合部50に押付けるまで、該吸気カム30を該カム軸20に対しカム軸回転方向Nに空動角αだけ空動させる。 (2) After the intake cam 30 fully opens the intake valve 13, as shown in FIGS. 3 and 4, the valve stem 13A, which receives the spring force of the valve spring 40, moves from the top of the profile of the intake cam 30 to the basic circle. Is pressed against the descending slope surface in the camshaft rotation direction N to separate the leading end 31A of the idle motion permitting portion 31 of the intake camshaft 30 from the engaging portion 50 provided on the camshaft 20. The intake cam 30 is idly moved in the camshaft rotation direction N by the idling angle α with respect to the camshaft 20 until the anti-advance side end 31B of the shaft 31 is pressed against the engaging portion 50 provided on the camshaft 20.

(3)吸気カム30の空動後、吸気カム30が吸気バルブ13を全閉するまでは、バルブスプリング40のばね力を受けたバルブステム13Aが該吸気カム30のプロフィルの下り勾配面をカム軸回転方向Nに加圧する状態下で、吸気カム軸30における空動許容部31の反進み側端部31Bがカム軸20に設けた係合部50に押付けられる。吸気カム30は空動許容部31の反進み側端部31Bをカム軸20に設けた係合部50に押付けつつ、カム軸20に従動するように該カム軸20とともに回転し、吸気バルブ13を閉じる。 (3) After the idling of the intake cam 30, until the intake cam 30 fully closes the intake valve 13, the valve stem 13A receiving the spring force of the valve spring 40 cams the downward slope surface of the profile of the intake cam 30. Under pressure in the axial rotation direction N, the anti-advance side end portion 31B of the idling allowance portion 31 of the intake camshaft 30 is pressed against the engaging portion 50 provided on the camshaft 20. The intake cam 30 rotates with the cam shaft 20 so as to follow the cam shaft 20 while pressing the anti-advance side end 31B of the idling allowance part 31 against the engaging part 50 provided on the cam shaft 20. Close.

(4)吸気カム30が吸気バルブ13を全閉してからは、駆動回転力を受けたカム軸20が該カム軸20に設けた係合部50を吸気カム30における空動許容部31の反進み側端部31Bから離隔させ、空動許容部31の進み側端部31Aに押付けるまで、該カム軸20を該吸気カム30に対しカム軸回転方向Nに空動角αだけ空動させる。これにより、上述(1)において吸気バルブ13を開き始める当初段階に戻る。 (4) After the intake cam 30 fully closes the intake valve 13, the cam shaft 20 that receives the driving rotational force moves the engaging portion 50 provided on the cam shaft 20 to the idling allowance portion 31 of the intake cam 30. Until the end 31A of the anti-advance side is separated and the end 31A of the idling allowance portion 31 is pressed, the camshaft 20 is idly moved in the camshaft rotation direction N relative to the intake cam 30 by an idling angle α. Let As a result, the process returns to the initial stage of starting opening the intake valve 13 in (1) above.

(B)ミラーサイクルモード(図6乃至図10)
アクチュエータ63によりロック部60(ロックボール62)がロック位置に設定され、吸気カム30はカム軸20に相対回転不能に固定される(図12)。
(B) Miller cycle mode (FIGS. 6 to 10)
The lock portion 60 (lock ball 62) is set to the lock position by the actuator 63, and the intake cam 30 is fixed to the cam shaft 20 so as not to rotate relative to it (FIG. 12).

(1)吸気カム30が吸気バルブ13を全閉状態から全開するまでは、図6、図7に示す如く、駆動回転力を受けたカム軸20が吸気カム30を回転し、該吸気カム30のプロフィルの基礎円から頂部に至る上り勾配面がバルブスプリング40のばね力に抗してバルブステム13Aを押し下げ、吸気バルブ13を開く。 (1) Until the intake cam 30 fully opens the intake valve 13 from the fully closed state, as shown in FIGS. 6 and 7, the cam shaft 20 which receives the driving rotational force rotates the intake cam 30, and the intake cam 30 The upward slope surface from the basic circle of the profile to the top of the profile pushes down the valve stem 13A against the spring force of the valve spring 40 to open the intake valve 13.

(2)吸気カム30が吸気バルブ13を全開してから全閉するに至るまでは、図8乃至図10に示す如く、バルブスプリング40のばね力を受けたバルブステム13Aが吸気カム30のプロフィルの頂部から基礎円に至る下り勾配面をカム軸回転方向Nに加圧する状態下で、吸気カム軸30はカム軸20に従動するように該カム軸20とともに回転し、吸気バルブ13を閉じる。 (2) From the time when the intake cam 30 fully opens the intake valve 13 to the time when the intake valve 13 is fully closed, as shown in FIGS. 8 to 10, the valve stem 13A that receives the spring force of the valve spring 40 has the profile of the intake cam 30. The intake camshaft 30 rotates together with the camshaft 20 so as to follow the camshaft 20 under the condition that the downward slope surface from the top to the base circle is pressed in the camshaft rotation direction N, and the intake valve 13 is closed.

(3)吸気カム30が吸気バルブ13を全閉してからは、駆動回転力を受けたカム軸20が吸気カム30を回転し、上述(1)において吸気バルブ13を開き始める当初段階に戻る。 (3) After the intake cam 30 fully closes the intake valve 13, the camshaft 20 that receives the driving rotational force rotates the intake cam 30 and returns to the initial stage where the intake valve 13 starts to open in (1) above. ..

本実施形態によれば以下の作用効果を奏する。
(a)ロック部60が非ロック位置に設定されたとき、カム軸20に設けた係合部50が吸気カム30を押動し、この吸気カム30が吸気バルブ13を開き操作している過程で、吸気カム30が吸気バルブ13を全開してからは、吸気カム30がカム軸回転方向に空動角αだけ空動する。これにより、吸気カム30の作用角θ1は、吸気カム30が空動しない場合(ミラーサイクル)に比して、上記空動角αだけ小さくなって、吸気バルブ13が早いタイミングで閉じるものになり、オットーサイクルを実現する。
According to this embodiment, the following operational effects are obtained.
(a) A process in which the engagement portion 50 provided on the camshaft 20 pushes the intake cam 30 when the lock portion 60 is set to the unlocked position, and the intake cam 30 operates to open the intake valve 13. Then, after the intake cam 30 fully opens the intake valve 13, the intake cam 30 idles in the camshaft rotation direction by the idle angle α. As a result, the working angle θ1 of the intake cam 30 becomes smaller by the aerodynamic angle α as compared with the case where the intake cam 30 does not move (Miller cycle), and the intake valve 13 closes at an earlier timing. Realize the Otto cycle.

ロック部60がロック位置に設定され、吸気カム30が空動しない場合には、吸気カム30の作用角θ2が上記空動角αだけ大きくなって、吸気バルブ13が遅いタイミングで閉じるものになり、ミラーサイクルを実現する。 When the lock portion 60 is set to the lock position and the intake cam 30 does not idle, the working angle θ2 of the intake cam 30 increases by the idle angle α and the intake valve 13 closes at a later timing. Realize the mirror cycle.

(b)前記ロック部60がカム軸20に設けられ、ロック位置に設定された該ロック部60が吸気カム30に設けた空動許容部31の反進み側端部31Bに係合可能になる。これにより、ロック部60がロック位置に設定されたとき、カム軸20に設けた係合部50が吸気カム30における空動許容部31の進み側端部31Aに係合するとともに、カム軸20に設けたロック部60が吸気カム30における空動許容部31の反進み側端部31Bに係合し、吸気カム30は確実かつ簡易にカム軸20に相対回転不能に固定される。 (b) The lock portion 60 is provided on the cam shaft 20, and the lock portion 60 set at the lock position can be engaged with the anti-advance side end portion 31B of the idling allowance portion 31 provided on the intake cam 30. .. As a result, when the lock portion 60 is set to the lock position, the engagement portion 50 provided on the cam shaft 20 engages with the advance side end portion 31A of the idling allowance portion 31 of the intake cam 30 and the cam shaft 20 The lock portion 60 provided at the end engages with the anti-advance side end portion 31B of the idling allowance portion 31 of the intake cam 30, and the intake cam 30 is securely and easily fixed to the cam shaft 20 so as not to be relatively rotatable.

(c)アクチュエータ63によりスプール61をロック位置又は非ロック位置に切換操作することにより、このスプール61の凹部61A又は凸部61Bに係合することとなるロックボール62を、吸気カム30における空動許容部31の反進み側端部31Bに簡易に非係合又は係合させることができる。 (c) When the spool 61 is switched to the locked position or the unlocked position by the actuator 63, the lock ball 62, which is engaged with the concave portion 61A or the convex portion 61B of the spool 61, is moved in the idle cam of the intake cam 30. It is possible to easily disengage or engage the end portion 31B on the opposite side of the allowance portion 31.

以上、本発明の実施例を図面により詳述したが、本発明の具体的な構成はこの実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。例えば、本発明において、ロック部は、カム軸に設けた係合部が吸気カムに設けた空動許容部の進み側端部に係合する状態下で、カム軸と吸気カムとを相対回転不能に固定するロック位置と、固定しない非ロック位置とに切換設定可能にされるものであれば良く、必ずしも、吸気カムに設けた空動許容部の反進み側端部に係合可能にされるものであることを要しない。 Although the embodiment of the present invention has been described in detail above with reference to the drawings, the specific configuration of the present invention is not limited to this embodiment, and even if there is a design change or the like without departing from the scope of the present invention. Included in the present invention. For example, in the present invention, the lock portion relatively rotates the cam shaft and the intake cam under the condition that the engagement portion provided on the cam shaft engages with the advance side end portion of the idling allowance portion provided on the intake cam. It suffices as long as it can be set to be locked between a lock position where it cannot be fixed and a non-lock position where it is not fixed. It doesn't have to be one.

また、本発明において、吸気カムは、吸気バルブのバルブステムを直接駆動するものに限らず、ロッカアーム等を介して吸気バルブのバルブステムを駆動するものでも良い。 Further, in the present invention, the intake cam is not limited to one that directly drives the valve stem of the intake valve, but may be one that drives the valve stem of the intake valve via a rocker arm or the like.

本発明によれば、内燃機関において、吸気バルブの開閉構造を可及的に簡易にしながら、オットーサイクルとミラーサイクルを実現することができる。 According to the present invention, an Otto cycle and a Miller cycle can be realized in an internal combustion engine while simplifying the intake valve opening/closing structure as much as possible.

10 内燃機関
12 吸気ポート
13 吸気バルブ
20 カム軸
21 外周壁
23 ボール装填部
30 吸気カム
31 空動許容部
31A 進み側端部
31B 反進み側端部
40 バルブスプリング
50 係合部
60 ロック部
61 スプール
61A 凹部
61B 凸部
62 ロックボール
63 アクチュエータ
10 Internal Combustion Engine 12 Intake Port 13 Intake Valve 20 Camshaft 21 Outer Wall 23 Ball Loading Part 30 Intake Cam 31 Air Motion Allowable Part 31A Advance Side End 31B Anti-Advance Side End 40 Valve Spring 50 Engagement Part 60 Lock Part 61 Spool 61A concave portion 61B convex portion 62 lock ball 63 actuator

Claims (2)

カム軸に枢支された吸気カムにより吸気バルブをばね力に抗して駆動し、この吸気バルブによって吸気ポートを開閉するものであり
吸気カムがカム軸に相対回転可能に枢支され、カム軸に設けた係合部が、吸気カムに設けた空動許容部のカム軸回転方向に沿う一端側の進み側端部と他端側の反進み側端部とに挟まれる空動可能範囲で空動可能にされ、
カム軸に設けた係合部が吸気カムに設けた空動許容部の進み側端部に係合する状態下で、カム軸と吸気カムとを相対回転不能に固定するロック位置と、固定しない非ロック位置とに切換設定可能にされるロック部を有し、
ロック部が非ロック位置に設定されたとき、吸気カムが吸気バルブを全開するまでは、カム軸の駆動回転力によってカム軸に設けた係合部が吸気カムにおける空動許容部の進み側端部に押付けられ、吸気カムが吸気バルブを全開してからは、吸気バルブのばね力によって吸気カムにおける空動許容部の進み側端部をカム軸に設けた係合部から離隔させ、空動許容部の反進み側端部をカム軸に設けた係合部に押付けるまで、該吸気カムを該カム軸に対しカム軸回転方向に空動角αだけ空動させ、吸気カムが吸気バルブを全閉するまでは、吸気バルブのばね力によって吸気カムにおける空動許容部の反進み側端部がカム軸に設けた係合部に押付けられ、吸気カムが吸気バルブを全閉してからは、カム軸の駆動回転力によってカム軸に設けた係合部を吸気カムにおける空動許容部の反進み側端部から離隔させ、空動許容部の進み側端部に押付けるまで、該カム軸を該吸気カムに対しカム軸回転方向に空動角αだけ空動させるように構成され、
ロック部がロック位置に設定されたとき、吸気カムはカム軸に相対回転不能に固定される内燃機関であって、
前記ロック部がカム軸に設けられ、ロック位置に設定された該ロック部が吸気カムに設けた空動許容部の反進み側端部に係合可能にされ、
ロック部がロック位置に設定されたとき、カム軸に設けた係合部が吸気カムにおける空動許容部の進み側端部に係合するとともに、カム軸に設けたロック部が吸気カムにおける空動許容部の反進み側端部に係合し、吸気カムはカム軸に相対回転不能に固定され、
前記ロック部が、
カム軸に設けた中空部に挿通されて該カム軸の軸方向に移動可能にされ、その軸方向に沿う非ロック位置とロック位置とに切換設定可能にされるスプールと、
カム軸の中空部を囲む外周壁に設けたロール装填部に装填され、スプールの軸方向に並設されている凹部と凸部に交互に係合してカム軸の外周壁の内外に没入又は突出するロックボールと、
スプールを非ロック位置とロック位置とに切換操作するアクチュエータとを有し、
アクチュエータがスプールを非ロック位置に設定したとき、ロックボールがカム軸の外周壁に没入されて吸気カムにおける空動許容部の反進み側端部に非係合とされ、スプールをロック位置に設定したとき、ロックボールがカム軸の外周壁から突出されて吸気カムにおける空動許容部の反進み側端部に係合される内燃機関。
The intake valve driving against the spring force by the pivoted intake cam on the camshaft, which opens and closes the intake port by the intake valve,
The intake cam is rotatably supported on the cam shaft, and the engaging portion provided on the cam shaft has an advancing end on the one end side and the other end along the cam shaft rotation direction of the idling allowance portion provided on the intake cam. It is possible to run idly within the range of idling that is sandwiched between the opposite end side of the side and
Under the condition that the engaging portion provided on the cam shaft engages with the leading end of the idling allowance portion provided on the intake cam, the cam shaft and the intake cam are locked so as not to rotate relative to each other, and not locked. Has a lock part that can be set to switch to the unlocked position,
When the lock part is set to the unlocked position, the engagement part provided on the camshaft by the driving torque of the camshaft until the intake cam fully opens the intake valve causes the leading end of the idle motion allowance part of the intake cam. When the intake cam is pressed against the air intake valve and the intake valve is fully opened, the spring force of the intake valve causes the advancing end of the idle cam of the intake cam to move away from the engagement part provided on the cam shaft. The intake cam is made to idle by an idling angle α in the camshaft rotation direction with respect to the camshaft until the end of the allowance portion on the opposite side is pressed against the engagement portion provided on the camshaft. Until the valve is fully closed, the spring force of the intake valve pushes the end of the intake cam on the non-advance side of the idle motion allowance part against the engaging part provided on the cam shaft, and the intake cam fully closes the intake valve. Until the engaging portion provided on the cam shaft is separated from the anti-advance side end portion of the idle motion permitting portion of the intake cam by the driving torque of the cam shaft, and is pressed to the advance side end portion of the idle motion permitting portion. The camshaft is configured to idle relative to the intake cam in the camshaft rotation direction by an idle angle α,
When the lock portion is set to the lock position, the intake cam is an internal combustion engine that is fixed to the cam shaft so that it cannot rotate relative to the cam shaft .
The lock portion is provided on the cam shaft, and the lock portion set to the lock position is engageable with the end portion on the side opposite to the advancing end of the idle motion permitting portion provided on the intake cam,
When the lock portion is set to the lock position, the engagement portion provided on the cam shaft engages with the leading side end portion of the idling allowance portion of the intake cam, and the lock portion provided on the cam shaft moves to the empty portion of the intake cam. The intake cam is fixed to the cam shaft so as not to rotate relative to it, by engaging the opposite end of the motion permitting part.
The lock is
A spool which is inserted into a hollow portion provided in the cam shaft and is movable in the axial direction of the cam shaft, and which can be set to be switched between an unlocked position and a locked position along the axial direction,
It is loaded in a roll loading portion provided on the outer peripheral wall surrounding the hollow portion of the cam shaft, and alternately engages with the concave portion and the convex portion arranged in parallel in the axial direction of the spool, and sinks into or out of the outer peripheral wall of the cam shaft. With a protruding rock ball,
An actuator for switching the spool between an unlocked position and a locked position,
When the actuator sets the spool to the unlocked position, the lock ball is retracted into the outer peripheral wall of the cam shaft and disengaged from the end of the intake cam on the non-advancing side of the idle motion allowing part, and the spool is set to the locked position. At this time, the lock ball projects from the outer peripheral wall of the cam shaft and is engaged with the end of the intake cam on the side opposite to the advancing end of the idling allowance portion .
前記ロック部が非ロック位置に設定されたときに吸気カムが吸気バルブを駆動する作用角θ1が、該ロック部がロック位置に設定されたときに吸気カムが吸気バルブを駆動する作用角θ2よりも、カム軸に設けた係合部の空動角αだけ小さい請求項1に記載の内燃機関。 The operating angle θ1 at which the intake cam drives the intake valve when the lock portion is set to the unlocked position is greater than the operating angle θ2 at which the intake cam drives the intake valve when the lock portion is set to the lock position. Also, the internal combustion engine according to claim 1, wherein the engagement portion provided on the cam shaft is smaller by the idling angle α.
JP2016087508A 2016-04-25 2016-04-25 Internal combustion engine Active JP6742793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016087508A JP6742793B2 (en) 2016-04-25 2016-04-25 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016087508A JP6742793B2 (en) 2016-04-25 2016-04-25 Internal combustion engine

Publications (2)

Publication Number Publication Date
JP2017198100A JP2017198100A (en) 2017-11-02
JP6742793B2 true JP6742793B2 (en) 2020-08-19

Family

ID=60238933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016087508A Active JP6742793B2 (en) 2016-04-25 2016-04-25 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP6742793B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019072207A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072212A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072203A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072208A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072206A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072205A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072209A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072211A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072210A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072204A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine

Also Published As

Publication number Publication date
JP2017198100A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP6742793B2 (en) Internal combustion engine
US8375904B2 (en) Early intake valve closing and variable valve timing assembly and method
JP5126426B2 (en) Control device for internal combustion engine
JP2008267300A (en) Variable valve gear for internal combustion engine
US20140109850A1 (en) Method and system for internal combustion engine
WO2018216292A1 (en) Control device for internal combustion engine
JP2007263050A (en) Internal combustion engine
KR101648620B1 (en) Variable valve device for internal combustion engine
RU2397340C2 (en) Two-stroke ice
EP3073070A1 (en) Camshaft based variable valve timing
NL2011947C2 (en) Combustion engine comprising a cylinder.
JP2014234821A (en) Ultra-high-efficiency internal combustion engine with centralized combustion chamber
JP2017155620A (en) Variable cycle engine
US20170022857A1 (en) Locking cylinder pressure relief actuator
US9429049B2 (en) Intake valve actuation system for dual fuel engine
JP2006220121A (en) Cylinder head of internal combustion engine
US10669929B1 (en) Variable compression ratio engine
US11808231B2 (en) Negative pressure operating method
US20240167430A1 (en) Internal combustion engine
JP5142896B2 (en) Variable valve operating system for premixed compression self-ignition internal combustion engine
WO2015050261A1 (en) Control device for internal combustion engine
WO2018216290A1 (en) Control device for internal combustion engine
KR20210124189A (en) engine valve control
JP2019167901A (en) Engine system
JP2015074988A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200729

R150 Certificate of patent or registration of utility model

Ref document number: 6742793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250