JP6740488B2 - Positioning system, positioning method and receiver - Google Patents

Positioning system, positioning method and receiver Download PDF

Info

Publication number
JP6740488B2
JP6740488B2 JP2019559956A JP2019559956A JP6740488B2 JP 6740488 B2 JP6740488 B2 JP 6740488B2 JP 2019559956 A JP2019559956 A JP 2019559956A JP 2019559956 A JP2019559956 A JP 2019559956A JP 6740488 B2 JP6740488 B2 JP 6740488B2
Authority
JP
Japan
Prior art keywords
transmitter
transmitters
receiver
estimated
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019559956A
Other languages
Japanese (ja)
Other versions
JPWO2019123599A1 (en
Inventor
宏明 松本
宏明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Application granted granted Critical
Publication of JP6740488B2 publication Critical patent/JP6740488B2/en
Publication of JPWO2019123599A1 publication Critical patent/JPWO2019123599A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

本発明は、それぞれ異なる位置に設置された複数の発信機の各々から発信される電波の受信機による受信強度に基づいて受信機の位置を推定する技術に関する。 The present invention relates to a technique for estimating the position of a receiver based on the reception intensity of a radio wave transmitted from each of a plurality of transmitters installed at different positions.

屋外における測位技術としては、GPS(Global Positioning System:全地球測位システム)が一般的である。これに対し、屋内はGPS衛星からの信号を受信することが困難なため、屋内ではGPSに代わる測位技術が必要である。 A GPS (Global Positioning System) is generally used as a positioning technique outdoors. On the other hand, since it is difficult to receive signals from GPS satellites indoors, indoor positioning techniques are required to replace GPS.

屋内における測位技術としては、無線LANアクセスポイントやBLE(Bluetooth Low Energy)ビーコンのなどの発信機から発信される無線信号を受信機で受信した際の電波強度(RSSI;Received Signal Strength Indication)を用いる方法が知られている。すなわち、受信機で測定された電波強度に基づいてその発信元の発信機までの距離を推定し、3つの発信機についての推定距離を用いて三点測位法により受信機の位置を推定するというものである。また、特許文献1には、屋内に設置された複数の基地局から受信した電波の受信強度に応じて基地局毎に電波領域を求め、各基地局の電波領域の重複領域の重心を、自身の推定位置とする無線端末が開示されている。 As the indoor positioning technology, a radio field intensity (RSSI; Received Signal Strength Indication) when a wireless signal transmitted from a wireless LAN access point or a transmitter such as a BLE (Bluetooth Low Energy) beacon is received by the receiver is used. The method is known. That is, the distance to the transmitter of the transmission source is estimated based on the radio field intensity measured by the receiver, and the position of the receiver is estimated by the three-point positioning method using the estimated distances of the three transmitters. It is a thing. Further, in Patent Document 1, a radio wave area is obtained for each base station according to the reception intensity of radio waves received from a plurality of base stations installed indoors, and the center of gravity of the overlapping area of the radio wave areas of each base station A wireless terminal having an estimated position of is disclosed.

特開2014−052208号公報JP, 2014-052208, A

以下に、無線信号を使って位置を推定する具体的な方法について説明する。
発信機と受信機間の距離は、電波強度が距離の二乗に反比例して減衰する性質を用いて推定することができる。一般に、電波強度RSSI(単位:dBm)は、距離r(単位:m)の関数として、以下の数式で表される。
RSSI(r)=A−2*10*log10(r)
ここで、Aは距離1mにおけるRSSI値、つまり、A=RSSI(1)である。従って、距離1mにおけるRSSI値が既知であれば、RSSIを測定することで発信機と受信機間の距離を求めることができる。図1には、RSSIと距離の関係をグラフで示してある。
Hereinafter, a specific method of estimating the position using the wireless signal will be described.
The distance between the transmitter and the receiver can be estimated using the property that the radio field intensity attenuates in inverse proportion to the square of the distance. Generally, the radio field intensity RSSI (unit: dBm) is expressed by the following mathematical formula as a function of the distance r (unit: m).
RSSI(r)=A-2*10*log 10 (r)
Here, A is the RSSI value at a distance of 1 m, that is, A=RSSI(1). Therefore, if the RSSI value at a distance of 1 m is known, the distance between the transmitter and the receiver can be obtained by measuring the RSSI. FIG. 1 is a graph showing the relationship between RSSI and distance.

設置位置が既知である3つの発信機から受信機までの距離が分かれば、三点測位法によって受信機の位置を推定することができる。つまり、図2に示すように、各発信機の設置位置を中心とし、各発信機と受信機間の距離を半径とする3つの円の交点を、受信機の位置であると推定することができる。 If the distances from the three transmitters whose installation positions are known to the receiver are known, the position of the receiver can be estimated by the three-point positioning method. That is, as shown in FIG. 2, it is possible to presume that the intersection of three circles centering on the installation position of each transmitter and having a radius between each transmitter and the receiver is the position of the receiver. it can.

4つ以上の発信機が設置されている場合、各発信機から受信機までの推定距離が絶対の精度を持っていれば、各発信機の設置位置を中心とし、各発信機と受信機間の距離を半径とする円は全て1点で交わる。このため、任意の3つの発信機を基準点として三点測位を行っても受信機の推定位置は同一となる。 If four or more transmitters are installed, and if the estimated distance from each transmitter to the receiver has absolute accuracy, then the position between each transmitter and the receiver will be centered around the installation position of each transmitter. All circles whose radius is the distance of intersect at one point. Therefore, the estimated position of the receiver is the same even if three-point positioning is performed using any three transmitters as reference points.

しかしながら、屋内環境では電波の反射や回折、外来波による干渉などの影響でRSSIの測定値に揺らぎが生じるので、発信機と受信機間の推定距離には誤差が含まれる。このため、各発信機の設置位置を中心とし、各発信機と受信機間の距離を半径とする円が1点で交わることは稀であり、また、どの3つの発信機を三点測位の基準点として選ぶかによって受信機の推定位置は変わり得る。特に、ある発信機と受信機間の推定距離が大きな誤差を含む場合、その発信機を三点測位の基準点の1つとして選んでしまうと、受信機の推定位置にも大きな誤差が生じてしまう。従って、受信機の位置を精度よく推定するためには、推定距離の誤差が小さい発信機を三点測位の基準点として選択する必要がある。 However, in an indoor environment, the RSSI measurement value fluctuates due to the effects of reflection and diffraction of radio waves, interference from external waves, etc. Therefore, the estimated distance between the transmitter and the receiver includes an error. For this reason, it is rare that a circle with the distance between each transmitter and the receiver as the radius is centered on the installation position of each transmitter, and that one of the three transmitters is located at three points. The estimated position of the receiver may change depending on whether it is selected as the reference point. In particular, if the estimated distance between a transmitter and a receiver includes a large error, if the transmitter is selected as one of the reference points for three-point positioning, a large error will occur in the estimated position of the receiver. I will end up. Therefore, in order to accurately estimate the position of the receiver, it is necessary to select a transmitter with a small estimated distance error as a reference point for three-point positioning.

なお、発信機と受信機間の推定距離の誤差により、三点測位の際に3つの円が1点で交わらない場合は、受信機の位置推定のために何らかの工夫が必要となる。そのような工夫としては、例えば、3つの円が重なる領域の質量重心を推定位置とする方法や、3つの円が1点で交わるように各円の半径に同一の補正値を加える方法などが知られている。 If three circles do not intersect at one point during three-point positioning due to an error in the estimated distance between the transmitter and the receiver, some kind of device is required for estimating the position of the receiver. As such a device, for example, a method of setting the mass center of gravity of a region where three circles overlap as an estimated position, a method of adding the same correction value to the radius of each circle so that the three circles intersect at one point, and the like. Are known.

前述の通り、RSSIは距離の二乗に反比例して減衰するため、RSSI測定値の揺らぎが推定距離に与える影響は距離が大きいほど大きくなる。例えば、RSSI測定値の1dBmの揺らぎは、距離1m以下では数cm〜数十cmの誤差として現れるのに対して、距離10m付近では数mの誤差として現れる。 As described above, since RSSI attenuates in inverse proportion to the square of the distance, the influence of the fluctuation of the RSSI measurement value on the estimated distance increases as the distance increases. For example, a fluctuation of 1 dBm in the RSSI measurement value appears as an error of several cm to several tens of cm at a distance of 1 m or less, whereas it appears as an error of several m at a distance of 10 m.

従って、発信機と受信機間の推定距離が小さいほどRSSI測定値の揺らぎの影響は小さく、推定誤差も小さいと考えられるため、従来は、受信機までの推定距離が小さい発信機を三点測位の基準点として選択していた。しかしながら、発信機と受信機間の推定距離が大きな誤差を含み、その誤差により推定距離が小さくなることもある。この場合には、推定距離に大きい誤差が含まれる発信機が三点測位の基準点として選ばれることにより、受信機位置の推定精度を劣化させてしまうという問題があった。 Therefore, it is considered that the smaller the estimated distance between the transmitter and the receiver, the smaller the influence of fluctuations in the RSSI measurement value and the smaller the estimation error. Had been selected as the reference point. However, the estimated distance between the transmitter and the receiver includes a large error, and the estimated distance may be small due to the error. In this case, there is a problem in that the transmitter that includes a large error in the estimated distance is selected as the reference point for the three-point positioning, which deteriorates the estimation accuracy of the receiver position.

図3を参照して、推定距離が誤差を含む場合の推定位置について説明する。同図において、P1 〜P4 は発信機の設置位置を示し、r1 〜r4 は発信機と受信機間の推定距離を示している。また、実線の円は、各発信機の設置位置(P1 〜P4 )を中心とし、各発信機と受信機間の推定距離(r1 〜r4 )を半径として描いたものである。一方、破線の円は、P3 の位置に設置された発信機について、実際の距離を半径として描いたものである。すなわち、図3は、推定距離r3 が誤差を含んでいる場合の例を示している。この例では、r1 <r2 <r3 <r4 となっているため、従来の方法ではP1 ,P2 ,P3 が三点測位の基準点として選ばれる。しかしながら、推定距離r3 に含まれる誤差によって、受信機の位置として実際とは異なる位置を推定してしまっている。An estimated position when the estimated distance includes an error will be described with reference to FIG. In the figure, P 1 to P 4 indicate the installation positions of transmitters, and r 1 to r 4 indicate estimated distances between transmitters and receivers. Also, the solid line circle is drawn with the estimated position (r 1 to r 4 ) between each transmitter and the receiver as the radius with the installation position (P 1 to P 4 ) of each transmitter as the center. On the other hand, the broken line circle is drawn with the actual distance as the radius of the transmitter installed at the position P 3 . That is, FIG. 3 shows an example in which the estimated distance r 3 includes an error. In this example, r 1 <r 2 <r 3 <r 4 is satisfied, so P 1 , P 2 , and P 3 are selected as the reference points for three-point positioning in the conventional method. However, due to the error included in the estimated distance r 3 , a position different from the actual position is estimated as the position of the receiver.

本発明は、上記のような従来の事情に鑑みて為されたものであり、それぞれ異なる位置に設置された複数の発信機の各々から発信される電波の受信強度に基づく受信機の位置の推定を精度よく行うことが可能な技術を提供することを目的としている。 The present invention has been made in view of the above conventional circumstances, and estimates the position of a receiver based on the reception intensity of radio waves transmitted from each of a plurality of transmitters installed at different positions. It is intended to provide a technology capable of accurately performing.

上記の目的を達成するために、本発明では測位システムを以下のように構成した。
本発明に係る測位システムは、それぞれ異なる位置に設置された複数の発信機と、前記複数の発信機の各々から発信された電波を受信する受信機と、前記受信機における電波の受信強度に基づいて、前記受信機と各発信機との間の距離を推定し、前記複数の発信機のうちの3つの発信機に係る推定距離に基づいて、前記受信機の位置を算出する測位サーバとを備える。そして、前記測位サーバが、発信機毎に、該発信機に係る推定距離と他の発信機に係る推定距離との関係に基づいて、該発信機に係る推定距離の確からしさを検証し、推定距離の確からしさが所定基準を満たす発信機を3つ選択し、当該選択した3つの発信機に係る推定距離に基づいて、前記受信機の位置を算出することを特徴とする。
In order to achieve the above object, the positioning system is configured as follows in the present invention.
A positioning system according to the present invention is based on a plurality of transmitters installed at different positions, a receiver for receiving radio waves transmitted from each of the plurality of transmitters, and a radio wave reception intensity at the receiver. A positioning server that estimates the distance between the receiver and each transmitter and calculates the position of the receiver based on the estimated distances related to three transmitters of the plurality of transmitters. Prepare Then, the positioning server verifies, for each transmitter, the accuracy of the estimated distance related to the transmitter based on the relationship between the estimated distance related to the transmitter and the estimated distance related to another transmitter. It is characterized in that three transmitters whose probability of distance satisfies a predetermined standard are selected, and the position of the receiver is calculated based on the estimated distances of the selected three transmitters.

より具体的には、前記測位サーバは、前記複数の発信機のそれぞれについて、該発信機の設置位置を中心とし且つ該発信機に係る推定距離を半径とした円を仮定し、検証対象の発信機に係る円が他の発信機に係る円と交点または接点を有するか否かを判定し、検証対象の発信機に係る円と交点または接点を有する円を持つ他の発信機の数が閾値以上の場合に、検証対象の発信機に係る推定距離の確からしさが所定基準を満たすと判定することを特徴とする。
このような構成により、各発信機に係る推定距離と他の複数の発信機に係る推定距離との関係に基づいて、受信機までの推定距離の誤差が小さい発信機を三点測位の基準点に選択できるので、受信機の位置の測位を精度よく行うことが可能となる。
More specifically, the positioning server assumes, for each of the plurality of transmitters, a circle whose center is the installation position of the transmitter and whose radius is the estimated distance related to the transmitter, and the transmission of the verification target is performed. The number of other transmitters that have a circle that has an intersection or contact with the circle of the transmitter to be verified is determined as a threshold by determining whether the circle of the transmitter has an intersection or contact with the circle of another transmitter. In the above case, the certainty of the estimated distance of the transmitter to be verified is determined to satisfy a predetermined criterion.
With such a configuration, based on the relationship between the estimated distance related to each transmitter and the estimated distance related to a plurality of other transmitters, a transmitter having a small error in the estimated distance to the receiver is set as a reference point for three-point positioning. Since it can be selected, the position of the receiver can be accurately positioned.

ここで、一構成例として、前記測位サーバは、検証対象の発信機からの距離が近い順に所定数の他の発信機を選択し、当該選択した他の発信機に係る円について前記交点または接点の判定を行い、前記閾値として、前記所定数に所定割合を乗じた値を用いてもよい。
あるいは、前記測位サーバは、検証対象の発信機からの距離が所定値以内の他の発信機を選択し、当該選択した他の発信機に係る円について前記交点または接点の判定を行い、前記閾値として、前記選択した他の発信機の数に所定割合を乗じた値を用いてもよい。
Here, as one configuration example, the positioning server selects a predetermined number of other transmitters in the order of increasing distance from the transmitter to be verified, and the intersection or contact point with respect to a circle related to the selected other transmitter. May be performed, and a value obtained by multiplying the predetermined number by a predetermined ratio may be used as the threshold value.
Alternatively, the positioning server selects another transmitter whose distance from the transmitter to be verified is within a predetermined value, determines the intersection point or the contact point with respect to the circle related to the selected other transmitter, and determines the threshold value. As the above, a value obtained by multiplying the number of other selected transmitters by a predetermined ratio may be used.

また、一構成例として、前記測位サーバは、推定距離が小さい発信機から順に、該発信機に係る推定距離の確からしさを検証し、推定距離の確からしさが所定基準を満たす発信機を3つ選択できた段階で、当該選択した3つの発信機に係る推定距離に基づいて、前記受信機の位置を算出してもよい。 In addition, as one configuration example, the positioning server verifies the accuracy of the estimated distance related to the transmitter in order from the transmitter with the smallest estimated distance, and three transmitters whose accuracy of the estimated distance satisfies a predetermined criterion. At the stage where selection is possible, the position of the receiver may be calculated based on the estimated distances of the three selected transmitters.

また、一構成例として、前記受信機は、前記複数の発信機の各々から発信された電波の受信強度を測定し、発信機毎の受信強度の情報を前記測位サーバへ提供し、前記測位サーバは、前記受信機から受信した情報に基づいて、前記受信機と各発信機との間の距離を推定し、推定距離の確からしさが所定基準を満たす発信機を3つ選択し、当該選択した3つの発信機に係る推定距離に基づいて、前記受信機の位置を算出してもよい。
あるいは、前記受信機は、前記複数の発信機の各々から発信された電波の受信強度を測定し、発信機毎の受信強度に基づいて各発信機までの距離を推定し、発信機毎の推定距離の情報を前記測位サーバへ提供し、前記測位サーバは、前記受信機から受信した情報に基づいて、推定距離の確からしさが所定基準を満たす発信機を3つ選択し、当該選択した3つの発信機に係る推定距離に基づいて、前記受信機の位置を算出してもよい。
In addition, as one configuration example, the receiver measures the reception intensity of radio waves transmitted from each of the plurality of transmitters, provides information on the reception intensity of each transmitter to the positioning server, and the positioning server Estimates the distance between the receiver and each transmitter based on the information received from the receiver, selects three transmitters whose accuracy of the estimated distance satisfies a predetermined criterion, and selects the selected transmitter. The position of the receiver may be calculated based on the estimated distances of the three transmitters.
Alternatively, the receiver measures the reception intensity of the radio wave transmitted from each of the plurality of transmitters, estimates the distance to each transmitter based on the reception intensity of each transmitter, and estimates each transmitter. Providing distance information to the positioning server, the positioning server selects, based on the information received from the receiver, three transmitters that satisfy the certainty of the estimated distance, and selects the selected three transmitters. The position of the receiver may be calculated based on the estimated distance of the transmitter.

本発明によれば、それぞれ異なる位置に設置された複数の発信機の各々から発信される電波の受信強度に基づく受信機の位置の推定を精度よく行うことができる。 According to the present invention, it is possible to accurately estimate the position of a receiver based on the reception intensity of radio waves transmitted from each of a plurality of transmitters installed at different positions.

RSSIと距離の関係を示す図である。It is a figure which shows the relationship between RSSI and distance. 三点測位法による位置推定について説明する図である。It is a figure explaining position estimation by a three-point positioning method. 推定距離が誤差を含む場合の推定位置について説明する図である。It is a figure explaining the estimated position in case an estimated distance contains an error. 基準点間の距離と推定距離の関係について説明する図である。It is a figure explaining the relationship between the distance between reference points, and an estimated distance. 推定距離の誤差検出について説明する図である。It is a figure explaining the error detection of an estimated distance. 推定距離の確からしさの検証について説明する図である。It is a figure explaining verification of certainty of an estimated distance. 本発明の一実施形態に係る測位システムの概略的な構成例を示す図である。It is a figure which shows the schematic structural example of the positioning system which concerns on one Embodiment of this invention. 図7の測位システムによる三点測位の基準点の選択フローの例を示す図である。FIG. 9 is a diagram showing an example of a selection flow of reference points for three-point positioning by the positioning system of FIG. 7.

本発明では、発信機と受信機間の推定距離の確からしさを検証し、推定距離の確からしさが十分な3つの発信機を基準点として選択する。これにより、受信機までの推定距離の誤差が小さい発信機を三点測位の基準点として選択できるので、受信機の位置の推定精度を向上させることが可能となる。例えば、図3の例において、推定距離r1 ,r2 ,r4 の確からしさが十分で、推定距離r3 の確からしさが不十分と判断できれば、P1 ,P2 ,P4 が三点測位の基準点として選択されるため、高精度で受信機の位置を推定することができる。In the present invention, the certainty of the estimated distance between the transmitter and the receiver is verified, and three transmitters with sufficient certainty of the estimated distance are selected as reference points. With this, a transmitter with a small error in the estimated distance to the receiver can be selected as a reference point for three-point positioning, so that the accuracy of estimating the position of the receiver can be improved. For example, in the example of FIG. 3, if it can be determined that the estimated distances r 1 , r 2 and r 4 are sufficient and the estimated distance r 3 is insufficient, P 1 , P 2 and P 4 are three points. Since it is selected as the positioning reference point, the position of the receiver can be estimated with high accuracy.

推定距離の確からしさは、以下のようにして検証することができる。
任意の2つの発信機a,bの設置位置をそれぞれPa ,Pb とし、それぞれの発信機と受信機間の推定距離をra ,rb とする。各推定距離ra ,rb が絶対の精度を持っていれば、Pa を中心とし且つ半径ra の円Ca と、Pb を中心とし且つ半径rb の円Cb は、必ず交点または接点を持つ。このとき、Pa とPb との距離をd(Pa ,Pb )と表すと、d(Pa ,Pb )とra ,rb は、図4に示すように、以下の関係式(1)を満たす。
|d(Pa ,Pb )−rb | ≦ ra ・・・(1)
ここで、図4において、(a)は円Ca と円Cb がPa から見てPb 側の位置に接点を有する例であり、(b)は円Ca と円Cb がPa から見てPb 側の位置に交点を有する例であり、(c)は円Ca と円Cb がPa から見てPb とは逆側の位置に交点を有する例であり、(d)は円Ca と円Cb がPa から見てPb とは逆側の位置に接点を有する例である。
The accuracy of the estimated distance can be verified as follows.
Any two transmitters a, P b installation position, respectively a, and P b, the estimated distance between the receiver and each transmitter r a, and r b. Each estimated distance r a, if you have r b is the absolute accuracy, the circle C b circle and the radius r a and centered on P a C a and, P b and the center and radius r b is always intersection Or have contacts. In this case, to represent the distance between P a and P b d (P a, P b) and, d (P a, P b) and r a, r b, as shown in FIG. 4, the following relationship Formula (1) is satisfied.
|d(P a , P b )−r b | ≦r a (1)
Here, In FIG. 4, (a) shows an example in which the circle C a and the circle C b has a contact to the position of P b side when viewed from the P a, (b) the circle C a and the circle C b is P It is an example having an intersection at a position on the P b side when viewed from a , and (c) is an example where the circle C a and the circle C b have an intersection at a position opposite to P b when viewed from P a , (D) is an example in which the circle C a and the circle C b have a contact point at a position opposite to P b when viewed from P a .

逆に関係式(1)が満たされない場合、つまり、円Ca と円Cb が、交点も接点も持たない場合は、推定距離ra ,rb のいずれか、または両方が大きな誤差を含んでいると言える。また、関係式(1)を満足しない2つの発信機の組が複数存在し、それらの組に共通に含まれる発信機があったとすると、その発信機と受信機間の推定距離には大きな誤差が含まれていると推定することができる。Conversely, if the relationship (1) is not satisfied, that is, the circle C a and the circle C b is the intersection even if that does not have contact, estimated distance r a, include either or large error both, of r b Can be said to be out. Further, if there are two sets of transmitters that do not satisfy the relational expression (1), and if there is a transmitter commonly included in those sets, a large error will occur in the estimated distance between the transmitter and the receiver. Can be presumed to be included.

例えば、図5では、円Ca は、円Cb ,Cc ,Cd のいずれとも交点や接点を持たない、つまり、2つの発信機の組(a,b),(a,c),(a,d)のいずれも関係式(1)を満たさない。この場合には、発信機aと受信機間の推定距離ra には大きな誤差が含まれていると推定される。For example, in FIG. 5, the circle C a has no intersection or contact with any of the circles C b , C c , and C d , that is, the set of two transmitters (a, b), (a, c), Neither (a, d) satisfies the relational expression (1). In this case, it is estimated that the estimated distance r a between the transmitter a and the receiver contains a large error.

本発明では、ある発信機と受信機間の推定距離の確からしさを、他の発信機と受信機間の推定距離との関係に基づいて検証する。すなわち、ある発信機と受信機間の推定距離の確からしさを、関係式(1)を満たす他の発信機が一定数以上存在するか否かによって検証する。具体的には、検証対象の発信機と他の発信機の組をN個作り、N個の発信機の組の中で関係式(1)を満たす組がM個以上の場合に、検証対象の発信機と受信機間の推定距離は確からしいと判定する。 In the present invention, the certainty of the estimated distance between a certain transmitter and the receiver is verified based on the relationship between the estimated distance between another transmitter and the receiver. That is, the certainty of the estimated distance between a certain transmitter and the receiver is verified by whether or not there are a certain number or more of other transmitters that satisfy the relational expression (1). Specifically, N sets of transmitters to be verified and other transmitters are made, and if there are M or more sets satisfying the relational expression (1) among the set of N transmitters, the verification target It is determined that the estimated distance between the transmitter and the receiver is likely.

N個の発信機の組の作り方としては、例えば、検証対象の発信機からの設置距離が近い順にN個の発信機を選び、検証対象の発信機との組を作ればよい。一般に、組数Nは、検証対象の発信機を取り囲むように配置されている発信機が選ばれるように決定すればよく、閾値Mは、Nの0.6〜0.7倍程度となるように決めれば十分であると考えられる。 As a method of forming a set of N transmitters, for example, N transmitters may be selected in the order of close installation distance from the transmitter to be verified and a set with the transmitter to be verified may be formed. Generally, the number of sets N may be determined so that a transmitter arranged so as to surround the transmitter to be verified is selected, and the threshold value M is about 0.6 to 0.7 times N. It is considered sufficient to decide.

例えば、図6のように発信機が碁盤の目状に配置されている場合には、N=8,M=5などとすればよい。実際、図6のP22が検証対象の発信機の設置位置であった場合、太線のC22は、実線の円C11,C21,C32,C33とは交わるが、点線の円C12,C13,C23,C31とは交わらないため、関係式(1)を満たすのは4組となる。この場合、関係式(1)を満たす組数(=4)は閾値M(=5)以上ではないので、P22と受信機間の推定距離は確からしくないと判断することができる。For example, when the transmitters are arranged in a grid pattern as shown in FIG. 6, N=8 and M=5 may be set. In fact, when P 22 in FIG. 6 is the installation position of the transmitter to be verified, thick line C 22 intersects with solid line circles C 11 , C 21 , C 32 , and C 33 , but dotted circle C 22. Since it does not intersect with 12 , C 13 , C 23 , and C 31 , four sets satisfy the relational expression (1). In this case, the number of sets (=4) satisfying the relational expression (1) is not greater than or equal to the threshold value M (=5), so it can be determined that the estimated distance between P 22 and the receiver is uncertain.

なお、検証対象の発信機からの設置距離が近い順にN個の発信機を選ぶのではなく、検証対象の発信機から所定範囲内に存在する他の発信機を選択するように構成してもよい。この場合は、選択された発信機の数をNとし、Nに所定割合(例えば、0.6〜0.7)を乗じた値を閾値Mとすればよい。 It should be noted that, instead of selecting N transmitters in the order of close installation distance from the verification target transmitter, other transmitters existing within a predetermined range may be selected from the verification target transmitters. Good. In this case, the number of selected transmitters may be set to N, and a value obtained by multiplying N by a predetermined ratio (for example, 0.6 to 0.7) may be set as the threshold M.

次に、三点測位の基準点となる発信機の選択方法について説明する。
まず受信機までの推定距離が全発信機の中で最小となる発信機について推定距離の確からしさを検証し、次に2番目に推定距離が小さい発信機、3番目に推定距離が小さい発信機の順序で推定距離の確からしさを検証する。仮に、推定距離が確からしくないと判定された発信機があった場合は、4番目、5番目というように、推定距離が確からしいと判定される発信機が3つになるまで繰り返し検証を行う。推定距離が確からしいと判定された発信機が3つになった場合は、それら3つの発信機を三点測位の基準点として選択する。
Next, a method of selecting a transmitter as a reference point for three-point positioning will be described.
First, the accuracy of the estimated distance is verified for the transmitter with the smallest estimated distance to the receiver, and then the transmitter with the second smallest estimated distance and the transmitter with the third smallest estimated distance. Verify the accuracy of the estimated distance in the order of. If there are transmitters for which it is determined that the estimated distance is not accurate, repeat verification is performed until the number of transmitters for which it is determined that the estimated distance is likely to be 3, such as 4th and 5th. .. If there are three transmitters for which it is determined that the estimated distance is likely, then those three transmitters are selected as the reference points for three-point positioning.

図7には、本発明の一実施形態に係る測位システムの概略的な構成例を示してある。本例の測位システムは、それぞれ異なる位置に設置された複数の発信機10と、複数の発信機の各々から発信された電波を受信する受信機20と、受信機の位置を算出する測位サーバ30とを備える。 FIG. 7 shows a schematic configuration example of the positioning system according to the embodiment of the present invention. The positioning system of this example includes a plurality of transmitters 10 installed at different positions, a receiver 20 that receives radio waves transmitted from each of the plurality of transmitters, and a positioning server 30 that calculates the positions of the receivers. With.

発信機10は、各々の発信機を一意に識別する識別情報(例えば、発信機コード)をメモリに記憶しており、該識別情報を含む無線信号を送信する。発信機10は、定期的(例えば1秒毎)に無線信号を送信してもよいし、受信機からの要求に応答して無線信号を送信してもよい。発信機10としては、無線LANアクセスポイントやBLEビーコンなどの発信機を用いることができる。 The transmitter 10 stores identification information (for example, a transmitter code) that uniquely identifies each transmitter in a memory, and transmits a wireless signal including the identification information. The transmitter 10 may transmit a radio signal periodically (for example, every second), or may transmit a radio signal in response to a request from the receiver. As the transmitter 10, a transmitter such as a wireless LAN access point or a BLE beacon can be used.

受信機20は、発信機から発信された無線信号を受信すると、その受信強度(例えば、RSSI)を測定する。発信機から発信される無線信号には発信機の識別情報が含まれるので、受信機20は発信機を識別して受信強度の測定を行うことができる。受信機20は、複数の発信機について受信強度を測定した後に、発信機別の受信強度を含む測位要求メッセージを送信する。受信機20としては、無線機やスマートフォンなどの携帯型の無線通信装置を用いることができる。 When the receiver 20 receives the wireless signal transmitted from the transmitter, the receiver 20 measures the reception strength (eg, RSSI) thereof. Since the radio signal transmitted from the transmitter includes the identification information of the transmitter, the receiver 20 can identify the transmitter and measure the reception intensity. The receiver 20 measures the reception strength of a plurality of transmitters and then transmits a positioning request message including the reception strength of each transmitter. As the receiver 20, a portable wireless communication device such as a wireless device or a smartphone can be used.

測位サーバ30は、受信機から測位要求メッセージを受信すると、そのメッセージに含まれる発信機別の受信強度に基づいて、受信機の位置を以下のようにして算出する。まず、発信機別の受信強度に基づいて、受信機と各発信機との間の距離を推定する。次に、発信機毎に、該発信機に係る推定距離と他の発信機に係る推定距離との関係に基づいて、該発信機に係る推定距離の確からしさを検証し、推定距離の確からしさが所定基準を満たす3つの発信機を三点測位の基準点として選択する。そして、選択した3つの発信機に係る推定距離に基づいて、受信機の位置を算出する。測位サーバ30は、受信機の位置を算出すると、その結果を測位要求メッセージの送信元の受信機に送信する。 When the positioning server 30 receives the positioning request message from the receiver, the positioning server 30 calculates the position of the receiver as follows based on the reception intensity of each transmitter included in the message. First, the distance between the receiver and each transmitter is estimated based on the reception intensity of each transmitter. Next, for each transmitter, the accuracy of the estimated distance related to the transmitter is verified based on the relationship between the estimated distance related to the transmitter and the estimated distance related to another transmitter, and the accuracy of the estimated distance is verified. Selects three transmitters that satisfy a predetermined criterion as reference points for three-point positioning. Then, the position of the receiver is calculated based on the estimated distances of the three selected transmitters. When the positioning server 30 calculates the position of the receiver, it sends the result to the receiver that is the sender of the positioning request message.

ここで、推定距離の確からしさを検証するためには、発信機間の距離を算出できるように各発信機の設置位置を特定する必要がある。本例では、測位サーバ30が、各発信機の設置位置の情報を予め保持しているが、これに代えて、発信機10が自身の位置情報を識別情報と共に発信し、受信機20が発信機別の受信強度と共に各発信機の位置情報を測位サーバ30に送信する構成としてもよい。 Here, in order to verify the certainty of the estimated distance, it is necessary to specify the installation position of each transmitter so that the distance between the transmitters can be calculated. In this example, the positioning server 30 holds in advance the information on the installation position of each transmitter, but instead of this, the transmitter 10 transmits its own position information together with the identification information, and the receiver 20 transmits. The position information of each transmitter may be transmitted to the positioning server 30 together with the reception strength for each device.

なお、三点測位の基準点として3つの発信機を選択したものの、依然として発信機と受信機間の推定距離が誤差を含み、三点測位の際に3つの円が1点で交わらない場合があり得る。この場合は、前述したように、例えば、3つの円が重なる領域の質量重心を推定位置とする方法や、3つの円が1点で交わるように各円の半径に同一の補正値を加える方法などを用いて、受信機の位置を算出すればよい。 Although three transmitters were selected as the reference points for three-point positioning, the estimated distance between the transmitter and receiver still contains an error, and three circles may not intersect at one point during three-point positioning. possible. In this case, as described above, for example, the method of using the mass centroid of the region where the three circles overlap as the estimated position, or the method of adding the same correction value to the radius of each circle so that the three circles intersect at one point The position of the receiver may be calculated using, for example,

図8には、三点測位の基準点の選択フローの例を示してある。図8では、受信機までの推定距離がi番目に小さい発信機の設置位置をPi,0 とし、Pi,0 からj番目に近い発信機の設置位置をPi,j とし、Pi,j と受信機間の推定距離ri,j としている。また、kは関係式(1)を満たす発信機の組数をカウントするためのカウンタであり、lは推定距離が確からしいと判定された発信機の数をカウントするためのカウンタである。FIG. 8 shows an example of a reference point selection flow for three-point positioning. In Figure 8, the estimated distance to the receiver the installation position of the i-th small transmitter and P i, 0, and from P i, 0 the installation position of the transmitter closer to the j-th P i, and j, P i ,j and the estimated distance r i,j between the receiver. Further, k is a counter for counting the number of transmitter sets satisfying the relational expression (1), and l is a counter for counting the number of transmitters determined to have a certain estimated distance.

図8に沿って、測位サーバ30による三点測位の基準点の選択手順を説明する。
まず、i=1,l=0で初期化を行う(S001)。
次に、j=1,k=0で初期化を行う(S002)。
受信機までの推定距離がi番目に小さい発信機とその発信機からj番目に近い発信機の組が以下の関係式(2)を満たすかを判定し(S003)、関係式(2)を満たす場合のみカウンタkをカウントアップする(S004)。
|d(Pi,0 ,Pi,j )−ri,j | ≦ ri,0 ・・・(2)
S003〜S004をj=1〜Nについて繰り返し実施し(S005,S006)、その後、推定距離ri,0 の確からしさが十分か、つまり、カウンタkがM以上であるかを判定する(S007)。k≧Mであれば、受信機までの推定距離がi番目に小さい発信機の設置位置Pi,0 を三点測位の基準点として選択し(S008)、カウンタlをカウントアップする(S009)。
カウンタl(三点測位の基準点として選択された発信機の数)が3になるまで、iをインクリメントしながらS002〜S009を繰り返し実施する(S010,S011)。
A procedure for selecting a reference point for three-point positioning by the positioning server 30 will be described with reference to FIG.
First, initialization is performed with i=1 and l=0 (S001).
Next, initialization is performed with j=1 and k=0 (S002).
It is determined whether the set of the transmitter having the i-th smallest estimated distance to the receiver and the transmitter closest to the j-th transmitter from the transmitter satisfies the following relational expression (2) (S003), and the relational expression (2) is calculated. Only when it is satisfied, the counter k is incremented (S004).
|d(P i,0 , P i,j )−r i,j | ≦r i,0 (2)
S003 to S004 are repeatedly performed for j=1 to N (S005, S006), and then it is determined whether the estimated distance r i,0 is sufficiently certain, that is, whether the counter k is M or more (S007). .. If k≧M, the transmitter installation position P i,0 whose estimated distance to the receiver is the i-th smallest is selected as a reference point for three-point positioning (S008), and the counter 1 is counted up (S009). ..
Until the counter l (the number of transmitters selected as the reference point for three-point positioning) reaches 3, S002 to S009 are repeatedly performed while incrementing i (S010, S011).

以上の手順で三点測位の基準点の選択を行うことで、受信機までの推定距離が確からしい発信機のみを三点測位の基準点に選択することができる。これらの発信機と受信機間の推定距離に含まれる誤差は小さいため、結果として、受信機の推定位置に含まれる誤差も小さくなることが期待できる。 By selecting the reference point for the three-point positioning in the above procedure, only the transmitter whose estimated distance to the receiver is likely can be selected as the reference point for the three-point positioning. Since the error included in the estimated distance between the transmitter and the receiver is small, it can be expected that the error included in the estimated position of the receiver will also be small as a result.

以上のように、本例の測位システムは、それぞれ異なる位置に設置された複数の発信機10と、複数の発信機の各々から発信された電波を受信する受信機20と、受信機における電波の受信強度に基づいて、受信機と各発信機との間の距離を推定し、複数の発信機のうちの3つの発信機に係る推定距離に基づいて、受信機の位置を算出する測位サーバ30とを備える。そして、測位サーバ30が、発信機毎に、該発信機に係る推定距離と他の発信機に係る推定距離との関係に基づいて、該発信機に係る推定距離の確からしさを検証し、推定距離の確からしさが所定基準を満たす発信機を3つ選択し、当該選択した3つの発信機に係る推定距離に基づいて、受信機の位置を算出する構成となっている。 As described above, the positioning system of the present example has a plurality of transmitters 10 installed at different positions, a receiver 20 that receives radio waves transmitted from each of the plurality of transmitters, and a radio wave of the receiver. A positioning server 30 that estimates the distance between the receiver and each transmitter based on the reception intensity and calculates the position of the receiver based on the estimated distances related to three transmitters of the plurality of transmitters. With. Then, the positioning server 30 verifies, for each transmitter, the accuracy of the estimated distance related to the transmitter based on the relationship between the estimated distance related to the transmitter and the estimated distance related to another transmitter. The configuration is such that three transmitters whose accuracy of distance satisfies a predetermined standard are selected, and the position of the receiver is calculated based on the estimated distances of the selected three transmitters.

より具体的には、測位サーバ30は、複数の発信機のそれぞれについて、該発信機の設置位置を中心とし且つ該発信機に係る推定距離を半径とした円を仮定し、検証対象の発信機に係る円が他の発信機に係る円と交点または接点を有するか否かを判定し、検証対象の発信機に係る円と交点または接点を有する円を持つ他の発信機の数が閾値以上の場合に、検証対象の発信機に係る推定距離の確からしさが所定基準を満たすと判定する構成となっている。
このような構成により、各発信機に係る推定距離と他の複数の発信機に係る推定距離との関係に基づいて、受信機までの推定距離の誤差が小さい発信機を三点測位の基準点に選択できるので、受信機の位置の推定を精度よく行うことが可能となる。
More specifically, the positioning server 30 assumes, for each of the plurality of transmitters, a circle centered on the installation position of the transmitter and having an estimated distance related to the transmitter as a radius, and the transmitter to be verified. It is determined whether or not the circle related to 1 has an intersection or a contact with a circle related to another transmitter, and the number of other transmitters having a circle that has an intersection or a contact with the circle related to the transmitter to be verified is equal to or greater than a threshold value. In this case, the certainty of the estimated distance of the transmitter to be verified is determined to satisfy a predetermined standard.
With such a configuration, based on the relationship between the estimated distance related to each transmitter and the estimated distance related to a plurality of other transmitters, a transmitter having a small error in the estimated distance to the receiver is set as a reference point for three-point positioning. Since it can be selected as, it is possible to accurately estimate the position of the receiver.

ここで、上記の例では、測位サーバ30は、検証対象の発信機からの距離が近い順にN個の他の発信機を選択し、当該選択した他の発信機に係る円について交点または接点の判定を行う構成となっているが、他の構成によっても本発明を実現することができる。すなわち、別の例として、測位サーバ30は、検証対象の発信機からの距離が所定値以内の他の発信機を選択し、当該選択した他の発信機に係る円について前記交点または接点の判定を行う構成としてもよい。いずれの構成においても、選択した他の発信機の数に所定割合を乗じた値を、閾値Mとして用いることができる。なお、閾値Mは、他の方法により決定してもよいことは言うまでもない。 Here, in the above example, the positioning server 30 selects N other transmitters in ascending order of the distance from the transmitter to be verified, and determines the intersections or contact points of the circles related to the selected other transmitters. Although the configuration is such that determination is performed, the present invention can be implemented by other configurations. That is, as another example, the positioning server 30 selects another transmitter whose distance from the transmitter to be verified is within a predetermined value, and determines the intersection or the contact point with respect to the circle related to the selected other transmitter. It may be configured to perform. In any of the configurations, a value obtained by multiplying the number of other selected transmitters by a predetermined ratio can be used as the threshold M. Needless to say, the threshold value M may be determined by another method.

また、上記の例では、測位サーバ30は、推定距離が小さい発信機から順に、該発信機に係る推定距離の確からしさを検証し、推定距離の確からしさが所定基準を満たす発信機を3つ選択できた段階で、当該選択した3つの発信機に係る推定距離に基づいて、前記受信機の位置を算出する構成となっている。このような構成により、三点測位の基準点となる発信機の選択を効率よく行うことができる。 Further, in the above example, the positioning server 30 verifies the accuracy of the estimated distance related to the transmitter in order from the transmitter with the smallest estimated distance, and determines the three transmitters with which the accuracy of the estimated distance satisfies the predetermined criterion. At the stage of selection, the position of the receiver is calculated based on the estimated distances of the three selected transmitters. With such a configuration, it is possible to efficiently select a transmitter that serves as a reference point for three-point positioning.

また、上記の例では、受信機20が、複数の発信機の各々から発信された電波の受信強度を測定し、発信機毎の受信強度の情報を測位サーバへ提供し、測位サーバ30が、受信機から受信した情報に基づいて、受信機と各発信機との間の距離を推定し、推定距離の確からしさが所定基準を満たす発信機を3つ選択し、当該選択した3つの発信機に係る推定距離に基づいて、受信機の位置を算出しているが、他の構成によっても本発明を実現することができる。すなわち、別の例として、受信機20が、複数の発信機の各々から発信された電波の受信強度を測定し、発信機毎の受信強度に基づいて各発信機までの距離を推定し、発信機毎の推定距離の情報を測位サーバへ提供し、測位サーバ30が、受信機から受信した情報に基づいて、推定距離の確からしさが所定基準を満たす発信機を3つ選択し、当該選択した3つの発信機に係る推定距離に基づいて、受信機の位置を算出する構成としてもよい。 Further, in the above example, the receiver 20 measures the reception intensity of the radio wave transmitted from each of the plurality of transmitters, provides the information of the reception intensity of each transmitter to the positioning server, and the positioning server 30 Based on the information received from the receiver, the distance between the receiver and each transmitter is estimated, three transmitters satisfying the certainty of the estimated distance are selected, and the selected three transmitters are selected. Although the position of the receiver is calculated based on the estimated distance according to the above, the present invention can be realized by other configurations. That is, as another example, the receiver 20 measures the reception intensity of the radio wave transmitted from each of the plurality of transmitters, estimates the distance to each transmitter based on the reception intensity of each transmitter, and transmits the signal. Information on the estimated distance for each machine is provided to the positioning server, and based on the information received from the receiver, the positioning server 30 selects three transmitters whose certainty of the estimated distance satisfies a predetermined criterion, and selects the transmitter. The position of the receiver may be calculated based on the estimated distances of the three transmitters.

ここで、別の構成例として、測位サーバ30を用いずに、受信機20が独自に自身の位置を推定する構成としてもよい。すなわち、受信機20が、発信機毎に、該発信機に係る推定距離と他の発信機に係る推定距離との関係に基づいて、該発信機に係る推定距離の確からしさを検証し、推定距離の確からしさが所定基準を満たす発信機を3つ選択し、当該選択した3つの発信機に係る推定距離に基づいて、自身の位置を算出する構成としてもよい。 Here, as another configuration example, the receiver 20 may independently estimate its own position without using the positioning server 30. That is, the receiver 20 verifies, for each transmitter, the accuracy of the estimated distance related to the transmitter based on the relationship between the estimated distance related to the transmitter and the estimated distance related to another transmitter. A configuration may be adopted in which three transmitters whose certainty of distance satisfies a predetermined criterion are selected, and the position of itself is calculated based on the estimated distances of the selected three transmitters.

なお、本発明に係るシステムや装置などの構成としては、必ずしも以上に示したものに限られず、種々な構成が用いられてもよい。
また、本発明は、上述した処理を実行する方法や方式、そのような方法や方式を実現するためのプログラム、そのプログラムを記憶する記憶媒体などとして提供することも可能である。
The configurations of the system and the device according to the present invention are not necessarily limited to those described above, and various configurations may be used.
The present invention can also be provided as a method or method for executing the above-described processing, a program for realizing such a method or method, a storage medium storing the program, or the like.

本発明は、それぞれ異なる位置に設置された複数の発信機の各々から発信される電波の受信機による受信強度に基づいて受信機の位置を推定する測位システムに利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used in a positioning system that estimates the position of a receiver based on the reception intensity of a radio wave transmitted from each of a plurality of transmitters installed at different positions.

10:発信機、 20:受信機、 30:測位サーバ 10: transmitter, 20: receiver, 30: positioning server

Claims (7)

それぞれ異なる位置に設置された複数の発信機と、前記複数の発信機の各々から発信された電波を受信する受信機と、前記受信機における電波の受信強度に基づいて、前記受信機と各発信機との間の距離を推定し、前記複数の発信機のうちの3つの発信機に係る推定距離に基づいて、前記受信機の位置を算出する測位サーバとを備えた測位システムにおいて、
前記測位サーバは、発信機毎に、該発信機に係る推定距離と他の発信機に係る推定距離との関係に基づいて、該発信機に係る推定距離の確からしさを検証する検証処理を行って、推定距離の確からしさが所定基準を満たす発信機を3つ選択し、当該選択した3つの発信機に係る推定距離に基づいて、前記受信機の位置を算出し、
前記検証処理では、前記複数の発信機のそれぞれについて、該発信機の設置位置を中心とし且つ該発信機に係る推定距離を半径とした円を仮定し、検証対象の発信機に係る円が他の発信機に係る円と交点または接点を有するか否かを判定し、検証対象の発信機に係る円と交点または接点を有する円を持つ他の発信機の数が閾値以上の場合に、検証対象の発信機に係る推定距離の確からしさが所定基準を満たすと判定することを特徴とする測位システム。
A plurality of transmitters installed at different positions, a receiver that receives the radio waves transmitted from each of the plurality of transmitters, and the receiver and each transmitter based on the reception intensity of the radio waves at the receiver. In a positioning system including a positioning server that estimates a distance between the receiver and a transmitter based on estimated distances related to three transmitters of the plurality of transmitters,
The positioning server performs, for each transmitter, a verification process for verifying the certainty of the estimated distance related to the transmitter based on the relationship between the estimated distance related to the transmitter and the estimated distance related to another transmitter. Then , three transmitters whose probability of estimation distance satisfies a predetermined criterion are selected, and the position of the receiver is calculated based on the estimated distances of the three selected transmitters .
In the verification process, for each of the plurality of transmitters, a circle centered on the installation position of the transmitter and having an estimated distance related to the transmitter as a radius is assumed, and the circle related to the transmitter to be verified is different. If the number of other transmitters that have a circle that has an intersection or a contact point with the circle of the transmitter to be verified is greater than or equal to a threshold value, the verification is performed. A positioning system, characterized in that the certainty of the estimated distance of the target transmitter is determined to satisfy a predetermined standard .
請求項に記載の測位システムにおいて、
前記測位サーバは、検証対象の発信機からの距離が近い順に所定数の他の発信機を選択し、当該選択した他の発信機に係る円について前記交点または接点の判定を行い、前記閾値として、前記所定数に所定割合を乗じた値を用いることを特徴とする測位システム。
The positioning system according to claim 1 ,
The positioning server selects a predetermined number of other transmitters in ascending order of distance from the transmitter to be verified, determines the intersection or contact point with respect to a circle related to the selected other transmitter, and determines the threshold value as the threshold value. A positioning system using a value obtained by multiplying the predetermined number by a predetermined ratio.
請求項に記載の測位システムにおいて、
前記測位サーバは、検証対象の発信機からの距離が所定値以内の他の発信機を選択し、当該選択した他の発信機に係る円について前記交点または接点の判定を行い、前記閾値として、前記選択した他の発信機の数に所定割合を乗じた値を用いることを特徴とする測位システム。
In the positioning system according to claim 1 ,
The positioning server selects another transmitter whose distance from the transmitter to be verified is within a predetermined value, determines the intersection or the contact point with respect to the circle related to the other selected transmitter, and as the threshold value, A positioning system, wherein a value obtained by multiplying the number of the selected other transmitters by a predetermined ratio is used.
請求項1乃至のいずれかに記載の測位システムにおいて、
前記測位サーバは、推定距離が小さい発信機から順に、該発信機に係る推定距離の確からしさを検証し、推定距離の確からしさが所定基準を満たす発信機を3つ選択できた段階で、当該選択した3つの発信機に係る推定距離に基づいて、前記受信機の位置を算出することを特徴とする測位システム。
The positioning system according to any one of claims 1 to 3 ,
The positioning server verifies the accuracy of the estimated distance related to the transmitter in order from the transmitter with the smallest estimated distance, and when the three transmitters with which the accuracy of the estimated distance satisfies a predetermined criterion can be selected, A positioning system, wherein the position of the receiver is calculated based on the estimated distances of the three selected transmitters.
請求項1乃至のいずれかに記載の測位システムにおいて、
前記受信機は、前記複数の発信機の各々から発信された電波の受信強度を測定し、発信機毎の受信強度の情報を前記測位サーバへ提供し、
前記測位サーバは、前記受信機から受信した情報に基づいて、前記受信機と各発信機との間の距離を推定し、推定距離の確からしさが所定基準を満たす発信機を3つ選択し、当該選択した3つの発信機に係る推定距離に基づいて、前記受信機の位置を算出することを特徴とする測位システム。
The positioning system according to any one of claims 1 to 4 ,
The receiver measures the reception intensity of radio waves transmitted from each of the plurality of transmitters, and provides the positioning server with information on the reception intensity of each transmitter.
The positioning server estimates the distance between the receiver and each transmitter based on the information received from the receiver, and selects three transmitters whose certainty of the estimated distance satisfies a predetermined criterion, A positioning system, wherein the position of the receiver is calculated based on the estimated distances of the three selected transmitters.
請求項1乃至のいずれかに記載の測位システムにおいて、
前記受信機は、前記複数の発信機の各々から発信された電波の受信強度を測定し、発信機毎の受信強度に基づいて各発信機までの距離を推定し、発信機毎の推定距離の情報を前記測位サーバへ提供し、
前記測位サーバは、前記受信機から受信した情報に基づいて、推定距離の確からしさが所定基準を満たす発信機を3つ選択し、当該選択した3つの発信機に係る推定距離に基づいて、前記受信機の位置を算出することを特徴とする測位システム。
The positioning system according to any one of claims 1 to 4 ,
The receiver measures the reception intensity of the radio waves transmitted from each of the plurality of transmitters, estimates the distance to each transmitter based on the reception intensity of each transmitter, and calculates the estimated distance of each transmitter. Providing information to the positioning server,
The positioning server selects, based on the information received from the receiver, three transmitters whose certainty of the estimated distance satisfies a predetermined criterion, and based on the estimated distances of the three selected transmitters, A positioning system characterized by calculating the position of a receiver.
それぞれ異なる位置に設置された複数の発信機の各々から発信された電波の受信機による受信強度に基づいて、前記受信機と各発信機との間の距離を推定し、前記複数の発信機のうちの3つの発信機に係る推定距離に基づいて、前記受信機の位置を算出する測位方法において、
発信機毎に、該発信機に係る推定距離と他の発信機に係る推定距離との関係に基づいて、該発信機に係る推定距離の確からしさを検証する検証処理を行って、推定距離の確からしさが所定基準を満たす発信機を3つ選択し、当該選択した3つの発信機に係る推定距離に基づいて、前記受信機の位置を算出し、
前記検証処理では、前記複数の発信機のそれぞれについて、該発信機の設置位置を中心とし且つ該発信機に係る推定距離を半径とした円を仮定し、検証対象の発信機に係る円が他の発信機に係る円と交点または接点を有するか否かを判定し、検証対象の発信機に係る円と交点または接点を有する円を持つ他の発信機の数が閾値以上の場合に、検証対象の発信機に係る推定距離の確からしさが所定基準を満たすと判定することを特徴とする測位方法。
The distance between the receiver and each transmitter is estimated based on the reception intensity by the receiver of the radio wave transmitted from each of the plurality of transmitters installed at different positions. In the positioning method for calculating the position of the receiver based on the estimated distances of the three transmitters,
For each transmitter, based on the relationship between the estimated distance related to the transmitter and the estimated distance related to another transmitter, a verification process for verifying the certainty of the estimated distance related to the transmitter is performed to calculate the estimated distance. Select three transmitters whose certainty satisfies a predetermined criterion, and calculate the position of the receiver based on the estimated distances of the three selected transmitters ,
In the verification process, for each of the plurality of transmitters, a circle centered on the installation position of the transmitter and having an estimated distance related to the transmitter as a radius is assumed, and the circle related to the transmitter to be verified is different. If the number of other transmitters that have a circle that has an intersection or a contact point with the circle of the transmitter to be verified is greater than or equal to a threshold value, the verification is performed. A positioning method, characterized in that the certainty of the estimated distance related to the target transmitter is determined to satisfy a predetermined criterion .
JP2019559956A 2017-12-21 2017-12-21 Positioning system, positioning method and receiver Active JP6740488B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045892 WO2019123599A1 (en) 2017-12-21 2017-12-21 Positioning system, positioning method, and receiver

Publications (2)

Publication Number Publication Date
JP6740488B2 true JP6740488B2 (en) 2020-08-12
JPWO2019123599A1 JPWO2019123599A1 (en) 2020-09-24

Family

ID=66994188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019559956A Active JP6740488B2 (en) 2017-12-21 2017-12-21 Positioning system, positioning method and receiver

Country Status (2)

Country Link
JP (1) JP6740488B2 (en)
WO (1) WO2019123599A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7286572B2 (en) * 2020-03-09 2023-06-05 株式会社東芝 wireless communication system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252622A (en) * 1998-03-05 1999-09-17 Toshiba Corp Position information detection system
JP2001359146A (en) * 2000-06-14 2001-12-26 Nippon Telegr & Teleph Corp <Ntt> Detection method for position of wireless mobile terminal
JP2002142246A (en) * 2000-11-01 2002-05-17 Nec Corp Position information service presentation system and method of mobile terminal
JP4026561B2 (en) * 2003-07-11 2007-12-26 住友金属工業株式会社 Automatic report system using mobile communication system, portable terminal used in the system, portable terminal position specifying system, and portable terminal position specifying method
JP4982773B2 (en) * 2007-03-26 2012-07-25 学校法人慶應義塾 Position estimation system and program
JP2010122125A (en) * 2008-11-20 2010-06-03 Brother Ind Ltd Mobile station positioning method, positioning base station selecting method and mobile station positioning system
JP5366694B2 (en) * 2009-07-29 2013-12-11 京セラ株式会社 Method for selecting portable radio terminal and base station
KR101260647B1 (en) * 2011-08-19 2013-05-06 서울대학교산학협력단 Wireless localization method based on an efficient multilateration algorithm over a wireless sensor network and a recording medium in which a program for the method is recorded
CN105954717B (en) * 2016-04-22 2019-04-02 上海潘氏投资管理有限公司 Location acquiring method and device

Also Published As

Publication number Publication date
JPWO2019123599A1 (en) 2020-09-24
WO2019123599A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
US11051267B2 (en) Channel latency determining method, positioning method, and related device
KR101260647B1 (en) Wireless localization method based on an efficient multilateration algorithm over a wireless sensor network and a recording medium in which a program for the method is recorded
US8994590B2 (en) Wi-Fi position fix
JP5048021B2 (en) Building influence estimation apparatus and building influence estimation method
TW201329486A (en) Positioning method
US9660740B2 (en) Signal strength distribution establishing method and wireless positioning system
CN111050275B (en) Bluetooth positioning method based on RSSI characteristic value
JP2012100153A (en) Radio wave propagation characteristic estimation system, radio wave propagation characteristic estimation method, and computer program
Obreja et al. Evaluation of an indoor localization solution based on bluetooth low energy beacons
CN102472810B (en) Method for calibrating a propagation-time-based localization system
JP6740488B2 (en) Positioning system, positioning method and receiver
Rahman et al. Paired measurement localization: a robust approach for wireless localization
US9939516B2 (en) Determining location and orientation of directional transceivers
EP2761322A1 (en) Using measured angular coordinates of an object relative to a directional transceiver
Lasla et al. Area-based vs. multilateration localization: A comparative study of estimated position error
JP2013506144A (en) Wireless positioning method
JP2009210408A (en) Wireless system and its location identification method
Kim et al. Exploiting ultrasonic reflections for improving accuracy of indoor location tracking
JP2016524699A (en) Method for determining position-location using a high reliability range and related systems and devices
EP4314857A1 (en) Methods for positioning a wireless device, a related wireless node and a related location network node
US20220248183A1 (en) Location estimation apparatus, location estimation method, and non-transitory computer readable medium storing program for location estimation
Saad et al. At-angle: A distributed method for localization using angles in sensor networks
CN107885208B (en) Robot positioning method and system and robot
Wang et al. Arpap: A novel antenna-radiation-pattern-aware power-based positioning in rf system
Lee et al. The method of location error detection and correcting in smart home environments

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200612

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200612

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200722

R150 Certificate of patent or registration of utility model

Ref document number: 6740488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250