JP6739739B2 - Particle sorting method and particle sorting apparatus for carrying out the method - Google Patents

Particle sorting method and particle sorting apparatus for carrying out the method Download PDF

Info

Publication number
JP6739739B2
JP6739739B2 JP2016045042A JP2016045042A JP6739739B2 JP 6739739 B2 JP6739739 B2 JP 6739739B2 JP 2016045042 A JP2016045042 A JP 2016045042A JP 2016045042 A JP2016045042 A JP 2016045042A JP 6739739 B2 JP6739739 B2 JP 6739739B2
Authority
JP
Japan
Prior art keywords
liquid
particles
flow
transfer
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016045042A
Other languages
Japanese (ja)
Other versions
JP2017159225A (en
Inventor
弘道 小原
弘道 小原
恭 宮永
恭 宮永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2016045042A priority Critical patent/JP6739739B2/en
Publication of JP2017159225A publication Critical patent/JP2017159225A/en
Application granted granted Critical
Publication of JP6739739B2 publication Critical patent/JP6739739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、粒子分別装置及び粒子分別方法に関し、さらに詳しくは、多数の粒子をその粒径や凝集度ならびに密度に応じて精度よく、迅速に、且つ簡易簡便に分別することのできる粒子分別装置及び粒子分別方法に関するものである。 The present invention relates to a particle sorting apparatus and a particle sorting method, and more specifically, a particle sorting apparatus capable of sorting a large number of particles accurately, quickly, simply and simply in accordance with the particle size, the degree of aggregation and the density. And a method for separating particles.

粒子を各種要因、例えば密度、凝集状態、粒径等をもって分別する技術は種々提案されている。
例えば、特許文献1には、粒子の沈降速度の相違を利用した技術として、原水11と凝集剤とが投入される第1の凝集槽と、第1の凝集槽の下流に連通して配置された第1の凝集槽より大きな内容積を有する第2の凝集槽と、第2の凝集槽で成長したフロックを分別する沈降分離槽と、沈降分離槽で分離された処理液を沈静させる最終沈静槽の最低4個の槽を一体として形成した装置が提案されている。
また、特許文献2には、遠心力を利用した技術として、基台と、基台上で回転する円盤型容器と、懸濁液供給タンクを有し、円盤型容器は、その回転中心の周囲に周方向に等間隔で配設された複数の扇形遠心分離槽と、粒子供給筒を備え、複数の扇形遠心分離槽は、それぞれ周側壁と底壁とから成り互いに独立したくぼみとして形成されており、粒子供給筒は、前記円盤型容器の中心部から前記扇形遠心分離槽に向けて前記懸濁液を放出するように設けられており、懸濁液供給タンクから供給される懸濁液に含まれる粒子を遠心分離槽の外側壁の内面に周方向に区画され複数の粒子回収ポケットに分別するように形成された装置が提案されている。
Various techniques have been proposed for separating particles according to various factors such as density, agglomeration state, and particle size.
For example, in Patent Document 1, as a technique utilizing the difference in the sedimentation velocity of particles, a first coagulation tank into which raw water 11 and a coagulant are introduced and a downstream of the first coagulation tank are placed in communication with each other. A second flocculation tank having a larger internal volume than the first flocculation tank, a settling separation tank for separating flocs grown in the second coagulation tank, and a final settling for calming the treatment liquid separated in the settling separation tank An apparatus has been proposed in which at least four tanks are integrally formed.
Further, in Patent Document 2, as a technique utilizing centrifugal force, a base, a disk-shaped container that rotates on the base, and a suspension supply tank are provided, and the disk-shaped container surrounds the center of rotation. A plurality of fan-shaped centrifuge tanks arranged at equal intervals in the circumferential direction, and a particle supply tube, and the plurality of fan-shaped centrifuge tanks are each formed of a peripheral side wall and a bottom wall and are formed as recesses independent of each other. The particle supply cylinder is provided so as to discharge the suspension from the center of the disk-shaped container toward the fan-shaped centrifugal separation tank, and the suspension is supplied from the suspension supply tank. An apparatus has been proposed in which the particles contained therein are circumferentially partitioned on the inner surface of the outer wall of the centrifuge tank and are configured to be separated into a plurality of particle collection pockets.

特開2000−140510号公報JP, 2000-140510, A 特開2006−239678号公報JP, 2006-239678, A

Enosawa, S.; et.al., Hepatocyte transplantation using the living donor reduced-graft in a baby with ornithine transcarbamylase deficiency: A novel source for hepatocytes. Liver Transplantation. 20,391-393, 2014Enosawa, S.; et.al., Hepatocyte transplantation using the living donor reduced-graft in a baby with ornithine transcarbamylase deficiency: A novel source for hepatocytes. Liver Transplantation. 20,391-393, 2014 Sandi Sufiandi, Hiromichi Obara, Shin Enosawa, et.al., Improvement of infusion process in cell transplantation: Effect of shear stress on hepatocyte viability under horizontal and vertical syringe orientation., Cell Medicine, Vol. 7, pp. 59〜66, 2015Sandi Sufiandi, Hiromichi Obara, Shin Enosawa, et.al., Improvement of infusion process in cell transplantation: Effect of shear stress on hepatocyte viability under horizontal and vertical syringe orientation., Cell Medicine, Vol. 7, pp. 59-66, 2015

しかしながら、特許文献1及び2における提案では、未だに分別操作が煩雑であり、また十分に要求されているレベルでの分別ができないという問題があった。
たとえば、粒子として細胞粒子の分別も産業界で強く求められている。その背景は、再生医療技術の発達や免疫研究などの進展により、骨髄や膵島、肝蔵細胞などを体内に血管などを通じて移植する細胞治療への期待が高いことによる。特に、肝細胞移植に関しては、先天的な肝臓疾患の新生児に対する治療として国内初の臨床研究報告がなされており(非特許文献1)、将来的にはES細胞・iPS細胞利用への展開としても期待が高い。しかしながら研究用として利用されているガン細胞由来の実験用細胞に比べて、細胞移植に用いられる細胞は、非常に弱く、利用可能な細胞の量に限りがある。
特に国内では、膵島は膵臓移植不適合臓器から、肝臓実質細胞は乳幼児に対する生体肝移植時の残余肝臓から、細胞を分離し移植医療に用いられており、高機能な細胞を高効率に確保することが大きな課題となっている。このため細胞粒子を分別することが必要である。通常細胞移植用の細胞粒子は、摘出臓器内に組織分解酵素液を灌流し溶解し、分散・抽出することで取得される。しかし、この一連の工程で多くの細胞が機能を失い、また喪失され、細管を用い細胞分散液を移植先の肝臓の流入血管の一つである門脈などから輸液とともに移植する際にも非常に多くの細胞が喪失することが知られている(非特許文献2)。このような背景から、いかに細胞の機能を維持し、細胞を破壊・喪失せずに取りあつかうかが重要であると共に、機能を喪失した細胞粒子と機能的な細胞粒子とを如何にして分別するかという観点での技術開発が重要であり、これらを克服するための技術、特に、細胞分散液をやさしく、積極的に連続的に操作し、機能的な細胞粒子と非機能的な細胞粒子とを効率用分別するための基礎技術の確立が求められている。
以上のような観点から、多数の粒子をその粒径や凝集度に応じて精度よく、迅速に、且つ簡易簡便に分別することのできる粒子の分別方法の開発が要望されている。
However, the proposals in Patent Documents 1 and 2 have a problem that the sorting operation is still complicated and the sorting cannot be performed at a sufficiently required level.
For example, separation of cell particles as particles is also strongly demanded in the industry. The reason for this is that due to the development of regenerative medicine technology and the progress of immunological research, there is a high expectation for cell therapy in which bone marrow, pancreatic islets, and liver cells are transplanted into the body through blood vessels. In particular, regarding hepatocyte transplantation, the first clinical research report in Japan as a treatment for newborn infants with congenital liver disease has been made (Non-patent Document 1), and in the future as a development to ES cell/iPS cell utilization. Expectations are high. However, compared to the cancer cell-derived experimental cells used for research, the cells used for cell transplantation are extremely weak and the available amount of cells is limited.
Particularly in Japan, islets are used for transplantation medical treatment by separating cells from incompatible organs of pancreas transplantation and liver parenchymal cells from residual liver at the time of living liver transplantation for infants, and securing highly functional cells with high efficiency. Is a big issue. Therefore, it is necessary to separate the cell particles. Usually, the cell particles for cell transplantation are obtained by perfusing a tissue-degrading enzyme solution into the excised organ, dissolving it, and dispersing/extracting it. However, many cells lose their functions and are lost in this series of steps, and it is also very useful when the cell dispersion is transplanted together with the infusion solution from the portal vein, which is one of the inflowing blood vessels of the liver of the transplant destination, using the tubule. It is known that many cells are lost (Non-Patent Document 2). Against this background, it is important how to maintain the function of cells and deal with them without destroying or losing them, and how to separate cell particles that have lost function from functional cell particles. It is important to develop technology from such a viewpoint, and to overcome these problems, in particular, to gently and positively continuously operate the cell dispersion liquid to obtain functional cell particles and non-functional cell particles. It is required to establish the basic technology for efficient and efficient sorting.
From the above viewpoints, there has been a demand for the development of a particle separation method capable of separating a large number of particles accurately, quickly, simply and simply according to the particle size and the degree of aggregation.

したがって、本発明の目的は、多数の粒子をその密度,粒径や凝集度に応じて精度よく、迅速に、且つ簡易簡便に分別することのできる粒子の分別方法及び分別装置を提供することにある。 Therefore, an object of the present invention is to provide a particle sorting method and a sorting apparatus capable of sorting a large number of particles accurately, quickly, simply and simply according to their density, particle size and degree of aggregation. is there.

本発明者らは、上記課題を解消すべく鋭意検討した結果、多数の細胞粒子が存在する細胞培養液などの粒子分散流体と細胞・溶液に対して密度の高い流体間に形成される液液界面を活用すれば序器課題を解消し得ると考え、この液液界面を活用する手法について種々検討した結果、液液界面を有する液液2相流体を用いて、曲がり管内に誘起される二次流れを積極的に用いれば、細胞粒子を破壊することなく、上記目的を達成し得ることを知見し、本発明を完成するに至った。
すなわち、本発明は以下の各発明を提供するものである。
1.多数の粒子を分別する粒子分別装置であって、
上記の多数の粒子と、第1の流液と、該第1の流液とは不溶性であり、且つ密度の異なる第2の流液とが投入可能であり、これらを所定割合で有する移送用液を移送するために保持する移送準備部、
上記移送用液を流通させる流通路からなり、該流通路が所定の湾曲形状を有する湾曲体である分別部、及び
上記流通路に連結されており、分別された粒子を分別区分ごとに収集する収集部
を具備する粒子分別装置。
2.多数の粒子を分別する粒子分別方法であって、
上記の多数の粒子と、第1の流液と、該第1の流液とは不溶性であり、且つ密度の異なる第2の流液とを所定割合で有する移送用液を調整する移送準備工程、
上記移送用液を流通させる流通路であって、管状であり、所定の湾曲形状を有する湾曲体である流通路に上記移送用液を流通させて粒子の分別を行う分別工程、及び
分別された粒子を分別区分ごとに収集する収集工程を具備する粒子分別方法。
3.上記粒子が細胞粒子であり、上記分別工程は、該細胞粒子を生きている細胞と死滅した細胞とに分別する工程であって、密度の差、及び/又は粒子の大きさの差により分別する工程である2記載の粒子分別方法。
As a result of intensive studies to solve the above problems, the present inventors have found that a liquid-liquid formed between a particle-dispersed fluid such as a cell culture solution containing a large number of cell particles and a fluid having a high density for cells/solutions. It is thought that the interface problem can be solved by utilizing the interface, and as a result of various studies on the method of utilizing the liquid-liquid interface, the two-phase fluid induced by the liquid-liquid two-phase fluid having the liquid-liquid interface is induced in the curved pipe. It was found that the above object can be achieved without destroying the cell particles by positively using the secondary flow, and the present invention has been completed.
That is, the present invention provides each of the following inventions.
1. A particle sorting apparatus for sorting a large number of particles,
A large number of particles described above, the first flow liquid, and a second flow liquid insoluble in the first flow liquid and having different densities can be added, and have a predetermined ratio of these particles for transfer. A transfer preparation unit that holds the liquid for transfer,
A flow passage for circulating the transfer liquid, the flow passage being a curved body having a predetermined curved shape, and a separation unit connected to the flow passage, and the separated particles are collected for each separation section. A particle sorting apparatus having a collecting unit.
2. A particle separation method for separating a large number of particles,
A transfer preparation step for adjusting a transfer liquid having a large number of particles, a first flow liquid, and a second flow liquid insoluble in the first flow liquid and having different densities at a predetermined ratio. ,
A separation step of circulating the transfer liquid in a flow path which is a tubular body having a curved shape having a predetermined curved shape for separating the particles, and a separation step of separating particles. A method for separating particles, comprising a collecting step of collecting particles for each separation section.
3. The particles are cell particles, and the sorting step is a step of sorting the cell particles into living cells and dead cells, and the cells are sorted according to a difference in density and/or a difference in particle size. The method for separating particles according to 2, which is a step.

本発明の分別装置は、多数の粒子をその粒径や凝集度に応じて精度よく、迅速に、且つ簡易簡便に分別することのできるものである。
また、本発明の分別方法は、多数の粒子をその粒径や凝集度に応じて精度よく、迅速に、且つ簡易簡便に分別することができる。
The sorting apparatus of the present invention is capable of sorting a large number of particles accurately, quickly, simply and simply according to the particle size and the degree of aggregation.
Further, according to the fractionation method of the present invention, a large number of particles can be fractionated accurately, quickly, simply and simply according to the particle size and the degree of aggregation.

図1は、本発明の粒子分別装置の要部を示す概要図である。FIG. 1 is a schematic diagram showing a main part of the particle sorting apparatus of the present invention. 図2は、図1のII部拡大図である。FIG. 2 is an enlarged view of the II portion of FIG. 図3は、分別工程を摸式的に示す図(内部断面図)であり、(a)は分別前の状態を示し、(b)は分別初期を示し、(c)は分別中期を示し、(d)は分別終期を示す。FIG. 3 is a diagram (internal cross-sectional view) schematically showing a separation step, (a) shows a state before separation, (b) shows an initial separation, (c) shows a middle separation period, (D) shows the end of separation. 図4は、粒子分別装置における粒子分布の計測結果を示すグラフであり、(a)は粒径dp=70μm、曲率半径R=98mm の場合の各位置における粒子分布の結果を示すグラフであり、(b)は粒径dp=31のものと70μmのものとを用い、曲率半径R=98mmの主部を用い、De=50における結果を示すグラフである。FIG. 4 is a graph showing the measurement results of particle distribution in the particle sorting apparatus, and (a) is a graph showing the result of particle distribution at each position when the particle diameter dp=70 μm and the radius of curvature R=98 mm. (B) is a graph showing the results at De=50 using a main part having a radius of curvature R=98 mm with a particle size dp=31 and a particle size of 70 μm.

1:粒子分別装置、10:移送準備部、20:分別部、50移送用液 1: Particle sorting device, 10: Transfer preparation part, 20: Separation part, 50 Transfer liquid

以下、本発明をその実施形態に基づいてさらに詳細に説明する。
<全体構成>
本実施形態の粒子分別装置は、図1に示すように、多数の粒子を分別する粒子分別装置であり、上記の多数の粒子と、第1の流液と、該第1の流液とは不溶性であり、且つ密度の異なる第2の流液とが投入可能であり、これらを所定割合で有する移送用液を移送するために保持する移送準備部、上記移送用液を流通させる流通路からなり、該流通路が所定の湾曲形状を有する湾曲体である分別部、及び上記流通路に連結されており、分別された粒子を分別区分ごとに収集する収集部を具備する。
以下さらに説明する。なお、上記粒子、上記の第1の流液及び上記の第2の流液並びに移送用液については後述する。
Hereinafter, the present invention will be described in more detail based on the embodiments.
<Overall structure>
The particle sorting device of the present embodiment is, as shown in FIG. 1, a particle sorting device that sorts a large number of particles, and the large number of particles described above, the first liquid flow, and the first liquid flow. A second liquid solution that is insoluble and can have different densities can be added, and a transfer preparation unit that holds the second liquid solution in a predetermined ratio to transfer it, and a flow passage through which the second liquid solution flows In addition, the flow passage includes a sorting unit that is a curved body having a predetermined curved shape, and a collecting unit that is connected to the flow passage and that collects the sorted particles for each sorting section.
Further description will be given below. The particles, the first liquid flow, the second liquid flow, and the transfer liquid will be described later.

<移送準備部>
移送準備部は、上記粒子、上記の第1の流液及び上記の第2の流液を一つのチャンバー又は管路より構成される容器内に投入して、移送用液としての液液界面を有する液液2相流体を形成する部分である。
本実施形態においては、図1に示すように、第1の流液供給管と、第1の流液供給管に対して所定角度をもって配置された第2の流液供給管と、両者が同一カ所において連結された、上記の第1の流液及び上記の第2の流液を一緒に移送用液として分別部に移送する移送管とからなる。
第1の流液供給管と、第2の流液供給管と、移送管とは、それぞれ図2に示すように所定の角度をもって連結されているが、第1の流液供給管と移送管との角度θ1と第2の流液供給管と移送管との角度θ2とは、本実施形態においては同じ角度である。なお、本実施形態においては、θ1=θ2=θ3=120°となるように構成されている。また、本実施形態においては、各管は図1における矢視した場合には一本の管に見えるように1平面上に配置されているが、これに制限されず3次元的に角度を設けてもよい。また、角度も本実施形態のように同じ角度ではなく、それぞれ異なる角度に設定することも可能である。
第1の流液供給管、第2の流液供給管及び移送管それぞれの管径は特に制限されないが、本実施形態においては、全て同じ径とされている。二次流れの速度の大きさを規定するディーン数を一致させれば移送管を太く形成することも可能であり,また流量の組み合わせにより任意の管径においても実施可能であるが、ここでは,単純化するために、全ての管径は同じにしている。なお、本実施形態ではそれぞれ内径2mmとしている。
また、ここでは特に図示しないが、第1の流液供給管と第2の流液供給管とはそれぞれ第1の流液を貯蔵する容器及び第2の流液を貯蔵する容器、並びにポンプなどの移送力付加手段に連結されている。
移送管の長さは第1の流液と第2の流液とを合わせてから液液2相が安定する程度の長さを設けるのが好ましく、移送速度に応じて設定するべきであり、レイノルズ数にあわせた助走区間を確保する長さと設定するのが好ましい。なお、本実施形態においては50mmとしている。
<Transfer preparation section>
The transfer preparation unit puts the particles, the first flowing liquid, and the second flowing liquid into a container configured by one chamber or a pipe line to form a liquid-liquid interface as a transfer liquid. It is a part that forms a liquid-liquid two-phase fluid.
In the present embodiment, as shown in FIG. 1, the first flowing liquid supply pipe and the second flowing liquid supply pipe arranged at a predetermined angle with respect to the first flowing liquid supply pipe are both the same. It is composed of a transfer pipe, which is connected at one place and which transfers the above-mentioned first liquid stream and the above-mentioned second liquid stream together as a liquid for transfer to a separation section.
The first flowing liquid supply pipe, the second flowing liquid supply pipe, and the transfer pipe are connected at a predetermined angle as shown in FIG. 2, but the first flowing liquid supply pipe and the transfer pipe are connected. And the angle θ2 between the second flowing liquid supply pipe and the transfer pipe are the same in the present embodiment. In this embodiment, θ1=θ2=θ3=120°. Further, in the present embodiment, each tube is arranged on one plane so that it can be seen as one tube when viewed in the direction of FIG. 1, but it is not limited to this and three-dimensional angles are provided. May be. Further, the angles may not be the same as in the present embodiment, but may be set to different angles.
The pipe diameters of the first flowing liquid supply pipe, the second flowing liquid supply pipe, and the transfer pipe are not particularly limited, but in the present embodiment, they are all the same. It is possible to form a thick transfer pipe by matching the Dean number that defines the magnitude of the secondary flow velocity, and it is also possible to use any pipe diameter by combining the flow rates. For simplicity, all pipe diameters are the same. In this embodiment, each has an inner diameter of 2 mm.
Further, although not particularly shown here, the first liquid flow supply pipe and the second liquid flow supply pipe are respectively containers for storing the first liquid flow and a container for storing the second liquid flow, and a pump, etc. Is connected to the transfer force adding means.
The length of the transfer pipe is preferably set such that the two liquid-liquid phases are stable after the first liquid flow and the second liquid flow are combined, and should be set according to the transfer speed. It is preferable to set the length so as to secure an approach section according to the Reynolds number. In addition, in this embodiment, it is set to 50 mm.

<分別部>
分別部20は、図1に示すように、半円状に湾曲した流通路である主部21と、主部21の末端から直線状に延びて、収集部(図示せず)に連結されている直線状の末端部22とからなる。
本実施形態においては、主部21及び末端部22はいずれも管状部材からなり、これらの管内径はいずれも移送管13の内径と同じである。また、主部21の曲率半径98mmで、半円(θ=180°)である。また、末端部22の長さは移送準備部10における移送管13の長さと同じ理由から同じ長さにしてある。
主部21の形状は、本実施形態においては半円形状としたが、これに制限されるものではなく、種々形状とすることが可能である。たとえばS字状、螺旋状等である。要するに、主部は、後述する2次流れを作ることができる、湾曲した形状であれば特に制限されない。
<Separation part>
As shown in FIG. 1, the separation unit 20 has a main portion 21 which is a semicircularly curved flow passage, and a straight line extending from an end of the main portion 21 and connected to a collecting portion (not shown). And a linear end portion 22 that extends.
In the present embodiment, both the main portion 21 and the end portion 22 are made of tubular members, and the inner diameters of these tubes are the same as the inner diameter of the transfer tube 13. The main portion 21 has a radius of curvature of 98 mm and is a semicircle (θ=180°). The length of the end portion 22 is the same as that of the transfer pipe 13 in the transfer preparation unit 10 for the same reason.
Although the main portion 21 has a semicircular shape in the present embodiment, the shape is not limited to this, and various shapes can be used. For example, it has an S shape, a spiral shape, or the like. In short, the main part is not particularly limited as long as it has a curved shape capable of producing a secondary flow described later.

<収集部>
収集部については特に図示しないが、公知の液液回収装置を特に制限なく採用することができる。たとえば、マイクロ矩形管を用いた装置や、2つに分離している第1の流液と第2の流液とのうち密度の差を利用して、末端部からの移送用液を2相に分離した状態で回収貯蔵するプールと、該プールのうち密度の軽い第2の流液を連続的に吸引回収する吸引装置とにより構成することができる。また、この他に吸引するのではなく、移送用液の流れを利用して回収用の流路を液液界面領域と管壁周辺領域とに別個に設置し、それぞれの流路に移送用液の流れそのままに各相の液を流入させることで、液液界面に存在する粒子群と管壁周辺域に存在する粒子群とをそれぞれ分けて回収することができる。
<Collection Department>
Although a collector is not particularly shown, a known liquid-liquid recovery device can be adopted without particular limitation. For example, a device using a micro rectangular tube or a difference in density between the first and second liquid streams separated into two is used to transfer the liquid for transfer from the end portion into two phases. It can be configured by a pool for collecting and storing in a separated state, and a suction device for continuously sucking and collecting the second flowing liquid having a low density in the pool. In addition to this, instead of sucking, a flow path for recovery is provided separately in the liquid-liquid interface region and the peripheral region of the pipe wall using the flow of the transfer liquid, and the transfer liquid is provided in each flow channel. By allowing the liquids of the respective phases to flow in as they are, it is possible to separately collect the particle groups existing at the liquid-liquid interface and the particle groups existing in the peripheral region of the tube wall.

<粒子分別方法>
本実施形態の粒子分別方法は、多数の粒子を分別する粒子分別方法であって、上述の粒子分別装置を用いて行うことができる。
そして、上記の多数の粒子と、第1の流液と、該第1の流液とは不要性であり、且つ密度の異なる第2の流液とを所定割合で有する移送用液を調整する移送準備工程、
上記移送用液を流通させる流通路であって、管状であり、所定の湾曲形状(上述の湾曲体である主部の形状)を有する湾曲体である流通路に上記移送用液を流通させて粒子の分別を行う分別工程、及び
分別された粒子を分別区分ごとに収集する収集工程を行うことにより実施することができる。
<Particle separation method>
The particle sorting method of the present embodiment is a particle sorting method for sorting a large number of particles, and can be performed using the above-described particle sorting apparatus.
Then, a transfer liquid having a large number of particles, the first flow liquid, and the second flow liquid which is unnecessary for the first flow liquid and has different densities at a predetermined ratio is prepared. Transfer preparation process,
A flow passage for circulating the transfer liquid, which is tubular and has the curved flow passage having the predetermined curved shape (the shape of the main portion which is the above-described curved body), and is used for circulating the transfer liquid. It can be carried out by performing a separation step of separating the particles and a collection step of collecting the separated particles for each separation section.

まず、本発明の法上に用いられる粒子や流液について説明する。
(粒子、分別対象)
本発明において分別の対象として用いられる粒子としては、細胞粒子(さらに具体的には肝臓細胞、膵島,幹細胞ならびに分化した細胞等)、各種ポリマー粒子(さらに具体的には、スチレン粒子、マイクロチャネル法により製造されるポリマー粒子等)、微生物(藻類、ミドリムシ等)、高分子カプセル化粒子、金属粒子
等が挙げられる。
これらの粒子の粒径は特に制限されず、種々粒径のものを分別することができる。
また、本発明による分別は、流液中に存在する粒子の集合単位ごとに、かかる集合単位の大きさや密度をもって行うことができる。すなわち、粒子の集合単位ごとの大きさや密度が分別の対象であると言える。ここで集合単位とは、粒子が1つのみで存在すればその一つが、粒子が複数個凝集して一つのクラスターを構成して存在する場合には当該クラスターが、それぞれ該当する。
(第1の流液)
第1の流液は任意に設定することができるが、上記の粒子と親和性の高いものとするのが好ましい。たとえば粒子として細胞粒子を用いる場合には、培養液(水を主成分とし、細胞培養成分を含有するもの)等を用いることができ、ポリマー粒子の場合には該ポリマー粒子の原料ポリマーの良溶媒となる液体を用いることができる。
(第2の流液)
第2の流液は、第1の流液に対して不溶性で、第1の流液ならびに粒子よりも密度が高いものであるが、密度は特に制限されるものではなく、第1の流体と液液界面を形成し2相の流体を形成する程度に第1の流液と第2の流液とで差を設けることができればよい。
また第2の流液の密度は、用いる粒子の密度よりも高いのが好ましい。第2の流液の具体例としては、たとえば粒子として細胞粒子を用いる場合には、細胞より密度の高いフッ素不活性液体(商品名「フロリナート」3M社製等の市販品を用いることもできる)を挙げることができる。
First, the particles and the flowing liquid used in the method of the present invention will be described.
(Particles, sorting target)
In the present invention, particles to be used for sorting include cell particles (more specifically, liver cells, pancreatic islets, stem cells, differentiated cells, etc.), various polymer particles (more specifically, styrene particles, microchannel method). Polymer particles, etc.), microorganisms (algae, Euglena etc.), polymer-encapsulated particles, metal particles and the like.
The particle size of these particles is not particularly limited, and particles having various particle sizes can be separated.
Further, the separation according to the present invention can be carried out for each aggregate unit of particles existing in the flow liquid, with the size and density of the aggregate unit. That is, it can be said that the size and density of each set of particles are targets of classification. Here, the aggregation unit corresponds to one of the particles if there is only one particle, and the cluster if there are a plurality of particles that aggregate to form one cluster.
(First flow)
The first liquid flow can be set arbitrarily, but it is preferable that the first liquid has a high affinity with the above particles. For example, when cell particles are used as the particles, a culture solution (containing water as a main component and a cell culture component) can be used, and in the case of polymer particles, a good solvent for the raw material polymer of the polymer particles. A liquid can be used.
(Second flow)
The second flowing liquid is insoluble in the first flowing liquid and has a higher density than the first flowing liquid and particles, but the density is not particularly limited, and the second flowing liquid is It suffices that a difference be provided between the first flowing liquid and the second flowing liquid to the extent that a liquid-liquid interface is formed and a two-phase fluid is formed.
Further, the density of the second liquid flow is preferably higher than the density of the particles used. As a specific example of the second liquid flow, for example, when cell particles are used as particles, a fluorine-inert liquid having a density higher than that of cells (a commercially available product such as a product name “Florinato” manufactured by 3M) can be used. Can be mentioned.

(移送用液)
移送用液は、上述の第1の流液と第2の流液とで2相が積層された状態となっている流液であり、図3(a)に示すような構成となっている。すなわち、図3に示すように、移送用液50は、第1の流液51と第1の流液51の下層に位置する第2の流液53とからなり、両者により液液界面55が形成されている状態の流液である。
(Transfer liquid)
The transfer liquid is a liquid flow in which two phases are laminated by the above-mentioned first liquid flow and second liquid flow, and has a configuration as shown in FIG. .. That is, as shown in FIG. 3, the transfer liquid 50 is composed of the first flowing liquid 51 and the second flowing liquid 53 located in the lower layer of the first flowing liquid 51. It is a flowing liquid in the formed state.

以下、各工程について説明する。
(移送準備工程)
まず、第1の流液を第1の流液供給管11で移送管13に供給し、且つ第2の流液を第2の流液供給管12で移送管13に供給し、移送管13の入り口において第1の流液と第2の流液とを衝突させて2液を合わせ、図3(a)に示すような2相に分離し液液界面の存在する移送用液を形成する。この際、第1の流液の供給速度と第2の流液の供給速度とは、それぞれ第1及び第2の流液が混合しない程度であり、且つ粒子の損壊、細胞粒子の場合には細胞の死滅が生じないような速度とするのが好ましい。
例えば、二次流れ(各相内における螺旋状の流れ)と粒子の浮力、抗力のバランスが重要であるため、二次流れの大きさをディーン数により見積もり、また粒子密度から浮力(重力)を、大きさ、粘度から抗力を測り、これらのバランスが最適となるように速度を決定することができる。
Hereinafter, each step will be described.
(Transfer preparation process)
First, the first flowing liquid is supplied to the transfer pipe 13 by the first flowing liquid supply pipe 11, and the second flowing liquid is supplied to the transfer pipe 13 by the second flowing liquid supply pipe 12, The first liquid and the second liquid are caused to collide at the entrance of the two liquids and the two liquids are combined to separate into two phases as shown in FIG. 3A to form a transfer liquid having a liquid-liquid interface. .. At this time, the supply rate of the first flow liquid and the supply speed of the second flow liquid are such that the first and second flow liquids are not mixed with each other, and in the case of particle damage and cell particles, The rate is preferably such that cell death does not occur.
For example, because the balance between the secondary flow (spiral flow in each phase) and the buoyancy and drag of particles is important, the size of the secondary flow is estimated by the Dean number, and the buoyancy (gravity) is calculated from the particle density. The velocity can be determined so that the balance between them can be optimized by measuring the drag force based on the size and the viscosity.

(分別工程)
分別工程は、上述の分別部20における、管状の主部21により構成される流通路に上記移送用液を流通させることにより行う。
この際の流通方向は図1の矢印方向であり、その速度は、主部の内径、第1の流液及び第2の流液の粘度、更には粒子の粒径や密度により任意に設定されるものである。
また、上記粒子が細胞粒子である場合には、上記分別工程は、該細胞粒子を1つのみの粒子(正常な細胞粒子)と粒子が複数個凝集してなる集合物(死滅した細胞粒子)とに分別する。正常な細胞粒子はそれぞれ独立して一つずつ存在するが、死滅した細胞粒子は凝集してクラスターを形成することが知られているが、本発明の分別方法における分別工程では、このクラスターの形成が効率よく行われるようにし、且つ分別収集しやすい状態で正常な細胞粒子と死滅した細胞粒子とを分離した状態で位置づけることができる。
このように分別できるメカニズムについて説明すると、粒子をともなう曲がり管内においては遠心力が流体、粒子に誘起され、さらに管内には、主流に合わせて断面内に二次流れとして上下対称な一対の渦(Dean渦)が形成される。
一般的に曲がり管内ではDean数が遠心力による流れの不安定性を表す無次元数として下記式で定義され、Dean渦の強さはDean数の大きさに依存する。
粒子懸濁液は様々な大きさの粒子又は粒子の塊が混合している多分散系である。これらの粒子群が分散した状態で移送管13から主部21へと送液され、図3(a)に示すように液液界面53を有する2相流体である移送用液50が構成される。
そして、主部内に移送された移送用液50は、主部である流通用の管内を図1の矢印方向に進むと共に、2相それぞれの相内で図3(b)(c)に示す矢印方向のDean渦が発生して各粒子は主流方向(図1の矢印方向)のみならず図3(b)(c)に示すDean渦の影響をも受ける。しかも、主部21が湾曲していることにより、液液仮面53が(b)に示すように傾き、また(c)に示すように波打つ現象が生じ、また2相の両流液位(水位に相当する流液の位置)にも(a)の場合のような湾曲による延伸力のかかっていない状況とは異なる状態が発生する。これらの相乗作用により、密度や粒径が小さい粒子(図3における正常細胞)はDean渦の流れに乗り主部21の流路内をらせん状に進むこととなるが、一方密度や粒径が大きい粒子(図3における死滅細胞)はDean渦の流れに乗らず外壁側にとどまったまま流路を進むこととなる。このため、末端部においては(d)に示すように、液液界面に密度や粒径が小さい粒子(図3における正常細胞)が位置し、末端部を構成する管の壁側に密度や粒径が大きい粒子(図3における死滅細胞)が位置することとなる。
(Separation process)
The separation step is performed by causing the transfer liquid to flow through the flow passage formed by the tubular main portion 21 in the separation unit 20 described above.
The flow direction at this time is the direction of the arrow in FIG. 1, and the speed thereof is arbitrarily set depending on the inner diameter of the main part, the viscosities of the first and second flowing liquids, and further the particle size and density of the particles. It is something.
Further, when the particles are cell particles, the separation step includes an aggregate (dead cell particles) formed by aggregating only one cell particle (normal cell particle) and a plurality of particles. Classify into and. It is known that normal cell particles exist independently one by one, but dead cell particles aggregate to form clusters. In the sorting step of the sorting method of the present invention, formation of these clusters is known. Can be performed efficiently, and normal cell particles and dead cell particles can be positioned in a separated state in a state where they can be separated and collected easily.
Explaining the mechanism that can be separated in this way, centrifugal force is induced in the fluid and particles in the curved pipe with particles, and in the pipe, a pair of vertically symmetrical vortices ( Dean vortex) is formed.
Generally, in a curved pipe, the Dean number is defined by the following equation as a dimensionless number representing the instability of the flow due to the centrifugal force, and the Dean vortex strength depends on the Dean number.
Particle suspensions are polydisperse systems in which particles or agglomerates of particles of various sizes are mixed. These particle groups are dispersed and transferred from the transfer pipe 13 to the main portion 21, and a transfer liquid 50 that is a two-phase fluid having a liquid-liquid interface 53 is formed as shown in FIG. ..
Then, the transfer liquid 50 transferred to the main part proceeds in the direction of the arrow in FIG. 1 in the distribution pipe, which is the main part, and the arrows shown in FIGS. 3(b) and 3(c) in each of the two phases. Direction Dean vortices are generated and each particle is affected not only by the main flow direction (arrow direction in FIG. 1) but also by the Dean vortices shown in FIGS. 3B and 3C. Moreover, since the main portion 21 is curved, the liquid-liquid temporary surface 53 tilts as shown in (b) and wavy phenomenon occurs as shown in (c), and the two-phase liquid flow level (water level) A position different from that in the case of (a) in which the stretching force due to the bending is not applied also occurs in the position of the flowing liquid corresponding to (a). Due to these synergistic effects, particles having a small density and particle size (normal cells in FIG. 3) ride on the flow of the Dean vortex and spirally move in the flow path of the main part 21, while the density and particle size are Large particles (dead cells in FIG. 3) travel along the flow path while remaining on the outer wall side without riding on the flow of the Dean vortex. For this reason, as shown in (d) at the end, particles having a small density or particle size (normal cells in FIG. 3) are located at the liquid-liquid interface, and the density or particles are formed on the wall side of the tube constituting the end. Particles with large diameter (dead cells in FIG. 3) will be located.

(収集工程)
収集工程では、上述の分別工程において、図3(d)に示すように分別された粒子又は粒子群(クラスター)を、常法にしたがってそれぞれ回収する。
回収方法は、それぞれの相における外壁側と液液界面とを別に吸引し、それぞれ別の容器に回収する方法などを挙げることができる。
(Collection process)
In the collecting step, the particles or particle groups (clusters) separated as shown in FIG. 3(d) in the above-described separating step are collected according to a conventional method.
Examples of the recovery method include a method in which the outer wall side and the liquid-liquid interface in each phase are separately sucked and recovered in different containers.

<効果、用途>
本発明の分別装置及び分別方法は、粒子を破壊することがほとんどなく、粒子の大きさや凝集状態で分離し回収することができる。
これにより、例えば細胞粒子に適用することにより、細胞移植や細胞医療に重要な細胞の生死分離を、遠心分離機などを用いずに、連続的かつ低侵襲で行うことが可能となる。さらに、細胞移植に重要な適切なサイズの細胞クラスターを選別し、抽出することが可能となる。
さらには培養空間として用いることにより、酸素供給ならびに各種液性因子環境を管理可能であり、底面接触などの物理的な刺激も低減可能な培養環境の供給が可能となる。
<Effect, application>
The fractionation device and the fractionation method of the present invention hardly break the particles, and can separate and collect the particles in the size and the agglomerated state.
Thus, for example, when applied to cell particles, it becomes possible to perform live/dead separation of cells, which is important for cell transplantation and cell medicine, continuously and with low invasiveness without using a centrifuge or the like. Furthermore, it becomes possible to select and extract a cell cluster of an appropriate size that is important for cell transplantation.
Furthermore, by using it as a culture space, it is possible to control the supply of oxygen and the environment of various liquid factors, and to supply a culture environment that can reduce physical irritation such as bottom contact.

本発明は上述した実施形態に何ら制限されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形可能である。
たとえば、上述の実施形態では各管の形状として断面円形状の管を用いて説明したが、液液二層界面が形成される矩形管や楕円管、その他形状を最適化した管を用いてもよい。
また、液液界面を形成することができ、二次流れを形成可能であれば、管のような閉鎖型の流路でなくとも、断面コの字状やU字状の開放型の流路により、流通路を形成することができる。
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above-described embodiment, the tube having a circular cross section is used as the shape of each tube, but a rectangular tube or an elliptic tube in which a liquid-liquid two-layer interface is formed, or a tube having an optimized shape may be used. Good.
Further, if a liquid-liquid interface can be formed and a secondary flow can be formed, an open type flow path having a U-shaped cross section or a U shape is not necessary even if the flow path is a closed type flow path such as a pipe. Thus, the flow passage can be formed.

以下、本発明について実施例及び比較例を示してさらに具体的に説明するが本発明はこれらに何ら制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

〔実施例1〕
図1及び2に示す装置を作製した。各管の内径はそれぞれr = 2 mmとし、曲率半径はR=47mm、98mm、142mmの3種類を用意し用いた。
第1の流液として精製水を、第2の流液としてフッ素不活性液体(商品名「Fluorinert FC-40」3M社製)を用い、粒子として、蛍光粒子を用いた。使用粒子は粒子のクラスターと単独粒子とが混在する条件と同様にするために、中心粒径dp=70 μm(密度1500 kg/m3)と、dp=31 μm(密度1050 kg/m3)とを等量の重量部で混合して用いた。
まず、両粒子を精製水に分散して粒子0.01wt%の懸濁液を調製し、そのうち20mlをシリンジに充填し、またフッ素不活性液体も同様なシリンジに同量充填し、それぞれのシリンジを第1の流液供給管及び第2の流液供給管に連結して、シリンジポンプによりそれぞれの供給管に送液した。
検査領域は曲がり流路入り口部をθ=0°とし、θ=0°(図1の(a))、90°(図1の(b))、180°(図1の(c))の3か所で確認した。また、液液界面が安定して形成可能なDe=20、 35、 50、 65、 80の条件で実験を行った。観察はズームレンズとデジタルカメラ(SONY ILCE-QX1)により、流路上面を動画撮影して流路内の粒子分布を計測し、連続画像から画像処理により粒子分布を計測した。
粒径dp=70μm、曲率半径R=98mm の場合の各位置における粒子分布の結果グラフを図4(a) に示す。
主部21に流入直後(θ=0°)においては、左右対称の分布となっており、流速の早い中央において局所流速に対応し粒子数が多く示されている。
一方、主部21の中央(θ=90°)においては非対称な分布となり、多くの粒子が曲管外周側壁面近傍に集まっており、流路外側に粒子が大きく偏在しており、0.8≦a/r≦1の範囲に約50%の粒子が集中している。これはDean流れの効果が強く示されたものと考えられる。
さらに下流側であるθ=180°の位置においては壁面から少し離れた位置に(a/ r =0.8)に最大値を示し、これらの結果から、粒子の分離できていることがわかる。
また、図4(b)に、粒子として粒径dp=31のものと70μmのものとを用い、曲率半径R=98mmの主部を用い、De=50における結果を示す。図4(b)に示す結果から明らかなように、dp=70μm(粒径の大きな粒子)においては粒子が0.6≦a/r≦1すなわち管の内壁近傍側に偏在しているのに対し、dp=31μm(粒径の小さな粒子)においては内側に若干の集中が示されているものの粒子は特定箇所への偏在が認められなかった。この結果から、本発明の分別装置及び分別方法は、粒子の分別に有用であることが分かった。
[Example 1]
The device shown in FIGS. 1 and 2 was produced. The inner diameter of each tube was r = 2 mm, and three types of radius of curvature R = 47 mm, 98 mm, and 142 mm were prepared and used.
Purified water was used as the first flow, a fluorine-inert liquid (trade name "Fluorinert FC-40" manufactured by 3M Co.) was used as the second flow, and fluorescent particles were used as the particles. The particles used have the central particle size dp=70 μm (density 1500 kg/m 3 ) and dp=31 μm (density 1050 kg/m 3 ) in order to be similar to the condition that particle clusters and individual particles are mixed. And were mixed in equal parts by weight and used.
First, both particles were dispersed in purified water to prepare a 0.01 wt% suspension of particles, 20 ml of which was filled in a syringe, and a fluorine-inert liquid was also filled in the same amount in a similar syringe. The liquid was fed to each of the supply pipes by a syringe pump while being connected to the first and second flow liquid supply pipes.
The inspection area has a curved flow path inlet with θ=0°, θ=0° ((a) in FIG. 1), 90° ((b) in FIG. 1), 180° ((c) in FIG. 1) Checked in 3 places. In addition, the experiment was conducted under the conditions of De=20, 35, 50, 65, 80 where the liquid-liquid interface can be stably formed. For observation, a zoom lens and a digital camera (SONY ILCE-QX1) were used to take a moving image of the upper surface of the channel to measure the particle distribution in the channel, and the particle distribution was measured by image processing from consecutive images.
Fig. 4 (a) shows the result graph of the particle distribution at each position when the particle diameter dp = 70 µm and the radius of curvature R = 98 mm.
Immediately after the flow into the main portion 21 (θ=0°), the distribution has a bilateral symmetry, and a large number of particles are shown corresponding to the local flow velocity in the center where the flow velocity is fast.
On the other hand, in the center of the main part 21 (θ=90°), the distribution is asymmetrical, and many particles are gathered near the outer peripheral wall surface of the curved pipe, and the particles are unevenly distributed outside the flow path, and 0.8≦a About 50% of the particles are concentrated in the range of /r≦1. This is considered to be a strong indication of the Dean flow effect.
Further, at the position of θ=180° on the downstream side, the maximum value is shown at (a/r=0.8) at a position slightly away from the wall surface, and these results show that particles can be separated.
Further, FIG. 4B shows the results at De=50 using particles having a particle diameter dp=31 and particles having a particle diameter of 70 μm and a main part having a radius of curvature R=98 mm. As is clear from the results shown in FIG. 4(b), at dp=70 μm (particles with a large particle size), the particles are 0.6≦a/r≦1, that is, unevenly distributed near the inner wall of the tube, At dp=31 μm (particles with a small particle size), some concentration was shown on the inside, but no uneven distribution of particles was found at specific locations. From this result, it was found that the fractionation device and the fractionation method of the present invention are useful for fractionating particles.

Claims (3)

多数の細胞粒子を分別する粒子分別方法であって、
上記の多数の細胞粒子と、第1の流液としての培養液と、該第1の流液とは不溶性であり、且つ上記細胞粒子より密度の高い、第2の流体としてのフッ素不活性液体とを所定割合で有する移送用液を調整する移送準備工程、
上記移送用液を流通させる流通路であって、管状であり、所定の湾曲形状を有する湾曲体である流通路に上記移送用液を流通させて、上記細胞粒子を生きている細胞と死滅した細胞とに分別する工程であって、密度の差、及び/又は細胞粒子の大きさの差により分別する分別工程、及び
分別された粒子を分別区分ごとに収集する収集工程を具備する粒子分別方法。
A particle sorting method for sorting a large number of cell particles, comprising:
A large number of the above-mentioned cell particles, a culture solution as the first flow, and a fluorine-inert liquid as the second fluid , which is insoluble in the first flow and has a higher density than the cell particles. And a transfer preparation step for adjusting a transfer liquid having a predetermined ratio of
A flow passage through which the transfer liquid is passed, which is tubular, and is passed through the flow passage that is a curved body having a predetermined curved shape to kill the cell particles with living cells. A method for separating particles into cells, which comprises a step of separating cells into cells by a difference in density and/or a difference in size of cell particles , and a collecting step of collecting the separated particles for each of the divided sections. ..
上記移送準備工程における第1の流液の供給速度と第2の流液の供給速度とは、二次流れの大きさをディーン数により見積もり、また粒子密度から浮力を、大きさ、粘度から抗力を測り、これらを用いて決定されることを特徴とする請求項2記載の粒子分別方法 The feed rate of the first liquid stream and the feed rate of the second liquid stream in the transfer preparation step are such that the size of the secondary flow is estimated by the Dean number, and the buoyancy is determined from the particle density and the drag force is determined from the size and the viscosity. The particle fractionation method according to claim 2, wherein the particle fractionation method is determined by measuring 請求項1記載の粒子分別方法を実施するための粒子分別装置であって、
上記の多数の細胞粒子と、上記第1の流液と、上記第2の流液とが投入可能であり、これらを所定割合で有する移送用液を移送するために保持する移送準備部であって、第1の流液供給管と、第1の流液供給管に対して所定角度をもって配置された第2の流液供給管と、第1の流液供給管及び第2の流液供給管の連結箇所で連結され、両者のいずれとも所定角度を有し、上記の第1の流液及び上記の第2の流液を一緒に移送用液として分別部に移送する移送管とからなり、上記移送準備工程を行うための移送準備部、
上記移送用液を流通させる流通路からなり、該流通路が湾曲した流通路である主部と、該主部の末端から直線状に延びている末端部とからなり、上記分別工程を行うための分別部、及び
上記流通路に連結されており、分別された粒子を分別区分ごとに収集する、上記収集工程を行うための収集部
を具備する粒子分別装置。
A particle fractionation device for carrying out the particle fractionation method according to claim 1 , comprising:
A transfer preparation unit that can be charged with the above-mentioned large number of cell particles, the first flow solution, and the second flow solution, and that holds them for transferring a transfer solution having these in a predetermined ratio. A first flowing liquid supply pipe, a second flowing liquid supply pipe arranged at a predetermined angle with respect to the first flowing liquid supply pipe, a first flowing liquid supply pipe and a second flowing liquid supply A transfer pipe which is connected at a connecting point of the pipes, both of which have a predetermined angle, and which transfers the above-mentioned first flowing liquid and the above-mentioned second flowing liquid together as a transferring liquid to the separation section. A transfer preparation unit for performing the transfer preparation step,
In order to perform the sorting step, the flow passage for circulating the transfer liquid is formed, and the flow passage has a main portion that is a curved flow passage and an end portion that linearly extends from an end of the main portion. And a collecting unit that is connected to the flow passage and that collects the separated particles for each separating section for performing the collecting step.
JP2016045042A 2016-03-08 2016-03-08 Particle sorting method and particle sorting apparatus for carrying out the method Active JP6739739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016045042A JP6739739B2 (en) 2016-03-08 2016-03-08 Particle sorting method and particle sorting apparatus for carrying out the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016045042A JP6739739B2 (en) 2016-03-08 2016-03-08 Particle sorting method and particle sorting apparatus for carrying out the method

Publications (2)

Publication Number Publication Date
JP2017159225A JP2017159225A (en) 2017-09-14
JP6739739B2 true JP6739739B2 (en) 2020-08-12

Family

ID=59854491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016045042A Active JP6739739B2 (en) 2016-03-08 2016-03-08 Particle sorting method and particle sorting apparatus for carrying out the method

Country Status (1)

Country Link
JP (1) JP6739739B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687238B2 (en) * 2005-05-18 2011-05-25 東ソー株式会社 Micro channel structure
JP5151204B2 (en) * 2007-03-27 2013-02-27 富士ゼロックス株式会社 Microchannel device and method of manufacturing microchannel device
EP2142279A2 (en) * 2007-04-16 2010-01-13 The General Hospital Corporation d/b/a Massachusetts General Hospital Systems and methods for particle focusing in microchannels
US20110070581A1 (en) * 2009-04-27 2011-03-24 Amit Gupta Separation of Leukocytes
JP5459471B2 (en) * 2009-07-16 2014-04-02 富士ゼロックス株式会社 Liquid feeding method and classification method
CN102884170A (en) * 2010-03-04 2013-01-16 新加坡国立大学 Microfluidics sorter for cell detection and isolation
JP6237031B2 (en) * 2013-09-18 2017-11-29 凸版印刷株式会社 Component separation method, component analysis method, and component separation apparatus
CN103923825B (en) * 2014-04-17 2016-01-13 东南大学 The micro-fluidic chip system of a kind of integrating cell sorting and detection
JP2019086340A (en) * 2017-11-02 2019-06-06 シスメックス株式会社 Cell detection method and cell detection system

Also Published As

Publication number Publication date
JP2017159225A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP2020091301A (en) Inertial droplet generation and particle encapsulation
Hou et al. Microfluidic devices for blood fractionation
JP6057251B2 (en) Particle sorting apparatus and particle sorting method
Mach et al. Continuous scalable blood filtration device using inertial microfluidics
Xiang et al. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices
CN102791616B (en) For the system and method for particulate filter
Huang et al. Inertial microfluidics: Recent advances
JP6832848B2 (en) Tissue sample processing system and related methods
CN107110765A (en) Concentrated granular in microfluidic devices
CN106796164A (en) The blood platelet targeting microfluidic separation of cell
JP6933212B2 (en) Liquid medium replacement method and flow path device for the method
JP2012223683A (en) Fine particle separation apparatus and fine particle separation method
JP2012239991A (en) Device for classifying fine particle
Laxmi et al. Extracting white blood cells from blood on microfluidics platform: A review of isolation techniques and working mechanisms
JP6739739B2 (en) Particle sorting method and particle sorting apparatus for carrying out the method
Tabatabaei et al. Basic concepts of biological microparticles isolation by inertia spiral microchannels in simple terms: a review
Farahinia et al. Recent developments in inertial and centrifugal microfluidic systems along with the involved forces for cancer cell separation: A review
CN111491736B (en) Inertial cell focusing and sorting
US20210072227A1 (en) Process for separating nucleated cells from non-nucleated red blood cells
JP6403190B2 (en) Microchannel structure and particle separation method
CN112195094A (en) Micro-fluidic chip box
AU2019414140B2 (en) A method of microfluidic particle separation enhancement and the device thereof
CN109012207A (en) A kind of cross-flow filtration system of circulating tumor cell enrichment
KR101984559B1 (en) Device for the fractionation of objects and fractionation method
EP4222495A1 (en) Closed loop, bedside cell purification systems and methods

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200702

R150 Certificate of patent or registration of utility model

Ref document number: 6739739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150