JP6733010B1 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP6733010B1
JP6733010B1 JP2019109723A JP2019109723A JP6733010B1 JP 6733010 B1 JP6733010 B1 JP 6733010B1 JP 2019109723 A JP2019109723 A JP 2019109723A JP 2019109723 A JP2019109723 A JP 2019109723A JP 6733010 B1 JP6733010 B1 JP 6733010B1
Authority
JP
Japan
Prior art keywords
radiator
cooling device
wavelength
angle
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2019109723A
Other languages
Japanese (ja)
Other versions
JP2020201014A (en
Inventor
彰一郎 菅
彰一郎 菅
尚久 太田
尚久 太田
松田 宏
宏 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lixil Corp
Original Assignee
Lixil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lixil Corp filed Critical Lixil Corp
Priority to JP2019109723A priority Critical patent/JP6733010B1/en
Priority to PCT/JP2020/012374 priority patent/WO2020250536A1/en
Application granted granted Critical
Publication of JP6733010B1 publication Critical patent/JP6733010B1/en
Publication of JP2020201014A publication Critical patent/JP2020201014A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/009Indoor units, e.g. fan coil units characterised by heating arrangements
    • F24F1/0093Indoor units, e.g. fan coil units characterised by heating arrangements with additional radiant heat-discharging elements, e.g. electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Building Environments (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

【課題】波長選択性を有する放射体を備える冷却装置において、冷却効率を向上させること。【解決手段】特定波長の電磁波を選択的に放射可能であるとともに、表面に凹凸構造を有する放射体を備える、冷却装置である。前記凹凸構造は、山部と谷部が所定方向に交互に連続して配置された構造であることが好ましい。【選択図】図1PROBLEM TO BE SOLVED: To improve cooling efficiency in a cooling device provided with a radiator having wavelength selectivity. A cooling device capable of selectively radiating an electromagnetic wave having a specific wavelength and including a radiator having a concavo-convex structure on its surface. The concavo-convex structure is preferably a structure in which peaks and valleys are arranged alternately and continuously in a predetermined direction. [Selection diagram] Figure 1

Description

本発明は、冷却装置に関する。 The present invention relates to a cooling device.

従来、放射を利用した冷暖房装置に関し、放射される赤外線の波長を制御し、人体等の被加熱物に吸収されやすい特定波長の赤外線を放射の主波長とするとともに、放射される赤外線の指向性を高め、被加熱物に向けて選択的に加熱を行うことで冷暖房の効率を向上させる技術が提案されている。 Conventionally, regarding a cooling and heating device using radiation, the wavelength of infrared radiation to be radiated is controlled, and an infrared ray of a specific wavelength that is easily absorbed by an object to be heated such as a human body is used as a main wavelength of radiation, and directivity of the infrared radiation to be radiated A technique has been proposed in which the heating and cooling efficiency is increased and the heating and cooling efficiency is improved by selectively heating the object to be heated.

特許文献1には、熱交換パイプに接するように熱伝導シートを折り曲げて配置することで放射パネルへの接触面積を増大させて伝熱量を増やし、冷暖房の効率を高める技術が開示されている。 Patent Document 1 discloses a technique in which a heat conductive sheet is bent and arranged so as to be in contact with a heat exchange pipe, thereby increasing a contact area with a radiant panel to increase the amount of heat transfer and improving efficiency of cooling and heating.

また、特許文献2には、地球上の大気が特定波長の赤外線を吸収せずに透過することや、粒子を混合したポリマー層に金属反射層を合わせたフィルムによって、波長選択的な放射冷却が可能であることが開示されている。 Further, in Patent Document 2, wavelength-selective radiative cooling can be achieved by the fact that the atmosphere on the earth transmits infrared rays of a specific wavelength without absorbing them, and by a film in which a metal reflective layer is combined with a polymer layer mixed with particles. It is disclosed that this is possible.

特許6372004号公報Japanese Patent No. 6372004 国際公開2017/151514号公報International publication 2017/151514

しかしながら、特許文献2に記載の折り曲げた構造を有する熱伝導体においては、熱伝導体から放射された赤外線が熱伝導体の他の箇所で吸収されるため、外部との伝熱量が小さくなり冷暖房効率が低減してしまう。 However, in the heat conductor having the bent structure described in Patent Document 2, since infrared rays radiated from the heat conductor are absorbed in other parts of the heat conductor, the amount of heat transfer to the outside is reduced, and the heating and cooling are performed. Efficiency is reduced.

本発明は、上記に鑑みてなされたものであり、波長選択性を有する放射体を備える冷却装置において、冷却効率を向上させることを目的とする。 The present invention has been made in view of the above, and an object thereof is to improve the cooling efficiency in a cooling device including a radiator having wavelength selectivity.

(1) 本発明は、特定波長の電磁波を選択的に放射可能であるとともに、表面に凹凸構造を有する放射体(例えば、後述の放射体3)を備える、冷却装置(例えば、後述の冷却装置1)を提供する。 (1) The present invention is a cooling device (for example, a cooling device described later) that is capable of selectively radiating an electromagnetic wave of a specific wavelength and that includes a radiator (for example, a radiator 3 described later) having an uneven structure on its surface. 1) is provided.

(2) (1)の発明において、前記凹凸構造は、山部(例えば、後述の山部35)と谷部(例えば、後述の谷部33)が所定方向に交互に連続して配置された蛇腹構造であり、前記谷部を構成するとともに対向する2つの面(例えば、後述の向かい合う面34aおよび34b)は、それぞれ異なる波長選択性を有することが好ましい。 (2) In the invention of (1), in the concavo-convex structure, a mountain portion (for example, a mountain portion 35 described later) and a valley portion (for example, a valley portion 33 described later) are alternately arranged in a predetermined direction. It is a bellows structure, and it is preferable that two surfaces (for example, facing surfaces 34a and 34b, which will be described later) that are opposed to each other and that configure the valley have different wavelength selectivity.

(3) (1)の発明において、前記凹凸構造は、山部と谷部が所定方向に交互に連続して配置された蛇腹構造であり、前記谷部を構成するとともに対向する2つの面は、同一の波長選択性を有し、前記2つの面が前記所定方向に延びる面に対してなす角(例えば、後述の角θ)の大きさは同一であり、前記なす角の大きさは75°以上90°未満であることが好ましい。

(3) In the invention of (1), the concavo-convex structure is a bellows structure in which peaks and valleys are arranged alternately and continuously in a predetermined direction, and the two surfaces forming the valleys and facing each other The two surfaces have the same wavelength selectivity, and the angles formed by the two surfaces with respect to the surface extending in the predetermined direction (for example, an angle θ described below) are the same, and the angle formed is 75. It is preferably at least 90° and less than 90°.

(4) (2)または(3)の発明において、前記2つの面のうち少なくとも一方の面から放射される電磁波の波長は、大気の透過率がゼロより大きい波長領域を一部含むことが好ましい。 (4) In the invention of (2) or (3), it is preferable that the wavelength of the electromagnetic wave radiated from at least one of the two surfaces partially includes a wavelength region in which the transmittance of the atmosphere is larger than zero. ..

(5) (2)〜(4)の発明において、前記2つの面から放射される電磁波の波長は、ともに大気の透過率がゼロより大きい波長領域を一部含むことが好ましい。 (5) In the inventions of (2) to (4), it is preferable that both of the wavelengths of the electromagnetic waves emitted from the two surfaces include a part of a wavelength region in which the transmittance of the atmosphere is larger than zero.

(6) (1)〜(5)の発明において、前記放射体は、ポリマー層(例えば、後述のポリマー層31)と、前記ポリマー層と積層される金属反射層(例えば、後述の金属反射層32)と、を有して構成され、前記ポリマー層は、分散媒(例えば、後述の分散媒312)と、前記分散媒に分散される複数の誘電体粒子(例えば、後述の誘電体粒子311)と、を有し、前記誘電体粒子は、二酸化ケイ素、炭酸カルシウム、炭化ケイ素、酸化亜鉛、二酸化チタンおよびアルミナからなる群より選択される少なくとも1種からなることが好ましい。 (6) In the inventions of (1) to (5), the radiator includes a polymer layer (for example, a polymer layer 31 described later) and a metal reflection layer (for example, a metal reflection layer described below) laminated with the polymer layer. 32), and the polymer layer includes a dispersion medium (for example, a dispersion medium 312 described below) and a plurality of dielectric particles (for example, a dielectric particle 311 described below) dispersed in the dispersion medium. ) And, the dielectric particles are preferably composed of at least one selected from the group consisting of silicon dioxide, calcium carbonate, silicon carbide, zinc oxide, titanium dioxide and alumina.

(7) (6)の発明において、前記分散媒は、4−メチル−1−ペンテンポリマー、4−メチル−1−ペンテンコポリマー、ポリフッ化ビニルおよびポリエチレンテレフタレートからなる群より選択される少なくとも1種からなることが好ましい。 (7) In the invention of (6), the dispersion medium is at least one selected from the group consisting of 4-methyl-1-pentene polymer, 4-methyl-1-pentene copolymer, polyvinyl fluoride and polyethylene terephthalate. It is preferable that

(8) (1)〜(7)の発明において、前記冷却装置は、屋外に設置されるとともに、前記放射体は、宇宙空間に向けて水平よりも上方に放射するよう設置されることが好ましい。 (8) In the inventions of (1) to (7), it is preferable that the cooling device is installed outdoors, and the radiator is installed so as to radiate upward from a horizontal direction toward outer space. ..

本発明によれば、波長選択性を有する放射体を備える冷却装置において、冷却効率を向上させることが可能になる。 According to the present invention, it is possible to improve cooling efficiency in a cooling device including a radiator having wavelength selectivity.

本発明の第1実施形態に係る冷却装置1を設置した建物を模式的に表す図である。It is a figure which shows typically the building in which the cooling device 1 which concerns on 1st Embodiment of this invention was installed. 本実施形態に係る冷却装置1を示す図である。It is a figure which shows the cooling device 1 which concerns on this embodiment. 大気中に含まれる気体の赤外線透過率を示すグラフである。It is a graph which shows the infrared transmittance of the gas contained in the atmosphere. 本実施形態に係る放射体3の断面構成を示す図である。It is a figure which shows the cross-sectional structure of the radiator 3 which concerns on this embodiment. 本実施形態に係る放射体3の一例を示す外観斜視図である。It is an appearance perspective view showing an example of radiator 3 concerning this embodiment. 放射体3上のある点から放射される赤外線の進む方向を示す図である。It is a figure which shows the advancing direction of the infrared rays radiated from a certain point on the radiator 3. 放射体3からの赤外線放射に係る角度θを示す図である。It is a figure which shows the angle (theta) k which concerns on the infrared radiation from the radiator 3. 向かい合う放射体3の波長選択性が同じ場合の、放射体3からの赤外線放射に係る角度θを示す図である。It is a figure which shows the angle (theta) k regarding the infrared radiation from the radiator 3, when the wavelength selectivity of the radiator 3 which opposes is the same. 向かい合う放射体3の波長選択性が異なる場合の、放射体3からの赤外線放射に係る角度θを示す図である。FIG. 9 is a diagram showing an angle θ k related to infrared radiation from the radiator 3 when the wavelength selectivity of the radiator 3 facing each other is different. 面積項の傾斜角θ依存性を表すグラフである。It is a graph showing the inclination angle θ dependency of the area term. 角度項の傾斜角θ依存性を表すグラフである。It is a graph showing inclination-angle (theta) dependence of an angle term. 赤外線の放射量の傾斜角θ依存性を表すグラフである。It is a graph showing the inclination angle θ dependence of the amount of infrared radiation. 本発明の第2実施形態に係る放射体103を表す図である。It is a figure showing the radiator 103 which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る放射体203を表す図である。It is a figure showing the radiator 203 which concerns on 3rd Embodiment of this invention.

以下、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.

(第1実施形態)
図1は、本実施形態の冷却装置1を建物の屋根に設置した使用例を表す図である。図2は、本発明の第1実施形態に係る冷却装置1を示す図である。
図2に示すように、本実施形態に係る冷却装置1は、収容部2と、放射体3と、を有して構成される。本実施形態に係る冷却装置1は、例えば建物の冷房装置として用いられる。具体的には、例えば、図1に示すように建物の屋根等に設置されて上空へ向けて放射冷却を行う。
(First embodiment)
FIG. 1 is a diagram showing a usage example in which the cooling device 1 of the present embodiment is installed on a roof of a building. FIG. 2 is a diagram showing the cooling device 1 according to the first embodiment of the present invention.
As shown in FIG. 2, the cooling device 1 according to the present embodiment is configured to include a housing portion 2 and a radiator 3. The cooling device 1 according to this embodiment is used, for example, as a cooling device for a building. Specifically, for example, as shown in FIG. 1, it is installed on a roof of a building or the like and performs radiative cooling toward the sky.

収容部2は、放射体3を収容可能な構造を有する。収容部2の材質や形状については特に制限されないが、加熱される放射体3を収容するため、金属や耐熱性樹脂等、一定の耐熱性を有する材質により構成されることが好ましい。収容部2は、例えば、屋根、壁、天井等に埋設されて建物の一部であってもよいし、独立した筐体であってもよい。 The housing 2 has a structure capable of housing the radiator 3. The material and shape of the housing portion 2 are not particularly limited, but in order to house the radiator 3 to be heated, it is preferable that the housing portion 2 is made of a material having a certain heat resistance such as metal or heat resistant resin. The accommodating portion 2 may be, for example, embedded in a roof, a wall, a ceiling, or the like to be a part of a building, or may be an independent housing.

放射体3は、熱源から受け取った熱エネルギーを、一定の波長領域を有する電磁波(本実施形態においては、赤外線)として放射する。このとき、放射された赤外線が大気に吸収されてしまうと冷却対象の周囲の気温を上昇させてしまうため、冷却効率が低下する。そのため、熱エネルギーが赤外線放射される場合には、大気に吸収されにくい波長で放射され、宇宙空間に放出されることが好ましい。 The radiator 3 radiates the heat energy received from the heat source as an electromagnetic wave (infrared ray in this embodiment) having a certain wavelength region. At this time, if the radiated infrared rays are absorbed by the atmosphere, the temperature around the object to be cooled will rise, and the cooling efficiency will decrease. Therefore, when the thermal energy is radiated by infrared rays, it is preferable that the thermal energy is radiated at a wavelength that is difficult to be absorbed by the atmosphere and is radiated to outer space.

大気を透過しにくい波長で放射を行う場合、夏の日中等の高温多湿な時間帯には、放射熱が冷却装置周囲の空気に吸収され、高温の空気から装置に伝熱する結果、放射冷却の効果が感じられにくい。この点、大気に吸収されずに宇宙空間に向けて放射する場合には、空気からの伝熱量が少なくなり、放射冷却の効果をより高く感じることができる。 When radiating at a wavelength that does not easily pass through the atmosphere, radiant heat is absorbed by the air around the cooling device during the hot and humid time of day such as summer, and the heat from the hot air is transferred to the device. The effect of is hard to feel. In this respect, when the radiation is not absorbed by the atmosphere but is radiated toward outer space, the amount of heat transferred from the air is small, and the effect of radiation cooling can be felt higher.

図3は、大気中に含まれる気体の赤外線透過率を示すグラフである。最下段は、大気の赤外線透過率を示すグラフである。
図3に示すように、大気中の赤外線の透過率は赤外線の波長によって異なり、例えば8〜13μmの波長の赤外線は大気には吸収されにくく、大部分が透過される。このような大気を透過可能な波長域は、大気の窓と呼ばれる。したがって、8〜13μmの波長の赤外線を水平よりも上方に向けて放射すれば、熱エネルギーを効率よく宇宙空間に放出することができる。
FIG. 3 is a graph showing the infrared transmittance of gas contained in the atmosphere. The bottom row is a graph showing the infrared transmittance of the atmosphere.
As shown in FIG. 3, the transmittance of infrared rays in the atmosphere differs depending on the wavelength of the infrared rays. For example, infrared rays having a wavelength of 8 to 13 μm are hardly absorbed by the atmosphere and most of them are transmitted. Such a wavelength range that can pass through the atmosphere is called a window of the atmosphere. Therefore, if infrared rays having a wavelength of 8 to 13 μm are radiated upward from the horizontal, thermal energy can be efficiently emitted to outer space.

熱エネルギーを放出された熱源は冷却されて、温度が低下する。放射体3に熱を供給する熱源として例えば水や気体等の冷媒を用いれば、放射体3の放射冷却により低温となった冷媒を建物の各部屋を通る熱交換チューブに通し、部屋を冷却した後、再び高温となった冷媒を放射体3によって冷却することで、建物の冷房システムとして利用可能である。 The heat source from which the heat energy is released is cooled and the temperature is lowered. If a coolant such as water or gas is used as a heat source for supplying heat to the radiator 3, the coolant cooled to a low temperature by the radiation cooling of the radiator 3 is passed through a heat exchange tube passing through each room of the building to cool the room. After that, the radiator 3 is used to cool the refrigerant having a high temperature again, so that it can be used as a cooling system for a building.

図4は、本実施形態に係る放射体3の断面構成例を示す図である。
放射体3は、例えば図4に示すように、ポリマー層31と、金属反射層32とからなる。ポリマー層31は、複数の誘電体粒子311を分散媒312中に分散させて構成される。誘電体粒子311の粒径や材質、あるいは分散媒の物性を適当に選択することで、所望の波長選択性が得られる。
分散媒312は、8〜13μmの波長の赤外線を透過させうる材料で構成することが好ましい。大気の窓から熱エネルギーを効率よく宇宙空間に放出させるためである。
FIG. 4 is a diagram showing a cross-sectional configuration example of the radiator 3 according to the present embodiment.
The radiator 3 includes, for example, as shown in FIG. 4, a polymer layer 31 and a metal reflection layer 32. The polymer layer 31 is configured by dispersing a plurality of dielectric particles 311 in a dispersion medium 312. A desired wavelength selectivity can be obtained by appropriately selecting the particle size and material of the dielectric particles 311 or the physical properties of the dispersion medium.
The dispersion medium 312 is preferably made of a material that can transmit infrared rays having a wavelength of 8 to 13 μm. This is because the thermal energy is efficiently released from the atmospheric window to outer space.

例えば、誘電体粒子311は、二酸化ケイ素、炭酸カルシウム、炭化ケイ素、酸化亜鉛、二酸化チタン、アルミナからなる群より選択される少なくとも1種からなることが好ましい。また、分散媒312は、4−メチル−1−ペンテンポリマー、4−メチル−1−ペンテンコポリマー、ポリフッ化ビニルおよびポリエチレンテレフタレートからなる群より選択される少なくとも1種からなることが好ましい。例えば、三井化学社製のTPXTMを用いて分散媒312を形成することができる。
波長選択性を有する構造としては、例えば、本実施形態の放射体の他、MIM(metal-insulator-metal)構造、キャビティ構造も利用することができる。
For example, the dielectric particles 311 are preferably made of at least one selected from the group consisting of silicon dioxide, calcium carbonate, silicon carbide, zinc oxide, titanium dioxide, and alumina. The dispersion medium 312 is preferably made of at least one selected from the group consisting of 4-methyl-1-pentene polymer, 4-methyl-1-pentene copolymer, polyvinyl fluoride and polyethylene terephthalate. For example, the dispersion medium 312 can be formed by using TPX manufactured by Mitsui Chemicals, Inc.
As the structure having wavelength selectivity, for example, in addition to the radiator of this embodiment, a MIM (metal-insulator-metal) structure or a cavity structure can be used.

図5は、本実施形態に係る放射体3の一例をを示す外観斜視図である。
放射体3の形状により、放射の効率が変化する。すなわち、放射体3に凹凸構造を設けることで、放射体3の表面積を増大させて、放出する熱エネルギーの量を増加させることができる。ただし、凹凸構造を有することによって、自身から放射された赤外線を再吸収してしまうことも考えられる。そのため放射体3は、表面積を増大させつつ、自身から放射された赤外線を再吸収する量が少なくなるような形状および構成であることが好ましい。
FIG. 5 is an external perspective view showing an example of the radiator 3 according to the present embodiment.
The radiation efficiency changes depending on the shape of the radiator 3. That is, by providing the radiator 3 with the concavo-convex structure, it is possible to increase the surface area of the radiator 3 and increase the amount of thermal energy to be emitted. However, it is possible that the infrared ray radiated from itself is re-absorbed by having the uneven structure. Therefore, it is preferable that the radiator 3 has a shape and a configuration such that the surface area is increased and the amount of infrared rays emitted from itself is reduced.

具体的には、本実施形態の放射体3の形状は、図5に示すような山部35と谷部33が所定方向に交互に連続して配置された蛇腹状に形成される。また図6〜図9は、蛇腹構造のうちの一の谷部33について断面視したものである。谷部33の向かい合う面34a、34bは、図6におけるOH平面の点Oを通る法線に関して互いに対称に構成され、OH平面に対してともに角θをなしている(0°<θ<90°)。向かい合う面34a、34bの一つの頂部Rから底部Oに至るOR面のOH平面への正射影の長さをLとすると、向かい合う面の頂部R,R間の水平方向の距離は2Lとなる。本開示においては、この距離を谷部33の幅とも称する。 Specifically, the radiator 3 of the present embodiment is formed in a bellows shape in which peaks 35 and valleys 33 are alternately arranged in a predetermined direction as shown in FIG. 6 to 9 are cross-sectional views of one valley portion 33 of the bellows structure. Opposing surfaces 34a and 34b of the valley portion 33 are configured symmetrically to each other with respect to a normal line passing through the point O of the OH plane in FIG. 6 and form an angle θ with the OH plane (0°<θ<90°. ). If the length of the orthogonal projection of the OR surface from the top R to the bottom O of one of the facing surfaces 34a and 34b to the OH plane is L, the horizontal distance between the tops R and R of the facing surfaces is 2L. In the present disclosure, this distance is also referred to as the width of the valley portion 33.

図6は、放射体3上のある点から放射される赤外線の進む方向を示す図である。
赤外線は放射体3上の各点から放射状に放射される。図6(a)に示すように、面34aから放射される赤外線は、そのまま空気中に向けて進む成分Aと、対向する面34bに向けて進む成分Bが存在する。放射体3の谷部33の向かい合う面34a、34bの波長選択性が同じ場合には、成分Bは対向する面34bに吸収される。
FIG. 6 is a diagram showing a traveling direction of infrared rays emitted from a certain point on the radiator 3.
Infrared rays are radiated from each point on the radiator 3. As shown in FIG. 6A, the infrared rays radiated from the surface 34a include a component A that advances toward the air as it is and a component B that advances toward the opposite surface 34b. When the faces 34a and 34b facing each other of the valley portion 33 of the radiator 3 have the same wavelength selectivity, the component B is absorbed by the faces 34b facing each other.

放射体3の谷部33の向かい合う面34a、34bの波長選択性が異なる場合には、図6(b)に示すように、反射してさらに空気中に進む(B1)か、もしくは対向する右側の面34aに向けて進む(B2)。放射体3の左右の面の波長選択性が同じ場合と比較して、成分B1の分だけ空気中に放射される赤外線量が多くなるため、冷却効率が向上する。成分B2は、右側の面34aに吸収される。 When the wavelength selectivity of the surfaces 34a and 34b facing each other of the valley portion 33 of the radiator 3 is different, as shown in FIG. 6B, the light is reflected and further travels into the air (B1) or the opposite right side. Toward the surface 34a (B2). Compared with the case where the wavelength selectivity of the left and right surfaces of the radiator 3 is the same, the amount of infrared rays radiated into the air increases by the amount of the component B1, so that the cooling efficiency is improved. The component B2 is absorbed by the right side surface 34a.

なお、空気中に放射される成分に対する、対向する面に吸収される成分の比率は、図6中の角度θによって変化する。この角度θが小さくなると吸収される成分の比率は減少し、角度θが大きくなれば吸収される比率は増加する。ただし、角度θが大きければ放射体の表面積が増大するため、放射する赤外線の総量が増加する。冷却効率は赤外線の総量と空気中に放射される成分の比率を総合して算出される必要がある。 It should be noted that the ratio of the component absorbed by the facing surface to the component radiated into the air changes depending on the angle θ in FIG. 6. The smaller the angle θ, the smaller the ratio of absorbed components, and the larger the angle θ, the larger the ratio of absorbed components. However, if the angle θ is large, the surface area of the radiator increases, so that the total amount of infrared rays emitted increases. The cooling efficiency needs to be calculated by combining the total amount of infrared rays and the ratio of components radiated in the air.

ここで、冷却に寄与する赤外線の総量について具体的に数式で考える。赤外線の総量Pは、単位面積あたりの放射量p(T)と、放射体3の面積項L/cosθと、空気中に放射される角度成分である角度項との積で表され、図6の平面内で考えると赤外線総量は下記式(1)のようになる。なお、P(T)は赤外線の放射量が温度に依存することを示し、Lおよびθは図6のように定義されるものとする。 Here, the total amount of infrared rays that contribute to cooling will be concretely considered by a mathematical formula. The total amount P of infrared rays is represented by the product of the amount of radiation p(T) per unit area, the area term L/cos θ of the radiator 3 and the angle term that is the angular component radiated in the air. Considering in the plane of, the total amount of infrared rays is given by the following equation (1). Note that P(T) indicates that the amount of infrared radiation depends on temperature, and L and θ are defined as shown in FIG.

Figure 0006733010
…(1)
Figure 0006733010
…(1)

図7(a)および(b)中に示す角度θkakbは、放射体3の面34a上のある点から放射される赤外線の角度成分群が放射体3の面34aとなす角度のうち、空気中に放射されない最大の角度を示す。
同様に、図8および図9中に示す角度θ1α,θ2α,...(α=a,b)は、放射体3の面34a上の点1,2,...から放射される赤外線の角度成分群が、放射体3の面34aとなす角度のうち、空気中に放射されない赤外線成分の最大の角度を示す。このうち、図8は面34aから面34bに対して放射する成分を示し、図9は面34bから反射して面34aに入射する成分を示す。ここで、面34aをn分割する点を点1,2,...nとすると、nを大きくするほど面34aからの放射を精度よく考慮できる。図8および9では、面34aを5分割し、点1から5までの5点について図示している。

The angles θ ka and θ kb shown in FIGS. 7A and 7B are the angles formed by the angle component group of infrared rays emitted from a certain point on the surface 34 a of the radiator 3 with the surface 34 a of the radiator 3. Of these, the maximum angle that is not emitted into the air is shown.
Similarly, the angles θ , θ 2α,. . . (Α=a, b) are points 1, 2,. . . The angle component group of the infrared rays radiated from is the maximum angle of the infrared components not radiated into the air among the angles formed with the surface 34 a of the radiator 3. Of these, FIG. 8 shows components radiated from the surface 34a to the surface 34b, and FIG. 9 shows components reflected from the surface 34b and incident on the surface 34a. Here, points 1, 2,. . . If n is set, the radiation from the surface 34a can be more accurately taken into consideration as n is increased. 8 and 9, the surface 34a is divided into five parts, and five points 1 to 5 are illustrated.

放射体3の面34a上のある点から放射される赤外線の角度成分群のうち、放射体3の面34aとなす角度がθよりも大きい角度成分が、空気中に放射されて冷却に寄与する。すなわち、上記式(1)の角度項の意味するところは、(θよりも大きい角度成分)/(放射する全角度範囲=180°)である。 Of the angular component group of infrared rays radiated from a certain point on the surface 34a of the radiator 3, the angle component whose angle with the surface 34a of the radiator 3 is larger than θ k is radiated into the air and contributes to cooling. To do. That is, the meaning of the angle term of the above formula (1) is (angle component larger than θ k )/(total radiating angular range=180°).

角度項を数式で表すと、式(2)のようになる。式(2)は、放射体3の面34aをn個に分割し、各点についての空気中に放射される角度を足し合わせ、n→∞としたものである。これにより、放射体3の各点から放射状に放射される赤外線のうち、空気中に放射される成分の割合を角度項として表せる。 When the angle term is expressed by a mathematical expression, it becomes as shown in Expression (2). The expression (2) is obtained by dividing the surface 34a of the radiator 3 into n pieces, and adding the angles of radiation at the respective points radiated into the air into n→∞. Thereby, the ratio of the component radiated in the air among the infrared rays radiated from each point of the radiator 3 can be expressed as an angle term.

Figure 0006733010
…(2)
Figure 0006733010
…(2)

なお、放射体3の左右の面同士の波長選択性が同じ場合と異なる場合について、角度成分の項の算出方法が異なる。放射体3の左右の面同士の波長選択性が同じ場合には、放射された赤外線のうち向かい合う放射体3に入射する成分は吸収されるため、空気中に直接放射される成分のみを角度項として考慮する。すなわち、図7(a)に示すθkaよりも大きい角度を考慮すればよい。 In addition, the calculation method of the term of the angle component is different when the wavelength selectivity between the left and right surfaces of the radiator 3 is the same or different. When the right and left surfaces of the radiator 3 have the same wavelength selectivity, the components of the emitted infrared rays that are incident on the opposing radiator 3 are absorbed, so that only the components that are directly emitted into the air are included in the angle terms. To consider as. That is, an angle larger than θ ka shown in FIG. 7A may be considered.

放射体3の左右の面同士の波長選択性が異なる場合には、放射された赤外線のうち、向かい合う放射体3に入射する成分は反射される。反射された成分は、元の放射体3に再帰する成分と、空気中へ反射される成分に分けられるが、前者は吸収されるため、後者のみを角度項に考慮する。すなわち、元の放射体3から空気中に直接放射される成分と、向かい合う放射体3で空気中へ反射される成分との和を角度項として考慮する。このとき、図7(b)に示すθkbよりも大きい角度を考慮すればよい。 In the case where the right and left surfaces of the radiator 3 have different wavelength selectivity, the components of the emitted infrared rays that are incident on the opposing radiator 3 are reflected. The reflected component is divided into a component that returns to the original radiator 3 and a component that is reflected into the air, but since the former is absorbed, only the latter is considered as an angular term. That is, the sum of the component directly radiated from the original radiator 3 into the air and the component reflected by the opposing radiator 3 into the air is considered as an angle term. At this time, an angle larger than θ kb shown in FIG. 7B may be considered.

図10は、面積項の傾斜角θ依存性を表すグラフである。
上述したように、図6の平面内で考えれば、放射体3の面積項はL/cosθで表される。よってθの増加に伴って、面積項は1/cosθ倍となるから、0°<θ<90°において図10に示すように増加していく。またθ=0のときの面積項を1とする。
FIG. 10 is a graph showing the inclination angle θ dependency of the area term.
As described above, when considered in the plane of FIG. 6, the area term of the radiator 3 is represented by L/cos θ. Therefore, as θ increases, the area term becomes 1/cos θ times, and therefore increases as shown in FIG. 10 at 0°<θ<90°. Further, the area term when θ=0 is set to 1.

図11は、角度項の傾斜角θ依存性を表すグラフである。
θ=0°、すなわち放射体3が凹凸構造を有しない平面構造である場合、放射体3から放射された赤外線はすべて空気中に放出されることとなる。したがって、θ=0°であり、角度項は180°/180°=1である。
FIG. 11 is a graph showing the inclination angle θ dependency of the angle term.
When θ=0°, that is, when the radiator 3 has a planar structure having no concavo-convex structure, all infrared rays emitted from the radiator 3 are emitted into the air. Therefore, θ k =0°, and the angle term is 180°/180°=1.

放射体3の左右の面同士の波長選択性が同じ場合、0°<θ<90°の全範囲において、θの増加に伴って向かい合う放射体3の面に吸収される赤外線の割合が増加し、角度項は小さくなる。 When the right and left surfaces of the radiator 3 have the same wavelength selectivity, the ratio of infrared rays absorbed by the surfaces of the radiator 3 facing each other increases with an increase in θ in the entire range of 0°<θ<90°. , The angle term becomes smaller.

放射体3の左右の面同士の波長選択性が異なる場合、0°<θ≦45°のときには、向かい合う放射体3で反射した赤外線は、すべて空気中に反射されることとなるから、放射体3から放射された赤外線はすべて空気中に放出されることとなる。したがって、θ=0°であり、このθの範囲において角度項は常に1となる。45°<θ<90°の時には、放射体3の左右の面同士の波長選択性が同じ場合と同様に、θの増加に伴って角度項は小さくなる。 When the right and left surfaces of the radiator 3 have different wavelength selectivity, when 0°<θ≦45°, all infrared rays reflected by the opposing radiator 3 are reflected in the air. All infrared rays emitted from 3 will be emitted into the air. Therefore, θ k =0°, and the angle term is always 1 in this θ range. When 45°<θ<90°, the angle term becomes smaller as θ increases, as in the case where the left and right surfaces of the radiator 3 have the same wavelength selectivity.

図12は、赤外線の放射量の傾斜角θ依存性を表すグラフである。
これは、式(1)で表される赤外線総量Pを計算したものであり、図10および11に示す面積項および角度項を掛け合わせたものに比例する。角度項はn=5として幾何光学の原理に基づき、入射角と反射角が等しくなる点を算出した。また、θ=0°、すなわち放射体3が凹凸構造を有しない平面構造である場合の放射量を1とする。
FIG. 12 is a graph showing the inclination angle θ dependence of the amount of infrared radiation.
This is a calculation of the total infrared ray amount P expressed by the equation (1), and is proportional to the product of the area term and the angle term shown in FIGS. The angle term was set to n=5, and the point where the incident angle and the reflection angle were equal was calculated based on the principle of geometrical optics. Further, the radiation amount is set to 1 when θ=0°, that is, when the radiator 3 has a planar structure having no uneven structure.

放射体3の左右の面同士の波長選択性が同じ場合、75°≦θ<90°の範囲において、θ=0°のときと比較して放射量が増加していることがわかる。さらに放射体3の左右の面同士の波長選択性が異なる場合には、0°<θ<90°の全範囲でθの増加に伴って放射量が増加する。θが大きくなるほど放射量は大きく増加し、特に75°≦θ<90°の範囲においては、放射体3が平面構造である場合と比べて2倍以上の放射量となり、高効率な放射が可能である。 It can be seen that when the right and left surfaces of the radiator 3 have the same wavelength selectivity, the radiation amount increases in the range of 75°≦θ<90° as compared with the case of θ=0°. Further, when the right and left surfaces of the radiator 3 have different wavelength selectivity, the radiation amount increases with the increase of θ in the entire range of 0°<θ<90°. The larger the θ is, the more the radiation amount increases. Especially, in the range of 75°≦θ<90°, the radiation amount is more than double that in the case where the radiator 3 has a planar structure, and highly efficient radiation is possible. Is.

以上、本実施形態の冷却装置1によれば、特定の波長の赤外線を放射できるとともに、放射体の凹凸構造によって表面積を増大させることで冷却効率が向上する。なお、本実施形態では谷部33の向かい合う面34a、34bが図6におけるOH平面の点Oを通る法線に関して互いに対称に形成されているが、谷部33の向かい合う面34a、34bが非対称に形成されていてもよく、同様に冷却効率が向上する。 As described above, according to the cooling device 1 of the present embodiment, infrared rays having a specific wavelength can be radiated, and the cooling efficiency is improved by increasing the surface area by the uneven structure of the radiator. In the present embodiment, the facing surfaces 34a and 34b of the valley 33 are formed symmetrically with respect to the normal line passing through the point O of the OH plane in FIG. 6, but the facing surfaces 34a and 34b of the valley 33 are asymmetrical. It may be formed, and the cooling efficiency is similarly improved.

本発明の冷却装置1の利用の形態例として、図1に示すように、冷却装置1を建物6の屋根に取り付けることによって建物の冷房システム10として用いることができる。その際、日当たりのよい南面の屋根に太陽光発電パネル7を設置し、空いた北面の屋根に冷却装置1を設置することで、屋根のスペースを有効に利用して、発電と放射冷却を同時に行うことができる。また、パネル7によって発電した電力を冷媒循環の動力源として使用すれば、より高効率に冷却を行うことができる。 As an example of the usage of the cooling device 1 of the present invention, as shown in FIG. 1, the cooling device 1 can be attached to the roof of a building 6 to be used as a cooling system 10 for the building. At that time, by installing the photovoltaic power generation panel 7 on the sunny roof of the south side and installing the cooling device 1 on the vacant roof of the north side, the roof space can be effectively used and the power generation and the radiation cooling can be performed at the same time. It can be carried out. Further, if the electric power generated by the panel 7 is used as a power source for circulating the refrigerant, cooling can be performed with higher efficiency.

また、放射体3は大気を透過する波長選択性を有しており、熱を宇宙空間に直接排熱することが可能である。すなわち、冷却の排熱が装置使用箇所近辺に影響することがない。
冷却装置1を建物過密である都市部で導入すれば、ヒートアイランド現象の緩和にも繋がる可能性がある。さらには、本実施形態の冷却装置1を用いて、蓄冷システムとしてもよい。
Further, the radiator 3 has a wavelength selectivity that allows the atmosphere to pass therethrough, and can directly exhaust heat to outer space. That is, the exhaust heat of cooling does not affect the vicinity of the use location of the device.
If the cooling device 1 is introduced in an urban area where the building is overcrowded, it may lead to alleviation of the heat island phenomenon. Furthermore, the cooling device 1 of the present embodiment may be used to form a cold storage system.

次に、本発明の他の実施形態の冷却装置について説明する。 Next, a cooling device according to another embodiment of the present invention will be described.

(第2実施形態)
図13は、本発明の第2実施形態に係る放射体103を表す図である。
本発明の第2実施形態に係る冷却装置101は、第1実施形態と比較して、放射体3の形状が異なる。第2実施形態に係る放射体103は、放射体3の蛇腹構造が、前記所定方向に直交する方向にも山部と谷部が交互に連続して配置されて構成される。すなわち、四角錐が連続して並ぶ形状となる。これにより、放射体3の表面積が増大するため、冷却効率がさらに向上する。また図13下部には、線分Xを通り四角錐の底面に垂直な面における、放射体103の断面を示している。
(Second embodiment)
FIG. 13: is a figure showing the radiator 103 which concerns on 2nd Embodiment of this invention.
The cooling device 101 according to the second embodiment of the present invention is different from the first embodiment in the shape of the radiator 3. The radiator 103 according to the second embodiment is configured such that the bellows structure of the radiator 3 is formed by alternately arranging peaks and valleys in a direction orthogonal to the predetermined direction. That is, the quadrangular pyramids are continuously arranged. As a result, the surface area of the radiator 3 is increased, so that the cooling efficiency is further improved. Further, in the lower part of FIG. 13, a cross section of the radiator 103 in a plane that passes through the line segments X 1 X 2 and is perpendicular to the bottom surface of the quadrangular pyramid is shown.

(第3実施形態)
図14は、本発明の第3実施形態に係る放射体203を表す図である。
本発明の第3実施形態に係る冷却装置201は、第2実施形態に係る放射体103において、四角錐でなく四角錐台が並んで構成される。この形態においても、凹凸構造を有しない場合と比較して放射体の表面積が増大するため、冷却効率が向上する。また図14下部には、線分Yを通り四角錐台の上面および底面に垂直な面における、放射体203の断面を示している。
なお、第1実施形態において蛇腹構造の連続する方向に台形が連続して並ぶような構成としても、同様な効果が得られる。
(Third Embodiment)
FIG. 14 is a diagram showing a radiator 203 according to the third embodiment of the present invention.
The cooling device 201 according to the third embodiment of the present invention is configured by arranging quadrangular pyramid pyramids instead of quadrangular pyramids in the radiator 103 according to the second embodiment. Also in this form, the surface area of the radiator is increased as compared with the case where the uneven structure is not provided, so that the cooling efficiency is improved. In the lower part of FIG. 14, a cross section of the radiator 203 is shown in a plane that passes through the line segment Y 1 Y 2 and is perpendicular to the top and bottom surfaces of the truncated pyramid.
The same effect can be obtained even if the trapezoids are continuously arranged in the continuous direction of the bellows structure in the first embodiment.

以上、本発明の実施形態について説明した。本発明の実施形態はこれに限定されるものではなく、改良・変形したものも本発明に含まれる。例えば、第2および第3実施形態以外にも放射体の形状を変更したものが考えられるが、放射体の表面積の増加および波長選択性の違いを利用した反射によって放射効率が向上するものであれば、本発明に含まれる。 The embodiments of the present invention have been described above. The embodiment of the present invention is not limited to this, and improvements and modifications are also included in the present invention. For example, the shape of the radiator may be changed in addition to the second and third embodiments, but the radiation efficiency may be improved by increasing the surface area of the radiator and reflecting by utilizing the difference in wavelength selectivity. For example, it is included in the present invention.

1,101,201 冷却装置
2 収容部
3,103,203 放射体
31 ポリマー層
311 誘電体粒子
312 分散媒
32 金属反射層
33 谷部
34a,b 谷部の向かい合う面
35 山部
4 熱交換チューブ
5 大気の窓
6 建物
7 太陽光発電パネル
10 冷却システム
1, 101, 201 Cooling device 2 Housing part 3, 103, 203 Radiator 31 Polymer layer 311 Dielectric particles 312 Dispersion medium 32 Metal reflective layer 33 Valleys 34a, b Faces of valleys 35 Mountains 4 Heat exchange tube 5 Atmospheric windows 6 Buildings 7 Solar panels 10 Cooling system

Claims (6)

特定波長の赤外線を選択的に放射可能であるとともに、表面に凹凸構造を有する放射体を備える冷却装置であって、
前記凹凸構造は、山部と谷部が所定方向に交互に連続して配置された構造であり、
前記谷部を構成するとともに対向する2つの面は、それぞれ異なる波長選択性を有する、冷却装置。
A cooling device that is capable of selectively emitting infrared rays of a specific wavelength and that includes a radiator having an uneven structure on its surface ,
The concavo-convex structure is a structure in which peaks and valleys are alternately arranged in a predetermined direction,
The cooling device in which the two surfaces that constitute the valley portion and face each other have different wavelength selectivity.
前記2つの面のうち少なくとも一方の面から放射される電磁波の波長は、大気の透過率がゼロより大きい波長領域を一部含む、請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the wavelength of the electromagnetic wave radiated from at least one of the two surfaces partially includes a wavelength region in which the transmittance of the atmosphere is greater than zero. 前記2つの面から放射される電磁波の波長は、ともに大気の透過率がゼロより大きい波長領域を一部含む、請求項1または2のいずれかに記載の冷却装置。 The cooling device according to claim 1, wherein the wavelengths of the electromagnetic waves emitted from the two surfaces include a part of a wavelength region in which the transmittance of the atmosphere is greater than zero. 前記放射体は、ポリマー層と、前記ポリマー層に積層される金属反射層と、を有して構成され、 The radiator is configured to have a polymer layer and a metal reflective layer laminated on the polymer layer,
前記ポリマー層は、分散媒と、前記分散媒に分散される複数の誘電体粒子と、を有し、 The polymer layer has a dispersion medium and a plurality of dielectric particles dispersed in the dispersion medium,
前記誘電体粒子は、二酸化ケイ素、炭酸カルシウム、炭化ケイ素、酸化亜鉛、二酸化チタンおよびアルミナからなる群より選択される少なくとも1種からなる、請求項1〜3のいずれかに記載の冷却装置。 The cooling device according to claim 1, wherein the dielectric particles are made of at least one selected from the group consisting of silicon dioxide, calcium carbonate, silicon carbide, zinc oxide, titanium dioxide and alumina.
前記分散媒は、4−メチル−1−ペンテンポリマー、4−メチル−1−ペンテンコポリマー、ポリフッ化ビニルおよびポリエチレンテレフタレートからなる群より選択される少なくとも1種からなる、請求項4に記載の冷却装置。 The cooling device according to claim 4, wherein the dispersion medium is at least one selected from the group consisting of 4-methyl-1-pentene polymer, 4-methyl-1-pentene copolymer, polyvinyl fluoride and polyethylene terephthalate. .. 屋外に設置されるとともに、 As well as being installed outdoors,
前記放射体は、宇宙空間に向けて水平よりも上方に放射するよう設置される、請求項1〜5のいずれかに記載の冷却装置。 The cooling device according to claim 1, wherein the radiator is installed so as to radiate upward from a horizontal direction toward outer space.
JP2019109723A 2019-06-12 2019-06-12 Cooling system Expired - Fee Related JP6733010B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019109723A JP6733010B1 (en) 2019-06-12 2019-06-12 Cooling system
PCT/JP2020/012374 WO2020250536A1 (en) 2019-06-12 2020-03-19 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019109723A JP6733010B1 (en) 2019-06-12 2019-06-12 Cooling system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020049725A Division JP2020201031A (en) 2020-03-19 2020-03-19 Cooling device

Publications (2)

Publication Number Publication Date
JP6733010B1 true JP6733010B1 (en) 2020-07-29
JP2020201014A JP2020201014A (en) 2020-12-17

Family

ID=71738628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019109723A Expired - Fee Related JP6733010B1 (en) 2019-06-12 2019-06-12 Cooling system

Country Status (2)

Country Link
JP (1) JP6733010B1 (en)
WO (1) WO2020250536A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474216B2 (en) * 2021-03-22 2024-04-24 大阪瓦斯株式会社 Radiation cooling type shading device
BE1030564B1 (en) * 2022-05-25 2024-01-03 Patrick Brants CLIMATE CONTROL SYSTEM FOR A BUILDING

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090080A (en) * 2000-09-12 2002-03-27 Takeo Saito Micro-compound parabolic concentrator (cpc) type radiating cooler
AU2003233699A1 (en) * 2002-05-28 2003-12-12 Gordon Latos Radiant heat pump device and method
JP2005047486A (en) * 2003-07-16 2005-02-24 Nissan Motor Co Ltd Interior trimming heat absorbing/radiating structure
JP2012122648A (en) * 2010-12-07 2012-06-28 Ishinoyu Co Ltd Indoor environment adjustment system
JP2016188715A (en) * 2015-03-30 2016-11-04 イムラ・ジャパン株式会社 Radiation cooling device and cooling light utilization system
EP3311094A4 (en) * 2015-06-18 2019-04-10 The Trustees of Columbia University in the City of New York Systems and methods for radiative cooling and heating
EP3423298B1 (en) * 2016-02-29 2021-07-28 The Regents of the University of Colorado, a body corporate Selective radiative cooling structure
JP2020053285A (en) * 2018-09-27 2020-04-02 株式会社Lixil Radiation heater and radiation heater system

Also Published As

Publication number Publication date
JP2020201014A (en) 2020-12-17
WO2020250536A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
Li et al. Fundamentals, materials, and applications for daytime radiative cooling
US11215407B2 (en) Radiative cooling with solar spectrum reflection
US11408689B2 (en) Structures for radiative cooling
JP6733010B1 (en) Cooling system
JP5315514B2 (en) Awnings and methods for making them
JP5303108B2 (en) Photovoltaic power generation device and building including the same
AU2013212159B2 (en) Skylight energy management system
US20200033028A1 (en) Solar light utilization apparatus and solar light utilization system
US11274859B2 (en) Active daytime radiative cooling for air conditioning and refrigeration systems
US4716882A (en) Solar heat collector
JP2020201031A (en) Cooling device
JP2012002892A (en) Transparent body for window and manufacturing method thereof
JP5388240B2 (en) Radiator
KR102560227B1 (en) Cold/Hot Combined Production Unit
US20220307730A1 (en) Devices and methods for concentrated radiative cooling
JP2020193799A (en) Building cooling device and building cooling system
JP2013104615A (en) Far infrared ray radiating and/or absorbing device and room environment adjusting system
Pirvaram et al. A comprehensive study on using underside infrared reflectors to enhance the performance of radiative cooling structures
US20210190383A1 (en) Selective surfaces for radiant heat transfer
KR20220091269A (en) Radiation cooling device based on incidence and emission angle control
Shams Design of a Transpired Air Heating Solar Collector with an Inverted Perforated Absorber and Asymmetric Compound Parabolic Concentrator.
JPS61119948A (en) Solar heat collector
WO2020037328A9 (en) Beam-controlled spectral-selective architecture for a radiative cooler
BR112016003346B1 (en) DEVICE TO GENERATE ELECTRICAL POWER, SYSTEM, AND DEVICE MANUFACTURING METHOD
WO2000075708A9 (en) Method of and apparatus for lighting interior spaces with collected sunlight

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191216

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191216

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200708

R150 Certificate of patent or registration of utility model

Ref document number: 6733010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees