WO2019216329A1 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
WO2019216329A1
WO2019216329A1 PCT/JP2019/018325 JP2019018325W WO2019216329A1 WO 2019216329 A1 WO2019216329 A1 WO 2019216329A1 JP 2019018325 W JP2019018325 W JP 2019018325W WO 2019216329 A1 WO2019216329 A1 WO 2019216329A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
valve body
plate
nozzle plate
fuel injection
Prior art date
Application number
PCT/JP2019/018325
Other languages
French (fr)
Japanese (ja)
Inventor
渡辺 正浩
岡本 明浩
靖英 田口
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019216329A1 publication Critical patent/WO2019216329A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Definitions

  • the present disclosure relates to a fuel injection device.
  • a fuel injection device having a plurality of injection holes and including an injector plate joined to an outer end surface of a valve seat member.
  • the injector plate forms an annular flat portion joined to the valve seat member and a protruding portion that protrudes in the opposite direction to the valve seat member inside the annular flat portion. ing.
  • the inner diameter of the protrusion is larger than the valve hole at the center of the valve seat member.
  • a fuel passage is formed between the valve seat member and the injector plate to communicate the valve hole and the injection hole.
  • an injector plate is manufactured by press drawing from a single plate having a uniform thickness in order to form a concave shape that defines a fuel passage. In order to perform such drawing processing, it is necessary to select a soft material. Therefore, there is a concern that the fatigue strength of the injector plate will decrease.
  • the present disclosure has been made in view of the above points, and an object of the present disclosure is to provide a fuel injection device capable of improving the fatigue strength of a plate in which nozzle holes are formed.
  • the fuel injection device of the present disclosure includes a seat portion, a valve body, a valve member, a nozzle plate, and a nozzle holder.
  • the valve body is cylindrical and has a fuel outlet having a smaller diameter than the seat portion.
  • the valve member controls fuel injection and stop by opening and closing the seat portion.
  • the nozzle plate is disposed downstream of the fuel outlet and has injection holes that inject fuel and form spray.
  • the nozzle holder is fixed to the valve body and holds the nozzle plate.
  • the nozzle plate is thinner than the nozzle holder and is spaced apart from the valve body.
  • the nozzle hole is formed radially outward from the fuel outlet.
  • a diameter expansion fluid chamber is formed between the nozzle plate and the valve body so as to extend radially outward from the fuel outlet toward the injection hole.
  • FIG. 1 is a cross-sectional view of the fuel injection device according to the first embodiment.
  • FIG. 2 is an enlarged view of part II in FIG.
  • FIG. 3 is an enlarged view of part III in FIG.
  • FIG. 4 is a view corresponding to FIG. 3 and illustrating the flow of fuel.
  • FIG. 5 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the second embodiment
  • FIG. 6 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the third embodiment
  • FIG. 7 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the fourth embodiment
  • FIG. 8 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the fifth embodiment
  • FIG. 9 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the sixth embodiment
  • FIG. 10 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the seventh embodiment
  • FIG. 11 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the eighth embodiment
  • FIG. 12 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the ninth embodiment
  • FIG. 13 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the tenth embodiment
  • FIG. 14 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the eleventh embodiment
  • FIG. 15 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the twelfth embodiment
  • FIG. 16 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the thirteenth embodiment
  • FIG. 17 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the fourteenth embodiment.
  • the fuel injection device 1 includes a cylindrical member 12, a valve body 20, a nozzle plate 30, a needle 50, a movable core 60, a fixed core 70, a spring 80, a coil 90, and the like.
  • the cylindrical member 12 is formed in a cylindrical shape, and has a first magnetic portion 13, a nonmagnetic portion 14, and a second magnetic portion 15 in order from the lower valve body 20 side in FIG.
  • the first magnetic part 13 and the second magnetic part 15 are made of a magnetic material.
  • the nonmagnetic portion 14 is made of a nonmagnetic material.
  • the first magnetic part 13 and the nonmagnetic part 14, and the nonmagnetic part 14 and the second magnetic part 15 are coupled by, for example, laser welding.
  • the nonmagnetic part 14 prevents the magnetic flux from being short-circuited between the first magnetic part 13 and the second magnetic part 15.
  • the tubular member 12 houses a fuel filter 18 at one end on the second magnetic part 15 side.
  • the valve body 20 is formed in a cylindrical shape and is fixed to the other end portion of the cylindrical member 12.
  • the valve body 20 has a fuel passage 21 through which fuel flows toward the nozzle plate 30.
  • An end of the valve body 20 opposite to the tubular member 12 forms an annular protrusion 23 that protrudes radially inward.
  • an inclined surface valve seat 22 having an inner diameter that decreases toward the nozzle plate 30 is formed.
  • a fuel outlet 24 that is an outlet of the fuel passage 21 is formed inside the annular protrusion 23.
  • the nozzle plate 30 has a plurality of injection holes 32 communicating with the fuel passage 21.
  • the detailed configuration of the nozzle plate 30 will be described later.
  • the needle 50 as a “valve member” is formed in a bottomed cylindrical shape and is accommodated coaxially with the inside of the first magnetic part 13 and the valve body 20.
  • the needle 50 is guided by the inner peripheral portion 25 of the valve body 20 and can reciprocate in the axial direction.
  • the needle 50 has a plurality of fuel holes 52 communicating from the inner wall surface of the cylindrical wall to the outer wall surface.
  • the needle 50 forms a contact portion 51 on the bottom wall located on the valve body 20 side.
  • the contact portion 51 can be seated on the valve seat 22.
  • the fuel passage 21 is closed when the contact portion 51 contacts the valve seat 22.
  • the fuel passage 21 is opened when the contact portion 51 is separated from the valve seat 22.
  • the contact portion 51 and the valve seat 22 constitute the seat portion 10.
  • the fuel outlet 24 is an opening having a smaller diameter than the seat portion 10.
  • the movable core 60 is formed in a cylindrical shape from a magnetic material, and is fixed to an end portion of the needle 50 in the direction opposite to the contact portion 51.
  • the movable core 60 is integrated with the needle 50 and can reciprocate.
  • the fixed core 70 is formed in a cylindrical shape from a magnetic material, and is fixed to the inner peripheral walls of the nonmagnetic portion 14 and the second magnetic portion 15.
  • the fixed core 70 is provided to face the movable core 60 in the direction opposite to the needle 50 of the movable core 60.
  • the spring 80 has one end locked to the movable core 60 and the other end locked to the adjusting pipe 81.
  • the adjusting pipe 81 is press-fitted into the inner peripheral wall of the fixed core 70.
  • the biasing force of the spring 80 is adjusted by adjusting the press-fitting amount of the adjusting pipe 81 into the fixed core 70.
  • the spring 80 applies a restoring force generated by elastic deformation to the movable core 60. Accordingly, the spring 80 biases the needle 50 in the direction in which the needle 50 is seated on the valve seat 22.
  • the spool 91 around which the coil 90 is wound is fixed to the outer peripheral wall of the cylindrical member 12. Outside the coil 90, magnetic members 94 and 95 are provided which are made of a magnetic material and are magnetically connected to each other.
  • the magnetic member 94 is magnetically connected to the first magnetic part 13.
  • the magnetic member 95 is magnetically connected to the second magnetic part 15.
  • the housing 75 covers the outer peripheral side of the cylindrical member 12 and the magnetic members 94 and 95.
  • the movable core 60, the first magnetic part 13, the magnetic members 94 and 95, the second magnetic part 15 and the fixed core 70 constitute a magnetic circuit.
  • the housing 75 has a connector portion 76.
  • a terminal 92 provided at the opening of the connector portion 76 is electrically connected to the coil 90.
  • a drive current is supplied to the coil 90 through the terminal 92.
  • Pressurized fuel flowing from one end of the cylindrical member 12 passes through the fuel passage in the fixed core 70, the fuel passage in the movable core 60, the fuel passage in the needle 50, and the fuel hole 52, and enters the valve body 20.
  • the fuel passage 21 is reached.
  • the fuel that has reached the fuel passage 21 is injected from the injection hole 32 through the gap formed between the contact portion 51 and the valve seat 22 when the contact portion 51 is separated from the valve seat 22.
  • a spray is formed.
  • the needle 50 controls fuel injection and stop by opening and closing the seat portion 10.
  • the fuel injection device 1 further includes a nozzle holder 40.
  • the nozzle holder 40 is fixed to the valve body 20 and holds the nozzle plate 30.
  • the nozzle holder 40 is plate-shaped and annular, and has a through hole 42 penetrating the center.
  • the nozzle holder 40 is welded to the outer end surface of the nozzle holder 40 (that is, the end surface where the fuel outlet 24 is open), and is fixed to the nozzle holder 40 by a welded portion 46 that penetrates the nozzle holder 40 in the plate thickness direction. ing.
  • the nozzle plate 30 has a plate shape and is thinner than the nozzle holder 40.
  • the nozzle plate 30 is fitted in the through hole 42 in a state where the plate thickness direction substantially coincides with the valve body 20.
  • the nozzle plate 30 is disposed away from the valve body 20.
  • the outer peripheral portion (that is, the fitting portion) of the nozzle plate 30 is welded to the inner peripheral portion of the nozzle holder 40 (that is, the inner wall of the through hole 42), and is fixed to the nozzle holder 40 by the welded portion 36.
  • the plate thickness of the nozzle plate 30 is uniform.
  • the plate fixing portion 38 does not protrude from the inlet of the injection hole 32 toward the valve body 20.
  • the inlet of the injection hole 32 has the same axial position as the surface of the plate fixing portion 38 on the valve body 20 side.
  • the nozzle plate 30 and the nozzle holder 40 are arranged such that surfaces opposite to the valve body 20 are aligned in the axial direction.
  • the nozzle hole 32 is drilled by pressing.
  • the material of the nozzle plate 30 is selected from austenite-based material such as SUS304 in consideration of the use environment and press workability.
  • the tempered material SUS304-1 / 2H is selected.
  • the Vickers hardness of this material is 250 Hv or more.
  • the nozzle plate 30 is disposed downstream of the fuel outlet 24.
  • the nozzle hole 32 is formed on the radially outer side than the fuel outlet 24.
  • a diameter expansion fluid chamber 55 is formed that extends radially outward from the fuel outlet 24 toward the injection hole 32.
  • the fuel that has passed through the seat portion 10 once flows radially inward and toward the fuel outlet 24. Then, the fuel that has passed through the fuel outlet 24 flows through the diameter expansion fluid chamber 55 radially outward and is injected from the injection hole 32.
  • the spray can be atomized and diffused.
  • the plate in which the nozzle hole is formed is composed of one part including a portion fixed to the valve body.
  • the plate having such a form has been manufactured by press drawing from a single plate having a uniform thickness. .
  • the nozzle plate 30 having the nozzle holes 32 and the nozzle holder 40 that holds the nozzle plate 30 and is fixed to the valve body 20 are provided, and these two parts form a concave shape. Yes.
  • the nozzle plate 30 is thinner than the nozzle holder 40 and is arranged away from the valve body 20.
  • the nozzle hole 32 is formed on the radially outer side than the fuel outlet 24. Between the nozzle plate 30 and the valve body 20, a diameter expansion fluid chamber 55 is formed that extends radially outward from the fuel outlet 24 toward the injection hole 32.
  • the Vickers hardness of the material of the nozzle plate 30 is 250 Hv or more.
  • SUS304 as a non-refining agent as a material having a Vickers hardness of 200 Hv or less in consideration of drawability.
  • the fatigue strength can be improved by selecting a hard material as the material of the nozzle plate 30 by forming a concave shape with the two parts of the nozzle plate 30 and the nozzle holder 40 as described above.
  • the nozzle plate 30 is arranged so that the plate thickness direction coincides with the axial direction of the valve body 20.
  • the inlet of the injection hole 32 has the same axial position as the surface of the plate fixing portion 38 on the valve body 20 side. That is, the surface of the nozzle plate 30 where the nozzle holes 32 are drilled protrudes from the surface layer portion. More specifically, the nozzle plate 30 has a concave shape and only the injection holes 32 are perforated. Conventionally, since the nozzle hole was opened in the concave bottom surface of the plate, it was difficult to remove the burr at the nozzle hole opening by tape polishing or the like. On the other hand, in the first embodiment, after the injection holes 32 are processed, it is easy to remove burrs from the openings of the injection holes 32 by tape polishing or the like.
  • the nozzle hole 322 of the nozzle plate 302 has a tapered shape.
  • the taper shape includes not only a conical surface but also a shape in which the inner diameter gradually increases or decreases. Thereby, the effect of thinning the liquid film of the fuel flowing in the nozzle hole 322 is obtained. Therefore, atomization of the spray injected from the nozzle hole 322 is promoted, and the engine performance is improved.
  • the configuration other than the above is the same as that of the first embodiment, and the same effect as that of the first embodiment is achieved.
  • a step is formed on the outer side of the nozzle plate 303 on the valve body 20 side.
  • the nozzle plate 303 is welded to the nozzle holder 403 in a state in which the stepped surface 343 lowered by one step is in contact with the nozzle holder 403 in the axial direction.
  • the outer peripheral portion of the nozzle plate 303, that is, the plate fixing portion 383 is fixed to the nozzle holder 403 by a welding portion 363 that penetrates the plate fixing portion 383.
  • the inlet of the nozzle hole 32 is located on the valve body 20 side in the axial direction from the plate fixing portion 383. That is, the surface of the nozzle plate 303 in which the nozzle holes 32 are formed protrudes from the surface layer portion. Therefore, it is easy to remove burrs from the opening of the injection hole 32 by tape polishing after the injection hole 32 is processed.
  • the configuration other than the above is the same as that of the second embodiment, and the same effect as that of the second embodiment is achieved.
  • the plate fixing portion 384 on the outer peripheral portion of the nozzle plate 304 is press-fitted into the inner peripheral portion of the nozzle holder 404 (that is, the inner wall of the through hole 42).
  • the distortion of the nozzle hole 32 by welding with the nozzle plate 304 and the nozzle holder 404 can be eliminated, and the stable spray performance can be ensured.
  • the fourth embodiment has the same configuration as the first embodiment except for the above, and has the same effect as the first embodiment.
  • the nozzle holder 405 has a cup shape having a cylindrical portion 485 that is fitted to the valve body 20.
  • the cylindrical portion 485 is welded to the valve body 20 and is fixed to the valve body 20 with a welded portion 465.
  • the nozzle holder 406 has a cup shape having a cylindrical portion 486 that fits into the valve body 20.
  • the cylinder portion 486 is press-fitted into the valve body 20.
  • relatively large welding energy is required, which causes distortion of the nozzle plate 30.
  • the sixth embodiment has the same configuration as the first embodiment except for the above, and has the same effect as the first embodiment.
  • the nozzle holder 407 has a stepped hole 427 having a large diameter on the side opposite to the valve body 20 at the center.
  • the nozzle plate 307 is welded to the inner wall of the large diameter portion of the stepped hole 427 in a state in which the nozzle plate 307 is in contact with the stepped surface 447 of the stepped hole 427 in the axial direction.
  • An outer peripheral portion of the nozzle plate 307, that is, a plate fixing portion 387 is fixed to the nozzle holder 407 by a welding portion 367.
  • the seventh embodiment has the same configuration as the first embodiment except for the above, and has the same effect as the first embodiment.
  • the plate fixing portion 388 of the nozzle plate 308 is in contact with the stepped surface 447 of the stepped hole 427 of the nozzle holder 408 in the axial direction. It is press-fitted into the inner wall of the large diameter part. Therefore, the position in the axial direction of the nozzle plate 308 can be set by the step height of the stepped hole 427, and positional accuracy can be easily ensured during assembly. Further, the distortion of the nozzle hole 32 due to welding between the nozzle plate 308 and the nozzle holder 408 can be eliminated. Further, the configuration of the eighth embodiment is the same as that of the first embodiment except for the above, and has the same effects as those of the first embodiment.
  • the plate fixing portion 389 of the nozzle plate 309 is in contact with the stepped surface 447 of the stepped hole 427 of the nozzle holder 409 in the axial direction. It is welded to the small diameter part.
  • the nozzle plate 309 and the nozzle holder 409 are fixed to the valve body 20 by a welded portion 369 penetrating them. Therefore, the position in the axial direction of the nozzle plate 309 can be set by the step height of the stepped hole 427, and positional accuracy can be easily ensured during assembly.
  • the assembly man-hour can be reduced.
  • the configuration other than the above is the same as that of the first embodiment, and the same effects as those of the first embodiment are achieved.
  • the nozzle holder 410 has a through hole 42 at the center.
  • a plate fixing portion 390 that is an outer peripheral portion of the nozzle plate 310 is welded to the inner wall of the through hole 42 and is fixed to the nozzle holder 410 by the welding portion 370.
  • the height of the diameter expansion fluid chamber 55 can be easily adjusted by changing the axial fixing position of the nozzle plate 310, and the influence on the spray performance can be easily adjusted.
  • the surface 450 of the nozzle holder 410 opposite to the valve body 20 protrudes on the opposite side of the valve body 20 from the outlet of the nozzle hole 32. Thereby, it can suppress that the exit of the nozzle hole 32 collides with other components and is damaged at the time of the assembly
  • FIG. Further, it is not necessary to set a sleeve for protecting the injection hole 32, and the injection hole 32 can be protected without increasing the number of parts.
  • the configuration other than the above is the same as that of the first embodiment, and the same effects as those of the first embodiment are achieved.
  • the plate fixing portion 391 that is the outer peripheral portion of the nozzle plate 311 is press-fitted into the inner wall of the through hole 42 of the nozzle holder 411.
  • the height of the diameter expansion fluid chamber 55 can be easily adjusted by changing the axial fixing position of the nozzle plate 311, and the influence on the spray performance can be easily adjusted.
  • the configuration of the eleventh embodiment is the same as that of the tenth embodiment except for the above, and has the same effect as the tenth embodiment.
  • the surface 452 of the nozzle holder 412 opposite to the valve body 20 protrudes on the opposite side of the valve body 20 from the outlet of the injection hole 32. Thereby, it can suppress that the exit of the nozzle hole 32 collides with other components and is damaged at the time of the assembly
  • FIG. The configuration of the twelfth embodiment is the same as that of the ninth embodiment except for the above, and has the same effects as those of the ninth embodiment.
  • the plate fixing portion 393, which is the outer peripheral portion of the nozzle plate 313, is welded while being in axial contact with the bottom portion 493 of the cup-shaped nozzle holder 413.
  • the nozzle plate 313 and the nozzle holder 413 are fixed to the valve body 20 by a welded portion 373 penetrating them. Therefore, by fixing the nozzle plate 313 and the nozzle holder 413 to the valve body 20 with the common welded portion 373, the assembly man-hour can be reduced.
  • the configuration other than the above is the same as that of the fifth embodiment, and the same effects as those of the fifth embodiment are achieved.
  • the nozzle plate 314 is formed in a cup shape and is fitted to the nozzle holder 414 and the valve body 20.
  • a plate fixing portion 394 which is an outer peripheral portion of the bottom portion of the nozzle plate 314 is welded in a state of being in contact with an annular plate nozzle holder 414 in the axial direction.
  • the nozzle plate 314 and the nozzle holder 414 are fixed to the valve body 20 by a welded portion 374 penetrating them. Therefore, by fixing the nozzle plate 314 and the nozzle holder 414 to the valve body 20 with the common welded portion 374, the assembly man-hour can be reduced.
  • the configuration of the fourteenth embodiment is the same as that of the thirteenth embodiment except for the above, and has the same effects as the thirteenth embodiment.
  • the nozzle hole is not limited to press working, and may be drilled by other methods such as laser processing.
  • the material of the nozzle plate is not limited to SUS304, and other materials may be selected.
  • the nozzle holder 413 has a cup shape.
  • the nozzle holder may be plate-shaped.
  • the nozzle plate may be fixed by welding or the like in a state where the nozzle plate is overlapped in the axial direction with respect to the plate-like nozzle holder.

Abstract

A fuel injection device (1) is provided with a seat section (10), a hollow cylindrical valve body (20) which has a fuel outlet (24) having a smaller diameter than the seat section (10), a valve member (50) which controls the injection of fuel and the stop thereof by opening and closing the seat section (10), a nozzle plate (30) which is disposed downstream of the fuel outlet (24) and which has a nozzle hole (32) for injecting the fuel to form spray, and a nozzle holder (40) which is affixed to the valve body (20) and which holds the nozzle plate (30). The nozzle plate (30) is disposed at a distance from the valve body (20). The nozzle hole (32) is formed radially outside the fuel outlet (24). A diametrically enlarged fluid chamber (55) which is enlarged radially outward from the fuel outlet (24) toward the nozzle hole (32) is formed between the nozzle plate (30) and the valve body (20).

Description

燃料噴射装置Fuel injection device 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年5月11日に出願された特許出願番号2018-91838号に基づくものであり、ここにその記載内容を援用する。 This application is based on Patent Application No. 2018-91838 filed on May 11, 2018, the contents of which are incorporated herein by reference.
 本開示は、燃料噴射装置に関する。 The present disclosure relates to a fuel injection device.
 従来、複数の噴孔を有し、弁座部材の外端面に接合されるインジェクタプレートを備える燃料噴射装置が知られている。特許文献1に開示された燃料噴射装置では、インジェクタプレートは、弁座部材に接合された環状平坦部と、環状平坦部の内側で弁座部材とは反対方向に突出する突出部とを形成している。突出部の内径は弁座部材の中心部の弁孔よりも大きい。弁座部材とインジェクタプレートとの間には、弁孔と噴孔とを連通させる燃料通路が形成されている。 Conventionally, a fuel injection device having a plurality of injection holes and including an injector plate joined to an outer end surface of a valve seat member is known. In the fuel injection device disclosed in Patent Document 1, the injector plate forms an annular flat portion joined to the valve seat member and a protruding portion that protrudes in the opposite direction to the valve seat member inside the annular flat portion. ing. The inner diameter of the protrusion is larger than the valve hole at the center of the valve seat member. A fuel passage is formed between the valve seat member and the injector plate to communicate the valve hole and the injection hole.
特開2005-54656号公報Japanese Patent Laying-Open No. 2005-54656
 特許文献1では、燃料通路を区画する凹形状を形成するために、1枚の均一板厚の板からプレス絞り加工によりインジェクタプレートが製造される。このような絞り加工を行うためには、軟らかい材料を選定する必要がある。そのため、インジェクタプレートの疲労強度の低下が懸念される。 In Patent Document 1, an injector plate is manufactured by press drawing from a single plate having a uniform thickness in order to form a concave shape that defines a fuel passage. In order to perform such drawing processing, it is necessary to select a soft material. Therefore, there is a concern that the fatigue strength of the injector plate will decrease.
 本開示は、上述の点に鑑みてなされたものであり、その目的は、噴孔が形成されるプレートの疲労強度の向上を図ることができる燃料噴射装置を提供することである。 The present disclosure has been made in view of the above points, and an object of the present disclosure is to provide a fuel injection device capable of improving the fatigue strength of a plate in which nozzle holes are formed.
 本開示の燃料噴射装置は、シート部と、バルブボデーと、弁部材と、ノズルプレートと、ノズルホルダとを備える。バルブボデーは、筒状であり、シート部よりも小径の燃料出口をもつ。弁部材は、シート部を開閉することで燃料の噴射、停止を制御する。ノズルプレートは、燃料出口よりも下流側に配置され、燃料を噴射し噴霧を形成する噴孔を有する。ノズルホルダは、バルブボデーに固定され、ノズルプレートを保持している。 The fuel injection device of the present disclosure includes a seat portion, a valve body, a valve member, a nozzle plate, and a nozzle holder. The valve body is cylindrical and has a fuel outlet having a smaller diameter than the seat portion. The valve member controls fuel injection and stop by opening and closing the seat portion. The nozzle plate is disposed downstream of the fuel outlet and has injection holes that inject fuel and form spray. The nozzle holder is fixed to the valve body and holds the nozzle plate.
 ノズルプレートはノズルホルダより板厚が薄く、バルブボデーから離間して配置されている。噴孔は、燃料出口よりも径方向外側に形成されている。ノズルプレートとバルブボデーとの間には、燃料出口から噴孔へ向かって径方向外側に広がる拡径流体室が形成されている。 The nozzle plate is thinner than the nozzle holder and is spaced apart from the valve body. The nozzle hole is formed radially outward from the fuel outlet. A diameter expansion fluid chamber is formed between the nozzle plate and the valve body so as to extend radially outward from the fuel outlet toward the injection hole.
 これにより、プレス加工による絞り工程を設定する必要がなくなる。また、ノズルプレートの材料として、絞り性を考慮した軟らかい材料を選定する必要が無く、硬い材料を選定することで疲労強度を向上させることができる。また、拡径流体室のための凹形状をバルブボデーに形成する必要がないので、拡径流体室の無い仕様とバルブボデーを共通化することが可能となる。 This eliminates the need to set the drawing process by pressing. Further, it is not necessary to select a soft material considering the drawability as the material of the nozzle plate, and the fatigue strength can be improved by selecting a hard material. Further, since it is not necessary to form a concave shape for the enlarged fluid chamber in the valve body, it is possible to share the specification with no enlarged fluid chamber and the valve body.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態による燃料噴射装置の断面図であり、 図2は、図1のII部拡大図であり、 図3は、図2のIII部拡大図であり、 図4は、図3に相当する図であって、燃料の流れを説明する図であり、 図5は、第2実施形態による燃料噴射装置のノズルプレート周辺を示す拡大図であり、 図6は、第3実施形態による燃料噴射装置のノズルプレート周辺を示す拡大図であり、 図7は、第4実施形態による燃料噴射装置のノズルプレート周辺を示す拡大図であり、 図8は、第5実施形態による燃料噴射装置のノズルプレート周辺を示す拡大図であり、 図9は、第6実施形態による燃料噴射装置のノズルプレート周辺を示す拡大図であり、 図10は、第7実施形態による燃料噴射装置のノズルプレート周辺を示す拡大図であり、 図11は、第8実施形態による燃料噴射装置のノズルプレート周辺を示す拡大図であり、 図12は、第9実施形態による燃料噴射装置のノズルプレート周辺を示す拡大図であり、 図13は、第10実施形態による燃料噴射装置のノズルプレート周辺を示す拡大図であり、 図14は、第11実施形態による燃料噴射装置のノズルプレート周辺を示す拡大図であり、 図15は、第12実施形態による燃料噴射装置のノズルプレート周辺を示す拡大図であり、 図16は、第13実施形態による燃料噴射装置のノズルプレート周辺を示す拡大図であり、 図17は、第14実施形態による燃料噴射装置のノズルプレート周辺を示す拡大図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a cross-sectional view of the fuel injection device according to the first embodiment. FIG. 2 is an enlarged view of part II in FIG. FIG. 3 is an enlarged view of part III in FIG. FIG. 4 is a view corresponding to FIG. 3 and illustrating the flow of fuel. FIG. 5 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the second embodiment, FIG. 6 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the third embodiment, FIG. 7 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the fourth embodiment, FIG. 8 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the fifth embodiment, FIG. 9 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the sixth embodiment, FIG. 10 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the seventh embodiment, FIG. 11 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the eighth embodiment, FIG. 12 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the ninth embodiment, FIG. 13 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the tenth embodiment, FIG. 14 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the eleventh embodiment, FIG. 15 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the twelfth embodiment, FIG. 16 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the thirteenth embodiment, FIG. 17 is an enlarged view showing the periphery of the nozzle plate of the fuel injection device according to the fourteenth embodiment.
 以下、燃料噴射装置の複数の実施形態を図面に基づき説明する。実施形態同士で実質的に同一の構成には同一の符号を付して説明を省略する。 Hereinafter, a plurality of embodiments of the fuel injection device will be described with reference to the drawings. In the embodiments, substantially the same components are denoted by the same reference numerals and description thereof is omitted.
[第1実施形態]
 第1実施形態による燃料噴射装置を図1および図2に示す。燃料噴射装置1は、筒状部材12、バルブボデー20、ノズルプレート30、ニードル50、可動コア60、固定コア70、スプリング80およびコイル90等を備えている。
[First Embodiment]
The fuel injection device according to the first embodiment is shown in FIGS. The fuel injection device 1 includes a cylindrical member 12, a valve body 20, a nozzle plate 30, a needle 50, a movable core 60, a fixed core 70, a spring 80, a coil 90, and the like.
 筒状部材12は、筒状に形成され、図1において下方のバルブボデー20側から順に第1磁性部13、非磁性部14および第2磁性部15を有している。第1磁性部13および第2磁性部15は磁性材料から形成されている。非磁性部14は非磁性材料から形成されている。第1磁性部13と非磁性部14、並びに非磁性部14と第2磁性部15は、例えばレーザ溶接等により結合される。非磁性部14は、第1磁性部13と第2磁性部15との間で磁束が短絡することを防ぐ。筒状部材12は、第2磁性部15側の一端部に燃料フィルタ18を収容している。 The cylindrical member 12 is formed in a cylindrical shape, and has a first magnetic portion 13, a nonmagnetic portion 14, and a second magnetic portion 15 in order from the lower valve body 20 side in FIG. The first magnetic part 13 and the second magnetic part 15 are made of a magnetic material. The nonmagnetic portion 14 is made of a nonmagnetic material. The first magnetic part 13 and the nonmagnetic part 14, and the nonmagnetic part 14 and the second magnetic part 15 are coupled by, for example, laser welding. The nonmagnetic part 14 prevents the magnetic flux from being short-circuited between the first magnetic part 13 and the second magnetic part 15. The tubular member 12 houses a fuel filter 18 at one end on the second magnetic part 15 side.
 バルブボデー20は、筒状に形成され、筒状部材12の他端部に固定されている。バルブボデー20は、ノズルプレート30に向けて燃料を流す燃料通路21を有している。バルブボデー20のうち筒状部材12とは反対側の端部は、径方向内側に突き出す環状突起23を形成している。この環状突起23の内壁には、ノズルプレート30に向けて内径が小さくなる傾斜面状の弁座22が形成されている。環状突起23の内側には、燃料通路21の出口である燃料出口24が形成されている。 The valve body 20 is formed in a cylindrical shape and is fixed to the other end portion of the cylindrical member 12. The valve body 20 has a fuel passage 21 through which fuel flows toward the nozzle plate 30. An end of the valve body 20 opposite to the tubular member 12 forms an annular protrusion 23 that protrudes radially inward. On the inner wall of the annular protrusion 23, an inclined surface valve seat 22 having an inner diameter that decreases toward the nozzle plate 30 is formed. A fuel outlet 24 that is an outlet of the fuel passage 21 is formed inside the annular protrusion 23.
 ノズルプレート30は、燃料通路21と連通する複数の噴孔32を有している。ノズルプレート30の詳細な構成については後述する。 The nozzle plate 30 has a plurality of injection holes 32 communicating with the fuel passage 21. The detailed configuration of the nozzle plate 30 will be described later.
 「弁部材」としてのニードル50は、有底筒状に形成され、第1磁性部13およびバルブボデー20の内側にそれらと同軸に収容されている。ニードル50は、バルブボデー20の内周部25に案内されて軸方向に往復移動可能である。ニードル50は、筒壁の内壁面から外壁面へ通じる複数の燃料孔52を有している。ニードル50は、バルブボデー20側に位置する底壁に当接部51を形成している。当接部51は、弁座22に着座可能である。当接部51が弁座22に当接することにより燃料通路21が閉じられる。当接部51が弁座22から離間することにより燃料通路21が開かれる。当接部51および弁座22はシート部10を構成している。燃料出口24は、シート部10よりも小径の開口である。 The needle 50 as a “valve member” is formed in a bottomed cylindrical shape and is accommodated coaxially with the inside of the first magnetic part 13 and the valve body 20. The needle 50 is guided by the inner peripheral portion 25 of the valve body 20 and can reciprocate in the axial direction. The needle 50 has a plurality of fuel holes 52 communicating from the inner wall surface of the cylindrical wall to the outer wall surface. The needle 50 forms a contact portion 51 on the bottom wall located on the valve body 20 side. The contact portion 51 can be seated on the valve seat 22. The fuel passage 21 is closed when the contact portion 51 contacts the valve seat 22. The fuel passage 21 is opened when the contact portion 51 is separated from the valve seat 22. The contact portion 51 and the valve seat 22 constitute the seat portion 10. The fuel outlet 24 is an opening having a smaller diameter than the seat portion 10.
 可動コア60は、磁性材料から筒状に形成され、ニードル50の当接部51とは反対方向の端部に固定されている。可動コア60は、ニードル50と一体となり往復移動可能である。 The movable core 60 is formed in a cylindrical shape from a magnetic material, and is fixed to an end portion of the needle 50 in the direction opposite to the contact portion 51. The movable core 60 is integrated with the needle 50 and can reciprocate.
 固定コア70は、磁性材料から筒状に形成され、非磁性部14および第2磁性部15の内周壁に固定されている。固定コア70は、可動コア60のニードル50とは反対方向で可動コア60と向き合うように設けられている。 The fixed core 70 is formed in a cylindrical shape from a magnetic material, and is fixed to the inner peripheral walls of the nonmagnetic portion 14 and the second magnetic portion 15. The fixed core 70 is provided to face the movable core 60 in the direction opposite to the needle 50 of the movable core 60.
 スプリング80は、一端が可動コア60に係止され、他端がアジャスティングパイプ81に係止されている。アジャスティングパイプ81は、固定コア70の内周壁に圧入されている。アジャスティングパイプ81の固定コア70への圧入量を調整することによりスプリング80の付勢力が調整される。スプリング80は、弾性変形により生じる復元力を可動コア60に印加する。これにより、スプリング80は、ニードル50を弁座22に着座する方向に付勢する。 The spring 80 has one end locked to the movable core 60 and the other end locked to the adjusting pipe 81. The adjusting pipe 81 is press-fitted into the inner peripheral wall of the fixed core 70. The biasing force of the spring 80 is adjusted by adjusting the press-fitting amount of the adjusting pipe 81 into the fixed core 70. The spring 80 applies a restoring force generated by elastic deformation to the movable core 60. Accordingly, the spring 80 biases the needle 50 in the direction in which the needle 50 is seated on the valve seat 22.
 コイル90の巻回されるスプール91は、筒状部材12の外周壁に固定されている。コイル90の外側には、磁性材料から形成され、互いに磁気的に接続する磁性部材94、95が設けられている。磁性部材94は第1磁性部13と磁気的に接続している。磁性部材95は第2磁性部15と磁気的に接続している。ハウジング75は、筒状部材12および磁性部材94、95の外周側を覆っている。可動コア60、第1磁性部13、磁性部材94、95、第2磁性部15および固定コア70は磁気回路を構成する。 The spool 91 around which the coil 90 is wound is fixed to the outer peripheral wall of the cylindrical member 12. Outside the coil 90, magnetic members 94 and 95 are provided which are made of a magnetic material and are magnetically connected to each other. The magnetic member 94 is magnetically connected to the first magnetic part 13. The magnetic member 95 is magnetically connected to the second magnetic part 15. The housing 75 covers the outer peripheral side of the cylindrical member 12 and the magnetic members 94 and 95. The movable core 60, the first magnetic part 13, the magnetic members 94 and 95, the second magnetic part 15 and the fixed core 70 constitute a magnetic circuit.
 ハウジング75は、コネクタ部76を有している。コネクタ部76の間口に設けられたターミナル92は、コイル90と電気的に接続している。コイル90には、ターミナル92を通じて駆動電流が供給される。 The housing 75 has a connector portion 76. A terminal 92 provided at the opening of the connector portion 76 is electrically connected to the coil 90. A drive current is supplied to the coil 90 through the terminal 92.
 筒状部材12の一端部から流入した加圧燃料は、固定コア70内の燃料通路、可動コア60内の燃料通路、ニードル50内の燃料通路、および燃料孔52を経由し、バルブボデー20内の燃料通路21に到達する。燃料通路21に到達した燃料は、当接部51が弁座22から離座したとき、当接部51と弁座22との間に形成される隙間を抜けて、噴孔32から噴射されて噴霧が形成される。 Pressurized fuel flowing from one end of the cylindrical member 12 passes through the fuel passage in the fixed core 70, the fuel passage in the movable core 60, the fuel passage in the needle 50, and the fuel hole 52, and enters the valve body 20. The fuel passage 21 is reached. The fuel that has reached the fuel passage 21 is injected from the injection hole 32 through the gap formed between the contact portion 51 and the valve seat 22 when the contact portion 51 is separated from the valve seat 22. A spray is formed.
 燃料噴射装置1において、コイル90への通電をオフするとき、可動コア60と固定コア70との間に磁気吸引力は発生しない。このとき、ニードル50は、スプリング80の復元力により弁座22の方向へ移動する。当接部51が弁座22に着座すると燃料通路21が閉じられ、噴孔32からの燃料噴射が停止する。 In the fuel injection device 1, when energization of the coil 90 is turned off, no magnetic attractive force is generated between the movable core 60 and the fixed core 70. At this time, the needle 50 moves in the direction of the valve seat 22 by the restoring force of the spring 80. When the contact portion 51 is seated on the valve seat 22, the fuel passage 21 is closed and fuel injection from the injection hole 32 is stopped.
 コイル90への通電をオンするとき、可動コア60、第1磁性部13、磁性部材94、95、第2磁性部15および固定コア70からなる磁気回路に磁束が流れ、固定コア70と可動コア60との間に磁気吸引力が発生する。これにより可動コア60が固定コア70側へ吸引され、ニードル50が可動コア60と共にスプリング80の復元力に抗し、固定コア70の方向へ移動する。当接部51が弁座22から離座すると、燃料通路21が開かれ、噴孔32から燃料が噴射される。この後、コイル90への通電をオフすると、磁気回路を流れる磁束が消失し、固定コア70と可動コア60との間の磁気吸引力も消失し、当接部51が弁座22に着座する。以上により、一回の燃料噴射作動が終了する。ニードル50は、シート部10を開閉することで燃料の噴射、停止を制御する。 When energization of the coil 90 is turned on, magnetic flux flows through a magnetic circuit composed of the movable core 60, the first magnetic part 13, the magnetic members 94 and 95, the second magnetic part 15, and the fixed core 70, and the fixed core 70 and the movable core A magnetic attraction force is generated between As a result, the movable core 60 is attracted toward the fixed core 70, and the needle 50 moves in the direction of the fixed core 70 against the restoring force of the spring 80 together with the movable core 60. When the contact portion 51 is separated from the valve seat 22, the fuel passage 21 is opened and fuel is injected from the injection hole 32. Thereafter, when the power supply to the coil 90 is turned off, the magnetic flux flowing through the magnetic circuit disappears, the magnetic attractive force between the fixed core 70 and the movable core 60 disappears, and the contact portion 51 is seated on the valve seat 22. Thus, one fuel injection operation is completed. The needle 50 controls fuel injection and stop by opening and closing the seat portion 10.
 次に、ノズルプレート30およびその周辺部位の構成について説明する。図2および図3に示すように、燃料噴射装置1は、ノズルホルダ40をさらに備えている。ノズルホルダ40は、バルブボデー20に固定され、ノズルプレート30を保持している。ノズルホルダ40は、板状かつ環状であり、中心部を貫通する通孔42を有する。ノズルホルダ40は、ノズルホルダ40の外端面(すなわち、燃料出口24が開いている端面)に溶接されており、そのノズルホルダ40を板厚方向に貫通する溶接部46によりノズルホルダ40に固定されている。 Next, the configuration of the nozzle plate 30 and its peripheral parts will be described. As shown in FIGS. 2 and 3, the fuel injection device 1 further includes a nozzle holder 40. The nozzle holder 40 is fixed to the valve body 20 and holds the nozzle plate 30. The nozzle holder 40 is plate-shaped and annular, and has a through hole 42 penetrating the center. The nozzle holder 40 is welded to the outer end surface of the nozzle holder 40 (that is, the end surface where the fuel outlet 24 is open), and is fixed to the nozzle holder 40 by a welded portion 46 that penetrates the nozzle holder 40 in the plate thickness direction. ing.
 ノズルプレート30は、板状であり、ノズルホルダ40よりも板厚が薄い。ノズルプレート30は、板厚方向がバルブボデー20と略一致する状態で通孔42に嵌合されている。ノズルプレート30は、バルブボデー20から離間して配置されている。ノズルプレート30の外周部(すなわち嵌合部)は、ノズルホルダ40の内周部(すなわち通孔42の内壁)に溶接されており、溶接部36によりノズルホルダ40に固定されている。第1実施形態では、ノズルプレート30の板厚は均一である。ノズルプレート30のうちノズルホルダ40に固定されている部分をプレート固定部38とすると、プレート固定部38は、噴孔32の入口よりもバルブボデー20側に出ていない。噴孔32の入口は、プレート固定部38のバルブボデー20側の面と軸方向位置が同じである。また、ノズルプレート30およびノズルホルダ40は、バルブボデー20とは反対側の面同士が軸方向で揃うように配置されている。 The nozzle plate 30 has a plate shape and is thinner than the nozzle holder 40. The nozzle plate 30 is fitted in the through hole 42 in a state where the plate thickness direction substantially coincides with the valve body 20. The nozzle plate 30 is disposed away from the valve body 20. The outer peripheral portion (that is, the fitting portion) of the nozzle plate 30 is welded to the inner peripheral portion of the nozzle holder 40 (that is, the inner wall of the through hole 42), and is fixed to the nozzle holder 40 by the welded portion 36. In the first embodiment, the plate thickness of the nozzle plate 30 is uniform. If the portion of the nozzle plate 30 that is fixed to the nozzle holder 40 is a plate fixing portion 38, the plate fixing portion 38 does not protrude from the inlet of the injection hole 32 toward the valve body 20. The inlet of the injection hole 32 has the same axial position as the surface of the plate fixing portion 38 on the valve body 20 side. Further, the nozzle plate 30 and the nozzle holder 40 are arranged such that surfaces opposite to the valve body 20 are aligned in the axial direction.
 噴孔32は、プレス加工により穿孔される。ノズルプレート30の材料は、使用環境やプレス加工性を考慮し、オーステナイト系の例えばSUS304が選定される。第1実施形態では、調質材のSUS304-1/2Hが選定されている。この材料のビッカース硬さは250Hv以上である。 The nozzle hole 32 is drilled by pressing. The material of the nozzle plate 30 is selected from austenite-based material such as SUS304 in consideration of the use environment and press workability. In the first embodiment, the tempered material SUS304-1 / 2H is selected. The Vickers hardness of this material is 250 Hv or more.
 ノズルプレート30は、燃料出口24よりも下流側に配置されている。噴孔32は、燃料出口24よりも径方向外側に形成されている。ノズルプレート30とバルブボデー20との間には、燃料出口24から噴孔32へ向かって径方向外側に広がる拡径流体室55が形成されている。 The nozzle plate 30 is disposed downstream of the fuel outlet 24. The nozzle hole 32 is formed on the radially outer side than the fuel outlet 24. Between the nozzle plate 30 and the valve body 20, a diameter expansion fluid chamber 55 is formed that extends radially outward from the fuel outlet 24 toward the injection hole 32.
 図4に矢印で示すように、シート部10を抜けた燃料は、一旦、径方向内側に流れて燃料出口24に向かう。そして、燃料出口24を抜けた燃料は、拡径流体室55を径方向外側に流れて、噴孔32から噴射される。このように噴孔32に向かって径外方向への流れが形成されることにより、噴霧を微粒化および広拡散化させることができる。 As shown by the arrows in FIG. 4, the fuel that has passed through the seat portion 10 once flows radially inward and toward the fuel outlet 24. Then, the fuel that has passed through the fuel outlet 24 flows through the diameter expansion fluid chamber 55 radially outward and is injected from the injection hole 32. Thus, by forming a flow in the radially outward direction toward the nozzle hole 32, the spray can be atomized and diffused.
(効果)
 従来、噴孔が形成されるプレートは、バルブボデーに固定される部分も含めて1部品から構成されていた。このような形態のプレートは、本願の拡径流体室55に相当する拡径燃料通路を区画する凹形状を形成するために、1枚の均一板厚の板からプレス絞り加工により製造されていた。このような絞り加工を行うためには、軟らかい材料を選定する必要がある。そのため、プレートの疲労強度の低下が懸念されていた。
(effect)
Conventionally, the plate in which the nozzle hole is formed is composed of one part including a portion fixed to the valve body. In order to form a concave shape that defines an enlarged fuel passage corresponding to the enlarged fluid chamber 55 of the present application, the plate having such a form has been manufactured by press drawing from a single plate having a uniform thickness. . In order to perform such drawing processing, it is necessary to select a soft material. For this reason, there has been concern about a decrease in the fatigue strength of the plate.
 一方、拡径燃料通路を区画する凹形状をバルブボデーに形成することも考えられる。しかし、バルブボデーに凹形状を形成すると、拡径燃料通路の無い仕様とバルブボデーを共通化することができなくなる。 On the other hand, it is conceivable to form a concave shape in the valve body that partitions the expanded fuel passage. However, if the concave shape is formed on the valve body, it is not possible to share the valve body with the specification without the enlarged fuel passage.
 これに対して、第1実施形態では、噴孔32を有するノズルプレート30と、それを保持しバルブボデー20に固定されるノズルホルダ40とを設け、これらの2部品で凹形状を形成している。ノズルプレート30は、ノズルホルダ40より板厚が薄く、バルブボデー20から離間して配置されている。噴孔32は、燃料出口24よりも径方向外側に形成されている。ノズルプレート30とバルブボデー20との間には、燃料出口24から噴孔32へ向かって径方向外側に広がる拡径流体室55が形成されている。 In contrast, in the first embodiment, the nozzle plate 30 having the nozzle holes 32 and the nozzle holder 40 that holds the nozzle plate 30 and is fixed to the valve body 20 are provided, and these two parts form a concave shape. Yes. The nozzle plate 30 is thinner than the nozzle holder 40 and is arranged away from the valve body 20. The nozzle hole 32 is formed on the radially outer side than the fuel outlet 24. Between the nozzle plate 30 and the valve body 20, a diameter expansion fluid chamber 55 is formed that extends radially outward from the fuel outlet 24 toward the injection hole 32.
 これにより、プレス加工による絞り工程を設定する必要がなくなる。また、ノズルプレート30の材料として、絞り性を考慮した軟らかい材料を選定する必要が無く、硬い材料を選定することで疲労強度を向上させることができる。また、拡径流体室55のための凹形状をバルブボデー20に形成する必要がないので、拡径流体室55の無い仕様とバルブボデー20を共通化することが可能となる。 This eliminates the need to set the drawing process by pressing. Further, it is not necessary to select a soft material considering the drawability as the material of the nozzle plate 30, and the fatigue strength can be improved by selecting a hard material. Further, since it is not necessary to form a concave shape for the enlarged diameter fluid chamber 55 in the valve body 20, it is possible to share the specification without the enlarged diameter fluid chamber 55 with the valve body 20.
 また、第1実施形態では、ノズルプレート30の材料のビッカース硬さは250Hv以上である。従来は、絞り性を考慮してビッカース硬さが200Hv以下の材料として、例えば非調質剤のSUS304等を選定する必要があった。しかし、前述のようにノズルプレート30とノズルホルダ40との2部品で凹形状を形成することで、ノズルプレート30の材料として硬い材料を選定することで疲労強度を向上させることができる。 In the first embodiment, the Vickers hardness of the material of the nozzle plate 30 is 250 Hv or more. Conventionally, it has been necessary to select, for example, SUS304 as a non-refining agent as a material having a Vickers hardness of 200 Hv or less in consideration of drawability. However, the fatigue strength can be improved by selecting a hard material as the material of the nozzle plate 30 by forming a concave shape with the two parts of the nozzle plate 30 and the nozzle holder 40 as described above.
 また、第1実施形態では、ノズルプレート30は、板厚方向がバルブボデー20の軸方向と一致するように配置されている。噴孔32の入口は、プレート固定部38のバルブボデー20側の面と軸方向位置が同じである。つまり、ノズルプレート30のうち噴孔32の穿孔された面が表層部に出ている。さらに言えば、ノズルプレート30は凹形状無く噴孔32のみが穿孔された形状である。従来は、噴孔がプレートの凹形状の底面に開口していたため、テープ研磨等による噴孔の開口のバリ除去が困難であった。これに対して、第1実施形態では、噴孔32の加工後、テープ研磨等による噴孔32の開口のバリ除去が容易である。 In the first embodiment, the nozzle plate 30 is arranged so that the plate thickness direction coincides with the axial direction of the valve body 20. The inlet of the injection hole 32 has the same axial position as the surface of the plate fixing portion 38 on the valve body 20 side. That is, the surface of the nozzle plate 30 where the nozzle holes 32 are drilled protrudes from the surface layer portion. More specifically, the nozzle plate 30 has a concave shape and only the injection holes 32 are perforated. Conventionally, since the nozzle hole was opened in the concave bottom surface of the plate, it was difficult to remove the burr at the nozzle hole opening by tape polishing or the like. On the other hand, in the first embodiment, after the injection holes 32 are processed, it is easy to remove burrs from the openings of the injection holes 32 by tape polishing or the like.
[第2実施形態]
 第2実施形態では、図5に示すように、ノズルプレート302の噴孔322はテーパ形状である。テーパ形状とは、円錐面のみならず、内径が徐々に大きく又は小さくなる形状を含む。これにより、噴孔322内を流れる燃料の液膜を薄膜化させる効果が得られる。そのため、噴孔322から噴射される噴霧の微粒化が促進され、エンジン性能が向上する。また、第2実施形態は、上記以外の構成が第1実施形態と同様であり、第1実施形態と同様の効果を奏する。
[Second Embodiment]
In the second embodiment, as shown in FIG. 5, the nozzle hole 322 of the nozzle plate 302 has a tapered shape. The taper shape includes not only a conical surface but also a shape in which the inner diameter gradually increases or decreases. Thereby, the effect of thinning the liquid film of the fuel flowing in the nozzle hole 322 is obtained. Therefore, atomization of the spray injected from the nozzle hole 322 is promoted, and the engine performance is improved. In the second embodiment, the configuration other than the above is the same as that of the first embodiment, and the same effect as that of the first embodiment is achieved.
[第3実施形態]
 第3実施形態では、図6に示すように、ノズルプレート303の外周部のバルブボデー20側に段差が形成されている。その段差の一段下がった段差面343がノズルホルダ403に軸方向で当接した状態で、ノズルプレート303がノズルホルダ403に溶接されている。ノズルプレート303の外周部すなわちプレート固定部383は、そのプレート固定部383を貫通する溶接部363によりノズルホルダ403に固定されている。
[Third Embodiment]
In the third embodiment, as shown in FIG. 6, a step is formed on the outer side of the nozzle plate 303 on the valve body 20 side. The nozzle plate 303 is welded to the nozzle holder 403 in a state in which the stepped surface 343 lowered by one step is in contact with the nozzle holder 403 in the axial direction. The outer peripheral portion of the nozzle plate 303, that is, the plate fixing portion 383 is fixed to the nozzle holder 403 by a welding portion 363 that penetrates the plate fixing portion 383.
 噴孔32の入口は、プレート固定部383よりも軸方向でバルブボデー20側に位置している。つまり、ノズルプレート303のうち噴孔32の穿孔された面が表層部に出ている。そのため、噴孔32の加工後、テープ研磨等による噴孔32の開口のバリ除去が容易である。また、第3実施形態は、上記以外の構成が第2実施形態と同様であり、第2実施形態と同様の効果を奏する。 The inlet of the nozzle hole 32 is located on the valve body 20 side in the axial direction from the plate fixing portion 383. That is, the surface of the nozzle plate 303 in which the nozzle holes 32 are formed protrudes from the surface layer portion. Therefore, it is easy to remove burrs from the opening of the injection hole 32 by tape polishing after the injection hole 32 is processed. In the third embodiment, the configuration other than the above is the same as that of the second embodiment, and the same effect as that of the second embodiment is achieved.
[第4実施形態]
 第4実施形態では、図7に示すように、ノズルプレート304の外周部のプレート固定部384は、ノズルホルダ404の内周部(すなわち通孔42の内壁)に圧入されている。これにより、ノズルプレート304とノズルホルダ404との溶接による噴孔32のひずみを無くすことができ、安定した噴霧性能を確保することができる。また、第4実施形態は、上記以外の構成が第1実施形態と同様であり、第1実施形態と同様の効果を奏する。
[Fourth Embodiment]
In the fourth embodiment, as shown in FIG. 7, the plate fixing portion 384 on the outer peripheral portion of the nozzle plate 304 is press-fitted into the inner peripheral portion of the nozzle holder 404 (that is, the inner wall of the through hole 42). Thereby, the distortion of the nozzle hole 32 by welding with the nozzle plate 304 and the nozzle holder 404 can be eliminated, and the stable spray performance can be ensured. The fourth embodiment has the same configuration as the first embodiment except for the above, and has the same effect as the first embodiment.
[第5実施形態]
 第5実施形態では、図8に示すように、ノズルホルダ405は、バルブボデー20に嵌合する筒部485を有するカップ形状である。筒部485は、バルブボデー20に溶接されており、溶接部465でバルブボデー20に固定されている。ノズルホルダ405とバルブボデー20との溶接位置をノズルプレート30から遠ざけることで、溶接による噴孔32のひずみを低減することができる。また、第5実施形態は、上記以外の構成が第1実施形態と同様であり、第1実施形態と同様の効果を奏する。
[Fifth Embodiment]
In the fifth embodiment, as shown in FIG. 8, the nozzle holder 405 has a cup shape having a cylindrical portion 485 that is fitted to the valve body 20. The cylindrical portion 485 is welded to the valve body 20 and is fixed to the valve body 20 with a welded portion 465. By disposing the welding position between the nozzle holder 405 and the valve body 20 away from the nozzle plate 30, distortion of the nozzle hole 32 due to welding can be reduced. In the fifth embodiment, the configuration other than the above is the same as that of the first embodiment, and the same effects as those of the first embodiment are achieved.
[第6実施形態]
 第6実施形態では、図9に示すように、ノズルホルダ406は、バルブボデー20に嵌合する筒部486を有するカップ形状である。筒部486は、バルブボデー20に圧入されている。ノズルプレート30と比べて板厚が厚いノズルホルダ406を貫通するように溶接する場合、比較的大きな溶接エネルギが必要になり、ノズルプレート30にひずみを生じさせる要因となる。しかし、ノズルホルダ406をバルブボデー20に圧入することで、溶接によるノズルプレート30および噴孔32のひずみを無くすことができる。また、第6実施形態は、上記以外の構成が第1実施形態と同様であり、第1実施形態と同様の効果を奏する。
[Sixth Embodiment]
In the sixth embodiment, as shown in FIG. 9, the nozzle holder 406 has a cup shape having a cylindrical portion 486 that fits into the valve body 20. The cylinder portion 486 is press-fitted into the valve body 20. When welding so as to penetrate the nozzle holder 406 having a plate thickness that is thicker than that of the nozzle plate 30, relatively large welding energy is required, which causes distortion of the nozzle plate 30. However, by press-fitting the nozzle holder 406 into the valve body 20, distortion of the nozzle plate 30 and the nozzle hole 32 due to welding can be eliminated. The sixth embodiment has the same configuration as the first embodiment except for the above, and has the same effect as the first embodiment.
[第7実施形態]
 第7実施形態では、図10に示すように、ノズルホルダ407は、バルブボデー20とは反対側が大径となる段付き孔427を中心部に有している。ノズルプレート307は、段付き孔427の段差面447に軸方向で当接した状態で、段付き孔427の大径部の内壁に溶接されている。ノズルプレート307の外周部すなわちプレート固定部387は、溶接部367によりノズルホルダ407に固定されている。そのため、段付き孔427の段差高さによりノズルプレート307の軸方向位置を設定可能であり、組付け時に位置精度を容易に確保することができる。また、第7実施形態は、上記以外の構成が第1実施形態と同様であり、第1実施形態と同様の効果を奏する。
[Seventh Embodiment]
In the seventh embodiment, as shown in FIG. 10, the nozzle holder 407 has a stepped hole 427 having a large diameter on the side opposite to the valve body 20 at the center. The nozzle plate 307 is welded to the inner wall of the large diameter portion of the stepped hole 427 in a state in which the nozzle plate 307 is in contact with the stepped surface 447 of the stepped hole 427 in the axial direction. An outer peripheral portion of the nozzle plate 307, that is, a plate fixing portion 387 is fixed to the nozzle holder 407 by a welding portion 367. Therefore, the position in the axial direction of the nozzle plate 307 can be set by the step height of the stepped hole 427, and positional accuracy can be easily ensured during assembly. The seventh embodiment has the same configuration as the first embodiment except for the above, and has the same effect as the first embodiment.
[第8実施形態]
 第8実施形態では、図11に示すように、ノズルプレート308のプレート固定部388は、ノズルホルダ408の段付き孔427の段差面447に軸方向で当接した状態で、段付き孔427の大径部の内壁に圧入されている。そのため、段付き孔427の段差高さによりノズルプレート308の軸方向位置を設定可能であり、組付け時に位置精度を容易に確保することができる。また、ノズルプレート308とノズルホルダ408との溶接による噴孔32のひずみを無くすことができる。また、第8実施形態は、上記以外の構成が第1実施形態と同様であり、第1実施形態と同様の効果を奏する。
[Eighth Embodiment]
In the eighth embodiment, as shown in FIG. 11, the plate fixing portion 388 of the nozzle plate 308 is in contact with the stepped surface 447 of the stepped hole 427 of the nozzle holder 408 in the axial direction. It is press-fitted into the inner wall of the large diameter part. Therefore, the position in the axial direction of the nozzle plate 308 can be set by the step height of the stepped hole 427, and positional accuracy can be easily ensured during assembly. Further, the distortion of the nozzle hole 32 due to welding between the nozzle plate 308 and the nozzle holder 408 can be eliminated. Further, the configuration of the eighth embodiment is the same as that of the first embodiment except for the above, and has the same effects as those of the first embodiment.
[第9実施形態]
 第9実施形態では、図12に示すように、ノズルプレート309のプレート固定部389は、ノズルホルダ409の段付き孔427の段差面447に軸方向で当接した状態で、段付き孔427の小径部に溶接されている。ノズルプレート309およびノズルホルダ409は、それらを貫通する溶接部369によりバルブボデー20に固定されている。そのため、段付き孔427の段差高さによりノズルプレート309の軸方向位置を設定可能であり、組付け時に位置精度を容易に確保することができる。また、共通の溶接部369によりノズルプレート309およびノズルホルダ409をバルブボデー20に固定することで、組付け工数を低減することができる。また、第9実施形態は、上記以外の構成が第1実施形態と同様であり、第1実施形態と同様の効果を奏する。
[Ninth Embodiment]
In the ninth embodiment, as shown in FIG. 12, the plate fixing portion 389 of the nozzle plate 309 is in contact with the stepped surface 447 of the stepped hole 427 of the nozzle holder 409 in the axial direction. It is welded to the small diameter part. The nozzle plate 309 and the nozzle holder 409 are fixed to the valve body 20 by a welded portion 369 penetrating them. Therefore, the position in the axial direction of the nozzle plate 309 can be set by the step height of the stepped hole 427, and positional accuracy can be easily ensured during assembly. Further, by fixing the nozzle plate 309 and the nozzle holder 409 to the valve body 20 by the common welded portion 369, the assembly man-hour can be reduced. In the ninth embodiment, the configuration other than the above is the same as that of the first embodiment, and the same effects as those of the first embodiment are achieved.
[第10実施形態]
 第10実施形態では、図13に示すように、ノズルホルダ410は、中心部に通孔42を有している。ノズルプレート310の外周部であるプレート固定部390は、通孔42の内壁に隅肉溶接されており、溶接部370によりノズルホルダ410に固定されている。これにより、ノズルプレート310の軸方向の固定位置を変更することで拡径流体室55の高さを容易に調整することができ、噴霧性能への影響を容易に調整可能となる。
[Tenth embodiment]
In the tenth embodiment, as shown in FIG. 13, the nozzle holder 410 has a through hole 42 at the center. A plate fixing portion 390 that is an outer peripheral portion of the nozzle plate 310 is welded to the inner wall of the through hole 42 and is fixed to the nozzle holder 410 by the welding portion 370. Thereby, the height of the diameter expansion fluid chamber 55 can be easily adjusted by changing the axial fixing position of the nozzle plate 310, and the influence on the spray performance can be easily adjusted.
 ノズルホルダ410のバルブボデー20とは反対側の面450は、噴孔32の出口よりもバルブボデー20とは反対側に突出している。これにより、燃料噴射装置1の組付時に噴孔32の出口が他部品と衝突して破損することを抑制することができる。また、噴孔32を保護するためのスリーブを設定する必要がなくなり、部品点数を増やすことなく噴孔32を保護する形状とすることができる。また、第10実施形態は、上記以外の構成が第1実施形態と同様であり、第1実施形態と同様の効果を奏する。 The surface 450 of the nozzle holder 410 opposite to the valve body 20 protrudes on the opposite side of the valve body 20 from the outlet of the nozzle hole 32. Thereby, it can suppress that the exit of the nozzle hole 32 collides with other components and is damaged at the time of the assembly | attachment of the fuel injection apparatus 1. FIG. Further, it is not necessary to set a sleeve for protecting the injection hole 32, and the injection hole 32 can be protected without increasing the number of parts. In the tenth embodiment, the configuration other than the above is the same as that of the first embodiment, and the same effects as those of the first embodiment are achieved.
[第11実施形態]
 第11実施形態では、図14に示すように、ノズルプレート311の外周部であるプレート固定部391は、ノズルホルダ411の通孔42の内壁に圧入されている。これにより、ノズルプレート311の軸方向の固定位置を変更することで拡径流体室55の高さを容易に調整することができ、噴霧性能への影響を容易に調整可能となる。また、第11実施形態は、上記以外の構成が第10実施形態と同様であり、第10実施形態と同様の効果を奏する。
[Eleventh embodiment]
In the eleventh embodiment, as shown in FIG. 14, the plate fixing portion 391 that is the outer peripheral portion of the nozzle plate 311 is press-fitted into the inner wall of the through hole 42 of the nozzle holder 411. Thereby, the height of the diameter expansion fluid chamber 55 can be easily adjusted by changing the axial fixing position of the nozzle plate 311, and the influence on the spray performance can be easily adjusted. Further, the configuration of the eleventh embodiment is the same as that of the tenth embodiment except for the above, and has the same effect as the tenth embodiment.
[第12実施形態]
 第12実施形態では、図15に示すように、ノズルホルダ412のバルブボデー20とは反対側の面452は、噴孔32の出口よりもバルブボデー20とは反対側に突出している。これにより、燃料噴射装置1の組付時に噴孔32の出口が他部品と衝突して破損することを抑制することができる。また、第12実施形態は、上記以外の構成が第9実施形態と同様であり、第9実施形態と同様の効果を奏する。
[Twelfth embodiment]
In the twelfth embodiment, as shown in FIG. 15, the surface 452 of the nozzle holder 412 opposite to the valve body 20 protrudes on the opposite side of the valve body 20 from the outlet of the injection hole 32. Thereby, it can suppress that the exit of the nozzle hole 32 collides with other components and is damaged at the time of the assembly | attachment of the fuel injection apparatus 1. FIG. The configuration of the twelfth embodiment is the same as that of the ninth embodiment except for the above, and has the same effects as those of the ninth embodiment.
[第13実施形態]
 第13実施形態では、図16に示すように、ノズルプレート313の外周部であるプレート固定部393は、カップ形状のノズルホルダ413の底部493に軸方向で当接した状態で溶接されている。ノズルプレート313およびノズルホルダ413は、それらを貫通する溶接部373によりバルブボデー20に固定されている。そのため、共通の溶接部373によりノズルプレート313およびノズルホルダ413をバルブボデー20に固定することで、組付け工数を低減することができる。また、第13実施形態は、上記以外の構成が第5実施形態と同様であり、第5実施形態と同様の効果を奏する。
[Thirteenth embodiment]
In the thirteenth embodiment, as shown in FIG. 16, the plate fixing portion 393, which is the outer peripheral portion of the nozzle plate 313, is welded while being in axial contact with the bottom portion 493 of the cup-shaped nozzle holder 413. The nozzle plate 313 and the nozzle holder 413 are fixed to the valve body 20 by a welded portion 373 penetrating them. Therefore, by fixing the nozzle plate 313 and the nozzle holder 413 to the valve body 20 with the common welded portion 373, the assembly man-hour can be reduced. In the thirteenth embodiment, the configuration other than the above is the same as that of the fifth embodiment, and the same effects as those of the fifth embodiment are achieved.
[第14実施形態]
 第14実施形態では、図17に示すように、ノズルプレート314は、カップ状に形成されており、ノズルホルダ414およびバルブボデー20に嵌合している。ノズルプレート314の底部の外周部であるプレート固定部394は、環状板のノズルホルダ414に軸方向で当接した状態で溶接されている。ノズルプレート314およびノズルホルダ414は、それらを貫通する溶接部374によりバルブボデー20に固定されている。そのため、共通の溶接部374によりノズルプレート314およびノズルホルダ414をバルブボデー20に固定することで、組付け工数を低減することができる。また、第14実施形態は、上記以外の構成が第13実施形態と同様であり、第13実施形態と同様の効果を奏する。
[Fourteenth embodiment]
In the fourteenth embodiment, as shown in FIG. 17, the nozzle plate 314 is formed in a cup shape and is fitted to the nozzle holder 414 and the valve body 20. A plate fixing portion 394 which is an outer peripheral portion of the bottom portion of the nozzle plate 314 is welded in a state of being in contact with an annular plate nozzle holder 414 in the axial direction. The nozzle plate 314 and the nozzle holder 414 are fixed to the valve body 20 by a welded portion 374 penetrating them. Therefore, by fixing the nozzle plate 314 and the nozzle holder 414 to the valve body 20 with the common welded portion 374, the assembly man-hour can be reduced. In addition, the configuration of the fourteenth embodiment is the same as that of the thirteenth embodiment except for the above, and has the same effects as the thirteenth embodiment.
[他の実施形態]
 他の実施形態では、噴孔は、プレス加工に限らず、例えばレーザ加工などの他の方法により穿孔されてもよい。他の実施形態では、ノズルプレートの材料は、SUS304に限らず、他の材料が選定されてもよい。
[Other Embodiments]
In another embodiment, the nozzle hole is not limited to press working, and may be drilled by other methods such as laser processing. In other embodiments, the material of the nozzle plate is not limited to SUS304, and other materials may be selected.
 第13実施形態では、ノズルホルダ413がカップ形状であった。これに対して、他の実施形態では、ノズルホルダが板状であってもよい。また、ノズルプレートは、板状のノズルホルダに対して軸方向に重ねられた状態で溶接等により固定されてもよい。 In the thirteenth embodiment, the nozzle holder 413 has a cup shape. On the other hand, in other embodiments, the nozzle holder may be plate-shaped. Further, the nozzle plate may be fixed by welding or the like in a state where the nozzle plate is overlapped in the axial direction with respect to the plate-like nozzle holder.
 本開示は、実施形態に基づき記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。 This disclosure has been described based on embodiments. However, the present disclosure is not limited to the embodiments and structures. The present disclosure also includes various modifications and modifications within the equivalent scope. Also, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (10)

  1.  シート部(10)と、
     筒状であり、前記シート部よりも小径の燃料出口(24)をもつバルブボデー(20)と、
     前記シート部を開閉することで燃料の噴射、停止を制御する弁部材(50)と、
     前記燃料出口よりも下流側に配置され、燃料を噴射し噴霧を形成する噴孔(32、322)を有するノズルプレート(30、302、303、304、307、308、309、310、311、313、314)と、
     前記バルブボデーに固定され、前記ノズルプレートを保持しているノズルホルダ(40、403、404、405、406、407、408、409、410、411、412、413、414)と、
     を備え、
     前記ノズルプレートは、前記バルブボデーから離間して配置されており、
     前記噴孔は、前記燃料出口よりも径方向外側に形成されており、
     前記ノズルプレートと前記バルブボデーとの間には、前記燃料出口から前記噴孔へ向かって径方向外側に広がる拡径流体室(55)が形成されている燃料噴射装置。
    A seat (10);
    A valve body (20) which is tubular and has a fuel outlet (24) having a smaller diameter than the seat portion;
    A valve member (50) for controlling fuel injection and stopping by opening and closing the seat part;
    Nozzle plates (30, 302, 303, 304, 307, 308, 309, 310, 311 and 313) disposed on the downstream side of the fuel outlet and having injection holes (32, 322) for injecting fuel to form spray. 314) and
    A nozzle holder (40, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414) fixed to the valve body and holding the nozzle plate;
    With
    The nozzle plate is disposed away from the valve body,
    The nozzle hole is formed radially outside the fuel outlet,
    A fuel injection device in which a diameter-enlarged fluid chamber (55) is formed between the nozzle plate and the valve body so as to extend radially outward from the fuel outlet toward the nozzle hole.
  2.  前記ノズルプレートの材料のビッカース硬さは250Hv以上である請求項1に記載の燃料噴射装置。 The fuel injection device according to claim 1, wherein the nozzle plate material has a Vickers hardness of 250 Hv or more.
  3.  前記ノズルプレートは、板厚方向が前記バルブボデーの軸方向と一致するように配置され、
     前記ノズルプレートのうち前記ノズルホルダに固定されている部分をプレート固定部(38、383、384、387、388、389、390、391、393、394)とすると、
     前記噴孔の入口は、前記プレート固定部の前記バルブボデー側の面と軸方向位置が同じであるか、または、前記プレート固定部よりも前記バルブボデー側に位置している請求項1または2に記載の燃料噴射装置。
    The nozzle plate is arranged so that the plate thickness direction coincides with the axial direction of the valve body,
    When the portion of the nozzle plate that is fixed to the nozzle holder is a plate fixing portion (38, 383, 384, 387, 388, 389, 390, 391, 393, 394),
    The inlet of the nozzle hole has the same axial position as the valve body side surface of the plate fixing part, or is located on the valve body side of the plate fixing part. The fuel injection device described in 1.
  4.  前記噴孔(322)はテーパ形状である請求項1~3のいずれか一項に記載の燃料噴射装置。 The fuel injection device according to any one of claims 1 to 3, wherein the nozzle hole (322) has a tapered shape.
  5.  前記ノズルホルダ(40、403、404、405、407、408、409、410、411、412、413)は前記バルブボデーに溶接されており、
     前記ノズルプレートは前記ノズルホルダに溶接または圧入されている請求項1~4のいずれか一項に記載の燃料噴射装置。
    The nozzle holder (40, 403, 404, 405, 407, 408, 409, 410, 411, 412, 413) is welded to the valve body,
    The fuel injection device according to any one of claims 1 to 4, wherein the nozzle plate is welded or press-fitted to the nozzle holder.
  6.  前記ノズルホルダ(405、406、413)は、前記バルブボデーに嵌合する筒部(485、486)を有するカップ形状であり、
     前記筒部は前記バルブボデーに溶接または圧入されており、
     前記ノズルプレート(30、313)は前記ノズルホルダに溶接または圧入されている請求項1~4のいずれか一項に記載の燃料噴射装置。
    The nozzle holder (405, 406, 413) has a cup shape having a cylindrical portion (485, 486) fitted to the valve body,
    The cylindrical portion is welded or press-fitted to the valve body,
    The fuel injection device according to any one of claims 1 to 4, wherein the nozzle plate (30, 313) is welded or press-fitted to the nozzle holder.
  7.  前記ノズルホルダ(407、408、409、412)は、前記バルブボデーとは反対側が大径となる段付き孔(427)を中心部に有しており、
     前記ノズルプレート(307、308、309)は、前記段付き孔の段差面(447)に軸方向で当接している請求項1~6のいずれか一項に記載の燃料噴射装置。
    The nozzle holder (407, 408, 409, 412) has a stepped hole (427) having a large diameter on the opposite side to the valve body at the center,
    The fuel injection device according to any one of claims 1 to 6, wherein the nozzle plate (307, 308, 309) is in axial contact with the step surface (447) of the stepped hole.
  8.  前記ノズルプレート(309、313、314)および前記ノズルホルダ(409、412、413、414)は、それらを貫通する溶接部(369、373、374)により前記バルブボデーに固定されている請求項1~7のいずれか一項に記載の燃料噴射装置。 The nozzle plate (309, 313, 314) and the nozzle holder (409, 412, 413, 414) are fixed to the valve body by welds (369, 373, 374) passing therethrough. 8. The fuel injection device according to any one of 1 to 7.
  9.  前記ノズルホルダは、中心部に通孔(42)を有しており、
     前記ノズルプレート(30、302、304、310、311)の外周部は、前記通孔の内壁に溶接または圧入されている請求項1~6のいずれか一項に記載の燃料噴射装置。
    The nozzle holder has a through hole (42) in the center,
    The fuel injection device according to any one of claims 1 to 6, wherein an outer peripheral portion of the nozzle plate (30, 302, 304, 310, 311) is welded or press-fitted to an inner wall of the through hole.
  10.  前記ノズルホルダの前記バルブボデーとは反対側の面(450、452)は、前記噴孔の出口よりも突出している請求項1~9のいずれか一項に記載の燃料噴射装置。 The fuel injection device according to any one of claims 1 to 9, wherein a surface (450, 452) opposite to the valve body of the nozzle holder protrudes from an outlet of the nozzle hole.
PCT/JP2019/018325 2018-05-11 2019-05-08 Fuel injection device WO2019216329A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-091838 2018-05-11
JP2018091838A JP6844583B2 (en) 2018-05-11 2018-05-11 Fuel injection device

Publications (1)

Publication Number Publication Date
WO2019216329A1 true WO2019216329A1 (en) 2019-11-14

Family

ID=68467499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018325 WO2019216329A1 (en) 2018-05-11 2019-05-08 Fuel injection device

Country Status (2)

Country Link
JP (1) JP6844583B2 (en)
WO (1) WO2019216329A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097129A (en) * 1998-09-24 2000-04-04 Keihin Corp Solenoid type fuel injection valve
JP2004278464A (en) * 2003-03-18 2004-10-07 Keihin Corp Fuel injection valve
WO2005035974A1 (en) * 2003-10-08 2005-04-21 Keihin Corporation Fuel injection valve
JP2009162239A (en) * 2009-04-27 2009-07-23 Nippon Soken Inc Fuel injection valve and internal combustion engine
JP2010025066A (en) * 2008-07-23 2010-02-04 Aisan Ind Co Ltd Fuel injection valve and its manufacturing method
JP2014181611A (en) * 2013-03-19 2014-09-29 Hitachi Automotive Systems Ltd Fuel injection valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097129A (en) * 1998-09-24 2000-04-04 Keihin Corp Solenoid type fuel injection valve
JP2004278464A (en) * 2003-03-18 2004-10-07 Keihin Corp Fuel injection valve
WO2005035974A1 (en) * 2003-10-08 2005-04-21 Keihin Corporation Fuel injection valve
JP2010025066A (en) * 2008-07-23 2010-02-04 Aisan Ind Co Ltd Fuel injection valve and its manufacturing method
JP2009162239A (en) * 2009-04-27 2009-07-23 Nippon Soken Inc Fuel injection valve and internal combustion engine
JP2014181611A (en) * 2013-03-19 2014-09-29 Hitachi Automotive Systems Ltd Fuel injection valve

Also Published As

Publication number Publication date
JP2019196750A (en) 2019-11-14
JP6844583B2 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
US7051960B2 (en) Fuel injection valve
US7219847B2 (en) Fuel injector with a metering assembly with a polymeric support member and an orifice disk positioned at a terminal end of the polymeric housing
JP3837283B2 (en) Fuel injection valve
JP2002130082A (en) Fuel injection valve
JP2001012636A (en) Fuel injection device having a plurality of solenoids and a common cylinder
JP3969247B2 (en) Fuel injection valve
JP2003232268A (en) Solenoid operated fuel injection valve
JP4453745B2 (en) Fuel injection valve
JP4577654B2 (en) Electromagnetic drive device and fuel injection valve using the same
JP2011163242A (en) Fuel injection valve
JP4120632B2 (en) Fuel injection valve
JP4209803B2 (en) Fuel injection valve
US20090127354A1 (en) Fuel injection valve
WO2019216329A1 (en) Fuel injection device
JP2001214839A (en) Fuel injection valve
CN108779747B (en) Fuel injection device
JP2005195015A (en) Fuel injection valve
JP2005325800A (en) Fluid injection valve
JP2011127486A (en) Fuel injection valve
JP2007292081A (en) Fuel injection valve
JP2013144990A (en) Fuel injection valve
JP6339461B2 (en) Fuel injection valve
JP2018087518A (en) Fuel injection valve
JP2006077775A (en) Solenoid fuel injection valve
JP2000320431A (en) Fuel injection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799383

Country of ref document: EP

Kind code of ref document: A1