CN116089938A - 开源组件包的安全检测方法及装置 - Google Patents

开源组件包的安全检测方法及装置 Download PDF

Info

Publication number
CN116089938A
CN116089938A CN202111279082.4A CN202111279082A CN116089938A CN 116089938 A CN116089938 A CN 116089938A CN 202111279082 A CN202111279082 A CN 202111279082A CN 116089938 A CN116089938 A CN 116089938A
Authority
CN
China
Prior art keywords
package
malicious
open source
source component
component package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111279082.4A
Other languages
English (en)
Inventor
薛迪
赵刚
余志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN202111279082.4A priority Critical patent/CN116089938A/zh
Priority to PCT/CN2022/127118 priority patent/WO2023072002A1/zh
Publication of CN116089938A publication Critical patent/CN116089938A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/56Computer malware detection or handling, e.g. anti-virus arrangements
    • G06F21/562Static detection
    • G06F21/563Static detection by source code analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/56Computer malware detection or handling, e.g. anti-virus arrangements

Abstract

本申请公开了一种开源组件包的安全检测方法及装置,其中方法包括:获取在线开源组件包,并对在线开源组件包进行特征提取,获取在线开源组件包的特征信息;针对开源组件包的特征信息进行安全检测,确定在线开源组件包是否为合法包;若在线开源组件包中的第一组件包为合法包,则将第一组件包同步到本地开源镜像仓,本地开源镜像仓用于向用户提供调用的开源组件包。采用本申请实施例使得恶意代码检测能力前移,构建安全开源仓库,能够有效抑制开源化对研发环境的安全影响,降低被攻击的可能性。

Description

开源组件包的安全检测方法及装置
技术领域
本申请涉及网络安全技术领域,尤其涉及一种开源组件包的安全检测方法及装置。
背景技术
近年来,越来越多的软件产品依赖于免费的开源组件包,软件供应链越来越复杂,导致软件供应链安全问题日益严重,攻击者利用在软件交付环节将包含恶意代码的开源组件包注入到包管理器(Python包管理器、node.js包管理器等),在用户使用环节对软件用户实施攻击,给用户的隐私和财产安全造成了巨大威胁。
恶意包引发的安全风险可能在安装阶段发起攻击,攻击代码从网络段远程执行,无本地文件存留;或者恶意包攻击者在安装阶段隐藏自己不发起攻击,而是将恶意代码隐藏在开源组件包中,软件开发人员在编写产品源代码时调用各种开源组件包实现一些功能模块,则可能调用到攻击者精心伪装的恶意包,并且在软件开发人员发布产品时将源代码和组件包一起打包发布,打包发布的产品通过扫描软件扫描时,恶意包注入后门到开发产品以躲避杀毒软件扫描。
传统代码安全性检测框架是通过攻击行为发生过程中检测到异常行为或攻击发生后根据攻击后果回溯检测攻击行为,均属于被动防守,当面对低成本的脚本类软件供应链攻击时,应急压力大。而且现有代码安全性检测框架基于本地源文件的终端检测和云检测,但是包管理器的攻击者上传攻击代码,攻击代码在用户使用环节之前发起攻击,并打包安装代码存在终端开发环境,攻击者可以轻易在开发环境中植入后门或安装阶段窃取信息通过网络通道传输到指定网络地址。
发明内容
本申请实施例提供了一种开源组件包的安全检测方法及装置,通过先获取在线开源组件包,并对开源组件包的安全性进行评估,使得恶意代码检测能力前移,构建安全开源仓库,有效抑制开源化对研发环境的安全影响,降低被攻击的可能性。
第一方面,提供一种开源组件包的安全检测方法,该方法包括:获取在线开源组件包,并对所述在线开源组件包进行特征提取,获取所述在线开源组件包的特征信息;针对所述开源组件包的特征信息进行安全检测,确定所述在线开源组件包是否为合法包;若所述在线开源组件包中的第一组件包为合法包,则将所述第一组件包同步到本地开源镜像仓,所述本地开源镜像仓用于向用户提供调用的开源组件包。
在本申请实施例中,在将在线开源组件包同步到本地开源镜像仓之前,先对在线开源组件包进行安全检测,确定在线开源组件包为合法包的情况下,将其同步到本地开源镜像仓,使得恶意代码检测能力前移,构建安全开源仓库,有效抑制开源化对研发环境的安全影响,降低开源组件包使用者被攻击的可能性。
在一个可选的示例中,获取在线开源组件包的特征信息包括获取在线开源组件包的创建信息;针对开源组件包的创建信息进行安全检测,确定在线开源组件包是否为合法包,包括:将在线开源组件包的创建信息与规则数据库中的多条规则进行匹配,根据匹配程度确定在线开源组件包是否为合法包。
在一个可选的示例中,该方法还包括:若确定在线开源组件包中的第二组件包为恶意包,则将第二组件包存储到增量恶意包数据库。
在一个可选的示例中,针对开源组件包的特征信息进行安全检测,确定在线开源组件包是否为合法包,包括:将在线开源组件包的特征信息与规则数据库中的多条规则进行匹配,根据匹配程度确定在线开源组件包是否为合法包。
在本申请实施例中,采用在线开源组件包的特征信息与规则数据库中的多条规则进行匹配,根据两者的匹配程度确定在线开源组件包是否为合法包。这个过程中,生成规则数据库是一个较为直接和简明的步骤,进而可以降低安全检测过程中的处理资源消耗,提升安全检测效率。
在一个可选的示例中,该方法还包括:获取本地开源组件包中的本地恶意包,并对本地恶意包进行特征提取,获取本地恶意包的恶意特征;获取本地恶意源代码,并对本地恶意源代码进行特征提取,获取本地恶意源代码的恶意代码特征;将本地恶意包的恶意特征和本地恶意源码的恶意代码特征作为规则数据库中的恶意特征规则。
在一个可选的示例中,获取在线开源组件包的特征信息还包括获取在线开源组件包的创建信息;该方法还包括:获取本地恶意包的创建信息;从外部数据库中获取黑客信息;将本地恶意包的创建信息和黑客信息作为规则数据库中的恶意信息规则;
针对开源组件包的特征信息进行安全检测还包括:将在线开源组件包的创建信息与规则数据库中的恶意信息规则进行匹配。
在一个可选的示例中,针对开源组件包的特征信息进行安全检测,确定在线开源组件包是否为合法包,包括:将在线开源组件包的特征信息输入人工智能AI标注模型,采用AI标注模型对在线开源组件包进行推理,确定在线开源组件包是否为合法包,其中不为合法包的在线开源包为恶意包。
在本申请实施例中,采用AI标注模型对在线开源组件包进行安全检测,该过程由于AI标注模型为机器学习模型,经过迭代训练获得,因此AI标注模型具有确定性,那么将在线开源组件包的特征信息输入AI标注模型获得的推理结果,能够保证结果的准确性。
在一个可选的示例中,特征信息包括风险函数特征、API调用序列特征和操作码序列特征,将在线开源组件包的特征信息输入AI标注模型,采用AI标注模型对在线开源组件包进行推理,确定在线开源组件包是否为合法包,包括:将在线开源组件包的特征信息分别输入三个第一分类器,获得三个第一分类器中每个第一分类器的分类结果;使用绝对多数投票法对每个第一分类器的分类结果进行投票获得投票结果,根据投票结果确定三个第一分类器的分类结果中的标签预测结果,标签预测结果用于指示在线开源组件包是否为合法包,其中不为合法包的在线开源包为恶意包。
在一个可选的示例中,该方法还包括:获取自适应提升算法分类器,自适应提升算法分类器中包括N个对应不同权值的第二分类器,N个对应不同权值的第二分类器根据本地恶意包的多个恶意特征训练获得;对本地恶意包的源代码进行特征提取,获得本地恶意包的特征信息;将本地恶意包的特征信息分别输入自适应提升算法分类器,训练获得三个第一分类器作为AI标注模型。
在一个可选的示例中,针对开源组件包的特征信息进行安全检测,确定在线开源组件包是否为合法包,包括:将在线开源组件包的特征信息输入增量AI模型,采用增量AI模型对在线开源组件包进行推理,确定在线开源组件包是否为合法包,并确定不为合法包的在线开源组件包为疑似恶意包。
在本申请实施例中,采用增量AI模型对在线开源组件包进行安全检测,该过程由于增量AI模型的训练过程中,同时考虑了本地恶意包和本地合法包的特征信息,使得增量AI模型的推理结果考虑更全面,将不为合法包的在线开源组件包确定为疑似恶意包,并进行再判断,可以进一步提升安全检测结果的准确性,减少误判的概率。
在一个可选的示例中,特征信息包括风险函数特征、API调用序列特征和操作码序列特征,方法还包括:对本地开源组件包中的本地恶意包和本地合法包进行特征提取,获取本地恶意包的特征信息和本地合法包的特征信息;将本地恶意包的特征信息和本地合法包的特征信息作为初始支持向量机SVM算法分类器的输入进行迭代,直到确定初始SVM算法分类器的预测准确率大于第一预设阈值,获得最终SVM算法分类器作为增量AI模型。
在一个可选的示例中,在确定不为合法包的在线开源组件包为疑似恶意包之后,方法还包括:对所述疑似恶意包进行信誉评估,获得所述疑似恶意包的信誉评分,并根据所述疑似恶意包的信誉评分确定所述疑似恶意包是否为合法包,其中不为合法包的所述疑似恶意包为恶意包,计算获得疑似恶意包的信誉评分,并根据疑似恶意包的信誉评分确定疑似恶意包是否为合法包。
在一个可选的示例中,信誉评估包括以下一项或多项:疑似恶意包的依赖包评估,疑似恶意包的包名评估,疑似恶意包的结构评估,疑似恶意包的作者信誉评估,疑似恶意包的包信誉评估。
在一个可选的示例中,该方法还包括:根据增量恶意包数据库中的恶意包获取增量恶意特征规则和/或增量信息规则;根据增量恶意特征规则和/或增量信息规则更新规则数据库。
在一个可选的示例中,该方法还包括:对目标恶意包进行特征提取,获得目标恶意包的特征信息,目标恶意包为增量恶意包数据库中的部分或全部恶意包;将目标恶意包的特征信息作为增量AI模型的输入进行迭代,获得更新后的增量AI模型。
第二方面,提供一种安全检测装置,该装置包括:获取单元,用于获取在线开源组件包,并对在线开源组件包进行特征提取,获取在线开源组件包的特征信息;处理单元,用于针对开源组件包的特征信息进行安全检测,确定在线开源组件包是否为合法包;存储单元,用于若在线开源组件包中的第一组件包为合法包,则将第一组件包同步到本地开源镜像仓,本地开源镜像仓用于向用户提供调用的开源组件包。
在一个可选的示例中,存储单元还用于:若确定在线开源组件包中的第二组件包为恶意包,则将第二组件包存储到增量恶意包数据库。
在一个可选的示例中,处理单元具体用于:将在线开源组件包的特征信息与规则数据库中的多条规则进行匹配,根据匹配程度确定在线开源组件包是否为合法包。
在一个可选的示例中,处理单元还用于:获取本地开源组件包中的本地恶意包,并对本地恶意包进行特征提取,获取本地恶意包的恶意特征;获取本地恶意源代码,并对本地恶意源代码进行特征提取,获取本地恶意源代码的恶意代码特征;将本地恶意包的恶意特征和本地恶意源码的恶意代码特征作为规则数据库中的恶意特征规则。
在一个可选的示例中,获取在线开源组件包的特征信息还包括获取在线开源组件包的创建信息;处理单元还用于:获取本地恶意包的创建信息;从外部数据库中获取黑客信息;将本地恶意包的创建信息和黑客信息作为规则数据库中的恶意信息规则;针对开源组件包的特征信息进行安全检测还包括:将在线开源组件包的创建信息与规则数据库中的恶意信息规则进行匹配。
在一个可选的示例中,处理单元还用于:将在线开源组件包的特征信息输入人工智能AI标注模型,采用AI标注模型对在线开源组件包进行推理,确定在线开源组件包是否为合法包,其中不为合法包的在线开源包为恶意包。
在一个可选的示例中,特征信息包括风险函数特征、API调用序列特征和操作码序列特征,将在线开源组件包的特征信息输入AI标注模型,采用AI标注模型对在线开源组件包进行推理,确定在线开源组件包是否为合法包,包括:将在线开源组件包的特征信息分别输入三个第一分类器,获得三个第一分类器中每个第一分类器的分类结果;使用绝对多数投票法对每个第一分类器的分类结果进行投票获得投票结果,根据投票结果确定三个第一分类器的分类结果中的标签预测结果,标签预测结果用于指示在线开源组件包是否为合法包,其中不为合法包的在线开源包为恶意包。
在一个可选的示例中,处理单元还用于:获取自适应提升算法分类器,自适应提升算法分类器中包括N个对应不同权值的第二分类器,N个对应不同权值的第二分类器根据本地恶意包的多个恶意特征训练获得;对本地恶意包的源代码进行特征提取,获得本地恶意包的特征信息;将本地恶意包的特征信息分别输入自适应提升算法分类器,训练获得三个第一分类器作为AI标注模型。
在一个可选的示例中,处理单元具体用于:将在线开源组件包的特征信息输入增量AI模型,采用增量AI模型对在线开源组件包进行推理,确定在线开源组件包是否为合法包,并确定不为合法包的在线开源组件包为疑似恶意包。
在一个可选的示例中,特征信息包括风险函数特征、API调用序列特征和操作码序列特征,处理单元还用于:对本地开源组件包中的本地恶意包和本地合法包进行特征提取,获取本地恶意包的特征信息和本地合法包的特征信息;将本地恶意包的特征信息和本地合法包的特征信息作为初始支持向量机SVM算法分类器的输入进行迭代,直到确定初始SVM算法分类器的预测准确率大于第一预设阈值,获得最终SVM算法分类器作为增量AI模型。
在一个可选的示例中,在确定不为合法包的在线开源组件包为疑似恶意包之后,处理单元还用于:对疑似恶意包进行信誉评估,获得疑似恶意包的信誉评分,并根据疑似恶意包的信誉评分确定疑似恶意包是否为合法包,其中不为合法包的疑似恶意包为恶意包。
在一个可选的示例中,信誉评估包括以下一项或多项:疑似恶意包的依赖包评估,疑似恶意包的包名评估,疑似恶意包的结构评估,疑似恶意包的作者信誉评估,疑似恶意包的包信誉评估。
在一个可选的示例中,该装置还包括更新单元,用于:根据增量恶意包数据库中的恶意包获取增量恶意特征规则和/或增量信息规则;根据增量恶意特征规则和/或增量信息规则更新规则数据库。
在一个可选的示例中,该装置还包括封信单元,用于:对目标恶意包进行特征提取,获得目标恶意包的特征信息,目标恶意包为增量恶意包数据库中的部分或全部恶意包;将目标恶意包的特征信息作为增量AI模型的输入进行迭代,获得更新后的增量AI模型。
第三方面,本申请实施例提供一种通信装置,该装置包括通信接口和至少一个处理器,该通信接口用于该装置与其它设备进行通信。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。至少一个处理器用于调用一组程序、指令或数据,执行上述第一方面或第二方面描述的方法。该装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。存储器与至少一个处理器耦合,该至少一个处理器执行该存储器中存储的、指令或数据时,可以实现上述第一方面描述的方法。
第四方面,本申请实施例中还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行如第一方面或第一方面中任一种可能的实现方式中的方法。
第五方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面或第一方面中任一种可能的实现方式中的方法,该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在一个可能的示例中,该芯片系统还包括收发器。
第六方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行如第一方面或第一方面中任一种可能的实现方式中的方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1A为本申请实施例提供的一种软件供应链流程图;
图1B为本申请实施例提供的一种恶意包造成安全风险的示意图;
图1C为本申请实施例提供的一种新的软件供应架构示意图;
图2A为本申请实施例提供的一种开源组件包的安全检测方法流程图;
图2B为本申请实施例提供的一种抽象语法树示意图;
图2C为本申请实施例提供的一种反汇编文件示意图;
图2D为本申请实施例提供的另一种开源组件包的安全检测方法流程图;
图2E为本申请实施例提供的另一种开源组件包的安全检测方法流程图;
图2F为本申请实施例提供的另一种开源组件包的安全检测方法流程图;
图3为本申请实施例提供的一种安全检测装置结构框图;
图4为本申请实施例提供的一种电子装置的结构示意图。
具体实施方式
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或模块的过程、方法、系统、产品或设备没有限定于已列出的步骤或模块,而是可选地还包括没有列出的步骤或模块,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或模块。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
首先对本申请实施例的专业术语进行介绍。
开源组件包:开源(Open Source)全称为开放源代码。即是说,对于一个开源软件,任何人都可以得到软件的源代码,并在版权范围内加以修改学习,甚至重新发放。组件包是对数据和方法进行简单封装形成包,可用于作为一个系统的部分进行组合。在不同的编程语言中,组件包也可以被称为部件包或控件包等。那么,开源组件包即是开放源代码的组件包。
包管理器:开源组件包的在线存储仓库,所有开发者均可以上传组件包到该包管理器,同时也可以从该包管理器中获取组件包用于自身开发。
开源镜像仓:用于进行组件包存储和管理的本地私有存储仓库。本地通常可以指一个公司,一个部门甚至个人的开发设备。
软件开发平台:一个组织机构,通常为一个公司内的软件开发人员使用开源组件包研发软件产品的服务平台。
以下对本申请实施例的应用场景进行介绍。
请参阅图1A,图1A为本申请实施例提供的一种软件供应链流程图,如图1A所示,在软件供应链流程中,首先由软件供应商(可以是个人,也可以是组织或机构)开发开源组件包,完成开发后,将开源组件包发布到包管理器上,供其他开发者使用。软件开发平台将包管理器同步到本地私有开源镜像仓,其他开发者需要时,可以从开源镜像仓下载开源组件包,然后使用这些开源组件包,包括直接安装,或者在开源组件包的基础上进行再次开发形成新的功能模块等。
在上述过程中,在将开源组件包下载到开源镜像仓后,由于开源组件包数量巨大和频繁更新,导致开源镜像仓管理人员很难检查每一个组件包的合法性,那么公司内部开发环境和发布产品的安全性无法得到保障,这些风险会影响公司平台安全性和开发环境安全性。
具体如图1B所示,图1B为本申请实施例提供的一种恶意包造成安全风险的示意图,如图1B所示,开源组件包恶意攻击者将恶意包上传到包管理器,开源镜像仓管理人员无法识别组件包的安全性,将恶意包同合法包一起同步到开源镜像仓,而软件开发人员由于无安全知识背景无法排查所使用组件包的安全性,会给其研发环境带来安全风险。
恶意包引起的安全风险主要通过两个途径触发:
一是开发人员从开源镜像仓安装开源组件包时,恶意包会在安装阶段发起攻击,攻击代码从网络段远程执行,无本地文件存留(图1B中的攻击途径①)。软件开发人员主机中安装的恶意代码扫描软件又属于针对本地文件的扫描软件,从而无法扫描出在线恶意包,攻击者就会在安装阶段即对开发人员主机发起信息窃取、分布式拒绝服务攻击(distributed denial of service attack,DDoS)等攻击;
二是恶意包攻击者在安装阶段隐藏自己不发起攻击,而是将恶意代码隐藏在开源组件包中,公司软件开发人员在编写产品源代码时为了加快开发速度会调用各种开源组件包实现一些功能模块(图1B中的攻击途径②)。此时,调用的组件包可能是合法包也可能是攻击者精心伪装的恶意包,公司软件开发人员发布产品时会把源代码和组件包一起打包发布,此时打包的产品还需要经过公司恶意代码扫描软件的安全检查,然而当前恶意代码扫描软件无法识别开源组件包的安全性,这种情况下恶意攻击者就会通过恶意包注入后门到开发产品以躲避杀毒软件扫描。
基于上述描述,本申请实施例公开了一种新的软件供应架构,如图1C所示,为本申请实施例提供的一种新的软件供应架构示意图,在包管理器和开源镜像仓之间,引入镜像仓安全中心,用于从包管理器获取在线开源组件包,然后对在线开源组件包进行安全检测,过滤安全组件包,并将安全组件包存储到开源镜像仓,这样软件开发人员就能够保证从开源镜像仓获取并使用的开源组件包的安全性,进而保证研发环境的安全性。需要说明的是,镜像仓安全中心可以是一个独立的模块,也可以是一个与开源镜像仓组合的模块,本申请实施例中不做具体限定。
具体地,本申请实施例中提供了一种开源组件包的安全检测方法,用于通过图1C中的软件供应架构执行,如图2A所示,该方法包括如下步骤:
201、获取在线开源组件包,并对在线开源组件包进行特征提取,获取在线开源组件包的特征信息;
202、针对开源组件包的特征信息进行安全检测,确定在线开源组件包是否为合法包;
203、若在线开源组件包中的第一组件包为合法包,则将第一组件包同步到本地开源镜像仓,本地开源镜像仓用于向用户提供调用的开源组件包。
上述方法步骤的执行主体为图1C中的镜像仓安全中心,可以为一个独立的功能模块,也可能为开源镜像仓中的部分功能。以下内容对此不再赘述。对应地,该执行主体的对应的硬件实体可能为一个终端设备,也可能为一个服务器,或者计算中心等。
在线开源组件包由软件供应商发布在包管理器上,机构或组织,通常为公司,将在线开源组件包下载到镜像仓安全中心,然后对在线开源组件包进行特征提取,获取开源组件包的特征信息。其中,特征提取包括可以对组件包内的源代码的函数或方法进行特征提取,获得特征信息。
具体地,获取在线开源组件包的特征信息的过程可以包括:
1)镜像仓安全中心遍历包管理器中存在的所有开源组件包,获取开源组件包包名称列表;
2)镜像仓安全中心遍历包名称列表中的每一个包名称,获取包管理器中开源组件包的JSON文件,解析JSON文件获得开源组件包的包文件下载链接;
3)镜像仓安全中心从开源组件包的包文件下载链接下载并解压包文件,从包文件中提取源代码,然后从源代码中提取包文件的特征,具体可以包括应用程序接口(application programming interface,API)调用序列特征、操作码序列特征和风险函数特征,组成开源组件包的特征信息。
以下对源代码的上述三个特征提取过程做具体介绍。
(1)首先介绍API调用序列特征和操作码序列特征的提取。
①.提供一段源代码实例1(清晰展现了代码逻辑关系):
Figure BDA0003330627820000071
镜像仓安全中心扫描源代码中是否包含加解密函数,如果存在此类函数,则认定该文件包含混淆代码,混淆代码使用加解密函数将源代码中的部分代码片段转换成混乱的字符串,从而隐藏代码结构。
②.如果源代码包含混淆代码,提供一段混淆代码实例2(上述示例1对应的混淆代码,可以看出混淆代码无法有效阅读):
FALGKGJGPCMGAGBGJHKGNHLHAFLHAGAFPHGHNDHCGCFDFAPCPCPCPCNGJDLDPCCDPCNCGEGHKEIGDEMDJFFHMGGGGDGGOGIFLDNCFAPCPCPCPCJGLGDCPCPHOGLHHGPCCDPCLHKGCGPHJGGGDGKGBCCGEGMHLHKGCGPHHCGCFAPCPCPCPCIHGGLHHGPCAGMHBCJGLGAGPHKGBGHCJGLGDCPCICIHICGCPCOGMHPCLHCGPHFDFAPCPCPCPCLHCGPHBCIHNHGGLHKGHCNGOGMHKGJDLDBCNGJDLDLGKGMGAGLGKGHCNGJDLDGCBCLGKGMGAGLGKGHCICKHLHJGCCHDICGCGCFA
③.如果源代码不包含混淆代码,镜像仓安全中心使用源代码对应的编程语言的抽象语法树提取功能提取源代码的抽象语法树,从抽象语法树的节点中提取源代码的API调用序列;镜像仓安全中心使用源代码汇编功能汇编源代码,从汇编文件中提取操作码序列。
可参阅图2B,为本申请实施例提供的一种抽象语法树示意图,如图2B所示,API调用序列为抽象语法树中根节点到叶节点形成的序列,例如一个API调用序列实例为:Store、Name、Assign、FunctionDef、Module。
生成的反汇编文件可参阅图2C,为本申请实施例提供的一种反汇编文件示意图,如图2C所示,提取反汇编文件中的操作码:LOAD_CONST、LOAD_CONST、MAKE_FUNCTION、STORE_NAME、LOAD_CONST、RETURN_VALUE、LOAD_CONST、STORE_FAST,生成对应的操作码序列。
可选情况下,还可以通过其他方式获取源代码的API调用序列和操作码序列,例如:
A.如果源代码包含混淆代码,镜像仓安全中心将包含混淆代码的源代码拷贝到沙箱(Sandbox)运行,镜像仓安全中心可以在沙箱中实时运行混淆代码,从实时运行中监控混淆代码的代码逻辑,并根据混淆代码运行时的监控记录提取其API调用序列和操作码序列。
B.镜像仓安全中心使用n元语法模型(n-gram)和词频-逆文本频率指数(termfrequency-inverse document frequency,tf-idf)技术对API调用序列和操作码序列进行特征选择。
首先镜像仓安全中心使用n-grams技术对API调用序列和操作码序列进行分块,每n个API调用或操作码为一块,以操作码为例的n-grams如下:
输入:
组件包A操作码序列:LOAD_GLOBAL、LOAD_FAST、CALL_FUNCTION、RETURN_VALUE
组件包B操作码序列:LOAD_GLOBAL、LOAD_FAST、MAKE_FUNCTION、STORE_NAME
输出:假设n=2,
组件包A的n-grams为(LOAD_GLOBAL、LOAD_FAST)、(LOAD_FAST、CALL_FUNCTION)、(CALL_FUNCTION、RETURN_VALUE)
组件包B的n-grams为(LOAD_GLOBAL、LOAD_FAST)、(LOAD_FAST、MAKE_FUNCTION)、(MAKE_FUNCTION、STORE_NAME)
然后镜像仓安全中心使用tf-idf技术计算API调用序列和操作码序列的n-grams块的tf-idf值,利用n-grams块的tf-idf值删除tf-idf值低于镜像仓安全中心预设置tf-idf阈值的n-grams块,余下的n-grams块即是特征选择的结果,n-grams块结合tf-idf的值组合成操作码的序列特征。同理,可得到组件包的API调用的序列特征。
tf-idf值实例:
输入:
组件包A的n-grams为(LOAD_GLOBAL、LOAD_FAST)、(LOAD_FAST、CALL_FUNCTION)、(CALL_FUNCTION、RETURN_VALUE)
组件包B的n-grams为(LOAD_GLOBAL、LOAD_FAST)、(LOAD_FAST、MAKE_FUNCTION)、(MAKE_FUNCTION、STORE_NAME)
输出:
组件包A的n-grams的tf-idf值为:0.0242,0.6479,0.8594;
组件包B的n-grams的tf-idf值为:0.0149,0.5946,0.8843;
假设镜像仓预设置tf-idf值为0.5,则特征选择的结果为:
组件包A特征选择:(LOAD_FAST、CALL_FUNCTION)、(CALL_FUNCTION、RETURN_VALUE);
组件包B特征选择:(LOAD_FAST、MAKE_FUNCTION)、(MAKE_FUNCTION、STORE_NAME);
结合特征选择结果和tf-idf值,镜像仓安全中心提取到组件包的序列特征为:
组件包A的序列特征:{(LOAD_FAST、CALL_FUNCTION):0.6479,(CALL_FUNCTION、RETURN_VALUE):0.8594};
组件包B的序列特征:{(LOAD_FAST、MAKE_FUNCTION):0.5946,(MAKE_FUNCTION、STORE_NAME):0.8843}。
(2)然后介绍风险函数特征的提取。
首先是风险函数的确定。风险函数可以为本地风险函数数据库中存储的函数,本地风险函数数据库可以由研发人员预先设置风险函数,或者由研发人员统计获取风险函数等方式建立。风险函数包括网络连接、命令执行和文件读写等函数,镜像仓安全中心将风险函数组合成风险函数特征。
提供一个确定风险函数特征的实例3:
输入:
组件包A包含风险函数:socket.recv,urllib.urlretrieve,fileinput.input,os.popen,ctypes.CDLL;
组件包A风险函数出现次数:3,2,2,1,5;
输出:
组件包A的风险函数特征:
{socket.recv:3,urllib.urlretrieve:2,fileinput.input:2,os.popen:1,ctypes.CDLL:5}。
上述1)~3)对应过程获取的包文件的特征可以作为开源组件包的特征信息,可选地,可以将这些开源组件包的特征信息存储到组件包信息数据库中。
针对开源组件包的特征信息进行安全检测,具体可以包括进行人工智能(artificial intelligence,AI)模型检测,规则库的规则校验,或者其他方式文件签名、启发式检测等。本申请实施例中采用三种不同的方式进行针对特征信息的安全检测,分别为规则数据库匹配,AI标注模型标注,增量AI模型分类。
针对第一种安全检测方式,可参阅图2D,为本申请实施例提供的另一种开源组件包的安全检测方法流程图,如图2D所示,该方法与图2A所示的方法区别在于,将图2A中的步骤202替换为:202a、将在线开源组件包的特征信息与规则数据库中的多条规则进行匹配,根据匹配程度确定在线开源组件包是否为合法包。
在将开源组件包的特征信息与规则数据库中多条规则进行匹配之前,先获取规则数据库。规则数据库中包括多条可以与开源组件包的特征信息进行匹配的规则,具体为根据本地恶意包的特征信息生成的多条规则。本地恶意包是指存储在开源镜像仓或其他开发者本地数据库中的,已经被判定为恶意包的组件包。假设规则数据库中的多条规则根据本地恶意包的特征信息生成,那么根据在线开源组件包的特征信息与规则数据库中的规则的匹配程度可以确定在线开源组件包是否为恶意包,匹配程度越高,在线开源组件包为恶意包的概率越大,匹配程度越低,在线开源组件包不为恶意包(即为合法包)的概率越大。
本申请实施例以获取本地恶意包的特征信息生成规则数据库中的多条规则为例进行说明。
同样的,可以对本地恶意包进行特征提取,获取本地恶意包的特征信息,为风险函数特征、API调用序列特征和操作码序列特征,具体获取方式可参阅前述步骤1)~3),在此不再赘述。然后根据这些特征信息生成规则数据库中的多条规则。以本申请实施例中的规则数据库为yara数据库,那么根据特征信息生成yara规则。
可选情况下,还可以对本地恶意源代码进行特征提取,本地恶意源代码可以是预先存储在本地镜像仓中被判断为恶意源代码的网页源码,也可以是其他途径获取的恶意源代码等。对恶意源代码的特征提取方式可以参阅前述步骤也可以参阅前述步骤1)~3),获取到本地恶意源代码的特征信息,包括风险函数特征、API调用序列特征和操作码序列特征。
然后,可以组合本地恶意包的特征信息和本地恶意源代码的特征信息,生成规则数据库中的多条恶意特征规则。以规则数据库为yara规则数据库为例,将根据本地恶意包的特征信息和本地恶意源代码的特征信息生成的多条恶意特征yara规则,具体包括:
镜像仓安全中心获取本地恶意包的特征信息和本地恶意源代码的特征信息,统一保存到恶意特征数组{M1,…,Mi,…,Mn|n≥1}。镜像仓安全中心删除恶意特征数组中的重复恶意特征,最终得到恶意特征数组{M1,…,Mi,…,Mz},镜像仓安全中心将得到的恶意特征数组{M1,…,Mi,…,Mz}依据yara规则编写要求生成恶意特征yara规则,并保存到yara规则数据库。
以下提供一个恶意特征yara规则实例:
rule malicious_feature//malicious_feature为规则名称
{
strings:
$seq_1=M1
……
$seq_i=Mi
……
$seq_z=Mz
condition:
$seq_1or…or$seq_i or…or$seq_z
}//Mi是恶意特征,“condition”中的or代表组件包文件满足任意一个$seq_i即可判断组件包匹配成功规则malicious_feature。
生成yara规则数据库后,将获取的在线开源组件包的特征信息与yara规则数据库中的多条恶意特征yara规则进行匹配,匹配程度越高,则说明在线开源组件包为恶意包的概率越大。匹配程度具体可以通过匹配规则条数来确定,例如当在线开源组件包的特征信息与yara规则数据库中的恶意特征yara规则匹配条数大于或等于K时,确定开源组件包为恶意包,否则确定开源组件包为合法包,其中K为正整数。
可能的情况下,还可以对在线开源组件包进行创建信息提取,针对其创建信息也进行规则数据库中的规则匹配,根据匹配程度进一步确定在线开源组件包为恶意包或合法包。
对在线开源组件包进行创建信息提取具体可以包括:
4)镜像仓安全中心遍历包管理器中需要进行安全检测的在线开源组件包,获取在线开源组件包包名称列表。
5)镜像仓安全中心遍历包名称列表中的每一个包名称,获取开源组件包的JSON文件,解析JSON文件获得开源组件包的包文件下载链接、源代码存储网站链接(如Github),源代码评分网站链接(如SourceRank),和依赖文件requirements.txt。
实例:对于组件包esprima
包文件下载链接:
https://files.pythonhosted.org/packages/86/61/ff7a62bcf79cebb6faf42c0ff28756c152a9dcf7244019093ca4513d80ee/esprima-4.0.1.tar.gz;
源代码存储网站链接:{Homepage:https://github.com/Kronuz/esprima-python};
源代码评分网站链接:https://libraries.io/pypi/esprima;
requirements.txt:
numpy==1.16.0//numpy是依赖组件包名称,1.16.0是版本号信息
Keras==2.4.3
tornado==6.0.3
chardet==3.0.4
6)镜像仓安全中心从依赖文件requirements.txt文件中获取开源组件包的依赖包名称。再使用如上述步骤4)和步骤5)的方式获取依赖包的包文件下载链接、源代码存储网站链接,源代码评分网站链接和依赖文件。
7)镜像仓安全中心提取包创建信息。镜像仓安全中心从包文件下载链接下载并解压开源组件包及其依赖包的包文件,并从包文件中提取并解析配置文件,镜像仓安全中心从这些配置文件中提取包名、作者、作者邮箱、所属机构、描述、包文件结构、维护人员等包创建信息。可选地,可以将这些创建信息保存到组件包信息数据库。
对应地,规则数据库中可以包括创建信息相关的信息规则。具体步骤包括:镜像仓安全中心获取所述本地恶意包的创建信息;镜像仓安全中心从外部数据库中获取黑客信息;镜像仓安全中心将所述本地恶意包的创建信息和所述黑客信息作为所述规则数据库中的恶意信息规则。
其中,本地恶意包的创建信息可以包括本地恶意包的包名、作者和作者邮箱等信息;黑客信息可以为预先存储在本地黑客信息数据库中的信息,那么镜像仓安全中心提取黑客信息,包括提取黑客姓名和黑客邮箱等。同样的,可以直接将这些创建信息作为规则数据库中的规则进行存储,也可以对这些创建信息进行编写形成规则数据库需要的格式再进行存储。
假设按照yara规则编写要求生成恶意信息yara规则,并保存到yara规则数据库。具体为:恶意信息yara规则实例:
rule malicious_information//malicious_information为规则名称
{
strings:
$inf_name=pkg_name//pkg_name是恶意包包名
$inf_author=pkg_author//pkg_author是恶意包作者
$inf_email=pkg_email//pkg_email是恶意包作者邮箱
$inf_hacker_name=hacker_name//hacker_name是黑客姓名
$inf_hacker_email=hacker_email//hacker_email是黑客邮箱
condition:
($inf_name and$inf_author and$inf_email)or($inf_hacker_name or$inf_hacker_email)
}//"condition"中的and代表组件包文件需同时满足所有条件才可判断组件包匹配成功规则malicious_information。
可选地,针对开源组件包的特征信息进行安全检测还包括:将在线开源组件包的创建信息与规则数据库中的恶意信息规则进行匹配。
生成恶意信息yara规则后,将其与在先开源数据包的创建信息进行匹配,匹配程度越高,则说明在线开源组件包为恶意包的概率越大。同样的,匹配程度具体可以通过匹配规则条数来确定。另外,可以结合yara规则数据库中的恶意特征yara规则和恶意信息yara规则与在线开源组件包的特征信息和创建信息总共的匹配条数来确定在线开源组件包为恶意包的概率,例如当在线开源组件包的特征信息和创建信息总共与yara规则数据库中的规则(包括恶意特征yara规则和恶意信息yara规则)匹配条数大于M时,确定在线开源组件包为恶意包。
可见,在本申请实施例中,采用在线开源组件包的特征信息(或者还包括创建信息)与规则数据库中的多条规则进行匹配,根据两者的匹配程度确定在线开源组件包是否为合法包。这个过程中,生成规则数据库是一个较为直接和简明的步骤,进而可以降低安全检测过程中的处理资源消耗,提升安全检测效率。
针对第二种安全检测方式,可参阅图2E,为本申请实施例提供的另一种开源组件包的安全检测方法流程图,如图2E所示,该方法与图2A所示的方法区别在于,将图2A中的步骤202可以替换为:202b、将在线开源组件包的特征信息输入人工智能AI标注模型,采用AI标注模型对在线开源组件包进行推理,确定在线开源组件包是否为合法包。
具体地,对在线开源组件包的特征提取的过程可以参阅前述步骤1)~步骤3),在此不再赘述。或者,在前述步骤根据获取特征信息并将特征信息存储到组件包信息数据库中之后,直接从组件包信息数据库中读取特征信息。
人工智能AI标注模型,用于根据在线开源组件包的特征信息标注在线开源组件包。例如假设AI标注模型为采用本地恶意包的恶意特征进行训练获得的模型,则将在线开源组件包的特征信息输入AI标注模型,可以获得标注结果标注在线开源组件包是恶意包,或者不是恶意包(即为合法包)。反之,假设AI标注模型为采用本地合法包的合法特征进行训练获得的模型,则将在线开源组件包的特征信息输入AI标注模型,可以获得标注结果标注在线开源组件包是合法包,或者不是合法包(即为恶意包)。
AI标注模型推理过程实例:
输入:在线开源组件包的特征信息;
输出:标注该在线开源组件包为恶意包或者合法包。
本申请实施例以本地恶意包的特征信息训练获得AI标注模型为例进行具体说明。
可选地,特征向量包括风险函数特征、API调用序列特征和操作码序列特征,将在线开源组件包的特征信息输入AI标注模型,采用AI标注模型对在线开源组件包进行推理,确定在线开源组件包是否为合法包,包括:将在线开源组件包的特征向量分别输入三个第一分类器,获得三个第一分类器中每个第一分类器的分类结果;使用绝对多数投票法对每个第一分类器的分类结果进行投票获得投票结果,根据投票结果确定三个第一分类器的分类结果中的标签预测结果,标签预测结果用于指示在线开源组件包是否为合法包。
具体地,AI标注模型可以是一个组合分类器,具体可以为自适应提升Adaboost算法分类器,随机森林分类器等的组合分类器。这种组合分类器可以分别根据在线开源组件包的三个特征信息进行推理,得到三个在线开源组件包是否为恶意包的推理结果,然后采用然后采用绝对多数投票法对三个分类结果进行投票,根据投票结果确定这三个分类结果中,在线开源组件包的标签预测结果。具体地,可以确定三个分类结果中,票数大于或等于50%的预测结果为标签预测结果;或者确定票数最多的预测结果为标签预测结果等。这种AI标注模型可以提升分类结果准确率。
在采用AI标注模型进行分类标注之前,需要对AI标注模型进行训练,本申请实施例以第一分类器为训练后的Adaboost算法分类器为例进行说明,训练AI标注模型的过程包括:获取自适应提升算法分类器,自适应提升算法分类器中包括N个对应不同权值的第二分类器,N个对应不同权值的第二分类器根据本地恶意包的多个恶意特征训练获得;对本地恶意包的源代码进行特征提取,获得本地恶意包的特征向量;将本地恶意包的特征向量分别输入自适应提升算法分类器,训练获得三个第一分类器作为AI标注模型。
上述过程中,获取自适应提升算法分类器,是指获取初始Adaboost算法分类器(未经过训练的),每个初始Adaboost算法中包括N个具有不同权值的第二分类器,第二分类器也可以被称为弱分类器,其含义为,这种未经过训练的分类器的分类精确度低,通常为50%及以下,具体可以为支持向量机(support vector machine,SVM)分类器。将风险函数特征、API调用序列特征和操作码序列特征,每个特征分别作为一个Adaboost算法分类器的输入,从而生成三个训练任务:任务1、任务2和任务3。镜像仓安全中心在每一个Adaboost算法分类器训练期间,计算N个弱分类器的错误率,根据错误率更新每一个弱分类器权重,经过T轮迭代更新,得到三个第一分类器,相对应的,第一分类器的分类结果准确率更高,通常能够达到80%或80%以上,因此第二分类器可以被称为强分类器。因此,三个特征学习任务共得到三个强分类器H1、H2、H3,组成前述AI标注模型。
可见,在本申请实施例中,采用AI标注模型对在线开源组件包进行安全检测,该过程由于AI标注模型为机器学习模型,经过迭代训练获得,因此AI标注模型具有确定性,那么将在线开源组件包的特征信息输入AI标注模型获得的推理结果,能够保证结果的准确性。
针对第三种安全检测方式,可参阅图2F,为本申请实施例提供的另一种开源组件包的安全检测方法流程图,如图2F所示,该方法与图2F所示的方法区别在于,将图2A中的步骤202可以替换为:202c、将在线开源组件包的特征信息输入增量AI模型,采用增量AI模型对在线开源组件包进行推理,确定在线开源组件包是否为合法包,并确定不为合法包的在线开源组件包为疑似恶意包。
具体地,对在线开源组件包的特征提取的过程可以参阅前述步骤1)~步骤3),在此不再赘述。或者,在前述步骤根据获取特征信息并将特征信息存储到组件包信息数据库中之后,直接从组件包信息数据库中读取特征信息。
增量AI模型,与前述AI标注模型的区别在于,该过程提取了本地恶意包和本地合法包的特征,采用本地恶意包和本地合法包的特征信息共同训练获得增量AI模型,则增量AI模型可以用于推理获得在线开源组件包是否为合法包。
增量AI模型推理过程实例:
输入:在线开源组件包的特征信息,合法阈值Δ;
输出:在线开源组件包的可疑程度值θ,若θ≥Δ,镜像仓安全中心判断组件包为疑似恶意包,需要进一步分析;若θ<Δ,镜像仓安全中心判断在线开源组件包为合法包。
具体地,增量AI模型输出是一个概率值,例如[0.6,0.4],其中恶意包预测概率为0.6,合法包预测概率为0.4,两个值之和确定为1,合法阈值也是概率值,例如0.5,可疑程度值对应为恶意包预测概率,则可疑程度值0.6>合法阈值0.5,判断该包为疑似恶意包。
可选地,特征信息包括风险函数特征、API调用序列特征和操作码序列特征,该方法还包括:对本地开源组件包中的本地恶意包和本地合法包进行特征提取,获取本地恶意包的特征信息和本地合法包的特征信息;将本地恶意包的特征信息和本地合法包的特征信息作为初始支持向量机SVM算法分类器的输入进行迭代,直到确定初始SVM算法分类器的预设准确率大于第一预设阈值,获得最终SVM算法分类器作为增量AI模型。
具体地,初始增量AI模型可以是一个初始SVM算法分类器,在选择具体的SVM算法分类器时,可以考虑如下因素:对训练样本数值不敏感,在更新训练的过程中,无法确定训练样本的具体数值,因此使用模糊算法降低SVM算法对训练样本数值的依赖性;加快迭代训练速度,因此可以考虑最小二乘方法;应对训练过程中样本不平衡的场景,因此可以考虑孪生SVM。那么,该初始SVM算法分类器例如可以是初始模糊最小二乘孪生SVM分类器。镜像仓安全中心获取本地组件包,包括本地恶意包和本地合法包的特征信息,具体包括风险函数特征、API调用序列特征和操作码序列特征,将这三种特征进行组合,即F1维的风险函数特征、F2维的API调用序列特征和F3维的操作码序列特征组合成一个(F1+F2+F3)维的组合特征。然后镜像仓安全中心将组合特征作为初始SVM算法的输入,进行迭代训练,直到确定该SVM算法分类器的预测准确率大于第一预设阈值,获得增量AI模型。
可见,在本申请实施例中,采用增量AI模型对在线开源组件包进行安全检测,该过程由于增量AI模型的训练过程中,同时考虑了本地恶意包和本地合法包的特征信息,使得增量AI模型的推理结果考虑更全面,将不为合法包的在线开源组件包确定为疑似恶意包,并进行再判断,可以进一步提升安全检测结果的准确性,减少误判的概率。
对疑似恶意包进行再判断,可以包括如前述规则数据库生成规则过程,考虑在线开源组件包的创建信息,或者,还可以考虑在线开源组件包的结构,依赖包,包名等信息。
可选的,在确定不为合法包的在线开源组件包为疑似恶意包之后,图2F对应方法还包括步骤204:对疑似恶意包进行信誉评估,获得疑似恶意包的信誉评分,根据疑似恶意包的信誉评分确定疑似恶意包是否为合法包,其中不为合法包的疑似恶意包为恶意包。信誉评估包括以下一项或多项:疑似恶意包的依赖包评估,疑似恶意包的包名评估,疑似恶意包的结构评估,疑似恶意包的作者信誉评估,疑似恶意包的包信誉评估。
具体地,对疑似恶意包进行依赖包评估,获得依赖得分,包括:获取多个疑似恶意包中的任意疑似恶意包的依赖包,确定依赖包为恶意包的概率;根据依赖包为恶意包的概率确定任意在线开源组件包的依赖得分,其中依赖得分高低与依赖包为恶意包的概率大小呈正相关。
疑似恶意包可以为在线开源组件包,其依赖包获取方法具体可参阅前述步骤4)~步骤6),或者依赖包也可以为本地组件包。确定依赖包为恶意包的概率,可以通过前述步骤202a中描述的规则数据库匹配方法,或者202b中描述的AI标注模型推理方法,增量AI模型推理方法或者其他方法。假设确定依赖包为恶意包,则依赖包为恶意包的概率为100%,在线开源组件包的依赖得分可以为1。假设确定依赖包为合法包,则依赖包为恶意包的概率为0,在线开源组件包的依赖得分可以为0。假设根据增量AI模型推理方法确定依赖包的可疑程度值为θ,则可以确定依赖包为恶意包的概率为(θ-Δ)/Δ*100%等等。
或者,若依赖包为在线开源组件包,则还可以通过计算依赖包包配置文件中作者邮箱的域名在Google域名排行榜上的排名、依赖包包内的每个文件在威胁情报库中的得分、维护人员数量等,确定依赖包为恶意包的概率。
对疑似恶意包进行包名评估,获得包名得分,包括:获取多个在线开源组件包的包名,并根据多个在线开源组件包的包名中的流行组件包名生成流行组件包列表;将疑似恶意包包的包名与流行组件包列表中的流行组件包名进行匹配,确定疑似恶意包包的包名与流行组件包的相似度;根据疑似恶意包包的包名与流行组件包的相似度确定包名得分,包名得分高低与相似度大小呈正相关。
具体地,可以从开源组件包下载统计网站收集下载次数排名前P的开源组件包,并根据这些开源组件包的包名生成流行组件包列表。其中P可以是500,605,1001等。根据这些开源组件包的包名生成流行组件包列表,包括按照下载频率的大小生成流行组件包列表,或者按照最后下载时间的新鲜度生成流行组件包列表等。然后将疑似恶意包的报名与流行组件包列表中的包名相似度计算,具体包括进行语义相似度计算,距离对比等方式中的一种或多种,语义相似度计算例如可以采用语义相似度函数进行,提供一个语义相似实例如下:
输入:
疑似恶意包包名:organization////////流行包包名:organize
输出:0(语义相似).
提供一个Levenshtein距离对比实例:
输入:疑似恶意包包名:PyYMAL////////流行包包名:PyYAML
输出:Levenshtein距离=2.
表示疑似恶意包经过两步变换可得到流行包包名。可能的情况下,前述变换具体可以包括删除字符、同音字符、替换字符、交换字符、插入字符、分隔符、顺序置换、版本修改等操作。
疑似恶意包的报名与流行组件包列表中的包名语义相似度越高,或距离越近,则两者的相似度越高,那么疑似恶意包的包名得分越高。
对疑似恶意包进行结构评估,获得结构得分,包括:获取多个在线开源组件包的包名,并根据多个在线开源组件包的包名中的流行组件包名生成流行组件包列表;分别获取流行组件包列表中的开源组件包的文件结构的第一哈希值和疑似恶意包的文件结构的第二哈希值,并计算第一哈希值与第二哈希值之间的距离;根据第一哈希值和第二哈希值之间的距离确定结构得分,结构得分高低与距离大小呈负相关。
具体地,获取流行组件包列表的方式与前述描述相同,在此不再赘述。然后从流行组件包列表中,获取任意一个开源组件包的文件结构的第一哈希值,文件结构具体可以指开源组件包解压缩后形成的目录结构,将该目录结构输入哈希函数,即可获得对应的哈希值。同样的方法可以获取疑似恶意包的文件结构对应的第二哈希值。然后计算第一哈希值与第二哈希值进行距离,并根据第一哈希值和第二哈希值之间的距离确定结构得分,结构得分高低与距离大小呈负相关,也即距离越小,结构得分越高。例如假设第一哈希值与第二哈希值之间的距离为1,则结构得分为a/1,其中a为一个预设的值。可以获取一个疑似恶意包与流行组件包列表中多个开源组件包进行结构得分计算,然后将这些结构得分相加作为该疑似恶意包的最终结构得分。
对疑似恶意包进行作者信誉评估,获得作者信誉得分,包括:获取疑似恶意包的作者信誉特征,包括该作者上传的所有项目的受欢迎程度、使用人数总数、观看人数总数、活跃程度等,计算疑似恶意包中所有作者信誉特征数值之和得到作者信誉得分。
对疑似恶意包的包信誉评估,获得包信誉得分,包括:获取疑似恶意包的包信誉特征,包括该包的受欢迎程度、使用人数、阅读人数、组件包评分等,计算疑似恶意包中所有包信誉特征数值之和得到包信誉得分。
根据前述方法计算信誉评分后,如果疑似恶意包只进行了单项信誉评估,可以根据单项信誉评分确定最终的信誉评分,如果疑似恶意包进行了多项信誉评估,可以对多项信誉评分求和,加权求和,或者其他组合方式确定最终的信誉评分。以针对疑似恶意包进行了上述五种信誉评估为例,获得五种信誉评分,分别为
Figure BDA0003330627820000161
然后再对这五种信誉评分进行求和得到最终的疑似恶意包信誉评分
Figure BDA0003330627820000162
镜像仓安全中心将信誉评分
Figure BDA0003330627820000163
与预先设置的评估阈值μ进行对比,若
Figure BDA0003330627820000164
镜像仓安全中心判断该疑似恶意包为恶意包,若
Figure BDA0003330627820000165
镜像仓安全中心判断该疑似恶意包为合法包。
以下提供一个信誉评估实例:
输入:标签为疑似恶意包的组件包
输出:
疑似恶意包A的五种信誉评分:1,1,2,0.4,0.3
疑似恶意包A的最终信誉评分为:3.7
镜像仓安全中心预设置的评估阈值为:5
则判断疑似恶意包A为恶意包。
可见,在本申请实施例中,采用信誉评估方式对疑似恶意包的进行进一步安全检测,丰富了安全检测的维度,提升了安全检测判断结构的可靠性。
镜像仓安全中心的最终目的是为了保证公司开源镜像仓的安全性,剔除恶意包,因此,如前述图2A以及图2D~图2F中的方法步骤203描述的,镜像仓安全中心将筛选出的合法包,本申请实施例中具体可以是通过规则数据库、AI标注模型、增量AI模型和信誉评估网络筛选出的合法包,同步到开源镜像仓。
另外,镜像仓安全中心可以将前述规则数据库、AI标注模型、信誉评估网络检测出的恶意包保存到增量恶意包数据库。可以设置增量恶意包数据库中增量恶意包的保存周期,例如保存周期为1周,1周内镜像仓安全中心检测出的恶意包都保存到增量恶意包数据库,并清空上周保存的增量恶意包数据库。
可见,在本申请实施例中,在将在线开源组件包同步到本地开源镜像仓之前,先对在线开源组件包进行安全检测,确定在线开源组件包为合法包的情况下,将其同步到本地开源镜像仓,使得恶意代码检测能力前移,构建安全开源仓库,有效抑制开源化对研发环境的安全影响,降低开源组件包使用者被攻击的可能性。
可选地,该方法还包括:对目标恶意包进行特征提取,获得目标恶意包的特征信息,目标恶意包为增量恶意包数据库中的部分或全部恶意包;将目标恶意包的特征信息作为增量AI模型的输入进行迭代,获得更新后的增量AI模型。
由于增量恶意包数据库中可能包括采用信誉评分网络确定的恶意包,因此针对这些恶意包进行特征提取,更新增量AI模型,可以优化增量AI模型,减少其判断出疑似恶意包的概率,提升分类效率。
可选地,该方法还包括:根据增量恶意包数据库中的恶意包获取增量恶意特征规则和/或增量信息规则;根据增量恶意特征规则和/或增量信息规则更新规则数据库。
镜像仓安全中心通过前述描述的方法生成增量恶意包数据库中恶意包的恶意特征规则和恶意信息规则,并将新提取的恶意特征规则和恶意信息规则与规则数据库中已有规则进行对比,剔除新提取的恶意特征规则和恶意信息规则与规则数据库中的重合规则,剩下的规则添加到规则数据库。
同样的,该过程也可以起到优化规则数据库的效果,提升规则数据库的分类准确率。
图3为本申请实施例提供的一种安全检测装置300,其可以用于执行上述图2A~图2F的方法和具体实施例。在一种可能的实现方式中,如图3所示,该装置300包括获取单元301,处理单元302和存储单元303。
获取单元301,用于获取在线开源组件包,并对在线开源组件包进行特征提取,获取在线开源组件包的特征信息;
处理单元302,用于针对开源组件包的特征信息进行安全检测,确定在线开源组件包是否为合法包;
存储单元303,用于若在线开源组件包中的第一组件包为合法包,则将第一组件包同步到本地开源镜像仓,本地开源镜像仓用于向用户提供调用的开源组件包。
可选地,存储单元303还用于:若确定在线开源组件包中的第二组件包为恶意包,则将第二组件包存储到增量恶意包数据库。
可选地,处理单元302具体用于:将在线开源组件包的特征信息与规则数据库中的多条规则进行匹配,根据匹配程度确定在线开源组件包是否为合法包。
可选地,处理单元302还用于:获取本地开源组件包中的本地恶意包,并对本地恶意包进行特征提取,获取本地恶意包的恶意特征;获取本地恶意源代码,并对本地恶意源代码进行特征提取,获取本地恶意源代码的恶意代码特征;将本地恶意包的恶意特征和本地恶意源码的恶意代码特征作为规则数据库中的恶意特征规则。
可选地,获取在线开源组件包的特征信息还包括获取在线开源组件包的创建信息;
处理单元302还用于:获取本地恶意包的创建信息;从外部数据库中获取黑客信息;将本地恶意包的创建信息和黑客信息作为规则数据库中的恶意信息规则;针对开源组件包的特征信息进行安全检测还包括:将在线开源组件包的创建信息与规则数据库中的恶意信息规则进行匹配。
可选地,处理单元302还用于:将在线开源组件包的特征信息输入人工智能AI标注模型,采用AI标注模型对在线开源组件包进行推理,确定在线开源组件包是否为合法包,其中不为合法包的在线开源包为恶意包。
可选地,特征信息包括风险函数特征、API调用序列特征和操作码序列特征,将在线开源组件包的特征信息输入AI标注模型,采用AI标注模型对在线开源组件包进行推理,确定在线开源组件包是否为合法包,包括:将在线开源组件包的特征信息分别输入三个第一分类器,获得三个第一分类器中每个第一分类器的分类结果;使用绝对多数投票法对每个第一分类器的分类结果进行投票获得投票结果,根据投票结果确定三个第一分类器的分类结果中的标签预测结果,标签预测结果用于指示在线开源组件包是否为合法包,其中不为合法包的在线开源包为恶意包。
可选地,处理单元302还用于:获取自适应提升算法分类器,自适应提升算法分类器中包括N个对应不同权值的第二分类器,N个对应不同权值的第二分类器根据本地恶意包的多个恶意特征训练获得;
对本地恶意包的源代码进行特征提取,获得本地恶意包的特征信息;
将本地恶意包的特征信息分别输入自适应提升算法分类器,训练获得三个第一分类器作为AI标注模型。
可选地,处理单元302具体用于:将在线开源组件包的特征信息输入增量AI模型,采用增量AI模型对在线开源组件包进行推理,确定在线开源组件包是否为合法包,并确定不为合法包的在线开源组件包为疑似恶意包。
可选地,特征信息包括风险函数特征、API调用序列特征和操作码序列特征,处理单元302还用于:对本地开源组件包中的本地恶意包和本地合法包进行特征提取,获取本地恶意包的特征信息和本地合法包的特征信息;将本地恶意包的特征信息和本地合法包的特征信息作为初始支持向量机SVM算法分类器的输入进行迭代,直到确定初始SVM算法分类器的预测准确率大于第一预设阈值,获得最终SVM算法分类器作为增量AI模型。
可选地,在确定不为合法包的在线开源组件包为疑似恶意包之后,处理单元302还用于:
对疑似恶意包进行信誉评估,获得疑似恶意包的信誉评分,并根据疑似恶意包的信誉评分确定疑似恶意包是否为合法包,其中不为合法包的疑似恶意包为恶意包;信誉评估包括以下一项或多项:疑似恶意包的依赖包评估,疑似恶意包的包名评估,疑似恶意包的结构评估,疑似恶意包的作者信誉评估,疑似恶意包的包信誉评估。
可选地,该装置还更新单元304,用于:根据增量恶意包数据库中的恶意包获取增量恶意特征规则和/或增量信息规则;根据增量恶意特征规则和/或增量信息规则更新规则数据库。
可选地,该装置还包括更新单元304,用于:对目标恶意包进行特征提取,获得目标恶意包的特征信息,目标恶意包为增量恶意包数据库中的部分或全部恶意包;将目标恶意包的特征信息作为增量AI模型的输入进行迭代,获得更新后的增量AI模型。
可选的,上述处理单元302可以是中央处理器(Central Processing Unit,CPU)。
可选的,上述获取单元301可以是接口电路或者收发器。用于从其他电子装置接收或发送数据或指令。
可选的,存储单元303可以用于存储数据和/或信令,存储单元可以和获取单元301,以及处理单元302耦合。例如,处理单元302可以用于读取存储单元中的数据和/或信令,使得前述方法实施例中的开源组件包安全检测过程被执行。
如图4所示,图4示出了本申请实施例中的一种电子装置的硬件结构示意图。安全检测装置300的结构可以参考图4所示的结构。电子装置1000包括:存储器1001、处理器1002、通信接口1003和总线1004。其中,存储器1001、处理器1002、通信接口1003通过总线1004实现彼此之间的通信连接。
存储器1001可以是只读存储器(Read Only Memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(Random Access Memory,RAM)。存储器1001可以存储程序,当存储器1001中存储的程序被处理器1002执行时,处理器1002和通信接口1003用于执行本申请实施例的分布式渲染方法的各个步骤。
处理器1002可以采用通用的CPU,微处理器,应用专用集成电路(ApplicationSpecific Integrated Circuit,ASIC),GPU或者一个或多个集成电路,用于执行相关程序,以实现本申请实施例的安全检测装置300中的获取单元301,处理单元302和存储单元303所需执行的功能,或者执行本申请方法实施例的安全检测方法。
处理器1002还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请的分布式渲染方法的各个步骤可以通过处理器1002中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1002还可以是通用处理器、数字信号处理器(DigitalSignal Processing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(Field ProgrammableGate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1001,处理器1002读取存储器1001中的信息,结合其硬件完成本申请实施例的安全检测装置300中包括的模块所需执行的功能,或者执行本申请方法实施例的安全检测方法。
通信接口1003使用例如但不限于收发器一类的收发装置,来实现电子装置1000与其他设备或通信网络之间的通信。例如,可以通过通信接口1003获取确定的分割目标和/或候选目标边界框。总线1004可包括在电子装置1000各个部件(例如,存储器1001、处理器1002、通信接口1003)之间传送信息的通路。
应注意,尽管图4所示的电子装置1000仅仅示出了存储器、处理器、通信接口,但是在具体实现过程中,本领域的技术人员应当理解,电子装置1000还包括实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当理解,电子装置1000还可包括实现其他附加功能的硬件器件。此外,本领域的技术人员应当理解,电子装置1000也可仅仅包括实现本申请实施例所必须的器件,而不必包括图4中所示的全部器件。
此外,本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由安全检测装置执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或计算机可执行指令,当计算机程序或计算机可执行指令在计算机上运行时,使得计算机执行本申请提供的方法中由安全检测装置执行的操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机可执行指令或计算机程序,当该计算机可执行指令或计算机程序在计算机上运行时,使得本申请提供的方法中由安全检测装置执行的操作和/或处理被执行。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (29)

1.一种开源组件包的安全检测方法,其特征在于,所述方法包括:
获取在线开源组件包,并对所述在线开源组件包进行特征提取,获取所述在线开源组件包的特征信息;
针对所述开源组件包的特征信息进行安全检测,确定所述在线开源组件包是否为合法包;
若所述在线开源组件包中的第一组件包为合法包,则将所述第一组件包同步到本地开源镜像仓,所述本地开源镜像仓用于向用户提供调用的开源组件包。
2.根据权利要求1所述的方法,其特征在于,所述方法还包括:若确定所述在线开源组件包中的第二组件包为恶意包,则将所述第二组件包存储到增量恶意包数据库。
3.根据权利要求1或2所述的方法,其特征在于,所述针对所述开源组件包的特征信息进行安全检测,确定所述在线开源组件包是否为合法包,包括:
将所述在线开源组件包的特征信息与规则数据库中的多条规则进行匹配,根据匹配程度确定所述在线开源组件包是否为合法包。
4.根据权利要求3所述的方法,其特征在于,所述方法还包括:
获取本地开源组件包中的本地恶意包,并对所述本地恶意包进行特征提取,获取所述本地恶意包的恶意特征;
获取本地恶意源代码,并对所述本地恶意源代码进行特征提取,获取所述本地恶意源代码的恶意代码特征;
将所述本地恶意包的恶意特征和所述本地恶意源码的恶意代码特征作为所述规则数据库中的恶意特征规则。
5.根据权利要求4所述的方法,其特征在于,所述获取所述在线开源组件包的特征信息还包括获取所述在线开源组件包的创建信息;
所述方法还包括:
获取所述本地恶意包的创建信息;
从外部数据库中获取黑客信息;
将所述本地恶意包的创建信息和所述黑客信息作为所述规则数据库中的恶意信息规则;
所述针对所述开源组件包的特征信息进行安全检测还包括:
将所述在线开源组件包的创建信息与所述规则数据库中的恶意信息规则进行匹配。
6.根据权利要求1或2所述的方法,其特征在于,所述针对所述开源组件包的特征信息进行安全检测,确定所述在线开源组件包是否为合法包,包括:
将所述在线开源组件包的特征信息输入人工智能AI标注模型,采用所述AI标注模型对所述在线开源组件包进行推理,确定所述在线开源组件包是否为合法包,其中不为合法包的所述在线开源包为恶意包。
7.根据权利要求6所述的方法,其特征在于,所述特征信息包括风险函数特征、API调用序列特征和操作码序列特征,所述将所述在线开源组件包的特征信息输入AI标注模型,采用所述AI标注模型对所述在线开源组件包进行推理,确定所述在线开源组件包是否为合法包,包括:
将所述在线开源组件包的特征信息分别输入三个第一分类器,获得所述三个第一分类器中每个第一分类器的分类结果;
使用绝对多数投票法对所述每个第一分类器的分类结果进行投票获得投票结果,根据所述投票结果确定所述三个第一分类器的分类结果中的标签预测结果,所述标签预测结果用于指示所述在线开源组件包是否为合法包,其中不为合法包的所述在线开源包为恶意包。
8.根据权利要求7所述的方法,其特征在于,所述方法还包括:
获取自适应提升算法分类器,所述自适应提升算法分类器中包括N个对应不同权值的第二分类器,所述N个对应不同权值的第二分类器根据本地恶意包的多个恶意特征训练获得;
对所述本地恶意包的源代码进行特征提取,获得所述本地恶意包的特征信息;
将所述本地恶意包的特征信息分别输入所述自适应提升算法分类器,训练获得所述三个第一分类器作为所述AI标注模型。
9.根据权利要求1或2所述的方法,其特征在于,所述针对所述开源组件包的特征信息进行安全检测,确定所述在线开源组件包是否为合法包,包括:
将所述在线开源组件包的特征信息输入增量AI模型,采用所述增量AI模型对所述在线开源组件包进行推理,确定所述在线开源组件包是否为合法包,并确定不为合法包的所述在线开源组件包为疑似恶意包。
10.根据权利要求9所述的方法,其特征在于,所述特征信息包括风险函数特征、API调用序列特征和操作码序列特征,所述方法还包括:
对本地开源组件包中的本地恶意包和本地合法包进行特征提取,获取所述本地恶意包的特征信息和所述本地合法包的特征信息;
将所述本地恶意包的特征信息和所述本地合法包的特征信息作为初始支持向量机SVM算法分类器的输入进行迭代,直到确定所述初始SVM算法分类器的预测准确率大于第一预设阈值,获得最终SVM算法分类器作为所述增量AI模型。
11.根据权利要求9或10所述的方法,其特征在于,在确定不为合法包的所述在线开源组件包为疑似恶意包之后,所述方法还包括:
对所述疑似恶意包进行信誉评估,获得所述疑似恶意包的信誉评分,并根据所述疑似恶意包的信誉评分确定所述疑似恶意包是否为合法包,其中不为合法包的所述疑似恶意包为恶意包;所述信誉评估包括以下一项或多项:所述疑似恶意包的依赖包评估,所述疑似恶意包的包名评估,所述疑似恶意包的结构评估,所述疑似恶意包的作者信誉评估,所述疑似恶意包的包信誉评估。
12.根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
根据所述增量恶意包数据库中的恶意包获取增量恶意特征规则和/或增量信息规则;
根据所述增量恶意特征规则和/或增量信息规则更新所述规则数据库。
13.根据权利要求9-11所述的方法,其特征在于,所述方法还包括:
对目标恶意包进行特征提取,获得所述目标恶意包的特征信息,所述目标恶意包为所述增量恶意包数据库中的部分或全部恶意包;
将所述目标恶意包的特征信息作为所述增量AI模型的输入进行迭代,获得更新后的增量AI模型。
14.一种安全检测装置,其特征在于,所述装置包括:
获取单元,用于获取在线开源组件包,并对所述在线开源组件包进行特征提取,获取所述在线开源组件包的特征信息;
处理单元,用于针对所述开源组件包的特征信息进行安全检测,确定所述在线开源组件包是否为合法包;
存储单元,用于若所述在线开源组件包中的第一组件包为合法包,则将所述第一组件包同步到本地开源镜像仓,所述本地开源镜像仓用于向用户提供调用的开源组件包。
15.根据权利要求14所述的装置,其特征在于,所述存储单元还用于:若确定所述在线开源组件包中的第二组件包为恶意包,则将所述第二组件包存储到增量恶意包数据库。
16.根据权利要求14或15所述的装置,其特征在于,所述处理单元具体用于:
将所述在线开源组件包的特征信息与规则数据库中的多条规则进行匹配,根据匹配程度确定所述在线开源组件包是否为合法包。
17.根据权利要求16所述的装置,其特征在于,所述处理单元还用于:
获取本地开源组件包中的本地恶意包,并对所述本地恶意包进行特征提取,获取所述本地恶意包的恶意特征;
获取本地恶意源代码,并对所述本地恶意源代码进行特征提取,获取所述本地恶意源代码的恶意代码特征;
将所述本地恶意包的恶意特征和所述本地恶意源码的恶意代码特征作为所述规则数据库中的恶意特征规则。
18.根据权利要求17所述的装置,其特征在于,所述获取所述在线开源组件包的特征信息还包括获取所述在线开源组件包的创建信息;
所述处理单元还用于:
获取所述本地恶意包的创建信息;
从外部数据库中获取黑客信息;
将所述本地恶意包的创建信息和所述黑客信息作为所述规则数据库中的恶意信息规则;
所述针对所述开源组件包的特征信息进行安全检测还包括:
将所述在线开源组件包的创建信息与所述规则数据库中的恶意信息规则进行匹配。
19.根据权利要求14或15所述的装置,其特征在于,所述处理单元还用于:
将所述在线开源组件包的特征信息输入人工智能AI标注模型,采用所述AI标注模型对所述在线开源组件包进行推理,确定所述在线开源组件包是否为合法包,其中不为合法包的所述在线开源包为恶意包。
20.根据权利要求19所述的装置,其特征在于,所述特征信息包括风险函数特征、API调用序列特征和操作码序列特征,所述将所述在线开源组件包的特征信息输入AI标注模型,采用所述AI标注模型对所述在线开源组件包进行推理,确定所述在线开源组件包是否为合法包,包括:
将所述在线开源组件包的特征信息分别输入三个第一分类器,获得所述三个第一分类器中每个第一分类器的分类结果;
使用绝对多数投票法对所述每个第一分类器的分类结果进行投票获得投票结果,根据所述投票结果确定所述三个第一分类器的分类结果中的标签预测结果,所述标签预测结果用于指示所述在线开源组件包是否为合法包,其中不为合法包的所述在线开源包为恶意包。
21.根据权利要求20所述的装置,其特征在于,所述处理单元还用于:
获取自适应提升算法分类器,所述自适应提升算法分类器中包括N个对应不同权值的第二分类器,所述N个对应不同权值的第二分类器根据本地恶意包的多个恶意特征训练获得;
对所述本地恶意包的源代码进行特征提取,获得所述本地恶意包的特征信息;
将所述本地恶意包的特征信息分别输入所述自适应提升算法分类器,训练获得所述三个第一分类器作为所述AI标注模型。
22.根据权利要求14或15所述的装置,其特征在于,所述处理单元具体用于:
将所述在线开源组件包的特征信息输入增量AI模型,采用所述增量AI模型对所述在线开源组件包进行推理,确定所述在线开源组件包是否为合法包,并确定不为合法包的所述在线开源组件包为疑似恶意包。
23.根据权利要求22所述的装置,其特征在于,所述特征信息包括风险函数特征、API调用序列特征和操作码序列特征,所述处理单元还用于:
对本地开源组件包中的本地恶意包和本地合法包进行特征提取,获取所述本地恶意包的特征信息和所述本地合法包的特征信息;
将所述本地恶意包的特征信息和所述本地合法包的特征信息作为初始支持向量机SVM算法分类器的输入进行迭代,直到确定所述初始SVM算法分类器的预测准确率大于第一预设阈值,获得最终SVM算法分类器作为所述增量AI模型。
24.根据权利要求22或23所述的装置,其特征在于,在确定不为合法包的所述在线开源组件包为疑似恶意包之后,所述处理单元还用于:
对所述疑似恶意包进行信誉评估,获得所述疑似恶意包的信誉评分,并根据所述疑似恶意包的信誉评分确定所述疑似恶意包是否为合法包,其中不为合法包的所述疑似恶意包为恶意包,所述信誉评估包括以下一项或多项:所述疑似恶意包的依赖包评估,所述疑似恶意包的包名评估,所述疑似恶意包的结构评估,所述疑似恶意包的作者信誉评估,所述疑似恶意包的包信誉评估。
25.根据权利要求16或17所述的装置,其特征在于,所述装置还包括更新单元,用于:
根据所述增量恶意包数据库中的恶意包获取增量恶意特征规则和/或增量信息规则;
根据所述增量恶意特征规则和/或增量信息规则更新所述规则数据库。
26.根据权利要求22-24所述的装置,其特征在于,所述装置还包括更新单元,用于:
对目标恶意包进行特征提取,获得所述目标恶意包的特征信息,所述目标恶意包为所述增量恶意包数据库中的部分或全部恶意包;
将所述目标恶意包的特征信息作为所述增量AI模型的输入进行迭代,获得更新后的增量AI模型。
27.一种计算机可读存储介质,其特征在于,其上存储有指令,当所述指令被运行时,用于实现如权利要求1至13中任一项所述的方法。
28.一种芯片系统,其特征在于,包括:处理器,所述处理器用于执行存储的计算机程序,所述计算机程序用于执行如权利要求1至13中任一项所述的方法。
29.一种计算机程序产品,所述计算机程序产品包括:计算机程序,当所述计算机程序被运行时,使得如权利要求1至13中任一项所述的方法被执行。
CN202111279082.4A 2021-10-31 2021-10-31 开源组件包的安全检测方法及装置 Pending CN116089938A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111279082.4A CN116089938A (zh) 2021-10-31 2021-10-31 开源组件包的安全检测方法及装置
PCT/CN2022/127118 WO2023072002A1 (zh) 2021-10-31 2022-10-24 开源组件包的安全检测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111279082.4A CN116089938A (zh) 2021-10-31 2021-10-31 开源组件包的安全检测方法及装置

Publications (1)

Publication Number Publication Date
CN116089938A true CN116089938A (zh) 2023-05-09

Family

ID=86160388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111279082.4A Pending CN116089938A (zh) 2021-10-31 2021-10-31 开源组件包的安全检测方法及装置

Country Status (2)

Country Link
CN (1) CN116089938A (zh)
WO (1) WO2023072002A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117034275A (zh) * 2023-10-10 2023-11-10 北京安天网络安全技术有限公司 基于Yara引擎的恶意文件检测方法、设备及介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7571445B2 (en) * 2001-11-29 2009-08-04 Dell Products L.P. System and method for dynamic device driver support in an open source operating system
CN112906007A (zh) * 2021-02-09 2021-06-04 中国工商银行股份有限公司 开源软件漏洞管控方法及装置
CN113065125A (zh) * 2021-03-30 2021-07-02 深圳开源互联网安全技术有限公司 Docker镜像的分析方法、装置、电子设备及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117034275A (zh) * 2023-10-10 2023-11-10 北京安天网络安全技术有限公司 基于Yara引擎的恶意文件检测方法、设备及介质
CN117034275B (zh) * 2023-10-10 2023-12-22 北京安天网络安全技术有限公司 基于Yara引擎的恶意文件检测方法、设备及介质

Also Published As

Publication number Publication date
WO2023072002A1 (zh) 2023-05-04

Similar Documents

Publication Publication Date Title
US11924233B2 (en) Server-supported malware detection and protection
Gopinath et al. A comprehensive survey on deep learning based malware detection techniques
US20210194900A1 (en) Automatic Inline Detection based on Static Data
Chumachenko Machine learning methods for malware detection and classification
US11314862B2 (en) Method for detecting malicious scripts through modeling of script structure
RU2614557C2 (ru) Система и способ обнаружения вредоносных файлов на мобильных устройствах
US10997307B1 (en) System and method for clustering files and assigning a property based on clustering
Patil et al. Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification.
US11336676B2 (en) Centralized trust authority for web application components
Singh et al. Malware detection in pdf and office documents: A survey
US20200137126A1 (en) Creation of security profiles for web application components
US20220269782A1 (en) Detection of malicious code that is obfuscated within a document file
US11916937B2 (en) System and method for information gain for malware detection
Nguyen et al. Toward a deep learning approach for detecting php webshell
Dib et al. Evoliot: A self-supervised contrastive learning framework for detecting and characterizing evolving iot malware variants
Gu et al. From image to code: executable adversarial examples of android applications
WO2023072002A1 (zh) 开源组件包的安全检测方法及装置
Soman et al. A comprehensive tutorial and survey of applications of deep learning for cyber security
US20230344868A1 (en) Webpage phishing auto-detection
CN112580044A (zh) 用于检测恶意文件的系统和方法
Khan et al. OP2VEC: an opcode embedding technique and dataset design for end-to-end detection of android malware
Cybersecurity Machine learning for malware detection
Anto et al. Kernel modification APT attack detection in android
US11880460B2 (en) System and method for differential malware scanner
Sokolov Applied Machine Learning for Cybersecurity in Spam Filtering and Malware Detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication