JP6742398B2 - マルウェアの識別とモデルの不均一性のために現場の分類器を再訓練するためのシステム及び方法 - Google Patents
マルウェアの識別とモデルの不均一性のために現場の分類器を再訓練するためのシステム及び方法 Download PDFInfo
- Publication number
- JP6742398B2 JP6742398B2 JP2018504758A JP2018504758A JP6742398B2 JP 6742398 B2 JP6742398 B2 JP 6742398B2 JP 2018504758 A JP2018504758 A JP 2018504758A JP 2018504758 A JP2018504758 A JP 2018504758A JP 6742398 B2 JP6742398 B2 JP 6742398B2
- Authority
- JP
- Japan
- Prior art keywords
- machine learning
- determining
- learning model
- retraining
- files
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 61
- 238000012549 training Methods 0.000 claims description 62
- 238000012360 testing method Methods 0.000 claims description 47
- 238000010801 machine learning Methods 0.000 claims description 44
- 239000013598 vector Substances 0.000 claims description 42
- 230000001960 triggered effect Effects 0.000 claims 2
- 238000011065 in-situ storage Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 10
- 230000006872 improvement Effects 0.000 description 6
- 238000013145 classification model Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000007123 defense Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000002155 anti-virotic effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000003416 augmentation Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000003066 decision tree Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000012913 prioritisation Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/50—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
- G06F21/55—Detecting local intrusion or implementing counter-measures
- G06F21/56—Computer malware detection or handling, e.g. anti-virus arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/50—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
- G06F21/55—Detecting local intrusion or implementing counter-measures
- G06F21/56—Computer malware detection or handling, e.g. anti-virus arrangements
- G06F21/566—Dynamic detection, i.e. detection performed at run-time, e.g. emulation, suspicious activities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/12—Detection or prevention of fraud
- H04W12/128—Anti-malware arrangements, e.g. protection against SMS fraud or mobile malware
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3003—Monitoring arrangements specially adapted to the computing system or computing system component being monitored
- G06F11/3006—Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system is distributed, e.g. networked systems, clusters, multiprocessor systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2221/00—Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/03—Indexing scheme relating to G06F21/50, monitoring users, programs or devices to maintain the integrity of platforms
- G06F2221/033—Test or assess software
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2221/00—Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/21—Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/2107—File encryption
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2221/00—Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/21—Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/2115—Third party
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1433—Vulnerability analysis
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- Virology (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computational Linguistics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Description
機械学習は、現代のコンピュータの高速処理のパワーを利用してアルゴリズムを実行し、データの挙動や特性の予測を学習する技術である。機械学習技術は、悪意のあるか又は良性の挙動を示すことが知られている1組のファイルのような、公知のクラス(class)や標識(label)によって、1組の訓練(training)サンプル(訓練セット)上でアルゴリズムを実行して、未知のファイルが悪意のあるものか又は良性であるかどうかのような、未知のものの挙動や特性を予想するという特徴を学習する。
米国特許付与前出願公開No. 20120310864号(以下、‘864公開と称す)、“分類器を進化させるための適応バッチモードアクテイブ学習”は、この技術が画像、音響及びテキストデータ(二値のファイルではなく、及びマルウエア(malware:有害ソフトウエア)の検出のためでもない)に適用することにフォーカスを当てる。更に、’864公開は、性能の所定のレベルに典型的に基づく停止基準を定義することを要する。重要なことには、‘864公開の方法は、完全なサンプル等を維持する代わりに、そのコーパス(corpus)を特徴ベクトルとして表す部分的な訓練コーパスを与える潜在的な必要性のような、現場(in-situ)の学習を受け入れることができないことである。
前述した従来技術の欠点を克服する実施形態が本明細書に説明されている。これらの及び他の利点は、マルウェアの識別とモデルの不均一性のために、バッチ処理し、教師あり(supervised)により、現場(in-situ)の機械学習分類器を再訓練するための方法により提供される。この方法によれば、ある場所で親分類器のモデルを生成し、それを別の場所又は複数の場所にある1つ以上の現場の再訓練システム又は複数のシステムに対して提供し;現場の再訓練システム又は複数のシステムにより評価された複数のサンプルにわたり、前記親分類器のクラス決定を判断し(adjudicate);現場の再訓練処理を開始するのに必要な判断サンプルの最小値を決定し(determine);1つまたは複数の現場のシステムからのサンプルを利用して新しい訓練およびテストセットを作成し(create);現場の訓練とテストセットを表す特徴ベクトルと、親の訓練とテストセットを表す特徴ベクトルとを混合し(blend); 混合された訓練セットにわたり機械学習を実施し(conduct);混合されたテストセットと追加された非標識のサンプルを利用して、新しい親モデルを評価し;前記親分類器を再訓練された分類器バージョンにより置き換えるかどうかを選択する。
マルウェアの識別とモデルの不均一性のために現場の分類器(in-situ classifier)を再訓練するためのシステム及び方法の実施形態が本明細書に記載されている。これらの実施形態は、上述した問題点を克服する。例えば、この実施形態は、ユーザが駆動する現存するモデルの分類予想と現場の再訓練の確認と修正に基づき、現存する機械学習をベースにした分類モデルの増強を与える。本明細書において、“現場(in-situ:その場)”とは、設置(install)された分類器のインスタンス(instance)の物理的な場所において、機械学習を実施するということを意味する。実際、多数のインスタンスを通じて適用された場合に、この実施形態は、夫々のインスタンスがそのインスタンスに固有のモデルを作成することを可能にする。
GUI400はまた、現場の分類器と基本分類器で判断されるように、悪意のある信頼性または可能性が、どれくらいのパーセンテージであるかによって分類されるファイルの数を示す棒グラフを含む(例えば、1877は、悪意のある可能性が0%として現場(in-situ)によって分類されたもの)。この棒グラフは、現場の分類器が、悪意のない信頼性が高い(0―10%)ものか、または悪意のある信頼性が高い (80―90%)ものであることを示し、一方、基本分類器は、これらの極端な場合の外側にある信頼度のレベル(例えば、20―70%)に分類されたより多くのファイルであって、従って、有用性がより低いファイルを示している。
1. 基本訓練およびテストセットの作成;
2. 特徴の抽出;
3. モデル作成のための学習の実施;
4. テストセットを用いてモデルテスト;
5. モデルの配置;
6. 未知のサンプルの分類のためにモデル使用;
7. ユーザまたは現場の再訓練システムは、分類をレビューし、確認または修正する;
8. ソース優先順位付けに基づいて、現場の訓練とテストセットの形成のために、判断したサンプルのサブセットを選択;
9. 特徴の抽出;
10. 現場の訓練と第三者の訓練とテストセットまたはそれらのサブセットを結合;
11. モデルの再訓練;
12. 新モデルの評価;
13. 新モデルの配置または拒否;および
14. 必要に応じて、ステップ6-14の繰り返し。
Claims (16)
- マルウェアの識別のために、機械学習分類器を再訓練するための方法であって、前記方法は:
第1機械学習モデルと、複数の第1ファイルと関連する複数の第1特性を示す情報とを受信するステップであって、前記第1機械学習モデルのための訓練データが前記複数の第1ファイルを含むステップと;
前記第1機械学習モデルに基づいて、複数の第2ファイルのための複数のクラス決定を行うステップと;
ひとつ以上の前記複数のクラス決定を判断するステップであって、前記判断することが、前記ひとつ以上の前記複数のクラス決定を確認あるいは修正するユーザー入力を受信することを含むステップと;
前記判断することに基づいて、前記複数の第2ファイルと関連する複数の第2特性を決定するステップと;
前記複数の第1特性の少なくとも一部と、前記複数の第2特性の少なくとも一部とを使って、第2機械学習モデルを決定するステップとを;
備える機械学習分類器の再訓練方法。 - 前記第2機械学習モデルを決定するステップは、前記第1機械学習モデルを訓練しテストするために使われた機械学習アルゴリズムを使って、前記第2機械学習モデルを訓練しテストするステップを含む請求項1に記載の方法。
- 前記複数の第1ファイルと前記複数の第2ファイルは、機械実行可能ソフトウェアまたは機械実行可能ソフトウェアによって使用されるファイルタイプを含む請求項1に記載の方法。
- 前記複数のクラス決定のうちそれぞれのクラス決定は良性のコンテンツ又は悪意のあるコンテンツのいずれか少なくともひとつである請求項1に記載の方法。
- 前記第2機械学習モデルは、企業内のひとつ以上のコンピュータデバイスに分散されている請求項1に記載の方法。
- 前記第2機械学習モデルを決定するステップは、前記ひとつ以上の複数のクラス決定の最小値を判断することに基づいて引き起こされる請求項1に記載の方法。
- 第1特徴ベクトル表現が、前記複数の第1特性と関連し、第2特徴ベクトル表現が、前記複数の第2特性と関連する請求項1記載の方法。
- 前記複数の第1特性の少なくとも一部と、前記複数の第2特性の少なくとも一部とを使うことは、多数の前記複数の第1特性を同数の前記複数の第2特性と交換すること又は前記複数の第2特性を前記複数の第1特性のサブセットに追加することを含む請求項1に記載の方法。
- 前記複数の第1特性の少なくとも一部と、前記複数の第2特性の少なくとも一部とを使うことは、前記複数の第2特性を前記複数の第1特性に追加することを含む請求項1に記載の方法。
- 前記判断するステップは、訂正された前記複数の分類を確認するステップと、訂正されていない前記複数の分類を調整するステップとを含む請求項1に記載の方法。
- 前記第2機械学習モデルを決定するステップは、前記複数の分類の分類閾値数を判断することに基づいて引き起こされる請求項1に記載の方法。
- 少なくともひとつのコンピュータデバイスから、複数の第3ファイルに関連する複数の第3特性を示す第2情報を受信するステップを更に含み、第3機械学習モデルが、前記複数の第3ファイルを使って訓練され、前記第2機械学習モデルを決定するステップが、前記複数の第3特性の少なくとも一部を更に使う、請求項1に記載の方法。
- 前記第2機械学習モデルに基づいて、少なくともひとつのファイルが悪意のあるコンテンツを含むことを決定するステップを更に含む請求項1に記載の方法。
- 前記複数の第2ファイルが組織に特有である請求項1に記載の方法。
- 請求項1から14のいずれか1つに記載の方法をプロセッサによって実行するために遂行される際、コンピュータ読み取り可能な命令を記憶するコンピュータ読み取り可能な記憶媒体。
- 請求項1から14のいずれか1つに記載の方法を実行するように構成された少なくともひとつのプロセッサとメモリーを含む装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562199390P | 2015-07-31 | 2015-07-31 | |
US62/199,390 | 2015-07-31 | ||
PCT/US2016/036408 WO2017023416A1 (en) | 2015-07-31 | 2016-06-08 | System and method for in-situ classifier retraining for malware identification and model heterogeneity |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018526732A JP2018526732A (ja) | 2018-09-13 |
JP6742398B2 true JP6742398B2 (ja) | 2020-08-19 |
Family
ID=57886450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018504758A Expired - Fee Related JP6742398B2 (ja) | 2015-07-31 | 2016-06-08 | マルウェアの識別とモデルの不均一性のために現場の分類器を再訓練するためのシステム及び方法 |
Country Status (4)
Country | Link |
---|---|
US (4) | US10121108B2 (ja) |
EP (1) | EP3329412A4 (ja) |
JP (1) | JP6742398B2 (ja) |
WO (1) | WO2017023416A1 (ja) |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190129941A2 (en) | 2013-05-21 | 2019-05-02 | Happify, Inc. | Systems and methods for dynamic user interaction for improving happiness |
US10813584B2 (en) | 2013-05-21 | 2020-10-27 | Happify, Inc. | Assessing adherence fidelity to behavioral interventions using interactivity and natural language processing |
EP3329412A4 (en) | 2015-07-31 | 2019-01-23 | Bluvector, Inc. | SYSTEM AND METHOD FOR REFORMING AN IN SITU CLASSIFIER FOR IDENTIFYING MALWARE SOFTWARE AND HETEROGENEITY OF A MODEL |
US10127289B2 (en) * | 2015-08-19 | 2018-11-13 | Palantir Technologies Inc. | Systems and methods for automatic clustering and canonical designation of related data in various data structures |
US9992211B1 (en) * | 2015-08-27 | 2018-06-05 | Symantec Corporation | Systems and methods for improving the classification accuracy of trustworthiness classifiers |
US10838846B1 (en) * | 2016-05-16 | 2020-11-17 | Jpmorgan Chase Bank, N.A. | Method and system for implementing an automation software testing and packaging framework |
US20180012237A1 (en) * | 2016-07-07 | 2018-01-11 | International Business Machines Corporation | Inferring user demographics through categorization of social media data |
US10871753B2 (en) * | 2016-07-27 | 2020-12-22 | Accenture Global Solutions Limited | Feedback loop driven end-to-end state control of complex data-analytic systems |
US11960975B2 (en) * | 2016-08-12 | 2024-04-16 | Qualcomm Incorporated | Systems and methods for multi-instance learning-based classification for streaming inputs |
GB2557253B (en) * | 2016-12-02 | 2020-06-03 | F Secure Corp | Machine learning based malware detection system |
US11164119B2 (en) * | 2016-12-28 | 2021-11-02 | Motorola Solutions, Inc. | Systems and methods for assigning roles to user profiles for an incident |
US10699184B2 (en) * | 2016-12-29 | 2020-06-30 | Facebook, Inc. | Updating predictions for a deep-learning model |
US10162741B2 (en) * | 2017-01-24 | 2018-12-25 | International Business Machines Corporation | Automatically correcting GUI automation using machine learning |
JP6880891B2 (ja) * | 2017-03-23 | 2021-06-02 | 日本電気株式会社 | マルウェア判定方法、マルウェア判定装置及びマルウェア判定プログラム |
US10789550B2 (en) * | 2017-04-13 | 2020-09-29 | Battelle Memorial Institute | System and method for generating test vectors |
US9864956B1 (en) | 2017-05-01 | 2018-01-09 | SparkCognition, Inc. | Generation and use of trained file classifiers for malware detection |
CA3063738A1 (en) | 2017-05-14 | 2018-11-22 | Digital Reasoning Systems, Inc. | Systems and methods for rapidly building, managing, and sharing machine learning models |
US10616252B2 (en) | 2017-06-30 | 2020-04-07 | SparkCognition, Inc. | Automated detection of malware using trained neural network-based file classifiers and machine learning |
US10305923B2 (en) * | 2017-06-30 | 2019-05-28 | SparkCognition, Inc. | Server-supported malware detection and protection |
WO2019014487A1 (en) * | 2017-07-12 | 2019-01-17 | The Regents Of The University Of California | DETECTION AND PREVENTION OF DEEP ANTAGONIST LEARNING |
US10877735B1 (en) | 2017-09-25 | 2020-12-29 | Amazon Technologies, Inc. | Automated generation of software applications using analysis of submitted content items |
US10848519B2 (en) * | 2017-10-12 | 2020-11-24 | Charles River Analytics, Inc. | Cyber vaccine and predictive-malware-defense methods and systems |
US10740550B1 (en) | 2017-11-20 | 2020-08-11 | Amazon Technologies, Inc. | Network-accessible data management service with web-of-sheets data model |
US10754950B2 (en) * | 2017-11-30 | 2020-08-25 | Assured Information Security, Inc. | Entity resolution-based malicious file detection |
US10705805B1 (en) | 2017-12-12 | 2020-07-07 | Amazon Technologies, Inc. | Application authoring using web-of-sheets data model |
US10630709B2 (en) | 2018-02-13 | 2020-04-21 | Cisco Technology, Inc. | Assessing detectability of malware related traffic |
JP7216501B2 (ja) * | 2018-02-14 | 2023-02-01 | 株式会社日立システムズ | エッジサーバおよびエッジサーバにおけるai学習モデル生成・運用方法 |
JP7059695B2 (ja) * | 2018-03-01 | 2022-04-26 | コニカミノルタ株式会社 | 学習方法および学習装置 |
JP7056259B2 (ja) * | 2018-03-14 | 2022-04-19 | オムロン株式会社 | 検査システム、識別システム、及び識別器評価装置 |
US11308207B2 (en) * | 2018-03-30 | 2022-04-19 | Microsoft Technology Licensing, Llc | User verification of malware impacted files |
US11200320B2 (en) * | 2018-03-30 | 2021-12-14 | Microsoft Technology Licensing, Llc | Coordinating service ransomware detection with client-side ransomware detection |
US11586603B1 (en) | 2018-05-23 | 2023-02-21 | Amazon Technologies, Inc. | Index sheets for robust spreadsheet-based applications |
US11372893B2 (en) * | 2018-06-01 | 2022-06-28 | Ntt Security Holdings Corporation | Ensemble-based data curation pipeline for efficient label propagation |
US11297080B2 (en) | 2018-06-06 | 2022-04-05 | Reliaquest Holdings, Llc | Threat mitigation system and method |
US11709946B2 (en) | 2018-06-06 | 2023-07-25 | Reliaquest Holdings, Llc | Threat mitigation system and method |
US10897480B2 (en) * | 2018-07-27 | 2021-01-19 | The Boeing Company | Machine learning data filtering in a cross-domain environment |
US11521108B2 (en) * | 2018-07-30 | 2022-12-06 | Microsoft Technology Licensing, Llc | Privacy-preserving labeling and classification of email |
US11444957B2 (en) * | 2018-07-31 | 2022-09-13 | Fortinet, Inc. | Automated feature extraction and artificial intelligence (AI) based detection and classification of malware |
US20210241042A1 (en) * | 2018-08-15 | 2021-08-05 | Nippon Telegraph And Telephone Corporation | Classifier evaluation device, classifier evaluation method, and non-transitory computer readable recording medium |
BR112021005978A2 (pt) * | 2018-09-28 | 2021-06-29 | Dow Global Technologies Llc | sistema para treinar um classificador de aprendizado de máquina híbrido, método implementado por computador, artigo de fabricação, e, dispositivo de computação. |
CN109684837B (zh) * | 2018-11-21 | 2024-03-19 | 全球能源互联网研究院有限公司 | 一种面向电力企业的移动应用恶意软件检测方法及系统 |
US11023576B2 (en) * | 2018-11-28 | 2021-06-01 | International Business Machines Corporation | Detecting malicious activity on a computer system |
US11200318B2 (en) * | 2018-12-28 | 2021-12-14 | Mcafee, Llc | Methods and apparatus to detect adversarial malware |
EP3686804A1 (en) * | 2019-01-24 | 2020-07-29 | ABB Schweiz AG | Managing an installed base of artificial intelligence modules |
KR102192196B1 (ko) * | 2019-03-14 | 2020-12-17 | 주식회사 에프원시큐리티 | Ai 기반 머신러닝 교차 검증 기법을 활용한 악성코드 탐지 장치 및 방법 |
JP7243329B2 (ja) * | 2019-03-15 | 2023-03-22 | 日本電気株式会社 | コンピュータプログラム、イベント異常検知方法及びコンピュータ |
USD926810S1 (en) | 2019-06-05 | 2021-08-03 | Reliaquest Holdings, Llc | Display screen or portion thereof with a graphical user interface |
USD926809S1 (en) | 2019-06-05 | 2021-08-03 | Reliaquest Holdings, Llc | Display screen or portion thereof with a graphical user interface |
USD926200S1 (en) | 2019-06-06 | 2021-07-27 | Reliaquest Holdings, Llc | Display screen or portion thereof with a graphical user interface |
USD926782S1 (en) | 2019-06-06 | 2021-08-03 | Reliaquest Holdings, Llc | Display screen or portion thereof with a graphical user interface |
USD926811S1 (en) | 2019-06-06 | 2021-08-03 | Reliaquest Holdings, Llc | Display screen or portion thereof with a graphical user interface |
US11676049B2 (en) * | 2019-09-13 | 2023-06-13 | Oracle International Corporation | Enhanced model updating using vector space transformations for model mapping |
RU2747451C2 (ru) * | 2019-09-30 | 2021-05-05 | Акционерное общество "Лаборатория Касперского" | Способ обнаружения связанных кластеров |
US20210110298A1 (en) * | 2019-10-15 | 2021-04-15 | Kinaxis Inc. | Interactive machine learning |
US20210125065A1 (en) * | 2019-10-25 | 2021-04-29 | Affectiva, Inc. | Deep learning in situ retraining |
US11556737B2 (en) * | 2019-12-04 | 2023-01-17 | At&T Intellectual Property I, L.P. | System, method, and platform for auto machine learning via optimal hybrid AI formulation from crowd |
US12131230B1 (en) | 2020-01-23 | 2024-10-29 | Assured Information Security, Inc. | Feature equivalence and document abnormality threshold determination |
US20210350264A1 (en) * | 2020-05-07 | 2021-11-11 | Baidu Usa Llc | Method for obfuscated ai model training for data processing accelerators |
JP7492858B2 (ja) * | 2020-05-15 | 2024-05-30 | シャープ株式会社 | 画像形成装置 |
CN111371812B (zh) * | 2020-05-27 | 2020-09-01 | 腾讯科技(深圳)有限公司 | 一种病毒检测方法、装置和介质 |
US11847217B2 (en) * | 2020-06-30 | 2023-12-19 | Mcafee, Llc | Methods and apparatus to provide and monitor efficacy of artificial intelligence models |
US11891882B2 (en) | 2020-07-17 | 2024-02-06 | Landmark Graphics Corporation | Classifying downhole test data |
GB2598186B (en) * | 2020-07-17 | 2022-10-12 | Landmark Graphics Corp | Classifying downhole test data |
US20220083661A1 (en) * | 2020-09-11 | 2022-03-17 | Zscaler, Inc. | Utilizing Machine Learning to detect malicious Office documents |
US20230214658A1 (en) * | 2022-01-06 | 2023-07-06 | Mediatek Inc. | Structural obfuscation for protecting deep learning models on edge devices |
US20230281310A1 (en) * | 2022-03-01 | 2023-09-07 | Meta Plataforms, Inc. | Systems and methods of uncertainty-aware self-supervised-learning for malware and threat detection |
US20230344867A1 (en) * | 2022-04-25 | 2023-10-26 | Palo Alto Networks, Inc. | Detecting phishing pdfs with an image-based deep learning approach |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6513025B1 (en) | 1999-12-09 | 2003-01-28 | Teradyne, Inc. | Multistage machine learning process |
US6917926B2 (en) * | 2001-06-15 | 2005-07-12 | Medical Scientists, Inc. | Machine learning method |
US20040220892A1 (en) * | 2003-04-29 | 2004-11-04 | Ira Cohen | Learning bayesian network classifiers using labeled and unlabeled data |
JP4639296B2 (ja) * | 2004-03-18 | 2011-02-23 | 株式会社デンソーアイティーラボラトリ | 車両用情報処理システム、車両用情報処理方法およびプログラム |
US8019758B2 (en) * | 2005-06-21 | 2011-09-13 | Microsoft Corporation | Generation of a blended classification model |
US8161548B1 (en) * | 2005-08-15 | 2012-04-17 | Trend Micro, Inc. | Malware detection using pattern classification |
US7747555B2 (en) * | 2006-06-01 | 2010-06-29 | Jeffrey Regier | System and method for retrieving and intelligently grouping definitions found in a repository of documents |
US7756799B2 (en) * | 2006-10-27 | 2010-07-13 | Hewlett-Packard Development Company, L.P. | Feature selection based on partial ordered set of classifiers |
US7792353B2 (en) | 2006-10-31 | 2010-09-07 | Hewlett-Packard Development Company, L.P. | Retraining a machine-learning classifier using re-labeled training samples |
WO2008150840A1 (en) * | 2007-05-29 | 2008-12-11 | University Of Iowa Research Foundation | Methods and systems for determining optimal features for classifying patterns or objects in images |
US8219511B2 (en) * | 2009-02-24 | 2012-07-10 | Microsoft Corporation | Unbiased active learning |
US20100293117A1 (en) | 2009-05-12 | 2010-11-18 | Zuobing Xu | Method and system for facilitating batch mode active learning |
US8374975B1 (en) * | 2009-08-12 | 2013-02-12 | Google Inc. | Clustering to spread comments to other documents |
PL2591443T3 (pl) * | 2010-07-06 | 2018-03-30 | Bae Systems Plc | Sposób wspomagania prowadzenia pojazdu w terenie |
JP5569935B2 (ja) * | 2010-07-23 | 2014-08-13 | 日本電信電話株式会社 | ソフトウェア検出方法及び装置及びプログラム |
JP5961183B2 (ja) * | 2010-12-01 | 2016-08-02 | シスコ テクノロジー,インコーポレイテッド | 文脈上の確からしさ、ジェネリックシグネチャ、および機械学習法を用いて悪意のあるソフトウェアを検出する方法 |
US20120166366A1 (en) * | 2010-12-22 | 2012-06-28 | Microsoft Corporation | Hierarchical classification system |
US9100669B2 (en) * | 2011-05-12 | 2015-08-04 | At&T Intellectual Property I, Lp | Method and apparatus for associating micro-blogs with media programs |
JP2012243180A (ja) * | 2011-05-23 | 2012-12-10 | Sony Corp | 学習装置および方法、並びにプログラム |
US20120310864A1 (en) | 2011-05-31 | 2012-12-06 | Shayok Chakraborty | Adaptive Batch Mode Active Learning for Evolving a Classifier |
WO2013052555A1 (en) * | 2011-10-03 | 2013-04-11 | Kyaw Thu | Systems and methods for performing contextual classification using supervised and unsupervised training |
US8793201B1 (en) * | 2011-10-27 | 2014-07-29 | Amazon Technologies, Inc. | System and method for seeding rule-based machine learning models |
US9015083B1 (en) * | 2012-03-23 | 2015-04-21 | Google Inc. | Distribution of parameter calculation for iterative optimization methods |
IL219597A0 (en) * | 2012-05-03 | 2012-10-31 | Syndrome X Ltd | Malicious threat detection, malicious threat prevention, and a learning systems and methods for malicious threat detection and prevention |
EP2864919B1 (en) * | 2012-06-21 | 2023-11-01 | Philip Morris Products S.A. | Systems and methods for generating biomarker signatures with integrated dual ensemble and generalized simulated annealing techniques |
EP2864920B1 (en) * | 2012-06-21 | 2023-05-10 | Philip Morris Products S.A. | Systems and methods for generating biomarker signatures with integrated bias correction and class prediction |
US9292688B2 (en) | 2012-09-26 | 2016-03-22 | Northrop Grumman Systems Corporation | System and method for automated machine-learning, zero-day malware detection |
US9369476B2 (en) | 2012-10-18 | 2016-06-14 | Deutsche Telekom Ag | System for detection of mobile applications network behavior-netwise |
US9686023B2 (en) | 2013-01-02 | 2017-06-20 | Qualcomm Incorporated | Methods and systems of dynamically generating and using device-specific and device-state-specific classifier models for the efficient classification of mobile device behaviors |
US10810193B1 (en) * | 2013-03-13 | 2020-10-20 | Google Llc | Querying a data graph using natural language queries |
US20140358828A1 (en) * | 2013-05-29 | 2014-12-04 | Purepredictive, Inc. | Machine learning generated action plan |
US9497204B2 (en) * | 2013-08-30 | 2016-11-15 | Ut-Battelle, Llc | In-situ trainable intrusion detection system |
US9639818B2 (en) * | 2013-08-30 | 2017-05-02 | Sap Se | Creation of event types for news mining for enterprise resource planning |
US9489514B2 (en) * | 2013-10-11 | 2016-11-08 | Verisign, Inc. | Classifying malware by order of network behavior artifacts |
US11037236B1 (en) * | 2014-01-31 | 2021-06-15 | Intuit Inc. | Algorithm and models for creditworthiness based on user entered data within financial management application |
IL232316A (en) * | 2014-04-28 | 2017-04-30 | Verint Systems Ltd | System and method for demographic characterization of users of mobile communication terminals based on revalidation - a network of installed Applitzkis and their regime |
US20150324686A1 (en) * | 2014-05-12 | 2015-11-12 | Qualcomm Incorporated | Distributed model learning |
US10588589B2 (en) * | 2014-07-21 | 2020-03-17 | Zebra Medical Vision Ltd. | Systems and methods for prediction of osteoporotic fracture risk |
US11182691B1 (en) * | 2014-08-14 | 2021-11-23 | Amazon Technologies, Inc. | Category-based sampling of machine learning data |
EP2990999A1 (en) * | 2014-08-29 | 2016-03-02 | Accenture Global Services Limited | A machine-learning system to optimise the performance of a biometric system |
US9785866B2 (en) * | 2015-01-22 | 2017-10-10 | Microsoft Technology Licensing, Llc | Optimizing multi-class multimedia data classification using negative data |
US9818066B1 (en) * | 2015-02-17 | 2017-11-14 | Amazon Technologies, Inc. | Automated development and utilization of machine-learning generated classifiers |
US10977571B2 (en) * | 2015-03-02 | 2021-04-13 | Bluvector, Inc. | System and method for training machine learning applications |
US10318883B2 (en) * | 2015-03-26 | 2019-06-11 | International Business Machines Corporation | Identifying optimum times at which to retrain a logistic regression model |
US9720738B2 (en) * | 2015-04-09 | 2017-08-01 | International Business Machines Corporation | Datacenter scheduling of applications using machine learning techniques |
US10599844B2 (en) * | 2015-05-12 | 2020-03-24 | Webroot, Inc. | Automatic threat detection of executable files based on static data analysis |
US10410135B2 (en) * | 2015-05-21 | 2019-09-10 | Software Ag Usa, Inc. | Systems and/or methods for dynamic anomaly detection in machine sensor data |
US10943181B2 (en) * | 2015-06-26 | 2021-03-09 | Microsoft Technology Licensing, Llc | Just in time classifier training |
US9935972B2 (en) * | 2015-06-29 | 2018-04-03 | Fortinet, Inc. | Emulator-based malware learning and detection |
EP3329412A4 (en) | 2015-07-31 | 2019-01-23 | Bluvector, Inc. | SYSTEM AND METHOD FOR REFORMING AN IN SITU CLASSIFIER FOR IDENTIFYING MALWARE SOFTWARE AND HETEROGENEITY OF A MODEL |
US10515378B2 (en) * | 2015-09-14 | 2019-12-24 | Adobe Inc. | Extracting relevant features from electronic marketing data for training analytical models |
EP3360105A4 (en) * | 2015-10-07 | 2019-05-15 | Way2vat Ltd. | SYSTEM AND METHOD OF A COST MANAGEMENT SYSTEM BASED ON BUSINESS DOCUMENT ANALYSIS |
US11334928B2 (en) * | 2018-04-23 | 2022-05-17 | Microsoft Technology Licensing, Llc | Capturing company page quality |
US11271939B2 (en) * | 2018-07-31 | 2022-03-08 | Splunk Inc. | Facilitating detection of suspicious access to resources |
US11310268B2 (en) * | 2019-05-06 | 2022-04-19 | Secureworks Corp. | Systems and methods using computer vision and machine learning for detection of malicious actions |
-
2016
- 2016-06-08 EP EP16833453.0A patent/EP3329412A4/en active Pending
- 2016-06-08 WO PCT/US2016/036408 patent/WO2017023416A1/en active Application Filing
- 2016-06-08 US US15/176,784 patent/US10121108B2/en active Active
- 2016-06-08 JP JP2018504758A patent/JP6742398B2/ja not_active Expired - Fee Related
-
2018
- 2018-11-05 US US16/180,790 patent/US10733539B2/en active Active
-
2020
- 2020-06-29 US US16/916,049 patent/US11481684B2/en active Active
-
2022
- 2022-09-09 US US17/930,827 patent/US12131237B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20230222381A1 (en) | 2023-07-13 |
US20200401941A1 (en) | 2020-12-24 |
US10733539B2 (en) | 2020-08-04 |
US12131237B2 (en) | 2024-10-29 |
US20190311285A1 (en) | 2019-10-10 |
WO2017023416A1 (en) | 2017-02-09 |
US20170032279A1 (en) | 2017-02-02 |
EP3329412A1 (en) | 2018-06-06 |
US11481684B2 (en) | 2022-10-25 |
JP2018526732A (ja) | 2018-09-13 |
US10121108B2 (en) | 2018-11-06 |
EP3329412A4 (en) | 2019-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6742398B2 (ja) | マルウェアの識別とモデルの不均一性のために現場の分類器を再訓練するためのシステム及び方法 | |
JP7086972B2 (ja) | 侵入検出のための継続的な学習 | |
US10997307B1 (en) | System and method for clustering files and assigning a property based on clustering | |
US8401982B1 (en) | Using sequencing and timing information of behavior events in machine learning to detect malware | |
US11580222B2 (en) | Automated malware analysis that automatically clusters sandbox reports of similar malware samples | |
Abawajy et al. | Iterative classifier fusion system for the detection of Android malware | |
US20200293655A1 (en) | Method and apparatus for producing a machine learning system for malware prediction in low complexity sensor networks | |
US11836251B2 (en) | Malware detection using a machine learning model | |
US12099599B2 (en) | Apparatuses and methods for detecting malware | |
Saini et al. | A hybrid ensemble machine learning model for detecting APT attacks based on network behavior anomaly detection | |
Patil et al. | Malicious web pages detection using feature selection techniques and machine learning | |
Pavithra et al. | A comparative study on detection of malware and benign on the internet using machine learning classifiers | |
US20230205884A1 (en) | Generating high-quality threat intelligence from aggregated threat reports | |
GB2619589A (en) | Fuzz testing of machine learning models to detect malicious activity on a computer | |
US11775642B1 (en) | Malware detection using federated learning | |
US20220237289A1 (en) | Automated malware classification with human-readable explanations | |
Monika et al. | Ensemble-based stegomalware detection system for hidden ransomware attack | |
Gattani et al. | Comparative Analysis for Email Spam Detection Using Machine Learning Algorithms | |
CN116089938A (zh) | 开源组件包的安全检测方法及装置 | |
Madani et al. | Study on the different types of neural networks to improve the classification of ransomwares | |
Pawar et al. | Pattern classification under attack on spam filtering | |
Fukushi et al. | Exploration into gray area: Efficient labeling for malicious domain name detection | |
Fernando | Fesad: Ransomware detection with machine learning using adaption to concept drift | |
Moskal | HeAt PATRL: Network-Agnostic Cyber Attack Campaign Triage with Pseudo-Active Transfer Learning | |
Negi et al. | A Robust Approach for Malware Attacks Detection in the Internet of Things Communications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180412 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190528 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190827 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20191025 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191217 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200313 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200513 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200617 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200630 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200728 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6742398 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |