JP6737191B2 - Fuel injection valve and manufacturing method thereof - Google Patents

Fuel injection valve and manufacturing method thereof Download PDF

Info

Publication number
JP6737191B2
JP6737191B2 JP2017008221A JP2017008221A JP6737191B2 JP 6737191 B2 JP6737191 B2 JP 6737191B2 JP 2017008221 A JP2017008221 A JP 2017008221A JP 2017008221 A JP2017008221 A JP 2017008221A JP 6737191 B2 JP6737191 B2 JP 6737191B2
Authority
JP
Japan
Prior art keywords
valve
fuel injection
polished state
fuel
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017008221A
Other languages
Japanese (ja)
Other versions
JP2018115629A (en
Inventor
経昭 南口
経昭 南口
暢也 小澤
暢也 小澤
亘 小田原
亘 小田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017008221A priority Critical patent/JP6737191B2/en
Publication of JP2018115629A publication Critical patent/JP2018115629A/en
Application granted granted Critical
Publication of JP6737191B2 publication Critical patent/JP6737191B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、弁ハウジングの噴孔から内燃機関へ燃料を噴射する燃料噴射弁及びその製造方法に、関する。 The present invention relates to a fuel injection valve for injecting fuel from an injection hole of a valve housing to an internal combustion engine and a method for manufacturing the same.

従来、噴孔よりも上流側にて弁ハウジングの有する円形内輪郭の弁座部に対し、弁ハウジング内に収容された弁部材の有する円形外輪郭の弁体部を同軸上に離着座させる燃料噴射弁は、広く知られている。このような燃料噴射弁では、弁座部に対する弁体部の離着座により噴孔からの燃料噴射が断続する。ここで、弁座部に対する弁体部の着座箇所では、それら両要素同士の摺動が製造公差の範囲で着座と同時的に生じるため、耐摩耗性が求められる。例えば省燃費への要求から燃圧上昇の傾向にある直噴ガソリンエンジン用等の燃料噴射弁では、摺動が生じる着座箇所での耐摩耗性を高めておくことを求められている。 Conventionally, a fuel for coaxially mounting and dismounting a valve body portion having a circular outer contour, which is included in a valve member housed in the valve housing, with respect to a valve seat portion having a circular inner contour, which is located upstream of the injection hole. Injection valves are widely known. In such a fuel injection valve, the fuel injection from the injection hole is intermittent due to the seating of the valve body with respect to the valve seat. Here, at the seated portion of the valve body portion with respect to the valve seat portion, the sliding of these two elements occurs simultaneously with the seating within the range of manufacturing tolerance, and therefore wear resistance is required. For example, in a fuel injection valve for a direct injection gasoline engine, which has a tendency to increase fuel pressure due to a demand for fuel economy, it is required to improve wear resistance at a seating position where sliding occurs.

こうした状況下、燃料噴射弁において弁部材とその相手部材との摺動部位の少なくとも一方にダイヤモンドライクカーボン(以下、DLC)膜を設けて耐摩耗性を確保する技術が、特許文献1に開示されている。 Under such circumstances, Patent Document 1 discloses a technique for ensuring wear resistance by providing a diamond-like carbon (hereinafter, referred to as DLC) film on at least one of sliding portions of a valve member and its counterpart member in a fuel injection valve. ing.

特許第3891433号公報Japanese Patent No. 3891433

さて、特許文献1の開示技術では、弁部材の相手部材としてガイドが想定されていると共に、DLC膜の厚さが0.3μm〜2.0μmと比較的薄く設定されている。一方、例えば上述の如き直噴ガソリンエンジン用等の燃料噴射弁では、燃圧上昇に対応させるべく、弁座部及び弁体部の少なくとも一方にDLC膜を厚く成膜することで、繰り返しの衝突でも基材の露出が抑えられる程度に耐久性を高めておくことを求められている。 By the way, in the technique disclosed in Patent Document 1, a guide is assumed as a mating member of the valve member, and the thickness of the DLC film is set to a relatively thin thickness of 0.3 μm to 2.0 μm. On the other hand, for example, in a fuel injection valve for a direct injection gasoline engine as described above, a thick DLC film is formed on at least one of a valve seat portion and a valve body portion in order to cope with an increase in fuel pressure, so that repeated collisions are possible. It is required to enhance the durability so that the exposure of the base material can be suppressed.

そこで本発明者らは、弁座部及び弁体部の少なくとも一方にDLC膜を厚めの2μm超過にて成膜した結果、新たな問題の生じることを知見したのである。その問題とは、特許文献1の開示技術の如くDLC膜を成膜する基材の表面粗さを小さく抑えたとしても、厚い成膜直後のダイヤモンドライクカーボン膜では表面凹凸が大きくなって真円度が悪化する、というものである。ここで真円度の悪化は、着座状態での弁座部及び弁体部間にて油密性を低下させて燃料漏れを生じさせてしまうため、排ガス浄化の観点から望ましくないのである。 Therefore, the inventors of the present invention have found that a new problem occurs as a result of forming a DLC film on at least one of the valve seat portion and the valve body portion with a thickness exceeding 2 μm. The problem is that even if the surface roughness of the base material on which the DLC film is formed is suppressed to a small level as in the technique disclosed in Patent Document 1, the diamond-like carbon film immediately after the formation of a thick film has large surface irregularities and a perfect circle. The degree is worse. Here, the deterioration of the roundness is not desirable from the viewpoint of exhaust gas purification because it deteriorates the oil tightness between the valve seat portion and the valve body portion in the seated state and causes fuel leakage.

本発明は、以上説明した本発明者らの知見による真円度悪化のメカニズムに鑑みてなされたものであって、その目的は、耐摩耗性と耐久性と油密性とを確保する燃料噴射弁及びその製造方法を、提供することにある。 The present invention has been made in view of the mechanism of the deterioration of roundness based on the findings of the present inventors described above, and its purpose is to perform fuel injection ensuring wear resistance, durability and oil tightness. A valve and a manufacturing method thereof are provided.

以下、課題を達成するための発明の技術的手段について、説明する。尚、発明の技術的手段を開示する特許請求の範囲及び本欄に記載された括弧内の符号は、後に詳述する実施形態に記載された具体的手段との対応関係を示すものであり、発明の技術的範囲を限定するものではない。 The technical means of the invention for achieving the object will be described below. Incidentally, the reference numerals in parentheses described in the claims disclosing the technical means of the present invention and this column indicate the corresponding relationship with the specific means described in the embodiment described in detail later, It does not limit the technical scope of the invention.

上述の課題を解決するために開示された第一発明の燃料噴射弁は、
内燃機関へ燃料を噴射する噴孔(18)、及び噴孔よりも上流側にて円形内輪郭の弁座部(19)を有する弁ハウジング(10)と、
弁ハウジング内に収容されており、弁座部に対して同軸上に離着座する円形外輪郭の弁体部(48)を有し、当該離着座により噴孔からの燃料噴射を断続させる弁部材(40)と、
弁座部及び弁体部のうち少なくとも一方である特定弁部は、
研磨状態の下地面(70a)を有する基材(70)と、
研磨状態の外表面(71a)に0.6μm以下の真円度を与えているDLC膜(74)を2μm超過の厚さにて有し、下地面に積層されている被覆層(71)とを、含んで構成され、
DLC膜は、特定弁部において、弁座部及び弁体部間での繰り返しの着座が生じる部分に、2.2以上且つ2.4以下の屈折率をもって成膜されている。
The fuel injection valve of the first invention disclosed to solve the above problems is
A valve housing (10) having an injection hole (18) for injecting fuel into the internal combustion engine, and a valve seat portion (19) having a circular inner contour upstream of the injection hole;
A valve member that is housed in a valve housing and has a circular outer contour valve body portion (48) that is seated and seated coaxially with respect to the valve seat portion, and that allows the fuel seat to be intermittently injected by the seating seat. (40),
The specific valve portion, which is at least one of the valve seat portion and the valve body portion,
A substrate (70) having a ground surface (70a) in a polished state;
A coating layer (71) having a DLC film (74) having a roundness of 0.6 μm or less on the polished outer surface (71a) with a thickness of more than 2 μm and being laminated on the base surface. Is configured to include,
The DLC film is formed with a refractive index of 2.2 or more and 2.4 or less at a portion where repeated seating occurs between the valve seat portion and the valve body portion in the specific valve portion .

このような第一発明によると、弁座部及び弁体部のうち少なくとも一方である特定弁部にて基材の下地面に積層されている被覆層は、耐摩耗性を確保するためのDLC膜を2μm超過の厚さにて有することで、耐久性も確保できる。しかも、研磨状態の下地面に積層された被覆層を構成する2μm超過の厚いDLC膜であっても、研磨状態の外表面にて真円度が0.6μm以下に抑えられることで、着座状態での弁座部及び弁体部間にて油密性を確保できる。 According to such a first invention, the coating layer laminated on the lower ground of the base material in the specific valve portion which is at least one of the valve seat portion and the valve body portion is a DLC for ensuring wear resistance. By having the film with a thickness of more than 2 μm, durability can be secured. Moreover, even if the DLC film that is thicker than 2 μm and constitutes the coating layer laminated on the ground surface in the polished state, the roundness of the outer surface in the polished state is suppressed to 0.6 μm or less, and the seated state It is possible to secure oil tightness between the valve seat portion and the valve body portion in.

また、開示された第二発明の製造方法は、第一発明の燃料噴射弁を製造する方法であって、
基材に超仕上げを施すことにより、下地面を研磨状態に形成する第一研磨工程(S20)と、
DLC膜を有する被覆層を、研磨状態の下地面に積層する積層工程(S30)と、
DLC膜に超仕上げを施すことにより、外表面を研磨状態に形成する第二研磨工程(S40)とを、含む。
さらに、開示された第三発明の製造方法は、
内燃機関へ燃料を噴射する噴孔(18)、及び噴孔よりも上流側にて円形内輪郭の弁座部(19)を有する弁ハウジング(10)と、
弁ハウジング内に収容されており、弁座部に対して同軸上に離着座する円形外輪郭の弁体部(48)を有し、当該離着座により噴孔からの燃料噴射を断続させる弁部材(40)と、
弁座部及び弁体部のうち少なくとも一方である特定弁部は、
研磨状態の下地面(70a)を有する基材(70)と、
研磨状態の外表面(71a)に0.6μm以下の真円度を与えているDLC膜(74)を2μm超過の厚さにて有し、下地面に積層されている被覆層(71)とを、含んで構成されている燃料噴射弁を製造する方法であって、
基材に超仕上げを施すことにより、下地面を研磨状態に形成する第一研磨工程(S20)と、
DLC膜を有する被覆層を、研磨状態の下地面に積層する積層工程(S30)と、
DLC膜に超仕上げを施すことにより、外表面を研磨状態に形成する第二研磨工程(S40)とを、含み、
第二研磨工程では、研磨状態の下地面との真円度差が0.2μm以下の研磨状態に外表面を形成する。
The disclosed method of manufacturing the second invention is a method of manufacturing the fuel injection valve of the first invention,
A first polishing step (S20) for forming a ground surface in a polished state by subjecting the base material to superfinishing;
A laminating step (S30) of laminating a coating layer having a DLC film on a ground surface in a polished state,
A second polishing step (S40) of forming the outer surface in a polished state by subjecting the DLC film to superfinishing.
Further, the manufacturing method of the disclosed third invention is
A valve housing (10) having an injection hole (18) for injecting fuel into the internal combustion engine, and a valve seat portion (19) having a circular inner contour upstream of the injection hole;
A valve member that is housed in a valve housing and has a circular outer contour valve body portion (48) that is seated and seated coaxially with respect to the valve seat portion, and that allows the fuel seat to be intermittently injected through the seat hole. (40),
The specific valve portion, which is at least one of the valve seat portion and the valve body portion,
A base material (70) having a ground surface (70a) in a polished state;
A coating layer (71) having a DLC film (74) having a roundness of 0.6 μm or less on the polished outer surface (71a) with a thickness of more than 2 μm and being laminated on the base surface. A method of manufacturing a fuel injection valve including:
A first polishing step (S20) for forming a ground surface in a polished state by subjecting the base material to superfinishing;
A laminating step (S30) of laminating a coating layer having a DLC film on a ground surface in a polished state,
A second polishing step (S40) of forming the outer surface into a polished state by subjecting the DLC film to superfinishing,
In the second polishing step, the outer surface is formed in a polished state having a circularity difference of 0.2 μm or less from the ground surface of the polished state.

このような第二発明では、第一研磨工程の超仕上げによって基材の下地面が研磨状態に形成された後、積層工程にて当該下地面に積層される被覆層のうちDLC膜が与える外表面も、第二研磨工程の超仕上げによって研磨状態に形成される。これにより特定弁部では、DLC膜を2μm超過の厚さに形成して耐摩耗性及び耐久性を確保できるだけでなく、研磨状態の外表面真円度を0.6μm以下に抑えて油密性を確保できる。 In such a second invention, after the lower ground of the substrate is formed into a polished state by the superfinishing of the first polishing step, the outer layer provided by the DLC film in the coating layer laminated on the underlying surface in the laminating step. The surface is also formed into a polished state by superfinishing in the second polishing step. As a result, in the specific valve part, not only can the DLC film be formed to a thickness of over 2 μm to ensure wear resistance and durability, but also the outer surface roundness in the polished state can be suppressed to 0.6 μm or less and oil tightness can be ensured. Can be secured.

一実施形態による燃料噴射弁を示す断面図である。It is a sectional view showing a fuel injection valve by one embodiment. 図1の燃料噴射弁を部分的に拡大して示す断面図である。It is sectional drawing which expands and shows the fuel injection valve of FIG. 1 partially. 図2に示す基材及び被覆層について説明するための断面図である。It is sectional drawing for demonstrating the base material and coating layer shown in FIG. 図1の燃料噴射弁におけるDLC膜の厚さと真円度との関係を示すグラフである。3 is a graph showing the relationship between the DLC film thickness and the roundness in the fuel injection valve of FIG. 1. 図1の燃料噴射弁におけるDLC膜の屈折率と摩耗量との関係を示すグラフである。3 is a graph showing the relationship between the refractive index and wear amount of the DLC film in the fuel injection valve of FIG. 図1の燃料噴射弁におけるDLC膜の真円度と油密性との関係を示すグラフである。3 is a graph showing a relationship between circularity and oil tightness of a DLC film in the fuel injection valve of FIG. 1. 図1の燃料噴射弁におけるDLC膜の厚さと基材に対する真円度差との関係を示すグラフである。3 is a graph showing the relationship between the thickness of the DLC film and the circularity difference with respect to the base material in the fuel injection valve of FIG. 1. 図1の燃料噴射弁の製造方法を説明するためのフローチャートである。6 is a flowchart for explaining a method of manufacturing the fuel injection valve of FIG. 1. 図8の準備工程S10を説明するための断面図である。It is sectional drawing for demonstrating the preparation process S10 of FIG. 図8の第一研磨工程S20を説明するための模式図である。It is a schematic diagram for demonstrating the 1st polishing process S20 of FIG. 図8の積層工程S30を説明するための模式図である。It is a schematic diagram for demonstrating the lamination process S30 of FIG. 図8の第二研磨工程S40を説明するための模式図である。It is a schematic diagram for demonstrating the 2nd polishing process S40 of FIG. 図2の変形例を示す断面図である。It is sectional drawing which shows the modification of FIG. 図2の変形例を示す断面図である。It is sectional drawing which shows the modification of FIG.

以下、本発明の一実施形態を図面に基づいて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

図1に示すように本発明の一実施形態による燃料噴射弁1は、「内燃機関」としての直噴ガソリンエンジンに設置される。燃料噴射弁1は、ガソリンエンジンにおいて気筒内の燃焼室へと燃料を噴射する。尚、燃料噴射弁1は、ガソリンエンジンの燃焼室に連通する吸気通路へと燃料を噴射するもの等であってもよい。 As shown in FIG. 1, a fuel injection valve 1 according to an embodiment of the present invention is installed in a direct injection gasoline engine as an “internal combustion engine”. The fuel injection valve 1 injects fuel into a combustion chamber in a cylinder of a gasoline engine. The fuel injection valve 1 may be one that injects fuel into an intake passage that communicates with a combustion chamber of a gasoline engine.

(基本構成)
まず、燃料噴射弁1の基本構成を説明する。燃料噴射弁1は、弁ハウジング10、固定コア20、可動コア30、弁部材40、スプリング50,51及び電磁駆動部60を備えている。
(Basic configuration)
First, the basic configuration of the fuel injection valve 1 will be described. The fuel injection valve 1 includes a valve housing 10, a fixed core 20, a movable core 30, a valve member 40, springs 50 and 51, and an electromagnetic drive unit 60.

弁ハウジング10は、磁気回路部材12、入口部材13及びノズル部材14等から構成されている。円筒状の磁気回路部材12は、第一磁性部120、非磁性部121及び第二磁性部122を、軸方向の閉弁側から開弁側へ向かってこの順で、有している。金属磁性体からなる各磁性部120,122と、金属非磁性体からなる非磁性部121とは、例えばレーザ溶接等により結合されている。非磁性部121は、第一磁性部120と第二磁性部122の間における磁束の短絡を遮断している。 The valve housing 10 includes a magnetic circuit member 12, an inlet member 13, a nozzle member 14, and the like. The cylindrical magnetic circuit member 12 has a first magnetic part 120, a non-magnetic part 121, and a second magnetic part 122 in this order from the valve closing side to the valve opening side in the axial direction. The magnetic portions 120 and 122 made of a metal magnetic material and the non-magnetic portion 121 made of a metal non-magnetic material are coupled by, for example, laser welding. The non-magnetic part 121 blocks a short circuit of magnetic flux between the first magnetic part 120 and the second magnetic part 122.

第二磁性部122において非磁性部121とは反対側端部には、入口部材13が同軸上に固定されている。金属からなる円筒状の入口部材13は、燃料ポンプからの燃料供給を受ける燃料流入口15を、形成している。この燃料流入口15へと供給される燃料を濾過するために入口部材13内には、燃料フィルタ16が位置決め状態にて収容されている。 The inlet member 13 is coaxially fixed to an end portion of the second magnetic portion 122 opposite to the non-magnetic portion 121. The cylindrical inlet member 13 made of metal forms a fuel inlet 15 that receives fuel supplied from the fuel pump. In order to filter the fuel supplied to the fuel inlet 15, a fuel filter 16 is accommodated in the inlet member 13 in a positioned state.

第一磁性部120において非磁性部121とは反対側端部には、ノズル部材14が同軸上に固定されている。金属からなる有底円筒状のノズル部材14は、燃料を流通させる燃料通路17を、磁気回路部材12と共同して内周側に形成している。ノズル部材14は、噴孔18及び弁座部19を有している。 The nozzle member 14 is coaxially fixed to the end of the first magnetic part 120 opposite to the non-magnetic part 121. The bottomed cylindrical nozzle member 14 made of metal has a fuel passage 17 through which the fuel flows in cooperation with the magnetic circuit member 12 on the inner peripheral side. The nozzle member 14 has a nozzle hole 18 and a valve seat portion 19.

噴孔18は、弁ハウジング10の中心軸線C周りに複数設けられている。各噴孔18は、ノズル部材14を貫通する貫通孔状に、形成されている。これにより各噴孔18は、外部となる燃焼室と、燃料通路17との間を連通する。 A plurality of injection holes 18 are provided around the central axis C of the valve housing 10. Each injection hole 18 is formed in the shape of a through hole penetrating the nozzle member 14. As a result, each injection hole 18 communicates between the combustion chamber, which is the outside, and the fuel passage 17.

図1,2に示すように弁座部19は、ノズル部材14のうち燃料通路17を囲む内周面において、各噴孔18よりも上流側となる開弁側に設けられている。弁座部19は、中心軸線Cと心合わせされた円錐面状(即ち、テーパ面状)に形成され、下流側となる閉弁側へ向かうほど縮径している。これにより弁座部19は、中心軸線Cに垂直な横断面における円形の内輪郭を、中心軸線Cに沿う所定長さの軸方向領域にて有している。 As shown in FIGS. 1 and 2, the valve seat portion 19 is provided on the inner peripheral surface of the nozzle member 14 that surrounds the fuel passage 17 on the valve opening side that is upstream of the respective injection holes 18. The valve seat portion 19 is formed in a conical surface shape (that is, a tapered surface shape) that is aligned with the central axis C, and the diameter thereof is reduced toward the valve closing side which is the downstream side. As a result, the valve seat portion 19 has a circular inner contour in a cross section perpendicular to the central axis C in an axial region of a predetermined length along the central axis C.

図1に示すように、金属磁性体からなる円筒状の固定コア20は、弁ハウジング10のうち磁気回路部材12内に同軸上に収容されている。固定コア20は、非磁性部121及び第二磁性部122の内周面に固定されている。固定コア20内には、金属からなる円筒状のアジャスティングパイプ24が同軸上に圧入されている。固定コア20は、上流側の燃料流入口15と連通する連通通路22を、アジャスティングパイプ24と共同して内周側に形成している。連通通路22は、上流側の燃料流入口15から流入した燃料を下流側へと導く。 As shown in FIG. 1, a cylindrical fixed core 20 made of a magnetic metal is coaxially housed in the magnetic circuit member 12 of the valve housing 10. The fixed core 20 is fixed to the inner peripheral surfaces of the non-magnetic portion 121 and the second magnetic portion 122. A cylindrical adjusting pipe 24 made of metal is coaxially press-fitted into the fixed core 20. The fixed core 20 has a communication passage 22 that communicates with the fuel inlet 15 on the upstream side in cooperation with the adjusting pipe 24 on the inner peripheral side. The communication passage 22 guides the fuel flowing from the fuel inlet 15 on the upstream side to the downstream side.

金属磁性体からなる円筒状の可動コア30は、弁ハウジング10のうち磁気回路部材12内の燃料通路17に同軸上に収容されている。可動コア30は、固定コア20よりも下流側となる閉弁側に、位置している。可動コア30は、開弁側と閉弁側とへの往復移動に伴って非磁性部121及び第一磁性部120の内周面と摺動可能に、配置されている。可動コア30は、軸方向に延伸する円筒孔状の軸方向孔34を、中心軸線Cと心合わせして内周側に有している。 The cylindrical movable core 30 made of a magnetic metal is coaxially housed in the fuel passage 17 in the magnetic circuit member 12 of the valve housing 10. The movable core 30 is located on the valve closing side, which is the downstream side of the fixed core 20. The movable core 30 is arranged so as to be slidable on the inner peripheral surfaces of the non-magnetic portion 121 and the first magnetic portion 120 as the movable core 30 reciprocates between the valve opening side and the valve closing side. The movable core 30 has a cylindrical hole-shaped axial hole 34 extending in the axial direction on the inner peripheral side in alignment with the central axis C.

金属非磁性体からなる細長円柱状(即ち、ニードル状)の弁部材40は、弁ハウジング10のうち磁気回路部材12及びノズル部材14内の燃料通路17に同軸上に収容されている。弁部材40は、軸方向に延伸する円柱状の弁軸部42を、中心軸線Cと心合わせして有している。弁軸部42は、軸方向孔34内を同軸上に嵌通している。これにより弁部材40は、開弁側と閉弁側とへの往復移動に伴って可動コア30と一体移動又は軸方向孔34の内周面に対して相対摺動可能に、配置されている。 The elongated cylindrical (ie, needle-shaped) valve member 40 made of a metal non-magnetic material is coaxially housed in the fuel passage 17 in the magnetic circuit member 12 and the nozzle member 14 of the valve housing 10. The valve member 40 has a cylindrical valve shaft portion 42 that extends in the axial direction, aligned with the central axis C. The valve shaft portion 42 is coaxially fitted in the axial hole 34. As a result, the valve member 40 is arranged so as to move integrally with the movable core 30 as the valve member 40 reciprocates to the valve opening side and the valve closing side, or to be slidable relative to the inner peripheral surface of the axial hole 34. ..

弁部材40は、弁軸部42から外周側に突出する円形鍔状(即ち、フランジ状)の突部44を、中心軸線Cと心合わせして有している。突部44は、弁部材40の開弁側端部に設けられている。突部44は、固定コア20内に同軸上に嵌入されている。これにより突部44は、開弁側と閉弁側とへの往復移動に伴って固定コア20の内周面と摺動可能に、配置されている。 The valve member 40 has a circular brim-shaped (that is, flange-shaped) protrusion 44 protruding from the valve shaft portion 42 to the outer peripheral side, aligned with the central axis C. The protrusion 44 is provided at the valve opening side end of the valve member 40. The protrusion 44 is coaxially fitted in the fixed core 20. As a result, the protrusion 44 is arranged so as to be slidable on the inner peripheral surface of the fixed core 20 with the reciprocating movement to the valve opening side and the valve closing side.

突部44は、軸方向孔34よりも大径に形成されている。突部44のうち閉弁側を向く軸方向端面44aは、可動コア30のうち開弁側を向く軸方向端面30aと接離可能に、配置されている。これにより軸方向端面44a,30a同士の接触時には、開弁側と閉弁側とへの往復移動に伴って弁部材40及び可動コア30が一体移動可能となっている。 The protrusion 44 has a larger diameter than the axial hole 34. The axial end surface 44a of the protrusion 44 facing the valve closing side is arranged so as to be able to come into contact with and separate from the axial end surface 30a of the movable core 30 facing the valve opening side. As a result, when the axial end surfaces 44a and 30a come into contact with each other, the valve member 40 and the movable core 30 can be integrally moved with the reciprocating movement to the valve opening side and the valve closing side.

弁部材40は、弁軸部42及び突部44に跨って貫通する燃料孔46を、内周側に有している。燃料孔46は、連通通路22と燃料通路17との間を連通している。これにより燃料孔46は、弁部材40及び可動コア30の任意の移動位置において、上流側の連通通路22から下流側の燃料通路17へと燃料を流通させる。 The valve member 40 has a fuel hole 46 penetrating the valve shaft 42 and the protrusion 44 on the inner peripheral side. The fuel hole 46 communicates between the communication passage 22 and the fuel passage 17. As a result, the fuel hole 46 allows the fuel to flow from the communication passage 22 on the upstream side to the fuel passage 17 on the downstream side at an arbitrary movement position of the valve member 40 and the movable core 30.

図1,2に示すように弁部材40は、弁軸部42のうち燃料通路17に露出する外周面に、弁体部48を有している。弁体部48は、弁部材40の閉弁側端部に設けられ、突部44とは反対側となる弁座部19側に位置している。弁体部48は、中心軸線Cと心合わせされた円錐面状(即ち、テーパ面状)に形成され、下流側と閉弁側へ向かうほど縮径している。これにより弁体部48は、中心軸線Cに垂直な横断面における円形の外輪郭を、中心軸線Cに沿う所定長さの軸方向領域にて有している。 As shown in FIGS. 1 and 2, the valve member 40 has a valve body portion 48 on the outer peripheral surface of the valve shaft portion 42 exposed to the fuel passage 17. The valve body portion 48 is provided at the valve closing side end portion of the valve member 40, and is located on the valve seat portion 19 side opposite to the protrusion 44. The valve body portion 48 is formed in a conical surface shape (that is, a tapered surface shape) that is aligned with the central axis C, and the diameter is reduced toward the downstream side and the valve closing side. Thereby, the valve body portion 48 has a circular outer contour in a transverse section perpendicular to the central axis C in an axial region of a predetermined length along the central axis C.

弁体部48は、弁座部19よりも上流側となる開弁側に位置することで、弁座部19に対して同軸上に離着座可能に配置されている。これにより弁部材40は、開弁側への移動に伴って弁体部48を弁座部19から離座させることで、各噴孔18を燃料通路17に対して開放する。その結果、燃料通路17の燃料が各噴孔18から燃焼室へと噴射される。一方で弁部材40は、閉弁側への移動によって弁体部48を弁座部19に着座させることで、各噴孔18を燃料通路17に対して閉塞する。その結果、各噴孔18からの噴射が停止する。このように弁部材40は、往復移動に伴って弁体部48を弁座部19に対して離着座させる開閉弁作動により、各噴孔18からの燃料噴射を断続させる。 The valve body portion 48 is located on the valve opening side, which is on the upstream side of the valve seat portion 19, so that the valve body portion 48 is arranged so as to be seated coaxially with respect to the valve seat portion 19. As a result, the valve member 40 separates the valve body portion 48 from the valve seat portion 19 as the valve member 40 moves toward the valve opening side, thereby opening each injection hole 18 to the fuel passage 17. As a result, the fuel in the fuel passage 17 is injected from each injection hole 18 into the combustion chamber. On the other hand, the valve member 40 closes each injection hole 18 to the fuel passage 17 by seating the valve body portion 48 on the valve seat portion 19 by moving toward the valve closing side. As a result, the injection from each injection hole 18 is stopped. In this way, the valve member 40 interrupts the fuel injection from each injection hole 18 by the opening/closing valve operation that causes the valve body portion 48 to be seated on/separated from the valve seat portion 19 with the reciprocating movement.

図1に示すように、金属からなる閉弁スプリング50は、圧縮コイルスプリングである。閉弁スプリング50は、弁ハウジング10内のうち固定コア20内の連通通路22に、同軸上に収容されている。閉弁スプリング50は、アジャスティングパイプ24と突部44との間に介装されている。これにより閉弁スプリング50は、要素24,44間での圧縮に応じて弾性復原力を発生することで、弁部材40を閉弁側へと付勢する。 As shown in FIG. 1, the valve closing spring 50 made of metal is a compression coil spring. The valve closing spring 50 is coaxially housed in the communication passage 22 in the fixed core 20 in the valve housing 10. The valve closing spring 50 is interposed between the adjusting pipe 24 and the protrusion 44. As a result, the valve closing spring 50 urges the valve member 40 toward the valve closing side by generating an elastic restoring force according to the compression between the elements 24 and 44.

金属からなる開弁スプリング51は、圧縮コイルスプリングである。開弁スプリング51は、弁ハウジング10のうち磁気回路部材12内の燃料通路17に、同軸上に収容されている。開弁スプリング51は、弁軸部42の外周側にて可動コア30と第一磁性部120との間に介装されている。これにより開弁スプリング51は、要素30,120間での圧縮に応じて弾性復原力を発生することで、可動コア30を開弁側へと付勢する。 The valve opening spring 51 made of metal is a compression coil spring. The valve opening spring 51 is coaxially housed in the fuel passage 17 in the magnetic circuit member 12 of the valve housing 10. The valve opening spring 51 is interposed between the movable core 30 and the first magnetic portion 120 on the outer peripheral side of the valve shaft portion 42. As a result, the valve opening spring 51 urges the movable core 30 toward the valve opening side by generating an elastic restoring force according to the compression between the elements 30 and 120.

電磁駆動部60は、ソレノイドコイル61、樹脂ボビン62、ターミナル63及びコネクタ64等から構成されている。ソレノイドコイル61は、円筒状の樹脂ボビン62に金属線材を巻回して形成されている。ソレノイドコイル61は、固定コア20の外周側に同軸上に配置されている。ソレノイドコイル61は、磁性部120,122及び非磁性部121の外周面に樹脂ボビン62を介して固定されている。金属からなるターミナル63は、樹脂からなるコネクタ64に埋設されている。ターミナル63は、外部の制御回路と内部のソレノイドコイル61との間を電気接続する。この電気接続によりソレノイドコイル61への通電は、制御回路により制御可能となっている。 The electromagnetic drive unit 60 includes a solenoid coil 61, a resin bobbin 62, a terminal 63, a connector 64, and the like. The solenoid coil 61 is formed by winding a metal wire on a cylindrical resin bobbin 62. The solenoid coil 61 is coaxially arranged on the outer peripheral side of the fixed core 20. The solenoid coil 61 is fixed to the outer peripheral surfaces of the magnetic parts 120 and 122 and the non-magnetic part 121 via a resin bobbin 62. The terminal 63 made of metal is embedded in the connector 64 made of resin. The terminal 63 electrically connects the external control circuit and the internal solenoid coil 61. By this electrical connection, the energization of the solenoid coil 61 can be controlled by the control circuit.

以上の如き基本構成の燃料噴射弁1は、開弁作動及び開弁作動を実現する。まず開弁作動では、制御回路により通電されたソレノイドコイル61が励磁することで、第一磁性部120、可動コア30、固定コア20及び第二磁性部122に磁束が案内される。即ち、それら要素120,30,20,122を磁束が通過するように、磁気回路が形成される。すると、互いに対向するコア20,30間には、可動コア30を固定コア20側へと吸引する磁気吸引力が発生する。この磁気吸引力を受けて可動コア30は、軸方向端面30aに接触している突部44を閉弁スプリング50の弾性復原力に抗して押圧しながら、開弁側へと移動する。これにより、弁部材40が可動コア30と一体に開弁側へと移動することで、弁体部48が弁座部19から離座して燃料が各噴孔18から噴射される。 The fuel injection valve 1 having the basic configuration as described above realizes the valve opening operation and the valve opening operation. First, in the valve opening operation, the solenoid coil 61 energized by the control circuit is excited to guide the magnetic flux to the first magnetic portion 120, the movable core 30, the fixed core 20, and the second magnetic portion 122. That is, a magnetic circuit is formed so that the magnetic flux passes through the elements 120, 30, 20, 122. Then, a magnetic attraction force that attracts the movable core 30 toward the fixed core 20 is generated between the cores 20 and 30 facing each other. Receiving this magnetic attraction force, the movable core 30 moves toward the valve opening side while pressing the protrusion 44 in contact with the axial end surface 30a against the elastic restoring force of the valve closing spring 50. As a result, the valve member 40 moves integrally with the movable core 30 toward the valve opening side, whereby the valve body portion 48 is separated from the valve seat portion 19 and fuel is injected from each injection hole 18.

次に開弁作動後の閉弁作動では、制御回路により通電の停止されたソレノイドコイル61が消磁するので、コア20,30間の磁気吸引が消失する。このとき弁部材40は、開弁スプリング51よりも大きな弾性復原力を閉弁スプリング50から受けることで、軸方向端面44aに接触している可動コア30を押圧しながら、閉弁側へと移動する。これにより、弁部材40が可動コア30と一体に閉弁側へと移動することで、弁体部48が弁座部19に着座して各噴孔18からの燃料噴射が停止する。 Next, in the valve closing operation after the valve opening operation, the solenoid coil 61, which has been deenergized by the control circuit, is demagnetized, so that the magnetic attraction between the cores 20 and 30 disappears. At this time, the valve member 40 receives a larger elastic restoring force than the valve opening spring 51 from the valve closing spring 50, and moves toward the valve closing side while pressing the movable core 30 in contact with the axial end surface 44a. To do. As a result, the valve member 40 moves integrally with the movable core 30 toward the valve closing side, whereby the valve body portion 48 is seated on the valve seat portion 19 and the fuel injection from each injection hole 18 is stopped.

(弁体部の詳細構成)
以下では、図2に拡大して示す弁座部19及び弁体部48のうち、「特定弁部」として本実施形態では機能する弁体部48の詳細構成を、説明する。弁体部48は、弁部材40の基材(即ち、母材)70と、当該基材70を被覆する被覆層71とを、含んで構成されている。
(Detailed structure of valve body)
In the following, of the valve seat portion 19 and the valve body portion 48 that are enlarged and shown in FIG. 2, the detailed configuration of the valve body portion 48 that functions in this embodiment as the “specific valve portion” will be described. The valve body portion 48 is configured to include a base material (that is, a base material) 70 of the valve member 40 and a coating layer 71 that covers the base material 70.

基材70は、例えばマルテンサイト系ステンレス鋼等の鉄系金属から形成されている。弁体部48を形成する箇所75にて基材70は、円形外輪郭の円錐面状(即ち、テーパ面状)を呈している。図2,3に示す基材70の最外周面は、被覆層71に対する下地面70aとなっている。下地面70aには、後に詳述する超仕上げによって鏡面加工が施されている。その結果として研磨状態となっている下地面70aには、真円度が0.05μm以上且つ0.4μm以下の範囲にて与えられている。 The base material 70 is formed of an iron-based metal such as martensitic stainless steel. The base material 70 has a conical surface shape (that is, a tapered surface shape) with a circular outer contour at a portion 75 where the valve body portion 48 is formed. The outermost peripheral surface of the base material 70 shown in FIGS. 2 and 3 is a base surface 70 a for the coating layer 71. The ground surface 70a is mirror-finished by superfinishing, which will be described in detail later. As a result, the roundness is given to the ground surface 70a in a polished state in the range of 0.05 μm or more and 0.4 μm or less.

尚、下地面70aの真円度は、MZC最小領域中心法に従って横断面の円形輪郭を挟む同心二円の半径差が最小となる中心座標を当該円形輪郭の中心と想定した場合に、かかる同心二円の半径差を意味している。そこで下地面70aの真円度は、弁体部48の形成される軸方向領域内の任意の横断面にて、円形輪郭を挟む同心二円の半径差が上述の範囲を満たすように、設定される。 The circularity of the base surface 70a is the concentricity when the center coordinate where the radius difference between the two concentric circles sandwiching the circular contour of the cross section is the minimum is the center of the circular contour according to the MZC minimum area center method. It means the radius difference of two circles. Therefore, the roundness of the base surface 70a is set so that the radius difference between two concentric circles sandwiching the circular contour satisfies the above range in an arbitrary cross section in the axial region where the valve body portion 48 is formed. To be done.

被覆層71は、下地面70aの周方向全域に亘って広がる、実質均一厚さの複合層状に積層されている。被覆層71は、弁部材40の大半部分を構成する基材70のうち、本実施形態では弁体部48の形成箇所75にのみ設けられているが、基材50の他の箇所まで跨って又は全体に設けられていてもよい。図3に示すように被覆層71は、中間膜72,73及びDLC膜74を有している。 The coating layer 71 is laminated in a composite layer having a substantially uniform thickness, which is spread over the entire area of the base surface 70a in the circumferential direction. In the present embodiment, the coating layer 71 is provided only in the formation portion 75 of the valve body portion 48 of the base material 70 that constitutes the majority of the valve member 40, but extends over other portions of the base material 50. Alternatively, it may be provided entirely. As shown in FIG. 3, the coating layer 71 has intermediate films 72 and 73 and a DLC film 74.

第一中間膜72は、基材70との親和性の高い、例えばクロム(Cr)等の金属から形成されている。第一中間膜72は、下地面70aに直接成膜されている。第一中間膜72の厚さは、成膜部分全体にて実質均一となる0.1μm程度に、設定されている。第二中間膜73は、DLC膜74との親和性の高い、例えばタングステンカーバイド(WC)及びDLCの合成材から形成されている。第二中間膜73は、第一中間膜72を介して下地面70aに成膜されている。第二中間膜73の厚さは、成膜部分全体にて実質均一となる0.2μm程度に、設定されている。以上により中間膜72,73は、基材70とDLC膜74との間を繋いで密着力を確保する機能を発揮可能な限りにて、DLC膜74よりも十分に薄い合算厚さに設けられている。 The first intermediate film 72 is formed of a metal having a high affinity with the base material 70, such as chromium (Cr). The first intermediate film 72 is directly formed on the base surface 70a. The thickness of the first intermediate film 72 is set to about 0.1 μm, which is substantially uniform over the entire film formation portion. The second intermediate film 73 is formed of a synthetic material having a high affinity with the DLC film 74, for example, tungsten carbide (WC) and DLC. The second intermediate film 73 is formed on the base surface 70a via the first intermediate film 72. The thickness of the second intermediate film 73 is set to about 0.2 μm, which is substantially uniform over the entire film formation portion. As described above, the intermediate films 72 and 73 are provided with a total thickness sufficiently smaller than that of the DLC film 74 as long as the function of connecting the base material 70 and the DLC film 74 to each other and ensuring the adhesive force can be exerted. ing.

被覆層71の最外殻部分をなすDLC膜74は、例えば20at%程度の水素を含むDLCから形成されている。DLC膜74は、中間膜72,73を介して下地面70aに成膜されている。DLC膜74の厚さは、成膜部分全体にて実質均一となる値であって、図4,7に示す2μm超過且つ5μm以下の範囲に、設定されている。ここで、厚さが2μm以下のDLC膜とすると、弁座部19及び弁体部48間での着座時の衝撃に対して必要な耐久性が得られずに、基材70までを露出させるおそれがある。一方、厚さが5μm超過のDLC膜とすると、中間膜72,73を介した基材70への密着性が低下して、成膜不良や着座時の剥がれを招来するおそれがある。尚、DLC膜74の厚さについてさらに好適には、2.5μm以上且つ4.5μm以下の範囲に設定される。 The DLC film 74 forming the outermost shell of the coating layer 71 is formed of DLC containing hydrogen at about 20 at %, for example. The DLC film 74 is formed on the base surface 70a via the intermediate films 72 and 73. The thickness of the DLC film 74 is a value that is substantially uniform over the entire film formation portion, and is set within the range of more than 2 μm and 5 μm or less shown in FIGS. Here, if the DLC film has a thickness of 2 μm or less, the durability up to the impact between the valve seat portion 19 and the valve body portion 48 at the time of sitting is not obtained, and the base material 70 is exposed. There is a risk. On the other hand, if the DLC film has a thickness of more than 5 μm, the adhesion to the base material 70 via the intermediate films 72 and 73 may be reduced, which may lead to defective film formation and peeling at the time of sitting. The thickness of the DLC film 74 is more preferably set in the range of 2.5 μm or more and 4.5 μm or less.

DLC膜74には、膜硬さと相関する光学物理量としての屈折率が、図5に示す2.2以上且つ2.4以下の範囲に設定されている。ここで、屈折率が2.2未満のDLC膜とすると、弁座部19及び弁体部48間での繰り返しの着座による摩耗量が図5の如き許容上限値(燃料噴射弁の作動回数が5000万回後に0.5μm程度)を上回って、耐摩耗性を低下させるおそれがある。一方、屈折率を2.4超過のDLC膜とすると、成膜に必要な温度が上昇して、外乱等に起因した成膜温度不足による成膜不良を招来するおそれがある。 In the DLC film 74, the refractive index as an optical physical quantity that correlates with the film hardness is set in the range of 2.2 or more and 2.4 or less shown in FIG. Here, assuming that the DLC film has a refractive index of less than 2.2, the wear amount due to repeated seating between the valve seat portion 19 and the valve body portion 48 has an allowable upper limit value as shown in FIG. After 50 million times, the abrasion resistance may be decreased to about 0.5 μm). On the other hand, if the DLC film has a refractive index of more than 2.4, the temperature required for film formation rises, which may lead to film formation failure due to insufficient film formation temperature due to disturbance or the like.

尚、屈折率は、900nm〜1600nm程度の波長にてDLC膜74へと照射した光の最外周面(即ち、後述する外表面71a)での反射成分と、DLC膜74を透過した当該光の最内周面での反射成分とにつき、光干渉法に従って光路差による位相ずれに起因した光干渉スペクトルを測定し、当該光干渉スペクトルに現れるスペクトル強度から算出される。これにより、最外周面が円錐面状のDLC膜74に対して、適正な耐摩耗性を与えることが可能となる。 In addition, the refractive index is the reflection component at the outermost peripheral surface (that is, the outer surface 71a described later) of the light irradiated to the DLC film 74 at a wavelength of about 900 nm to 1600 nm and the light transmitted through the DLC film 74. With respect to the reflection component on the innermost peripheral surface, an optical interference spectrum caused by a phase shift due to an optical path difference is measured according to the optical interference method, and calculated from the spectrum intensity appearing in the optical interference spectrum. This makes it possible to impart appropriate wear resistance to the DLC film 74 whose outermost peripheral surface is a conical surface.

図3に示すDLC膜74の最外周面は、被覆層71の外表面71aとなっている。外表面71aには、後に詳述する超仕上げによって鏡面加工が施されている。その結果として研磨状態となっている外表面71aには、図4,6に示す0.05μm以上且つ0.6μm以下の範囲にて真円度が与えられている。ここで、真円度が0.6μm超過の外表面とすると、着座状態の弁座部19及び弁体部48間での燃料漏れ量によって表される油密性が、図6の如き許容上限値(燃料圧力8MPaの条件で0.5cc/min程度)を上回るおそれがある。一方、製品回転用の調整砥石スピンドルの回転振れ精度の限界から、真円度は0.05μm未満にすることが困難である。尚、外表面71aの真円度についてさらに好適には、0.05μm以上且つ0.4μm以下の範囲に設定される。 The outermost peripheral surface of the DLC film 74 shown in FIG. 3 is the outer surface 71 a of the coating layer 71. The outer surface 71a is mirror-finished by superfinishing which will be described in detail later. As a result, the outer surface 71a, which is in a polished state, is given a roundness in the range of 0.05 μm or more and 0.6 μm or less shown in FIGS. Here, assuming that the outer surface has a roundness of more than 0.6 μm, the oil tightness represented by the fuel leakage amount between the seated valve seat portion 19 and the valve body portion 48 has an allowable upper limit as shown in FIG. The value (about 0.5 cc/min when the fuel pressure is 8 MPa) may be exceeded. On the other hand, it is difficult to set the roundness to less than 0.05 μm due to the limit of the rotational runout accuracy of the adjusting grindstone spindle for rotating the product. The roundness of the outer surface 71a is more preferably set in the range of 0.05 μm or more and 0.4 μm or less.

さらに、外表面71aの真円度について下地面70aの真円度との差は、図7に示す0μm以上且つ0.2μm以下の範囲に設定されている。これは、後に詳述する各面70a,71aへの超仕上げによって外表面71aの真円度を、0.6μm以下まで抑え易くするためである。 Further, the difference between the roundness of the outer surface 71a and the roundness of the base surface 70a is set in the range of 0 μm or more and 0.2 μm or less shown in FIG. This is because it is easy to suppress the circularity of the outer surface 71a to 0.6 μm or less by superfinishing the surfaces 70a and 71a, which will be described in detail later.

尚、下地面70aの真円度と同様に外表面71aの真円度は、MZC最小領域中心法に従って横断面の円形輪郭を挟む同心二円の半径差を、意味している。そこで外表面71aの真円度は、弁体部48の形成される軸方向領域内の任意の横断面にて、円形輪郭を挟む同心二円の半径差が上述の範囲を満たすように、設定される。 The circularity of the outer surface 71a as well as the circularity of the base surface 70a means the difference in radius between two concentric circles that sandwich the circular contour of the cross section according to the MZC minimum area center method. Therefore, the circularity of the outer surface 71a is set so that the radius difference between the two concentric circles sandwiching the circular contour satisfies the above range in an arbitrary cross section in the axial region where the valve body portion 48 is formed. To be done.

(製造方法)
以下では、燃料噴射弁1の製造方法として特に、弁体部48を有した弁部材40を製造する方法を説明する。
(Production method)
In the following, a method for manufacturing the valve member 40 having the valve body portion 48 will be particularly described as a method for manufacturing the fuel injection valve 1.

まず、図8に示す準備工程S10では、基材70において弁軸部42の弁体部48を形成する箇所75の下地面70aに被覆層71が積層されていない弁部材40を、図9に示すように準備する。 First, in the preparation step S10 shown in FIG. 8, the valve member 40 in which the covering layer 71 is not laminated on the lower ground 70a of the base material 70 where the valve body portion 48 of the valve shaft portion 42 is formed is shown in FIG. Prepare as shown.

続いて、図8に示す第一研磨工程S20では、準備工程S10にて準備した弁部材40の基材70に超仕上げを施すことで、下地面70aを研磨状態に形成する。具体的に第一研磨工程S20では図10に示すように、回転ローラ1000,1001間に挟んだ弁部材40を中心軸線Cまわりに回転させながら、例えばキュービックボロンナイト(cBN)等の砥石1002を基材70に押し当てて振動させる。 Subsequently, in a first polishing step S20 shown in FIG. 8, the base surface 70a is formed in a polished state by superfinishing the base material 70 of the valve member 40 prepared in the preparation step S10. Specifically, in the first polishing step S20, as shown in FIG. 10, while rotating the valve member 40 sandwiched between the rotary rollers 1000 and 1001 around the central axis C, a grindstone 1002 such as cubic boronite (cBN) is removed. The substrate 70 is pressed and vibrated.

このときまず、ローラ1000,1001の回転速度を350rpm、砥石1002の押し当て圧を0.019MPa、加工時間を0.5sにそれぞれ設定した荒処理を、実施する。次に、ローラ1000,1001の回転速度を400rpm、砥石1002の押し当て圧を0.019MPa、加工時間を3sにそれぞれ設定した中間処理を、実施する。さらに、ローラ1000,1001の回転速度を400rpm、砥石1002の押し当て圧を0.019MPa、加工時間を1sにそれぞれ設定した仕上げ処理を、行う。以上の各処理を含む超仕上げによって研磨された下地面70aには、0.05μm以上且つ0.4μm以下の真円度が与えられることとなる。 At this time, first, rough processing is performed in which the rotation speed of the rollers 1000 and 1001 is 350 rpm, the pressing pressure of the grindstone 1002 is 0.019 MPa, and the processing time is 0.5 s. Next, an intermediate process is performed in which the rotation speeds of the rollers 1000 and 1001 are 400 rpm, the pressing pressure of the grindstone 1002 is 0.019 MPa, and the processing time is 3 s. Further, finishing processing is performed in which the rotation speeds of the rollers 1000 and 1001 are 400 rpm, the pressing pressure of the grindstone 1002 is 0.019 MPa, and the processing time is 1 s. The roundness of 0.05 μm or more and 0.4 μm or less is given to the base surface 70a polished by the superfinishing including the above processes.

さらに続いて、図8に示す積層工程S30では、第一研磨工程S20にて研磨状態となった下地面70aに中間膜72,73及びDLC膜74を順次成膜することで、同面70aに被覆層71を積層する。具体的に積層工程S30では、まず図11(a)に示すように、真空チャンバ1003内に弁部材40を投入した状態下、アルゴンイオン(Ar)及び水素イオン(H)を基材70に衝突させることで、下地面70a上の酸化皮膜を除去する。次に図11(b)に示すように、真空チャンバ1003内に弁部材40を収容した状態下、Arを衝突させたターゲット1004から放出されるターゲット材料原子を基材70に付着させる。このとき、ターゲット1004にCrを採用することで第一中間膜72を0.1μmの厚さに成膜後、ターゲット1004をWCに変更してからDLCを加えていくことで第二中間膜73を0.2μmの厚さに成膜する。 Further subsequently, in the laminating step S30 shown in FIG. 8, the intermediate films 72 and 73 and the DLC film 74 are sequentially formed on the ground surface 70a which has been polished in the first polishing step S20, so that the same surface 70a is formed. The coating layer 71 is laminated. Specifically, in the stacking step S30, first, as shown in FIG. 11A, with the valve member 40 placed in the vacuum chamber 1003, argon ions (Ar + ) and hydrogen ions (H + ) are added to the base material 70. The oxide film on the base surface 70a is removed by colliding with. Next, as shown in FIG. 11B, in the state where the valve member 40 is housed in the vacuum chamber 1003, the target material atoms emitted from the target 1004 collided with Ar + are attached to the base material 70. At this time, after adopting Cr as the target 1004 to form the first intermediate film 72 to a thickness of 0.1 μm, the target 1004 is changed to WC and then DLC is added to add the second intermediate film 73. To a thickness of 0.2 μm.

さらに、積層工程S30では図11(c)に示すように、真空チャンバ1003内に弁部材40を収容した状態下、アセチレン(C)ガスをプラズマ分解して基材70上で再結合させる。これにより、2μm超過且つ5μm以下の厚さと、2.2以上且つ2.4以下の屈折率とをもって、DLC膜74が成膜される。 Further, in the stacking step S30, as shown in FIG. 11C, in a state where the valve member 40 is housed in the vacuum chamber 1003, acetylene (C 2 H 2 ) gas is plasma decomposed and recombined on the base material 70. Let As a result, the DLC film 74 is formed with a thickness of more than 2 μm and 5 μm or less and a refractive index of 2.2 or more and 2.4 or less.

最後に、図8に示す第二研磨工程S40では、積層工程S30にて積層された被覆層71のうち最外殻のDLC膜74に超仕上げを施すことで、外表面71aを研磨状態に形成する。具体的に第二研磨工程S40では図12に示すように、回転ローラ1000,1001間に挟んだ弁部材40を中心軸線Cまわりに回転させながら、例えばダイヤモンド等の砥石1005を被覆層71に押し当てて振動させる。 Finally, in the second polishing step S40 shown in FIG. 8, the outer surface 71a is formed into a polished state by superfinishing the outermost shell DLC film 74 of the coating layers 71 stacked in the stacking step S30. To do. Specifically, in the second polishing step S40, as shown in FIG. 12, while the valve member 40 sandwiched between the rotating rollers 1000 and 1001 is rotated around the central axis C, a grindstone 1005 such as diamond is pressed against the coating layer 71. Apply and vibrate.

このときまず、ローラ1000,1001の回転速度を350rpm、砥石1005の押し当て圧を0.017MPa、加工時間を0.5sにそれぞれ設定した荒処理を、実施する。次に、ローラ1000,1001の回転速度を400rpm、砥石1005の押し当て圧を0.017MPa、加工時間を3sにそれぞれ設定した中間処理を、実施する。さらに、ローラ1000,1001の回転速度を400rpm、砥石1005の押し当て圧を0.017MPa、加工時間を1sにそれぞれ設定した仕上げ処理を、行う。以上の各処理を含む超仕上げによって研磨された外表面71aには、下地面70aの真円度とは0以上且つ0.2μmの差となるように、0.05μm以上且つ0.6μm以下の真円度が与えられることとなる。 At this time, first, rough processing is performed in which the rotation speed of the rollers 1000 and 1001 is 350 rpm, the pressing pressure of the grindstone 1005 is 0.017 MPa, and the processing time is 0.5 s. Next, an intermediate process is performed in which the rotation speed of the rollers 1000 and 1001 is 400 rpm, the pressing pressure of the grindstone 1005 is 0.017 MPa, and the processing time is 3 s. Further, finishing processing is performed in which the rotation speeds of the rollers 1000 and 1001 are 400 rpm, the pressing pressure of the grindstone 1005 is 0.017 MPa, and the processing time is 1 s. The outer surface 71a polished by the superfinishing including each of the above treatments has a difference of 0 μm or more and 0.2 μm or less from the roundness of the base surface 70a, and the outer diameter of 0.05 μm or more and 0.6 μm or less. Roundness will be given.

尚、こうした各工程S10〜S40を経て製造された弁部材40等が、別途製造された弁ハウジング10内に収容されることで、燃料噴射弁1の製造は完了する。 The manufacturing of the fuel injection valve 1 is completed by accommodating the valve member 40 and the like manufactured through the processes S10 to S40 in the separately manufactured valve housing 10.

(作用効果)
以上説明した燃料噴射弁1及びその製造方法による作用効果を、以下に説明する。
(Action effect)
The operation and effect of the fuel injection valve 1 and the manufacturing method thereof described above will be described below.

燃料噴射弁1によると、弁座部19及び弁体部48のうち後者である「特定弁部」にて基材70の下地面70aに積層されている被覆層71は、耐摩耗性を確保するためのDLC膜74を図4,7の如く2μm超過の厚さにて有することで、耐久性も確保できる。しかも、研磨状態の下地面70aに積層された被覆層71を構成する2μm超過の厚いDLC膜74であっても、研磨状態の外表面71aにて真円度が図4,6の如く0.6μm以下に抑えられることで、着座状態での弁座部19及び弁体部48間にて図6の如く油密性を確保できる。尚、本実施形態との比較のために図4,6,7には、研磨なしのDLC膜74の場合が示されている。 According to the fuel injection valve 1, the coating layer 71 laminated on the lower ground surface 70a of the base material 70 at the latter "specific valve portion" of the valve seat portion 19 and the valve body portion 48 ensures wear resistance. By having the DLC film 74 for this purpose with a thickness of more than 2 μm as shown in FIGS. Moreover, even with the thick DLC film 74 of more than 2 μm forming the coating layer 71 laminated on the ground surface 70a in the polished state, the roundness of the outer surface 71a in the polished state is as shown in FIGS. By suppressing the thickness to 6 μm or less, oil tightness can be secured between the valve seat portion 19 and the valve body portion 48 in the seated state as shown in FIG. For comparison with this embodiment, FIGS. 4, 6 and 7 show the case of the DLC film 74 without polishing.

また燃料噴射弁1によると、製品回転用の調整砥石スピンドルの回転振れ精度の限界から、DLC膜74の外表面71aには、0.05μm以上の真円度を与えることが好ましい。 Further, according to the fuel injection valve 1, it is preferable to give the outer surface 71a of the DLC film 74 a roundness of 0.05 μm or more from the limit of the rotational runout accuracy of the adjusting grindstone spindle for product rotation.

さらに燃料噴射弁1によると、DLC膜74の屈折率を図5の如く2.2以上とすることで、弁座部19及び弁体部48間での着座時に懸念されるDLC膜74の摩耗量を低減して、耐摩耗性を高めることができる。それと共に、DLC膜74の屈折率を図5の如く2.4以下とすることで、DLC膜74の成膜に必要な温度を可及的に低く抑えて、外乱等に起因した成膜温度不足によるDLC膜74の成膜不良を抑止できる。 Further, according to the fuel injection valve 1, by setting the refractive index of the DLC film 74 to be 2.2 or more as shown in FIG. 5, the wear of the DLC film 74 which may occur during the seating between the valve seat portion 19 and the valve body portion 48. The amount can be reduced to increase wear resistance. At the same time, by setting the refractive index of the DLC film 74 to be 2.4 or less as shown in FIG. 5, the temperature necessary for forming the DLC film 74 can be suppressed as low as possible, and the film forming temperature caused by disturbance or the like can be suppressed. It is possible to prevent the film formation defect of the DLC film 74 due to the shortage.

またさらに燃料噴射弁1によると、DLC膜74の厚さを図4,7の如く5μm以下とすることで、DLC膜74の密着性を確保し得る。故に、密着不足によるDLC膜74の成膜不良を抑止できると共に、弁座部19及び弁体部48間での着座時に懸念されるDLC膜74の剥がれも抑止できる。 Further, according to the fuel injection valve 1, the adhesion of the DLC film 74 can be secured by setting the thickness of the DLC film 74 to 5 μm or less as shown in FIGS. Therefore, it is possible to prevent defective formation of the DLC film 74 due to insufficient adhesion, and it is also possible to prevent peeling of the DLC film 74, which is a concern during seating between the valve seat portion 19 and the valve body portion 48.

加えて燃料噴射弁1の製造方法では、第一研磨工程S20の超仕上げによって基材70の下地面70aが研磨状態に形成された後、積層工程S30にて当該下地面70aに積層される被覆層71のうちDLC膜74が与える外表面71aも、第二研磨工程S40の超仕上げによって研磨状態に形成される。これにより「特定弁部」としての弁体部48では、DLC膜74を図4,7の如く2μm超過の厚さに形成して耐摩耗性及び耐久性を確保できるだけでなく、研磨状態にした外表面71aの真円度を図4,6の如く0.6μm以下に抑えて油密性を確保できる。 In addition, in the method for manufacturing the fuel injection valve 1, after the lower ground surface 70a of the base material 70 is formed into a polished state by the superfinishing in the first polishing step S20, the coating that is stacked on the underlying surface 70a in the stacking step S30. The outer surface 71a of the layer 71 provided by the DLC film 74 is also formed in a polished state by the superfinishing in the second polishing step S40. As a result, in the valve body portion 48 as the "specific valve portion", the DLC film 74 is formed to a thickness of more than 2 μm as shown in FIGS. The roundness of the outer surface 71a can be suppressed to 0.6 μm or less as shown in FIGS.

また加えて燃料噴射弁1の製造方法では、第二研磨工程S40の超仕上げによって基材70の下地面70aとの真円度差が0.2μm以下となる研磨状態に、DLC膜74の外表面71aが形成される。これによれば、第一研磨工程S20の超仕上げによって基材70の下地面70aを研磨状態にしておくことで、当該下地面70aに積層される被覆層71のうちDLC膜74が外表面71aに与える真円度を、第二研磨工程S40の超仕上げによって図4,6の如き0.6μm以下まで簡単に抑え得る。故に、油密性を確保する効果の信頼性を、高めることができる。 In addition, in the manufacturing method of the fuel injection valve 1, the superfinishing in the second polishing step S40 causes the outside of the DLC film 74 to be in a polished state in which the circularity difference with the lower ground surface 70a of the base material 70 is 0.2 μm or less. The surface 71a is formed. According to this, the lower surface 70a of the base material 70 is kept in a polishing state by the superfinishing in the first polishing step S20, so that the DLC film 74 in the coating layer 71 laminated on the base surface 70a is the outer surface 71a. The roundness given to the above can be easily suppressed to 0.6 μm or less as shown in FIGS. 4 and 6 by superfinishing in the second polishing step S40. Therefore, the reliability of the effect of ensuring oil tightness can be enhanced.

(他の実施形態)
以上、本発明の一実施形態について説明したが、本発明は、当該実施形態に限定して解釈されるものではなく、本発明の要旨を逸脱しない範囲内において種々の実施形態に適用することができる。
(Other embodiments)
Although one embodiment of the present invention has been described above, the present invention should not be construed as being limited to the embodiment, and may be applied to various embodiments without departing from the scope of the present invention. it can.

具体的に変形例1では、図13に示す「特定弁部」としての弁座部19を形成する基材70の下地面70aに対して、DLC膜74(図3参照)を有する被覆層71が積層されていてもよい。変形例2では、図14に示す「特定弁部」としての弁座部19及び弁体部48をそれぞれ形成する基材70の下地面70aに対して、DLC膜74(図3参照)を有する被覆層71が積層されていてもよい。 Specifically, in the modified example 1, the coating layer 71 having the DLC film 74 (see FIG. 3) is formed on the lower ground surface 70a of the base material 70 forming the valve seat portion 19 as the “specific valve portion” shown in FIG. May be laminated. In the second modification, the DLC film 74 (see FIG. 3) is provided on the lower ground surface 70a of the base material 70 forming the valve seat portion 19 and the valve body portion 48 as the “specific valve portion” shown in FIG. 14, respectively. The coating layer 71 may be laminated.

変形例3では、例えばDLC膜74に求められる摩耗量の許容上限値等に応じて、DLC膜74の屈折率が2.2未満又は2.4超過の値に設定されていてもよい。変形例4では、例えばDLC膜74の成膜に必要な温度等に応じて、DLC膜74の屈折率が2.4超過の値に設定されていてもよい。変形例5では、例えばDLC膜74に求められる基材70への密着性等に応じて、DLC膜74の厚さが5μm超過の値に設定されていてもよい。変形例6では、例えば基材70の下地面70aにて達成可能な真円度等に応じて、下地面70aとDLC膜74の外表面71aとの真円度差が0.2μm超過の値に設定されていてもよい。 In Modification 3, for example, the refractive index of the DLC film 74 may be set to a value less than 2.2 or more than 2.4 depending on the allowable upper limit value of the wear amount required for the DLC film 74 and the like. In Modification 4, for example, the refractive index of the DLC film 74 may be set to a value exceeding 2.4 depending on the temperature or the like required for forming the DLC film 74. In Modification Example 5, the thickness of the DLC film 74 may be set to a value exceeding 5 μm depending on, for example, the adhesiveness to the base material 70 required for the DLC film 74. In Modification 6, for example, the roundness difference between the underlayer 70a and the outer surface 71a of the DLC film 74 exceeds 0.2 μm depending on the roundness that can be achieved on the lower ground 70a of the substrate 70. It may be set to.

1 燃料噴射弁、10 弁ハウジング、18 噴孔、19 弁座部、40 弁部材、48 弁体部、70 基材、70a 下地面、71 被覆層、71a 外表面、72 第一中間膜、73 第二中間膜、74 DLC膜、1000,1001 ローラ、1002,1005 砥石、1003 真空チャンバ、1004 ターゲット、C 中心軸線、S10 準備工程、S20 第一研磨工程、S30 積層工程、S40 第二研磨工程 DESCRIPTION OF SYMBOLS 1 fuel injection valve, 10 valve housing, 18 injection hole, 19 valve seat part, 40 valve member, 48 valve body part, 70 base material, 70a lower ground, 71 coating layer, 71a outer surface, 72 first intermediate film, 73 Second intermediate film, 74 DLC film, 1000,1001 roller, 1002,1005 grindstone, 1003 vacuum chamber, 1004 target, C central axis, S10 preparation step, S20 first polishing step, S30 laminating step, S40 second polishing step

Claims (6)

内燃機関へ燃料を噴射する噴孔(18)、及び前記噴孔よりも上流側にて円形内輪郭の弁座部(19)を有する弁ハウジング(10)と、
前記弁ハウジング内に収容されており、前記弁座部に対して同軸上に離着座する円形外輪郭の弁体部(48)を有し、当該離着座により前記噴孔からの燃料噴射を断続させる弁部材(40)と、
前記弁座部及び前記弁体部のうち少なくとも一方である特定弁部は、
研磨状態の下地面(70a)を有する基材(70)と、
研磨状態の外表面(71a)に0.6μm以下の真円度を与えているダイヤモンドライクカーボン膜(74)を2μm超過の厚さにて有し、前記下地面に積層されている被覆層(71)とを、含んで構成され
前記ダイヤモンドライクカーボン膜は、前記特定弁部において、前記弁座部及び前記弁体部間での繰り返しの着座が生じる部分に、2.2以上且つ2.4以下の屈折率をもって成膜されている燃料噴射弁。
A valve housing (10) having an injection hole (18) for injecting fuel into the internal combustion engine, and a valve seat portion (19) having a circular inner contour upstream of the injection hole;
The valve housing (48) is housed in the valve housing and has a circular outer contour that is seated on and off from the valve seat coaxially. The seat allows the fuel injection from the injection hole to be interrupted. A valve member (40) for
The specific valve portion, which is at least one of the valve seat portion and the valve body portion,
A substrate (70) having a ground surface (70a) in a polished state;
A coating layer (which has a diamond-like carbon film (74) having a roundness of 0.6 μm or less on the polished outer surface (71a) with a thickness of more than 2 μm and is laminated on the base surface ( 71) and are included ,
The diamond-like carbon film is formed with a refractive index of 2.2 or more and 2.4 or less on a portion of the specific valve portion where repeated seating occurs between the valve seat portion and the valve body portion. Fuel injection valve.
前記ダイヤモンドライクカーボン膜は、0.05μm以上の真円度を前記外表面に与えている請求項1に記載の燃料噴射弁。 The fuel injection valve according to claim 1, wherein the diamond-like carbon film imparts a circularity of 0.05 μm or more to the outer surface. 前記ダイヤモンドライクカーボン膜は、5μm以下の厚さにて成膜されている請求項1又は2に記載の燃料噴射弁。 The diamond-like carbon film, a fuel injection valve according to claim 1 or 2 being deposited at a thickness of less than 5 [mu] m. 請求項1〜のいずれかに記載の燃料噴射弁を製造する方法であって、
前記基材に超仕上げを施すことにより、前記下地面を研磨状態に形成する第一研磨工程(S20)と、
前記ダイヤモンドライクカーボン膜を有する前記被覆層を、研磨状態の前記下地面に積層する積層工程(S30)と、
前記ダイヤモンドライクカーボン膜に超仕上げを施すことにより、前記外表面を研磨状態に形成する第二研磨工程(S40)とを、含む燃料噴射弁の製造方法。
A method of manufacturing a fuel injection valve according to any one of claims 1 to 3
A first polishing step (S20) of forming the base surface in a polished state by subjecting the base material to superfinishing;
A stacking step (S30) of stacking the coating layer having the diamond-like carbon film on the ground surface in a polished state,
A second polishing step (S40) of forming the outer surface into a polished state by subjecting the diamond-like carbon film to a superfinishing process, the method of manufacturing a fuel injection valve.
前記第二研磨工程では、研磨状態の前記下地面との真円度差が0.2μm以下の研磨状態に前記外表面を形成する請求項に記載の燃料噴射弁の製造方法。 The method of manufacturing a fuel injection valve according to claim 4 , wherein in the second polishing step, the outer surface is formed in a polished state having a circularity difference of 0.2 μm or less with respect to the ground surface in the polished state. 内燃機関へ燃料を噴射する噴孔(18)、及び前記噴孔よりも上流側にて円形内輪郭の弁座部(19)を有する弁ハウジング(10)と、 A valve housing (10) having an injection hole (18) for injecting fuel into the internal combustion engine, and a valve seat portion (19) having a circular inner contour upstream of the injection hole;
前記弁ハウジング内に収容されており、前記弁座部に対して同軸上に離着座する円形外輪郭の弁体部(48)を有し、当該離着座により前記噴孔からの燃料噴射を断続させる弁部材(40)と、 The valve housing (48) is housed in the valve housing and has a circular outer contour that is seated on and off from the valve seat coaxially. The seat allows the fuel injection from the injection hole to be interrupted. A valve member (40) for
前記弁座部及び前記弁体部のうち少なくとも一方である特定弁部は、 The specific valve portion, which is at least one of the valve seat portion and the valve body portion,
研磨状態の下地面(70a)を有する基材(70)と、 A substrate (70) having a ground surface (70a) in a polished state;
研磨状態の外表面(71a)に0.6μm以下の真円度を与えているダイヤモンドライクカーボン膜(74)を2μm超過の厚さにて有し、前記下地面に積層されている被覆層(71)とを、含んで構成されている燃料噴射弁を製造する方法であって、 A coating layer (which has a diamond-like carbon film (74) having a roundness of 0.6 μm or less on the polished outer surface (71a) with a thickness of more than 2 μm and is laminated on the base surface ( 71) and a method of manufacturing a fuel injection valve including:
前記基材に超仕上げを施すことにより、前記下地面を研磨状態に形成する第一研磨工程(S20)と、 A first polishing step (S20) of forming the base surface in a polished state by subjecting the base material to superfinishing;
前記ダイヤモンドライクカーボン膜を有する前記被覆層を、研磨状態の前記下地面に積層する積層工程(S30)と、 A stacking step (S30) of stacking the coating layer having the diamond-like carbon film on the ground surface in a polished state,
前記ダイヤモンドライクカーボン膜に超仕上げを施すことにより、前記外表面を研磨状態に形成する第二研磨工程(S40)とを、含み、 A second polishing step (S40) of forming the outer surface into a polished state by superfinishing the diamond-like carbon film,
前記第二研磨工程では、研磨状態の前記下地面との真円度差が0.2μm以下の研磨状態に前記外表面を形成する燃料噴射弁の製造方法。 In the second polishing step, the method of manufacturing a fuel injection valve, wherein the outer surface is formed in a polished state having a circularity difference of 0.2 μm or less from the ground surface in the polished state.
JP2017008221A 2017-01-20 2017-01-20 Fuel injection valve and manufacturing method thereof Expired - Fee Related JP6737191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017008221A JP6737191B2 (en) 2017-01-20 2017-01-20 Fuel injection valve and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017008221A JP6737191B2 (en) 2017-01-20 2017-01-20 Fuel injection valve and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018115629A JP2018115629A (en) 2018-07-26
JP6737191B2 true JP6737191B2 (en) 2020-08-05

Family

ID=62984816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017008221A Expired - Fee Related JP6737191B2 (en) 2017-01-20 2017-01-20 Fuel injection valve and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6737191B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3147140B2 (en) * 1994-10-06 2001-03-19 株式会社デンソー Processing method of seat part of valve seat
JP2006153976A (en) * 2004-11-25 2006-06-15 Nippon Shinku Kogaku Kk Infra-red light transmission filter
TW200837982A (en) * 2007-03-07 2008-09-16 Everlight Electronics Co Ltd Semiconductor light emitting apparatus and the manufacturing method thereof
JP5483384B2 (en) * 2007-06-01 2014-05-07 国立大学法人豊橋技術科学大学 DLC film and DLC coated mold
JP5322592B2 (en) * 2008-11-10 2013-10-23 Ntn株式会社 Rocker arm assembly
JP2012224043A (en) * 2011-04-22 2012-11-15 Hitachi Ltd Slide member including diamond-like-carbon (dlc) film
JP2013194779A (en) * 2012-03-16 2013-09-30 Nsk Ltd Roller bearing for steel production facility, and method for producing the same
JP5744000B2 (en) * 2012-12-20 2015-07-01 ヤマハ発動機株式会社 Sliding component for internal combustion engine, internal combustion engine, transport equipment, and method for manufacturing sliding component for internal combustion engine
JP6043233B2 (en) * 2013-04-15 2016-12-14 株式会社神戸製鋼所 Amorphous carbon-based film and method for producing the same
JP6327915B2 (en) * 2013-04-25 2018-05-23 株式会社豊田中央研究所 Sliding machine
JP6277854B2 (en) * 2014-05-15 2018-02-14 株式会社デンソー Injector with sliding member

Also Published As

Publication number Publication date
JP2018115629A (en) 2018-07-26

Similar Documents

Publication Publication Date Title
KR100573503B1 (en) Electromagnetically actuated fuel injection valve for fuel injection devices of internal combustion engines
US7735757B2 (en) Gaseous fuel injection valve
JP5178683B2 (en) Electromagnetic fuel injection valve
CN101025136B (en) Electromagnetic fuel injector and method for assembling the same
JP6095769B2 (en) Rocker assembly with improved durability
US7258284B2 (en) Fuel injector with a metering assembly having a seat molded to a polymeric support member
JP2002521614A (en) Solenoid operated valve
JP6205482B2 (en) Solenoid valve
US20060086920A1 (en) Electromagnetic fuel injection valve
US7909270B2 (en) Valve assembly for an injection valve and injection valve
JP5638971B2 (en) Electromagnetic drive device and high-pressure pump
JP2006307870A (en) Electromagnetic valve for fuel pump
JP6737191B2 (en) Fuel injection valve and manufacturing method thereof
JP5195740B2 (en) solenoid valve
JP6507890B2 (en) Fuel injection valve
WO2006135085A1 (en) High-pressure seal structure, processing method for high-pressure seal surface, and fuel injection valve
WO2014156575A1 (en) Seal valve and method for manufacturing same
JP5716788B2 (en) Fuel injection valve
JPH11247739A (en) Electromagnetic fuel injection valve
JP4022856B2 (en) Electromagnetic actuator
JP3147140B2 (en) Processing method of seat part of valve seat
JP2008231961A (en) Fuel injection valve
JP5578258B2 (en) Fuel injection valve
JP2004270490A (en) Electromagnetic driving device, fuel injection valve using the same, and method for manufacturing the device
JP4126557B2 (en) Solenoid valve device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R151 Written notification of patent or utility model registration

Ref document number: 6737191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees