JP6737378B2 - SiC composite substrate - Google Patents

SiC composite substrate Download PDF

Info

Publication number
JP6737378B2
JP6737378B2 JP2019088763A JP2019088763A JP6737378B2 JP 6737378 B2 JP6737378 B2 JP 6737378B2 JP 2019088763 A JP2019088763 A JP 2019088763A JP 2019088763 A JP2019088763 A JP 2019088763A JP 6737378 B2 JP6737378 B2 JP 6737378B2
Authority
JP
Japan
Prior art keywords
sic
substrate
single crystal
polycrystalline
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019088763A
Other languages
Japanese (ja)
Other versions
JP2019169725A (en
Inventor
芳宏 久保田
芳宏 久保田
昌次 秋山
昌次 秋山
弘幸 長澤
弘幸 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2019088763A priority Critical patent/JP6737378B2/en
Publication of JP2019169725A publication Critical patent/JP2019169725A/en
Application granted granted Critical
Publication of JP6737378B2 publication Critical patent/JP6737378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高温、高周波、大電力での電力制御に用いられるショットキーバリアダイオード、pnダイオード、pinダイオード、電界効果型トランジスタや絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor、IGBT)などの半導体素子の製造、並びに窒化ガリウムやダイヤモンド、ナノカーボン薄膜の成長に用いられる、多結晶SiC基板上に単結晶SiC層を有するSiC複合基板に関し、特に応力に起因する形状変化がなく、低欠陥密度の単結晶SiC表面を有する大口径サイズの複合基板に関する。 The present invention relates to a semiconductor device such as a Schottky barrier diode, a pn diode, a pin diode, a field effect transistor or an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT) used for power control at high temperature, high frequency and large power. A SiC composite substrate having a single crystal SiC layer on a polycrystalline SiC substrate, which is used for production and growth of gallium nitride, diamond, and nanocarbon thin films, and in particular, a single crystal with a low defect density without a shape change caused by stress. The present invention relates to a large-diameter size composite substrate having a SiC surface.

従来、半導体用基板として単結晶シリコン基板が広く使われている。しかし、その物理的な限界により、動作温度の高温化、耐圧の向上、そして高周波化などの要求を満たさなくなりつつあり、単結晶SiC基板や単結晶GaN基板などの高価な新素材基板が使われ始めている。例えば、シリコン(Si)よりも禁制帯幅の広い半導体材料である炭化珪素(SiC)を用いた半導体素子を使用してインバータやAC/DCコンバータなどの電力変換装置を構成することによりシリコンを用いた半導体素子では到達し得ない電力損失の低減が実現されている。SiCによる半導体素子を用いることにより、従来よりも電力変換に付随する損失が低減するほか、装置の軽量化、小型化、高信頼性が促進される。 Conventionally, a single crystal silicon substrate has been widely used as a semiconductor substrate. However, due to their physical limitations, it is becoming difficult to meet the requirements for higher operating temperature, higher breakdown voltage, and higher frequency, and expensive new material substrates such as single crystal SiC substrate and single crystal GaN substrate are used. Have begun. For example, silicon is used by configuring a power conversion device such as an inverter or an AC/DC converter using a semiconductor element using silicon carbide (SiC), which is a semiconductor material having a wider band gap than silicon (Si). The reduction of the power loss which cannot be achieved by the conventional semiconductor element is realized. By using the semiconductor element made of SiC, the loss accompanying the power conversion is reduced as compared with the conventional one, and the weight reduction, downsizing and high reliability of the device are promoted.

このような単結晶SiC基板の製造には、高純度SiC粉を2000℃以上の高温で昇華させながら、離れて設置された種結晶上に再成長させる方法(改良レイリー法)が用いられることが通常である。しかし、その製造工程は極めて厳しい条件下で複雑なため、どうしても基板の品質や歩留まりが低く、非常に高コストの基板となり、実用化や広範囲の利用を妨げている。 In the production of such a single crystal SiC substrate, a method (improved Rayleigh method) in which a high-purity SiC powder is sublimated at a high temperature of 2000° C. or higher and is regrown on a seed crystal placed separately is often used. It is normal. However, since the manufacturing process is complicated under extremely severe conditions, the quality and yield of the substrate are inevitably low, and the substrate becomes a very high cost, which hinders its practical use and widespread use.

ところで、これらの基板上において、実際にデバイス機能を発現する層(活性層)の厚みは上記用途のいずれの場合においても0.5〜100μmであり、残りの厚み部分は主としてハンドリングのための機械的な保持機能の役割を担っているだけの部分、所謂、欠陥密度などの制限のないハンドル部材(基板)である。 By the way, on these substrates, the thickness of the layer (active layer) that actually expresses the device function is 0.5 to 100 μm in any of the above applications, and the remaining thickness portion is mainly used for handling machines. It is a handle member (substrate) that does not have any limitation on the defect density, that is, a portion that only plays the role of a general holding function.

そこで、近年はハンドリングができる最低限の厚みを有する比較的薄い単結晶SiC層を多結晶SiC基板にSiO2、Al23、Zr23、Si34、AlN等のセラミックス又はSi、Ti、Ni、Cu、Au、Ag、Co、Zr、Mo、W等の金属を介して接合した基板が検討されている。しかしながら、単結晶SiC層と多結晶SiC基板とを接合するために介在するものが前者(セラミックス)の場合は絶縁体であることからデバイス作成時の裏面の導通が取れず、後者(金属)の場合はデバイスに金属不純物が混入してデバイスの特性や信頼性の劣化を引き起こすため、実用的ではない。 Therefore, in recent years, a relatively thin single crystal SiC layer having a minimum thickness that can be handled is formed on a polycrystalline SiC substrate on a ceramic such as SiO 2 , Al 2 O 3 , Zr 2 O 3 , Si 3 N 4 , AlN or Si. Substrates bonded through metals such as Ti, Ni, Cu, Au, Ag, Co, Zr, Mo and W have been studied. However, in the case of the former (ceramics), which is interposed for joining the single crystal SiC layer and the polycrystalline SiC substrate, since it is an insulator, conduction on the back surface at the time of device fabrication cannot be taken, and of the latter (metal). In this case, it is not practical because metal impurities are mixed into the device to cause deterioration of the device characteristics and reliability.

そこで、これらの欠点を改善すべく、これまでに種々の提案がなされており、例えば特許第5051962号公報(特許文献1)では、酸化珪素薄膜を有する単結晶SiC基板に水素などのイオン注入を施したソース基板と表面に酸化珪素を積層した多結晶窒化アルミニウム(中間サポート)とを酸化珪素面で貼り合わせ、単結晶SiC薄膜を多結晶窒化アルミニウム(中間サポート)に転写し、その後、多結晶SiCを堆積した後にHF浴に入れて酸化珪素面を溶かして分離する方法が開示されている。しかしながら、この発明を用いて大口径のSiC複合基板を製造する際には、多結晶SiC堆積層と窒化アルミニウム(中間サポート)との熱膨張係数差により大きな反りが発生し問題となる。これに加え、異種材料界面の界面エネルギーの高さにより構造欠陥が発生し、これが単結晶SiC層中へ伝搬し、欠陥密度を増加させるという問題も起こり得る。 Therefore, various proposals have been made so far in order to improve these drawbacks. For example, in Japanese Patent No. 5051962 (Patent Document 1), ion implantation of hydrogen or the like is performed on a single crystal SiC substrate having a silicon oxide thin film. The applied source substrate and polycrystalline aluminum nitride (intermediate support) having silicon oxide laminated on the surface are bonded together on the silicon oxide surface, and the single crystal SiC thin film is transferred to the polycrystalline aluminum nitride (intermediate support), and then the polycrystalline A method of depositing SiC and then putting it in an HF bath to melt and separate the silicon oxide surface is disclosed. However, when a large-diameter SiC composite substrate is manufactured using the present invention, a large warpage occurs due to a difference in thermal expansion coefficient between the polycrystalline SiC deposited layer and aluminum nitride (intermediate support), which is a problem. In addition to this, there may be a problem that a structural defect occurs due to the high interfacial energy at the interface between different materials, the structural defect propagates into the single crystal SiC layer, and the defect density increases.

また、特開2015−15401号公報(特許文献2)では、酸化膜の形成なしに多結晶SiCの支持基板表面を高速原子ビームで非晶質に改質すると共に単結晶SiC表面も非晶質に改質した後、両者を接触させて熱接合を行うことにより、表面の平坦化が難しい多結晶SiC支持基板に対して接合界面における酸化膜の形成を伴うことなく単結晶SiC層を積層する方法が開示されている。しかしながら、この方法では高速原子ビームで単結晶SiCの剥離界面のみならず結晶内部も一部変質するため、折角の単結晶SiCがその後の熱処理によってもなかなか良質の単結晶SiCに回復しづらく、デバイス基板やテンプレートなどに使用する場合、高特性のデバイスや良質なSiCエピ膜を得にくいという欠点がある。 Further, in JP-A-2015-15401 (Patent Document 2), the surface of a supporting substrate of polycrystalline SiC is modified to an amorphous state by a high-speed atomic beam without forming an oxide film, and the surface of the single crystal SiC is also amorphous. After the modification, the two are brought into contact with each other to perform thermal bonding, thereby laminating the single crystal SiC layer on the polycrystalline SiC supporting substrate whose surface is difficult to flatten without forming an oxide film at the bonding interface. A method is disclosed. However, in this method, not only the delamination interface of single-crystal SiC but also the inside of the crystal is altered by the high-speed atomic beam, so it is difficult to recover the single-crystal SiC of a good quality even after the subsequent heat treatment. When it is used as a substrate or a template, it has a drawback that it is difficult to obtain a device with high characteristics and a high-quality SiC epitaxial film.

これらの欠点に加えて上記技術では単結晶SiCと支持基板の多結晶SiCとを貼り合わせるためには、貼り合わせ界面が表面粗さ(算術平均表面粗さRa(JIS B0601−2013))1nm以下の平滑性が不可欠であるが、ダイヤモンドに次ぐ難削材と言われるSiCは単結晶SiC表面を非晶質に改質してもその後の研削、研磨或いは化学機械研磨(Chemical Mechanical Polishing,CMP)などの平滑化プロセスに極めて多くの時間を要し、高コスト化は避けられず実用化の大きな障害となっている。 In addition to these drawbacks, in the above technique, in order to bond the single crystal SiC and the polycrystalline SiC of the supporting substrate, the bonding interface has a surface roughness (arithmetic mean surface roughness Ra (JIS B0601-2013)) of 1 nm or less. However, even if the surface of single-crystal SiC is modified to be amorphous, the subsequent grinding, polishing or chemical mechanical polishing (CMP) is essential. It takes an extremely long time to perform the smoothing process, and the cost increase is inevitable, which is a major obstacle to practical use.

更に、単結晶SiC層の結晶性回復時点で体積変化が起こり、これが内部応力や多結晶/単結晶界面から発生する欠陥(転位)の拡張を招き、更には基板サイズを大口径するにつれて反り量が増大するなどの問題を発生させる。また、単結晶SiC層の変質層が非晶質層である場合には、その層の再結晶化が均一核生成を伴うため、双晶発生は避けられない。これに加え、イオン照射から貼り合わせまでは真空中での連続プロセスであるため、装置のコストが大となる問題、基板の粗さに依存して深い飛程(高エネルギー)でのイオン注入が必要となり装置コストを高めてしまう問題が挙げられる。 Furthermore, when the crystallinity of the single crystal SiC layer is recovered, a volume change occurs, which leads to expansion of internal stress and defects (dislocations) generated from the polycrystal/single crystal interface, and further, the warp amount increases as the substrate size increases. Causes problems such as increase in Further, when the altered layer of the single crystal SiC layer is an amorphous layer, twinning is unavoidable because recrystallization of the layer involves uniform nucleation. In addition to this, since the process from ion irradiation to bonding is a continuous process in a vacuum, the cost of the device becomes large, and ion implantation at a deep range (high energy) depends on the roughness of the substrate. There is a problem that it becomes necessary and increases the apparatus cost.

また、特開2014−216555号公報(特許文献3)では、支持基板上に点欠陥を含む単結晶SiCの第1層を貼りあわせて、支持基板と共に加熱することにより、原子配列を再配列させて面欠陥や線欠陥を消滅させると共に、支持基板の結晶面が上層に与える影響を遮断する発明が開示されている。しかしながら、第1層中の点欠陥が熱処理時に複合欠陥に変換し、これが双晶や積層欠陥の発生を招く問題があり、また点欠陥を単結晶SiC層(第1層)内に分布させるためには多段階イオン注入が必要であることから基板製造プロセスが複雑化する問題があり、更に支持基板と貼り合わせ層界面のエネルギー高さにより転位が発生するという問題がある。 Further, in JP-A-2014-216555 (Patent Document 3), a first layer of single crystal SiC including point defects is attached onto a supporting substrate and heated together with the supporting substrate to rearrange the atomic arrangement. The invention discloses that the surface defects and line defects are eliminated and the influence of the crystal plane of the supporting substrate on the upper layer is blocked. However, there is a problem that the point defects in the first layer are converted into complex defects during heat treatment, which causes twinning and stacking faults, and the point defects are distributed in the single crystal SiC layer (first layer). However, there is a problem that the substrate manufacturing process is complicated because multi-stage ion implantation is required, and further, dislocations are generated due to the high energy at the interface between the supporting substrate and the bonding layer.

また、特開2014−22711号公報(特許文献4)では、高不純物濃度で高密度欠陥の支持基板上に低不純物密度で低密度欠陥のSiC層を貼り合わせ、その上層に半導体素子として必要となる不純物濃度の層をエピタキシャル成長することにより、低濃度層と同等の低欠陥密度層を得る方法が開示されている。しかしながら、貼り合わせ界面に金属汚染が発生する問題や結晶格子が基板から表面まで連続しているために高密度基板から表層側に転位が伝搬する問題が残されている。 Further, in JP-A-2014-22711 (Patent Document 4), a SiC layer having a low impurity density and a low density defect is bonded onto a supporting substrate having a high impurity density and a high density defect, and a semiconductor element is required as an upper layer thereover. There is disclosed a method of obtaining a low defect density layer equivalent to the low concentration layer by epitaxially growing a layer having the following impurity concentration. However, there remains a problem that metal contamination occurs at the bonding interface and dislocation propagates from the high-density substrate to the surface side because the crystal lattice is continuous from the substrate to the surface.

また、特開2014−11301号公報(特許文献5)では、SiCの支持基板を加熱して、その表面を炭素を主体とする層に変換し、その面に単結晶の半導体層を貼り合わせた後に、その全面又は一部をへき開する方法が開示されている。しかしながら、SiCと炭素を含む層は脆弱な結合手で貼り合わされているため、貼り合わせ界面は機械的にも弱く、かつ酸化雰囲気でも炭素層はダメージをうけるため、安定な基板を得る手段とは成り得ない。 Further, in JP-A-2014-11301 (Patent Document 5), a SiC supporting substrate is heated to convert the surface thereof into a layer containing carbon as a main component, and a single crystal semiconductor layer is bonded to the surface. Later, a method of cleaving the whole surface or a part thereof is disclosed. However, since the layer containing SiC and carbon is bonded by a weak bond, the bonding interface is mechanically weak, and the carbon layer is damaged even in an oxidizing atmosphere. It cannot happen.

また、特開平10−335617号公報(特許文献6)では、単結晶半導体基板にイオン注入を用いずに水素吸蔵層と非晶質層を設け、非晶質層を支持基板に貼り合わせて固相再成長させた後に単結晶半導体基板を剥離させることにより絶縁膜上に半導体薄膜を得る方法が開示されている。しかしながら、非晶質層の固相成長の際に双晶発生の可能性が有るほか、絶縁膜を介しているため、縦方向に電流を流すようなディスクリート素子用の基板が製造できないという問題がある。 Further, in Japanese Patent Laid-Open No. 10-335617 (Patent Document 6), a hydrogen storage layer and an amorphous layer are provided in a single crystal semiconductor substrate without using ion implantation, and the amorphous layer is bonded to a supporting substrate to be solidified. A method for obtaining a semiconductor thin film on an insulating film by peeling a single crystal semiconductor substrate after phase regrowth is disclosed. However, in addition to the possibility of twinning during the solid phase growth of the amorphous layer, there is the problem that a substrate for a discrete device that allows a current to flow in the vertical direction cannot be manufactured because it has an insulating film. is there.

本発明に関連するこの他の先行技術文献として次のものが挙げられる。
・”Reduction of Bowing in GaN−on−Sapphire and GaN−on−Silicon Substrates by Stress Implantation by Internally Focused Laser Processing” Japan Journal of Applied Physics Vol.51(2012)016504(非特許文献1)
Other prior art documents related to the present invention include the following.
-"Reduction of Bowing in GaN-on-Sapphire and GaN-on-Silicon Substrates by Implanted by Internally Focused Lapse Journey in Japan". 51 (2012) 016504 (Non-Patent Document 1)

特許第5051962号公報Japanese Patent No. 5051962 特開2015−15401号公報JP, 2005-15401, A 特開2014−216555号公報JP, 2014-216555, A 特開2014−22711号公報JP, 2014-22711, A 特開2014−11301号公報JP, 2014-11301, A 特開平10−335617号公報JP, 10-335617, A

”Reduction of Bowing in GaN−on−Sapphire and GaN−on−Silicon Substrates by Stress Implantation by Internally Focused Laser Processing” Japan Journal of Applied Physics Vol.51(2012)016504"Reduction of Bowing in GaN-on-Sapphire and GaN-on-Silicon Substrates by Implanting by Internally Focused Lapse Processed Japan. 51 (2012) 0165504

本発明は、上記事情に鑑みなされたもので、多結晶SiC基板と単結晶SiC層との間に介在層を伴わず、かつ単結晶SiC層に結晶構造の欠陥等が入ることなく多結晶SiC基板と単結晶SiC層との付着力を向上したSiC複合基板を提供することを目的とする。 The present invention has been made in view of the above circumstances, and does not involve an intervening layer between the polycrystalline SiC substrate and the single-crystal SiC layer, and the single-crystal SiC layer is free from defects such as a crystal structure. It is an object of the present invention to provide a SiC composite substrate having improved adhesion between the substrate and the single crystal SiC layer.

本発明は、上記目的を達成するため、下記のSiC複合基板を提供する。
〔1〕 厚さ100μm以上650μm以下の多結晶SiC基板上に厚さ100nm以上1μm以下の単結晶SiC層を有するSiC複合基板において、上記多結晶SiC基板と単結晶SiC層とが当接する界面の全面又は一部が格子整合していない不整合界面であり、上記単結晶SiC層は平滑な表面を有すると共に多結晶SiC基板との界面側にこの表面よりも凹凸がある面を有し、この凹凸面は凹凸を構成する傾斜面が該単結晶SiC層の表面の法線方向を基準としてランダムな方向に向いているものであり、上記多結晶SiC基板における多結晶SiCの結晶の最密面が上記単結晶SiC層の凹凸面の凹凸を構成する傾斜面に対して平行となるように堆積し、これにより該多結晶SiCの結晶の最密面が単結晶SiC層の表面の法線方向を基準としてランダムに配向していることを特徴とするSiC複合基板。
〔2〕 上記多結晶SiC基板は化学気相成長膜であることを特徴とする〔1〕記載のSiC複合基板。
〔3〕 上記多結晶SiC基板の多結晶SiCは立方晶であり、その最密面が{111}面であることを特徴とする〔1〕又は〔2〕記載のSiC複合基板。
〔4〕 X線ロッキングカーブ法により得られる単結晶SiC層表面の法線軸を基準(ω=0度)とする多結晶SiC基板を構成するSiC結晶の(111)面のロッキングカーブにおいて、ω≦−2度又は2度≦ωとなる結晶粒の割合が多結晶SiC基板を構成する全結晶粒の65%以上である〔3〕記載のSiC複合基板。
〔5〕 上記単結晶SiC層の結晶格子の最密面が多結晶SiC基板との界面において0度超10度以内の偏向角を有する〔1〕〜〔4〕のいずれかに記載のSiC複合基板。
〔6〕 多結晶SiC基板を構成する結晶の粒径が0.1μm以上30μm以下である〔1〕〜〔5〕のいずれかに記載のSiC複合基板。
In order to achieve the above object, the present invention provides the following SiC composite substrate.
[1] In a SiC composite substrate having a single crystal SiC layer with a thickness of 100 nm or more and 1 μm or less on a polycrystalline SiC substrate with a thickness of 100 μm or more and 650 μm or less, an interface of contact between the polycrystalline SiC substrate and the single crystal SiC layer The whole or a part is an unmatched interface which is not lattice-matched, and the single crystal SiC layer has a smooth surface and also has a surface more uneven than the surface on the interface side with the polycrystalline SiC substrate. The uneven surface is such that the inclined surface forming the unevenness is oriented in a random direction with the normal direction of the surface of the single crystal SiC layer as a reference, and the densest surface of the polycrystalline SiC crystal in the polycrystalline SiC substrate. Are deposited so as to be parallel to the inclined planes that form the irregularities of the irregular surface of the single-crystal SiC layer, whereby the close-packed plane of the crystals of the polycrystalline SiC layer is the normal direction of the surface of the single-crystal SiC layer. A SiC composite substrate characterized by being randomly oriented with respect to.
[2] The SiC composite substrate according to [1], wherein the polycrystalline SiC substrate is a chemical vapor deposition film.
[3] The SiC composite substrate according to [1] or [2], wherein the polycrystalline SiC of the polycrystalline SiC substrate is a cubic crystal, and the closest packed surface is the {111} plane.
[4] In the rocking curve of the (111) plane of the SiC crystal that constitutes the polycrystalline SiC substrate with the normal axis of the surface of the single crystal SiC layer obtained by the X-ray rocking curve method as the reference (ω=0 degrees), ω≦ The SiC composite substrate according to [3], wherein the proportion of crystal grains satisfying −2 degrees or 2 degrees≦ω is 65% or more of all crystal grains constituting the polycrystalline SiC substrate.
[5] The SiC composite according to any one of [1] to [4], wherein the close-packed surface of the crystal lattice of the single crystal SiC layer has a deflection angle of more than 0 degree and within 10 degrees at the interface with the polycrystalline SiC substrate. substrate.
[6] The SiC composite substrate according to any one of [1] to [5], wherein a grain size of crystals constituting the polycrystalline SiC substrate is 0.1 μm or more and 30 μm or less.

本発明のSiC複合基板によれば、単結晶SiC層と多結晶SiC基板とが当接する界面では結晶格子が整合していない不整合界面であることから微視的には特定の方位に応力が作用して両者の付着力が低下する傾向にあるところ、多結晶SiC基板における多結晶SiCの結晶の最密面が単結晶SiC層の表面の法線方向を基準としてランダムに配向していることから、単結晶SiC層と多結晶SiC基板との界面においてあらゆる方位に引張応力と圧縮応力が均等に発生して相殺し合うようになり、界面全体としては内部応力を低減することができ、両者の付着力向上を図ることができる。また、単結晶SiC層と多結晶SiC基板との界面が不整合界面であるため、多結晶SiC基板内に転位が発生したとしても単結晶SiC層内への伝搬が阻止され、更に多結晶SiC基板における多結晶SiCの結晶の最密面が単結晶SiC層の表面の法線方向を基準としてランダムに配向していることから、局在化した応力により界面近傍の単結晶SiC層内で転位が発生したとしても、それらは等方的に伝搬するため、伝搬する転位や積層欠陥が相互に終端し合い、低欠陥密度の単結晶SiC表面を得ることが可能となる。
また、本発明のSiC複合基板の製造方法によれば、機械的加工による粗面化によって保持基板側の表面よりも凹凸があり、かつ該凹凸を構成する傾斜面が保持基板側表面の法線方向を基準としてランダムな方向に向いている凹凸面となった単結晶SiC層とし、その凹凸面に化学気相成長法により多結晶SiCを堆積して該多結晶SiCの結晶の最密面が単結晶SiC層の保持基板側表面の法線方向を基準としてランダムに配向している多結晶SiC基板を形成するので、本発明のSiC複合基板を簡便に製造することができる。
According to the SiC composite substrate of the present invention, since the interface where the single crystal SiC layer and the polycrystalline SiC substrate are in contact is an unmatched interface in which the crystal lattices are not matched, microscopically stress is applied in a specific direction. Where there is a tendency that the two adhere to each other due to the action, the densest surface of the polycrystalline SiC crystal in the polycrystalline SiC substrate is randomly oriented with reference to the normal direction of the surface of the single-crystal SiC layer. Therefore, the tensile stress and the compressive stress are evenly generated in all directions at the interface between the single-crystal SiC layer and the polycrystalline SiC substrate to cancel each other, and the internal stress can be reduced in the entire interface. It is possible to improve the adhesive force of. Further, since the interface between the single crystal SiC layer and the polycrystalline SiC substrate is a mismatched interface, even if dislocations occur in the polycrystalline SiC substrate, the propagation into the single crystal SiC layer is blocked, and the polycrystalline SiC substrate is further prevented. Since the close-packed surface of the polycrystalline SiC crystal on the substrate is randomly oriented with reference to the normal direction of the surface of the single-crystal SiC layer, localized stress causes dislocation in the single-crystal SiC layer near the interface. Even if occurs, since they propagate isotropically, the propagating dislocations and stacking faults terminate each other, and it becomes possible to obtain a single crystal SiC surface having a low defect density.
Further, according to the method for manufacturing an SiC composite substrate of the present invention, there is unevenness than the surface on the holding substrate side due to roughening by mechanical processing, and the inclined surface forming the unevenness is a normal line of the surface on the holding substrate side. A single-crystal SiC layer having an uneven surface oriented in random directions with respect to the direction is formed, and polycrystalline SiC is deposited on the uneven surface by the chemical vapor deposition method so that the close-packed surface of the crystal of the polycrystalline SiC is Since the polycrystalline SiC substrate randomly oriented with reference to the normal direction of the surface of the single crystal SiC layer on the side of the holding substrate is formed, the SiC composite substrate of the present invention can be easily manufactured.

本発明に係るSiC複合基板の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the SiC composite substrate which concerns on this invention. 本発明に係るSiC複合基板の単結晶SiC層と多結晶SiC基板との界面における微視的構造を示す概念図である。It is a conceptual diagram which shows the microscopic structure in the interface of the single crystal SiC layer of a SiC composite substrate and a polycrystalline SiC substrate which concern on this invention. 従来のSiC複合基板の単結晶SiC層と多結晶SiC基板との界面における微視的構造を示す概念図である。It is a conceptual diagram which shows the microscopic structure in the interface of the single crystal SiC layer of a conventional SiC composite substrate, and a polycrystal SiC substrate. 本発明に係るSiC複合基板の製造方法の実施形態1における製造工程を示す図である。It is a figure which shows the manufacturing process in Embodiment 1 of the manufacturing method of the SiC composite substrate which concerns on this invention. 本発明に係るSiC複合基板の製造方法の実施形態2における製造工程を示す図である。It is a figure which shows the manufacturing process in Embodiment 2 of the manufacturing method of the SiC composite substrate which concerns on this invention. 本発明に係るSiC複合基板の製造方法の実施形態3における製造工程を示す図である。It is a figure which shows the manufacturing process in Embodiment 3 of the manufacturing method of the SiC composite substrate which concerns on this invention. 本発明に係るSiC複合基板の製造方法の実施形態4における製造工程を示す図である。It is a figure which shows the manufacturing process in Embodiment 4 of the manufacturing method of the SiC composite substrate which concerns on this invention. 実施例1の多結晶SiC基板の表面の実体顕微鏡像である。3 is a stereoscopic microscope image of the surface of the polycrystalline SiC substrate of Example 1. 実施例1のSiC複合基板における多結晶SiC基板のX線回折法(θ−2θ法)による測定結果を示す図である。FIG. 5 is a diagram showing a measurement result of a polycrystalline SiC substrate in the SiC composite substrate of Example 1 by an X-ray diffraction method (θ-2θ method). 実施例1のSiC複合基板における多結晶SiC基板のX線ロッキングカーブ(ωスキャン)を示す図である。5 is a diagram showing an X-ray rocking curve (ω scan) of a polycrystalline SiC substrate in the SiC composite substrate of Example 1. FIG. SiC複合基板のBow量の測定方法を示す概略図である。It is the schematic which shows the measuring method of the bow amount of a SiC composite substrate.

[SiC複合基板]
以下に、本発明に係るSiC複合基板について説明する。
本発明に係るSiC複合基板は、多結晶SiC基板上に単結晶SiC層を有するSiC複合基板において、上記多結晶SiC基板と単結晶SiC層とが当接する界面の全面又は一部が格子整合していない不整合界面であり、上記単結晶SiC層は平滑な表面を有すると共に多結晶SiC基板との界面側にこの表面よりも凹凸がある面を有しており、上記多結晶SiC基板における多結晶SiCの結晶の最密面が単結晶SiC層の表面の法線方向を基準としてランダムに配向していることを特徴とするものである。
[SiC composite substrate]
The SiC composite substrate according to the present invention will be described below.
The SiC composite substrate according to the present invention is a SiC composite substrate having a single crystal SiC layer on a polycrystalline SiC substrate, and the whole or part of the interface where the polycrystalline SiC substrate and the single crystal SiC layer contact each other is lattice-matched. The single-crystal SiC layer has a smooth surface and has a surface that is more uneven than the surface on the interface side with the polycrystalline SiC substrate. It is characterized in that the close-packed planes of the crystals of crystalline SiC are randomly oriented with reference to the normal direction of the surface of the single-crystal SiC layer.

図1、図2に、本発明に係るSiC複合基板の構成を示す。図1は、SiC複合基板の全体構成(巨視的構造)を示す断面図であり、図2は単結晶SiC層と多結晶SiC基板との界面における微視的構造を示す概念図である。
図1に示すように、本発明に係るSiC複合基板10は、多結晶SiC基板11と、多結晶SiC基板11上に設けられた単結晶SiC層12とを有する。
1 and 2 show the structure of the SiC composite substrate according to the present invention. FIG. 1 is a cross-sectional view showing the overall configuration (macroscopic structure) of the SiC composite substrate, and FIG. 2 is a conceptual diagram showing the microscopic structure at the interface between the single crystal SiC layer and the polycrystalline SiC substrate.
As shown in FIG. 1, a SiC composite substrate 10 according to the present invention includes a polycrystalline SiC substrate 11 and a single crystal SiC layer 12 provided on the polycrystalline SiC substrate 11.

ここで、多結晶SiC基板11における多結晶SiCの結晶の最密面は単結晶SiC層12の表面の法線方向を基準としてランダムに配向している。 Here, the close-packed surface of the polycrystalline SiC crystal in the polycrystalline SiC substrate 11 is randomly oriented with the normal direction of the surface of the single-crystal SiC layer 12 as a reference.

なお、ランダムに配向しているとは、多結晶SiCの結晶の最密面が単結晶SiC層12の表面の法線方向を基準として多結晶SiC基板11全体として見た場合に特定の方位に偏って向いているのではなく、全方位に均等に向いていることをいう。 It should be noted that “randomly oriented” means that the close-packed surface of the polycrystalline SiC crystal has a specific orientation when the polycrystalline SiC substrate 11 as a whole is viewed with the normal direction of the surface of the single crystal SiC layer 12 as a reference. It does not mean that it is biased, but that it is evenly oriented in all directions.

多結晶SiC基板11の厚さは、ハンドル基板としての強度を考慮すると100〜650μmであることが好ましく、縦型デバイスとして使用した場合の直列抵抗も加味すると200〜350μmであることがより好ましい。厚さを100μm以上とすることによりハンドル基板としての機能を確保しやすくなり、650μm以下とすることによりコストと電気抵抗の抑制を図ることができる。 The thickness of the polycrystalline SiC substrate 11 is preferably 100 to 650 μm in consideration of the strength as a handle substrate, and more preferably 200 to 350 μm in consideration of series resistance when used as a vertical device. When the thickness is 100 μm or more, it is easy to ensure the function as the handle substrate, and when it is 650 μm or less, the cost and the electric resistance can be suppressed.

多結晶SiC基板11は、化学気相成長法(Chemicla Vapor Deposition、CVD法)により多結晶SiCを堆積した膜、即ち化学気相成長膜であることが好ましい。即ち、多結晶SiC基板11は、各々の結晶粒の最密面がランダムな方位に配向するよう、単結晶SiC層12表面の起伏斜面に対して平行となるように堆積すること(詳細は後述する)が好ましい。 The polycrystalline SiC substrate 11 is preferably a film in which polycrystalline SiC is deposited by a chemical vapor deposition method (Chemical Vapor Deposition, CVD method), that is, a chemical vapor deposition film. That is, the polycrystalline SiC substrate 11 should be deposited in parallel with the undulating slopes of the surface of the single crystal SiC layer 12 so that the closest packed planes of the respective crystal grains are oriented in random directions (details will be described later). Yes) is preferred.

また、多結晶SiC基板11を構成する結晶の粒径は、0.1μm以上30μm以下が望ましく、0.5μm以上10μm以下がより望ましい。結晶粒径を30μm以下とすることにより特定のSiC結晶粒と単結晶SiC層12との界面の面積を抑制し、界面における応力の局在化を抑えて、引いては結晶格子の塑性変形を抑えたり、転位の運動を抑制しやすくなることから、単結晶SiC層12の品質を高く保ちやすくなる。また、結晶粒径を0.1μm以上とすることにより、多結晶SiC基板11をハンドル基板としての機械的強度を増加させ、抵抗率を低くして半導体用基板としての機能を果たすことができるようにしやすくなる。 Further, the grain size of the crystals forming the polycrystalline SiC substrate 11 is preferably 0.1 μm or more and 30 μm or less, and more preferably 0.5 μm or more and 10 μm or less. By setting the crystal grain size to 30 μm or less, the area of the interface between the specific SiC crystal grain and the single crystal SiC layer 12 is suppressed, the localization of the stress at the interface is suppressed, and eventually the plastic deformation of the crystal lattice is suppressed. Since it becomes easy to suppress or suppress the movement of dislocations, it becomes easy to keep the quality of the single crystal SiC layer 12 high. Further, by setting the crystal grain size to 0.1 μm or more, it is possible to increase the mechanical strength of the polycrystalline SiC substrate 11 as a handle substrate and reduce the resistivity to function as a semiconductor substrate. It is easy to

また、多結晶SiC基板11の多結晶SiCは立方晶であることが好ましく、その最密面が{111}面であることがより好ましい。立方晶SiCが等方的な結晶であり、かつ等価な4つの最密面を有しているために特定の最密面が特定方位に配向してしまうことが避けられ、多結晶SiC基板11と単結晶SiC層12との界面における応力の低減効果やSiC複合基板10の反りの低減効果が更に確実なものとなる。また、立方晶SiCは多結晶SiCの中では最も低温の相であり、Siの融点以下でも形成可能であることから、後述する保持基板の材質選定の自由度が増すという利点もある。
なお、多結晶SiC基板11に不純物を導入して抵抗率を調整してもよい。これにより縦型パワー半導体デバイスの基板として好適に使用することが可能となる。
Further, the polycrystalline SiC of the polycrystalline SiC substrate 11 is preferably a cubic crystal, and it is more preferable that its close-packed plane is a {111} plane. Since cubic SiC is an isotropic crystal and has four equivalent close-packed planes, it is possible to prevent the specific close-packed planes from being oriented in a specific direction, and thus the polycrystalline SiC substrate 11 The effect of reducing the stress at the interface between and the single crystal SiC layer 12 and the effect of reducing the warp of the SiC composite substrate 10 become more reliable. Further, since cubic SiC is the lowest temperature phase in polycrystalline SiC and can be formed even at a melting point of Si or lower, there is an advantage that the degree of freedom in selecting the material of the holding substrate described later is increased.
Note that the resistivity may be adjusted by introducing impurities into the polycrystalline SiC substrate 11. As a result, it can be suitably used as a substrate of a vertical power semiconductor device.

更に、多結晶SiC基板11は、上層の単結晶SiC層12と同じSiCからなり、単結晶SiC層12と多結晶SiC基板11の熱膨張係数が等しくなることからいかなる温度においてもSiC複合基板10の反りが低減される。 Further, the polycrystalline SiC substrate 11 is made of the same SiC as the upper single-crystal SiC layer 12, and since the single crystal SiC layer 12 and the polycrystalline SiC substrate 11 have the same thermal expansion coefficient, the SiC composite substrate 10 does not have any temperature. Warpage is reduced.

単結晶SiC層12は、単結晶SiCからなるものであれば、その結晶構造が4H−SiC、6H−SiC、3C−SiCのいずれのものでもよい。 The single crystal SiC layer 12 may have any one of 4H-SiC, 6H-SiC, and 3C-SiC as long as it is made of single crystal SiC.

また、単結晶SiC層12は、後述するように、バルク状の単結晶SiC、例えば結晶構造が4H−SiC、6H−SiC、3C−SiCの単結晶SiC基板から薄膜状あるいは層状に剥離させて形成したものであることが好ましい。あるいは、単結晶SiC層12は、後述するように、気相成長法によりヘテロエピタキシャル成長させた膜であってもよい。 Further, the single crystal SiC layer 12 is peeled off in a thin film or layer form from a bulk single crystal SiC, for example, a single crystal SiC substrate having a crystal structure of 4H-SiC, 6H-SiC, 3C-SiC, as described later. It is preferably formed. Alternatively, the single crystal SiC layer 12 may be a film that is heteroepitaxially grown by a vapor phase growth method, as described later.

また、単結晶SiC層12は、厚さが1μm以下、好ましくは100nm以上1μm以下、より好ましくは200nm以上800nm以下、更に好ましくは300nm以上500nm以下の単結晶SiCからなる薄膜である。 The single crystal SiC layer 12 is a thin film made of single crystal SiC having a thickness of 1 μm or less, preferably 100 nm or more and 1 μm or less, more preferably 200 nm or more and 800 nm or less, and further preferably 300 nm or more and 500 nm or less.

単結晶SiC層12がイオン注入剥離法により形成される場合、その膜厚は注入イオンの飛程(イオン注入深さ)により決定され、1μm程度が上限となる。なお、単結晶SiC層12をパワーデバイスの活性層として用いようとすると10μm以上の厚さが要求されることがあるが、この場合には単結晶SiC層12上にSiCエピタキシャル層12’をホモエピタキシャル成長させて所望の膜厚の単結晶SiC層を形成するとよい。 When the single crystal SiC layer 12 is formed by the ion implantation delamination method, the film thickness thereof is determined by the range of ion implantation (ion implantation depth), and the upper limit is about 1 μm. When the single crystal SiC layer 12 is used as an active layer of a power device, a thickness of 10 μm or more may be required. In this case, the SiC epitaxial layer 12 ′ is homogenized on the single crystal SiC layer 12. Epitaxial growth may be performed to form a single crystal SiC layer having a desired thickness.

また、単結晶SiC層12が多結晶SiC基板11との界面側に有する凹凸面はその凹凸を構成する傾斜面が該単結晶SiC層12の表面の法線方向を基準としてランダムな方向に向いているものであることが好ましい。この表面凹凸の状態については、SiC複合基板の製造方法の実施形態において後述する。 Further, in the uneven surface of the single crystal SiC layer 12 on the interface side with the polycrystalline SiC substrate 11, the inclined surface forming the unevenness is oriented in a random direction with reference to the normal direction of the surface of the single crystal SiC layer 12. It is preferable that the The state of the surface irregularities will be described later in the embodiment of the method for manufacturing the SiC composite substrate.

図2は、本発明に係るSiC複合基板10の単結晶SiC層12と多結晶SiC基板11との界面における微視的構造を示す概念図であり、11pは多結晶SiC基板11を構成する結晶の格子面、11bはその結晶粒界、12pは単結晶SiC層12を構成する単結晶の格子面である。SiC複合基板10は、多結晶SiC基板11上に単結晶SiC層12が当接した構造を有しており、多結晶SiC基板11と単結晶SiC層12の界面の全面又は一部は結晶格子が整合していない不整合界面I12/11となっている。 FIG. 2 is a conceptual diagram showing a microscopic structure at the interface between the single crystal SiC layer 12 and the polycrystalline SiC substrate 11 of the SiC composite substrate 10 according to the present invention, and 11p is a crystal that constitutes the polycrystalline SiC substrate 11. , 11b is a crystal grain boundary thereof, and 12p is a single crystal lattice plane forming the single crystal SiC layer 12. The SiC composite substrate 10 has a structure in which a single crystal SiC layer 12 is in contact with a polycrystalline SiC substrate 11, and the whole or part of the interface between the polycrystalline SiC substrate 11 and the single crystal SiC layer 12 has a crystal lattice. Is a non-matching interface I 12/11 .

図2において、多結晶SiC基板11を構成する結晶は単結晶SiC層12における多結晶SiC基板11との界面側表面(即ち不整合界面I12/11)の凹凸を構成する傾斜面ごとにその最密面(格子面11p)が該傾斜面に対して平行となるように堆積した構造を呈している。 In FIG. 2, the crystals forming the polycrystalline SiC substrate 11 are formed for each inclined surface forming the unevenness of the surface of the single crystal SiC layer 12 on the interface side with the polycrystalline SiC substrate 11 (that is, the mismatch interface I 12/11 ). It has a structure in which the closest surface (lattice surface 11p) is deposited so as to be parallel to the inclined surface.

従来の多結晶SiC基板上に単結晶SiC層が当接した構造の不整合界面においては、格子間隔や格子面配向方位の違いから結晶格子の不連続性が発生している(図3)。この不連続部(不整合界面)に位置する原子(Si又はC)には未結合手が発生するため、電気的中性条件が局部的に乱れて斥力や引力が働き、これらが界面に平行な応力(図中、矢印)を発生させる。 At the mismatched interface of the structure in which the single crystal SiC layer is in contact with the conventional polycrystalline SiC substrate, the discontinuity of the crystal lattice occurs due to the difference in the lattice spacing and the orientation of the lattice planes (FIG. 3). Since a dangling bond is generated in the atom (Si or C) located at this discontinuity (mismatched interface), the electrically neutral condition is locally disturbed and repulsive force or attractive force is exerted, and these are parallel to the interface. A different stress (arrow in the figure) is generated.

応力が作用する方位は、それぞれの結晶面の配向方位などにより決定される。このため、特定の方位に傾斜した不整合界面においては特定の方位に応力が働くため、内部応力が残留し、付着力が低下する。 The orientation in which the stress acts is determined by the orientation orientation of each crystal plane. For this reason, stress acts on a specific orientation at a mismatched interface inclined to a specific orientation, and thus internal stress remains and the adhesive force decreases.

本発明では、この内部応力を残留させない、又は低減させるため、不整合界面I12/11における応力の働く方向を分散させて、相反する応力を発生させて相殺するようにしている。即ち本発明では、多結晶SiC基板11の結晶粒のそれぞれの結晶格子の最密面(格子面11p)が単結晶SiC層12の表面(図2において上面)の法線方向を基準としてランダムに配向し(単結晶SiC層12の最密面の配向方位を中心軸として分散配向し)、あらゆる方位において引張応力と圧縮応力が均等に発生して相殺しあい、単結晶SiC層12と多結晶SiC基板11の界面(不整合界面I12/11)全体としては無応力化又は低応力化(0.1GPa以下の内部応力)を実現している。 In the present invention, in order to prevent this internal stress from remaining or reduce it, the directions in which the stress acts on the mismatched interface I 12/11 are dispersed so that opposing stresses are generated and offset. That is, in the present invention, the close-packed surface (lattice surface 11p) of each crystal lattice of the crystal grains of the polycrystalline SiC substrate 11 is randomly determined with reference to the normal direction of the surface of the single crystal SiC layer 12 (the upper surface in FIG. 2). Oriented (dispersively oriented with the orientation direction of the close-packed surface of the single crystal SiC layer 12 as the central axis), tensile stress and compressive stress are uniformly generated and cancel out in all directions, and the single crystal SiC layer 12 and the polycrystalline SiC layer The interface (mismatched interface I 12/11 ) of the substrate 11 as a whole realizes no stress or a low stress (internal stress of 0.1 GPa or less).

このとき、多結晶SiC基板11の結晶粒のそれぞれの結晶格子の最密面が単結晶SiC層12の表面(基準面)を基準として偏向角θで傾いて配向しているとした場合(図2)、θ≦−2度又は2度≦θとなる結晶粒の割合が多結晶SiC基板11を構成する全結晶粒の32%以上であることが好ましく、50%以上であることがより好ましい。この割合が32%未満となると、−2度<θ<2度となる結晶粒の割合が68%以上となり、界面面積に対する整合界面の割合が増える(即ち、最密面が特定方位(例えば、単結晶SiC層12の表面(図2において上面)の法線方向)に配向したSiC結晶の割合が増える)ことから応力の相殺効果が損なわれ、単結晶SiC層12と多結晶SiC基板11との界面近傍の内部応力が高くなり、剥離や変形がおこるおそれがある。なお、θ=0度が配向分布の平均(中心)である(即ち、単結晶SiC層12の表面(基準面)の法線方向に対して配向する場合(基準面に対して最密面が平行となる場合)である)。 At this time, when it is assumed that the close-packed planes of the respective crystal lattices of the crystal grains of the polycrystalline SiC substrate 11 are inclined at a deflection angle θ with reference to the surface (reference plane) of the single crystal SiC layer 12 (see FIG. 2), the ratio of the crystal grains satisfying θ≦−2 degrees or 2 degrees≦θ is preferably 32% or more, and more preferably 50% or more of all the crystal grains constituting the polycrystalline SiC substrate 11. .. When this ratio is less than 32%, the ratio of crystal grains satisfying −2 degrees<θ<2 degrees is 68% or more, and the ratio of matching interfaces to the interface area increases (that is, the close-packed surface has a specific orientation (for example, Since the proportion of the SiC crystals oriented on the surface of the single crystal SiC layer 12 (the normal direction to the upper surface in FIG. 2) increases, the stress canceling effect is impaired, and the single crystal SiC layer 12 and the polycrystalline SiC substrate 11 are The internal stress in the vicinity of the interface becomes high, and peeling or deformation may occur. It should be noted that θ=0 degree is the average (center) of the orientation distribution (that is, in the case of orientation with respect to the normal direction of the surface (reference plane) of the single crystal SiC layer 12 (the closest surface to the reference plane is If parallel))).

多結晶SiC基板11との付着力を高めるためには、単結晶SiC層12の結晶の最密面が多結晶SiC基板11との界面に対して平行であることが好ましいが、単結晶SiC層12表面においてステップフローエピタキシャル成長を発現させるためには結晶面が微傾斜している必要がある。このことを勘案すると、単結晶SiC層12の結晶格子の最密面が多結晶SiC基板11との界面において0度超10度以内の偏向角を有することが望ましい。単結晶SiC層12の結晶格子の最密面の偏向角が10度を超えてしまうと、不整合界面のエネルギーが高くなってしまい、単結晶SiC層12と多結晶SiC基板11との付着力が損なわれたり、界面での転位の発生頻度が高まったり、界面で発生した転位が単結晶SiC層12内に伝搬してしまう場合がある。 In order to enhance the adhesive force with the polycrystalline SiC substrate 11, it is preferable that the close-packed surface of the crystal of the single-crystal SiC layer 12 is parallel to the interface with the polycrystalline SiC substrate 11, but the single-crystal SiC layer In order to develop step flow epitaxial growth on the 12th surface, the crystal plane needs to be slightly inclined. Considering this, it is desirable that the close-packed surface of the crystal lattice of the single crystal SiC layer 12 has a deflection angle of more than 0 degrees and within 10 degrees at the interface with the polycrystalline SiC substrate 11. If the deflection angle of the close-packed surface of the crystal lattice of the single crystal SiC layer 12 exceeds 10 degrees, the energy of the mismatch interface becomes high, and the adhesive force between the single crystal SiC layer 12 and the polycrystalline SiC substrate 11 is increased. May be impaired, the frequency of dislocation generation at the interface may be increased, and the dislocation generated at the interface may propagate into the single crystal SiC layer 12.

なお、単結晶SiC層12と多結晶SiC基板11との界面は不整合界面I12/11であるため、多結晶SiC基板11内に転位が発生したとしても該不整合界面I12/11で単結晶SiC層12内への伝搬が阻止される。また、局在化した応力により界面近傍の単結晶SiC層12内で転位が発生したとしても、それらは等方的に伝搬するため、伝搬する転位や積層欠陥が相互に終端しあい、低欠陥密度の単結晶SiC層12表面を得ることが可能となる。 Since the interface between the single-crystal SiC layer 12 and the polycrystalline SiC substrate 11 is the mismatched interface I 12/11 , even if dislocations occur in the polycrystalline SiC substrate 11, the interface does not match at the mismatched interface I 12/11 . Propagation into the single crystal SiC layer 12 is blocked. Further, even if dislocations are generated in the single crystal SiC layer 12 near the interface due to localized stress, they propagate isotropically, so the propagating dislocations and stacking faults terminate each other, resulting in low defect density. The surface of the single crystal SiC layer 12 can be obtained.

以上より、本発明のSiC複合基板10によれば、(1)単結晶SiC層12と多結晶SiC基板11との間に熱膨張差がないことからハンドル基板との熱膨張差に依る反りが解消され、(2)単結晶SiC層12にダメージや複合欠陥、双晶、積層欠陥を導入することがなく、(3)単結晶SiC層12/多結晶SiC基板11界面の機械的強度を損なうことがなく、単結晶SiC層12と多結晶SiC基板11とは強く付着(接合)しており、(4)多結晶SiC基板11と単結晶SiC層12との間に金属介在層がないことから金属汚染がなく、(5)多結晶SiC基板11と単結晶SiC層12との間に絶縁層を含まないので縦方向に電流を流すようなディスクリート素子用の基板材料や電気抵抗率が可変なパワー半導体の基板材料としても好ましく用いることができる。 As described above, according to the SiC composite substrate 10 of the present invention, (1) there is no difference in thermal expansion between the single-crystal SiC layer 12 and the polycrystalline SiC substrate 11, and therefore warpage due to the difference in thermal expansion from the handle substrate occurs. It is solved, and (2) the damage, the compound defect, the twin crystal, and the stacking fault are not introduced into the single crystal SiC layer 12, and (3) the mechanical strength of the single crystal SiC layer 12/polycrystalline SiC substrate 11 interface is impaired. The single crystal SiC layer 12 and the polycrystalline SiC substrate 11 are strongly adhered (bonded) to each other, and (4) there is no metal intervening layer between the polycrystalline SiC substrate 11 and the single crystal SiC layer 12. Therefore, there is no metal contamination, and (5) since the insulating layer is not included between the polycrystalline SiC substrate 11 and the single crystal SiC layer 12, the substrate material and the electrical resistivity of the discrete element for passing a current in the vertical direction are variable. It can also be preferably used as a substrate material for various power semiconductors.

[SiC複合基板の製造方法]
上述した本発明に係るSiC複合基板10を製造する上で、単結晶SiCを多結晶基板上にエピタキシャル成長することは不可能であることから、特許文献1(特許第5051962号公報)に示されているように、単結晶SiC層上に多結晶SiCをハンドル基板として堆積する方法を採用することが好ましい。ただし、単結晶SiC層の多結晶SiC基板との界面となる表面に多結晶SiCを堆積させ、その格子面の配向方位を単結晶SiC層の多結晶SiCを堆積する面とは反対面であるおもて面の法線方向を基準としてランダムにするには(即ち、界面の法線軸を回転中心とした方位に均等に分散させるには)、単結晶SiC層の多結晶SiC堆積側表面においてランダムな方位に配向した核形成をもたらす必要があり、そのためには多結晶SiC基板の形成条件が限定されてしまう。実際のところ、単結晶SiC層の多結晶SiC堆積側表面において多結晶SiCが特定方位に配向しない結晶成長条件を探索し、その条件の最適化(配向方位の分散と均一化)を図ったり、準安定な非晶質化条件を探索したりする必要が有るため、本発明のSiC複合基板10の構造を実現するのは容易なことではない。なぜならば、結晶成長にあたってはエネルギーの最も低い面が優先的に表面に露出する特性があるためであり、特定の面方位が表面の法線軸方位に配向(優先配向)してしまう傾向があるためである。
[Method of manufacturing SiC composite substrate]
In manufacturing the above-described SiC composite substrate 10 according to the present invention, it is impossible to epitaxially grow single-crystal SiC on a polycrystalline substrate, and therefore, it is disclosed in Patent Document 1 (Japanese Patent No. 5051962). As described above, it is preferable to adopt a method of depositing polycrystalline SiC as a handle substrate on the single crystal SiC layer. However, polycrystalline SiC is deposited on the surface of the single-crystal SiC layer that is the interface with the polycrystalline SiC substrate, and the orientation of the lattice plane is opposite to the surface on which the polycrystalline SiC of the single-crystal SiC layer is deposited. In order to make it random with respect to the normal direction of the front surface (that is, to evenly disperse in the orientation with the normal axis of the interface as the center of rotation), on the surface of the single-crystal SiC layer on the polycrystalline SiC deposition side. It is necessary to bring about the formation of nuclei oriented in random directions, which limits the conditions for forming the polycrystalline SiC substrate. In fact, we searched for crystal growth conditions where the polycrystalline SiC was not oriented in a specific orientation on the surface of the single-crystal SiC layer where the polycrystalline SiC was deposited, and attempted to optimize that condition (dispersion and homogenization of orientation orientation), Since it is necessary to search for a metastable amorphization condition, it is not easy to realize the structure of the SiC composite substrate 10 of the present invention. This is because the surface with the lowest energy is preferentially exposed to the surface during crystal growth, and the specific plane orientation tends to be oriented in the normal axis direction of the surface (preferred orientation). Is.

本発明者らは、単結晶SiC層におけるハンドル基板となる多結晶SiC基板との界面となる表面の平滑性を意図的に損なわせる(粗面化する)ことにより堆積する多結晶SiCの結晶の最密面(格子面)の配向方位を上記のようにランダムにすることが可能であるという着想を得、鋭意検討を行い本発明を成すに至った。 The inventors of the present invention intentionally impair the surface smoothness (roughening) of the surface of the single crystal SiC layer, which serves as the interface with the polycrystalline SiC substrate that serves as the handle substrate, to prevent the deposition of polycrystalline SiC crystals. Based on the idea that the orientation of the closest packed surface (lattice surface) can be randomized as described above, the present invention has been achieved through intensive studies.

即ち、本発明に係るSiC複合基板の製造方法は、上述した多結晶SiC基板11上に単結晶SiC層12を有する本発明のSiC複合基板10の製造方法であって、保持基板の主面に単結晶SiC薄膜を設けた後、該単結晶SiC薄膜についてその表面を機械的加工により粗面化し、更にこの機械的加工に起因する欠陥を除去して、この面が保持基板側の表面よりも凹凸があり、かつ該凹凸を構成する傾斜面が保持基板側表面の法線方向を基準としてランダムな方向に向いている凹凸面となった単結晶SiC層とし、次いで該単結晶SiC層の凹凸面に化学気相成長法により多結晶SiCを堆積して該多結晶SiCの結晶の最密面が単結晶SiC層の保持基板側表面の法線方向を基準としてランダムに配向している多結晶SiC基板を形成し、その後に上記保持基板を物理的及び/又は化学的に除去することを特徴とするものである。 That is, the method for manufacturing the SiC composite substrate according to the present invention is a method for manufacturing the SiC composite substrate 10 of the present invention having the single crystal SiC layer 12 on the polycrystalline SiC substrate 11 described above, and the method for manufacturing the main surface of the holding substrate. After the single crystal SiC thin film is provided, the surface of the single crystal SiC thin film is roughened by mechanical processing, and defects caused by this mechanical processing are further removed, so that this surface is more than the surface on the holding substrate side. A single-crystal SiC layer having unevenness, and the inclined surface forming the unevenness is an uneven surface which is oriented in a random direction with reference to the normal direction of the surface of the holding substrate, and then the unevenness of the single-crystal SiC layer Polycrystalline SiC is deposited on the surface by chemical vapor deposition, and the close-packed surface of the crystal of the polycrystalline SiC is randomly oriented with reference to the normal direction of the surface of the single crystal SiC layer on the side of the holding substrate. The present invention is characterized in that a SiC substrate is formed and then the holding substrate is physically and/or chemically removed.

ここで、単結晶SiC層12における多結晶SiC基板11との界面となる表面(多結晶SiC堆積側表面)についてする所定の機械的加工による粗面化処理としては、上記凹凸を構成する傾斜面が保持基板側表面の法線方向を基準としてランダムな方向に向いている凹凸面とする機械的加工であれば特に限定されないが、例えばダイヤモンド砥粒を用いて上記単結晶SiC薄膜表面をランダムな方向に研磨することにより該単結晶SiC薄膜表面を粗面化する処理であることが好ましい。このとき、粗面化の程度(凹凸の大きさや傾斜面の向いている向きのランダムさ加減)は、ダイヤモンド砥粒の粒径、粗面化加工面への加圧力、処理時間などにより調整することができる。 Here, as the surface roughening treatment by the predetermined mechanical processing on the surface (polycrystalline SiC deposition side surface) of the single crystal SiC layer 12 which is the interface with the polycrystalline SiC substrate 11, the inclined surface forming the unevenness is used. Is not particularly limited as long as it is a mechanical processing that forms an uneven surface that is oriented in a random direction with reference to the normal direction of the surface of the holding substrate, but, for example, the single crystal SiC thin film surface is randomly formed by using diamond abrasive grains. It is preferable that the surface of the single crystal SiC thin film is roughened by polishing in the direction. At this time, the degree of roughening (the degree of unevenness and the randomness of the direction in which the inclined surface faces) is adjusted by the grain size of the diamond abrasive grains, the pressure applied to the roughened surface, the processing time, etc. be able to.

ここで、単結晶SiC層12の表面凹凸の状態は、表面粗度と該表面凹凸を構成する傾斜面の配向状態で特定することができる。なお、ここでいう表面粗度としては、例えば算術平均粗さRa、最大高さ粗さRz、二乗平均平方根粗さRq(表面粗さRMS(Root−mean−quare:二乗平均粗さ)(JIS B0501−2013)などが挙げられる。 Here, the state of the surface irregularities of the single crystal SiC layer 12 can be specified by the surface roughness and the orientation state of the inclined surface forming the surface irregularities. The surface roughness referred to herein is, for example, arithmetic average roughness Ra, maximum height roughness Rz, root mean square roughness Rq (surface roughness RMS (Root-mean-quare)) (JIS B0501-2013) and the like.

単結晶SiC層12の多結晶SiC堆積側表面に形成される凹凸は、算術平均粗さRaが1nm以上100nm以下であり、該凹凸を構成する傾斜面の最大斜度がいずれの方位においても単結晶SiC層12の保持基板側表面を基準として2度以上10度以下であることが好ましい。なお、凹凸を構成する傾斜面は多結晶SiCが堆積する基底面であり、多結晶SiCの最密面が基底面に平行となる。その所以は、最密面の表面エネルギーが極小であり、結晶表面を支配的に覆う傾向があるためである。このため、単結晶SiC表面の凹凸がランダムであれば、単結晶SiC層12上において多結晶SiC基板11の結晶が成長する方位を意図的にランダムに変えることができる。即ち、この構造によれば、たとえ多結晶SiC基板の結晶粒が単結晶SiC層12表面に対して優先配向したとしても、図2に示すように多結晶SiC基板11の多結晶SiCの結晶の格子面11pの配向方位は単結晶SiC層12の界面側表面凹凸を構成する傾斜面ごとの向きに対応して分散配向する(単結晶SiC層12の保持基板側表面の法線方向を基準としてランダムに配向する)。このとき、単結晶SiC層12の多結晶SiC堆積側表面凹凸を構成する傾斜面の最大斜度がいずれの方位においても2度以上10度以下である場合、堆積する多結晶SiC基板11の多結晶SiCの結晶の格子面11pの配向方位は2度以上10度以下で分散配向するようになる。 The unevenness formed on the surface of the single-crystal SiC layer 12 on the polycrystalline SiC deposition side has an arithmetic average roughness Ra of 1 nm or more and 100 nm or less, and the maximum inclination of the inclined surface constituting the unevenness is uniform in any direction. It is preferably 2 degrees or more and 10 degrees or less with reference to the surface of the crystalline SiC layer 12 on the side of the holding substrate. The inclined surface forming the unevenness is a basal surface on which polycrystalline SiC is deposited, and the densest surface of polycrystalline SiC is parallel to the basal surface. The reason is that the surface energy of the close-packed surface is minimal and tends to predominantly cover the crystal surface. Therefore, if the irregularities on the surface of the single-crystal SiC are random, the direction in which the crystal of the polycrystalline SiC substrate 11 grows on the single-crystal SiC layer 12 can be intentionally changed randomly. That is, according to this structure, even if the crystal grains of the polycrystalline SiC substrate are preferentially oriented with respect to the surface of the single-crystal SiC layer 12, as shown in FIG. The orientation of the lattice planes 11p is dispersed and oriented according to the orientation of each inclined surface that constitutes the interface-side surface irregularities of the single crystal SiC layer 12 (with reference to the normal direction of the surface of the single crystal SiC layer 12 on the holding substrate side). Randomly oriented). At this time, when the maximum inclination of the inclined surface forming the surface irregularities on the polycrystalline SiC deposition side of single-crystal SiC layer 12 is 2 degrees or more and 10 degrees or less in any direction, the polycrystalline SiC substrate 11 to be deposited is The orientation of the lattice plane 11p of the crystal of the crystalline SiC is 2° or more and 10° or less so that the orientation is dispersed.

特に、図2において、単結晶SiC層12における多結晶SiC基板11に当接する凹凸面を構成する偏向角θの傾斜面の配向方位が、多結晶SiC基板11と単結晶SiC層12との界面(あるいは単結晶SiC層12の保持基板側表面)の法線軸を中心とした回転対称な方位に均等に分布している場合には、いずれの方位に対しても不整合界面の微細構造がランダムに変化するため、応力の相殺効果が十分に発現される。なお、単結晶SiC層12における多結晶SiC基板11に当接する凹凸面を構成する偏向角θの傾斜面の配向方位が、特定方位に偏っている場合には応力が特定方位に集中する結果となり、SiC複合基板に反りが発生するために好ましくない。 In particular, in FIG. 2, the orientation direction of the inclined surface of the deflection angle θ constituting the uneven surface in contact with the polycrystalline SiC substrate 11 in the single crystal SiC layer 12 indicates the interface between the polycrystalline SiC substrate 11 and the single crystal SiC layer 12. (Or the surface of the single crystal SiC layer 12 on the side of the holding substrate) is uniformly distributed in the rotationally symmetric directions around the normal axis, the microstructure of the mismatched interface is random in any direction. Therefore, the effect of offsetting the stress is sufficiently exhibited. When the orientation azimuth of the inclined surface of the deflection angle θ forming the uneven surface of the single-crystal SiC layer 12 that is in contact with the polycrystalline SiC substrate 11 is deviated to the specific orientation, the stress is concentrated on the specific orientation. , SiC composite substrate is warped, which is not preferable.

また、単結晶SiC層12の多結晶SiC堆積側表面の算術平均粗さRaが1nmを下回ると、表面凹凸を構成する傾斜面ごとに十分な面積を確保することができなくなり、その傾斜面に堆積される多結晶SiCの結晶粒径が小さくなることから多結晶SiC基板11をハンドル基板としての機械的強度や半導体用基板としての低抵抗率を確保できなくなるおそれがある。また、算術平均粗さRaが100nmを超える場合には、応力の相殺効果を発現させるための単結晶SiC層の厚さも100nm以上が必要となり、複合基板によるコスト低減効果が望めなくなる場合がある。更に、高さ100nmを超える起伏(凹凸)を単結晶SiC層上に形成しなければならないため、単結晶SiC層に導入されるダメージが多大なものとなり、パワー半導体デバイスの基板としての結晶品質が保たれなくなってしまう。単結晶SiC層表面への起伏加工の実現性を考えると多結晶SiC堆積側表面の算術平均粗さRaは、1nm以上10nm以下がより好ましく、1nm以上5nm以下が更に好ましい。 Further, when the arithmetic average roughness Ra of the surface of the single crystal SiC layer 12 on the polycrystalline SiC deposition side is less than 1 nm, it becomes impossible to secure a sufficient area for each inclined surface forming the surface irregularities, and the inclined surface is Since the crystal grain size of the deposited polycrystalline SiC becomes small, the polycrystalline SiC substrate 11 may not be able to secure the mechanical strength as the handle substrate and the low resistivity as the semiconductor substrate. Further, when the arithmetic average roughness Ra exceeds 100 nm, the thickness of the single crystal SiC layer for exhibiting the stress canceling effect also needs to be 100 nm or more, and the cost reduction effect of the composite substrate may not be expected. Furthermore, since undulations (irregularities) having a height of more than 100 nm have to be formed on the single crystal SiC layer, the damage introduced into the single crystal SiC layer becomes great, and the crystal quality as the substrate of the power semiconductor device is high. It will not be kept. Considering the feasibility of undulation processing on the surface of the single crystal SiC layer, the arithmetic average roughness Ra of the surface of the polycrystalline SiC deposition side is more preferably 1 nm or more and 10 nm or less, further preferably 1 nm or more and 5 nm or less.

本発明のSiC複合基板の製造方法では、イオン注入剥離法により単結晶SiC基板から剥離させた単結晶SiC薄膜を上記保持基板上に転写して設けることが好ましい。あるいは、上記保持基板上にSiCをヘテロエピタキシャル成長させて上記単結晶SiC薄膜を設けてもよい。これにより、一度のイオン注入剥離処理又はヘテロエピタキシャル成長により、必要最低限の膜厚を有し、SiC複合基板の特性を左右する単結晶SiC層12が得られるので、経済的に高特性のSiC複合基板を製造することができる。 In the method of manufacturing the SiC composite substrate of the present invention, it is preferable that the single crystal SiC thin film separated from the single crystal SiC substrate by the ion implantation separation method is transferred and provided on the holding substrate. Alternatively, SiC may be heteroepitaxially grown on the holding substrate to provide the single crystal SiC thin film. As a result, the single crystal SiC layer 12 having the necessary minimum film thickness and affecting the characteristics of the SiC composite substrate can be obtained by one-time ion implantation delamination treatment or heteroepitaxial growth. The substrate can be manufactured.

また、多結晶SiC基板11を形成するための化学気相成長法としては熱CVD法を用いることが好ましい。単結晶SiC層12上に多結晶SiCを堆積して形成するため、従来技術の如き、難研削材のSiCの研削、研磨、CMPなどに依る高平坦化の工程を不要とすることができる。 Further, it is preferable to use a thermal CVD method as the chemical vapor deposition method for forming the polycrystalline SiC substrate 11. Since polycrystalline SiC is deposited and formed on the single crystal SiC layer 12, it is possible to eliminate the step of high flattening due to grinding, polishing, CMP, etc. of SiC of a difficult-to-grind material as in the prior art.

また、上記保持基板は、イオン注入剥離法による加工が行いやすく、物理的及び/又は化学的な除去(即ち、研削加工やエッチング)が行いやすく、SiCとの熱膨張率係数の差があまり大きくない材料からなるものが好ましく、多結晶又は単結晶シリコンからなることが特に好ましい。保持基板として単結晶Siウエハを採用する場合、高品質な大口径基板を低価格で入手可能であることから、SiC複合基板の製造コストも低減できる。また、単結晶Siウエハ上には単結晶の立方晶SiCをヘテロエピタキシャル成長することも可能であり、単結晶SiC基板の接合や剥離工程が必要とされないことから、市販のバルクSiCウエハよりも大口径のSiC複合基板を安価に製造することが可能となる。 Further, the holding substrate is easily processed by the ion implantation delamination method, is easily physically and/or chemically removed (that is, is ground or etched), and has a large difference in coefficient of thermal expansion from SiC. It is preferably made of a material that does not contain silicon, and particularly preferably made of polycrystalline or single crystal silicon. When a single crystal Si wafer is used as the holding substrate, a high-quality large-diameter substrate is available at a low price, so that the manufacturing cost of the SiC composite substrate can be reduced. In addition, it is possible to heteroepitaxially grow single-crystal cubic SiC on a single-crystal Si wafer, and since a single-crystal SiC substrate bonding or peeling process is not required, it has a larger diameter than a commercially available bulk SiC wafer. The SiC composite substrate can be manufactured at low cost.

ところで、バルク状の単結晶SiCは高価であるため、単結晶SiC基板をそのまま用いたり、単結晶SiC基板を主体的に用いてSiC複合基板を製造したりすることは経済的に好ましくない。そこで本発明では、特許文献1(特許第5051962号公報)のように単結晶SiCウエハから単結晶SiC薄膜を剥離して、該薄膜を保持基板に転写して見かけ上の機械的強度を確保した後、単結晶SiC薄膜表面に所定の表面凹凸(等方的な傾斜部(起伏))を設けた上で多結晶SiCを堆積して多結晶SiC基板を形成し、SiC複合基板を得るようにする。 By the way, since bulk single crystal SiC is expensive, it is economically unfavorable to use the single crystal SiC substrate as it is or manufacture the SiC composite substrate mainly using the single crystal SiC substrate. Therefore, in the present invention, as in Patent Document 1 (Japanese Patent No. 5051962), a single crystal SiC thin film is peeled from a single crystal SiC wafer, and the thin film is transferred to a holding substrate to secure apparent mechanical strength. After that, a predetermined surface unevenness (isotropic sloped portion (undulation)) is provided on the surface of the single-crystal SiC thin film, and then polycrystalline SiC is deposited to form a polycrystalline SiC substrate to obtain a SiC composite substrate. To do.

このとき、保持基板が単結晶SiC層や多結晶SiC基板と熱膨張係数が大きく異なる場合には、複合基板製造中の温度変化により保持基板を含む積層体に反りが発生する。製造過程でこのような反りが発生すると、単結晶SiC層と多結晶SiC基板の界面では低応力化又は無応力化が図られているにも関わらず、SiC複合基板の形状は保持基板の反りを反映してしまうので、平坦な基板が得られないおそれがある。SiC複合基板が平坦性を欠いてしまうと、デバイス製造工程などのフォトリソグラフィー工程を適用することが難しくなり、SiC複合基板の実用化が妨げられる。 At this time, when the holding substrate has a coefficient of thermal expansion greatly different from that of the single crystal SiC layer or the polycrystalline SiC substrate, the laminate including the holding substrate is warped due to the temperature change during the production of the composite substrate. When such warpage occurs in the manufacturing process, the shape of the SiC composite substrate is warped even though the interface between the single-crystal SiC layer and the polycrystalline SiC substrate is reduced in stress or stress-free. Therefore, a flat substrate may not be obtained. If the SiC composite substrate lacks flatness, it becomes difficult to apply a photolithography process such as a device manufacturing process, and practical application of the SiC composite substrate is hindered.

そこで、保持基板と単結晶SiC層12や多結晶SiC基板12との間で熱膨張係数に差があったとしても保持基板を含む積層体に反りが発生することがないように、該積層体における保持基板の両面それぞれの側にハンドル基板となる多結晶SiC基板を堆積することが好ましい。この場合、たとえ保持基板と多結晶SiC基板との間に熱膨張係数の差に起因する応力が発生したとしても、保持基板の表裏面に作用する応力の向きは互いに反対方向となり、その大きさは等しくなるため、いかなる処理温度においても積層体に反りが発生することがないようにすることができ、その結果、反りのないSiC複合基板を得ることができる。これに加え、保持基板の見かけ上の剛性が増すため、多結晶SiC基板内における転位の運動が促進されて、残留応力が解消されるため、熱的にも機械的にも安定なSiC複合基板を製造することが可能となる。 Therefore, even if there is a difference in the coefficient of thermal expansion between the holding substrate and the single crystal SiC layer 12 or the polycrystalline SiC substrate 12, the laminated body including the holding substrate is prevented from warping so that the laminated body does not warp. It is preferable to deposit a polycrystalline SiC substrate to serve as a handle substrate on both sides of the holding substrate. In this case, even if the stress caused by the difference in thermal expansion coefficient occurs between the holding substrate and the polycrystalline SiC substrate, the stress acting on the front and back surfaces of the holding substrate are in opposite directions, and the magnitudes thereof are different from each other. Therefore, it is possible to prevent the laminate from warping at any processing temperature, and as a result, it is possible to obtain a SiC composite substrate having no warp. In addition to this, the apparent rigidity of the holding substrate is increased, the movement of dislocations in the polycrystalline SiC substrate is promoted, and the residual stress is eliminated, so that the SiC composite substrate is thermally and mechanically stable. Can be manufactured.

例えば、上記保持基板のおもて面のみに上記単結晶SiC層を設けた単結晶SiC層担持体を作製し、該単結晶SiC層の凹凸面及び上記保持基板のうら面それぞれに上記多結晶SiC基板を形成し、その後に上記保持基板を物理的及び/又は化学的に除去するとよい。 For example, a single crystal SiC layer carrier having the single crystal SiC layer provided only on the front surface of the holding substrate is produced, and the polycrystal is formed on each of the uneven surface of the single crystal SiC layer and the back surface of the holding substrate. A SiC substrate may be formed and then the holding substrate may be physically and/or chemically removed.

あるいは、上記保持基板の両面に上記単結晶SiC層を設けた単結晶SiC層担持体を作製し、次いでそれぞれの単結晶SiC層の凹凸面に上記多結晶SiC基板を形成し、その後に上記保持基板を物理的及び/又は化学的に除去することが好ましい。これにより、一度の多結晶SiC基板の形成処理により2枚のSiC複合基板を形成することができるため、製造コストの低減効果が増す。 Alternatively, a single crystal SiC layer carrier having the single crystal SiC layers provided on both surfaces of the holding substrate is produced, and then the polycrystalline SiC substrate is formed on the uneven surface of each single crystal SiC layer, and then the holding is performed. It is preferred to physically and/or chemically remove the substrate. Thereby, two SiC composite substrates can be formed by one-time processing for forming a polycrystalline SiC substrate, and thus the effect of reducing the manufacturing cost is increased.

あるいは、保持基板の両面への単結晶SiC層を設けることが難しい場合には、上記保持基板のおもて面のみに上記単結晶SiC層を設けた単結晶SiC層担持体を2枚作製し、これらの単結晶SiC層担持体の保持基板のうら面同士を接合又は接着した後、この接合又は接着した基板の表裏面の単結晶SiC層の凹凸面それぞれに上記多結晶SiC基板を形成し、次いで、上記保持基板のうら面同士の接合又は接着部分で分離し、その後にそれぞれの保持基板を物理的及び/又は化学的に除去するようにしてもよい。これによれば実質的に両面に単結晶SiC層が形成された1組の保持基板が形成できるため、一度の多結晶SiC基板の形成処理により2枚のSiC複合基板を形成することができ、コスト低減や平坦化、安定化を実現することが可能となる。 Alternatively, when it is difficult to provide the single crystal SiC layers on both sides of the holding substrate, two single crystal SiC layer carriers each having the single crystal SiC layer provided on only the front surface of the holding substrate are prepared. After joining or adhering the back surfaces of the holding substrates of these single crystal SiC layer carriers, the polycrystalline SiC substrate is formed on each of the uneven surfaces of the single crystal SiC layers on the front and back surfaces of the joined or adhered substrates. Then, the holding substrates may be separated from each other at the joining or bonding portion between the back surfaces thereof, and then each holding substrate may be physically and/or chemically removed. According to this, since one set of holding substrates having the single crystal SiC layers formed on both sides can be formed substantially, two SiC composite substrates can be formed by one forming process of the polycrystalline SiC substrate. It becomes possible to realize cost reduction, flattening, and stabilization.

以下、本発明に係るSiC複合基板の製造方法の実施形態1〜4を説明する。 Hereinafter, Embodiments 1 to 4 of the method for manufacturing the SiC composite substrate according to the present invention will be described.

(実施形態1)
本発明の実施形態1について図4を参照しながら説明する。
(工程1−1)
始めに、保持基板21に貼り合わせをする単結晶SiC基板12sを用意する。ここで、単結晶SiC基板12sは、結晶構造が4H−SiC、6H−SiC、3C−SiCのものから選択をすることが好ましい。単結晶SiC基板12s及び後述する保持基板21の大きさは、半導体素子の製造や窒化ガリウム、ダイヤモンド、ナノカーボン膜の成長に必要な大きさやコスト等から設定をする。また、単結晶SiC基板12sの厚さは、SEMI規格又はJEIDA規格の基板厚さ近傍のものがハンドリングの面から好ましい。なお、単結晶SiC基板12sとして、市販のもの、例えばパワーデバイス向けに市販されている単結晶SiCウエハを用いればよく、その表面がCMP(Chemical Mechanical Polishing(or Planarization))処理で仕上げ研磨された、表面が平坦かつ平滑なものを用いることが好ましい。ここでは、単結晶SiC基板12sとして、例えば4H−SiC(000−1)C面において[11−20]方位に2度偏向した単結晶SiCウエハを用いる。
(Embodiment 1)
The first embodiment of the present invention will be described with reference to FIG.
(Step 1-1)
First, a single crystal SiC substrate 12s to be bonded to the holding substrate 21 is prepared. Here, the single crystal SiC substrate 12s is preferably selected from those having a crystal structure of 4H-SiC, 6H-SiC, 3C-SiC. The sizes of the single crystal SiC substrate 12s and the holding substrate 21 described later are set based on the size and cost required for manufacturing a semiconductor element and growing a gallium nitride, diamond, or nanocarbon film. Further, the thickness of the single crystal SiC substrate 12s is preferably in the vicinity of the SEMI standard or JEIDA standard substrate thickness from the viewpoint of handling. As the single crystal SiC substrate 12s, a commercially available one, for example, a single crystal SiC wafer commercially available for power devices may be used, and the surface thereof is finish-polished by CMP (Chemical Mechanical Polishing (or Planarization)) processing. It is preferable to use a flat and smooth surface. Here, as the single crystal SiC substrate 12s, for example, a single crystal SiC wafer that is deflected twice in the [11-20] direction on the 4H-SiC(000-1)C plane is used.

また、単結晶SiC基板12sの少なくとも保持基板21と貼り合わせをする表面に所定の薄膜22aを形成することが好ましい(図4(a))。ここで、薄膜22aは、厚さ50nm〜600nm程度の酸化シリコン膜、窒化シリコン膜又は酸窒化シリコン膜の誘電体膜であるとよい。これにより、保持基板21との貼り合わせが容易になるだけではなく、この後に行われるイオン注入処理の注入イオンのチャネリングを抑制する効果も得られる。 Further, it is preferable to form a predetermined thin film 22a on at least the surface of the single crystal SiC substrate 12s to be bonded to the holding substrate 21 (FIG. 4A). Here, the thin film 22a is preferably a dielectric film such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride film having a thickness of about 50 nm to 600 nm. This not only facilitates bonding with the holding substrate 21, but also has an effect of suppressing channeling of implanted ions in the ion implantation process performed thereafter.

薄膜22aの形成方法としては、単結晶SiC基板12sに密着性よく形成できる成膜方法であればいずれの方法でもよく、例えば酸化シリコン膜はPECVD法又は熱酸化法により形成し、窒化シリコン膜、酸窒化シリコン膜はスパッタリング法により形成するとよい。 The thin film 22a may be formed by any method as long as it can be formed on the single crystal SiC substrate 12s with good adhesion. For example, a silicon oxide film is formed by PECVD or thermal oxidation, and a silicon nitride film, The silicon oxynitride film is preferably formed by a sputtering method.

(工程1−2)
次に、保持基板21を用意する。本発明で用いる保持基板21として、耐熱温度1100℃以上の耐熱材料(ただし、単結晶SiCを除く)からなるものが好ましく、多結晶又は単結晶シリコンからなる基板がより好ましい。ここでは、例えば保持基板21として、面方位(111)面の単結晶Si基板を用いる。
(Step 1-2)
Next, the holding substrate 21 is prepared. The holding substrate 21 used in the present invention is preferably made of a heat resistant material having a heat resistant temperature of 1100° C. or higher (excluding single crystal SiC), and more preferably a substrate made of polycrystalline or single crystal silicon. Here, as the holding substrate 21, for example, a single crystal Si substrate having a plane orientation (111) plane is used.

また、保持基板21の少なくとも単結晶SiC基板12sと貼り合わせをする表面に、上記工程1−1と同様の薄膜22aを形成することが好ましい(図4(b))。 Further, it is preferable to form the thin film 22a similar to that in the above step 1-1 on the surface of the holding substrate 21 to be bonded to at least the single crystal SiC substrate 12s (FIG. 4B).

(工程1−3)
次に、単結晶SiC基板12sの薄膜22a形成面に水素イオン等を注入してイオン注入領域12iを形成する(図4(c))。
(Process 1-3)
Next, hydrogen ions or the like are implanted into the surface of the single crystal SiC substrate 12s on which the thin film 22a is formed to form the ion implantation region 12i (FIG. 4C).

ここで、単結晶SiC基板12sへのイオン注入の際、その表面から所望の深さにイオン注入領域12iを形成できるような注入エネルギーで、所定の線量の少なくとも水素イオン(H+)又は水素分子イオン(H2 +)を注入する。このときの条件として、所望の薄膜の厚さになるようにイオン注入エネルギーを設定すればよい。HeイオンやBイオン等を同時に注入しても構わないし、同じ効果が得られるモノであればどのようなイオンを採用しても構わない。ただし、単結晶SiC結晶格子へのダメージを低減する観点からは、できるだけ軽元素のイオンであるほうが望ましい。 Here, at the time of ion implantation into the single crystal SiC substrate 12s, the implantation energy is such that the ion implantation region 12i can be formed from the surface to a desired depth, and a predetermined dose of at least hydrogen ions (H + ) or hydrogen molecules. Ions (H 2 + ) are implanted. As a condition at this time, the ion implantation energy may be set so as to obtain a desired thin film thickness. He ions, B ions, or the like may be implanted at the same time, or any ion may be adopted as long as the same effect can be obtained. However, from the viewpoint of reducing the damage to the single crystal SiC crystal lattice, it is desirable that the ions are as light as possible.

単結晶SiC基板12sに注入する水素イオン(H+)のドーズ量は、1.0×1016atom/cm2〜9.0×1017atom/cm2であることが好ましい。1.0×1016atom/cm2未満であると、界面の脆化が起こらない場合があり、9.0×1017atom/cm2を超えると、貼り合わせ後の熱処理中に気泡となり転写不良となる場合がある。 The dose amount of hydrogen ions (H + ) implanted into the single crystal SiC substrate 12s is preferably 1.0×10 16 atom/cm 2 to 9.0×10 17 atom/cm 2 . If it is less than 1.0×10 16 atom/cm 2 , embrittlement of the interface may not occur, and if it exceeds 9.0×10 17 atom/cm 2 , bubbles are formed during heat treatment after bonding and transfer. It may be defective.

注入イオンとして水素分子イオン(H2 +)を用いる場合、そのドーズ量は5.0×1015atoms/cm2〜4.5×1017atoms/cm2であることが好ましい。5.0×1015atoms/cm2未満であると、界面の脆化が起こらない場合があり、4.5×1017atoms/cm2を超えると、貼り合わせ後の熱処理中に気泡となり転写不良となる場合がある。 When hydrogen molecule ions (H 2 + ) are used as implanted ions, the dose is preferably 5.0×10 15 atoms/cm 2 to 4.5×10 17 atoms/cm 2 . If it is less than 5.0×10 15 atoms/cm 2 , embrittlement of the interface may not occur, and if it exceeds 4.5×10 17 atoms/cm 2 , transfer becomes bubbles during heat treatment after bonding. It may be defective.

イオン注入された基板表面からイオン注入領域12iまでの深さ(即ち、イオン打ち込み深さ)は、保持基板21上に設ける単結晶SiC薄膜の所望の厚さに対応するものであり、通常100〜2,000nm、好ましくは300〜500nm、更に好ましくは400nm程度である。また、イオン注入領域12iの厚さ(即ち、イオン分布厚さ)は、機械衝撃等によって容易に剥離できる厚さが良く、好ましくは200〜400nm、更に好ましくは300nm程度である。 The depth from the ion-implanted substrate surface to the ion-implanted region 12i (that is, the ion implantation depth) corresponds to the desired thickness of the single crystal SiC thin film provided on the holding substrate 21, and is usually 100 to The thickness is 2,000 nm, preferably 300 to 500 nm, more preferably about 400 nm. The thickness of the ion implantation region 12i (that is, the ion distribution thickness) is preferably such that it can be easily peeled off by mechanical impact or the like, preferably 200 to 400 nm, more preferably about 300 nm.

(工程1−4)
続いて、単結晶SiC基板12sの薄膜22a形成面と保持基板21の薄膜22a形成面とを表面活性化処理を施して貼り合わせる。表面活性化処理としてはプラズマ活性化処理、真空イオンビーム処理又はオゾン水への浸漬処理を行うとよい。
(Process 1-4)
Subsequently, the surface of the single crystal SiC substrate 12s on which the thin film 22a is formed and the surface of the holding substrate 21 on which the thin film 22a is formed are subjected to a surface activation treatment and bonded. As the surface activation treatment, plasma activation treatment, vacuum ion beam treatment, or immersion treatment in ozone water may be performed.

このうち、プラズマ活性化処理をする場合、真空チャンバ中に上記工程1−3までの処理が終了した単結晶SiC基板12s及び/又は保持基板21を載置し、プラズマ用ガスを減圧下で導入した後、100W程度の高周波プラズマに5〜10秒程度さらし、表面をプラズマ活性化処理する。プラズマ用ガスとしては、酸素ガス、水素ガス、窒素ガス、アルゴンガス、又はこれらの混合ガスあるいは水素ガスとヘリウムガスの混合ガスを用いることができる。 Of these, when performing the plasma activation process, the single crystal SiC substrate 12s and/or the holding substrate 21 on which the processes up to the above steps 1-3 are completed are placed in the vacuum chamber, and the plasma gas is introduced under reduced pressure. After that, the surface is exposed to a high-frequency plasma of about 100 W for about 5 to 10 seconds to plasma-activate the surface. As the plasma gas, oxygen gas, hydrogen gas, nitrogen gas, argon gas, a mixed gas thereof, or a mixed gas of hydrogen gas and helium gas can be used.

真空イオンビーム処理は、高真空のチャンバ内に単結晶SiC基板12s及び/又は保持基板21を載置し、Ar等のイオンビームを貼り合わせをする表面に照射して活性化処理を行う。 In the vacuum ion beam processing, the single crystal SiC substrate 12s and/or the holding substrate 21 is placed in a high vacuum chamber, and an ion beam of Ar or the like is applied to the surfaces to be bonded to perform activation processing.

オゾン水への浸漬処理は、オゾンガスを溶解させたオゾン水に単結晶SiC基板12s及び/又は保持基板21を浸漬し、その表面を活性化処理をする。 In the immersion treatment in ozone water, the single crystal SiC substrate 12s and/or the holding substrate 21 is immersed in ozone water in which ozone gas is dissolved, and the surface thereof is activated.

上記した表面活性化処理は、単結晶SiC基板12sのみ又は保持基板21のみに行ってもよいが、単結晶SiC基板12s及び保持基板21の両方について行うのがより好ましい。 The above-described surface activation treatment may be performed only on the single crystal SiC substrate 12s or the holding substrate 21, but it is more preferable to perform it on both the single crystal SiC substrate 12s and the holding substrate 21.

また、表面活性化処理は上記方法のいずれか一つでもよいし、組み合わせた処理を行っても構わない。更に、単結晶SiC基板12s、保持基板21の表面活性化処理を行う面は、貼り合わせを行う面、即ち薄膜22a表面であることが好ましい。 Further, the surface activation treatment may be any one of the above methods, or a combination of treatments may be performed. Further, it is preferable that the surface of the single crystal SiC substrate 12s and the holding substrate 21 on which the surface activation treatment is performed is a surface on which bonding is performed, that is, the surface of the thin film 22a.

次に、この単結晶SiC基板12s及び保持基板21の表面活性化処理をした表面(薄膜22a、22a表面)を接合面として貼り合わせる。 Next, the surfaces of the single crystal SiC substrate 12s and the holding substrate 21 which have been subjected to the surface activation treatment (the surfaces of the thin films 22a and 22a) are bonded as a bonding surface.

次いで、単結晶SiC基板12sと保持基板21と貼り合わせた後に、好ましくは150〜350℃、より好ましくは150〜250℃の熱処理を行い、薄膜22a、22aの貼り合わせ面の結合強度を向上させる。このとき、単結晶SiC基板12sと保持基板21との間の熱膨張率差により基板の反りが発生するが、それぞれの材質に適した温度を採用して反りを抑制するとよい。熱処理時間としては、温度にもある程度依存するが、2時間〜24時間が好ましい。 Next, after bonding the single crystal SiC substrate 12s and the holding substrate 21, heat treatment is preferably performed at 150 to 350° C., more preferably 150 to 250° C. to improve the bonding strength of the bonding surfaces of the thin films 22a and 22a. .. At this time, the substrate warps due to the difference in the coefficient of thermal expansion between the single crystal SiC substrate 12s and the holding substrate 21, but it is preferable to adopt a temperature suitable for each material to suppress the warpage. The heat treatment time depends on the temperature to some extent, but is preferably 2 hours to 24 hours.

これにより、薄膜22a、22aは密着して一つの層、介在層22となると共に、単結晶SiC基板12sと保持基板21とが介在層22を介して強固に密着した貼り合わせ基板13となる(図4(d))。 As a result, the thin films 22a and 22a are adhered to form one layer, the intervening layer 22, and the single crystal SiC substrate 12s and the holding substrate 21 are firmly adhered to each other via the intervening layer 22 to form the bonded substrate 13 ( FIG. 4(d)).

(工程1−5)
貼り合わせ基板13について、イオン注入した部分に熱的エネルギー又は機械的エネルギーを付与して、イオン注入領域12iで単結晶SiC基板12sを剥離させ、保持基板21上に単結晶SiC薄膜12aを転写して単結晶SiC薄膜担持体14を得る(図4(e))。
(Step 1-5)
Thermal energy or mechanical energy is applied to the ion-implanted portion of the bonded substrate 13, the single-crystal SiC substrate 12s is separated in the ion-implanted region 12i, and the single-crystal SiC thin film 12a is transferred onto the holding substrate 21. Thus, the single crystal SiC thin film carrier 14 is obtained (FIG. 4(e)).

剥離方法としては、例えば貼り合わせ基板13を高温に加熱して、この熱によってイオン注入領域12iにおいてイオン注入した成分の微小なバブル体を発生させることにより剥離を生じさせて単結晶SiC基板12sを分離する熱剥離法を適用することができる。あるいは、熱剥離が生じない程度の低温熱処理(例えば、500〜900℃、好ましくは500〜700℃)を施しつつ、イオン注入領域12iの一端に物理的な衝撃を加えて機械的に剥離を発生させて単結晶SiC基板12sを分離する機械剥離法を適用することができる。機械剥離法は単結晶SiC薄膜転写後の転写表面の粗さが熱剥離法よりも比較的小さいため、より好ましい。 As the peeling method, for example, the bonded substrate 13 is heated to a high temperature, and the heat is used to generate minute bubble bodies of the ion-implanted components in the ion-implanted region 12i to cause the peeling, thereby removing the single crystal SiC substrate 12s. A thermal peeling method of separating can be applied. Alternatively, a low temperature heat treatment (for example, 500 to 900° C., preferably 500 to 700° C.) that does not cause thermal delamination is performed, and a physical impact is applied to one end of the ion implantation region 12i to mechanically delaminate. Then, a mechanical peeling method for separating the single crystal SiC substrate 12s can be applied. The mechanical peeling method is more preferable because the roughness of the transfer surface after transferring the single crystal SiC thin film is relatively smaller than that of the heat peeling method.

なお、剥離処理後に、単結晶SiC薄膜担持体14を加熱温度700〜1,000℃であって剥離処理時よりも高い温度、加熱時間1〜24時間の条件で加熱して、単結晶SiC薄膜12aと保持基板21との密着性を改善する熱処理を行ってもよい。 After the peeling treatment, the single crystal SiC thin film carrier 14 is heated under the conditions of a heating temperature of 700 to 1,000° C., which is higher than that during the peeling treatment, and a heating time of 1 to 24 hours. You may perform the heat processing which improves the adhesiveness of 12a and the holding substrate 21.

このとき、薄膜22a、22aは強固に密着し、更に薄膜22a、22aはそれぞれ単結晶SiC基板12s、保持基板21と強固に密着しているため、イオン注入領域12iにおける剥離部分以外の部分での剥離は発生しない。 At this time, the thin films 22a and 22a firmly adhere to each other, and further, the thin films 22a and 22a firmly adhere to the single crystal SiC substrate 12s and the holding substrate 21, respectively. No peeling occurs.

なお、剥離した後の単結晶SiC基板12sは、表面を再度研磨や洗浄等を施すことにより再度当該単結晶SiC薄膜担持体14の製造方法における貼り合わせ用の基板として再利用することが可能となる。 The single crystal SiC substrate 12s after peeling can be reused as a substrate for bonding again in the method of manufacturing the single crystal SiC thin film carrier 14 by polishing or cleaning the surface again. Become.

(工程1−6)
次に、単結晶SiC薄膜担持体14の単結晶SiC薄膜12aについてその表面を機械的加工により粗面化し、更にこの機械的加工に起因する欠陥を除去して単結晶SiC層12とする(図4(f))。
(Step 1-6)
Next, the surface of the single crystal SiC thin film 12a of the single crystal SiC thin film carrier 14 is roughened by mechanical processing, and defects caused by this mechanical processing are removed to form the single crystal SiC layer 12 (Fig. 4(f)).

ここで、機械的加工による粗面化処理として、ダイヤモンド砥粒を用いて単結晶SiC薄膜12a表面をランダムな方向に研磨することにより該単結晶SiC薄膜12a表面を粗面化することが好ましい。具体的には、ダイヤモンドスラリーをしみこませた回転している研磨布に単結晶SiC薄膜担持体14の単結晶SiC薄膜12aの面を押し付けて研磨方向がランダムになるように単結晶SiC薄膜担持体14の向きを変えながらバフ研磨加工を行うとよい。単結晶SiC基板12sの表面は元々平滑であり、単結晶SiC薄膜12aの保持基板21側の表面には単結晶SiC基板12sの平滑な表面が反映されているが、単結晶SiC薄膜12aの上記バフ研磨加工面は保持基板21側の平滑な表面よりも粗面化され微細な表面凹凸を有するようになる。また、単結晶SiC薄膜12aの表面はイオン注入剥離面であるが、上記のように研磨方向をランダムにしたバフ研磨加工によればイオン注入によるダメージ層の除去すると共に凹凸を構成する傾斜面が保持基板21側表面の法線方向を基準としてランダムな方向に向いた微細な凹凸に整えた表面状態を形成することが可能となる。 Here, as the surface roughening treatment by mechanical processing, it is preferable to roughen the surface of the single crystal SiC thin film 12a by polishing the surface of the single crystal SiC thin film 12a with diamond abrasive grains in a random direction. Specifically, the surface of the single crystal SiC thin film 12a of the single crystal SiC thin film carrier 14 is pressed against a rotating polishing cloth impregnated with diamond slurry so that the polishing direction becomes random so that the polishing direction becomes random. Buffing may be performed while changing the direction of 14. The surface of the single crystal SiC substrate 12s is originally smooth, and the surface of the single crystal SiC thin film 12a on the side of the holding substrate 21 reflects the smooth surface of the single crystal SiC substrate 12s. The buffed surface is roughened and has finer surface irregularities than the smooth surface on the holding substrate 21 side. Further, the surface of the single crystal SiC thin film 12a is an ion-implanted separation surface. However, according to the buffing process in which the polishing direction is randomized as described above, the damaged layer due to ion implantation is removed and the inclined surface forming the unevenness is formed. It is possible to form a surface condition in which fine irregularities are randomly oriented in the direction normal to the surface of the holding substrate 21 side.

なお、単結晶SiC層12の粗面化の程度(凹凸の大きさや傾斜面の向いている向きのランダムさ加減)は、ダイヤモンド砥粒の粒径、単結晶SiC薄膜担持体14を押し付ける圧力や研磨時間で調整することが可能である。 Note that the degree of roughening of the single crystal SiC layer 12 (the size of the unevenness and the randomness of the direction in which the inclined surface faces) is determined by the grain size of the diamond abrasive grains, the pressure with which the single crystal SiC thin film carrier 14 is pressed, and It can be adjusted by the polishing time.

次に、単結晶SiC薄膜12aの表面には機械的加工(バフ研磨加工)に起因する欠陥が生じていることからこの欠陥を除去する処理を行う。具体的には、熱酸化処理を施して加工後の単結晶SiC薄膜12aに薄い熱酸化膜を形成する。これにより、単結晶SiC薄膜12a表面の機械的加工で導入された欠陥領域が熱酸化膜となる。このとき、上記イオン注入によるダメージ領域も熱酸化膜に含まれるようになる。次いで、この単結晶SiC薄膜12aの表面をフッ化水素酸(フッ酸)浴に浸漬して熱酸化膜を除去し清浄な単結晶SiC表面を露出させる(犠牲酸化法)。単結晶SiC薄膜担持体14の単結晶SiC薄膜12aについて以上の処理を施すことによって、この処理面が保持基板21側の表面よりも凹凸があり、かつ該凹凸を構成する傾斜面が保持基板21側表面の法線方向を基準としてランダムな方向に向いている凹凸面となった単結晶SiC層12とすることができる。 Next, since the surface of the single crystal SiC thin film 12a has a defect caused by mechanical processing (buffing processing), the defect is removed. Specifically, a thermal oxidation process is performed to form a thin thermal oxide film on the processed single crystal SiC thin film 12a. As a result, the defective region introduced by mechanical processing on the surface of the single crystal SiC thin film 12a becomes a thermal oxide film. At this time, a region damaged by the ion implantation is also included in the thermal oxide film. Then, the surface of the single crystal SiC thin film 12a is immersed in a hydrofluoric acid (hydrofluoric acid) bath to remove the thermal oxide film and expose a clean single crystal SiC surface (sacrificial oxidation method). By subjecting the single crystal SiC thin film 12a of the single crystal SiC thin film carrier 14 to the above treatment, the treated surface is more uneven than the surface on the holding substrate 21 side, and the inclined surface forming the unevenness is the holding substrate 21. The single crystal SiC layer 12 can be an uneven surface that is oriented in a random direction with respect to the normal direction of the side surface.

ここで、単結晶SiC層12の表面凹凸の状態を、算術平均粗さRaが1nm以上100nm以下の表面凹凸とし、該凹凸を構成する傾斜面の最大斜度をいずれの方位においても2度以上10度以下とすることが好ましい。即ち、単結晶SiC層12の表面の表面粗度としては、例えば単結晶SiC層12の表面においてある方向(X方向)の表面粗度とその方向に直交する方向(Y方向)の表面粗度が共に算術平均粗さRaで好ましくは1〜100nm、より好ましくは5〜30nmである。 Here, the state of the surface irregularities of the single crystal SiC layer 12 is a surface irregularity having an arithmetic average roughness Ra of 1 nm or more and 100 nm or less, and the maximum inclination of the inclined surface forming the irregularities is 2 degrees or more in any orientation. It is preferably 10 degrees or less. That is, as the surface roughness of the surface of the single crystal SiC layer 12, for example, the surface roughness in a certain direction (X direction) on the surface of the single crystal SiC layer 12 and the surface roughness in a direction (Y direction) orthogonal to the direction. Both have an arithmetic average roughness Ra of preferably 1 to 100 nm, more preferably 5 to 30 nm.

また、単結晶SiC層12の表面凹凸を構成する傾斜面が保持基板21側表面の法線方向を基準としてランダムな方向に向くとは、例えば単結晶SiC層12の表面においてある方向(X方向)の表面粗度とその方向に直交する方向(Y方向)の表面粗度がほぼ同じであることを意味する。両者の表面粗度がほぼ同じとは、例えば両者の算術平均粗さRaの差が好ましくは最大Raの10%以下であり、より好ましくは最大Raの5%以下である。あるいは、単結晶SiC層12の表面におけるX方向の表面粗さプロファイルとY方向の表面粗さプロファイルがほぼ同じパターンを示すことを意味する。両者の表面粗さプロファイルがほぼ同じとは表面の斜面の配向方位が等方的であり、高低差も同様であることを意味する。 In addition, the fact that the inclined surface forming the surface irregularities of the single crystal SiC layer 12 is oriented in a random direction with respect to the normal direction of the surface of the holding substrate 21 side is, for example, a direction (X direction) on the surface of the single crystal SiC layer 12. It means that the surface roughness of () and the surface roughness in the direction (Y direction) orthogonal to the direction are substantially the same. The surface roughness of both is substantially the same, for example, the difference between the arithmetic average roughness Ra of both is preferably 10% or less of the maximum Ra, and more preferably 5% or less of the maximum Ra. Alternatively, it means that the surface roughness profile in the X direction and the surface roughness profile in the Y direction on the surface of the single crystal SiC layer 12 show substantially the same pattern. The fact that the surface roughness profiles of both are substantially the same means that the orientation directions of the slopes of the surface are isotropic and the height difference is the same.

本工程により保持基板21上に介在層22を介して上記表面凹凸を有する単結晶SiC層12を担持する単結晶SiC層担持体15を作製することができる(図4(f))。 By this step, the single crystal SiC layer carrier 15 carrying the single crystal SiC layer 12 having the above-mentioned surface irregularities can be produced on the holding substrate 21 through the intervening layer 22 (FIG. 4(f)).

(工程1−7)
次に、得られた単結晶SiC層担持体15を用いて、化学気相成長法により単結晶SiC層12上に多結晶SiCを堆積して多結晶SiC基板11を形成する(図4(g))。
このとき、多結晶SiCの結晶の最密面が単結晶SiC層の保持基板21側表面の法線方向を基準としてランダムに配向するように形成される。
(Step 1-7)
Next, using the obtained single crystal SiC layer carrier 15, polycrystalline SiC is deposited on the single crystal SiC layer 12 by the chemical vapor deposition method to form the polycrystalline SiC substrate 11 (FIG. )).
At this time, the close-packed surface of the polycrystalline SiC crystal is randomly oriented with reference to the normal direction of the surface of the single crystal SiC layer on the side of the holding substrate 21.

ここで、化学気相成長法としては熱CVD法を用いることが好ましい。この熱CVD条件としては、多結晶SiCを堆積して成膜する一般的な条件でよい。 Here, it is preferable to use a thermal CVD method as the chemical vapor deposition method. The thermal CVD conditions may be general conditions for depositing polycrystalline SiC to form a film.

このとき、多結晶SiCが単結晶SiC層12の表面に堆積するが、該単結晶SiC層12表面は上述のごとき表面凹凸を有するため、該表面凹凸を構成する傾斜面ごとに多結晶SiCの結晶の最密面(格子面)がその傾斜面に平行となるように配向して成長するようになり、単結晶SiC層12上において多結晶SiC基板11の結晶粒ごとにその成長する方位がランダムに変わるようになる。その結果、図2に示すように多結晶SiC基板11の多結晶SiCの結晶の格子面11pの配向方位は単結晶SiC層12の界面側表面凹凸を構成する傾斜面ごとの向きに対応して分散配向する(単結晶SiC層12の保持基板21側表面の法線方向を基準としてランダムに配向する)。 At this time, the polycrystalline SiC is deposited on the surface of the single-crystal SiC layer 12, but since the surface of the single-crystal SiC layer 12 has the surface irregularities as described above, the polycrystalline SiC is formed on each inclined surface forming the surface irregularities. The crystals are grown so as to be oriented so that the closest packed surface (lattice surface) of the crystal is parallel to the inclined surface, and the growing orientation is different for each crystal grain of the polycrystalline SiC substrate 11 on the single crystal SiC layer 12. It will change randomly. As a result, as shown in FIG. 2, the orientation of the lattice plane 11p of the polycrystalline SiC crystal of the polycrystalline SiC substrate 11 corresponds to the orientation of each inclined plane that constitutes the interface-side surface irregularities of the single-crystal SiC layer 12. Disperse orientation (random orientation based on the normal direction of the surface of the single crystal SiC layer 12 on the holding substrate 21 side).

なお、単結晶SiC層担持体15において上記のように保持基板21の単結晶SiC層12を設けた面(おもて面)だけに多結晶SiC基板11を形成するのではなく、それとは反対面(うら面)にも多結晶SiC基板11’を形成することが好ましい(図4(g))。これにより、保持基板21と多結晶SiC基板11、11’との間に熱膨張係数の差に起因する応力が発生したとしても、多結晶SiC基板11、11’によって保持基板21の表裏面に作用する応力の向きは互いに反対方向となり、その大きさは等しくなるため、この積層体に反りが発生することがないようにすることができ、その結果、反りのないSiC複合基板を得ることができる。 In the single crystal SiC layer carrier 15, the polycrystalline SiC substrate 11 is not formed only on the surface (front surface) of the holding substrate 21 on which the single crystal SiC layer 12 is provided as described above. It is preferable to form the polycrystalline SiC substrate 11′ also on the surface (back surface) (FIG. 4(g)). As a result, even if the stress caused by the difference in thermal expansion coefficient occurs between the holding substrate 21 and the polycrystalline SiC substrates 11 and 11′, the polycrystalline SiC substrates 11 and 11′ may cause the stress on the front and back surfaces of the holding substrate 21. Since the directions of the stresses acting are opposite to each other and the magnitudes thereof are equal to each other, it is possible to prevent the laminated body from warping, and as a result, it is possible to obtain a SiC composite substrate without warping. it can.

(工程1−8)
次に、工程1−7で得られた積層体における保持基板21を物理的及び/又は化学的に除去して、SiC複合基板10を得る(図4(h))。このとき、保持基板21がシリコンからなる場合には、例えばフッ硝酸溶液により容易に選択的にエッチング除去することが可能である。
(Step 1-8)
Next, the holding substrate 21 in the laminated body obtained in step 1-7 is physically and/or chemically removed to obtain the SiC composite substrate 10 (FIG. 4(h)). At this time, when the holding substrate 21 is made of silicon, it can be easily and selectively removed by etching using, for example, a hydrofluoric/nitric acid solution.

(工程1−9)
必要に応じて、SiC複合基板10の単結晶SiC層12上にSiCエピタキシャル層12’を形成するとよい(図4(i))。これにより、単結晶SiC層12の厚さが0.1μmと薄く、パワー半導体デバイスの活性層として用いるには薄すぎるところ、SiH2Cl2(流量200sccm)とC22(流量50sccm)を原料とする1550℃の1時間の気相成長(ホモエピタキシャル成長)により厚さ8μmのSiCエピタキシャル層12’を形成してパワー半導体の製造に適応したSiC複合基板を得ることが可能となる。
(Step 1-9)
If necessary, the SiC epitaxial layer 12′ may be formed on the single crystal SiC layer 12 of the SiC composite substrate 10 (FIG. 4(i)). As a result, the thickness of the single crystal SiC layer 12 is as thin as 0.1 μm, which is too thin to be used as an active layer of a power semiconductor device, and SiH 2 Cl 2 (flow rate 200 sccm) and C 2 H 2 (flow rate 50 sccm) are used. It is possible to obtain a SiC composite substrate suitable for manufacturing a power semiconductor by forming a SiC epitaxial layer 12′ having a thickness of 8 μm by vapor phase growth (homoepitaxial growth) at 1550° C. for 1 hour as a raw material.

(実施形態2)
本発明の実施形態2について図5を参照しながら説明する。
(工程2−1)
始めに、実施形態1と同様にして工程1−6までを行い、単結晶SiC層担持体15を2組用意する(図5(a))。
(Embodiment 2)
The second embodiment of the present invention will be described with reference to FIG.
(Step 2-1)
First, steps 1 to 6 are performed in the same manner as in Embodiment 1 to prepare two sets of single crystal SiC layer carriers 15 (FIG. 5A).

(工程2−2)
次に、2組の単結晶SiC層担持体15の保持基板21同士を接着層23を介して貼り合わせて(接合して)接着貼り合わせ体16を得る(図5(b))。接着貼り合わせ体16は、その表裏面に単結晶SiC層12が露出した両面基板となる。このとき、この後で行う化学気相成長に対して耐熱性を有する接着剤を用いるとよい。
(Step 2-2)
Next, the holding substrates 21 of the two sets of single-crystal SiC layer carriers 15 are bonded (bonded) to each other via the adhesive layer 23 to obtain an adhesive bonded body 16 (FIG. 5B). The adhesive bonded body 16 becomes a double-sided substrate in which the single crystal SiC layer 12 is exposed on the front and back surfaces thereof. At this time, it is preferable to use an adhesive having heat resistance against chemical vapor deposition performed thereafter.

(工程2−3)
次に、接着貼り合わせ体16の表裏面の単結晶SiC層12の凹凸面それぞれに実施形態1と同様の化学気相成長法により多結晶SiCを堆積して多結晶SiC基板11を形成する(図5(c))。ここで、保持基板21と多結晶SiC基板11との間に熱膨張係数の差に起因する応力が発生したとしても、2枚の保持基板21が貼り合わされたものの表裏面に作用する応力の向きは互いに反対方向となり、その大きさは等しくなるため、積層体に反りが発生することがないようにすることができ、その結果、反りのないSiC複合基板を2組得ることができる。
(Step 2-3)
Next, polycrystalline SiC is deposited on each of the concavo-convex surfaces of the single crystal SiC layer 12 on the front and back surfaces of the bonded bonded body 16 by the same chemical vapor deposition method as in Embodiment 1 to form the polycrystalline SiC substrate 11 ( FIG. 5(c)). Here, even if the stress due to the difference in the thermal expansion coefficient occurs between the holding substrate 21 and the polycrystalline SiC substrate 11, the direction of the stress acting on the front and back surfaces of the two holding substrates 21 bonded together Are opposite to each other and have the same size, so that the laminate can be prevented from warping, and as a result, two sets of SiC composite substrates having no warp can be obtained.

(工程2−4)
次いで、工程2−3で得られた積層体について、保持基板21のうら面同士の接合部分(接着層23)で分離し、同時に(又はその後に)それぞれの保持基板21を物理的及び/又は化学的に除去して、2組のSiC複合基板10を得る(図5(d))。このとき、保持基板21がシリコンからなる場合には、例えばフッ硝酸溶液により容易に接着層23及び保持基板21を選択的にエッチング除去することが可能である。
(Step 2-4)
Next, the laminated body obtained in step 2-3 is separated at the joint portion (adhesive layer 23) between the back surfaces of the holding substrates 21, and at the same time (or after), the respective holding substrates 21 are physically and/or It is chemically removed to obtain two sets of SiC composite substrates 10 (FIG. 5D). At this time, when the holding substrate 21 is made of silicon, the adhesive layer 23 and the holding substrate 21 can be easily selectively removed by etching with, for example, a hydrofluoric nitric acid solution.

(工程2−5)
その後、必要に応じて実施形態1と同様に、SiC複合基板10の単結晶SiC層12上にSiCエピタキシャル層12’を形成するとよい(図5(e))。
(Step 2-5)
Thereafter, if necessary, similarly to the first embodiment, the SiC epitaxial layer 12′ may be formed on the single crystal SiC layer 12 of the SiC composite substrate 10 (FIG. 5(e)).

(実施形態3)
本発明の実施形態3について図6を参照しながら説明する。
(工程3−1)
始めに、保持基板21上にSiCをヘテロエピタキシャル成長させて単結晶SiC薄膜12eを設けて単結晶SiC薄膜担持体14’を2枚用意する(図6(a))。例えば、2枚の(001)表面を有する単結晶Siウエハを保持基板21とし、その上層に(001)面を主面方位とする3C−SiC層をヘテロエピタキシャル成長するとよい。詳しくは、このヘテロエピタキシャル成長に先んじ、保持基板(単結晶Siウエハ)21を20PaのC22雰囲気に暴露しつつ、500℃から1,340℃まで昇温し、その表層に単結晶の3C−SiC膜を厚さ15nm成長させた後、基板温度を保ちつつ、流量200sccmのSiH2Cl2と流量50sccmのC22を導入し、圧力を15Paとすることにより厚さ20μmの(001)面を主面方位とする単結晶3C−SiC層12をエピタキシャル成長するとよい。
(Embodiment 3)
A third embodiment of the present invention will be described with reference to FIG.
(Step 3-1)
First, SiC is heteroepitaxially grown on the holding substrate 21 to provide the single crystal SiC thin film 12e to prepare two single crystal SiC thin film carriers 14' (FIG. 6A). For example, a single crystal Si wafer having two (001) surfaces may be used as the holding substrate 21, and a 3C-SiC layer having a (001) plane as a principal plane orientation may be heteroepitaxially grown on the holding substrate 21. More specifically, prior to this heteroepitaxial growth, the holding substrate (single crystal Si wafer) 21 is exposed to a C 2 H 2 atmosphere of 20 Pa and the temperature is raised from 500° C. to 1,340° C. After growing the SiC film to a thickness of 15 nm, while maintaining the substrate temperature, SiH 2 Cl 2 with a flow rate of 200 sccm and C 2 H 2 with a flow rate of 50 sccm were introduced, and the pressure was set to 15 Pa. ) It is advisable to epitaxially grow the single crystal 3C-SiC layer 12 having the plane as the principal plane orientation.

(工程3−2)
次に、単結晶SiC薄膜担持体14’の単結晶SiC薄膜12eについて、実施形態1の工程1−6と同様にしてその表面を機械的加工により粗面化し、更にこの機械的加工に起因する欠陥を除去して単結晶SiC層12とする(図6(b))。
(Step 3-2)
Next, the surface of the single crystal SiC thin film 12e of the single crystal SiC thin film carrier 14' is roughened by mechanical processing in the same manner as in step 1-6 of the first embodiment, and this mechanical processing results. The defects are removed to form the single crystal SiC layer 12 (FIG. 6B).

ここで、上記機械的加工条件や欠陥を除去する条件は実施形態1の工程1−6と同じでよい。その結果として、単結晶SiC層12の表面凹凸の状態も実施形態1と同じようになる。 Here, the mechanical processing conditions and the conditions for removing the defects may be the same as those in step 1-6 of the first embodiment. As a result, the surface irregularities of the single crystal SiC layer 12 are the same as in the first embodiment.

本工程により保持基板21上に上記表面凹凸を有する単結晶SiC層12を担持する単結晶SiC層担持体15’を作製することができる(図6(b))。 By this step, a single crystal SiC layer carrier 15' carrying the single crystal SiC layer 12 having the above-mentioned surface irregularities on the holding substrate 21 can be manufactured (FIG. 6B).

(工程3−3)
次に、2枚の単結晶SiC層担持体15’の保持基板21同士を接着層23を介して貼り合わせて(接合して)一組の接着貼り合わせ体16’を得る(図6(c))。接着貼り合わせ体16’は、その表裏面に単結晶SiC層12が露出した両面基板となる。このとき、この後で行う化学気相成長に対して耐熱性を有する接着剤を用いるとよい。
(Step 3-3)
Next, the holding substrates 21 of the two single crystal SiC layer carriers 15 ′ are bonded (bonded) to each other via the adhesive layer 23 to obtain a set of bonded bonded bodies 16 ′ (FIG. 6( c )). The adhesive bonded body 16 ′ becomes a double-sided substrate in which the single crystal SiC layer 12 is exposed on the front and back surfaces. At this time, it is preferable to use an adhesive having heat resistance against chemical vapor deposition performed thereafter.

(工程3−4)
次に、接着貼り合わせ体16’の表裏面の単結晶SiC層12の凹凸面それぞれに実施形態1と同様の化学気相成長法により多結晶SiCを堆積して多結晶SiC基板11を形成する(図6(d))。ここで、保持基板21と多結晶SiC基板11との間に熱膨張係数の差に起因する応力が発生したとしても、2枚の保持基板21が貼り合わされたものの表裏面に作用する応力の向きは互いに反対方向となり、その大きさは等しくなるため、積層体に反りが発生することがないようにすることができ、その結果、反りのないSiC複合基板を2枚得ることができる。
(Step 3-4)
Next, polycrystalline SiC is deposited on each of the concave and convex surfaces of the single crystal SiC layer 12 on the front and back surfaces of the bonded bonded body 16 ′ by the same chemical vapor deposition method as in Embodiment 1 to form the polycrystalline SiC substrate 11. (FIG.6(d)). Here, even if the stress due to the difference in the thermal expansion coefficient occurs between the holding substrate 21 and the polycrystalline SiC substrate 11, the direction of the stress acting on the front and back surfaces of the two holding substrates 21 bonded together Are opposite to each other and have the same size, so that the laminate can be prevented from warping, and as a result, two SiC composite substrates without warping can be obtained.

(工程3−5)
次いで、工程3−4で得られた積層体について、保持基板21のうら面同士の接合部分(接着層23)で分離し、同時に(又はその後に)それぞれの保持基板21を物理的及び/又は化学的に除去して、2組のSiC複合基板10を得る(図6(e))。このとき、保持基板21がシリコンからなる場合には、例えばフッ硝酸溶液により容易に接着層23及び保持基板21を選択的にエッチング除去することが可能である。
(Step 3-5)
Next, the laminated body obtained in step 3-4 is separated at the joint portion (adhesive layer 23) between the back surfaces of the holding substrates 21, and at the same time (or after), the respective holding substrates 21 are physically and/or It is chemically removed to obtain two sets of SiC composite substrates 10 (FIG. 6(e)). At this time, when the holding substrate 21 is made of silicon, the adhesive layer 23 and the holding substrate 21 can be easily selectively removed by etching with, for example, a hydrofluoric nitric acid solution.

(実施形態4)
本発明の実施形態4について図7を参照しながら説明する。
(工程4−1)
始めに、保持基板21の両面にSiCをヘテロエピタキシャル成長させて単結晶SiC薄膜12eを設けて単結晶SiC薄膜担持体14''を用意する(図7(a))。例えば、両面を鏡面研磨した(111)表面を有する単結晶Siウエハを保持基板21とし、その両面に3C−SiC層をヘテロエピタキシャル成長するとよい。詳しくは、このヘテロエピタキシャル成長に先んじ、保持基板(単結晶Siウエハ)21を20PaのC22雰囲気に暴露しつつ、500℃から1,340℃まで昇温し、その表層に単結晶の3C−SiC膜を厚さ15nm成長させた後、基板温度を保ちつつ、流量200sccmのSiH2Cl2と流量50sccmのC22を導入し、圧力を3.2Paとすることにより(111)面を主面方位とする単結晶3C−SiC層12をエピタキシャル成長するとよい。
(Embodiment 4)
A fourth embodiment of the present invention will be described with reference to FIG.
(Step 4-1)
First, SiC is heteroepitaxially grown on both surfaces of the holding substrate 21 to provide the single crystal SiC thin film 12e to prepare the single crystal SiC thin film carrier 14'' (FIG. 7A). For example, a single crystal Si wafer having (111) surfaces whose both surfaces are mirror-polished may be used as the holding substrate 21, and 3C—SiC layers may be heteroepitaxially grown on both surfaces thereof. More specifically, prior to this heteroepitaxial growth, the holding substrate (single crystal Si wafer) 21 is exposed to a C 2 H 2 atmosphere of 20 Pa and the temperature is raised from 500° C. to 1,340° C. -After growing the SiC film to a thickness of 15 nm, SiH 2 Cl 2 with a flow rate of 200 sccm and C 2 H 2 with a flow rate of 50 sccm were introduced while maintaining the substrate temperature, and the pressure was set to 3.2 Pa to thereby form the (111) plane. It is advisable to epitaxially grow the single crystal 3C-SiC layer 12 having the principal plane orientation of.

このとき、実施形態3とは異なり、厚膜の3C−SiCエピタキシャル成長は避けた方がよい。なぜならば、(111)面を主面方位とする3C−SiC層面内では、積層欠陥が発生したとしてもSi(111)表面を有する単結晶Siウエハとの界面における応力緩和効果が発現しないため、3C−SiC層を厚膜化すると、内部応力が蓄積し、3C−SiC層/保持基板(単結晶Siウエハ)界面の剥離や3C−SiCエピタキシャル成長層内へのクラック発生がもたらされるおそれがある。そこで、エピタキシャル成長時間を調整し、膜厚2μmを上限とする3C−SiCエピタキシャル成長に留めるとよい。3C−SiC層面内には10GPaを超える引張応力が発生するが、保持基板21である単結晶Siウエハの表裏面に形成されることから内部応力がバランスし、保持基板21が変形することなく平坦性を保つことが可能となる。 At this time, unlike the third embodiment, it is preferable to avoid thick 3C-SiC epitaxial growth. This is because the stress relaxation effect at the interface with the single crystal Si wafer having the Si(111) surface does not appear in the 3C-SiC layer plane having the (111) plane as the principal plane orientation even if a stacking fault occurs. If the 3C-SiC layer is made thicker, internal stress may be accumulated, resulting in peeling of the interface of the 3C-SiC layer/holding substrate (single crystal Si wafer) and crack generation in the 3C-SiC epitaxial growth layer. Therefore, it is advisable to adjust the epitaxial growth time so that the 3C-SiC epitaxial growth with the film thickness of 2 μm as the upper limit is limited. Tensile stress exceeding 10 GPa is generated in the surface of the 3C-SiC layer, but since it is formed on the front and back surfaces of the single crystal Si wafer that is the holding substrate 21, the internal stress is balanced and the holding substrate 21 is flat without deformation. It is possible to maintain sex.

(工程4−2)
次に、単結晶SiC薄膜担持体14''の単結晶SiC薄膜12eについて、実施形態1の工程1−6と同様にしてその表面を機械的加工により粗面化し、更にこの機械的加工に起因する欠陥を除去して単結晶SiC層12とする(図7(b))。
(Step 4-2)
Next, the surface of the single crystal SiC thin film 12e of the single crystal SiC thin film carrier 14″ is roughened by mechanical processing in the same manner as in step 1-6 of the first embodiment. The defects are removed to form the single crystal SiC layer 12 (FIG. 7B).

ここで、上記機械的加工条件や欠陥を除去する条件は実施形態1の工程1−6と同じでよい。その結果として、単結晶SiC層12の表面凹凸の状態も実施形態1と同じようになる。 Here, the mechanical processing conditions and the conditions for removing the defects may be the same as those in step 1-6 of the first embodiment. As a result, the surface irregularities of the single crystal SiC layer 12 are the same as in the first embodiment.

本工程により保持基板21上に上記表面凹凸を有する単結晶SiC層12を担持する単結晶SiC層担持体15''を作製することができる(図7(b))。 By this step, the single crystal SiC layer carrier 15″ carrying the single crystal SiC layer 12 having the above-mentioned surface irregularities on the holding substrate 21 can be manufactured (FIG. 7B).

(工程4−3)
次に、単結晶SiC層担持体15''の表裏面の単結晶SiC層12の凹凸面それぞれに実施形態1と同様の化学気相成長法により多結晶SiCを堆積して多結晶SiC基板11を形成する(図7(c))。ここで、保持基板21と多結晶SiC基板11との間に熱膨張係数の差に起因する応力が発生したとしても、保持基板21の表裏面に作用する応力の向きは互いに反対方向となり、その大きさは等しくなるため、積層体に反りが発生することがないようにすることができ、その結果、反りのないSiC複合基板を2組得ることができる。
(Step 4-3)
Next, polycrystalline SiC is deposited on each of the uneven surfaces of the single crystal SiC layer 12 on the front and back surfaces of the single crystal SiC layer carrier 15 ″ by the chemical vapor deposition method similar to that of the first embodiment to deposit the polycrystalline SiC substrate 11 Are formed (FIG. 7C). Here, even if the stress caused by the difference in the thermal expansion coefficient occurs between the holding substrate 21 and the polycrystalline SiC substrate 11, the directions of the stress acting on the front and back surfaces of the holding substrate 21 are opposite to each other. Since the sizes are the same, it is possible to prevent the laminate from warping, and as a result, it is possible to obtain two sets of SiC composite substrates having no warpage.

(工程4−4)
次いで、工程4−3で得られた積層体について、保持基板21を物理的及び/又は化学的に除去して、2組のSiC複合基板10を得る(図7(d))。このとき、保持基板21がシリコンからなる場合には、例えばフッ硝酸溶液により容易に保持基板21を選択的にエッチング除去することが可能である。
(Step 4-4)
Next, the holding substrate 21 is physically and/or chemically removed from the laminated body obtained in step 4-3 to obtain two sets of SiC composite substrates 10 (FIG. 7D). At this time, when the holding substrate 21 is made of silicon, it is possible to easily selectively remove the holding substrate 21 by etching with a hydrofluoric nitric acid solution, for example.

以上、本発明の実施形態1〜4において、単結晶SiCのエピタキシャル成長にSiH2Cl2とC22の混合気体を用いた気相成長を用いた例を示したが、単結晶SiCの形成方法はこれに限られることはなく、いかなるシラン系、塩化シラン系、炭化水素の組み合わせによる減圧又は常圧気相成長、あるいは分子線エピタキシー、更には液相成長でも同様な効果が得られる。 As described above, in Embodiments 1 to 4 of the present invention, an example in which vapor phase growth using a mixed gas of SiH 2 Cl 2 and C 2 H 2 is used for epitaxial growth of single crystal SiC has been described. The method is not limited to this, and the same effect can be obtained by any pressure reduction or atmospheric pressure vapor phase growth, molecular beam epitaxy, or liquid phase growth using any combination of silane, chlorosilane, and hydrocarbon.

また、単結晶SiC層12の表面凹凸形成には必ずしもダイヤモンドスラリーによる機械的加工を用いる必要はなく、その凹凸を構成する傾斜面が該単結晶SiC層の表面の法線方向を基準としてランダムな方向に配向できれば、フォトリソグラフィーやナノインプリントなどの手段を用いることも可能である。 Further, it is not always necessary to use mechanical processing with diamond slurry to form the surface irregularities of the single crystal SiC layer 12, and the inclined surface forming the irregularities is random with reference to the normal direction of the surface of the single crystal SiC layer. If it can be oriented in the direction, it is also possible to use means such as photolithography and nanoimprint.

また、保持基板21としてシリコン基板を用いる例を示したが、実施形態3、4のようにSiCをヘテロエピタキシャル成長させる必要がなければ、単結晶Si基板である必要がなく、安価な多結晶Si基板を用いてもよい。 Further, although an example in which a silicon substrate is used as the holding substrate 21 has been shown, if there is no need for heteroepitaxial growth of SiC as in Embodiments 3 and 4, it is not necessary to use a single crystal Si substrate, and an inexpensive polycrystalline Si substrate. May be used.

実施形態2、3において、単結晶SiC薄膜12aの機械的加工による粗面化及び該機械的加工に起因する欠陥の除去の処理は、必ずしも保持基板21同士の接着以前での実施に限定されるものではなく、多結晶SiC基板11の形成(堆積)前であれば保持基板21同士を接着して貼り合わせ体とした状態で実施してもよい。 In Embodiments 2 and 3, the processing for roughening the single-crystal SiC thin film 12a by mechanical processing and removing defects caused by the mechanical processing are not necessarily limited to those performed before the bonding of the holding substrates 21. Alternatively, the holding substrates 21 may be bonded to each other to form a bonded body before the formation (deposition) of the polycrystalline SiC substrate 11.

また、実施形態2、3において、保持基板21同士を接着層23を介して接着しているが、十分な付着強度を実現できるのであれば、接着層23を介さずに直接接合してもよい。 In addition, in Embodiments 2 and 3, the holding substrates 21 are bonded to each other via the adhesive layer 23, but if sufficient adhesive strength can be realized, they may be directly bonded without the adhesive layer 23. ..

以下に、実施例を挙げて、本発明を更に具体的に説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.

[実施例1]
本発明のSiC複合基板の製造方法における実施形態1に基づき以下の手順で本発明のSiC複合基板10を作製した。
[Example 1]
Based on the first embodiment of the method for producing a SiC composite substrate of the present invention, the SiC composite substrate 10 of the present invention was produced by the following procedure.

(工程1)
始めに、単結晶SiC基板12sとして(000−1)C面を[11−20]方位に2度傾斜させた単結晶4H−SiCウエハを用意し、これを大気圧の乾燥酸素雰囲気中で90分間、1,100℃の熱酸化処理を施すことにより表面に薄膜22aとして厚さ0.2μmの熱酸化膜を形成した(図4(a))。
(工程2)
次に、保持基板21として(001)表面を有する単結晶Siウエハを用意し、これを大気圧の乾燥酸素雰囲気中で90分間、1,100℃の熱酸化処理を施すことにより表面に薄膜22aとして厚さ0.6μmの熱酸化膜を形成した(図4(b))。
(工程3)
次に、工程1の単結晶4H−SiCウエハの熱酸化膜形成面に、水素イオンを150keVのエネルギーで1×1017atoms/cm2照射し、イオン注入領域12iを形成した(図4(c))。
(工程4)
続いて、単結晶4H−SiCウエハの薄膜22a形成面と単結晶Siウエハの薄膜22a形成面とをプラズマ活性化処理を施して貼り合わせて貼り合わせ基板13を得た(図4(d))。
(工程5)
次に、貼り合わせ基板13について、イオン注入した部分に機械的エネルギーを付与して、イオン注入領域12iで単結晶4H−SiC基板ウエハを剥離させ、単結晶Siウエハ上に厚さ0.2μmの単結晶SiC薄膜12aを転写して表面に4H−SiC(0001)Si面が露出する単結晶SiC薄膜担持体14を得た(図4(e))。
(Process 1)
First, as the single crystal SiC substrate 12s, a single crystal 4H-SiC wafer in which the (000-1)C plane was tilted in the [11-20] direction by 2 degrees was prepared, and this was placed in an atmosphere of dry oxygen at 90°C. A thermal oxidation film having a thickness of 0.2 μm was formed as a thin film 22a on the surface by performing a thermal oxidation treatment at 1,100° C. for one minute (FIG. 4A).
(Process 2)
Next, a single crystal Si wafer having a (001) surface is prepared as the holding substrate 21, and this is subjected to a thermal oxidation treatment at 1,100° C. for 90 minutes in a dry oxygen atmosphere at atmospheric pressure to form a thin film 22a on the surface. As a result, a thermal oxide film having a thickness of 0.6 μm was formed (FIG. 4B).
(Process 3)
Next, the surface of the single crystal 4H—SiC wafer in step 1 on which the thermal oxide film was formed was irradiated with hydrogen ions at an energy of 150 keV at 1×10 17 atoms/cm 2 to form an ion implantation region 12i (FIG. )).
(Process 4)
Subsequently, the thin film 22a forming surface of the single crystal 4H-SiC wafer and the thin film 22a forming surface of the single crystal Si wafer were subjected to plasma activation treatment and bonded to obtain a bonded substrate 13 (FIG. 4(d)). ..
(Process 5)
Next, with respect to the bonded substrate 13, mechanical energy is applied to the ion-implanted portion to separate the single crystal 4H-SiC substrate wafer in the ion implantation region 12i, and a thickness of 0.2 μm is formed on the single crystal Si wafer. The single crystal SiC thin film 12a was transferred to obtain a single crystal SiC thin film carrier 14 having a 4H-SiC(0001)Si surface exposed on the surface (FIG. 4(e)).

(工程6)
次に、単結晶SiC薄膜担持体14の表面に露出した4H−SiC(0001)Si面を10μmの粒度のダイヤモンドスラリーを塗布した研磨布に100g/cm2の圧力で押し付け、ランダムな方向に反復運動させた。これを10分間反復運動した後、単結晶SiC薄膜12a表面のダイヤモンドスラリーを純水で洗い流し、過酸化水素水と硫酸の混合溶液で洗浄した。次に、大気圧の乾燥酸素雰囲気中で60分間、1,100℃の熱酸化処理を施すことにより単結晶SiC薄膜12aの研磨面に厚さ0.1μmの熱酸化膜を形成する。この熱酸化処理によりダイヤモンドスラリーを用いた研磨により欠陥が導入された単結晶SiC薄膜12a表面がシリコン酸化膜に変換される。その後、その表面を5vol%のHF溶液に5分間浸漬して、清浄な単結晶4H−SiC表面を露出させて単結晶SiC層12とした(図4(f))。この処理後の単結晶SiC層12の表面凹凸の算術平均粗さRaは3nmであり、その表面凹凸を構成する傾斜面の最大斜度が3度であって該傾斜面が単結晶Siウエハ(保持基板21)側表面の法線方向を基準としてランダムな方向に向いている凹凸面となった。
(Process 6)
Next, the 4H—SiC(0001)Si surface exposed on the surface of the single crystal SiC thin film carrier 14 is pressed against a polishing cloth coated with a diamond slurry having a particle size of 10 μm at a pressure of 100 g/cm 2 , and repeated in random directions. I exercised. After repeating this for 10 minutes, the diamond slurry on the surface of the single crystal SiC thin film 12a was washed away with pure water and washed with a mixed solution of hydrogen peroxide solution and sulfuric acid. Next, a thermal oxidation film of 0.1 μm thickness is formed on the polished surface of the single crystal SiC thin film 12a by performing a thermal oxidation treatment at 1,100° C. for 60 minutes in a dry oxygen atmosphere at atmospheric pressure. By this thermal oxidation treatment, the surface of the single crystal SiC thin film 12a in which defects are introduced by polishing with diamond slurry is converted into a silicon oxide film. Then, the surface was immersed in a 5 vol% HF solution for 5 minutes to expose a clean single crystal 4H-SiC surface to form a single crystal SiC layer 12 (FIG. 4(f)). The arithmetic mean roughness Ra of the surface irregularities of the single crystal SiC layer 12 after this treatment is 3 nm, the maximum inclination of the inclined planes forming the surface irregularities is 3 degrees, and the inclined plane is a single crystal Si wafer ( The surface became uneven with the normal direction of the surface of the holding substrate 21) as a reference.

(工程7)
次に、単結晶SiC層12の凹凸面に、熱CVD法によりSiCl4(流量200sccm)とC38(流量50sccm)を原料として、加熱温度1,320℃で多結晶の3C−SiCを堆積した。このときの圧力を15Paとし、8時間の堆積処理により単結晶SiCウエハ(保持基板21)の表裏面、即ち単結晶SiC層12表面と単結晶Siウエハ裏面にそれぞれ厚さ840μmの多結晶SiC基板11,11’を形成した(図4(g))。
(Process 7)
Next, polycrystalline 3C-SiC was formed on the concavo-convex surface of the single-crystal SiC layer 12 using SiCl 4 (flow rate 200 sccm) and C 3 H 8 (flow rate 50 sccm) as raw materials at a heating temperature of 1,320° C. Deposited. The pressure at this time was set to 15 Pa, and a polycrystal SiC substrate having a thickness of 840 μm was formed on the front and back surfaces of the single crystal SiC wafer (holding substrate 21), that is, the front surface of the single crystal SiC layer 12 and the back surface of the single crystal Si wafer, respectively, by a deposition process for 8 hours. 11 and 11' were formed (FIG. 4(g)).

(工程8)
次に、工程7で得られた積層体をHFとHNO3の混合溶液に120時間浸漬したところ、保持基板21である単結晶Siウエハが選択的にエッチング除去され、これと同時に裏面側の多結晶SiC基板11’が剥離し、単結晶SiC層12(4H−SiC(0001)Si面)/多結晶SiC基板11(立方晶SiC(840μm厚))の積層構造の本発明のSiC複合基板10が得られた(図4(h))。
(Process 8)
Next, when the laminated body obtained in step 7 was immersed in a mixed solution of HF and HNO 3 for 120 hours, the single crystal Si wafer as the holding substrate 21 was selectively removed by etching, and at the same time, the multi-layer on the back surface side was removed. The SiC composite substrate 10 of the present invention having a laminated structure of the single crystal SiC layer 12 (4H-SiC(0001)Si surface)/polycrystalline SiC substrate 11 (cubic SiC (840 μm thick)) is separated from the crystalline SiC substrate 11′. Was obtained (FIG. 4(h)).

得られたSiC複合基板10の多結晶SiC基板11、即ち堆積された多結晶膜(多結晶SiC基板)の表面を実体顕微鏡で観察したところ、図8に示すように粒状となり、粒径は0.1μmから1μmの不定形の結晶粒の組み合わせで形成されていた。 When the surface of the obtained polycrystalline SiC substrate 11 of the SiC composite substrate 10, that is, the surface of the deposited polycrystalline film (polycrystalline SiC substrate) is observed with a stereoscopic microscope, it becomes granular as shown in FIG. It was formed of a combination of irregularly shaped crystal grains of 1 μm to 1 μm.

また、X線回折装置(株式会社リガク製、SuperLab、Cu管球)を用いてX線回折法(θ−2θスキャン)により、多結晶SiC基板11の結晶性を調査したところ、図9に示すように、3C−SiCの(111)面が膜を構成する結晶の支配的な格子間隔であることが分かった。 Further, the crystallinity of the polycrystalline SiC substrate 11 was investigated by an X-ray diffraction method (θ-2θ scan) using an X-ray diffractometer (manufactured by Rigaku Corporation, SuperLab, Cu tube), and is shown in FIG. As described above, it was found that the (111) plane of 3C-SiC is the dominant lattice spacing of the crystals forming the film.

更に、上記X線回折装置を用いてX線ロッキングカーブ法(ωスキャン)により、単結晶SiC層の表面の法線軸を基準とする多結晶SiC基板11を構成する3C−SiC結晶の(111)面のロッキングカーブを取ると図10に示すようになる。図10では、単結晶SiC層12の表面の法線軸を基準(ω=0度)とした場合、ω≦−2度又は2度≦ωとなる結晶粒の割合が多結晶SiC基板11を構成する全結晶粒の65%以上となっていた。即ち、多結晶SiC基板11を構成する3C−SiC結晶の(111)面が単結晶SiC層12の表面の法線軸を基準にしてランダムに配向していると言える。 Further, by the X-ray rocking curve method (ω scan) using the above X-ray diffractometer, (111) of 3C-SiC crystal constituting the polycrystalline SiC substrate 11 with the normal axis of the surface of the single crystal SiC layer as a reference. The rocking curve of the plane is shown in FIG. In FIG. 10, when the normal axis of the surface of the single crystal SiC layer 12 is used as a reference (ω=0 degree), the proportion of crystal grains satisfying ω≦−2 degrees or 2 degrees≦ω constitutes the polycrystalline SiC substrate 11. It was 65% or more of the total crystal grains. That is, it can be said that the (111) planes of the 3C-SiC crystal that constitutes the polycrystalline SiC substrate 11 are randomly oriented with reference to the normal axis of the surface of the single crystal SiC layer 12.

このように多結晶SiC基板11の結晶粒の配向方位が単結晶SiC層12の表面の法線軸に対してランダムに分散しているため、多結晶SiC基板11と単結晶SiC層12との不整合界面において特定方位への応力集中が阻まれ、その面内応力は0.1GPa以下となって多結晶SiC基板11と単結晶SiC層12とは強固に付着した。この単結晶SiC層12の4H−SiC(0001)面内の応力はラマン散乱スペクトルのピークシフトにより見積もることが可能である。 As described above, the orientations of the crystal grains of the polycrystalline SiC substrate 11 are randomly dispersed with respect to the normal axis of the surface of the single-crystal SiC layer 12, so that the polycrystalline SiC substrate 11 and the single-crystal SiC layer 12 are not aligned with each other. At the matching interface, the concentration of stress in a specific orientation was blocked, and the in-plane stress became 0.1 GPa or less, and the polycrystalline SiC substrate 11 and the single crystal SiC layer 12 were firmly attached. The stress in the 4H—SiC(0001) plane of this single crystal SiC layer 12 can be estimated by the peak shift of the Raman scattering spectrum.

更に、得られたSiC複合基板10のBow量(反り)を測定したところ、20μm以下であった。上記のように結晶SiC基板11と単結晶SiC層12との不整合界面において低内部応力化が図られたことによると推察される。 Furthermore, when the Bow amount (warpage) of the obtained SiC composite substrate 10 was measured, it was 20 μm or less. It is presumed that the internal stress was reduced at the mismatched interface between the crystalline SiC substrate 11 and the single crystal SiC layer 12 as described above.

なお、上記SiC複合基板10の反りは、垂直入射方式のフィゾー干渉計(Corning Tropel社製、FlatMaster)によりBow量を測定した。ここで、SiC複合基板10は図11に示すように、Bow量b1、b2はSiC複合基板10の中央部と端部との高低差として測定し、基板の中央部が図11(a)に示すように下方向に凸の場合をマイナスの値、図11(b)に示すように上方向に凸の場合をプラスの値とした。また、SiC複合基板10の単結晶SiC層12が上側(表面側)となる向きに配置して反りを測定した。上記SiC複合基板10は、基板の中央部が上方向に凸となっていた。 In addition, the bow amount of the SiC composite substrate 10 was measured by a vertical incidence type Fizeau interferometer (FlatMaster, manufactured by Corning Tropel). Here, as shown in FIG. 11, for the SiC composite substrate 10, the Bow amounts b1 and b2 are measured as the height difference between the central portion and the end portion of the SiC composite substrate 10, and the central portion of the substrate is shown in FIG. As shown in the figure, the case of downward convex is a negative value, and the case of upward convex as shown in FIG. 11B is a positive value. In addition, the single crystal SiC layer 12 of the SiC composite substrate 10 was arranged in the upper side (front side), and the warpage was measured. In the SiC composite substrate 10, the central portion of the substrate was convex upward.

なお、これまで本発明を図面に示した実施形態をもって説明してきたが、本発明は図面に示した実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用効果を奏する限り、本発明の範囲に含まれるものである。 Although the present invention has been described with reference to the embodiments shown in the drawings, the present invention is not limited to the embodiments shown in the drawings, and other embodiments, additions, changes, deletions, etc. The present invention can be modified within the scope that can be conceived of, and is included in the scope of the present invention as long as the effects of the present invention are exhibited in any of the modes.

10 SiC複合基板
11、11’ 多結晶SiC基板
11b 結晶粒界
11p、12p 格子面
12 単結晶SiC層
12a 単結晶SiC薄膜
12e 単結晶SiC薄膜(ヘテロエピタキシャル成長膜)
12i イオン注入領域
12s 単結晶SiC基板
12’ SiCエピタキシャル層
13 貼り合わせ基板
14、14’、14'' 単結晶SiC薄膜担持体
15、15’、15'' 単結晶SiC層担持体
16、16’ 接着貼り合わせ体
21 保持基板
22 介在層
22a 薄膜
23 接着層
12/11 不整合界面
10 SiC composite substrate 11, 11' Polycrystalline SiC substrate 11b Crystal grain boundaries 11p, 12p Lattice plane 12 Single crystal SiC layer 12a Single crystal SiC thin film 12e Single crystal SiC thin film (heteroepitaxial growth film)
12i Ion implantation region 12s Single crystal SiC substrate 12' SiC epitaxial layer 13 Bonded substrate 14, 14', 14'' Single crystal SiC thin film carrier 15, 15', 15'' Single crystal SiC layer carrier 16, 16' Adhesive bonded body 21 Holding substrate 22 Intervening layer 22a Thin film 23 Adhesive layer I 12/11 Mismatched interface

Claims (6)

厚さ100μm以上650μm以下の多結晶SiC基板上に厚さ100nm以上1μm以下の単結晶SiC層を有するSiC複合基板において、上記多結晶SiC基板と単結晶SiC層とが当接する界面の全面又は一部が格子整合していない不整合界面であり、上記単結晶SiC層は平滑な表面を有すると共に多結晶SiC基板との界面側にこの表面よりも凹凸がある面を有し、この凹凸面は凹凸を構成する傾斜面が該単結晶SiC層の表面の法線方向を基準としてランダムな方向に向いているものであり、上記多結晶SiC基板における多結晶SiCの結晶の最密面が上記単結晶SiC層の凹凸面の凹凸を構成する傾斜面に対して平行となるように堆積し、これにより該多結晶SiCの結晶の最密面が単結晶SiC層の表面の法線方向を基準としてランダムに配向していることを特徴とするSiC複合基板。 In a SiC composite substrate having a single crystal SiC layer having a thickness of 100 nm or more and 1 μm or less on a polycrystalline SiC substrate having a thickness of 100 μm or more and 650 μm or less, the whole or one of the interfaces where the polycrystalline SiC substrate and the single crystal SiC layer are in contact with each other The portion is an unmatched interface that is not lattice-matched, and the single crystal SiC layer has a smooth surface and a surface having an unevenness on the interface side with the polycrystalline SiC substrate, and the uneven surface is are those inclined surfaces constituting the irregularities are oriented in random directions relative to the direction normal to the surface of the single crystal SiC layer, the close-packed plane of the crystal of the polycrystalline SiC in the polycrystalline SiC substrate the single The crystalline SiC layer is deposited so as to be parallel to the inclined surface that constitutes the unevenness of the uneven surface, so that the close-packed surface of the crystal of the polycrystalline SiC is based on the normal direction of the surface of the single crystal SiC layer. A SiC composite substrate characterized by being randomly oriented. 上記多結晶SiC基板は化学気相成長膜であることを特徴とする請求項1記載のSiC複合基板。 The SiC composite substrate according to claim 1, wherein the polycrystalline SiC substrate is a chemical vapor deposition film. 上記多結晶SiC基板の多結晶SiCは立方晶であり、その最密面が{111}面であることを特徴とする請求項1又は2記載のSiC複合基板。 3. The SiC composite substrate according to claim 1 or 2, wherein the polycrystalline SiC of the polycrystalline SiC substrate is a cubic crystal and the closest packed surface is the {111} plane. X線ロッキングカーブ法により得られる単結晶SiC層表面の法線軸を基準(ω=0度)とする多結晶SiC基板を構成するSiC結晶の(111)面のロッキングカーブにおいて、ω≦−2度又は2度≦ωとなる結晶粒の割合が多結晶SiC基板を構成する全結晶粒の65%以上である請求項3記載のSiC複合基板。 In the rocking curve of the (111) plane of the SiC crystal that constitutes the polycrystalline SiC substrate with the normal axis of the surface of the single crystal SiC layer obtained by the X-ray rocking curve method as the reference (ω=0 degree), ω≦−2 degrees 4. The SiC composite substrate according to claim 3, wherein the ratio of crystal grains satisfying 2 degrees≦ω is 65% or more of all the crystal grains constituting the polycrystalline SiC substrate. 上記単結晶SiC層の結晶格子の最密面が多結晶SiC基板との界面において0度超10度以内の偏向角を有する請求項1〜4のいずれか1項記載のSiC複合基板。The SiC composite substrate according to any one of claims 1 to 4, wherein the close-packed surface of the crystal lattice of the single crystal SiC layer has a deflection angle of more than 0° and within 10° at an interface with the polycrystalline SiC substrate. 多結晶SiC基板を構成する結晶の粒径が0.1μm以上30μm以下である請求項1〜5のいずれか1項記載のSiC複合基板。The SiC composite substrate according to any one of claims 1 to 5, wherein a grain size of crystals constituting the polycrystalline SiC substrate is 0.1 µm or more and 30 µm or less.
JP2019088763A 2019-05-09 2019-05-09 SiC composite substrate Active JP6737378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019088763A JP6737378B2 (en) 2019-05-09 2019-05-09 SiC composite substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019088763A JP6737378B2 (en) 2019-05-09 2019-05-09 SiC composite substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015180637A Division JP6544166B2 (en) 2015-09-14 2015-09-14 Method of manufacturing SiC composite substrate

Publications (2)

Publication Number Publication Date
JP2019169725A JP2019169725A (en) 2019-10-03
JP6737378B2 true JP6737378B2 (en) 2020-08-05

Family

ID=68107674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019088763A Active JP6737378B2 (en) 2019-05-09 2019-05-09 SiC composite substrate

Country Status (1)

Country Link
JP (1) JP6737378B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114761629A (en) * 2020-01-24 2022-07-15 日本碍子株式会社 Biaxially oriented SiC composite substrate and composite substrate for semiconductor device
CN115513172B (en) * 2022-11-22 2023-04-28 广东芯粤能半导体有限公司 Semiconductor structure and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247506A (en) * 1990-02-26 1991-11-05 Showa Denko Kk Polycrystal silicon carbide
JPH10223496A (en) * 1997-02-12 1998-08-21 Ion Kogaku Kenkyusho:Kk Single-crystal wafer and manufacture thereof
JP3254559B2 (en) * 1997-07-04 2002-02-12 日本ピラー工業株式会社 Single crystal SiC and method for producing the same
JP3043689B2 (en) * 1997-11-17 2000-05-22 日本ピラー工業株式会社 Single crystal SiC and method for producing the same
FR2817395B1 (en) * 2000-11-27 2003-10-31 Soitec Silicon On Insulator METHOD FOR MANUFACTURING A SUBSTRATE, IN PARTICULAR FOR OPTICS, ELECTRONICS OR OPTOELECTRONICS AND SUBSTRATE OBTAINED THEREBY
JP2002220299A (en) * 2001-01-19 2002-08-09 Hoya Corp SINGLE CRYSTAL SiC AND METHOD OF PRODUCING THE SAME AND SiC SEMI CONDUCTOR DEVICE AND SiC COMPOSITE MATERIAL
JP4802380B2 (en) * 2001-03-19 2011-10-26 株式会社デンソー Manufacturing method of semiconductor substrate
FR2857953B1 (en) * 2003-07-21 2006-01-13 Commissariat Energie Atomique STACKED STRUCTURE, AND METHOD FOR MANUFACTURING THE SAME
JP2007273524A (en) * 2006-03-30 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Manufacturing method of multilayer-structured silicon carbide substrate
JP4933137B2 (en) * 2006-04-28 2012-05-16 学校法人 名城大学 Semiconductor and semiconductor manufacturing method
JP5840366B2 (en) * 2011-01-06 2016-01-06 株式会社デンソー Method for manufacturing silicon carbide semiconductor substrate and method for manufacturing silicon carbide semiconductor device
JP6061251B2 (en) * 2013-07-05 2017-01-18 株式会社豊田自動織機 Manufacturing method of semiconductor substrate

Also Published As

Publication number Publication date
JP2019169725A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
CN108028183B (en) SiC composite substrate and method for producing same
US10612157B2 (en) Method for manufacturing SiC composite substrate, and method for manufacturing semiconductor substrate
JP6582779B2 (en) Manufacturing method of SiC composite substrate
JP5468528B2 (en) SUBSTRATE FOR GROWING SINGLE CRYSTAL DIAMOND, METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING SINGLE CRYSTAL DIAMOND SUBSTRATE
JP6515757B2 (en) Method of manufacturing SiC composite substrate
TW202141582A (en) PROCESS FOR MANUFACTURING A COMPOSITE STRUCTURE COMPRISING A THIN LAYER MADE OF MONOCRYSTALLINESiC ON A CARRIER SUBSTRATE MADE OF SiC
JP6737378B2 (en) SiC composite substrate
TW202205357A (en) Process for manufacturing a composite structure comprising a thin layer of monocrystalline sic on a carrier substrate made of sic
TW202408802A (en) Manufacturing method of 3C-SiC laminated substrate, 3C-SiC laminated substrate and 3C-SiC self-standing substrate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R150 Certificate of patent or registration of utility model

Ref document number: 6737378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250