JP5716788B2 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP5716788B2
JP5716788B2 JP2013092823A JP2013092823A JP5716788B2 JP 5716788 B2 JP5716788 B2 JP 5716788B2 JP 2013092823 A JP2013092823 A JP 2013092823A JP 2013092823 A JP2013092823 A JP 2013092823A JP 5716788 B2 JP5716788 B2 JP 5716788B2
Authority
JP
Japan
Prior art keywords
fuel
valve
diameter
downstream side
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013092823A
Other languages
Japanese (ja)
Other versions
JP2013144990A (en
Inventor
典嗣 加藤
典嗣 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013092823A priority Critical patent/JP5716788B2/en
Publication of JP2013144990A publication Critical patent/JP2013144990A/en
Application granted granted Critical
Publication of JP5716788B2 publication Critical patent/JP5716788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

本発明は、噴孔から内燃機関へ燃料を噴射する燃料噴射弁に関する。   The present invention relates to a fuel injection valve that injects fuel from an injection hole to an internal combustion engine.

従来、弁ボディにおいて噴孔よりも燃料上流側に設けられた弁座部に対して、弁部材の弁部を離着座させることにより、噴孔からの燃料噴射を断続するようにした燃料噴射弁が知られている。   2. Description of the Related Art Conventionally, a fuel injection valve in which fuel injection from an injection hole is intermittently performed by detaching and seating a valve part of a valve member with respect to a valve seat part provided upstream of the injection hole in a valve body. It has been known.

こうした燃料噴射弁の一種として特許文献1に開示のものは、弁部の燃料上流側から径外側へ突出して弁ボディにより案内される案内部を弁部材に設け、燃料を流通させる燃料流路を当該案内部と弁ボディとの間に形成している。かかる構成によれば、案内部の案内によって弁座部への弁部の離着座が正確となるだけでなく、当該離着座のうち離座時には、燃料流路を通じて燃料が案内部の上流側から下流側へ確実に流通するので、噴孔からの燃料噴射が案内部によっては妨げられない。   As a kind of such fuel injection valve, the one disclosed in Patent Document 1 is provided with a fuel flow path through which fuel is circulated by providing a guide member, which is guided by a valve body, protruding from the fuel upstream side of the valve portion to the outside of the diameter. It is formed between the guide part and the valve body. According to such a configuration, not only the valve seat to and from the valve seat is accurately guided by the guide portion, but also the fuel flows from the upstream side of the guide portion through the fuel flow path at the time of leaving the seat. Since it flows reliably to the downstream side, fuel injection from the injection hole is not hindered by the guide portion.

特開平8−128373号公報JP-A-8-128373

さて、特許文献1に開示の燃料噴射弁の案内部は、弁ボディとの間に形成される燃料流路の燃料下流側にて、弁部との径差を埋める段差面により当該弁部と接続された形となっている。そのため、燃料流路から下流側の弁部へ向かう燃料流れは、案内部の段差面から剥離して渦状の乱流を発生させるおそれがある。しかし、特許文献1に開示の燃料噴射弁において弁部は、弁座部に対して離着座する燃料下流側の当接部へ向かって一定径の円柱状に形成されているため、段差面からの剥離により乱流状態となった燃料流れを整流することができない。その結果、当接部近傍における燃料流れの流速が流通箇所によって不均一となることから、当該当接部よりも下流側となる噴孔からの噴射燃料について、噴霧状態にバラツキを招来するおそれがあった。   Now, the guide part of the fuel injection valve disclosed in Patent Document 1 is located on the downstream side of the fuel flow path formed between the valve body and the valve part by a step surface that fills the difference in diameter with the valve part. It is in a connected form. For this reason, the fuel flow from the fuel flow path toward the downstream valve portion may be separated from the stepped surface of the guide portion to generate a spiral turbulent flow. However, in the fuel injection valve disclosed in Patent Document 1, the valve portion is formed in a cylindrical shape with a constant diameter toward the contact portion on the downstream side of the fuel that is separated from the valve seat portion. It is not possible to rectify the fuel flow that has become turbulent due to the separation of the fuel. As a result, the flow velocity of the fuel flow in the vicinity of the abutting portion becomes non-uniform depending on the flow location, and there is a risk of causing a variation in the spray state with respect to the fuel injected from the nozzle hole on the downstream side of the abutting portion. there were.

本発明は、このような問題に鑑みてなされたものであって、その目的は、噴孔からの噴射燃料について噴霧状態のバラツキを抑制する燃料噴射弁を提供することにある。   This invention is made | formed in view of such a problem, The objective is to provide the fuel injection valve which suppresses the dispersion | variation in a spray state about the injection fuel from an injection hole.

請求項1に記載の発明は、内燃機関へ燃料を噴射する噴孔、並びに噴孔よりも燃料上流側に設けられる弁座部、を有する弁ボディと、弁座部に対する離着座により噴孔からの燃料噴射を断続する弁部、並びに弁部の燃料上流側から径外側へ突出して弁ボディにより案内される案内部、を有する弁部材と、を備え、燃料が流通する燃料流路を弁ボディとの間に形成する案内部は、当該燃料流路の燃料下流側において、弁部との径差を埋める段差面により弁部と接続される燃料噴射弁であって、弁座部は、燃料下流側へ向かって縮径するテーパ面状の弁座面を形成し、弁部には、弁座面に対して離着座するために燃料下流側へ向かって縮径する当接部、並びに円筒面状外周面から燃料下流側の当接部へ向かって縮径する少なくとも一つの縮径面が、設けられ、燃料下流側へ向かって縮径率が一定のテーパ面状、又は燃料下流側へ向かうほど縮径率が大きな凸形曲面状のいずれかに形成される縮径面は全て、弁座面よりも燃料上流側において弁ボディの円筒面状内周面により囲まれ、当接部から燃料上流側の縮径面までの円筒面状外周面における軸方向長さは、当該燃料上流側の縮径面から段差面又はさらに燃料上流側の縮径面までの円筒面状外周面における軸方向長さよりも、長く、全ての縮径面を囲む円筒面状内周面よりも燃料下流側且つ噴孔よりも燃料上流側に設けられる弁座面の外周縁に対して、当接部から燃料上流側の縮径面までの円筒面状外周面と、当該燃料上流側の縮径面から段差面又はさらに燃料上流側の縮径面までの円筒面状外周面とは、径方向内側に位置することを特徴とする。 According to a first aspect of the present invention, there is provided a valve body having a nozzle hole for injecting fuel to an internal combustion engine, and a valve seat portion provided on the fuel upstream side of the nozzle hole; And a valve member having a guide portion that protrudes radially outward from the fuel upstream side of the valve portion and is guided by the valve body, and the fuel flow path through which the fuel flows The guide portion formed between the fuel flow path and the valve portion is a fuel injection valve connected to the valve portion by a stepped surface that fills the difference in diameter with the valve portion on the fuel downstream side of the fuel flow path. A tapered valve seat surface that is reduced in diameter toward the downstream side is formed, and a contact portion that is reduced in diameter toward the downstream side of the fuel in order to detach from and seat on the valve seat surface, and a cylinder There is at least one reduced diameter surface that decreases in diameter from the planar outer peripheral surface toward the contact portion on the downstream side of the fuel. All of the diameter-reduced surfaces formed in either a tapered surface with a constant diameter reduction toward the fuel downstream side or a convex curved surface with a larger diameter reduction rate toward the fuel downstream side are all valve seats. The axial length of the cylindrical outer peripheral surface surrounded by the cylindrical inner peripheral surface of the valve body on the upstream side of the surface and from the contact portion to the reduced diameter surface on the upstream side of the fuel is than the axial length of the cylindrical surface outer peripheral surface of the reduced diameter surface to reduced diameter surface of the stepped surface or even fuel upstream, long rather, the fuel downstream side of the cylindrical surface shape in the peripheral surface surrounding all of the reduced diameter surface Further, with respect to the outer peripheral edge of the valve seat surface provided on the fuel upstream side from the nozzle hole, from the cylindrical outer peripheral surface from the contact portion to the reduced diameter surface on the upstream side of the fuel, and the reduced diameter surface on the upstream side of the fuel the stepped surface or even cylindrical surface outer peripheral surface to the contraction diameter surface of the fuel upstream, that is positioned radially inwardly And butterflies.


このように、請求項1に記載の発明の弁部材によると、弁部の燃料上流側から径外側へ突出する案内部は、それを案内する弁ボディとの間に形成の燃料流路の燃料下流側において、当該弁部との径差を埋める段差面により当該弁部と接続されている。そのため、燃料流路から下流側の弁部へ向かう燃料流れは、案内部の段差面から剥離して渦状の乱流を発生させるおそれがある。

Thus, according to the valve member of the first aspect of the present invention, the fuel in the fuel flow path formed between the guide portion that protrudes radially outward from the fuel upstream side of the valve portion and the valve body that guides the guide portion is provided. On the downstream side, the valve portion is connected to the valve portion by a stepped surface that fills the diameter difference from the valve portion. For this reason, the fuel flow from the fuel flow path toward the downstream valve portion may be separated from the stepped surface of the guide portion to generate a spiral turbulent flow.

そこで、請求項1に記載の発明の弁部材によると、弁部には、弁ボディの弁座部に対して離着座する燃料下流側の当接部へ向かって縮径するように、縮径面が設けられる。これによれば、段差面からの剥離によって乱流状態となった燃料は、下流側へ向かって縮径する縮径面に沿いながら当該下流側へと流通することで、流速が低下して昇圧される。かかる昇圧の結果、乱流状態の燃料は整流されて下流側の当接部近傍まで達するので、当該近傍における燃料流れの流速は、流通箇所によって不均一になり難い。しかも、請求項1に記載の発明によると、燃料下流側へ向かって縮径率が一定のテーパ面状、又は当該下流側へ向かうほど縮径率が大きな凸形曲面状の縮径面には、当該下流側へ流通する燃料を確実に沿わせることができるので、整流作用の発揮が確固たるものとなる。以上のことから、当接部よりも下流側となる噴孔からの噴射燃料について、噴霧状態のバラツキを抑制することが可能となるのである。   Therefore, according to the valve member of the first aspect of the present invention, the diameter of the valve portion is reduced so that the diameter of the valve portion is reduced toward the contact portion on the downstream side of the fuel that is separated from the valve seat portion of the valve body. A surface is provided. According to this, the fuel that has become a turbulent state due to separation from the stepped surface flows along the reduced diameter surface that decreases in diameter toward the downstream side, and then flows to the downstream side. Is done. As a result of this pressure increase, the fuel in the turbulent state is rectified and reaches the vicinity of the contact portion on the downstream side, so that the fuel flow velocity in the vicinity is unlikely to be uneven depending on the distribution location. In addition, according to the first aspect of the present invention, there is a taper surface with a constant diameter reduction toward the fuel downstream side, or a convex curved diameter reduction surface with a larger diameter reduction rate toward the downstream side. Since the fuel flowing to the downstream side can be surely aligned, the rectifying effect is firmly demonstrated. From the above, it is possible to suppress the variation in the spray state of the fuel injected from the nozzle hole on the downstream side of the contact portion.

請求項2に記載の発明によると、段差面は、弁ボディと案内部との間の燃料流路に対して径内側に拡がる。このように、弁ボディと案内部との間の燃料流路に対して径内側に拡がる段差面からは、当該燃料流路から燃料下流側の弁部へと向かう燃料流れが剥離し易い。しかし、上述の如き縮径面が設けられることによれば、段差面からの剥離によって乱流状態となった燃料に整流作用を及ぼして、噴霧状態のバラツキ抑制に貢献することができるのである。   According to the second aspect of the present invention, the stepped surface extends radially inward with respect to the fuel flow path between the valve body and the guide portion. As described above, the fuel flow from the fuel flow path toward the valve portion on the downstream side of the fuel is likely to be peeled off from the step surface that expands radially inward with respect to the fuel flow path between the valve body and the guide portion. However, by providing the reduced diameter surface as described above, it is possible to exert a rectifying action on the fuel that has become a turbulent state due to the separation from the step surface, thereby contributing to suppression of variations in the spray state.

請求項3に記載の発明によると、弁部は、燃料下流側の当接部へ向かって縮径面を複数形成することにより複数段に縮径され、各縮径面の形状は、テーパ面状及び凸形曲面状のうち、それぞれに予め定められた一方である。これによれば、燃料下流側の当接部へ向かって弁部材の弁部を複数段に縮径してなる各縮径面に沿うようにして、乱流状態の燃料が流れることで、当接部近傍に達するまでの間の当該燃料には、整流作用が繰り返し及ぼされ得る。故に、当接部近傍での燃料流速の不均一さを十分に解消して、噴霧状態のバラツキ抑制に貢献することができるのである。   According to the invention of claim 3, the valve portion is reduced in diameter to a plurality of stages by forming a plurality of reduced diameter surfaces toward the contact portion on the downstream side of the fuel, and the shape of each reduced diameter surface is a tapered surface. Of the curved surface and the convex curved surface. According to this, the fuel in a turbulent state flows along the respective diameter-reduced surfaces formed by reducing the valve portion of the valve member in multiple stages toward the contact portion on the downstream side of the fuel. Rectification may be repeatedly exerted on the fuel until the vicinity of the contact portion is reached. Therefore, the non-uniformity of the fuel flow velocity in the vicinity of the contact portion can be sufficiently eliminated, and the spray state variation can be suppressed.

請求項4に記載の発明によると、燃料下流側の弁部へ向かって縮径する段差面は、燃料下流側へ向かって縮径率が一定のテーパ面状、又は燃料下流側へ向かうほど縮径率が大きな凸形曲面状に形成される。このように案内部において、燃料下流側の弁部へ向かって縮径する縮径率が当該下流側へ向かって一定のテーパ面状、又は縮径率が当該下流側ほど大きな凸形曲面状に形成の段差面には、燃料上流側の燃料流路から弁部へ向かう燃料流れが沿い易くなる。これによれば、燃料流速の不均一さを招く乱流の発生自体を低減して、噴霧状態のバラツキ抑制に貢献することができるのである。   According to the fourth aspect of the present invention, the stepped surface that is reduced in diameter toward the valve portion on the downstream side of the fuel is tapered toward the downstream side of the fuel or is tapered toward the downstream side of the fuel. A convex curved surface having a large diameter ratio is formed. As described above, in the guide portion, the diameter reduction rate that is reduced toward the valve portion on the downstream side of the fuel is a constant tapered surface shape toward the downstream side, or a convex curved surface shape in which the diameter reduction rate is larger toward the downstream side. The fuel flow from the fuel flow path on the upstream side of the fuel toward the valve portion is likely to follow the stepped surface of the formation. According to this, generation | occurrence | production of the turbulent flow which causes the nonuniformity of a fuel flow velocity itself can be reduced, and it can contribute to suppression of the dispersion | variation in a spray state.

尚、「縮径率」とは、燃料下流側へ向かうに従って縮小する径につき、当該下流側へ向かう方向の単位距離に対する径変化量を意味している。   The “diameter reduction ratio” means a diameter change amount with respect to a unit distance in a direction toward the downstream side with respect to a diameter that decreases toward the fuel downstream side.

本発明の第一実施形態による燃料噴射弁を示す断面図である。It is sectional drawing which shows the fuel injection valve by 1st embodiment of this invention. 本発明の第一実施形態による燃料噴射弁の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve by 1st embodiment of this invention. 図2のIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 図2のIV−IV線断面図である。It is the IV-IV sectional view taken on the line of FIG. 図1の要部をさらに拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of FIG. 本発明の第二実施形態による燃料噴射弁の要部を示す図であって、図5に対応する断面図である。It is a figure which shows the principal part of the fuel injection valve by 2nd embodiment of this invention, Comprising: It is sectional drawing corresponding to FIG. 本発明の第三実施形態による燃料噴射弁の要部を示す図であって、図5に対応する断面図である。It is a figure which shows the principal part of the fuel injection valve by 3rd embodiment of this invention, Comprising: It is sectional drawing corresponding to FIG. 本発明の第四実施形態による燃料噴射弁の要部を示す図であって、図5に対応する断面図である。It is a figure which shows the principal part of the fuel injection valve by 4th embodiment of this invention, Comprising: It is sectional drawing corresponding to FIG. 本発明の第五実施形態による燃料噴射弁の要部を示す図であって、図2に対応する断面図である。It is a figure which shows the principal part of the fuel injection valve by 5th embodiment of this invention, Comprising: It is sectional drawing corresponding to FIG. 本発明の第五実施形態による燃料噴射弁の要部を示す図であって、図5に対応する断面図である。It is a figure which shows the principal part of the fuel injection valve by 5th embodiment of this invention, Comprising: It is sectional drawing corresponding to FIG. 本発明の第五実施形態の変形例による燃料噴射弁の要部を示す図であって、図5に対応する断面図である。It is a figure which shows the principal part of the fuel injection valve by the modification of 5th embodiment of this invention, Comprising: It is sectional drawing corresponding to FIG. 本発明の第五実施形態の別の変形例による燃料噴射弁の要部を示す図であって、図5に対応する断面図である。It is a figure which shows the principal part of the fuel injection valve by another modification of 5th embodiment of this invention, Comprising: It is sectional drawing corresponding to FIG.

以下、本発明の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. In addition, the overlapping description is abbreviate | omitted by attaching | subjecting the same code | symbol to the corresponding component in each embodiment.

(第一実施形態)
図1は、本発明の第一実施形態による燃料噴射弁10を示している。燃料噴射弁10は、内燃機関としてのガソリンエンジンに設置され、当該ガソリンエンジンの燃焼室(図示しない)へ燃料を噴射する。尚、かかる適用形態以外にも、例えば燃料噴射弁10は、ガソリンエンジンの燃焼室に連通する吸気通路へ燃料を噴射するものであってもよいし、内燃機関としてのディーゼルエンジンの燃焼室へ燃料を噴射するものであってもよい。
(First embodiment)
FIG. 1 shows a fuel injection valve 10 according to a first embodiment of the present invention. The fuel injection valve 10 is installed in a gasoline engine as an internal combustion engine, and injects fuel into a combustion chamber (not shown) of the gasoline engine. In addition to this application form, for example, the fuel injection valve 10 may inject fuel into an intake passage communicating with a combustion chamber of a gasoline engine, or fuel into a combustion chamber of a diesel engine as an internal combustion engine. May be used.

(基本部分)
以下、燃料噴射弁10の基本部分について、詳細に説明する。燃料噴射弁10は、弁ボディ11、固定コア20、可動コア30、弁部材40、弾性部材50、並びに駆動部60を備えている。
(Basic part)
Hereinafter, the basic part of the fuel injection valve 10 will be described in detail. The fuel injection valve 10 includes a valve body 11, a fixed core 20, a movable core 30, a valve member 40, an elastic member 50, and a drive unit 60.

弁ボディ11は、コアハウジング12、入口部材13、ノズルホルダ14及びノズルボディ15等から構成されている。コアハウジング12は円筒状に形成されており、軸方向の一端部側から他端部側へ向かって順に第一磁性部12a、非磁性部12b及び第二磁性部12cを有している。磁性からなる各磁性部12a,12cと、非磁性材からなる非磁性部12bとは、レーザ溶接等によって結合されている。かかる結合構造によって非磁性部12bは、第一磁性部12aと第二磁性部12cの間において磁束が短絡するのを防止している。   The valve body 11 includes a core housing 12, an inlet member 13, a nozzle holder 14, a nozzle body 15, and the like. The core housing 12 is formed in a cylindrical shape, and includes a first magnetic portion 12a, a nonmagnetic portion 12b, and a second magnetic portion 12c in order from one end side in the axial direction toward the other end side. The magnetic portions 12a and 12c made of magnetism and the nonmagnetic portion 12b made of a nonmagnetic material are coupled by laser welding or the like. With such a coupling structure, the nonmagnetic portion 12b prevents the magnetic flux from being short-circuited between the first magnetic portion 12a and the second magnetic portion 12c.

第二磁性部12cにおいて非磁性部12bとは反対側の軸方向端部には、円筒状の入口部材13が固定されている。入口部材13は、燃料ポンプ(図示しない)から燃料が供給される燃料入口13aを形成している。燃料入口13aへの供給燃料を濾過して下流側のコアハウジング12内へ導くために本実施形態では、入口部材13の内周側に燃料フィルタ16が固定されている。   A cylindrical inlet member 13 is fixed to the axial end of the second magnetic portion 12c opposite to the nonmagnetic portion 12b. The inlet member 13 forms a fuel inlet 13a to which fuel is supplied from a fuel pump (not shown). In this embodiment, a fuel filter 16 is fixed to the inner peripheral side of the inlet member 13 in order to filter the fuel supplied to the fuel inlet 13a and guide it into the core housing 12 on the downstream side.

第一磁性部12aにおいて非磁性部12bとは反対側の軸方向端部には、磁性材によって円筒状に形成されたノズルホルダ14を介して、ノズルボディ15が固定されている。ノズルボディ15は有底円筒状に形成されており、コアハウジング12及びノズルホルダ14と共同して燃料空間17を内周側に形成している。   A nozzle body 15 is fixed to an axial end of the first magnetic portion 12a opposite to the nonmagnetic portion 12b via a nozzle holder 14 formed in a cylindrical shape by a magnetic material. The nozzle body 15 is formed in a bottomed cylindrical shape and forms a fuel space 17 on the inner peripheral side in cooperation with the core housing 12 and the nozzle holder 14.

ノズルボディ15は、噴孔18及び弁座部19を有している。図2,3に示すように噴孔18は、ノズルボディ15の中心軸線15a周りに等間隔をあけて複数設けられ、それぞれ円筒孔状に形成されている。各噴孔18は、中心軸線15a周りの同一仮想円15b上に燃料入口側が位置し、且つ燃料出口側(燃料下流側)へ向かうに従ってノズルボディ15の外周側に傾斜している。尚、噴孔18の形成形態、例えば形成数や形状、傾斜角度等については、図2,3に示すもの以外にも適宜設定可能である。   The nozzle body 15 has a nozzle hole 18 and a valve seat portion 19. As shown in FIGS. 2 and 3, a plurality of nozzle holes 18 are provided at equal intervals around the central axis 15 a of the nozzle body 15 and are each formed in a cylindrical hole shape. Each nozzle hole 18 is located on the same virtual circle 15b around the central axis 15a, and is inclined toward the outer peripheral side of the nozzle body 15 toward the fuel outlet side (fuel downstream side). In addition, about the formation form of the nozzle hole 18, for example, the number and shape of formation, an inclination angle, etc., it can set suitably other than what is shown in FIG.

図2に示すように弁座部19は、各噴孔18に対して燃料上流側に設けられている。弁座部19は、軸方向のうち燃料下流側へ向かうに従って一定の縮径率で縮径するテーパ面状の内周面により、弁座面19aを形成している。   As shown in FIG. 2, the valve seat 19 is provided on the fuel upstream side with respect to each nozzle hole 18. The valve seat part 19 forms a valve seat surface 19a by an inner peripheral surface having a tapered surface that is reduced in diameter in a certain diameter reduction rate toward the fuel downstream side in the axial direction.

図1に示すように固定コア20は、磁性材によって円筒状に形成されており、コアハウジング12のうち非磁性部12b及び第二磁性部12cの内周面に同軸上に固定されている。固定コア20には、その中央部を軸方向に貫通する貫通孔20aが設けられている。燃料入口13aから燃料フィルタ16を経て貫通孔20aへ流入する燃料は、その下流側となる可動コア30側へ向かって当該貫通孔20aから流出することとなる。   As shown in FIG. 1, the fixed core 20 is formed in a cylindrical shape by a magnetic material, and is coaxially fixed to the inner peripheral surfaces of the nonmagnetic portion 12 b and the second magnetic portion 12 c in the core housing 12. The fixed core 20 is provided with a through hole 20a penetrating the center portion in the axial direction. The fuel that flows into the through hole 20a from the fuel inlet 13a through the fuel filter 16 flows out of the through hole 20a toward the movable core 30 that is the downstream side.

可動コア30は、磁性材によって段付円筒状に形成されており、コアハウジング12の内周側に同軸上に配置されて燃料上流側の固定コア20と軸方向に対向している。可動コア30は、コアハウジング12のうち非磁性部12bの内周壁によって案内されることで、軸方向両側への正確な往復移動が可能となっている。可動コア30には、その中央部を軸方向に貫通する第一貫通孔30aと、軸方向中間部を径内側から径外側へ貫通して第一貫通孔30aに連通する第二貫通孔30bとが、設けられている。固定コア20の貫通孔20aから流出した燃料は、その下流側において可動コア30の第一貫通孔30aへ流入し、第二貫通孔30bからコアハウジング12内の燃料空間17へ流出することになる。   The movable core 30 is formed of a magnetic material in a stepped cylindrical shape, is coaxially disposed on the inner peripheral side of the core housing 12, and faces the fixed core 20 on the upstream side of the fuel in the axial direction. The movable core 30 is guided by the inner peripheral wall of the nonmagnetic portion 12b of the core housing 12, so that the movable core 30 can be accurately reciprocated on both sides in the axial direction. The movable core 30 has a first through hole 30a that passes through the central portion thereof in the axial direction, a second through hole 30b that passes through the axial intermediate portion from the radially inner side to the radially outer side and communicates with the first through hole 30a. Is provided. The fuel that has flowed out of the through hole 20a of the fixed core 20 flows into the first through hole 30a of the movable core 30 on the downstream side, and flows out from the second through hole 30b into the fuel space 17 in the core housing 12. .

弁部材40は、非磁性材によって横断面が円形のニードル状に形成されており、弁ボディ11のうち要素12,14,15が内周側に形成する燃料空間17内に同軸上に配置されている。弁部材40において燃料上流側の軸方向端部は、可動コア30の第一貫通孔30aの内周面に同軸上に固定されている。   The valve member 40 is formed in a needle shape having a circular cross section by a nonmagnetic material, and is coaxially disposed in a fuel space 17 in which elements 12, 14, and 15 of the valve body 11 are formed on the inner peripheral side. ing. The axial end of the upstream side of the fuel in the valve member 40 is coaxially fixed to the inner peripheral surface of the first through hole 30 a of the movable core 30.

弁部材40は、その軸方向において、燃料下流側の端部に弁部41を有し、当該弁部41よりも燃料上流側に案内部44を有している。図2に示すように弁部41は、軸方向のうち燃料下流側へ向かうに従って縮径する当接部41aを形成しており、弁座面19aに対して当該当接部41aを当接可能に対向させている。弁部材40が当接部41aを弁座面19aから離座させる開弁作動時には、燃料空間17の燃料が各噴孔18から燃焼室へ噴射される。また一方、弁部材40が当接部41aを弁座面19aに着座させる閉弁作動時には、各噴孔18から燃焼室への燃料噴射が遮断されるのである。   The valve member 40 has a valve portion 41 at the end on the fuel downstream side in the axial direction, and a guide portion 44 on the fuel upstream side with respect to the valve portion 41. As shown in FIG. 2, the valve portion 41 forms a contact portion 41a having a diameter that decreases toward the fuel downstream side in the axial direction, and the contact portion 41a can contact the valve seat surface 19a. Is facing. During the valve opening operation in which the valve member 40 separates the contact portion 41a from the valve seat surface 19a, the fuel in the fuel space 17 is injected from each nozzle hole 18 into the combustion chamber. On the other hand, during the valve closing operation in which the valve member 40 seats the contact portion 41a on the valve seat surface 19a, the fuel injection from each nozzle hole 18 to the combustion chamber is blocked.

図2,4に示すように案内部44は、弁部41のうち当接部41aとは反対側の軸方向端部から径外側へ鍔状に突出しており、その突出縁を形成する外周面44aをノズルボディ15の内周面15cに接触させている。かかる接触構造によって案内部44は、外周面44aをノズルボディ15の内周面15cによって摺動案内されることで、軸方向に正確に往復移動可能となっている。   As shown in FIGS. 2 and 4, the guide portion 44 protrudes from the axial end portion of the valve portion 41 opposite to the abutting portion 41 a to the outside in the form of a bowl, and an outer peripheral surface forming a protruding edge thereof 44 a is brought into contact with the inner peripheral surface 15 c of the nozzle body 15. With this contact structure, the guide portion 44 can slide and guide the outer peripheral surface 44a by the inner peripheral surface 15c of the nozzle body 15 so that it can accurately reciprocate in the axial direction.

案内部44は、軸方向に貫通する燃料孔45を形成している。燃料孔45は、案内部44の周方向に等間隔をあけて設けられ、それぞれ案内部44の外周面44a及び軸方向端面44b,44cに開口している。かかる開口形態によって各燃料孔45は、燃料空間17のうち案内部44よりも上流側から下流側へ向かって燃料を流通させる燃料流路46を、案内部44とノズルボディ15との間に形成している。それと共に、案内部44において弁部41と接続されている側の軸方向端面44bは、各燃料流路46の燃料下流側において弁部41との径差を埋める段差面44bを形成しており、それら燃料流路46に対して径内側に拡がっている。   The guide part 44 forms a fuel hole 45 penetrating in the axial direction. The fuel holes 45 are provided at equal intervals in the circumferential direction of the guide portion 44 and open to the outer peripheral surface 44a and the axial end surfaces 44b and 44c of the guide portion 44, respectively. Due to such an opening form, each fuel hole 45 forms a fuel flow path 46 between the guide portion 44 and the nozzle body 15 for allowing fuel to flow from the upstream side to the downstream side of the guide portion 44 in the fuel space 17. doing. At the same time, the axial end surface 44 b on the side of the guide portion 44 connected to the valve portion 41 forms a step surface 44 b that fills the difference in diameter with the valve portion 41 on the fuel downstream side of each fuel flow path 46. The fuel flow passage 46 extends radially inward.

図1に示すように、弾性部材50は金属製の圧縮コイルスプリングからなり、固定コア20に設けられた貫通孔20aの内周側に同軸上に収容されている。弾性部材50の一端部は、貫通孔20aの内周面に固定されたアジャスティングパイプ22の軸方向端部に係止されている。弾性部材50の他端部は、可動コア30のうち第一貫通孔30aの内面に係止されている。かかる係止構造によって弾性部材50は、それを挟む要素22,30間にて圧縮されることによって弾性変形する。したがって、弾性部材50が弾性変形によって発生する復原力は、弁部材40と共に可動コア30を燃料下流側へ付勢する付勢力となる。尚、弾性部材50のセット荷重は、貫通孔20aへのアジャスティングパイプ22の圧入量に応じて調整されている。   As shown in FIG. 1, the elastic member 50 is made of a metal compression coil spring, and is accommodated coaxially on the inner peripheral side of the through hole 20 a provided in the fixed core 20. One end of the elastic member 50 is locked to the axial end of the adjusting pipe 22 fixed to the inner peripheral surface of the through hole 20a. The other end of the elastic member 50 is locked to the inner surface of the first through hole 30 a of the movable core 30. With this locking structure, the elastic member 50 is elastically deformed by being compressed between the elements 22 and 30 sandwiching the elastic member 50. Therefore, the restoring force generated by the elastic deformation of the elastic member 50 becomes an urging force for urging the movable core 30 together with the valve member 40 toward the fuel downstream side. The set load of the elastic member 50 is adjusted according to the amount of press fitting of the adjusting pipe 22 into the through hole 20a.

駆動部60は、コイル61、樹脂ボビン62、磁性ヨーク63、コネクタ64等から構成されている。コイル61は、樹脂ボビン62に金属線材を巻回してなり、その外周側に磁性ヨーク63が配置されている。コイル61は、コアハウジング12のうち固定コア20の外周側となる非磁性部12b及び第二磁性部12cの外周面に、樹脂ボビン62を介して同軸上に固定されている。コイル61は、コネクタ64に設けられたターミナル64aを介して外部の制御回路(図示しない)と電気接続されており、当該制御回路によって通電制御されるようになっている。   The drive unit 60 includes a coil 61, a resin bobbin 62, a magnetic yoke 63, a connector 64, and the like. The coil 61 is formed by winding a metal wire around a resin bobbin 62, and a magnetic yoke 63 is disposed on the outer peripheral side thereof. The coil 61 is coaxially fixed to the outer peripheral surfaces of the nonmagnetic portion 12 b and the second magnetic portion 12 c on the outer peripheral side of the fixed core 20 in the core housing 12 via a resin bobbin 62. The coil 61 is electrically connected to an external control circuit (not shown) via a terminal 64a provided on the connector 64, and energization is controlled by the control circuit.

ここで、コイル61が通電によって励磁するときには、磁性ヨーク63、ノズルホルダ14、第一磁性部12a、可動コア30、固定コア20及び第二磁性部12cが共同して形成する磁気回路に、磁束が流れる。その結果、可動コア30と固定コア20との間に、可動コア30を燃料上流側の固定コア20へ向かって吸引する磁気吸引力が発生する。また一方、通電の停止によってコイル61が消磁するときには、上述の磁気回路に磁束が流れなくなるため、可動コア30と固定コア20との間において磁気吸引力が消失するのである。   Here, when the coil 61 is excited by energization, the magnetic yoke 63, the nozzle holder 14, the first magnetic part 12a, the movable core 30, the fixed core 20, and the second magnetic part 12c form a magnetic circuit together. Flows. As a result, a magnetic attractive force that attracts the movable core 30 toward the fixed core 20 on the upstream side of the fuel is generated between the movable core 30 and the fixed core 20. On the other hand, when the coil 61 is demagnetized by stopping energization, the magnetic flux does not flow in the above-described magnetic circuit, so that the magnetic attractive force disappears between the movable core 30 and the fixed core 20.

このように構成された燃料噴射弁10の開弁作動では、コイル61への通電が開始されることで、磁気吸引力が可動コア30に作用する。すると、弁部材40と共に可動コア30は、弾性部材50の復原力に抗して固定コア20側へと移動することで、当該固定コア20と当接して停止する。その結果、弁座面19aから当接部41aが離座した状態となるので、各噴孔18から燃料が噴射されることとなる。   In the valve opening operation of the fuel injection valve 10 configured as described above, the magnetic attractive force acts on the movable core 30 by starting energization of the coil 61. Then, the movable core 30 together with the valve member 40 moves to the fixed core 20 side against the restoring force of the elastic member 50, and comes into contact with the fixed core 20 and stops. As a result, since the contact portion 41a is separated from the valve seat surface 19a, fuel is injected from each nozzle hole 18.

こうした開弁作動後における燃料噴射弁10の閉弁作動では、コイル61への通電が停止されることで、可動コア30に作用する磁気吸引力が消失する。すると、弁部材40と共に可動コア30は、弾性部材50の復原力による付勢側へと移動することで、当該弁部材40を弁座部19と当接させて停止する。その結果、弁座面19aに当接部41aが着座した状態となるので、各噴孔18からの燃料噴射が停止することとなる。   In the valve closing operation of the fuel injection valve 10 after such valve opening operation, the magnetic attraction force acting on the movable core 30 disappears by stopping the energization of the coil 61. Then, the movable core 30 together with the valve member 40 moves to the urging side by the restoring force of the elastic member 50, thereby bringing the valve member 40 into contact with the valve seat portion 19 and stopping. As a result, since the contact portion 41a is seated on the valve seat surface 19a, fuel injection from each nozzle hole 18 is stopped.

(特徴部分)
以下、燃料噴射弁10の弁部41及び案内部44につき、図2に示す特徴部分を説明する。
(Characteristic part)
Hereinafter, the characteristic part shown in FIG. 2 about the valve part 41 and the guide part 44 of the fuel injection valve 10 is demonstrated.

図2,5に示すように弁部41は、尖端側の当接部41aと案内部44の段差面44bとの間において外周面41bが当接部41aへ向かって一段縮径されることで、縮径面48を軸方向の一箇所に形成している。縮径面48は、軸方向のうち当接部41a側となる燃料下流側へ向かうに従って縮径し且つ縮径率が当該下流側へ向かって一定のテーパ面状に形成されている。さらに本実施形態では、かかる縮径面48に準じて案内部44の段差面44bは、軸方向のうち弁部41側となる燃料下流側へ向かうに従って縮径し且つ縮径率が当該下流側へ向かって一定のテーパ面状に形成されている。   As shown in FIGS. 2 and 5, the valve portion 41 is formed by reducing the outer peripheral surface 41 b by one step toward the contact portion 41 a between the contact portion 41 a on the pointed end side and the step surface 44 b of the guide portion 44. The reduced diameter surface 48 is formed at one place in the axial direction. The diameter-reduced surface 48 is formed in a tapered surface shape that is reduced in diameter in the axial direction toward the downstream side of the fuel, which is on the contact portion 41a side, and whose diameter reduction rate is constant toward the downstream side. Further, in the present embodiment, the stepped surface 44b of the guide portion 44 is reduced in diameter in accordance with the reduced diameter surface 48 toward the fuel downstream side on the valve portion 41 side in the axial direction, and the reduced diameter ratio is on the downstream side. It is formed in the shape of a fixed taper surface toward.

このような弁部41及び案内部44を備えた燃料噴射弁10の開弁作動において、弁部材40の周囲を囲む燃料空間17の燃料は、案内部44の上流側から各燃料流路46を通じて下流側へと流動する。このとき、案内部44の外周面44aと弁部41の外周面41bとの径差を各燃料流路46の径内側にて埋める段差面44bからは、各燃料流路46から下流側の弁部41へ向かう燃料流れが剥離することで、渦状の乱流を発生させる事態が懸念される。   In the opening operation of the fuel injection valve 10 including the valve portion 41 and the guide portion 44, the fuel in the fuel space 17 surrounding the valve member 40 passes through the fuel flow paths 46 from the upstream side of the guide portion 44. Flows downstream. At this time, from the step surface 44b that fills the difference in diameter between the outer peripheral surface 44a of the guide portion 44 and the outer peripheral surface 41b of the valve portion 41 inside the diameter of each fuel flow path 46, the downstream valve from each fuel flow path 46 There is a concern that a vortex-like turbulent flow may occur due to separation of the fuel flow toward the portion 41.

しかし、本実施形態の案内部44において段差面44bは、燃料下流側へ向かって縮径する縮径率が一定となるようにテーパ面状に形成されているので、当該段差面44bには、各燃料流路46から弁部41へと向かう燃料流れが沿い易くなる。またそれに加えて、本実施形態の弁部41には、燃料下流側へ向かって縮径する縮径率が一定となるようなテーパ面状の縮径面48が形成されているので、当該縮径面48には、段差面44b側から燃料下流側の当接部41aへと向かう燃料流れが沿い易くなる。このとき、段差面44bからの剥離によって乱流状態となった燃料は、下流側へ向かって縮径する縮径面48に沿いつつ当該下流側へ流通することで、流速が低下して昇圧されることになる。かかる昇圧の結果、乱流状態の燃料は整流されて下流側の当接部41aの近傍に到達するので、当該近傍における燃料流れの流速は、流通箇所によって不均一になり難い。したがって、当接部41aよりも下流側となる噴孔18からの噴射燃料につき、噴霧状態のバラツキを抑制することが可能となるのである。   However, in the guide portion 44 of the present embodiment, the step surface 44b is formed in a tapered surface shape so that the diameter reduction rate of diameter reduction toward the fuel downstream side is constant. The fuel flow from each fuel flow path 46 toward the valve portion 41 is easy to follow. In addition to this, the valve portion 41 of the present embodiment is formed with a tapered diameter-reducing surface 48 that has a constant diameter reduction rate that reduces the diameter toward the fuel downstream side. A fuel flow from the stepped surface 44b side to the abutting portion 41a on the downstream side of the fuel becomes easy to follow along the radial surface 48. At this time, the fuel in a turbulent state due to the separation from the step surface 44b flows along the diameter-reduced surface 48 that is diameter-reduced toward the downstream side and flows to the downstream side. Will be. As a result of such pressure increase, the turbulent fuel is rectified and reaches the vicinity of the downstream abutting portion 41a, so that the flow rate of the fuel flow in the vicinity is unlikely to be uneven depending on the distribution location. Therefore, it is possible to suppress variations in the spray state for the fuel injected from the nozzle hole 18 on the downstream side of the contact portion 41a.

(第二実施形態)
図6は、本発明の第一実施形態の変形例である第二実施形態の燃料噴射弁210について、その要部を拡大して示している。燃料噴射弁210の弁部材240において弁部241に一段設けられる縮径面248は、径外側(外周側)へ膨らむ凸形曲面状に縮径されている。したがって、かかる縮径面248の縮径率は、当接部41a側となる軸方向の燃料下流側へ向かうほど大きくなるように、設定されている。
(Second embodiment)
FIG. 6 shows an enlarged main part of a fuel injection valve 210 of the second embodiment which is a modification of the first embodiment of the present invention. In the valve member 240 of the fuel injection valve 210, the diameter-reduced surface 248 provided on the valve portion 241 is reduced in diameter to a convex curved surface that swells to the outer side (outer peripheral side). Therefore, the diameter reduction rate of the diameter reducing surface 248 is set so as to increase toward the fuel downstream side in the axial direction on the contact portion 41a side.

このような第二実施形態の縮径面248によっても、燃料噴射弁210の開弁作動において、案内部44の段差面44b側から燃料下流側の当接部41aへと向かう燃料流れが沿い易くなる。これによれば、段差面44bからの剥離により乱流状態となった燃料流れであっても、当接部41aの近傍に達するまでの間に整流され得るので、当該当接部41aよりも下流側の噴孔18から噴射される燃料につき、噴霧状態のバラツキ抑制が可能となるのである。   Also with the diameter-reduced surface 248 of the second embodiment, in the valve opening operation of the fuel injection valve 210, the fuel flow from the stepped surface 44b side of the guide portion 44 toward the contact portion 41a on the downstream side of the fuel is easy to follow. Become. According to this, even if the fuel flow is in a turbulent state due to separation from the stepped surface 44b, it can be rectified before reaching the vicinity of the contact portion 41a, and therefore downstream of the contact portion 41a. It is possible to suppress variation in the spray state of the fuel injected from the side injection hole 18.

(第三及び第四実施形態)
図7は、本発明の第一実施形態の変形例である第三実施形態の燃料噴射弁310について、その要部を拡大して示し、また図8は、本発明の第二実施形態の変形例である第四実施形態の燃料噴射弁410について、その要部を拡大して示している。燃料噴射弁310,410の弁部材340,440において、それぞれ案内部344,444と弁部41,241との径差を各燃料流路46の径内側にて埋める段差面344b,444bは、径外側(外周側)へ膨らむ凸形曲面状に縮径されている。したがって、かかる段差面344b,444bの縮径率は、それぞれ弁部41,241側となる軸方向の燃料下流側へ向かうほど大きくなるように、設定されている。
(Third and fourth embodiments)
FIG. 7 shows an enlarged view of the main part of a fuel injection valve 310 of the third embodiment, which is a modification of the first embodiment of the present invention. FIG. 8 shows a modification of the second embodiment of the present invention. About the fuel injection valve 410 of 4th embodiment which is an example, the principal part is expanded and shown. In the valve members 340 and 440 of the fuel injection valves 310 and 410, the step surfaces 344 b and 444 b that fill the difference in diameter between the guide portions 344 and 444 and the valve portions 41 and 241 inside the diameters of the fuel flow paths 46 have diameters. The diameter is reduced to a convex curved surface that swells outward (outer peripheral side). Therefore, the diameter reduction ratios of the step surfaces 344b and 444b are set so as to increase toward the fuel downstream side in the axial direction on the valve portions 41 and 241 side, respectively.

このような第三及び第四実施形態の段差面344b,444bも、燃料噴射弁310,410の開弁作動において、各燃料流路46から燃料下流側の弁部41,241へと向かう燃料流れが沿い易くなる。これによれば、段差面344b,444bからの燃料剥離に起因した乱流の発生自体が低減され得るので、それら段差面344b,444bよりも下流側となる噴孔18からの噴射燃料につき、噴霧状態のバラツキ抑制が可能となるのである。   The step surfaces 344b and 444b of the third and fourth embodiments also serve as fuel flows from the fuel flow paths 46 toward the valve portions 41 and 241 on the fuel downstream side when the fuel injection valves 310 and 410 are opened. Becomes easier to follow. According to this, since the generation of turbulent flow due to fuel separation from the step surfaces 344b and 444b can be reduced, the fuel sprayed from the nozzle hole 18 on the downstream side of the step surfaces 344b and 444b is sprayed. It is possible to suppress the variation in the state.

(第五実施形態)
図9,10は、本発明の第一実施形態の変形例である第五実施形態の燃料噴射弁510について、その要部を拡大して示している。燃料噴射弁510において弁部材540の弁部541は、尖端側の当接部41aと案内部44の段差面44bとの間にて外周面541bが当接部41aへ向かって複数段に縮径されることで、第一実施形態に準じた形状の縮径面48を軸方向の複数個所(図9,10では、二箇所)に形成している。したがって、各縮径面48のうち燃料下流側のものほど、小径となっている。
(Fifth embodiment)
9 and 10 show an enlarged main portion of a fuel injection valve 510 of a fifth embodiment which is a modification of the first embodiment of the present invention. In the fuel injection valve 510, the valve portion 541 of the valve member 540 has a diameter of the outer peripheral surface 541b reduced in a plurality of stages toward the contact portion 41a between the pointed contact portion 41a and the stepped surface 44b of the guide portion 44. As a result, the reduced diameter surfaces 48 having the shape according to the first embodiment are formed at a plurality of axial positions (two positions in FIGS. 9 and 10). Therefore, the diameter of the diameter-reduced surface 48 on the downstream side of the fuel is smaller.

このように、複数の縮径面48の形成によって弁部541を複数段に縮径してなる第五実施形態の開弁作動においては、案内部44の段差面44b側から燃料下流側の当接部41aへと向かう燃料流れが、それら縮径面48に順次沿うようにして流れることとなる。これによれば、段差面44bからの剥離により乱流状態となった燃料流れであっても、当接部41aの近傍に達するまでの間に整流作用が繰り返し及ぼされ得る。故に、当接部41aよりも下流側の噴孔18から噴射される燃料につき、噴霧状態のバラツキ抑制が可能となるのである。   Thus, in the valve opening operation of the fifth embodiment in which the diameter of the valve portion 541 is reduced to a plurality of stages by forming the plurality of diameter-reduced surfaces 48, the contact of the guide portion 44 from the step surface 44b side to the fuel downstream side is reduced. The fuel flow toward the contact portion 41a flows along the reduced diameter surfaces 48 in order. According to this, even if the fuel flow is in a turbulent state due to separation from the step surface 44b, the rectifying action can be repeatedly exerted before reaching the vicinity of the contact portion 41a. Therefore, it is possible to suppress variation in the spray state of the fuel injected from the nozzle hole 18 on the downstream side of the contact portion 41a.

尚、第五実施形態の変形例を図11に示すように、少なくとも一方の縮径面48(図11では、燃料下流側の縮径面48のみ)に代わる縮径面として、第二実施形態に準じた形状の縮径面248が予め定められていてもよい。また、第五実施形態の別の変形例を図12に示すように、段差面44bに代わる段差面として、第三実施形態に準じた形状の段差面344bが予め定められていてもよい。   As shown in FIG. 11 as a modification of the fifth embodiment, the second embodiment is a reduced diameter surface that replaces at least one reduced diameter surface 48 (in FIG. 11, only the reduced diameter surface 48 on the downstream side of the fuel). The diameter-reduced surface 248 having a shape conforming to the above may be determined in advance. Further, as shown in FIG. 12, another modified example of the fifth embodiment may be provided with a step surface 344b having a shape according to the third embodiment as a step surface instead of the step surface 44b.

以上、本発明の複数の実施形態について説明したが、本発明は、それらの実施形態に限定して解釈されるものではなく、本発明の要旨を逸脱しない範囲内において種々の実施形態に適用することができるのである。   Although a plurality of embodiments of the present invention have been described above, the present invention is not construed as being limited to these embodiments, and can be applied to various embodiments without departing from the scope of the present invention. It can be done.

10,210,310,410,510 燃料噴射弁、11 弁ボディ、15 ノズルボディ、15c 内周面、17 燃料空間、18 噴孔、19 弁座部、19a 弁座面、20 固定コア、30 可動コア、40,240,340,440,540 弁部材、41,241,541 弁部、41a 当接部、41b,541b 外周面、44,344,444 案内部、44a 外周面、44b,344b,444b 段差面、45 燃料孔、46 燃料流路、48,248 縮径面、50 弾性部材、60 駆動部 10, 210, 310, 410, 510 Fuel injection valve, 11 Valve body, 15 Nozzle body, 15c Inner peripheral surface, 17 Fuel space, 18 Injection hole, 19 Valve seat part, 19a Valve seat surface, 20 Fixed core, 30 Movable Core, 40, 240, 340, 440, 540 Valve member, 41, 241, 541 Valve portion, 41a Contact portion, 41b, 541b Outer peripheral surface, 44, 344, 444 Guide portion, 44a Outer peripheral surface, 44b, 344b, 444b Step surface, 45 Fuel hole, 46 Fuel flow path, 48, 248 Reduced diameter surface, 50 Elastic member, 60 Drive part

Claims (4)

内燃機関へ燃料を噴射する噴孔、並びに前記噴孔よりも燃料上流側に設けられる弁座部、を有する弁ボディと、
前記弁座部に対する離着座により前記噴孔からの燃料噴射を断続する弁部、並びに前記弁部の燃料上流側から径外側へ突出して前記弁ボディにより案内される案内部、を有する弁部材と、
を備え、燃料が流通する燃料流路を前記弁ボディとの間に形成する前記案内部は、当該燃料流路の燃料下流側において、前記弁部との径差を埋める段差面により前記弁部と接続される燃料噴射弁であって、
前記弁座部は、燃料下流側へ向かって縮径するテーパ面状の弁座面を形成し、
前記弁部には、前記弁座面に対して離着座するために燃料下流側へ向かって縮径する当接部、並びに円筒面状外周面から燃料下流側の前記当接部へ向かって縮径する少なくとも一つの縮径面が、設けられ、
燃料下流側へ向かって縮径率が一定のテーパ面状、又は燃料下流側へ向かうほど縮径率が大きな凸形曲面状のいずれかに形成される前記縮径面は全て、前記弁座面よりも燃料上流側において前記弁ボディの円筒面状内周面により囲まれ、
前記当接部から燃料上流側の前記縮径面までの前記円筒面外周面における軸方向長さは、当該燃料上流側の前記縮径面から前記段差面又はさらに燃料上流側の前記縮径面までの前記円筒面状外周面における軸方向長さよりも、長く、
全ての前記縮径面を囲む前記円筒面状内周面よりも燃料下流側且つ前記噴孔よりも燃料上流側に設けられる前記弁座面の外周縁に対して、前記当接部から燃料上流側の前記縮径面までの前記円筒面状外周面と、当該燃料上流側の前記縮径面から前記段差面又はさらに燃料上流側の前記縮径面までの前記円筒面状外周面とは、径方向内側に位置することを特徴とする燃料噴射弁。
A valve body having a nozzle hole for injecting fuel to the internal combustion engine, and a valve seat provided on the fuel upstream side of the nozzle hole;
A valve member having a valve portion for intermittently injecting fuel from the nozzle hole by being attached to and detached from the valve seat portion, and a guide portion that protrudes radially outward from the fuel upstream side of the valve portion and is guided by the valve body; ,
The guide portion that forms a fuel flow path through which the fuel flows is formed between the valve portion and a stepped surface that fills a difference in diameter with the valve portion on the fuel downstream side of the fuel flow path. A fuel injection valve connected to
The valve seat portion forms a tapered valve seat surface that is reduced in diameter toward the fuel downstream side,
The valve portion includes a contact portion that decreases in diameter toward the downstream side of the fuel so as to be separated from and seated on the valve seat surface, and a contraction toward the contact portion on the downstream side of the fuel from a cylindrical outer peripheral surface. At least one reduced diameter surface is provided,
All of the reduced diameter surfaces formed in either a tapered surface shape with a constant diameter reduction toward the fuel downstream side or a convex curved surface shape with a larger diameter reduction rate toward the fuel downstream side are all the valve seat surfaces. Surrounded by a cylindrical inner peripheral surface of the valve body on the upstream side of the fuel,
Wherein those axial length from the contact portion in the cylindrical surface outer peripheral surface to the reduced diameter surface of the fuel upstream, the diameter of said from reduced diameter surface stepped surface or even fuel upstream of the fuel upstream than the axial length of the cylindrical surface outer peripheral surface to the surface, rather long,
From the abutting portion to the fuel upstream side with respect to the outer peripheral edge of the valve seat surface provided on the fuel downstream side of the cylindrical inner peripheral surface surrounding all the reduced diameter surfaces and on the fuel upstream side of the nozzle holes The cylindrical outer peripheral surface from the reduced diameter surface on the side and the cylindrical outer peripheral surface from the reduced diameter surface on the fuel upstream side to the stepped surface or further to the reduced diameter surface on the fuel upstream side, A fuel injection valve, which is located radially inside .
前記段差面は、前記弁ボディと前記案内部との間の前記燃料流路に対して径内側に拡がることを特徴とする請求項1に記載の燃料噴射弁。   2. The fuel injection valve according to claim 1, wherein the step surface extends radially inward with respect to the fuel flow path between the valve body and the guide portion. 前記弁部は、燃料下流側の前記当接部へ向かって前記縮径面を複数形成することにより複数段に縮径され、
各前記縮径面の形状は、前記テーパ面状及び前記凸形曲面状のうち、それぞれに予め定められた一方であることを特徴とする請求項1又は2に記載の燃料噴射弁。
The valve portion is reduced in diameter to a plurality of stages by forming a plurality of the reduced diameter surfaces toward the contact portion on the downstream side of the fuel,
3. The fuel injection valve according to claim 1, wherein a shape of each of the reduced diameter surfaces is one predetermined in each of the tapered surface shape and the convex curved surface shape. 4.
燃料下流側の前記弁部へ向かって縮径する前記段差面は、燃料下流側へ向かって縮径率が一定のテーパ面状、又は燃料下流側へ向かうほど縮径率が大きな凸形曲面状に形成されることを特徴とする請求項1〜3のいずれか一項に記載の燃料噴射弁。   The stepped surface that is reduced in diameter toward the valve portion on the downstream side of the fuel is a tapered surface having a constant diameter reduction toward the downstream side of the fuel, or a convex curved surface having a larger diameter reduction rate toward the downstream side of the fuel. The fuel injection valve according to claim 1, wherein the fuel injection valve is formed as follows.
JP2013092823A 2013-04-25 2013-04-25 Fuel injection valve Active JP5716788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013092823A JP5716788B2 (en) 2013-04-25 2013-04-25 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013092823A JP5716788B2 (en) 2013-04-25 2013-04-25 Fuel injection valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009285628A Division JP2011127487A (en) 2009-12-16 2009-12-16 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2013144990A JP2013144990A (en) 2013-07-25
JP5716788B2 true JP5716788B2 (en) 2015-05-13

Family

ID=49040892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013092823A Active JP5716788B2 (en) 2013-04-25 2013-04-25 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP5716788B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105584A (en) * 2013-11-28 2015-06-08 愛三工業株式会社 Gas fuel supply device
JP7068488B2 (en) * 2018-10-23 2022-05-16 三菱電機株式会社 Electromagnetic fuel injection valve

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4099738B2 (en) * 1998-11-20 2008-06-11 株式会社デンソー Fuel injection device
DE10227277A1 (en) * 2002-06-19 2004-01-08 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE10253721A1 (en) * 2002-11-19 2004-06-03 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE10313225A1 (en) * 2003-03-25 2004-10-07 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
ATE371809T1 (en) * 2004-10-01 2007-09-15 Delphi Tech Inc INJECTOR
DE102007032741A1 (en) * 2007-07-13 2009-01-15 Robert Bosch Gmbh Fuel injection valve for internal combustion engines

Also Published As

Publication number Publication date
JP2013144990A (en) 2013-07-25

Similar Documents

Publication Publication Date Title
US9297471B2 (en) Solenoid valve
US10260470B2 (en) Fuel injector
JP2007016774A (en) Fuel injection valve and its manufacturing method
JP5152024B2 (en) Fuel injection valve
JP5482267B2 (en) Fuel injection valve
JP6167992B2 (en) Fuel injection valve and manufacturing method thereof
JP5716788B2 (en) Fuel injection valve
JP4453745B2 (en) Fuel injection valve
JP4577654B2 (en) Electromagnetic drive device and fuel injection valve using the same
JP6264966B2 (en) Fuel injection device
JP5857952B2 (en) Fuel injection valve
US11168656B2 (en) Fuel injection valve and method for manufacturing fuel injection valve
US11493009B2 (en) Fuel injection valve and fuel injection system
US11162465B2 (en) Fuel injection valve
JP2011127487A (en) Fuel injection valve
JP5924764B2 (en) Fuel injection valve
JP2014141902A (en) Fuel injection valve
CN108779747B (en) Fuel injection device
JP2017025926A (en) Fuel injection valve
CN109891083B (en) Fuel injection valve
US10648440B2 (en) Fuel injection valve
JP4117487B2 (en) Fuel injection valve
US10724487B2 (en) Fuel injection valve and fuel injection system
JP6292272B2 (en) Fuel injection valve
WO2019216329A1 (en) Fuel injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R151 Written notification of patent or utility model registration

Ref document number: 5716788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250