TW202205357A - Process for manufacturing a composite structure comprising a thin layer of monocrystalline sic on a carrier substrate made of sic - Google Patents

Process for manufacturing a composite structure comprising a thin layer of monocrystalline sic on a carrier substrate made of sic Download PDF

Info

Publication number
TW202205357A
TW202205357A TW109135222A TW109135222A TW202205357A TW 202205357 A TW202205357 A TW 202205357A TW 109135222 A TW109135222 A TW 109135222A TW 109135222 A TW109135222 A TW 109135222A TW 202205357 A TW202205357 A TW 202205357A
Authority
TW
Taiwan
Prior art keywords
layer
composite structure
substrate
donor
carrier
Prior art date
Application number
TW109135222A
Other languages
Chinese (zh)
Inventor
雨果 比阿德
Original Assignee
法商索泰克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR2003025A external-priority patent/FR3103961B1/en
Application filed by 法商索泰克公司 filed Critical 法商索泰克公司
Publication of TW202205357A publication Critical patent/TW202205357A/en

Links

Images

Abstract

The invention relates to a process for manufacturing a composite structure comprising a thin layer of monocrystalline silicon carbide arranged on a carrier substrate made of silicon carbide, the process comprising: (a) a step of providing an initial substrate made of monocrystalline silicon carbide, (b) a step of epitaxial growth of a monocrystalline silicon carbide donor layer on the initial substrate, to form a donor substrate 111, (c) a step of ion implantation of light species into the donor layer, to form a buried brittle plane delimiting the thin layer between said buried brittle plane and a free surface of said donor layer, (d) a step of direct liquid injection-chemical vapour deposition, at a temperature below 1000 DEG C, to form a carrier layer directly on the free surface of the donor layer, said carrier layer being formed by an at least partially amorphous SiC matrix, (e) a step of separating along the buried brittle plane to form, on the one hand, an intermediate composite structure comprising the thin layer on the carrier layer and, on the other hand, the rest of the donor substrate, (f) a step of heat treatment at a temperature of between 1000 DEG C and 1800 DEG C, applied to the intermediate composite structure, to crystallize the carrier layer and to form the polycrystalline carrier substrate, (g) a step of mechanical and/or chemical treatment(s) of the composite structure.

Description

用於製作複合結構之方法,該複合結構包含一單晶SiC薄層在一SiC載體底材上A method for making a composite structure comprising a thin layer of single crystal SiC on a SiC carrier substrate

本發明與微電子元件用半導體材料之領域有關。詳言之,本發明涉及一種用於製作複合結構之方法,該複合結構包含一單晶碳化矽薄層設置在碳化矽製之載體底材上。The present invention relates to the field of semiconductor materials for microelectronic components. In particular, the present invention relates to a method for fabricating a composite structure comprising a thin layer of monocrystalline silicon carbide disposed on a carrier substrate made of silicon carbide.

對碳化矽(SiC)的興趣在過去數年中大幅增加,因為這種半導體材料能夠提升處理功率的能力。SiC越來越廣泛地用於製作創新的功率元件,以滿足新興電子領域的需求,例如電動車。Interest in silicon carbide (SiC) has grown substantially over the past few years because of the semiconductor material's ability to increase processing power. SiC is increasingly being used to make innovative power components to meet the needs of emerging electronics fields such as electric vehicles.

相對於傳統的矽同系物(silicon homologues),基於單晶碳化矽(monocrystalline silicon carbide)的功率元件和集成供應系統能夠管理高得多的功率密度,並以較小的主動區尺寸做到這一點。為了進一步限制SiC上面的功率元件尺寸,製作垂直組件而非水平組件是有利的。為此,必須讓設置在SiC結構正面的電極與背面的電極二者之間能夠垂直導電。Monocrystalline silicon carbide-based power components and integrated supply systems are able to manage much higher power densities relative to traditional silicon homologues, and do so with smaller active region sizes . To further limit the size of power components on SiC, it is advantageous to make vertical components instead of horizontal components. To this end, it is necessary to allow vertical conduction between the electrodes arranged on the front side and the electrodes on the back side of the SiC structure.

然而,用於微電子產業之單晶SiC底材目前仍相當昂貴且難以提供大的尺寸。因此,利用薄層移轉方法來製作複合結構是有利的,該複合結構通常包括一單晶SiC薄層設置在較低廉的載體底材上。一種眾所周知的薄層移轉方法為Smart CutTM 方法,其以輕離子植入及直接鍵結之接合為基礎。該方法可允許製作包含單晶SIC(以下稱c-SiC)薄層之複合結構,該薄層取自c-SiC施體底材,與多晶SiC(以下稱p-SiC)製載體底材直接接觸,並允許垂直導電。然而,透過c-SiC和p-SiC二底材間的分子黏附實現高品質的直接鍵結仍有困難,因為管理這些底材的表面狀態和粗糙度是相當複雜的。However, single crystal SiC substrates for the microelectronics industry are currently still quite expensive and difficult to provide in large sizes. Therefore, it is advantageous to utilize the thin layer transfer method to fabricate composite structures, which typically include a thin layer of single crystal SiC disposed on a relatively inexpensive carrier substrate. A well-known thin layer transfer method is the Smart Cut (TM) method, which is based on light ion implantation and direct bonding. The method allows the fabrication of composite structures comprising thin layers of monocrystalline SIC (hereafter referred to as c-SiC), which are taken from a c-SiC donor substrate, and a carrier substrate of polycrystalline SiC (hereafter referred to as p-SiC) direct contact and allow vertical conduction. However, it is still difficult to achieve high-quality direct bonding through molecular adhesion between c-SiC and p-SiC bisubstrates, because managing the surface state and roughness of these substrates is rather complicated.

習知技術中亦有各種源自所述方法之處理方式。舉例而言,F.Mu等人(ECS Transactions, 86 (5) 3-21, 2018)在透過氬轟擊活化待接合表面後進行直接鍵結(SAB為「表面活化鍵合」的簡稱):這種鍵合前的處理會產生非常高密度的側鍵(side bonds),這些懸鍵促進共價鍵(covalent bond)在接合界面處形成,從而具有高鍵合能量。然而,此方法的缺點是會在單晶SiC施體底材的表面產生非晶層,其對於c-SiC薄層與p-SiC載體底材之間的垂直導電有負面影響。There are also various processing approaches derived from the method in the prior art. For example, F. Mu et al. (ECS Transactions, 86 (5) 3-21, 2018) performed direct bonding (SAB is an abbreviation for "surface-activated bonding") after activating the surfaces to be bonded by argon bombardment: this This pre-bonding treatment produces a very high density of side bonds that promote the formation of covalent bonds at the bonding interface, resulting in high bonding energies. However, the disadvantage of this method is the creation of an amorphous layer on the surface of the single crystal SiC donor substrate, which negatively affects the vertical conduction between the c-SiC thin layer and the p-SiC carrier substrate.

此問題之解決方法已多有人提出,尤其文件EP3168862,其採用將摻雜物種(dopant species)植入所述非晶層中以恢復其電特性。此方法的最大缺點為複雜且成本高昂。Solutions to this problem have been proposed, in particular document EP3168862, which employs implantation of dopant species into the amorphous layer to restore its electrical properties. The biggest disadvantage of this method is that it is complicated and expensive.

文件US8436363揭示一種用於製作複合結構之方法,該複合結構包含一c-SiC薄層設置在一金屬載體底材上,載體底材的熱膨脹係數與薄層的熱膨脹係數匹配。此製作方法包含以下步驟: -     在c-SiC施體底材中形成一埋置脆性平面,從而在埋置脆性平面與施體底材之前表面之間界定出一薄層; -     在施體底材的前表面上沉積一層金屬,例如鎢或鉬,以形成具有足夠厚度的載體底材以發揮強固件(stiffener)的功能; -     沿著埋置脆性平面進行分離,以一方面形成包含金屬載體底材及c-SiC薄層之複合結構,另一方面形成c-SiC施體底材之剩餘部分。The document US8436363 discloses a method for producing a composite structure comprising a thin layer of c-SiC disposed on a metal carrier substrate, the thermal expansion coefficient of the carrier substrate being matched to that of the thin layer. This production method includes the following steps: - forming a buried brittle plane in the c-SiC donor substrate, thereby defining a thin layer between the buried brittle plane and the front surface of the donor substrate; - deposit a layer of metal, such as tungsten or molybdenum, on the front surface of the donor substrate to form a carrier substrate of sufficient thickness to function as a stiffener; - Separation along the buried brittle plane to form the composite structure comprising the metal carrier substrate and the c-SiC thin layer on the one hand, and the remainder of the c-SiC donor substrate on the other hand.

然而,當形成載體底材的材料為p-SiC時,這種製作方法是不相容的,因為p-SiC需要在高於1200°C的溫度下沉積(通常用於製作p-SiC的溫度)。詳言之,在這樣的高溫下,存在於埋置脆性平面中的空腔之生長動力(growth kinetics)比p-SiC層的生長動力快,且無法在起泡(blistering)開始出現前達到強固效果所需的厚度,起泡與垂直於空腔的層發生變形有關。However, this fabrication method is incompatible when the material forming the carrier substrate is p-SiC, since p-SiC needs to be deposited at temperatures above 1200°C (the temperature typically used to make p-SiC). ). Specifically, at such high temperatures, the growth kinetics of the cavities existing in the embedded brittle planes are faster than those of the p-SiC layer and cannot be strong before blistering begins to appear. The thickness required for the effect, blistering is related to the deformation of the layer perpendicular to the cavity.

無論使用何種方式移轉層,皆會產生關於提供包含超高品質c-SiC薄層複合結構的另一個問題,更詳細而言不包含廣延缺陷(或具有非常低密度的廣延缺陷),該缺陷容易對待形成於所述薄層上的功率元件之效能品質及可靠性造成影響。Regardless of the method used to transfer the layers, another issue arises with respect to providing a composite structure comprising ultra-high quality c-SiC thin layers, and more specifically no extensive defects (or with very low densities of extensive defects) , the defect easily affects the performance quality and reliability of the power device to be formed on the thin layer.

本發明涉及一種替代現有技術的解決方案,目的為克服前述全部或部分缺點。詳言之,本發明涉及一種用於製作複合結構之方法,該複合結構包含一高品質c-SiC薄層設置在結晶SiC載體底材上。The present invention relates to an alternative solution to the prior art in order to overcome all or some of the aforementioned disadvantages. In particular, the present invention relates to a method for fabricating a composite structure comprising a thin layer of high quality c-SiC disposed on a crystalline SiC carrier substrate.

本發明涉及一種用於製作複合結構之方法,該複合結構包含一單晶碳化矽薄層設置在碳化矽製之一載體底材上。該方法包含: a)提供單晶碳化矽製之一初始底材之步驟, b)在該初始底材上磊晶生長單晶碳化矽之一施體層以形成一施體底材之步驟,該施體層之晶體缺陷密度低於該初始底材之晶體缺陷密度, c) 將輕物種離子植入該施體層形成一埋置脆性平面之步驟,以在該埋置脆性平面與該施體層之自由面之間界定出該薄層, d)在低於1100°C的溫度下進行直接注入液體化學氣相沉積,以直接在該施體層之自由表面上形成一載體層之步驟,該載體層由至少部分非晶的SiC基質(partially amorphous SiC matrix)形成, e)沿着該埋置脆性平面進行分離之步驟,從而一方面在該載體層上形成包含該薄層之一中間複合結構,另一方面形成該施體底材之剩餘部, f)在1000°C及1800°C之間的溫度下對該中間複合結構施加熱處理的步驟,以使該載體層結晶及形成多晶的該載體底材, g)對該複合結構進行機械及/或化學處理之步驟,所述處理係施加在該載體底材的自由面(即該複合結構的背面)及/或該薄層的自由面(即該複合結構的正面)。The present invention relates to a method for fabricating a composite structure comprising a thin layer of monocrystalline silicon carbide disposed on a carrier substrate made of silicon carbide. The method contains: a) the step of providing an initial substrate of single crystal silicon carbide, b) the step of epitaxially growing a donor layer of monocrystalline silicon carbide on the initial substrate to form a donor substrate, the donor layer having a crystal defect density lower than that of the initial substrate, c) the step of implanting light species ions into the donor layer to form a buried brittle plane to define the thin layer between the buried brittle plane and the free face of the donor layer, d) the step of carrying out direct injection liquid chemical vapor deposition at a temperature below 1100°C to form a support layer directly on the free surface of the donor layer, the support layer consisting of an at least partially amorphous SiC matrix (partially amorphous SiC matrix) is formed, e) a step of separating along the buried brittle plane, thereby forming an intermediate composite structure comprising the thin layer on the carrier layer on the one hand and the remainder of the donor substrate on the other hand, f) a step of applying a thermal treatment to the intermediate composite structure at a temperature between 1000°C and 1800°C to crystallize the carrier layer and form the polycrystalline carrier substrate, g) the step of subjecting the composite structure to a mechanical and/or chemical treatment applied to the free side of the carrier substrate (ie the back side of the composite structure) and/or the free side of the thin layer (ie the composite structure) front of the structure).

根據本發明之其他有利的和非限制性的特徵,其可以單獨實施,或以任何技術上可行的組合來實施: ∙ 所述沉積步驟d)係在100°C及700°C之間的溫度下進行,或甚至最好在200°C及600°C之間的溫度下進行; ∙ 所述沉積步驟d)係在1 Torr及500 Torr之間的壓力下進行; ∙ 所述沉積步驟d)期間使用的前驅物選自聚矽烷基乙烯(polysilylethylene)及二矽雜丁烷(disilabutane); ∙ 在所述沉積步驟d)結束時,該載體層具有的厚度大於或等於10微米,甚至大於或等於50微米,或甚至大於或等於100微米,或甚至大於或等於200微米; ∙ 化學蝕刻、機械研磨及/或化學機械拋光,係在步驟d)與步驟e)之間施加至該載體層的自由面; ∙ 步驟a)包括在該初始底材上形成一單晶轉換層,以將該初始底材的底面差排(basal plane dislocation)缺陷轉換爲貫穿刃狀差排(threading edge dislocation)缺陷; ∙ 所述磊晶生長步驟b)係在高於1200°C的溫度下進行,最好在1500°C及1650°C之間的溫度下進行; ∙ 所述分離步驟e)係在高於步驟d)的沉積溫度的溫度下進行; ∙ 所述分離步驟e)在所述沈積步驟d)期間發生,優選在步驟d)結束時發生; ∙ 所述分離步驟e)及所述結晶步驟f)係在同一熱處理期間發生; ∙ 步驟g)包括同時化學機械拋光該複合結構的正面和背面; ∙ 該方法更包括基於將其作爲初始底材或施體底材再利用之目的,修整該施體底材之剩餘部的步驟。According to other advantageous and non-limiting features of the invention, which can be implemented individually or in any technically feasible combination: ∙ said deposition step d) is carried out at a temperature between 100°C and 700°C, or even preferably at a temperature between 200°C and 600°C; ∙ the deposition step d) is carried out at a pressure between 1 Torr and 500 Torr; ∙ the precursor used during the deposition step d) is selected from polysilylethylene and disilabutane; ∙ at the end of said deposition step d), the carrier layer has a thickness greater than or equal to 10 μm, even greater than or equal to 50 μm, or even greater than or equal to 100 μm, or even greater than or equal to 200 μm; ∙ chemical etching, mechanical grinding and/or chemical mechanical polishing, applied to the free face of the carrier layer between steps d) and e); ∙ Step a) includes forming a single crystal conversion layer on the initial substrate to convert basal plane dislocation defects of the initial substrate into threading edge dislocation defects; ∙ The epitaxial growth step b) is carried out at a temperature higher than 1200°C, preferably at a temperature between 1500°C and 1650°C; ∙ the separation step e) is carried out at a temperature higher than the deposition temperature of step d); ∙ said separation step e) takes place during said deposition step d), preferably at the end of step d); ∙ said separation step e) and said crystallization step f) take place during the same heat treatment; ∙ Step g) comprises the simultaneous chemical mechanical polishing of the front and back sides of the composite structure; ∙ The method further includes the step of trimming the remainder of the donor substrate for the purpose of reusing it as an initial substrate or a donor substrate.

在以下說明中,圖式中相同的數字代表同類型元件。為便於說明起見,圖式係不按比例繪製之概要示意。詳言之,沿z軸的層的厚度相對於沿x軸和y軸的橫向尺寸未按比例;此外,各層之間的相對厚度關係在圖式中不一定如實呈現。In the following description, the same numerals in the drawings represent elements of the same type. For ease of illustration, the drawings are schematic representations that are not drawn to scale. In particular, the thicknesses of the layers along the z-axis are not to scale relative to the lateral dimensions along the x- and y-axes; furthermore, the relative thickness relationships between the layers are not necessarily presented in the drawings as they are.

本發明涉及一種用於製作複合結構1之方法,該複合結構1包含一單晶碳化矽薄層10設置在碳化矽製之一載體底材20上(圖1)。載體底材20有利者為多晶(多晶SiC在下文將以「p-SiC」稱之)。The present invention relates to a method for producing a composite structure 1 comprising a thin layer 10 of monocrystalline silicon carbide disposed on a carrier substrate 20 made of silicon carbide (FIG. 1). The carrier substrate 20 is advantageously polycrystalline (polycrystalline SiC will be referred to as "p-SiC" hereinafter).

該方法首先包含提供單晶碳化矽製之一初始底材11之步驟a) (圖2a)。在以下說明中,單晶碳化矽將以「c-SiC」稱之。The method first comprises the step a) of providing an initial substrate 11 of single crystal silicon carbide (FIG. 2a). In the following description, single crystal silicon carbide will be referred to as "c-SiC".

初始底材11優選為一晶圓,其直徑為100 mm、150 mm、200 mm,或甚至300 mm,或甚至450 mm,厚度通常在300微米及800微米之間。該初始底材11具有正面11a及背面11b。正面11a的表面粗糙度可有利地經選定而低於1 nm Ra (平均粗糙度),其係以原子力顯微鏡(AFM)掃描20微米x 20微米進行測量。The initial substrate 11 is preferably a wafer with a diameter of 100 mm, 150 mm, 200 mm, or even 300 mm, or even 450 mm, with a thickness typically between 300 and 800 microns. The initial substrate 11 has a front surface 11a and a back surface 11b. The surface roughness of the front side 11a may advantageously be selected to be below 1 nm Ra (average roughness), as measured with an atomic force microscope (AFM) scan of 20 microns x 20 microns.

該方法接著包含在初始底材11上磊晶生長單晶碳化矽之一施體層110以形成施體底材111之步驟b)(圖2b)。該磊晶生長步驟之操作使得施體層10之晶體缺陷密度低於初始底材11之晶體缺陷密度。The method then includes step b) of epitaxially growing a donor layer 110 of monocrystalline silicon carbide on the initial substrate 11 to form a donor substrate 111 (FIG. 2b). The epitaxial growth step operates so that the crystal defect density of the donor layer 10 is lower than the crystal defect density of the initial substrate 11 .

c-SiC製初始底材11通常為4H或6H多型體(polytype),其相對於<11-20>晶軸(crystallographic axis)表現出小於4.0°±0.5°的偏角(offcut),以及低於或等於5/cm2 或甚至低於1/cm2 的微管(micropipe)密度。舉例而言,當初始底材11為N型(氮)摻雜,其電阻率優選在0.015 ohm.cm與0.030 ohm.cm之間。經選定之初始底材11可具有低底面差排(basal plane dislocation, BPD)缺陷密度,通常低於或等於3000/cm2 。BPD密度約1500/cm2 的c-SiC底材可合理取得,因此易於供應。The initial substrate 11 made of c-SiC is usually a 4H or 6H polytype, which exhibits an offcut of less than 4.0°±0.5° with respect to the <11-20> crystallographic axis, and Micropipe density below or equal to 5/cm 2 or even below 1/cm 2 . For example, when the initial substrate 11 is N-type (nitrogen) doped, its resistivity is preferably between 0.015 ohm.cm and 0.030 ohm.cm. The selected initial substrate 11 may have a low basal plane dislocation (BPD) defect density, typically less than or equal to 3000/cm 2 . c-SiC substrates with a BPD density of about 1500/ cm2 are reasonably available and are therefore easy to supply.

在本發明之方法的最後,複合結構1的c-Si薄層10將由施體層110形成,為了符合待製作於薄層10上的垂直組件所要求的規格,吾人期望施體層110的晶體品質高於初始底材11。c-SiC的層或底材中存在不同類型的廣延缺陷。該些廣延缺陷可能會影響組件的效能及可靠性。尤其,BPD缺陷對於雙極性組件是致命的:因為當電子-電洞對的重組能量(recombination energy)存在時,肖克萊堆疊缺陷(Shockley stacking fault, SFF)將從差排擴展。組件主動區內部的SFF擴展將造成該組件的通過狀態電阻(passing state resistance)增加。At the end of the method of the present invention, the c-Si thin layer 10 of the composite structure 1 will be formed from the donor layer 110. In order to meet the required specifications of the vertical components to be fabricated on the thin layer 10, it is expected that the crystal quality of the donor layer 110 is high. on the initial substrate 11. Different types of extensive defects exist in the layer or substrate of c-SiC. These extensive defects may affect device performance and reliability. In particular, BPD defects are fatal for bipolar assemblies: Shockley stacking faults (SFFs) will propagate from dislocations when the recombination energy of electron-hole pairs is present. SFF expansion inside the active region of a device will cause the device's passing state resistance to increase.

因此,要以使BPD缺陷密度低於或等於1/cm2 的方式來製作c-SiC施體層110。Therefore, the c-SiC donor layer 110 is fabricated in such a way that the BPD defect density is lower than or equal to 1/cm 2 .

為此,所述磊晶生長步驟b)係在高於1200°C的溫度下進行,最好在1500°C及1650°C之間的溫度下進行。前驅物為矽烷(SiH4)、丙烷(C3H8)或乙烯(C2H4);載體氣體可為含氬或不含氬的氫氣。For this purpose, the epitaxial growth step b) is carried out at a temperature higher than 1200°C, preferably at a temperature between 1500°C and 1650°C. The precursors are silane (SiH4), propane (C3H8) or ethylene (C2H4); the carrier gas can be hydrogen with or without argon.

施體層110中的低BPD缺陷率可透過促進存在於初始底材11中的BPD缺陷轉換成貫穿刃狀差排(TED)而獲得。A low BPD defect rate in the donor layer 110 can be achieved by promoting the conversion of BPD defects present in the original substrate 11 into through edge dislocations (TED).

根據一特定實施例,步驟a)包含形成一單晶轉換層13,優選爲c-SiC製,以使初始底材11中的BPD缺陷最大程度地轉換成TED缺陷(圖3a)。為此目的,爲c-SiC初始底材11選定具有接近4°的低偏角、增加磊晶生長之前的原位蝕刻、以高生長速率(通常大於5 µm/h)爲目標,以及選定單晶轉換層13的生長條件使得前驅物流中的C/Si比接近1,都是有利的。According to a particular embodiment, step a) comprises forming a single crystal conversion layer 13, preferably of c-SiC, to maximize the conversion of BPD defects in the initial substrate 11 into TED defects (FIG. 3a). For this purpose, c-SiC starting substrates 11 with a low off-angle close to 4°, increased in-situ etching prior to epitaxial growth, targeting high growth rates (typically greater than 5 µm/h), and single The growth conditions of the crystal conversion layer 13 are favorable for the C/Si ratio in the precursor stream to be close to 1.

步驟b)接著包含在轉換層13上磊晶生長施體層110(圖3b)。根據此特定實施例,亦可能獲得BPD缺陷密度低於或等於1/cm2 ,或甚至低於0.1/cm2 之c-SiC施體層110。此外,本發明之方法結束時發生雙極性退化(bipolar degradation)的可能性(電洞到達BPD/TED轉換點下方的可能性)極其微小(< 0.1%),因為單晶轉換層13並不會移轉至複合結構1。以減少雙極性退化爲目標的習知技術涉及將一重組層(以超過1E 18 at/cm3 的氮加以摻雜)導入轉換層與主動層之間。以犧牲10 µm的厚度及高於5E 18/cm3 的濃度為代價,相較於不包含此重組層之基本結構,該重組層可將電洞出現的可能性降至0.1%。在本發明中,由於單晶轉換層13未被移轉,因此電洞到達雙極性退化成核點(BPD – TED轉換點或任何BPD點)的機率至少小於0.1%或甚至接近0%。Step b) then consists of epitaxially growing a donor layer 110 on the conversion layer 13 (FIG. 3b). According to this particular embodiment, it is also possible to obtain a c-SiC donor layer 110 with a BPD defect density lower than or equal to 1/cm 2 , or even lower than 0.1/cm 2 . Furthermore, the probability of bipolar degradation (probability of holes reaching below the BPD/TED transition point) at the end of the method of the present invention is extremely small (< 0.1%), since the single crystal transition layer 13 does not Move to Composite 1. A conventional technique aimed at reducing bipolar degradation involves introducing a recombination layer (doped with nitrogen in excess of 1 E 18 at/cm 3 ) between the conversion layer and the active layer. At the expense of a thickness of 10 µm and a concentration higher than 5 E 18/cm 3 , the recombination layer reduces the probability of holes to 0.1% compared to the basic structure without this recombination layer. In the present invention, since the single crystal conversion layer 13 is not transferred, the probability of holes reaching the bipolar degeneration nucleation point (BPD-TED conversion point or any BPD point) is at least less than 0.1% or even close to 0%.

應注意的是,在步驟b)之磊晶生長之前,可進行初始底材11之習知清潔或蝕刻程序,以去除部分或全部的顆粒污染物、金屬污染物或有機污染物,或可能存在於正面11a上的原生氧化層。It should be noted that prior to the epitaxial growth in step b), conventional cleaning or etching procedures of the initial substrate 11 may be performed to remove part or all of the particulate contamination, metal contamination or organic contamination, or there may be Native oxide layer on the front side 11a.

根據本發明之製作方法更包含將輕離子物種植入施體層110中至預定深度之步驟c),該預定深度代表薄層10之理想厚度,且該植入在任何情況下都不會觸及初始底材11(及/或轉換層13,若有的話)。該植入會在施體層110中形成一埋置脆性平面12,其在該埋置脆性平面12與該施體層110之自由面11a之間界定出一薄層10(圖2c)。The fabrication method according to the present invention further comprises the step c) of implanting light ion species into the donor layer 110 to a predetermined depth, the predetermined depth representing the desired thickness of the thin layer 10, and the implantation in any case does not touch the initial Substrate 11 (and/or conversion layer 13, if any). The implantation forms a buried brittle plane 12 in the donor layer 110, which defines a thin layer 10 between the buried brittle plane 12 and the free face 11a of the donor layer 110 (FIG. 2c).

植入之輕質物種優選為氫、氦,或氫與氦共同植入。如參考Smart CutTM 方法所周知,所述輕質物種將在給定深度附近形成微空腔,分布在平行於施體層110自由面11a之一薄層中,即平行於圖式中的平面(x,y)。為簡潔起見,該薄層稱為埋置脆性平面12。The implanted light species is preferably hydrogen, helium, or a co-implantation of hydrogen and helium. As known with reference to the Smart Cut (TM) method, the light species will form microcavities around a given depth, distributed in a thin layer parallel to the free face 11a of the donor layer 110, ie parallel to the plane in the diagram ( x, y). For brevity, this thin layer is referred to as the buried brittle plane 12 .

輕質物種之植入能量係經過選定,以抵達施體層110中的預定深度處。The implantation energy of the light species is selected to reach a predetermined depth in the donor layer 110 .

氫離子通常以10 keV及250 keV之間的能量,以及5E 16/cm2 及1E 17/cm2 之間的劑量被植入,以界定出厚度約100 nm至1500 nm之薄層10。Hydrogen ions are typically implanted at energies between 10 keV and 250 keV and doses between 5 E 16/cm 2 and 1 E 17/cm 2 to define a thin layer 10 about 100 nm to 1500 nm thick .

應注意的是,在離子植入步驟前,可於施體層110的自由面上沉積一保護層。此保護層可由諸如矽氧化物或矽氮化物的材料組成。It should be noted that a protective layer may be deposited on the free surface of the donor layer 110 prior to the ion implantation step. The protective layer may be composed of materials such as silicon oxide or silicon nitride.

本發明之方法接著包含在低於1000°C,較佳者為低於900°C,的溫度下進行直接注入液體化學氣相沉積(DLI-CVD),以直接在施體層110之自由表面上形成載體層20'之步驟d)(圖 2d)。所述沉積步驟d)可在100°C及800°C之間的溫度下進行、在100°C及700°C之間的溫度下進行,或甚至有利地在200°C及600°C之間的溫度下進行。沉積室中的壓力優選限定在1 Torr及500 Torr之間。The method of the present invention then comprises performing direct injection liquid chemical vapor deposition (DLI-CVD) directly on the free surface of the donor layer 110 at a temperature below 1000°C, preferably below 900°C Step d) of forming the carrier layer 20' (FIG. 2d). Said deposition step d) can be carried out at a temperature between 100°C and 800°C, at a temperature between 100°C and 700°C, or even advantageously between 200°C and 600°C. temperature in between. The pressure in the deposition chamber is preferably limited between 1 Torr and 500 Torr.

該DLI-CVD沉積技術可在不需使用氯化前驅物的情況下,於所提供的材料(前驅物)及所達到的沉積厚度之間提供良好產量,從而限制成本及環境限制(environmental constraint)。The DLI-CVD deposition technique can provide good yields between the materials provided (precursors) and the deposition thickness achieved without the use of chlorinated precursors, thereby limiting cost and environmental constraints .

DLI-CVD沉積較佳者為採用純粹或稀釋過的二矽雜丁烷(disilanebutane)前驅物或聚矽烷基乙烯(polysilylethylene)前驅物。亦可視需要選擇使用其他前驅物,例如甲基三氯矽烷(methyltrichlorosilane)、乙基三氯甲矽烷(ethylenetrichlorosilane)、甲基乙烯基二氯矽烷(dichloromethylvinylsilane)、四乙矽烷(tetraethylsilane)、四甲基矽烷(tetramethylsilane)、甲基二乙氧基矽烷(diethylmethylsilane)、雙三甲基矽甲烷(bistrimethylsilylmethane)或六甲基二矽氮烷(hexamethyldisilane)。DLI-CVD deposition is preferably performed using neat or diluted disilanebutane or polysilylethylene precursors. Other precursors can also be used as needed, such as methyltrichlorosilane, ethylenetrichlorosilane, dichloromethylvinylsilane, tetraethylsilane, tetramethylsilane Silane (tetramethylsilane), methyl diethoxysilane (diethylmethylsilane), bistrimethylsilylmethane (bistrimethylsilylmethane) or hexamethyldisilazane (hexamethyldisilane).

該技術由Guilhaume Boisselier之論文所闡述(2013, “Dépôt chimique en phase vapeur de carbures de chrome, de silicium et d'hafnium assisté par injection liquide pulsée [Pulsed liquid injection-chemical vapour deposition of chromium, silicon and hafnium carbides]”),應用於在零件(例如鋼或合金製成的金屬零件)上沉積陶瓷塗層,以在非常高溫的處理過程中保護該些零件。The technique is described in a paper by Guilhaume Boisselier (2013, “Dépôt chimique en phase vapeur de carbures de chrome, de silicium et d'hafnium assisté par injection liquide pulsée [Pulsed liquid injection-chemical vapour deposition of chromium, silicon and hafnium carbides] ”), used to deposit ceramic coatings on parts, such as metal parts made of steel or alloys, to protect these parts during very high temperature processing.

本案申請人以DLI-CVD為基礎提出可用於完全不同應用之一沉積步驟d),即於c-SiC施體層110上形成載體層20',以在製作方法結束時獲得用於微電子領域之複合結構1。On the basis of DLI-CVD, the applicant of the present application proposes a deposition step d) which can be used for a completely different application, namely the formation of a carrier layer 20' on the c-SiC donor layer 110, in order to obtain at the end of the production method a deposition step d) for use in the field of microelectronics Composite structure 1.

沉積的載體層20'形成SiC基質(matrix),其包含非晶SiC,以及由沉積過程中使用的前驅物衍生並由碳鏈(carbon chains)形成的反應副產物。此外,所述SiC基質可視需要地包含結晶SiC晶粒。The deposited carrier layer 20' forms a SiC matrix comprising amorphous SiC and reaction by-products derived from precursors used in the deposition process and formed from carbon chains. In addition, the SiC matrix may optionally contain crystalline SiC grains.

所述DLI-CVD技術可提供大於或等於10微米/小時,或甚至大於50微米/小時,或甚至大於100微米/小時之沉積速率。在給定的平均沉積溫度下,沉積速率不需要很高(除了明顯的經濟原因之外),因為在所述溫度範圍內,因埋置脆性平面12的空腔的熱活化生長維持緩慢速率,因此能夠容易地使載體層20'之厚度達到能夠確保相對於埋置脆性平面12之強固效果。The DLI-CVD technique can provide deposition rates greater than or equal to 10 microns/hour, or even greater than 50 microns/hour, or even greater than 100 microns/hour. At a given average deposition temperature, the deposition rate does not need to be very high (except for obvious economic reasons), since in this temperature range a slow rate is maintained due to thermally activated growth of the cavities embedded in the brittle plane 12, Therefore, the thickness of the carrier layer 20 ′ can be easily made to ensure a strong effect with respect to the buried brittle plane 12 .

在步驟d)結束時,載體層20'具有的厚度可大於或等於10微米、大於或等於50微米、100微米,甚至大於或等於200微米。步驟d)所產生的堆疊211包含設置在施體層110上的載體層20',及設置在初始底材11上的施體層110。At the end of step d), the carrier layer 20' may have a thickness greater than or equal to 10 micrometers, greater than or equal to 50 micrometers, 100 micrometers, or even greater than or equal to 200 micrometers. The stack 211 produced by step d) comprises the carrier layer 20 ′ disposed on the donor layer 110 , and the donor layer 110 disposed on the initial substrate 11 .

本發明之方法接著包含沿着埋置脆性平面12進行分離之步驟e),以一方面形成中間複合結構1',另一方面形成施體底材之剩餘部111'(圖2e)。The method of the invention then comprises a step e) of separation along the buried brittle plane 12 to form the intermediate composite structure 1' on the one hand and the remainder 111' of the donor substrate on the other hand (Fig. 2e).

根據一有利實施例,分離步驟e)係在高於步驟d)的沉積溫度之分離溫度下,向堆疊211施加熱處理。詳言之,存在於埋置脆性平面12中的微空腔遵守生長動力學直到斷裂波引發,斷裂波將在埋置脆性平面12的整個範圍中傳播,並造成中間複合結構1'與初始底材之剩餘部111'分離。在操作時,該溫度可介於950°C及1200°C之間,較佳者為介於1000°C及1200°C之間,取決於步驟c)的植入條件。According to an advantageous embodiment, the separation step e) is to apply a thermal treatment to the stack 211 at a separation temperature higher than the deposition temperature of step d). In detail, the micro-cavities existing in the embedded brittle plane 12 obey the growth kinetics until a fracture wave is initiated, which will propagate in the entire extent of the embedded brittle plane 12 and cause the intermediate composite structure 1' to be separated from the initial bottom. The remaining portion 111' of the material is separated. In operation, the temperature may be between 950°C and 1200°C, preferably between 1000°C and 1200°C, depending on the implantation conditions of step c).

根據一替代實施例,分離步驟e)係透過對堆疊211施加機械壓力而進行,接著可視需要以熱處理使埋置脆性平面12脆化。該壓力可透過,舉例而言,在靠近埋置脆性平面12處插入工具(例如刀刃)而施加。舉例而言,該分離壓力可為大約數GPa,優選為大於2 GPa。According to an alternative embodiment, the separation step e) is carried out by applying mechanical pressure to the stack 211 , followed by a heat treatment to embrittle the embedded brittle planes 12 , if desired. This pressure can be applied, for example, by inserting a tool (eg, a knife edge) near the embedded brittle plane 12 . For example, the separation pressure may be on the order of several GPa, preferably greater than 2 GPa.

根據又另一實施例,沿著埋置脆性平面12進行之分離步驟e)係在DLI-CVD沉積步驟d)期間或剛結束時發生,更詳細而言在沉積溫度達到900°C至1000°C的範圍時發生。According to yet another embodiment, the separation step e) along the buried brittle plane 12 takes place during or just after the DLI-CVD deposition step d), more specifically when the deposition temperature reaches 900°C to 1000° Occurs when the scope of C.

本發明之製作方法接著包含在1000°C及1800°C之間的溫度下,對中間複合結構1’施加熱處理之步驟f),以使載體層20’結晶及形成多晶的載體底材20。The manufacturing method of the present invention then comprises the step f) of applying a heat treatment to the intermediate composite structure 1 ′ at a temperature between 1000° C. and 1800° C. to crystallize the carrier layer 20 ′ and form a polycrystalline carrier substrate 20 .

所述回火氣氛可特別包含諸如氬、氮、氫、氦或這些氣體的混合物。The tempering atmosphere may in particular contain gases such as argon, nitrogen, hydrogen, helium or mixtures of these.

所述回火具有從載體層20'中去除氫的作用,並使SiC基質以多晶SiC形式結晶。The tempering has the effect of removing hydrogen from the carrier layer 20' and crystallizing the SiC matrix in the form of polycrystalline SiC.

所述結晶熱處理可使用同時處理多個結構(批量回火)之習知爐具進行。所述結晶熱處理之常規持續時間在數分鐘至數小時之間。The crystallization heat treatment can be performed using conventional furnaces that process multiple structures simultaneously (batch tempering). The usual duration of the crystallization heat treatment is between a few minutes and a few hours.

可視需要選擇在DLI沉積室中原位(in situ) 進行結晶熱處理,其常規持續時間約為數分鐘。The crystallization heat treatment can optionally be performed in situ in the DLI deposition chamber, with a typical duration of about a few minutes.

本發明有利的是,溫度升降之梯度(ramp)受到限制,例如小於20°/分鐘、小於5°/分鐘或甚至小於1°/分鐘,以限制裂痕或結構缺陷在該結晶層中出現。Advantageously, the ramp of the temperature rise and fall is limited, eg less than 20°/min, less than 5°/min or even less than 1°/min, to limit the occurrence of cracks or structural defects in the crystalline layer.

在步驟f)之後可獲得複合結構1,該複合結構1包含單晶碳化矽之薄層10設置在多晶碳化矽製之載體底材20上。After step f) a composite structure 1 can be obtained which comprises a thin layer 10 of monocrystalline silicon carbide disposed on a carrier substrate 20 made of polycrystalline silicon carbide.

沉積參數(步驟d)及結晶回火參數(步驟f)係經過確定,以使該載體底材20具有: -良好導電性,即低於或等於0.03 ohm.cm,或甚至低於或等於0.01 ohm.cm, -高熱傳導性,即大於或等於150 W.m-1 .K-1 ,或甚至大於或等於200 W.m-1 .K−1 , -及與薄層10熱膨脹係數相似之熱膨脹係數,即室溫下在3.8E -6/K與4.2E -6/K之間。Deposition parameters (step d) and crystallisation tempering parameters (step f) are determined so that the carrier substrate 20 has: - good electrical conductivity, ie less than or equal to 0.03 ohm.cm, or even less than or equal to 0.01 ohm.cm, - high thermal conductivity, i.e. greater than or equal to 150 Wm -1 .K -1 , or even greater than or equal to 200 Wm -1 .K -1 , - and a thermal expansion coefficient similar to that of the thin layer 10 , i.e. Between 3.8 E -6/K and 4.2 E -6/K at room temperature.

為獲得這些特性,載體底材20最好具有諸如以下的結構特徵:多晶結構、3C SiC晶粒、[111]定向、在底材主平面中的平均尺寸爲1至50 μm,以及N型摻雜,以使最終電阻率低於或等於0.03 ohm.cm,或甚至低於或等於0.01 ohm.cm。To achieve these properties, the carrier substrate 20 preferably has structural features such as: polycrystalline structure, 3C SiC grains, [111] orientation, average dimensions in the substrate principal plane of 1 to 50 μm, and N-type Doping so that the final resistivity is less than or equal to 0.03 ohm.cm, or even less than or equal to 0.01 ohm.cm.

此外,最好在施體層110及載體底材20之間定義出一非絕緣交界面。該非絕緣交界面之電阻率通常預期為低於1 mohm.cm2 。為了確保該交界面之導電性,存在於施體層110之自由面上的原生氧化物可在沉積步驟d)之前透過濕式或乾式方法以HF(氫氟酸)脫氧去除。作為替代方案,可透過在DLI-CVD沉積步驟d)期間引入摻雜物種,過量摻雜沉積在載體層20'上的前幾奈米。應注意的是,一般而言,在沉積步驟d)期間,可根據摻雜程度與載體底材20的目標導電性,以不同劑量引入摻雜物種,所述導電性將在步驟f)的結晶回火結束時生效。Additionally, a non-insulating interface is preferably defined between the donor layer 110 and the carrier substrate 20 . The resistivity of the non-insulating interface is generally expected to be less than 1 mohm.cm 2 . In order to ensure the electrical conductivity of the interface, the native oxides present on the free face of the donor layer 110 can be removed by deoxidation with HF (hydrofluoric acid) by wet or dry methods before the deposition step d). As an alternative, the first few nanometers deposited on the carrier layer 20' can be overdoped by introducing doping species during the DLI-CVD deposition step d). It should be noted that, in general, during deposition step d), the dopant species can be introduced at different doses depending on the degree of doping and the target conductivity of the carrier substrate 20, which conductivity will crystallize during step f) Effective at the end of tempering.

本發明同樣有利的是,在所述脫氧及/或載體層20’形成之前,可將清潔程序施加到施體底材111,以去除部分或全部可能存在於該底材自由面上的顆粒污染物、金屬污染物或有機污染物。It is also advantageous to the present invention that a cleaning procedure may be applied to the donor substrate 111 prior to the formation of the deoxidizing and/or carrier layer 20' to remove some or all of the particulate contamination that may be present on the free side of the substrate substances, metal contaminants or organic contaminants.

眾所皆知,在分離步驟e)完成時,複合結構1之薄層10之自由面10a之表面粗糙度在5與100 nm RMS之間(其係以原子力顯微鏡(AFM)掃描20微米x 20微米進行測量)。It is known that at the completion of the separation step e), the surface roughness of the free surface 10a of the thin layer 10 of the composite structure 1 is between 5 and 100 nm RMS (which is scanned with an atomic force microscope (AFM) of 20 μm x 20 μm). measured in microns).

接著進行對該複合結構1進行機械及/或化學處理之步驟g),以使該薄層10的自由表面10a變得平滑,並修正該複合結構1的厚度均勻性(圖2f)。The step g) of mechanically and/or chemically treating the composite structure 1 is then performed to smooth the free surface 10a of the thin layer 10 and to correct the thickness uniformity of the composite structure 1 (FIG. 2f).

步驟g)可包含薄層10的自由表面10a的化學機械研磨(MCP),其通常可去除約50至1000奈米之材料,以獲得小於0.5 nm RMS(以AFM掃描20 x 20 µm)或甚至小於0.3 nm之最終粗糙度。步驟g)亦可包含化學或電漿處理(清潔或蝕刻),例如SC1/SC2清潔(標準清潔1、標準清潔2)及/或HF(氫氟酸)清潔,及/或N2、Ar、 CF4等電漿,以進一步提高薄層10的自由面10a之品質。Step g) may comprise chemical mechanical polishing (MCP) of the free surface 10a of the thin layer 10, which typically removes about 50 to 1000 nm of material to obtain a RMS of less than 0.5 nm (scanning 20 x 20 µm with AFM) or even Final roughness less than 0.3 nm. Step g) may also comprise chemical or plasma treatments (cleaning or etching), such as SC1/SC2 cleaning (standard cleaning 1, standard cleaning 2) and/or HF (hydrofluoric acid) cleaning, and/or N2, Ar, CF4 plasma is used to further improve the quality of the free surface 10 a of the thin layer 10 .

應注意的是,載體層20'之結晶常會在(形成載體底材20之)結晶層中造成裂痕或結構缺陷,從而影響其機械與電氣品質。It should be noted that the crystallization of the carrier layer 20' often causes cracks or structural defects in the crystalline layer (of which the carrier substrate 20 is formed), thereby affecting its mechanical and electrical quality.

因此,步驟g)可包含載體底材20之背面20b的化學機械拋光(MCP)及/或化學處理(蝕刻或清潔)及/或機械處理(修整),以去除全部或部分前述之裂痕與結構缺陷,從而改進載體底材20之厚度均勻性及其背面20b之粗糙度。從背面去除之厚度可在約100微米至數微米之間。Therefore, step g) may comprise chemical mechanical polishing (MCP) and/or chemical treatment (etching or cleaning) and/or mechanical treatment (trimming) of the backside 20b of the carrier substrate 20 to remove all or part of the aforementioned cracks and structures defects, thereby improving the thickness uniformity of the carrier substrate 20 and the roughness of the back surface 20b thereof. The thickness removed from the backside can be between about 100 microns and several microns.

理想的粗糙度為低於0.5 nm RMS(以原子力顯微鏡(AFM)掃描20微米x 20微米的區域進行測量),以便製作在複合底材1背面20b上將存在至少一個金屬電極的垂直組件。The ideal roughness is below 0.5 nm RMS (measured with Atomic Force Microscopy (AFM) scanning a 20 micron x 20 micron area) in order to make vertical assemblies where there will be at least one metal electrode on the backside 20b of the composite substrate 1 .

在步驟g)期間,亦可研磨或修整複合結構1的邊緣,以使其圓形輪廓的形狀和邊角損耗(cutting edge waste)相容於微電子製程的要求。During step g), the edges of the composite structure 1 may also be ground or trimmed so that the shape of its circular profile and cutting edge waste are compatible with the requirements of the microelectronics process.

應注意的是,施加至載體底材20背面20b之處理,可在分離步驟e)之前,即在複合結構1的正面10a露出之前,視需要地施加至載體層20'的自由面,以限制其污染程度,尤其是在污染性或限制性處理的過程中,例如化學蝕刻或機械研磨(修整)。It should be noted that the treatment applied to the back side 20b of the carrier substrate 20 can optionally be applied to the free side of the carrier layer 20' before the separation step e), ie before the front side 10a of the composite structure 1 is exposed, in order to limit the The degree of its contamination, especially during contaminating or restrictive treatments such as chemical etching or mechanical grinding (dressing).

根據一有利實施例,該化學機械處理步驟g)包含同時研磨(MCP)複合結構1的正面10a及背面20b,以平滑並提升該複合結構1的厚度均勻性。正面及背面的研磨參數可有所不同,因為c-SiC表面與p-SiC表面的平滑處理通常需要使用不同的耗材。當載體底材20為p-SiC製時,重點尤其放在背面20b的機械研磨部分,以限制化學研磨部分對晶界的優先侵蝕(preferential attack)。舉例而言,可調整研磨參數,例如(研磨頭與研磨盤的)旋轉速度、壓力、研磨劑的濃度及物理特性(即鑽石奈米粒子的直徑約在10 nm與1 µm之間)等,以強化機械研磨部分。According to an advantageous embodiment, the chemical mechanical treatment step g) comprises simultaneous grinding (MCP) of the front side 10a and the back side 20b of the composite structure 1 in order to smooth and improve the thickness uniformity of the composite structure 1 . The grinding parameters for the front and back sides can be different because the smoothing of c-SiC and p-SiC surfaces usually requires the use of different consumables. When the carrier substrate 20 is made of p-SiC, the emphasis is particularly placed on the mechanically ground portion of the back surface 20b to limit the preferential attack of the grain boundary by the chemically ground portion. For example, grinding parameters can be adjusted, such as rotational speed (of the grinding head and grinding disc), pressure, concentration of the abrasive and physical properties (ie, the diameter of the diamond nanoparticles is between about 10 nm and 1 µm), etc., To strengthen the mechanical grinding part.

在步驟g)之後,可視需要地在1000°C及1800°C之間的溫度下進行約一小時至最多數小時之熱處理步驟g')。該步驟的目的為透過確保結構或組織缺陷仍存在於薄層10之內部及/或上方,並在適當情況下透過使載體底材20之結晶組構顯著發展而使複合結構1安定,從而使複合結構1相容於後續在薄層10上製作組件所需的高溫熱處理。After step g), a heat treatment step g') is optionally carried out at a temperature between 1000°C and 1800°C for about one hour up to several hours. The purpose of this step is to stabilize the composite structure 1 by ensuring that structural or organizational defects remain within and/or over the thin layer 10 and, where appropriate, by allowing the crystalline structure of the carrier substrate 20 to develop significantly, so that the The composite structure 1 is compatible with the high temperature heat treatment required for subsequent fabrication of components on the thin layers 10 .

本發明之方法可包含在複合結構1之薄層10上磊晶生長單晶碳化矽額外層10'之第二步驟h)(圖2g)。當需要相對較厚(通常約為5至50微米)的有用層100以供製作組件時,可實施這類步驟。The method of the invention may comprise a second step h) of epitaxially growing an additional layer 10' of monocrystalline silicon carbide on the thin layer 10 of the composite structure 1 (FIG. 2g). Such steps may be performed when a relatively thick (typically about 5 to 50 microns) useful layer 100 is required for fabrication of the component.

在步驟h)中所施加的溫度可經過選定,以限制因複合結構1而在有用層100(其對應於薄層10與額外層10'之組合)中引起的應力。The temperature applied in step h) can be selected to limit the stress induced in the useful layer 100 (which corresponds to the combination of the thin layer 10 and the additional layer 10') due to the composite structure 1 .

最後,該製作方法可包括基於將其作爲初始底材1或施體底材111再利用之目的,修整該施體底材之剩餘部111’的步驟。這類修整步驟係基於對表面110'a(圖2e)的一個或多個處理,例如表面或邊緣化學機械拋光,及/或機械修整,及/或乾式或濕式化學蝕刻。Finally, the manufacturing method may include a step of trimming the remainder 111' of the donor substrate for the purpose of reusing it as the initial substrate 1 or as the donor substrate 111. Such conditioning steps are based on one or more treatments of surface 110'a (FIG. 2e), such as surface or edge chemical mechanical polishing, and/or mechanical conditioning, and/or dry or wet chemical etching.

於步驟b)形成的施體層110之厚度優選為經過界定,以使施體底材111的剩餘部111'可至少被再利用作爲施體底材111兩次。The thickness of the donor layer 110 formed in step b) is preferably defined so that the remaining portion 111 ′ of the donor substrate 111 can be reused as the donor substrate 111 at least twice.

當轉換層13存在時,要小心使該層保持完整,換言之總是使施體層110有一部分保留在施體底材的剩餘部111'上。這樣一來,當施體層110之該部分不足以用於製作複合結構1時,只需要磊晶生長施體層110的步驟,不需要前面生長轉換層13之步驟。When the conversion layer 13 is present, care is taken to keep this layer intact, in other words always have a portion of the donor layer 110 remaining on the remainder 111' of the donor substrate. In this way, when the portion of the donor layer 110 is insufficient for fabricating the composite structure 1, only the step of epitaxially growing the donor layer 110 is required, and the previous step of growing the conversion layer 13 is not required.

示例: 根據一非限制性且示例性之實施方式,在製作方法之步驟a)中提供的初始底材11為4H多型體c-SiC製晶圓,其相對於<11-20>軸的方向為4.0˚±0.5˚、直徑為150 mm,且厚度為350 µm。 Example: According to a non-limiting and exemplary embodiment, the initial substrate 11 provided in step a) of the manufacturing method is a wafer made of 4H polytype c-SiC, which is relative to the <11-20> axis The orientation is 4.0˚±0.5˚, the diameter is 150 mm, and the thickness is 350 µm.

在磊晶生長c-SiC施體層110的步驟b)之前,可在初始底材11上進行常規RCA清潔程序(標準清潔1 +標準清潔2),接著進行過氧硫酸(硫酸及過氧化氫的混合物),然後是HF(氫氟酸)。Before step b) of epitaxially growing the c-SiC donor layer 110, a conventional RCA cleaning procedure (standard cleaning 1 + standard cleaning 2) may be performed on the initial substrate 11, followed by peroxysulfuric acid (a mixture of sulfuric acid and hydrogen peroxide) mixture), followed by HF (hydrofluoric acid).

所述磊晶生長係在磊晶腔室中於1650°C的溫度下進行,其前驅物可為,舉例而言,矽烷(SiH4)、丙烷(C3H8)或乙烯(C2H4),生長出之c-SiC施體層110厚度為30微米(生長速率:10微米/小時)。該施體層具有約1/cm2 的BPD缺陷密度。The epitaxial growth is carried out in an epitaxial chamber at a temperature of 1650°C, and its precursor can be, for example, silane (SiH4), propane (C3H8) or ethylene (C2H4), and the grown c - SiC donor layer 110 has a thickness of 30 microns (growth rate: 10 microns/hour). The donor layer has a BPD defect density of about 1/cm 2 .

氫離子以150 keV之能量及6E 16 H+/cm2 之劑量穿過施體層110之自由表面而植入。從而在初始底材11中約800 nm的深度處形成埋置脆性平面12。Hydrogen ions were implanted through the free surface of the donor layer 110 with an energy of 150 keV and a dose of 6 E 16 H+/cm 2 . Thereby a buried brittle plane 12 is formed in the initial substrate 11 at a depth of about 800 nm.

在施體底材111上進行RCA清潔程序 +過氧硫酸,以從施體層110的自由面去除潛在污染物。An RCA cleaning procedure + peroxysulfuric acid is performed on the donor body substrate 111 to remove potential contaminants from the free side of the donor body layer 110.

在施體層110上於800°C的溫度下,以二矽雜丁烷(DSB)前驅物在50 Torr的壓力下進行DLI-CVD沉積60分鐘,以使載體層20'的厚度達到至少150微米。在所述條件下,載體層20'係以非晶SiC基質的形式沉積,並包含來自沉積前驅物的反應副產物。DLI-CVD deposition on the donor layer 110 at a temperature of 800°C with a disilabutane (DSB) precursor at a pressure of 50 Torr for 60 minutes to achieve a thickness of the carrier layer 20' of at least 150 microns . Under these conditions, the carrier layer 20' is deposited in the form of an amorphous SiC matrix and contains reaction by-products from the deposition precursors.

接著在1000°C的溫度下對該堆疊211施加回火50分鐘,分離在所述回火期間於埋置脆性平面處發生。在此分離步驟e)完成時,由薄層10與載體層20’形成之中間複合結構1’會從施體底材111’的剩餘部分離。The stack 211 is then subjected to a tempering at a temperature of 1000° C. for 50 minutes, during which the separation occurs at the buried brittle plane. Upon completion of this separation step e), the intermediate composite structure 1' formed by the thin layer 10 and the carrier layer 20' is separated from the remainder of the donor substrate 111'.

接著在氬氣氛下於1200°C的溫度下對該中間複合結構1'進行1小時的結晶熱處理,以形成複合結構1的p-SiC載體底材20。The intermediate composite structure 1 ′ is then subjected to a crystallization heat treatment at a temperature of 1200° C. under an argon atmosphere for 1 hour to form the p-SiC carrier substrate 20 of the composite structure 1 .

作為替代方案,所述分離步驟和結晶步驟可在同一熱處理期間進行,例如在中性氣氛中於1200°C的溫度下進行。As an alternative, the separation step and the crystallization step can be carried out during the same heat treatment, for example at a temperature of 1200°C in a neutral atmosphere.

對載體底材20的背面進行機械修整,以移除約15至30微米,可去除因SiC基質結晶所產生的裂痕及結構缺陷。Mechanical trimming of the backside of the carrier substrate 20 to remove about 15 to 30 microns can remove cracks and structural defects caused by crystallization of the SiC matrix.

接著進行一個或多個化學機械拋光操作,以恢復薄層10之表面粗糙度及載體底材20背面之表面粗糙度,然後進行常規清潔程序。One or more chemical mechanical polishing operations are then performed to restore the surface roughness of the thin layer 10 and the surface roughness of the backside of the carrier substrate 20, followed by conventional cleaning procedures.

當然,本發明不限於所述之實施方式與示例,且對於實施例所為之各種變化,均落入本案申請專利範圍所界定之範疇。Of course, the present invention is not limited to the described embodiments and examples, and various changes made to the examples all fall within the scope defined by the scope of the patent application of the present application.

1:複合結構 1’:中間複合結構 10:薄層 10’:額外層 10a:自由面 11:初始底材 11’:初始底材剩餘部分 11a:正面 11b:背面 12:埋置脆性平面 13:單晶轉換層 20:載體底材 20’:載體層 20b:背面 21:中間層 22:額外層 100:有用層 110:施體層 110'a:表面 111:施體底材 111’:剩餘部 211:堆疊1: Composite structure 1': Intermediate composite structure 10: Thin layer 10': extra layer 10a: Free surface 11: Initial substrate 11': rest of initial substrate 11a: Front 11b: Back 12: Embedded brittle plane 13: Single crystal conversion layer 20: Carrier substrate 20': carrier layer 20b: Back 21: middle layer 22: Extra Layers 100: useful layer 110: Donor layer 110'a: Surface 111: Donor Substrate 111’: Remainder 211: Stacked

下文關於本發明之實施方式一節,將更清楚說明本發明其他特徵和優點,實施方式係參照所附圖式提供,其中: 圖1繪示根據本發明之製作方法所製作之一複合結構; 圖2a至圖2g繪示根據本發明之一製作方法之步驟; 圖3a及圖3b繪示根據本發明之一製作方法之步驟。Further features and advantages of the present invention will be more clearly explained in the following section on embodiments of the invention, embodiments are provided with reference to the accompanying drawings, wherein: FIG. 1 illustrates a composite structure fabricated according to the fabrication method of the present invention; 2a to 2g illustrate the steps of a manufacturing method according to the present invention; 3a and 3b illustrate the steps of a manufacturing method according to the present invention.

Claims (13)

一種用於製作一複合結構(1)之方法,該複合結構(1)包含單晶碳化矽之一薄層(10)設置在碳化矽之一載體底材(20)上,該方法包括: a) 提供單晶碳化矽之一初始底材(11)之步驟, b)在該初始底材(11)上磊晶生長單晶碳化矽之一施體層(110)以形成一施體底材(111)之步驟,該施體層(110)之晶體缺陷密度低於該初始底材(11)之晶體缺陷密度, c)將輕物種離子植入該施體層(110)以形成一埋置脆性平面(12)之步驟,該埋置脆性平面(12)在其與該施體層(110)之自由表面之間界定出該薄層(10), d)在低於1100°C的溫度下進行直接注入液體化學氣相沉積,以直接在該施體層(110)之自由表面上形成一載體層(20’)之步驟,該載體層(20’)由至少部分非晶的SiC基質形成, e)沿着該埋置脆性平面(12)進行分離之步驟,從而一方面在該載體層(20’)上形成包含該薄層(10)之一中間複合結構(1’),另一方面形成該施體底材之剩餘部(111'), f)    在1000°C及1800°C之間的溫度下對該中間複合結構(1’)施加熱處理的步驟,以使該載體層(20’)結晶及形成多晶的該載體底材(20), g)   對該複合結構(1)進行機械及/或化學處理之步驟,所述處理係施加在該載體底材(20)的自由面,即該複合結構(1)的背面,及/或該薄層(10)的自由面,即該複合結構(1)的正面。A method for producing a composite structure (1) comprising a thin layer (10) of monocrystalline silicon carbide disposed on a carrier substrate (20) of silicon carbide, the method comprising: a) the step of providing an initial substrate (11) of monocrystalline silicon carbide, b) the step of epitaxially growing a donor layer (110) of monocrystalline silicon carbide on the initial substrate (11) to form a donor substrate (111), the donor layer (110) having a crystal defect density lower than the The crystal defect density of the initial substrate (11), c) the step of implanting light species ions into the donor layer (110) to form a buried brittle plane (12) defining the thin layer (10), d) the step of carrying out direct injection liquid chemical vapor deposition at a temperature below 1100°C to form a carrier layer (20') directly on the free surface of the donor layer (110), the carrier layer (20') formed from an at least partially amorphous SiC matrix, e) a step of separating along the buried brittle plane (12), thereby forming an intermediate composite structure (1') comprising the thin layer (10) on the carrier layer (20') on the one hand, and an intermediate composite structure (1') comprising the thin layer (10) on the other hand forming the remainder (111') of the donor substrate, f) a step of applying a heat treatment to the intermediate composite structure (1') at a temperature between 1000°C and 1800°C to crystallize the carrier layer (20') and form the polycrystalline carrier substrate (20) ), g) the step of mechanically and/or chemically treating the composite structure (1), said treatment being applied to the free side of the carrier substrate (20), ie the backside of the composite structure (1), and/or the The free face of the thin layer (10), ie the front face of the composite structure (1). 如請求項1之方法,其中所述沉積步驟d)係在100°C及700°C之間的溫度下進行,或甚至最好在200°C及600°C之間的溫度下進行。A method as claimed in claim 1, wherein said deposition step d) is carried out at a temperature between 100°C and 700°C, or even preferably at a temperature between 200°C and 600°C. 如請求項1或2之方法,其中所述沉積步驟d)係在1 Torr及500 Torr之間的壓力下進行。A method as claimed in claim 1 or 2, wherein said deposition step d) is carried out at a pressure between 1 Torr and 500 Torr. 如請求項1至3中任一項之方法,其中在所述沉積步驟d)期間使用的前驅物選自聚矽烷基乙烯(polysilylethylene)及二矽雜丁烷(disilabutane)。The method of any one of claims 1 to 3, wherein the precursor used during said deposition step d) is selected from polysilylethylene and disilabutane. 如請求項1至4中任一項之方法,其中,在所述沉積步驟d)結束時,該載體層(20’)具有的厚度大於或等於10微米,甚至大於或等於50微米,或甚至大於或等於100微米,或甚至大於或等於200微米。The method of any one of claims 1 to 4, wherein, at the end of said deposition step d), the carrier layer (20') has a thickness greater than or equal to 10 microns, even greater than or equal to 50 microns, or even Greater than or equal to 100 microns, or even greater than or equal to 200 microns. 如請求項1至5中任一項之方法,其中化學蝕刻、機械研磨及/或化學機械拋光,係在步驟d)與步驟e)之間施加至該載體層(20’)的自由面。A method as claimed in any one of claims 1 to 5, wherein chemical etching, mechanical grinding and/or chemical mechanical polishing are applied to the free face of the carrier layer (20') between steps d) and e). 如請求項1至6中任一項之方法,其中步驟a)包括在該初始底材(11)上形成一單晶轉換層(13),以將該初始底材(11)的底面差排(basal plane dislocation)缺陷轉換爲貫穿刃狀差排(threading edge dislocation)缺陷。The method of any one of claims 1 to 6, wherein step a) comprises forming a single crystal conversion layer (13) on the initial substrate (11) to displace the bottom surface of the initial substrate (11) (basal plane dislocation) defects are converted into threading edge dislocation defects. 如請求項1至7中任一項之方法,其中所述磊晶生長步驟b)係在高於1200°C的溫度下進行,最好在1500°C及1650°C之間的溫度下進行。The method of any one of claims 1 to 7, wherein the epitaxial growth step b) is carried out at a temperature higher than 1200°C, preferably at a temperature between 1500°C and 1650°C . 如請求項1至8中任一項之方法,其中所述分離步驟e)係在高於步驟d)的沉積溫度的溫度下進行。The method of any one of claims 1 to 8, wherein the separating step e) is carried out at a temperature higher than the deposition temperature of step d). 如請求項1至8中任一項之方法,其中所述分離步驟e)在所述沈積步驟d)期間發生,優選在步驟d)結束時發生。A method as claimed in any one of claims 1 to 8, wherein said separating step e) occurs during said deposition step d), preferably at the end of step d). 如請求項1至9中任一項之方法,其中所述分離步驟e)及所述結晶步驟f)係在同一熱處理期間進行。The method of any one of claims 1 to 9, wherein said separation step e) and said crystallization step f) are performed during the same thermal treatment. 如請求項1至11中任一項之方法,其中步驟g)包括同時化學機械拋光該複合結構(1)的正面和背面。A method as claimed in any one of claims 1 to 11, wherein step g) comprises simultaneous chemical mechanical polishing of the front and back surfaces of the composite structure (1). 如請求項1至12中任一項之方法,其更包括基於將其作爲初始底材或施體底材再利用之目的,修整該施體底材之剩餘部(111')的步驟。The method of any one of claims 1 to 12, further comprising the step of trimming the remainder (111') of the donor substrate for the purpose of reusing it as an initial substrate or a donor substrate.
TW109135222A 2020-03-27 2020-10-12 Process for manufacturing a composite structure comprising a thin layer of monocrystalline sic on a carrier substrate made of sic TW202205357A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2003025A FR3103961B1 (en) 2019-11-29 2020-03-27 PROCESS FOR MANUFACTURING A COMPOSITE STRUCTURE INCLUDING A THIN SIC MONOCRISTALLINE SIC LAYER ON A SIC SUPPORT SUBSTRATE
FRFR2003025 2020-03-27

Publications (1)

Publication Number Publication Date
TW202205357A true TW202205357A (en) 2022-02-01

Family

ID=81323713

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109135222A TW202205357A (en) 2020-03-27 2020-10-12 Process for manufacturing a composite structure comprising a thin layer of monocrystalline sic on a carrier substrate made of sic

Country Status (1)

Country Link
TW (1) TW202205357A (en)

Similar Documents

Publication Publication Date Title
US11208719B2 (en) SiC composite substrate and method for manufacturing same
EP3349237B1 (en) Method for manufacturing sic composite substrate, and method for manufacturing semiconductor substrate
CN108138358B (en) Method for producing SiC composite substrate
TWI693640B (en) Manufacturing method of smoothing a semiconductor surface
TW202141582A (en) PROCESS FOR MANUFACTURING A COMPOSITE STRUCTURE COMPRISING A THIN LAYER MADE OF MONOCRYSTALLINESiC ON A CARRIER SUBSTRATE MADE OF SiC
TW202137284A (en) Process for producing a composite structure comprising a thin layer of monocrystalline sic on a carrier substrate of crystalline sic
US20230160102A1 (en) Method for manufacturing a composite structure comprising a thin layer made of monocrystalline sic on a carrier substrate made of sic
KR20150070161A (en) Method for producing nanocarbon film and nanocarbon film
US20060276003A1 (en) Wafer with diamond layer
US20220270875A1 (en) Method for manufacturing a composite structure comprising a thin layer of monocrystalline sic on a carrier substrate of polycrystalline sic
US20220415653A1 (en) Method for manufacturing a composite structure comprising a thin layer of monocrystalline sic on an sic carrier substrate
JP7318580B2 (en) SOI wafer manufacturing method
TW202205357A (en) Process for manufacturing a composite structure comprising a thin layer of monocrystalline sic on a carrier substrate made of sic
US20240112908A1 (en) Method for manufacturing a composite structure comprising a thin single-crystal semiconductor layer on a carrier substrate
US20230230868A1 (en) Detachable temporary substrate compatible with very high temperatures and process for transferring a working layer from said substrate
TW202320128A (en) Composite structure comprising a working layer made of single-crystal sic on a carrier substrate made of polycrystalline sic and process for fabricating said structure
TW202331791A (en) Process for fabricating a composite structure comprising a thin layer made of single-crystal sic on a carrier substrate made of polycrystalline sic
TW202323603A (en) Process for manufacturing a polycrystalline silicon carbide support substrate