JP6742018B2 - Unknown water estimation method - Google Patents

Unknown water estimation method Download PDF

Info

Publication number
JP6742018B2
JP6742018B2 JP2016144970A JP2016144970A JP6742018B2 JP 6742018 B2 JP6742018 B2 JP 6742018B2 JP 2016144970 A JP2016144970 A JP 2016144970A JP 2016144970 A JP2016144970 A JP 2016144970A JP 6742018 B2 JP6742018 B2 JP 6742018B2
Authority
JP
Japan
Prior art keywords
manhole
pump
flow rate
unknown water
sewage flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016144970A
Other languages
Japanese (ja)
Other versions
JP2018012094A (en
Inventor
健司 長谷川
健司 長谷川
達昭 飯島
達昭 飯島
久 丹羽
久 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansei Co
Original Assignee
Kansei Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansei Co filed Critical Kansei Co
Priority to JP2016144970A priority Critical patent/JP6742018B2/en
Publication of JP2018012094A publication Critical patent/JP2018012094A/en
Application granted granted Critical
Publication of JP6742018B2 publication Critical patent/JP6742018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、マンホールポンプが設けられているマンホールに接続されている下水管路に流入する不明水の流量を推定するための不明水推定方法に関する。 The present invention relates to an unknown water estimating method for estimating the flow rate of unknown water flowing into a sewer pipe connected to a manhole provided with a manhole pump.

分流式下水道では、雨水と汚水を同一の合流管で処理するのではなく、雨水を河川等に放流する雨水管渠と汚水を処理する汚水管渠を構築して雨水と汚水を別々に処理している。したがって、汚水管渠系は基本的には汚水のみを処理できるように設計されているので、例えば損傷している汚水ますから雨水が汚水管内に流入したり、クラックが生じている汚水管から地下水が汚水管内に流入すると、汚水管内の流量が増加し、下水処理場の負荷を増大させたり、場合によっては処理能力を超えた下水が下水処理場に流れ込んで処理場が機能不全になるといった事態も生じ得る。 In the split sewer system, rainwater and wastewater are not treated by the same confluence pipe, but a rainwater drainage pipe that discharges rainwater to a river and a wastewater drainage pipe that treats wastewater are constructed to treat rainwater and wastewater separately. There is. Therefore, since the sewer pipe system is basically designed to treat only wastewater, for example, rainwater may flow into the sewer pipe due to damaged sewer pipes, or cracks may occur in the sewer pipe. When the wastewater flows into the wastewater pipe, the flow rate inside the wastewater pipe increases, increasing the load on the sewage treatment plant, and in some cases, sewage that exceeds the treatment capacity flows into the sewage treatment plant and the treatment plant malfunctions. Can also occur.

したがって、雨水や地下水といった不明水の流入の有無を確認し、流入がある場合には流入個所を特定して必要な補修等を行うこととなるが、不明水の流入の有無及びその程度の把握は例えば特許文献1に記載されたような流量計をマンホールのインバートに設置して行われている。 Therefore, it is necessary to confirm whether there is inflow of unknown water such as rainwater or groundwater, and if there is an inflow, identify the inflow location and make necessary repairs. Is performed by installing a flow meter as described in Patent Document 1 in an invert of a manhole.

登録実用新案第3061715号公報Registered utility model No. 3061715

特許文献1に記載されたようなフリューム式流量計を用いる場合には超音波水位センサによって水位を計測することにより流量を算出しているが、フリューム式流量計は価格が高く、しかも流量計測個所の管径に合った寸法のフリュームを大量に所持しておく必要があるため、機材の管理が困難である。したがって、不明水調査のように多くの調査個所での流量調査が必要になる場合には、少数の流量計を順番に調査個所に設置しながら流量調査を行うので調査期間が長くなってしまう。 When the flume type flow meter as described in Patent Document 1 is used, the flow rate is calculated by measuring the water level with an ultrasonic water level sensor, but the flume type flow meter is expensive and the flow rate measurement point It is difficult to manage the equipment because it is necessary to have a large amount of flumes of the size that matches the pipe diameter of Therefore, when it is necessary to conduct flow rate surveys at a large number of survey points, such as unknown water surveys, the flow rate survey is carried out while a small number of flow meters are installed in sequence at the survey points, which increases the survey period.

そこで本発明は、下水管渠に流れ込む不明水量を簡単な装置を用いて推定できる不明水推定方法の提供を目的とする。 Therefore, an object of the present invention is to provide an unknown water estimation method capable of estimating the amount of unknown water flowing into a sewer pipe using a simple device.

この目的を達成するための本発明の不明水推定方法は、下水管渠に流入している不明水量を推定する不明水推定方法であって、前記下水管渠に設けられているポンプ施設のマンホールに設けられたマンホールポンプに供給される駆動電流を検出し、検出した前記駆動電流に基づき前記マンホールポンプの稼働時間帯を特定して記録し、記録した前記稼働時間帯に基づいて所定時間帯の前記マンホールに流れ込む下水流量を決定し、決定した前記下水流量に基づき前記不明水量を推定するものである。駆動電流の供給によりマンホールポンプは稼動する。マンホールポンプの稼動時間帯と稼働時間帯との間、すなわちマンホールポンプの停止中にマンホール内に1回のポンプアップ水量に相当する下水が流れ込む。したがって、1回のポンプアップ水量をマンホールポンプの停止時間で除して停止時間中の下水量を算出することができ、算出した下水量から不明水量を割り出すことが可能となる。すなわち、下水流量はマンホールポンプの稼働時間帯と稼働時間帯との間の時間とマンホールポンプの1回のポンプアップ水量とに基づいて決定することができる。 The unknown water estimation method of the present invention for achieving this object is an unknown water estimation method for estimating the amount of unknown water flowing into a sewer pipe, and is a manhole of a pump facility provided in the sewer pipe. Detecting the drive current supplied to the manhole pump provided in the, and recording by specifying the operating time zone of the manhole pump based on the detected drive current, based on the recorded operating time zone of the predetermined time zone The sewage flow rate flowing into the manhole is determined, and the unknown water amount is estimated based on the determined sewage flow rate. The manhole pump operates by supplying the driving current. Between the operating hours of the manhole pump, that is, while the manhole pump is stopped, sewage corresponding to one pump-up water amount flows into the manhole. Therefore, it is possible to calculate the sewage amount during the stop time by dividing the pump-up water amount for one time by the stop time of the manhole pump, and it is possible to determine the unknown water amount from the calculated sewage amount. That is, the sewage flow rate can be determined based on the time between operating hours of the manhole pump and the amount of water pumped up by the manhole pump once.

マンホールポンプに供給される駆動電流の検出は、ポンプ施設に設けられた制御盤内の、マンホールポンプに駆動電流を供給するためのケーブル又はコードにクランプ式交流電流センサを接続することにより行なうことができる。クランプ式交流電流センサは、例えば、駆動電源の周りに発生する磁界をクランプ部分で拾うことにより電流を検出するものである。 The drive current supplied to the manhole pump can be detected by connecting the clamp type AC current sensor to the cable or cord for supplying the drive current to the manhole pump in the control panel installed in the pump facility. it can. The clamp type AC current sensor detects a current by, for example, picking up a magnetic field generated around a driving power supply at a clamp portion.

本発明の不明水推定方法はマンホールポンプの駆動電流による交流電流センサ又はクランプ電流計を用いて実施することができる。 The unknown water estimation method of the present invention can be carried out by using an AC current sensor or a clamp ammeter based on a driving current of a manhole pump.

不明水の調査把握から対策に至るまでの処理手順を説明する図である。It is a figure explaining a processing procedure from investigation grasp of unknown water to measures. ポンプ施設を示す図である。It is a figure which shows a pump facility. クランプ式交流電流センサを制御装置のケーブルに取り付けた状態を示す図である。It is a figure which shows the state which attached the clamp type alternating current sensor to the cable of the control apparatus. 晴天日のクランプ式交流電流センサの検出結果を示すグラフである。It is a graph which shows the detection result of the clamp type alternating current sensor on a sunny day. 別の晴天日のクランプ式交流電流センサの検出結果を示すグラフである。It is a graph which shows the detection result of the clamp type alternating current sensor of another fine day. 雨天日のクランプ式交流電流センサの検出結果を示すグラフである。It is a graph which shows the detection result of the clamp type alternating current sensor on a rainy day.

まず、図1を参照して雨天時浸入水や常時浸入水(地下水や海水など)といった不明水の調査把握から対策に至るまでの処理手順を説明する。 First, with reference to FIG. 1, a processing procedure from investigation and grasp of unknown water such as rainwater infiltration water or constant infiltration water (groundwater, seawater, etc.) to countermeasures will be described.

不明水の調査にあたっては最初に過去の下水管渠の維持管理履歴を調査(予備調査)して数百ヘクタールの調査実施個所(特定の大ブロック)を選定する(S1)。次に、雨天時や晴天時の下水流量を計測して不明水量を調査し、調査対象の20乃至30ヘクタール程度の中ブロックを絞り込み(S2)、さらに雨天時や晴天時の下水流量を計測して不明水量を調査し、モデル地区としての2乃至5ヘクタール程度の小ブロックを絞り込むが(S3)、特にS2で行われる不明水量の調査は概略的なものであってもよく、図3に示すようなマンホールポンプへの駆動電流の供給時間帯を検出するクランプ式交流電流センサを用いて行うことが可能である。そして、小ブロックを絞り込んだら、下水管内を走行するテレビカメラ車などを用いて損傷個所等を確認し、損傷個所等の程度に基づき補修優先順位を求めて補修個所を算出する(S4)。補修個所が算出されたら補修工事を実施し(S5)、S3と同一の個所で不明水量の調査を再度実施して改善効果を確認する(S6)。これらの調査結果及び改善効果は下水管の維持管理データとして蓄積され(S7)、例えば同じような状況の下水管渠での補修個所の算出に利用される(S8)。 In the investigation of unknown water, first, the history of maintenance and management of the sewer pipe in the past is investigated (preliminary investigation), and a survey area (specific large block) of several hundred hectares is selected (S1). Next, the sewage flow rate in rainy or sunny weather is measured to investigate the unknown water volume, and the middle block of about 20 to 30 hectares to be surveyed is narrowed down (S2), and the sewage flow rate in rainy or clear weather is measured. The amount of unknown water is investigated by narrowing down small blocks of about 2 to 5 hectares as a model area (S3), but the survey of unknown water amount performed in S2 may be a rough one, as shown in FIG. It is possible to use such a clamp type AC current sensor that detects the time period of supplying the drive current to the manhole pump. Then, after narrowing down the small blocks, a damaged portion or the like is confirmed using a TV camera car or the like running in the sewer pipe, and a repair priority is calculated based on the degree of the damaged portion or the like to calculate the repaired portion (S4). When the repaired part is calculated, repair work is carried out (S5), and the investigation of the unknown water amount is carried out again at the same part as S3 to confirm the improvement effect (S6). These survey results and improvement effects are stored as sewer maintenance data (S7) and are used, for example, to calculate repair points in a sewer pipe in the same situation (S8).

次に、図2を参照して本発明に係る不明水推定方法の実施に利用されるポンプ施設の構成を説明する。 Next, with reference to FIG. 2, the configuration of the pump facility used for implementing the unknown water estimation method according to the present invention will be described.

ポンプ施設1は、地下構造物として、下水管3から流入する下水Aを貯留するマンホール5と、このマンホール5内に設けられた、貯留している下水Aを吐出管7に吐出するための2基のマンホールポンプ9と、吐出管7に吐出された下水Aを圧送する圧送管11と、下水Aの水位の上昇を検出してマンホールポンプ9の作動を開始させる水位上昇検出センサ13と、下水Aの水位の下降を検出してマンホールポンプ9の作動を停止させる水位下降検出センサ15と、を備え、地上設置物として、水位上昇検出センサ13及び水位下降検出センサ15からの検出信号を受け取ってマンホールポンプ9に電力を供給したりマンホールポンプ9への電力の供給を停止したりする制御装置17(制御盤)を備えている。制御装置17とそれぞれのマンホールポンプ9との間には電力ラインを有するケーブル19が接続されている。 The pump facility 1 is, as an underground structure, a manhole 5 that stores the sewage A that flows in from the sewage pipe 3, and a 2 provided in the manhole 5 for discharging the stored sewage A to the discharge pipe 7. The base manhole pump 9, a pumping pipe 11 for pumping the sewage A discharged to the discharge pipe 7, a water level rise detection sensor 13 for detecting the rise of the water level of the sewage A and starting the operation of the manhole pump 9, and a sewage A water level lowering detection sensor 15 for detecting the lowering of the water level of A and stopping the operation of the manhole pump 9, and receiving detection signals from the water level rising detection sensor 13 and the water level lowering detection sensor 15 as a ground installation. A control device 17 (control panel) for supplying power to the manhole pump 9 and stopping power supply to the manhole pump 9 is provided. A cable 19 having an electric power line is connected between the control device 17 and each manhole pump 9.

図3を参照してマンホールポンプ9の稼動状態の検出方法を説明する。 A method of detecting the operating state of the manhole pump 9 will be described with reference to FIG.

不明水推定方法では、まず、マンホールポンプ9の稼動状態を検出する。マンホールポンプ9の稼動状態はケーブル19にクランプ式交流電流センサ21を取り付けてマンホールポンプ9が稼動しているときに流れている駆動交流電流を検出することにより行う。クランプ式交流電流センサ21はそれぞれのケーブル19に取り付けられ、それぞれのクランプ式交流電流センサ21はデータ処理装置23に接続されている。データ処理装置23ではそれぞれのクランプ式交流電流センサ21が検出した交流電流値をディスプレイ25に表示するとともに検出時間情報とともに記録する。なお、1回のポンプアップ時(下水Aの水位が水位上昇検出センサ13位置から水位下降検出センサ15位置まで下がる間)に一対のマンホールポンプ9は交互に作動を繰り返す。 In the unknown water estimation method, first, the operating state of the manhole pump 9 is detected. The operation state of the manhole pump 9 is performed by attaching a clamp type AC current sensor 21 to the cable 19 and detecting the driving AC current flowing when the manhole pump 9 is operating. The clamp type alternating current sensor 21 is attached to each cable 19, and each clamp type alternating current sensor 21 is connected to the data processing device 23. In the data processing device 23, the AC current value detected by each clamp type AC current sensor 21 is displayed on the display 25 and recorded together with the detection time information. It should be noted that at the time of one pump up (while the water level of the sewage A falls from the water level rise detection sensor 13 position to the water level fall detection sensor 15 position), the pair of manhole pumps 9 alternately repeat the operation.

晴天日のクランプ式交流電流センサ21の検出結果例を示すグラフである図4、別の晴天日のクランプ式交流電流センサ21の検出結果例を示すグラフである図5、雨天時のクランプ式交流電流センサ21の検出結果例を示すグラフである図6を参照してデータ処理装置23の記録結果から不明水量を推定する方法を説明する。図4乃至図6では駆動電流値を検出している間の時間に1回のポンプアップ量に相当する下水がマンホール5内に流入したことになる。 FIG. 4 is a graph showing an example of the detection result of the clamp type AC current sensor 21 on a sunny day, FIG. 4 is a graph showing an example of the detection result of the clamp type AC current sensor 21 on another sunny day, and a clamp type AC in the rain. A method of estimating the unknown water amount from the recording result of the data processing device 23 will be described with reference to FIG. 6, which is a graph showing an example of the detection result of the current sensor 21. 4 to 6, it means that the sewage corresponding to the pump-up amount once flows into the manhole 5 during the time during which the drive current value is detected.

図4ではマンホールポンプ9が午前0時以降午前6時まで作動していない。午前0時あたりではまだ相当の生活排水があるものと考えられるので、午前6時までの間にマンホール5内に下水管3から流れ込んだ下水Aには不明水(具体的には浸入地下水)とともに生活排水も含まれていると考えられる。図5ではマンホールポンプ9が午前1時に1回目の作動を行い、以後は午前5時すぎの2回目の作動まで作動していない。午前1時から午前5時までの間は生活排水がほとんど排出されていないと考えられるので、午前1時から午前5時過ぎまで下水管3からマンホール5内に流れ込んだ下水Aは不明水(具体的には例えば常時浸入水のうちの浸入地下水)だけと考えられる。したがって、不明水量は1回のポンプアップ量を1回目の作動と2回目の作動との間の時間で除して求めることができる。図6では午前11時過ぎから午後3時過ぎまでマンホールポンプ9の停止時間はほぼ30分となっている。これは午前11時過ぎからの降雨による下水管3への雨水の浸入が影響していると考えられる。午前11時から午後3時までの晴天時のマンホールポンプ9の停止時間の平均が例えば2時間であるとすれば、1回のポンプアップ量を30分で除した値から一回のポンプアップ量を120分で除した値を減じた量が不明水量(具体的には雨天時浸入水又は浸入雨水量)だと考えられる。 In FIG. 4, the manhole pump 9 is not operating from midnight to 6 am. Since it is considered that there is still considerable domestic wastewater around midnight, the sewage A that has flowed into the manhole 5 from the sewer pipe 3 by 6 am is accompanied by unknown water (specifically, infiltration groundwater). It is considered that domestic wastewater is also included. In FIG. 5, the manhole pump 9 operates at 1:00 am for the first time and thereafter does not operate until the second operation after 5:00 am. Since it is considered that almost no domestic wastewater is discharged from 1 am to 5 am, sewage A flowing from sewer pipe 3 into manhole 5 from 1 am to after 5 am is unknown water (specifically For example, it is considered to be only the infiltrated groundwater of the constantly infiltrated water). Therefore, the unknown water amount can be obtained by dividing the pump-up amount of one time by the time between the first operation and the second operation. In FIG. 6, the stop time of the manhole pump 9 is almost 30 minutes from 11:00 am to 3:00 pm. It is considered that this is affected by the infiltration of rainwater into the sewer pipe 3 due to rainfall after 11:00 am. Assuming that the average stop time of the manhole pump 9 during fine weather from 11:00 am to 3:00 pm is, for example, 2 hours, one pump up amount is divided by a value obtained by dividing one pump up amount by 30 minutes. It is considered that the amount obtained by subtracting the value obtained by dividing the value by 120 minutes is the unknown water amount (specifically, the amount of infiltrated water in rainy weather or the amount of infiltrated rainwater).

1 ポンプ施設
3 下水管
5 マンホール
9 マンホールポンプ
17 制御装置
19 ケーブル
21 クランプ式交流電流センサ
1 Pump facility 3 Sewer pipe 5 Manhole 9 Manhole pump 17 Control device 19 Cable 21 Clamp type AC current sensor

Claims (3)

下水管渠に流入している不明水量を推定する不明水推定方法であって、
前記下水管渠に設けられているポンプ施設のマンホールに設けられたマンホールポンプに供給される駆動電流を検出し、
検出した前記駆動電流に基づき前記マンホールポンプの稼働時間帯を特定して記録し、
記録した前記マンホールポンプの前記稼働時間帯に基づいて所定時間帯の前記マンホールに流れ込む下水流量を決定し、
決定した前記下水流量に基づき前記不明水量を推定するものであり、
前記マンホールポンプに供給される前記駆動電流の検出は、前記ポンプ施設に設けられた制御盤内の、前記マンホールポンプに前記駆動電流を供給するためのケーブル又はコードにクランプ式交流電流センサを接続することにより行われ、
前記下水流量は、前記マンホールポンプの前記稼働時間帯の間の時間と前記マンホールポンプの1回のポンプアップ水量とに基づいて決定される、ことを特徴とする不明水推定方法。
An unknown water estimation method for estimating the amount of unknown water flowing into a sewer,
Detecting the drive current supplied to the manhole pump provided in the manhole of the pump facility provided in the sewer pipe,
Based on the detected drive current, the operating time of the manhole pump is specified and recorded,
Determine the sewage flow rate flowing into the manhole in a predetermined time zone based on the operating time zone of the recorded manhole pump,
Is to estimate the unknown water amount based on the determined sewage flow rate ,
For detecting the drive current supplied to the manhole pump, a clamp type AC current sensor is connected to a cable or a cord for supplying the drive current to the manhole pump in a control panel provided in the pump facility. Done by
The unknown water estimation method , wherein the sewage flow rate is determined based on a time between the operating hours of the manhole pump and a single pump-up water amount of the manhole pump .
決定される前記マンホールに流れ込む前記下水流量は、生活排水が排出されない時間帯のものである、ことを特徴とする請求項1記載の不明水推定方法。The unknown water estimation method according to claim 1, wherein the determined sewage flow rate flowing into the manhole is during a period in which domestic wastewater is not discharged. 決定される前記マンホールに流れ込む前記下水流量は、同じ時間帯の降雨時と晴天時のものであり、The sewage flow rate flowing into the manhole to be determined is during rain and fine weather in the same time period,
前記不明水量は、前記降雨時の下水流量から前記晴天時の下水流量を減じることにより推定される、ことを特徴とする請求項1記載の不明水推定方法。The unknown water estimation method according to claim 1, wherein the unknown water amount is estimated by subtracting the sewage flow rate in the fine weather from the sewage flow rate in the rainfall.
JP2016144970A 2016-07-22 2016-07-22 Unknown water estimation method Active JP6742018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016144970A JP6742018B2 (en) 2016-07-22 2016-07-22 Unknown water estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016144970A JP6742018B2 (en) 2016-07-22 2016-07-22 Unknown water estimation method

Publications (2)

Publication Number Publication Date
JP2018012094A JP2018012094A (en) 2018-01-25
JP6742018B2 true JP6742018B2 (en) 2020-08-19

Family

ID=61019792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016144970A Active JP6742018B2 (en) 2016-07-22 2016-07-22 Unknown water estimation method

Country Status (1)

Country Link
JP (1) JP6742018B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7214699B2 (en) * 2020-10-15 2023-01-30 管友メンテナンス株式会社 Drainage system and pipeline repair method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153462A (en) * 1996-11-21 1998-06-09 Ebara Corp Manhole inflow amount detecting method, and device utilizing the method
US6941785B2 (en) * 2003-05-13 2005-09-13 Ut-Battelle, Llc Electric fuel pump condition monitor system using electrical signature analysis
JP5273531B2 (en) * 2008-08-25 2013-08-28 国立大学法人横浜国立大学 Inflow position estimation device, inflow position estimation method, program
JP5574769B2 (en) * 2009-09-10 2014-08-20 株式会社東芝 Unknown water monitoring device and unknown water monitoring method
JP2013174138A (en) * 2012-02-23 2013-09-05 Tokyo Metropolitan Sewerage Service Corp Well water usage measuring apparatus
JP6290072B2 (en) * 2014-12-02 2018-03-07 株式会社東芝 Unknown water generation area estimation device, unknown water generation area estimation method, and computer program

Also Published As

Publication number Publication date
JP2018012094A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
CN112119220B (en) Monitoring module and method for identifying operating situations in a wastewater pumping station
CN108362356A (en) The method and system of analysis conduit rain dirt hybrid junction distribution
JP5657583B2 (en) Sewage treatment system
CN208125228U (en) The system of analysis conduit rain dirt hybrid junction distribution
JP2015105649A (en) Rainwater pump control device
KR101933091B1 (en) Tunnel system for controlling the inflow and control method thereof
JP2010196369A (en) Rainwater drainage control device
JP2006291474A (en) Control system of ground water, and control method of ground water
JP6742018B2 (en) Unknown water estimation method
US20150027222A1 (en) Micromonitoring apparatus and method
JP6806357B2 (en) Sewage measurement system
JP4427509B2 (en) Rainwater storage facility operation system
CN112856252A (en) Drainage pipeline water leakage detection method
CN108222213B (en) Method and system for analyzing river-connecting distribution of forced drainage system
KR101659310B1 (en) System and method for managing drain pipes
US20230176563A1 (en) Method for monitoring and controlling the operation of a pump station
JP4756092B2 (en) Temperature recording method for identification of abnormal water intrusion locations in sewer pipes
CN104296839B (en) The test equipment and method of testing of dehumidifier level alarm for water
KR101449989B1 (en) Detection apparatus for leakage of tap water pipe and processing method for detection leakage sign of tap water pipe
KR20160038597A (en) Inspecting, measuring and preventing method for possible risk situation
KR101283531B1 (en) system for detecting water leak
Kallesøe et al. Supervision of pumps and their operating conditions in sewage pumping stations
CN109853719B (en) Underground sewage pipeline blockage detection device and using method thereof
US11873940B2 (en) Cured in place pipe system having a sensor
Cichoński et al. Efforts to reduce water losses in large water companies

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200721

R150 Certificate of patent or registration of utility model

Ref document number: 6742018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250