JP6741660B2 - Method for producing thermoplastic elastomer foam - Google Patents

Method for producing thermoplastic elastomer foam Download PDF

Info

Publication number
JP6741660B2
JP6741660B2 JP2017523176A JP2017523176A JP6741660B2 JP 6741660 B2 JP6741660 B2 JP 6741660B2 JP 2017523176 A JP2017523176 A JP 2017523176A JP 2017523176 A JP2017523176 A JP 2017523176A JP 6741660 B2 JP6741660 B2 JP 6741660B2
Authority
JP
Japan
Prior art keywords
thermoplastic elastomer
resin
weight
foam
masterbatch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017523176A
Other languages
Japanese (ja)
Other versions
JPWO2016199553A1 (en
Inventor
千秋 片野
千秋 片野
未秋 柴谷
未秋 柴谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2016199553A1 publication Critical patent/JPWO2016199553A1/en
Application granted granted Critical
Publication of JP6741660B2 publication Critical patent/JP6741660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C08L57/02Copolymers of mineral oil hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は、軽量で衝撃吸収性に優れる熱可塑性エラストマー発泡体の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing a thermoplastic elastomer foam which is lightweight and has excellent shock absorption.

熱可塑性樹脂からなる発泡体は、成形加工性に優れ、柔軟性、緩衝性などの特性を有しており、種々の用途で広く用いられている。 BACKGROUND ART A foam made of a thermoplastic resin is excellent in molding processability, has properties such as flexibility and cushioning properties, and is widely used in various applications.

このような発泡体としては、例えば、スチレン・共役ジエンブロック共重合体の水素添加物を発泡させて成形したもの(特許文献1)や、架橋された熱可塑性エラストマーを熱膨張性マイクロバルーンで発泡させたもの(特許文献2)などがある。しかし、特許文献1や特許文献2の方法で得られる発泡体は、硬く、衝撃吸収性に劣る。 As such a foam, for example, a product obtained by foaming a hydrogenated product of a styrene/conjugated diene block copolymer and molding (Patent Document 1) or a crosslinked thermoplastic elastomer with a thermally expandable microballoon. There is a device (Patent Document 2) and the like. However, the foams obtained by the methods of Patent Document 1 and Patent Document 2 are hard and inferior in shock absorption.

衝撃吸収性に優れる発泡体を提供する目的では、特定の共役ジエン系共重合体またはその水添物を用いた発泡体組成物(特許文献3)が開発されている。しかし、特許文献3に開示される発泡体組成物は、加硫することでようやく発泡体が得られるものであり、形状の自由度が乏しい上に生産性が低く、更には加硫剤由来の臭気を有しており、靴底など使用箇所が限定されるものであった。 For the purpose of providing a foam having excellent impact absorption properties, a foam composition (Patent Document 3) using a specific conjugated diene-based copolymer or a hydrogenated product thereof has been developed. However, the foam composition disclosed in Patent Document 3 is one in which a foam can be finally obtained by vulcanization, has a low degree of freedom in shape and has low productivity, and further is derived from a vulcanizing agent. It had an odor and was limited in places of use such as shoe soles.

同じく衝撃吸収性に優れる発泡体を提供する目的で、特定の構造を有する熱可塑性エラストマーと熱膨張性マイクロカプセルとを含有する発泡性組物を射出発泡して得られる熱可塑性エラストマー発泡体およびその製造方法(特許文献4)が開発されている。しかしながら、特許文献4に開示された製造方法においては、原料に用いられている粘着付与樹脂のペレットが脆いために、粘着付与樹脂の性状がペレットおよび粉砕した粉となり安定せず、成形時に粘着付与樹脂が偏在する可能性がある。さらには、配合時に粘着付与樹脂のペレットの分級作業が必要になるため、製造工程において手間が生じる上に、分級作業を行っても配合時に粘着付与樹脂のペレット割れが発生し、成形した発泡体における粘着付与樹脂の偏在を完全には解消できない。 Similarly, for the purpose of providing a foam having excellent impact absorption, a thermoplastic elastomer foam obtained by injection-foaming a foamable composition containing a thermoplastic elastomer having a specific structure and heat-expandable microcapsules, and the same A manufacturing method (Patent Document 4) has been developed. However, in the production method disclosed in Patent Document 4, since the pellets of the tackifying resin used as the raw material are brittle, the properties of the tackifying resin are not stable pelletized and crushed powder, and the tackifying resin is not provided during molding. Resin may be unevenly distributed. Furthermore, since it is necessary to classify the pellets of the tackifying resin at the time of compounding, in addition to the labor in the manufacturing process, the cracking of the pellets of the tackifying resin occurs at the time of compounding even if the classifying operation is performed. Uneven distribution of the tackifying resin cannot be completely eliminated.

特開平6−218741号公報JP-A-6-218741 特開平11−343362号公報JP, 11-343362, A 特開平5−345833号公報JP-A-5-345833 特開2011−168775号公報JP, 2011-168775, A

本発明は、軽量かつ優れた衝撃吸収性を有する熱可塑性エラストマー発泡体を、安定的かつ容易に得ることを目的とする。 It is an object of the present invention to obtain a thermoplastic elastomer foam which is lightweight and has excellent impact absorption, stably and easily.

本発明者らは、上記課題を解決するため鋭意検討した結果、熱可塑性エラストマー発泡体を成形する際に、取り扱い性に優れた熱可塑性エラストマーと粘着付与樹脂とを含むマスターバッチを製造し、それを用いて必要な配合にて成形を実施するという製造方法によって、粘着付与樹脂の偏在の解消および分級作業工程を省略し、熱可塑性エラストマー発泡体を安定的かつ容易に得ることができることを見出し、本発明を完成するに至った。 The present inventors have conducted intensive studies to solve the above problems, when molding a thermoplastic elastomer foam, to produce a masterbatch containing a thermoplastic elastomer and tackifying resin excellent in handleability, it By a manufacturing method in which molding is carried out with a required composition using, elimination of uneven distribution of a tackifying resin and a classification work step are omitted, and it is found that a thermoplastic elastomer foam can be stably and easily obtained, The present invention has been completed.

すなわち、本発明は、以下の構成を有するものである。
1)イソブチレンを構成単量体とする重合体ブロックと、芳香族ビニル系単量体を構成単量体とする重合体ブロックとを含むブロック共重合体からなる熱可塑性エラストマー(A)35〜55重量%、および、粘着付与樹脂(B)45〜65重量%を含有する粘着付与樹脂のマスターバッチを作製する工程と、該マスターバッチ100重量部に対して、熱可塑性エラストマー(A)200〜400重量部、および、発泡剤(C)2〜40重量部を混合して発泡性組成物を作製する工程と、該発泡性組成物を成形する工程を含むことを特徴とする、熱可塑性エラストマー発泡体の製造方法。
That is, the present invention has the following configurations.
1) A thermoplastic elastomer (A) 35 to 55 composed of a block copolymer containing a polymer block containing isobutylene as a constituent monomer and a polymer block containing an aromatic vinyl monomer as a constituent monomer. %, and a step of preparing a masterbatch of tackifying resin containing 45 to 65% by weight of the tackifying resin (B), and 200 to 400 of the thermoplastic elastomer (A) with respect to 100 parts by weight of the masterbatch. A thermoplastic elastomer foam, comprising a step of preparing a foamable composition by mixing 2 parts by weight of a foaming agent (C) and 2 parts by weight of the foaming agent and a step of molding the foamable composition. Body manufacturing method.

2)芳香族ビニル系単量体がスチレン、p−メチルスチレン、α−メチルスチレンおよびインデンからなる群から選択される少なくとも1種であることを特徴とする、1)に記載の熱可塑性エラストマー発泡体の製造方法。 2) The thermoplastic elastomer foam according to 1), wherein the aromatic vinyl monomer is at least one selected from the group consisting of styrene, p-methylstyrene, α-methylstyrene and indene. Body manufacturing method.

3)熱可塑性エラストマー(A)が、スチレン−イソブチレン−スチレンブロック共重合体であることを特徴とする、1)または2)に記載の熱可塑性エラストマー発泡体の製造方法。 3) The method for producing a thermoplastic elastomer foam according to 1) or 2), wherein the thermoplastic elastomer (A) is a styrene-isobutylene-styrene block copolymer.

4)粘着付与樹脂(B)が、脂肪族系石油樹脂、脂環族系石油樹脂、脂環族系石油樹脂の水素化物、芳香族系石油樹脂の水素化物、ポリテルペン樹脂、ジシクロペンタジエン系石油樹脂、および、ロジンからなる群から選択される少なくとも1種であることを特徴とする、1)〜3)のいずれかに記載の熱可塑性エラストマー発泡体の製造方法。 4) The tackifying resin (B) is an aliphatic petroleum resin, an alicyclic petroleum resin, an alicyclic petroleum resin hydride, an aromatic petroleum resin hydride, a polyterpene resin, or a dicyclopentadiene petroleum oil. The method for producing a thermoplastic elastomer foam according to any one of 1) to 3), which is at least one selected from the group consisting of a resin and a rosin.

5)発泡剤(C)が、ガスバリア性を有する熱可塑性樹脂からなる外殻と、外殻に内包される液体膨張剤とからなる熱膨張性マイクロカプセルであり、該液体膨張剤が該熱可塑性樹脂の軟化点以下の温度でガス状となるものであることを特徴とする、1)〜4)のいずれかに記載の熱可塑性エラストマー発泡体の製造方法。 5) The foaming agent (C) is a heat-expandable microcapsule including an outer shell made of a thermoplastic resin having a gas barrier property and a liquid expander encapsulated in the outer shell, and the liquid expander has the thermoplasticity. The method for producing a thermoplastic elastomer foam according to any one of 1) to 4), which is a gas at a temperature below the softening point of the resin.

6)1)〜5)のいずれかの製造方法により得られることを特徴とする熱可塑性エラストマー発泡体。 6) A thermoplastic elastomer foam obtained by the method according to any one of 1) to 5).

7)6)に記載の熱可塑性エラストマー発泡体からなることを特徴とする身体保護用のプロテクター。 7) A protector for body protection comprising the thermoplastic elastomer foam according to 6).

8)6)に記載の熱可塑性エラストマー発泡体からなることを特徴とする衝撃吸収体。 8) A shock absorber comprising the thermoplastic elastomer foam according to 6).

本発明によれば、軽量かつ優れた衝撃吸収性を有する熱可塑性エラストマー発泡体を、安定的にかつ容易に得ることができる。 According to the present invention, it is possible to stably and easily obtain a lightweight thermoplastic elastomer foam having excellent shock absorption.

以下、本発明について詳しく説明する。
本発明は、イソブチレンを構成単量体とする重合体ブロックと、芳香族ビニル系単量体を構成単量体とする重合体ブロックとを含むブロック共重合体からなる熱可塑性エラストマー(A)35〜55重量%、および、粘着付与樹脂(B)45〜65重量%を含有する粘着付与樹脂のマスターバッチを作製する工程と、該マスターバッチ100重量部に対して、熱可塑性エラストマー(A)200〜400重量部、および、発泡剤(C)2〜40重量部を混合して発泡性組成物を作製する工程と、該発泡性組成物を成形する工程を含むことを特徴とする、熱可塑性エラストマー発泡体の製造方法に関する。
Hereinafter, the present invention will be described in detail.
The present invention relates to a thermoplastic elastomer (A) 35 composed of a block copolymer containing a polymer block containing isobutylene as a constituent monomer and a polymer block containing an aromatic vinyl monomer as a constituent monomer. To 55 wt% and a tackifying resin (B) 45 to 65 wt%, a step of preparing a masterbatch of the tackifying resin, and 100 parts by weight of the masterbatch, the thermoplastic elastomer (A) 200. To 400 parts by weight and 2 to 40 parts by weight of a foaming agent (C) to prepare a foamable composition, and a step of molding the foamable composition, a thermoplastic resin. The present invention relates to a method for manufacturing an elastomer foam.

<熱可塑性エラストマー(A)>
熱可塑性エラストマー(A)としては、イソブチレンを構成単量体とする重合体ブロックと、芳香族ビニル系単量体を構成単量体とする重合体ブロックとからなるブロック共重合体であれば特に限定されない。
<Thermoplastic elastomer (A)>
The thermoplastic elastomer (A) is particularly preferably a block copolymer composed of a polymer block having isobutylene as a constituent monomer and a polymer block having an aromatic vinyl monomer as a constituent monomer. Not limited.

イソブチレンを構成単量体とする重合体ブロックの製造方法は特に限定されないが、例えば、開始剤の存在下、イソブチレンを主成分とする単量体成分をカチオン重合させることにより製造することができる。 The method for producing a polymer block containing isobutylene as a constituent monomer is not particularly limited, but for example, it can be produced by cationically polymerizing a monomer component containing isobutylene as a main component in the presence of an initiator.

なお、イソブチレンを構成単量体とする重合体ブロックにおいては、必要に応じて他のビニル系化合物を共重合しても良い。 In the polymer block containing isobutylene as a constituent monomer, another vinyl compound may be copolymerized if necessary.

開始剤としては、特に限定されないが、例えば、下記一般式(1)で表される化合物を用いることができる。下記一般式(1)で表される化合物は、ルイス酸等の存在下、炭素陽イオンを生成し、カチオン重合の開始点になると考えられる。
(CRX) (1)
[式中、Xはハロゲン原子、炭素数1〜6のアルコキシ基または炭素数1〜6のアシロキシ基を示す。R、Rはそれぞれ水素原子または炭素数1〜6の1価の炭化水素基を示し、R、Rは同一であっても異なっていても良い。Rは多価芳香族炭化水素基または多価脂肪族炭化水素基であり、nは1〜6の自然数を示す。]。
The initiator is not particularly limited, but for example, a compound represented by the following general formula (1) can be used. It is considered that the compound represented by the following general formula (1) forms a carbon cation in the presence of a Lewis acid or the like and becomes a starting point of cationic polymerization.
(CR 1 R 2 X) n R 3 (1)
[In the formula, X represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms or an acyloxy group having 1 to 6 carbon atoms. R 1 and R 2 each represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms, and R 1 and R 2 may be the same or different. R 3 is a polyvalent aromatic hydrocarbon group or a polyvalent aliphatic hydrocarbon group, and n is a natural number of 1 to 6. ].

一般式(1)で表される化合物としては、特に限定されないが、例えば、(1−クロル−1−メチルエチル)ベンゼン、1,4−ビス(1−クロル−1−メチルエチル)ベンゼン、1,3−ビス(1−クロル−1−メチルエチル)ベンゼン、1,3,5−トリス(1−クロル−1−メチルエチル)ベンゼン、1,3−ビス(1−クロル−1−メチルエチル)−5−(tert−ブチル)ベンゼン等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。これらの中では、1,4−ビス(1−クロル−1−メチルエチル)ベンゼン、1,3,5−トリス(1−クロル−1−メチルエチル)ベンゼンが好ましい。 The compound represented by the general formula (1) is not particularly limited, but examples thereof include (1-chloro-1-methylethyl)benzene, 1,4-bis(1-chloro-1-methylethyl)benzene, and ,3-bis(1-chloro-1-methylethyl)benzene, 1,3,5-tris(1-chloro-1-methylethyl)benzene, 1,3-bis(1-chloro-1-methylethyl) -5-(tert-butyl)benzene etc. are mentioned. These may be used alone or in combination of two or more. Among these, 1,4-bis(1-chloro-1-methylethyl)benzene and 1,3,5-tris(1-chloro-1-methylethyl)benzene are preferable.

イソブチレンを主成分とする単量体成分の重合においては、さらにルイス酸触媒を共存させることもできる。ルイス酸触媒としては、カチオン重合に使用できるものであれば特に限定されず、TiCl、TiBr、BCl、BF、BF・OEt、SnCl、SbCl、SbF、WCl、TaCl、VCl、FeCl、ZnBr、AlCl、AlBr等の金属ハロゲン化物;EtAlCl、EtAlCl等の有機金属ハロゲン化物等が挙げられる(Etはエチル基を表す)。これらは単独で用いても良いし、2種以上を併用しても良い。これらの中で、触媒としての能力、工業的な入手の容易さの観点からは、TiCl、BCl、SnClが好ましい。In the polymerization of the monomer component containing isobutylene as the main component, a Lewis acid catalyst can be further coexisted. The Lewis acid catalyst is not particularly limited as long as it can be used for cationic polymerization, and TiCl 4 , TiBr 4 , BCl 3 , BF 3 , BF 3 OEt 2 , SnCl 4 , SbCl 5 , SbF 5 , WCl 6 , Examples thereof include metal halides such as TaCl 5 , VCl 5 , FeCl 3 , ZnBr 2 , AlCl 3 and AlBr 3 , and organic metal halides such as Et 2 AlCl and EtAlCl 2 (Et represents an ethyl group). These may be used alone or in combination of two or more. Among these, TiCl 4 , BCl 3 and SnCl 4 are preferable from the viewpoints of catalyst performance and industrial availability.

ルイス酸触媒を使用する場合、その使用量は特に限定されず、使用する単量体の重合特性や重合濃度等を鑑みて設定することができる。通常、一般式(1)で表される化合物に対して0.1〜100モル当量が好ましく、1〜50モル当量がより好ましい。 When a Lewis acid catalyst is used, the amount used is not particularly limited and can be set in consideration of the polymerization characteristics and the polymerization concentration of the monomers used. Usually, 0.1 to 100 molar equivalents are preferable, and 1 to 50 molar equivalents are more preferable, with respect to the compound represented by formula (1).

イソブチレンを主成分とする単量体成分の重合においては、さらに必要に応じて電子供与体成分を共存させることもできる。この電子供与体成分は、カチオン重合に際して、成長炭素カチオンを安定化させる効果があるものと考えられており、電子供与体の添加によって分子量分布の狭い構造が制御された重合体を生成することができる。電子供与体成分としては、特に限定されないが、例えば、ピリジン類、アミン類、アミド類、スルホキシド類、エステル類、金属原子に結合した酸素原子を有する金属化合物等を挙げることができる。これらは単独で用いても良いし、2種以上を併用しても良い。 In the polymerization of the monomer component containing isobutylene as a main component, an electron donor component can be coexistent if necessary. It is considered that this electron donor component has an effect of stabilizing growing carbon cations during cationic polymerization, and addition of an electron donor may form a polymer having a controlled structure with a narrow molecular weight distribution. it can. The electron donor component is not particularly limited, and examples thereof include pyridines, amines, amides, sulfoxides, esters, and metal compounds having an oxygen atom bonded to a metal atom. These may be used alone or in combination of two or more.

イソブチレンを主成分とする単量体成分の重合は、必要に応じて有機溶媒中で行うことができる。有機溶媒としては、カチオン重合を本質的に阻害しなければ特に限定されないが、例えば、塩化メチル、ジクロロメタン、クロロホルム、塩化エチル、ジクロロエタン、n−プロピルクロライド、n−ブチルクロライド、クロロベンゼン等のハロゲン化炭化水素;ベンゼン、トルエン、キシレン、エチルベンゼン、プロピルベンゼン、ブチルベンゼン等のアルキルベンゼン類;エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン等の直鎖式脂肪族炭化水素類;2−メチルプロパン、2−メチルブタン、2,3,3−トリメチルペンタン、2,2,5−トリメチルヘキサン等の分岐式脂肪族炭化水素類;シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の環式脂肪族炭化水素類;石油留分を水添精製したパラフィン油等を挙げることができる。これらの有機溶媒は、ブロック共重合体を構成する単量体の重合特性および生成する重合体の溶解性等のバランスを考慮して、単独で用いても良いし、2種以上を併用しても良い。
有機溶媒の使用量は、特に限定されないが、得られる重合体溶液の粘度や除熱の容易さを考慮して、重合体の濃度が好ましくは1〜50重量%、より好ましくは5〜35重量%となるように決定することができる。
The polymerization of the monomer component containing isobutylene as a main component can be carried out in an organic solvent, if necessary. The organic solvent is not particularly limited as long as it does not substantially inhibit the cationic polymerization, but examples thereof include halogenated carbonization such as methyl chloride, dichloromethane, chloroform, ethyl chloride, dichloroethane, n-propyl chloride, n-butyl chloride and chlorobenzene. Hydrogen; alkylbenzenes such as benzene, toluene, xylene, ethylbenzene, propylbenzene and butylbenzene; linear aliphatic hydrocarbons such as ethane, propane, butane, pentane, hexane, heptane, octane, nonane and decane; 2- Branched aliphatic hydrocarbons such as methylpropane, 2-methylbutane, 2,3,3-trimethylpentane and 2,2,5-trimethylhexane; cycloaliphatic hydrocarbons such as cyclohexane, methylcyclohexane and ethylcyclohexane A paraffin oil obtained by hydrogenating and refining a petroleum fraction can be used. These organic solvents may be used alone or in combination of two or more in consideration of the balance between the polymerization characteristics of the monomers constituting the block copolymer and the solubility of the resulting polymer. Is also good.
The amount of the organic solvent used is not particularly limited, but the concentration of the polymer is preferably 1 to 50% by weight, more preferably 5 to 35% by weight, in consideration of the viscosity of the obtained polymer solution and the ease of heat removal. % Can be determined.

イソブチレンを主成分とする単量体成分の重合は、各成分を冷却下、例えば−100℃以上0℃未満の温度で混合して行うことが好ましい。エネルギーコストと重合の安定性を釣り合わせる観点からは、−80℃〜−30℃がより好ましい。 The polymerization of the monomer component containing isobutylene as a main component is preferably carried out by mixing the components under cooling, for example, at a temperature of -100°C or higher and lower than 0°C. From the viewpoint of balancing the energy cost and the stability of polymerization, −80° C. to −30° C. is more preferable.

芳香族ビニル系単量体を構成単量体とする重合体ブロックの製造方法は特に限定されないが、例えば、芳香族ビニル系単量体を主成分として重合することにより製造することができる。芳香族ビニル系単量体としては、特に限定されないが、例えば、スチレン、o−、m−またはp−メチルスチレン、α−メチルスチレン、β−メチルスチレン、2,6−ジメチルスチレン、2,4−ジメチルスチレン、α−メチル−o−メチルスチレン、α−メチル−m−メチルスチレン、α−メチル−p−メチルスチレン、β−メチル−o−メチルスチレン、β−メチル−m−メチルスチレン、β−メチル−p−メチルスチレン、2,4,6−トリメチルスチレン、α−メチル−2,6−ジメチルスチレン、α−メチル−2,4−ジメチルスチレン、β−メチル−2,6−ジメチルスチレン、β−メチル−2,4−ジメチルスチレン、o−、m−またはp−クロロスチレン、2,6−ジクロロスチレン、2,4−ジクロロスチレン、α−クロロ−o−クロロスチレン、α−クロロ−m−クロロスチレン、α−クロロ−p−クロロスチレン、β−クロロ−o−クロロスチレン、β−クロロ−m−クロロスチレン、β−クロロ−p−クロロスチレン、2,4,6−トリクロロスチレン、α−クロロ−2,6−ジクロロスチレン、α−クロロ−2,4−ジクロロスチレン、β−クロロ−2,6−ジクロロスチレン、β−クロロ−2,4−ジクロロスチレン、o−、m−またはp−t−ブチルスチレン、o−、m−またはp−メトキシスチレン、o−、m−またはp−クロロメチルスチレン、o−、m−またはp−ブロモメチルスチレン、シリル基で置換されたスチレン誘導体、インデン、ビニルナフタレン等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。これらの中では、スチレン、p−メチルスチレン、α−メチルスチレンおよびインデンからなる群から選択される少なくとも1種が、その入手し易さおよび物性バランスの観点から好ましい。 The method for producing a polymer block containing an aromatic vinyl-based monomer as a constituent monomer is not particularly limited, but for example, it can be produced by polymerizing an aromatic vinyl-based monomer as a main component. The aromatic vinyl-based monomer is not particularly limited, but for example, styrene, o-, m- or p-methylstyrene, α-methylstyrene, β-methylstyrene, 2,6-dimethylstyrene, 2,4 -Dimethylstyrene, α-methyl-o-methylstyrene, α-methyl-m-methylstyrene, α-methyl-p-methylstyrene, β-methyl-o-methylstyrene, β-methyl-m-methylstyrene, β -Methyl-p-methylstyrene, 2,4,6-trimethylstyrene, α-methyl-2,6-dimethylstyrene, α-methyl-2,4-dimethylstyrene, β-methyl-2,6-dimethylstyrene, β-methyl-2,4-dimethylstyrene, o-, m- or p-chlorostyrene, 2,6-dichlorostyrene, 2,4-dichlorostyrene, α-chloro-o-chlorostyrene, α-chloro-m -Chlorostyrene, α-chloro-p-chlorostyrene, β-chloro-o-chlorostyrene, β-chloro-m-chlorostyrene, β-chloro-p-chlorostyrene, 2,4,6-trichlorostyrene, α -Chloro-2,6-dichlorostyrene, α-chloro-2,4-dichlorostyrene, β-chloro-2,6-dichlorostyrene, β-chloro-2,4-dichlorostyrene, o-, m- or p -T-butylstyrene, o-, m- or p-methoxystyrene, o-, m- or p-chloromethylstyrene, o-, m- or p-bromomethylstyrene, a styrene-substituted styrene derivative, Examples thereof include indene and vinylnaphthalene. These may be used alone or in combination of two or more. Among these, at least one selected from the group consisting of styrene, p-methylstyrene, α-methylstyrene and indene is preferable from the viewpoint of availability and physical property balance.

芳香族ビニル系単量体の重合方法としては特に限定されず、公知の方法を使用することができる。 The method for polymerizing the aromatic vinyl-based monomer is not particularly limited, and a known method can be used.

熱可塑性エラストマー(A)の構造としては、特に限定されないが、例えば、芳香族ビニル系単量体を構成単量体とする重合体ブロック−イソブチレンを構成単量体とする重合体ブロック−芳香族ビニル系単量体を構成単量体とする重合体ブロックからなるトリブロック共重合体や、芳香族ビニル系単量体を構成単量体とする重合体ブロック−イソブチレンを構成単量体とする重合体ブロックからなるジブロック共重合体、芳香族ビニル系単量体を構成単量体とする重合体ブロックとイソブチレンを構成単量体とする重合体ブロックからなるアームを有する星型ブロック共重合体などが挙げられる。本発明では、所望の物性・成形加工性を得るため、これらの構造を有する熱可塑性エラストマー(A)を単独で用いても良いし、2種以上を併用しても良い。
ブロック共重合の製造方法は特に限定されず、芳香族ビニル系単量体を構成単量体とする重合体ブロックとイソブチレンを構成単量体とする重合体ブロックとを使用して公知の方法で製造することができる。
The structure of the thermoplastic elastomer (A) is not particularly limited, but for example, a polymer block containing an aromatic vinyl monomer as a constituent monomer-a polymer block containing isobutylene as a constituent monomer-aromatic A triblock copolymer composed of a polymer block containing a vinyl monomer as a constituent monomer, or a polymer block containing an aromatic vinyl monomer as a constituent monomer-isobutylene as a constituent monomer Diblock copolymer composed of polymer blocks, star block copolymer having an arm composed of a polymer block containing an aromatic vinyl monomer as a constituent monomer and a polymer block containing isobutylene as a constituent monomer Examples include coalescing. In the present invention, in order to obtain desired physical properties and moldability, the thermoplastic elastomer (A) having these structures may be used alone or in combination of two or more.
The method for producing the block copolymer is not particularly limited, and is a known method using a polymer block having an aromatic vinyl-based monomer as a constituent monomer and a polymer block having isobutylene as a constituent monomer. It can be manufactured.

熱可塑性エラストマー(A)において、芳香族ビニル系単量体を構成単量体とする重合体ブロックとイソブチレンを構成単量体とする重合体ブロックの重量比率((イソブチレンを構成単量体とする重合体ブロックの重量)/(芳香族ビニル系単量体を構成単量体とする重合体ブロックの重量))は、特に制限はないが、発泡体の衝撃吸収性と成形性、常温での形状保持性の観点から、95/5〜60/40が好ましく、90/10〜65/35がより好ましい。 In the thermoplastic elastomer (A), a weight ratio of a polymer block having an aromatic vinyl monomer as a constituent monomer and a polymer block having an isobutylene as a constituent monomer ((isobutylene as a constituent monomer is used. (Weight of polymer block)/(weight of polymer block containing aromatic vinyl monomer as constituent monomer)) is not particularly limited, but the impact absorption and moldability of the foam, From the viewpoint of shape retention, 95/5 to 60/40 is preferable, and 90/10 to 65/35 is more preferable.

熱可塑性エラストマー(A)は、衝撃等のエネルギーを効率良く吸収できる点から、スチレン−イソブチレン−スチレンブロック共重合体であることが好ましく、市販品としては、SIBSTAR(カネカ社製)が挙げられる。 The thermoplastic elastomer (A) is preferably a styrene-isobutylene-styrene block copolymer from the viewpoint that it can efficiently absorb energy such as impact, and as a commercial item, SIBSTAR (manufactured by Kaneka Corporation) can be mentioned.

<粘着付与樹脂(B)>
本発明では、熱可塑性エラストマー発泡体の衝撃吸収性を向上させる観点から、粘着付与樹脂(B)を使用する。粘着付与樹脂(B)としては、特に限定されないが、例えば、ロジンおよびロジン誘導体、ポリテルペン樹脂、芳香族変性テルペン樹脂およびそれらの水素化物、テルペンフェノール樹脂、クマロン・インデン樹脂、脂肪族系石油樹脂、脂環族系石油樹脂およびその水素化物、芳香族系石油樹脂およびその水素化物、脂肪族芳香族共重合系石油樹脂およびその水素化物、ジシクロペンタジエン系石油樹脂およびその水素化物、スチレンまたは置換スチレンの低分子量重合体等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
<Tackifying resin (B)>
In the present invention, the tackifying resin (B) is used from the viewpoint of improving the impact absorption of the thermoplastic elastomer foam. The tackifying resin (B) is not particularly limited, and examples thereof include rosin and rosin derivatives, polyterpene resins, aromatic modified terpene resins and hydrides thereof, terpene phenol resins, coumarone indene resins, aliphatic petroleum resins, Alicyclic petroleum resin and its hydride, aromatic petroleum resin and its hydride, aliphatic aromatic copolymer petroleum resin and its hydride, dicyclopentadiene petroleum resin and its hydride, styrene or substituted styrene The low molecular weight polymer and the like. These may be used alone or in combination of two or more.

これらの中では、熱可塑性エラストマー(A)中のイソブチレンを構成単量体とする重合体ブロックとの相溶性が高いことから、脂環族系石油樹脂およびその水素化物、脂肪族系石油樹脂、芳香族系石油樹脂の水素化物、ポリテルペン樹脂、ジシクロペンタジエン系石油樹脂、および、ロジンからなる群から選択される少なくとも1種であることが好ましく、前記SIBSTARとの相溶性が特に高いという点では、脂環族系石油樹脂の水素化物が好ましい。 Among these, since they have high compatibility with the polymer block containing isobutylene as a constituent monomer in the thermoplastic elastomer (A), an alicyclic petroleum resin and its hydride, an aliphatic petroleum resin, At least one selected from the group consisting of hydrides of aromatic petroleum resins, polyterpene resins, dicyclopentadiene petroleum resins, and rosins is preferable, and in terms of high compatibility with SIBSTAR. Hydrogenated products of alicyclic petroleum resins are preferred.

さらには、熱可塑性エラストマー(A)、粘着付与樹脂(B)、可塑剤、等が配合された組成物における、剪断モードでの動的粘弾性測定により得られる損失正接(tanδ)を制御しやすい点からも、脂環族系石油樹脂の水素化物が特に好ましい。脂環族系石油樹脂の水素化物としては、例えば、荒川化学工業社製のアルコンが挙げられる。
前記損失正接とは、損失弾性率と貯蔵弾性率の比(損失弾性率/貯蔵弾性率)で算出されるものであり、衝撃などのエネルギー消費に関する減衰性を表し、その値が大きいほど減衰性は高い。
Furthermore, it is easy to control the loss tangent (tan δ) obtained by dynamic viscoelasticity measurement in a shear mode in a composition containing a thermoplastic elastomer (A), a tackifying resin (B), a plasticizer, and the like. From the viewpoint, hydrides of alicyclic petroleum resins are particularly preferable. Examples of the hydride of the alicyclic petroleum resin include Alcon manufactured by Arakawa Chemical Industry Co., Ltd.
The loss tangent is calculated by the ratio of the loss elastic modulus to the storage elastic modulus (loss elastic modulus/storage elastic modulus), and represents the damping property with respect to energy consumption such as impact. Is high.

粘着付与樹脂(B)としては、数平均分子量が300〜3000であるものが好ましい。また、JIS K−2207に定められた環球法に基づく軟化点が60〜160℃、より好ましくは90〜150℃である樹脂が好ましい。 As the tackifying resin (B), those having a number average molecular weight of 300 to 3000 are preferable. Further, a resin having a softening point of 60 to 160° C., more preferably 90 to 150° C. based on the ring and ball method defined in JIS K-2207 is preferable.

粘着付与樹脂(B)の含有量は、発泡性組成物の全重量の8〜22重量%が好ましく、9〜20重量%がより好ましく、10〜18重量%がさらに好ましい。含有量が22重量%を超えると、混練時の粘度が低下しすぎるため、十分な混練状態が得られず、良好な発泡体を得ることが困難となる場合があり、8重量%未満であると添加効果が現れがたい。 The content of the tackifying resin (B) is preferably 8 to 22% by weight, more preferably 9 to 20% by weight, and further preferably 10 to 18% by weight based on the total weight of the foamable composition. If the content exceeds 22% by weight, the viscosity at the time of kneading becomes too low, so that a sufficient kneading state cannot be obtained, and it may be difficult to obtain a good foam, and the content is less than 8% by weight. And the effect of addition is hard to appear.

<発泡剤(C)>
発泡剤(C)としては、熱可塑性エラストマー発泡体の独立気泡率が高くなるとの観点から、熱膨張性マイクロカプセルを含むことが好ましい。熱膨張性マイクロカプセルとは、揮発性の液体膨張剤を重合体からなる外殻に内包してマイクロカプセル化したものである。中でも、ガスバリア性を有する熱可塑性樹脂からなる外殻と、外殻に内包される液体膨張剤とからなる熱膨張性マイクロカプセルであり、該液体膨張剤が該熱可塑性樹脂の軟化点以下の温度でガス状となるものであることが好ましい。マイクロカプセルは、一般に、水系媒体中で、少なくとも液体膨張剤と重合性単量体とを含有する重合性混合物を懸濁重合する方法により製造することができる。この方法によれば、重合反応が進むにつれて、生成する重合体により外殻が形成され、その外殻内に膨張剤が包み込まれるようにして封入された構造を有する熱膨張性マイクロカプセルが得られる。
<Foaming agent (C)>
The foaming agent (C) preferably contains thermally expandable microcapsules from the viewpoint of increasing the closed cell ratio of the thermoplastic elastomer foam. The thermally expandable microcapsules are microencapsulated by encapsulating a volatile liquid expanding agent in an outer shell made of a polymer. Among them, it is a heat-expandable microcapsule consisting of an outer shell made of a thermoplastic resin having gas barrier properties, and a liquid expander encapsulated in the outer shell, wherein the liquid expander has a temperature not higher than the softening point of the thermoplastic resin. It is preferable that it becomes a gaseous state. Microcapsules can generally be produced by a method of suspension-polymerizing a polymerizable mixture containing at least a liquid swelling agent and a polymerizable monomer in an aqueous medium. According to this method, as the polymerization reaction proceeds, an outer shell is formed by the resulting polymer, and a heat-expandable microcapsule having a structure in which an expanding agent is encapsulated in the outer shell is obtained. ..

ガスバリア性を有する熱可塑性樹脂としては特に限定されず、アクリル系コポリマー、塩化ビニリデン系ポリマー、ポリビニルアルコール系ポリマー、および、ポリカルボン酸系ポリマーを挙げることができる。
液体膨張剤としては、該熱可塑性樹脂の軟化点以下の温度でガス状となるものであれば特に限定されず、n−ブタン、イソブタン、n−ペンタン、イソペンタン、および、ネオペンタンを挙げることができる。
The thermoplastic resin having a gas barrier property is not particularly limited, and examples thereof include acrylic copolymers, vinylidene chloride polymers, polyvinyl alcohol polymers, and polycarboxylic acid polymers.
The liquid swelling agent is not particularly limited as long as it becomes gaseous at a temperature below the softening point of the thermoplastic resin, and examples thereof include n-butane, isobutane, n-pentane, isopentane, and neopentane. ..

熱膨張性マイクロカプセルは微細な粉末状であるため、均一に配合することが困難な場合が多く、かつ粉塵爆発等の危険性もあることから、比較的低温で加工し得る樹脂中に高濃度に分散せしめた状態(マイクロカプセルマスターバッチ)で配合することが好ましい。この場合、該マイクロカプセルマスターバッチの配合量に、マイクロカプセルマスターバッチ中の熱膨張性マイクロカプセルの含有割合を乗じた値が、熱膨張性マイクロカプセルの配合量となる。 Since heat-expandable microcapsules are in the form of fine powder, it is often difficult to mix them uniformly, and there is also the risk of dust explosion, etc., so high concentrations in resins that can be processed at relatively low temperatures It is preferable to mix them in a state of being dispersed (microcapsule masterbatch). In this case, a value obtained by multiplying the compounding amount of the microcapsule masterbatch by the content ratio of the thermally expandable microcapsule in the microcapsule masterbatch is the compounding amount of the thermally expandable microcapsule.

発泡剤(C)の含有量は、発泡性組成物の全重量の0.5〜20重量%であることが好ましく、1〜10重量%であることがより好ましい。含有量が0.5重量%未満であると、熱可塑性エラストマー発泡体の密度が高くなり、軽量性に劣る傾向にある。一方、20重量%を超えて配合しても、熱可塑性エラストマー発泡体の更なる低密度化に繋がりにくい。 The content of the foaming agent (C) is preferably 0.5 to 20% by weight, and more preferably 1 to 10% by weight, based on the total weight of the foamable composition. If the content is less than 0.5% by weight, the density of the thermoplastic elastomer foam tends to be high, and the lightness tends to be poor. On the other hand, even if it is blended in an amount exceeding 20% by weight, it is difficult to further reduce the density of the thermoplastic elastomer foam.

<その他添加剤>
本発明の熱可塑性エラストマー発泡体においては、任意に(A)〜(C)成分以外の他の成分を含有していても良い。
<Other additives>
The thermoplastic elastomer foam of the present invention may optionally contain components other than the components (A) to (C).

例えば、熱可塑性エラストマー発泡体の柔軟性や成形加工性を調整する目的で可塑剤を添加することができる。上記可塑剤としては、特に限定されないが、通常、室温で液体または液状の材料が好適に用いられる。また親水性および疎水性のいずれの可塑剤も使用できる。このような可塑剤としては、鉱物油系、植物油系、合成系等の各種ゴム用または樹脂用可塑剤が挙げられる。 For example, a plasticizer can be added for the purpose of adjusting the flexibility and molding processability of the thermoplastic elastomer foam. The plasticizer is not particularly limited, but normally a liquid or liquid material at room temperature is preferably used. Further, both hydrophilic and hydrophobic plasticizers can be used. Examples of such plasticizers include various rubber or resin plasticizers such as mineral oil-based, vegetable oil-based, and synthetic-based.

鉱物油系の可塑剤としては、特に限定されないが、例えば、ナフテン系、パラフィン系等のプロセスオイル等が挙げられる。植物油系の可塑剤としては、特に限定されないが、例えば、ひまし油、綿実油、あまみ油、なたね油、大豆油、パーム油、やし油、落花生油、木ろう、パインオイル、オリーブ油等が挙げられる。合成系の可塑剤としては、特に限定されないが、例えば、ポリブテン、低分子量ポリブタジエン等が挙げられる。これらの中でも、熱可塑性エラストマー(A)との相溶性の観点から、パラフィン系プロセスオイルまたはポリブテンが好ましい。これらは所望の粘度および物性を得るために、単独で用いても良いし、2種以上を併用しても良い。 The mineral oil-based plasticizer is not particularly limited, and examples thereof include naphthene-based and paraffin-based process oils. The vegetable oil-based plasticizer is not particularly limited, and examples thereof include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, coconut oil, peanut oil, wood wax, pine oil, olive oil and the like. The synthetic plasticizer is not particularly limited, and examples thereof include polybutene and low molecular weight polybutadiene. Among these, paraffin-based process oil or polybutene is preferable from the viewpoint of compatibility with the thermoplastic elastomer (A). These may be used alone or in combination of two or more in order to obtain desired viscosity and physical properties.

他の成分としては、特に限定されないが、例えば、充填剤、酸化防止剤、難燃剤、抗菌剤、光安定剤、着色剤、流動性改良剤、滑剤、ブロッキング防止剤、帯電防止剤、架橋剤、架橋助剤等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。さらに、本発明の熱可塑性エラストマー発泡体の性能を損なわない範囲であれば、各種熱可塑性樹脂、熱硬化性樹脂等、熱可塑性エラストマー(A)以外の樹脂を含有していても良い。 Other components are not particularly limited, for example, fillers, antioxidants, flame retardants, antibacterial agents, light stabilizers, colorants, fluidity improvers, lubricants, antiblocking agents, antistatic agents, crosslinking agents. , And crosslinking aids and the like. These may be used alone or in combination of two or more. Further, resins other than the thermoplastic elastomer (A) such as various thermoplastic resins and thermosetting resins may be contained as long as the performance of the thermoplastic elastomer foam of the present invention is not impaired.

<粘着付与樹脂のマスターバッチ>
本発明の製造方法では、あらかじめ熱可塑性エラストマー(A)と粘着付与樹脂(B)とを含有する粘着付与樹脂のマスターバッチを作製する。該マスターバッチを用いて成形を実施することによって、熱可塑性エラストマー発泡体を安定的かつ容易に得ることができる。
<Masterbatch of tackifying resin>
In the manufacturing method of the present invention, a masterbatch of tackifying resin containing the thermoplastic elastomer (A) and the tackifying resin (B) is prepared in advance. By carrying out molding using the masterbatch, a thermoplastic elastomer foam can be obtained stably and easily.

本発明において、粘着付与樹脂のマスターバッチを作製する方法としては、特に限定されず公知の方法を採用することができ、例えば、熱可塑性エラストマー(A)と粘着付与樹脂(B)とを、タンブラー、リボンブレンダー等を用いて混合し、単軸押出機、二軸押出機、タンデム押出機等の装置を用いてマスターバッチ化することができる。 In the present invention, the method for producing the masterbatch of the tackifying resin is not particularly limited and a known method can be adopted. For example, the thermoplastic elastomer (A) and the tackifying resin (B) are mixed in a tumbler. , A ribbon blender or the like, and mixed into a master batch using an apparatus such as a single-screw extruder, a twin-screw extruder, or a tandem extruder.

本発明で使用する粘着付与樹脂のマスターバッチにおける、熱可塑性エラストマー(A)と粘着付与樹脂(B)との配合比率(重量%)は、(A)/(B)=35/65〜55/45である。熱可塑性エラストマー(A)の配合比率が35重量%未満および粘着付与樹脂(B)の配合比率が65重量%を超えると、粘着付与樹脂(B)の割合が大きいために押出機内での溶融時に粘度が下がり、ストランドが引けず、ペレット状に成形できないことがある。さらには、ペレットが成形できたとしても、マスターバッチペレットが粘着付与樹脂(B)の配合比率が高いために脆くなり、マスターバッチを保管中に外圧で粉砕され、熱可塑性エラストマーを発泡体成形に使用する際に作業性を悪化させてしまう。熱可塑性エラストマー(A)の配合比率が55重量%を超え、粘着付与樹脂(B)の配合比率が45重量%未満であると、熱可塑性エラストマー(A)の割合が大きいため、押出機内で樹脂が十分に溶融せず粘度が上がり、ブロッキングしてペレット状に成形できないことがある。さらには、ペレットが成形できたとしても、粘着付与樹脂(B)の配合比率が低いためにマスターバッチとしては効率的に機能しない上、マスターバッチペレット同士が互着し、熱可塑性エラストマーを発泡体成形に使用する際に作業性を悪化させてしまう。
配合比率(重量%)は、(A)/(B)=36/64〜50/50であることが好ましい。
The compounding ratio (% by weight) of the thermoplastic elastomer (A) and the tackifying resin (B) in the masterbatch of the tackifying resin used in the present invention is (A)/(B)=35/65 to 55/ 45. If the blending ratio of the thermoplastic elastomer (A) is less than 35% by weight and the blending ratio of the tackifying resin (B) exceeds 65% by weight, the proportion of the tackifying resin (B) is large, so that the resin is melted in the extruder. The viscosity may decrease, the strand may not be drawn, and pelletization may not be possible. Furthermore, even if the pellets can be molded, the masterbatch pellets become brittle due to the high blending ratio of the tackifying resin (B), and the masterbatch is crushed by external pressure during storage to transform the thermoplastic elastomer into a foam molding. When used, it deteriorates workability. When the blending ratio of the thermoplastic elastomer (A) is more than 55% by weight and the blending ratio of the tackifying resin (B) is less than 45% by weight, the proportion of the thermoplastic elastomer (A) is large, so that the resin in the extruder is However, it may not be melted sufficiently and the viscosity may be increased, resulting in blocking and molding into pellets. Furthermore, even if the pellets can be molded, the blending ratio of the tackifying resin (B) is low, so that they do not function efficiently as a masterbatch, and the masterbatch pellets adhere to each other to form a thermoplastic elastomer into a foam. Workability deteriorates when used for molding.
The blending ratio (% by weight) is preferably (A)/(B)=36/64 to 50/50.

本粘着付与樹脂のマスターバッチには、製造時においてペレット同士の互着を防止するために必要に応じて表面処理を実施しても良い。上記表面処理を実施する手段としては、特に限定されるものではないが、例えば、無機添加材のパウダーをブロッキング防止剤として用いることができる。 The masterbatch of the present tackifying resin may be subjected to surface treatment, if necessary, in order to prevent mutual adhesion of pellets during production. The means for carrying out the above surface treatment is not particularly limited, but, for example, powder of an inorganic additive can be used as an antiblocking agent.

粘着付与樹脂のマスターバッチは、粘着付与樹脂(B)単体を使用した際に生じるペレットと粉砕した粉との偏在を抑制し、分級作業が不必要となるため製造工程において手間を生じさせない。また、このマスターバッチを用いて熱可塑性エラストマー発泡体を成形すると、原料樹脂のペレットが粉砕、互着および偏在することなく、安定的な衝撃吸収性を始めとした特性にばらつきを生じさせることなく熱可塑性エラストマー発泡体を得ることができる。 The masterbatch of tackifying resin suppresses uneven distribution of pellets and crushed powder that occurs when the tackifying resin (B) is used alone, and does not require classification work, and thus does not cause trouble in the manufacturing process. Further, when a thermoplastic elastomer foam is molded using this masterbatch, pellets of the raw material resin are not crushed, adhered to each other and unevenly distributed, and there is no variation in characteristics including stable shock absorption. A thermoplastic elastomer foam can be obtained.

<発泡性組成物>
本発明の製造方法では、粘着付与樹脂のマスターバッチに、熱可塑性エラストマー(A)、および、発泡剤(C)を混合して発泡性組成物を作製する。
熱可塑性エラストマー(A)の配合量は、該マスターバッチ100重量部に対して、200〜400重量部であり、250〜350重量部であることが好ましい。200重量部未満であると、軟化点が下がりすぎて成形が困難になる傾向があり、400重量部を超えると、衝撃吸収性が小さくなる傾向がある。
<Foamable composition>
In the production method of the present invention, a thermoplastic elastomer (A) and a foaming agent (C) are mixed with a masterbatch of a tackifying resin to prepare a foamable composition.
The blending amount of the thermoplastic elastomer (A) is 200 to 400 parts by weight, and preferably 250 to 350 parts by weight, based on 100 parts by weight of the masterbatch. If it is less than 200 parts by weight, the softening point tends to be too low and molding tends to be difficult, and if it exceeds 400 parts by weight, the impact absorption tends to be small.

発泡剤(C)の配合量は、該マスターバッチ100重量部に対して、2〜40重量部であり、5〜35重量部であることが好ましい。2重量部未満であると、発泡が不十分となる傾向があり、40重量部を超えると、成形後の収縮が大きくなる傾向がある。 The blending amount of the foaming agent (C) is 2 to 40 parts by weight, and preferably 5 to 35 parts by weight, based on 100 parts by weight of the masterbatch. If it is less than 2 parts by weight, foaming tends to be insufficient, and if it exceeds 40 parts by weight, shrinkage after molding tends to be large.

各成分の混合方法は特に限定されず、粘着付与樹脂のマスターバッチに、熱可塑性エラストマー(A)、発泡剤(C)、必要に応じてその他の添加剤を撹拌混合する。撹拌方法や混合順序は特に限定されず、公知の方法で組成物を製造することができる。 The mixing method of each component is not particularly limited, and the thermoplastic elastomer (A), the foaming agent (C), and other additives as necessary are mixed with stirring in the masterbatch of the tackifying resin. The stirring method and mixing order are not particularly limited, and the composition can be produced by a known method.

<熱可塑性エラストマー発泡体の製造方法>
本発明の製造方法では、次に、上記発泡性組成物を成形して熱可塑性エラストマー発泡体を得る。成形方法としては特に限定されず、射出発泡成形、押出発泡成形等が挙げられる。これらの中でも、熱可塑性エラストマー発泡体の独立気泡率が高くなることから、射出発泡成形方法が好ましい。発泡性組成物の射出発泡成形方法について具体的に説明する。射出発泡成形方法自体は公知の方法が適用でき、発泡性組成物の流動性、成形機の種類あるいは金型の形状によって適宜成形条件を調整すればよい。本発明の場合、樹脂温度170〜250℃、金型温度10〜100℃、成形サイクル1〜120分、射出速度10〜300mm/秒、射出圧10〜200MPa等の条件で行うことが好ましい。
<Method for producing thermoplastic elastomer foam>
In the production method of the present invention, next, the foamable composition is molded to obtain a thermoplastic elastomer foam. The molding method is not particularly limited, and examples thereof include injection foam molding and extrusion foam molding. Among these, the injection foam molding method is preferable because the closed cell ratio of the thermoplastic elastomer foam increases. The injection foam molding method of the foamable composition will be specifically described. A known method can be applied to the injection foam molding method itself, and the molding conditions may be appropriately adjusted depending on the fluidity of the foamable composition, the type of molding machine or the shape of the mold. In the case of the present invention, the resin temperature is preferably 170 to 250° C., the mold temperature is 10 to 100° C., the molding cycle is 1 to 120 minutes, the injection speed is 10 to 300 mm/sec, and the injection pressure is 10 to 200 MPa.

また、金型内で発泡させる方法としては種々あるが、なかでも固定型と任意の位置に前進および後退が可能な可動型とから構成される金型を使用し、射出完了後、可動型を後退させることによりキャビティー内容積を増加させて発泡成型体を得る、いわゆるコアバック法(Moving Cavity法)が、表面に適度な厚みの非発泡層が形成され、内部の発泡層が均一微細気泡になり、内部が十分に発泡して軽量性に優れた射出発泡成形体が得られやすいことから好ましい。射出成形において、射出後の保持時間が短すぎると表面の非発泡層が薄く形成され、また発泡が不十分となるため衝撃吸収性が低下し、一方保持時間が長すぎると発泡は十分に起こるものの、表面の非発泡層が厚く形成されるため、かえって衝撃吸収性が低下し、軽量化ができなくなる。コアバック法にて射出成形することで、これらをより好ましい範囲に両立させることができ、衝撃吸収性に優れ、かつ軽量性に優れたより好ましい射出発泡成形体が得られる。 There are various methods for foaming in the mold. Among them, a mold composed of a fixed mold and a movable mold that can move forward and backward to an arbitrary position is used. The so-called core back method (Moving Cavity method), in which the inner volume of the cavity is increased by retreating to obtain a foamed molded body, a non-foamed layer with an appropriate thickness is formed on the surface, and the inner foamed layer has uniform fine bubbles. It is preferable that the inside is sufficiently foamed and an injection-foam molded article excellent in lightness is easily obtained. In injection molding, if the holding time after injection is too short, the non-foamed layer on the surface is thinly formed, and since the foaming is insufficient, the shock absorption is lowered, while if the holding time is too long, foaming occurs sufficiently. However, since the non-foamed layer on the surface is thickly formed, the shock absorbing property is rather lowered and the weight cannot be reduced. By injection-molding by the core-back method, these can be made compatible in a more preferable range, and a more preferable injection-foam molded article having excellent shock absorption and lightweight can be obtained.

熱可塑性エラストマー発泡体の独立気泡率が高いと、プロテクターとして用いた場合、衝撃を加えた際に底付きしにくく、衝撃による荷重が大きく上昇し難いため、優れた衝撃吸収性を示すプロテクターとして用いることが出来る。本発明の熱可塑性エラストマー発泡体において、独立気泡率は80%以上が好ましく、90%以上がより好ましい。 If the thermoplastic elastomer foam has a high closed cell rate, it will not easily reach the bottom when impacted and the load due to impact will not increase significantly when used as a protector, so it will be used as a protector showing excellent impact absorption. You can In the thermoplastic elastomer foam of the present invention, the closed cell ratio is preferably 80% or more, more preferably 90% or more.

<熱可塑性エラストマー発泡体>
本発明の熱可塑性エラストマー発泡体の製造方法により、本発明の熱可塑性エラストマー発泡体が得られる。本発明の熱可塑性エラストマー発泡体の厚みは、特に限定されないが、0.5〜500mmが好ましく、1〜250mmがより好ましく、3〜150mmがさらに好ましい。厚みが0.5mm未満であると、発泡させることが困難で衝撃吸収性に劣ることがあり、500mmを超えると厚みが安定しないことがある。
<Thermoplastic elastomer foam>
By the method for producing a thermoplastic elastomer foam of the present invention, the thermoplastic elastomer foam of the present invention can be obtained. The thickness of the thermoplastic elastomer foam of the present invention is not particularly limited, but is preferably 0.5 to 500 mm, more preferably 1 to 250 mm, further preferably 3 to 150 mm. If the thickness is less than 0.5 mm, it may be difficult to foam and the impact absorption may be poor, and if it exceeds 500 mm, the thickness may not be stable.

本発明の熱可塑性エラストマー発泡体の密度は、特に限定されないが、軽量性の観点からは、0.7kg/m以下が好ましく、0.6kg/m以下がより好ましく、0.5kg/m以下がさらに好ましい。また、0.3kg/m以上が好ましく、0.35kg/m以上がより好ましい。The density of the thermoplastic elastomer foam of the present invention is not particularly limited, from the viewpoint of light weight, preferably from 0.7 kg / m 3 or less, more preferably 0.6 kg / m 3 or less, 0.5 kg / m 3 or less is more preferable. Further, preferably 0.3 kg / m 3 or more, 0.35 kg / m 3 or more is more preferable.

本発明の熱可塑性エラストマー発泡体の発泡倍率は、特に限定されないが、1.1〜50倍が好ましく、1.2〜30倍がより好ましい。発泡倍率が1.1倍未満であると、柔軟性が劣る場合があり、50倍を超えると、柔らかすぎて形状保持が困難となることがある。 The expansion ratio of the thermoplastic elastomer foam of the present invention is not particularly limited, but is preferably 1.1 to 50 times, more preferably 1.2 to 30 times. If the expansion ratio is less than 1.1 times, the flexibility may be poor, and if it exceeds 50 times, it may be too soft and shape retention may be difficult.

本発明での熱可塑性エラストマー発泡体は、重量8kgの錘を高さ100mmの位置から落下させた際の衝撃吸収性(衝撃加速度)が、250G以下であることが好ましく、200G以下であることがより好ましく、150G以下であることがさらに好ましい。衝撃加速度が250Gを超えると、衝撃吸収性が低いことがある。衝撃加速度の下限は小さいほど好ましいが、例えば10Gである。 The thermoplastic elastomer foam according to the present invention preferably has a shock absorption property (shock acceleration) of 250 G or less when a weight of 8 kg is dropped from a position of 100 mm in height, and 200 G or less. More preferably, it is still more preferably 150 G or less. If the shock acceleration exceeds 250 G, the shock absorption may be low. The smaller the lower limit of the impact acceleration, the more preferable, but it is, for example, 10G.

<身体保護用のプロテクター>
本発明の身体保護用のプロテクターは、本発明の熱可塑性エラストマー発泡体からなる。本発明の身体保護用のプロテクターは、本発明の熱可塑性エラストマー発泡体を単独で備えていても良いし、未発泡体であるプラスチック、発泡倍率の異なる発泡体、フィルム、布、不織布、紙等の素材と本発明の熱可塑性エラストマー発泡体とを一体成形したものを備えていても良い。さらに、本発明の熱可塑性エラストマー発泡体の表面に綿、アクリル繊維、毛、ポリエステル繊維等でできた布や不織布を貼り合わせていても良いし、前述の布や不織布で本発明の熱可塑性エラストマー発泡体を包んでいても良い。この様に貼り合わせたり包んだりすることで、本発明の熱可塑性エラストマー発泡体の感触を良好にし、さらに、運動時や高温・多湿時等の発汗時に布や不織布によって吸汗作用を施すことができる。また、布や不織布を洗濯したり取り替えたりすることができ、身体保護用のプロテクター自体の汚れを防止することができるという観点から、身体保護用のプロテクターを直接身体に取り付ける場合や直接身体にあたるように用いる場合には、布や不織布を着脱できるようにしておくことが好ましい。
<Protector for body protection>
The body protector of the present invention comprises the thermoplastic elastomer foam of the present invention. The protector for body protection of the present invention may be provided with the thermoplastic elastomer foam of the present invention alone, or may be an unfoamed plastic, a foam having a different expansion ratio, a film, a cloth, a non-woven fabric, paper, etc. It may also be provided by integrally molding the above material and the thermoplastic elastomer foam of the present invention. Furthermore, a cloth or non-woven fabric made of cotton, acrylic fiber, wool, polyester fiber or the like may be stuck on the surface of the thermoplastic elastomer foam of the present invention, or the above-mentioned cloth or non-woven fabric may be used for the thermoplastic elastomer of the present invention. It may be wrapped in foam. By sticking or wrapping in such a manner, the thermoplastic elastomer foam of the present invention can have a good feel, and further, a sweat absorbing action can be given by a cloth or a non-woven fabric when exercising or sweating at high temperature and high humidity. .. Also, from the viewpoint that the cloth or nonwoven fabric can be washed or replaced, and the protector for body protection can be prevented from becoming dirty, it is recommended that the protector for body protection is directly attached to the body or touches the body directly. When used for, it is preferable that a cloth or a non-woven fabric can be attached and detached.

本発明の身体保護用のプロテクターは、衣類へ取り付けることで好適に用いられる。衣類としては、特に限定されないが、下半身の一部または全部を覆う衣類が好ましく、例えば、スラックス、ジーンズ、トレーニングパンツ、サブリナパンツ、ニッカポッカ、ハーフパンツ、半ズボン、ホットパンツ等のズボン類、スカート類、袴類などの、下半身に着用するアウターウェアとしてのボトムス類;ショーツ、トランクス、ボクサーブリーフ、ブリーフ等のパンツ類、ガードル類、ふんどし等の下半身用インナーウェア類;靴下類、足袋、タイツ、レッグウォーマー、脚絆等の足につける衣類;ワンピース、ドレス、合羽、つなぎ、着ぐるみ、全身タイツ等の全身を覆う衣類;エプロン、割烹着、白衣、外装用プロテクター等の防護用衣類等が挙げられる。これらの中では、骨折しやすい部位での衝撃を吸収する目的から、ボトムス類、下半身用インナーウェア類が好ましく、ズボン類、パンツ類がより好ましく、パンツ類がさらに好ましい。 The protector for body protection of the present invention is preferably used by attaching it to clothes. The clothing is not particularly limited, but clothing that covers a part or all of the lower body is preferable, for example, trousers such as slacks, jeans, training pants, sabrina pants, nikka pokka, half pants, short pants, hot pants, and skirts. Bottoms as outerwear to be worn on the lower body, such as hakama; pants such as shorts, trunks, boxer briefs and briefs, innerwear for lower body such as girdles and loincloths; socks, socks, tights, legs Clothes worn on the legs such as warmers and leg ties; clothes that cover the whole body such as one-piece dresses, dresses, ties, ties, costumes, and tights; protective clothing such as aprons, cooking clothes, lab coats, exterior protectors, and the like. Among these, bottoms and lower body innerwear are preferred, pants and pants are more preferred, and pants are even more preferred, from the viewpoint of absorbing the impact at a site where bone fracture easily occurs.

衣類に用いられる生地(素材、編繊方法等)は、特に限定されないが、通気性、衝撃吸収性を向上させる観点からは、生地の表面に凹凸を付けたもの、例えば、表面に凹凸の形状が現れる編み組織、パイル編み等を用いることが好ましい。 The fabric (material, knitting method, etc.) used for clothing is not particularly limited, but from the viewpoint of improving breathability and shock absorption, the fabric has irregularities, for example, the shape of irregularities on the surface. It is preferable to use a knitting structure, in which the appearance of ”, pile knitting or the like is used.

本発明の身体保護用のプロテクターを衣類へ取り付ける方法は、特に限定されないが、プロテクターが着用時あるいは洗濯時にずれないように、例えば、生地に縫い付ける方法、粘着テープ等で取り付ける方法、ポケットを作りその中で着脱自在に取り付ける方法等が挙げられる。また、キルト状にプロテクターを生地に縫い付けることにより、身体へのフィット性、運動のしやすさが改善できる。プロテクターは、身体に直接触れるように取り付けても良いし、生地を介して身体に触れるように取り付けても良い。 The method of attaching the protector for body protection of the present invention to clothing is not particularly limited, but for example, a method of sewing to the cloth, a method of attaching with an adhesive tape, or a pocket is formed so that the protector does not shift when worn or washed. Among them, there are methods such as detachable attachment. Also, by sewn the protector to the fabric in a quilt shape, the fit to the body and the ease of exercise can be improved. The protector may be attached so as to directly touch the body or may be attached so as to touch the body through the cloth.

本発明の身体保護用のプロテクターは、衣類の腰回りにおける前身頃、脇部、後身頃、臀部に対応する部位等の任意の箇所に取り付けることができる。大腿骨頚部外側部の大転子部を保護できる位置に、本発明の身体保護用のプロテクターを取り付けた衣類を着用することで、大腿骨骨折を防止することが可能となる。 The protector for body protection of the present invention can be attached to any part of the waist of a garment, such as the front body, the side, the back, and the buttocks. By wearing the garment to which the protector for body protection of the present invention is attached at a position where the greater trochanter of the femoral neck can be protected, it is possible to prevent a femoral fracture.

また、本発明の身体保護用のプロテクターを粘着テープ等で身体に直接取り付けることで、身体保護用のプロテクターの位置ずれを防止することができる。その際、本発明の熱可塑性エラストマー発泡体は、通気性確保のための穴を開けたり、布や不織布を貼り合わせたり、布や不織布に包んで用いることが好ましい。 In addition, by directly attaching the protector for body protection of the present invention to the body with an adhesive tape or the like, it is possible to prevent the protector for body protection from being displaced. In that case, it is preferable that the thermoplastic elastomer foam of the present invention is used by forming a hole for ensuring air permeability, adhering a cloth or a non-woven fabric, or wrapping it in a cloth or a non-woven fabric.

また、本来転倒等によって受ける衝撃を緩和する皮下脂肪が比較的薄く骨に対し衝撃が強くかかるところには、衝撃吸収性を重視し、厚手の熱可塑性エラストマー発泡体を備えたプロテクターを用い、皮下組織が厚く、本来の衝撃吸収能力は多少あるが、尻もち等によっての衝撃を受けやすい臀部等には、着用性を重視し、薄手の熱可塑性エラストマー発泡体を備えたプロテクターを用いる等、2種類以上のプロテクターを組み合わせて使用しても良い。また、着用性等の観点から、衝撃を強く受ける場所には、本発明の熱可塑性エラストマー発泡体を備えたプロテクターを用い、さらに、衝撃が比較的緩和されるような場所には、他のプロテクターを用いても構わない。他のプロテクターとしては、例えば、ウレタン発泡体、ポリエチレン発泡体、アクリル発泡体、シリコン系重合体を基材樹脂とする発泡体、不織布、立体織物等が挙げられる。 In addition, where the subcutaneous fat that originally absorbs the impact caused by falls etc. is relatively thin and the impact on the bone is strong, the impact absorption is emphasized and a protector equipped with a thick thermoplastic elastomer foam is used. There are two types, such as a thick tissue and some original shock absorption capacity, but for the buttocks etc. that are susceptible to shocks from the hips, etc., using a protector equipped with a thin thermoplastic elastomer foam with emphasis on wearability. The protectors described above may be used in combination. In addition, from the viewpoint of wearability and the like, a protector provided with the thermoplastic elastomer foam of the present invention is used in a place where a strong impact is applied, and another protector is used in a place where the impact is relatively moderated. May be used. Examples of other protectors include urethane foams, polyethylene foams, acrylic foams, foams having a silicon-based polymer as a base resin, non-woven fabrics, and three-dimensional fabrics.

本発明の身体保護用のプロテクターの形状は、特に限定されないが、長方形、正方形、円形、楕円形、ひし形等の多角形、短冊型、ドーナツ型、表面に任意の凹凸を付けたもの等が挙げられる。また、通気性や装着感の向上のため、適宜貫通孔をあけても良い。身体保護用のプロテクターの大きさは、特に限定されないが、1〜1000cmが好ましく、50〜500cmがより好ましい。The shape of the protector for body protection of the present invention is not particularly limited, but may be a polygon such as a rectangle, a square, a circle, an ellipse, a rhombus, a strip shape, a donut shape, or a surface having any irregularity. To be Further, through holes may be appropriately formed to improve breathability and wearing comfort. The size of the protector for the body protection is not particularly limited, but is preferably 1~1000cm 2, 50~500cm 2 is more preferable.

本発明の身体保護用のプロテクターの密度は、特に限定されないが、着用感の観点からはできるだけ密度が小さいものが好適に使用される一方で、極端に密度が小さい場合は衝撃吸収性が不十分となる可能性がある。この観点から、密度は300〜700kg/mが好ましく、350〜600kg/mがより好ましく、350〜500kg/mがさらに好ましい。Although the density of the protector for body protection of the present invention is not particularly limited, from the viewpoint of wearing feeling, the one having the smallest possible density is preferably used, while the shock absorbing property is insufficient when the density is extremely small. There is a possibility that In this respect, the density is preferably 300~700kg / m 3, more preferably 350~600kg / m 3, more preferably 350~500kg / m 3.

<衝撃吸収体>
本発明の衝撃吸収体は、本発明の熱可塑性エラストマー発泡体からなる。本発明の熱可塑性エラストマー発泡体は、そのまま衝撃吸収体とすることもできるが、必要に応じて、発泡成形時に形成される表皮層を切除したり、適当な形状に切り出したりして衝撃吸収体とすることもできる。衝撃吸収体を身体保護用のプロテクターに用いる場合は、蒸れを防止するために、衝撃吸収性に対する影響を考慮しつつ貫通孔を設けても構わない。
<Shock absorber>
The shock absorber of the present invention comprises the thermoplastic elastomer foam of the present invention. The thermoplastic elastomer foam of the present invention may be used as a shock absorber as it is, but if necessary, the skin layer formed during foam molding may be cut off or cut out into an appropriate shape. Can also be When the shock absorber is used as a protector for protecting the body, the through holes may be provided in consideration of the influence on the shock absorbing property in order to prevent stuffiness.

以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

実施例および比較例中の測定、評価は、次の条件・方法により行った。なお、特に断りがない場合、実施例および比較例での「部」は、「重量部」を示す。実施例および比較例で用いた各種原料、得られた材料の評価方法を以下に示す。
熱可塑性エラストマー(A):スチレン−イソブチレン−スチレンブロック共重合体 SIBSTAR 062T(カネカ社製)
粘着付与樹脂(B):水添石油樹脂 アルコン−P140(荒川化学工業社製)
発泡剤(C):アドバンセルP501E1(マスターバッチ、マイクロカプセル含有率50重量%、積水化学工業社製)
The measurement and evaluation in Examples and Comparative Examples were performed under the following conditions and methods. In the examples and comparative examples, "parts" means "parts by weight" unless otherwise specified. The various raw materials used in Examples and Comparative Examples and the evaluation methods of the obtained materials are shown below.
Thermoplastic elastomer (A): styrene-isobutylene-styrene block copolymer SIBSTAR 062T (manufactured by Kaneka Corporation)
Tackifying resin (B): Hydrogenated petroleum resin Alcon-P140 (manufactured by Arakawa Chemical Industry Co., Ltd.)
Foaming agent (C): Advancel P501E1 (masterbatch, microcapsule content 50% by weight, Sekisui Chemical Co., Ltd.)

<マスターバッチ加工性>
マスターバッチ作製を行った際の加工性を、以下の基準で評価した。
○:特に問題なく容易にマスターバッチが作製できる。
△:部分的に樹脂のブロッキングが起こったもののペレット形状に近いマスターバッチが作製できる。
×:樹脂のブロッキングやストランドが引けない等の問題が常に生じ、マスターバッチ作製に至らない。
<Masterbatch processability>
The workability when the masterbatch was prepared was evaluated according to the following criteria.
◯: A masterbatch can be easily prepared without any particular problem.
B: A masterbatch having a pellet shape similar to that of the resin partially blocked can be prepared.
X: Problems such as resin blocking and strand pulling always occur, and masterbatch production cannot be achieved.

<発泡成形時の加工性>
発泡体を成形した際の加工性を、以下の基準で評価した。
○:特に問題なく容易に発泡成形ができる。
△:発泡成形はできるものの、原料樹脂が上手くフィードできない、原料樹脂のブレンド時の作業性が悪い等の問題がある。
×:発泡成形ができない。
<Workability during foam molding>
The processability when molding the foam was evaluated according to the following criteria.
◯: Foam molding can be easily performed without any particular problem.
B: Although foam molding is possible, there are problems that the raw material resin cannot be fed well, workability at the time of blending the raw material resin is poor, and the like.
X: Foam molding is not possible.

<厚み>
ダイアルシックネスゲージFM−18(テクロック社製)にて測定した。
<Thickness>
It was measured with a dial thickness gauge FM-18 (manufactured by Teclock Corporation).

<密度>
直径30mmに打ち抜いたサンプルのサイズおよび厚みから体積を算出し、重量を体積で除することで算出した。
<Density>
The volume was calculated from the size and thickness of the sample punched to a diameter of 30 mm, and the weight was divided by the volume.

<発泡倍率>
発泡していない樹脂の密度を1kg/mとし、得られた発泡体の密度で除することで算出した。
<Expansion ratio>
It was calculated by setting the density of the unfoamed resin to 1 kg/m 3 and dividing by the density of the obtained foam.

<衝撃加速度>
緩衝材料評価試験装置ACST−200(神栄テストマシナリー(旧吉田精機)社製)を用い、直径30mmに打ち抜いたサンプルに対し、重量8kgの錘を高さ100mmの位置から垂直落下させた際の衝撃加速度(最大加速度)を錘に取り付けた加速度変換機AS−500A(共和電業社製)とデータ収録装置F99−6618(共和電業社製)を用いて計測した。衝撃加速度が小さいほど、衝撃吸収性が高いと評価した。
<Impact acceleration>
Impact when a weight of 8 kg was dropped vertically from a position of 100 mm in height to a sample punched out to a diameter of 30 mm using a buffer material evaluation test device ACST-200 (manufactured by Shinei Test Machinery (formerly Yoshida Seiki)) Acceleration (maximum acceleration) was measured using an acceleration converter AS-500A (manufactured by Kyowa Electric Industry Co., Ltd.) attached to a weight and a data recording device F99-6618 (manufactured by Kyowa Electric Industry Co., Ltd.). It was evaluated that the smaller the impact acceleration, the higher the impact absorption.

(実施例1、2)
表1に示すマスターバッチ配合比率で熱可塑性エラストマー(A)/粘着付与樹脂(B)からなるマスターバッチを作製した。このマスターバッチにさらに熱可塑性エラストマー(A)、発泡剤(C)を表1に示す配合部数でブレンドし、発泡性組成物を得た。この発泡性組成物を射出成形機Si−180V H300C(46)(東洋機械金属社製)で、樹脂温度200℃、背圧5MPaで溶融混練した後、固定型と前進および後退が可能な可動型から構成される、長辺170mm×短辺130mmの楕円形状のキャビティ(クリアランスt0=3.0mm)を有する金型中に、射出速度85mm/秒で射出充填した。射出充填完了後に、クリアランスが6.0mmになるように可動型を後退させて、キャビティ内の樹脂を発泡させた。発泡完了後、100秒間冷却し、熱可塑性エラストマー発泡体を得た。得られた熱可塑性エラストマー発泡体の評価結果を表1に示す。
(Examples 1 and 2)
A masterbatch composed of the thermoplastic elastomer (A)/tackifying resin (B) was prepared in the masterbatch compounding ratio shown in Table 1. The masterbatch was further blended with the thermoplastic elastomer (A) and the foaming agent (C) in the compounding amounts shown in Table 1 to obtain a foamable composition. This foamable composition was melt-kneaded with an injection molding machine Si-180V H300C (46) (manufactured by Toyo Kikai Kinzoku Co., Ltd.) at a resin temperature of 200° C. and a back pressure of 5 MPa, and then a fixed mold and a movable mold capable of moving forward and backward. A mold having an elliptical cavity (clearance t0=3.0 mm) having a long side of 170 mm and a short side of 130 mm, which was composed of, was injection-filled at an injection speed of 85 mm/sec. After the completion of injection filling, the movable mold was retracted so that the clearance was 6.0 mm, and the resin in the cavity was foamed. After the foaming was completed, it was cooled for 100 seconds to obtain a thermoplastic elastomer foam. The evaluation results of the obtained thermoplastic elastomer foam are shown in Table 1.

(実施例3)
表1に示すマスターバッチ配合比率で熱可塑性エラストマー(A)/粘着付与樹脂(B)からなるマスターバッチを作製した。このマスターバッチにさらに熱可塑性エラストマー(A)、発泡剤(C)を表1に示す配合部数でブレンドし、発泡性組成物を得た。この発泡性組成物を射出成形機Si−180V H300C(46)(東洋機械金属社製)で、樹脂温度200℃、背圧5MPaで溶融混練した後、固定型と前進および後退が可能な可動型から構成される、長辺170mm×短辺130mmの楕円形状のキャビティ(クリアランスt0=4.0mm)を有する金型中に、射出速度85mm/秒で射出充填した。射出充填完了後に、クリアランスが8.0mmになるように可動型を後退させて、キャビティ内の樹脂を発泡させた。発泡完了後、100秒間冷却し、熱可塑性エラストマー発泡体を得た。得られた熱可塑性エラストマー発泡体の評価結果を表1に示す。
(Example 3)
A masterbatch composed of the thermoplastic elastomer (A)/tackifying resin (B) was prepared in the masterbatch compounding ratio shown in Table 1. The masterbatch was further blended with the thermoplastic elastomer (A) and the foaming agent (C) in the compounding amounts shown in Table 1 to obtain a foamable composition. This foamable composition was melt-kneaded with an injection molding machine Si-180V H300C (46) (manufactured by Toyo Kikai Kinzoku Co., Ltd.) at a resin temperature of 200° C. and a back pressure of 5 MPa, and then a fixed mold and a movable mold capable of moving forward and backward. A mold having an elliptical cavity (clearance t0=4.0 mm) having a long side of 170 mm and a short side of 130 mm, which was composed of, was injection-filled at an injection speed of 85 mm/sec. After the completion of injection filling, the movable mold was retracted so that the clearance was 8.0 mm, and the resin in the cavity was foamed. After the foaming was completed, it was cooled for 100 seconds to obtain a thermoplastic elastomer foam. The evaluation results of the obtained thermoplastic elastomer foam are shown in Table 1.

(実施例4)
表1に示すマスターバッチ配合比率で熱可塑性エラストマー(A)/粘着付与樹脂(B)からなるマスターバッチを作製した。このマスターバッチにさらに熱可塑性エラストマー(A)、発泡剤(C)を表1に示す配合部数でブレンドし、発泡性組成物を得た。この発泡性組成物を射出成形機Si−180V H300C(46)(東洋機械金属社製)で、樹脂温度200℃、背圧5MPaで溶融混練した後、固定型と前進および後退が可能な可動型から構成される、長辺170mm×短辺130mmの楕円形状のキャビティ(クリアランスt0=5.0mm)を有する金型中に、射出速度85mm/秒で射出充填した。射出充填完了後に、クリアランスが10.0mmになるように可動型を後退させて、キャビティ内の樹脂を発泡させた。発泡完了後、100秒間冷却し、熱可塑性エラストマー発泡体を得た。得られた熱可塑性エラストマー発泡体の評価結果を表1に示す。
(Example 4)
A masterbatch composed of the thermoplastic elastomer (A)/tackifying resin (B) was prepared in the masterbatch compounding ratio shown in Table 1. The masterbatch was further blended with the thermoplastic elastomer (A) and the foaming agent (C) in the compounding amounts shown in Table 1 to obtain a foamable composition. This foamable composition was melt-kneaded with an injection molding machine Si-180V H300C (46) (manufactured by Toyo Kikai Kinzoku Co., Ltd.) at a resin temperature of 200° C. and a back pressure of 5 MPa, and then a fixed mold and a movable mold capable of moving forward and backward. A mold having an elliptical cavity (clearance t0=5.0 mm) having a long side of 170 mm and a short side of 130 mm, which was composed of, was injection-filled at an injection speed of 85 mm/sec. After the completion of injection filling, the movable mold was retracted so that the clearance became 10.0 mm, and the resin in the cavity was foamed. After the foaming was completed, it was cooled for 100 seconds to obtain a thermoplastic elastomer foam. The evaluation results of the obtained thermoplastic elastomer foam are shown in Table 1.

比較例5)
表1に示すマスターバッチ配合比率で熱可塑性エラストマー(A)/粘着付与樹脂(B)からなるマスターバッチを作製した。マスターバッチをペレット化する際、部分的にブロッキングが見られたが、そのまま採取した。このマスターバッチのブロッキング部分をほぐし、そこへ熱可塑性エラストマー(A)、発泡剤(C)を表1に示す配合部数でブレンドし、発泡性組成物を得た。この発泡性組成物を射出成形機Si−180V H300C(46)(東洋機械金属社製)で、樹脂温度200℃、背圧5MPaで溶融混練した後、固定型と前進および後退が可能な可動型から構成される、長辺170mm×短辺130mmの楕円形状のキャビティ(クリアランスt0=3.0mm)を有する金型中に、射出速度85mm/秒で射出充填した。射出充填完了後に、クリアランスが6.0mmになるように可動型を後退させて、キャビティ内の樹脂を発泡させた。発泡完了後、100秒間冷却し、熱可塑性エラストマー発泡体を得た。得られた熱可塑性エラストマー発泡体の評価結果を表1に示す。
( Comparative example 5)
A masterbatch composed of the thermoplastic elastomer (A)/tackifying resin (B) was prepared in the masterbatch compounding ratio shown in Table 1. When pelletizing the masterbatch, some blocking was observed, but it was collected as it was. The blocking portion of this masterbatch was loosened, and the thermoplastic elastomer (A) and the foaming agent (C) were blended therein at the compounding parts shown in Table 1 to obtain a foamable composition. This foamable composition was melt-kneaded with an injection molding machine Si-180V H300C (46) (manufactured by Toyo Kikai Kinzoku Co., Ltd.) at a resin temperature of 200° C. and a back pressure of 5 MPa, and then a fixed mold and a movable mold capable of moving forward and backward. A mold having an elliptical cavity (clearance t0=3.0 mm) having a long side of 170 mm and a short side of 130 mm, which was composed of, was injection-filled at an injection speed of 85 mm/sec. After the completion of injection filling, the movable mold was retracted so that the clearance was 6.0 mm, and the resin in the cavity was foamed. After the foaming was completed, it was cooled for 100 seconds to obtain a thermoplastic elastomer foam. The evaluation results of the obtained thermoplastic elastomer foam are shown in Table 1.

(比較例1)
粘着付与樹脂のマスターバッチ作製を行わず、熱可塑性エラストマー(A)、粘着付与樹脂(B)、発泡剤(C)を表1に示す発泡成形時の混合部数でブレンドし、発泡性組成物を得た。この発泡性組成物を射出成形機Si−180V H300C(46)(東洋機械金属社製)で、樹脂温度200℃、背圧5MPaで溶融混練した後、固定型と前進および後退が可能な可動型から構成される、長辺170mm×短辺130mmの楕円形状のキャビティ(クリアランスt0=3.0mm)を有する金型中に、射出速度85mm/秒で射出充填した。射出充填完了後に、クリアランスが6.0mmになるように可動型を後退させて、キャビティ内の樹脂を発泡させた。発泡完了後、100秒間冷却し、熱可塑性エラストマー発泡体を得た。得られた熱可塑性エラストマー発泡体の評価結果を表1に示す。
比較例1では、熱可塑性エラストマー発泡体は得られたものの、発泡成形時に粘着付与樹脂のマスターバッチを使用しなかったため、熱可塑性エラストマー(A)、粘着付与樹脂(B)、発泡剤(C)をブレンドする際に粘着付与樹脂(B)においてペレットと粉砕した粉とが偏在していた。そのため、粘着付与樹脂(B)のペレット分級作業を事前に行う必要があり、発泡体成形時の加工性が悪かった。
(Comparative Example 1)
The thermoplastic elastomer (A), the tackifying resin (B), and the foaming agent (C) were blended at the mixing parts at the time of foam molding shown in Table 1 without preparing a masterbatch of the tackifying resin to obtain a foamable composition. Obtained. This foamable composition was melt-kneaded with an injection molding machine Si-180V H300C (46) (manufactured by Toyo Kikai Kinzoku Co., Ltd.) at a resin temperature of 200° C. and a back pressure of 5 MPa, and then a fixed mold and a movable mold capable of moving forward and backward. A mold having an elliptical cavity (clearance t0=3.0 mm) having a long side of 170 mm and a short side of 130 mm, which was composed of, was injection-filled at an injection speed of 85 mm/sec. After the completion of injection filling, the movable mold was retracted so that the clearance was 6.0 mm, and the resin in the cavity was foamed. After the foaming was completed, it was cooled for 100 seconds to obtain a thermoplastic elastomer foam. The evaluation results of the obtained thermoplastic elastomer foam are shown in Table 1.
In Comparative Example 1, although the thermoplastic elastomer foam was obtained, the thermoplastic elastomer (A), the tackifying resin (B), and the foaming agent (C) were used because the masterbatch of the tackifying resin was not used during foam molding. The pellets and the crushed powder were unevenly distributed in the tackifying resin (B) when blending. Therefore, it is necessary to perform the pellet classification operation of the tackifying resin (B) in advance, and the workability at the time of molding the foam is poor.

(比較例2)
表1に示すマスターバッチ配合比率で熱可塑性エラストマー(A)/粘着付与樹脂(B)からなるマスターバッチ作製を試みたが、粘着付与樹脂(B)の割合が大きいために溶融粘度が下がり、また脆く、ストランドが引けずマスターバッチ化できなかった。
(Comparative example 2)
Attempts were made to prepare a masterbatch composed of the thermoplastic elastomer (A)/tackifying resin (B) at the masterbatch compounding ratio shown in Table 1, but the melt viscosity was lowered because the ratio of the tackifying resin (B) was large, and It was brittle and the strands could not be pulled and could not be masterbatched.

(比較例3、4)
表1に示すマスターバッチ配合比率で粘着付与樹脂のマスターバッチの作製を試みたが、熱可塑性エラストマー(A)の割合が大きいために十分に溶融せず、熱可塑性エラストマー(A)と粘着付与樹脂(B)とが均一に混ざらずにマスターバッチ化できなかった。
(Comparative Examples 3 and 4)
Attempts were made to prepare a masterbatch of the tackifying resin with the masterbatch compounding ratio shown in Table 1, but the thermoplastic elastomer (A) and the tackifying resin did not melt sufficiently because the ratio of the thermoplastic elastomer (A) was large. (B) was not mixed uniformly and could not be made into a masterbatch.

Figure 0006741660
Figure 0006741660

実施例1〜、比較例1〜の結果から、本発明のマスターバッチを使用した熱可塑性エラストマー発泡体の製造方法は、マスターバッチ加工性、成形時の加工性共に良く、発泡体の衝撃吸収性も優れていることが分かる。 From the results of Examples 1 to 4 and Comparative Examples 1 to 5 , the method for producing a thermoplastic elastomer foam using the masterbatch of the present invention shows that masterbatch processability and processability during molding are good, and the impact of the foam is high. It can be seen that the absorbency is also excellent.

Claims (5)

イソブチレンを構成単量体とする重合体ブロックと、芳香族ビニル系単量体を構成単量体とする重合体ブロックとを含むブロック共重合体からなる熱可塑性エラストマー(A)3650重量%、および、粘着付与樹脂(B)6450重量%を含有する粘着付与樹脂のマスターバッチを作製する工程と、
該マスターバッチ100重量部に対して、熱可塑性エラストマー(A)200〜400重量部、および、発泡剤(C)2〜40重量部を混合して発泡性組成物を作製する工程と、該発泡性組成物を成形する工程を含むことを特徴とする、熱可塑性エラストマー発泡体の製造方法。
A polymer block constituting the isobutylene monomer, an aromatic vinyl monomer the constituent monomer to a thermoplastic elastomer comprising a block copolymer comprising a polymer block (A) 36 ~ 50 wt% And a step of producing a masterbatch of a tackifying resin containing 64 to 50 % by weight of a tackifying resin (B),
A step of mixing 200 to 400 parts by weight of the thermoplastic elastomer (A) and 2 to 40 parts by weight of the foaming agent (C) with 100 parts by weight of the masterbatch to prepare a foamable composition; A method for producing a thermoplastic elastomer foam, comprising the step of molding a conductive composition.
芳香族ビニル系単量体がスチレン、p−メチルスチレン、α−メチルスチレンおよびインデンからなる群から選択される少なくとも1種であることを特徴とする、請求項1に記載の熱可塑性エラストマー発泡体の製造方法。 The thermoplastic elastomer foam according to claim 1, wherein the aromatic vinyl-based monomer is at least one selected from the group consisting of styrene, p-methylstyrene, α-methylstyrene, and indene. Manufacturing method. 熱可塑性エラストマー(A)が、スチレン−イソブチレン−スチレンブロック共重合体であることを特徴とする、請求項1または2に記載の熱可塑性エラストマー発泡体の製造方法。 The method for producing a thermoplastic elastomer foam according to claim 1 or 2, wherein the thermoplastic elastomer (A) is a styrene-isobutylene-styrene block copolymer. 粘着付与樹脂(B)が、脂肪族系石油樹脂、脂環族系石油樹脂、脂環族系石油樹脂の水素化物、芳香族系石油樹脂の水素化物、ポリテルペン樹脂、ジシクロペンタジエン系石油樹脂、および、ロジンからなる群から選択される少なくとも1種であることを特徴とする、請求項1〜3のいずれかに記載の熱可塑性エラストマー発泡体の製造方法。 The tackifying resin (B) is an aliphatic petroleum resin, an alicyclic petroleum resin, a hydride of an alicyclic petroleum resin, a hydride of an aromatic petroleum resin, a polyterpene resin, a dicyclopentadiene petroleum resin, And at least one selected from the group consisting of rosin, The method for producing a thermoplastic elastomer foam according to any one of claims 1 to 3, wherein 発泡剤(C)が、ガスバリア性を有する熱可塑性樹脂からなる外殻と、外殻に内包される液体膨張剤とからなる熱膨張性マイクロカプセルであり、該液体膨張剤が該熱可塑性樹脂の軟化点以下の温度でガス状となるものであることを特徴とする、請求項1〜4のいずれかに記載の熱可塑性エラストマー発泡体の製造方法。 The foaming agent (C) is a heat-expandable microcapsule including an outer shell made of a thermoplastic resin having a gas barrier property, and a liquid expander encapsulated in the outer shell, and the liquid expander is one of the thermoplastic resin. The method for producing a thermoplastic elastomer foam according to any one of claims 1 to 4, which is gasified at a temperature equal to or lower than the softening point.
JP2017523176A 2015-06-08 2016-05-18 Method for producing thermoplastic elastomer foam Active JP6741660B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015116029 2015-06-08
JP2015116029 2015-06-08
PCT/JP2016/064696 WO2016199553A1 (en) 2015-06-08 2016-05-18 Method for producing thermoplastic elastomer foam

Publications (2)

Publication Number Publication Date
JPWO2016199553A1 JPWO2016199553A1 (en) 2018-03-29
JP6741660B2 true JP6741660B2 (en) 2020-08-19

Family

ID=57503196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017523176A Active JP6741660B2 (en) 2015-06-08 2016-05-18 Method for producing thermoplastic elastomer foam

Country Status (3)

Country Link
JP (1) JP6741660B2 (en)
CN (1) CN107531929A (en)
WO (1) WO2016199553A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109233179A (en) * 2018-07-03 2019-01-18 叶馨环保科技(上海)有限公司 Alleviate the material and preparation method thereof of human-body fatigue with area deformation recovery mechanism
CN109370039A (en) * 2018-10-15 2019-02-22 佛山市南海区承欣塑料助剂有限公司 A kind of thickening master batch and preparation method thereof
US20220073730A1 (en) * 2018-12-22 2022-03-10 Dsm Ip Assets B.V. Foamed composition
CN109824955B (en) * 2018-12-24 2021-07-06 浙江万里新材料科技有限公司 Irradiation crosslinking polyethylene foam material and preparation method thereof
CN117467367B (en) * 2023-12-27 2024-03-19 浙江祥邦永晟新能源有限公司 Thermoplastic POE packaging adhesive film, preparation method thereof and photovoltaic module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184319A (en) * 1992-12-21 1994-07-05 Nippon Petrochem Co Ltd Production of masterbatch for modifying thermoplastic resin
JPH0952956A (en) * 1995-08-10 1997-02-25 Nippon Shokubai Co Ltd Master batch for resin additive
JP5523688B2 (en) * 2008-09-18 2014-06-18 株式会社イッコーズ Foam pressure-sensitive adhesive sheet for adhesive dustproof tape used in clean room, method for producing the same, and adhesive dustproof tape used in clean room
JP5905663B2 (en) * 2010-01-21 2016-04-20 株式会社カネカ Method for producing protector using thermoplastic elastomer foam
FR2957926A1 (en) * 2010-03-25 2011-09-30 Arkema France PROCESS FOR THE PREPARATION OF ELASTOMERIC COMPOSITE MATERIAL
CN107108947A (en) * 2014-12-08 2017-08-29 株式会社钟化 Thermoplastic elastomer (TPE) extrusion foaming piece

Also Published As

Publication number Publication date
JPWO2016199553A1 (en) 2018-03-29
CN107531929A (en) 2018-01-02
WO2016199553A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
JP6741660B2 (en) Method for producing thermoplastic elastomer foam
JP3229791U (en) Foam composition and its use
CN106905599B (en) Light high-elasticity EVA composite foam material and preparation method and application thereof
EP1644445B1 (en) Energy absorbing blends
US6187837B1 (en) Elastomeric podalic pads
TW200301281A (en) Energy absorbing material
WO2012029917A1 (en) Impact-absorbing pad, clothing furnished with same and method for preventing femoral fractures
CN102171281A (en) Crosslinked polymer composition
US20150375474A1 (en) Energy absorbent pads for attachment to textiles
CN101492563A (en) Rubber plastic material for producing shoe pad, shoe pad and manufacturing method thereof
JPWO2016093091A1 (en) Thermoplastic elastomer extruded foam sheet
JP5905663B2 (en) Method for producing protector using thermoplastic elastomer foam
CN113462070B (en) Super-absorption impact high-resilience foam material, and preparation method and application thereof
JP2017043861A (en) Protective pad
JP2010126577A (en) Method of molding foamed molded article and foamed molded article
JP4250014B2 (en) Softener composition for thermoplastic elastomer, thermoplastic elastomer composition
KR102427184B1 (en) Compositions for high reinforced sidewalls
CN110461936B (en) Structure comprising low-resilience member and high-resilience member
Chang et al. Enhancing dynamic impact performance and cushioning of EVA copolymer foams with thermoplastic elastomers
JP2004323553A (en) Softening agent composition for thermoplastic elastomer, thermoplastic elastomer composition and molded item
JP2005281489A (en) Thermoplastic elastomer composition
JP2006160803A (en) Thermoplastic elastomer composition
JP2002020522A (en) Thermoplastic resin foam
KR100625044B1 (en) Thermoplastic elastomer composition with low hardness
JP2017197864A (en) Impact absorbing material and safety helmet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R150 Certificate of patent or registration of utility model

Ref document number: 6741660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250