JP2016188715A - Radiation cooling device and cooling light utilization system - Google Patents

Radiation cooling device and cooling light utilization system Download PDF

Info

Publication number
JP2016188715A
JP2016188715A JP2015068181A JP2015068181A JP2016188715A JP 2016188715 A JP2016188715 A JP 2016188715A JP 2015068181 A JP2015068181 A JP 2015068181A JP 2015068181 A JP2015068181 A JP 2015068181A JP 2016188715 A JP2016188715 A JP 2016188715A
Authority
JP
Japan
Prior art keywords
light
cooling device
window member
wavelength range
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015068181A
Other languages
Japanese (ja)
Inventor
白石 剛一
Koichi Shiraishi
剛一 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMRA Japan Co Ltd
Original Assignee
IMRA Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMRA Japan Co Ltd filed Critical IMRA Japan Co Ltd
Priority to JP2015068181A priority Critical patent/JP2016188715A/en
Publication of JP2016188715A publication Critical patent/JP2016188715A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radiation cooling device which easily utilizes solar radiation of a wavelength of 2 μm or less.SOLUTION: A first window member 22 is configured as a member of which the transmissivity of light in a wavelength range of 0.3-2 μm is high and the transmissivity of light in a wavelength range of 8-13 μm is high. A second window member 24 is configured as a member of which the transmissivity of light in the wavelength range of 0.3-2 μm is high and the transmissivity of light in a wavelength range of 2-13 μm is high. A coolant flow passage member 26 that is disposed between the first window member 22 and the second window member 24 is configured as a member of which the transmissivity of light in the wavelength range of 0.3-2 μm is high and the transmissivity of light in the wavelength range of 8-13 μm is high. Thus, coldness can be applied to a coolant in a coolant flow passage 28 and sunlight from a side of the first window member 22 can be utilized by a sunlight utilization device 30 installed in the rear of a radiation cooling device 20. Since the sunlight utilization device 30 only needs to be disposed in the rear of the radiation cooling device 20, the radiation cooling device 20 is enabled to easily utilize light (sun radiation) in the wavelength range of 2 μm or less.SELECTED DRAWING: Figure 1

Description

本発明は、放射冷却装置および冷却光利用システムに関し、詳しくは、放射冷却を用いた放射冷却装置およびこうした放射冷却装置として機能すると共に光により機能する太陽光利用装置としても機能する冷却光利用システムに関する。   The present invention relates to a radiant cooling device and a cooling light utilization system, and more particularly, to a radiant cooling device using radiant cooling and a cooling light utilization system that functions as such a radiant cooling device and also functions as a sunlight utilization device that functions by light. About.

従来、この種の放射冷却装置としては、透光性のポリエチレンフィルムにより開口部が覆われアルミ箔が底部に貼り付けられた断熱容器の中空部に、冷媒流路が形成された熱放射体を備えるものが提案されている(例えば、特許文献1参照)。熱放射体は、鏡面アルミニウム板に二フッ化ビニリデンの一種であるアフレックスフィルム(登録商標)を被覆した二層構造として構成されており、8〜13μmの特定波長域で高い放射性を示し、これ以外の波長域の光に対して高い反射率を示す。このため、熱放射体は、開口部からの太陽光の照射に対して、4μm以下の波長の日射の大部分を反射し、8〜13μmの波長域の熱放射のみを吸収する。これにより、昼夜を問わず、放射冷却により冷熱を冷媒に付与することができる。   Conventionally, as this type of radiant cooling device, a heat radiator in which a refrigerant channel is formed in a hollow portion of an insulating container in which an opening is covered with a translucent polyethylene film and an aluminum foil is attached to the bottom. What is provided is proposed (for example, refer patent document 1). The thermal radiator is configured as a two-layer structure in which a mirror surface aluminum plate is coated with Aflex film (registered trademark), which is a kind of vinylidene difluoride, and exhibits high radiation in a specific wavelength range of 8 to 13 μm. High reflectivity with respect to light in other wavelength regions. Therefore, the thermal radiator reflects most of the solar radiation having a wavelength of 4 μm or less and absorbs only the thermal radiation in the wavelength region of 8 to 13 μm with respect to the irradiation of sunlight from the opening. Thereby, cold heat can be given to a refrigerant | coolant by radiation cooling regardless of day and night.

特開昭58−83168号公報Japanese Patent Laid-Open No. 58-83168

しかしながら、上述の放射冷却装置では、4μm以下の波長の日射の大部分を反射するため、日射の大部分については利用することができない。この問題に対して、反射した日射を受光して集熱する集熱装置と組み合わせることも考えられるが、太陽光の方向が時間によって変化するため、時間の経過により反射光を集熱装置に導く必要が生じ、装置が大型化する。   However, since the above-mentioned radiation cooling apparatus reflects most of the solar radiation with a wavelength of 4 μm or less, it cannot be used for most of the solar radiation. To solve this problem, it can be combined with a heat collector that receives reflected solar radiation and collects heat. However, since the direction of sunlight changes with time, the reflected light is guided to the heat collector over time. The need arises and the device becomes larger.

本発明の放射冷却装置は、2μm以下の波長の日射の利用が容易な放射冷却装置を提案することを主目的とする。また、本発明の冷却光利用システムは、放射冷却を用いる放射冷却装置の機能と2μm以下の波長の日射により機能する太陽光利用装置の機能とを兼ね備えるシステムを提供することを主目的とする。   The main object of the radiant cooling device of the present invention is to propose a radiant cooling device that can easily use solar radiation with a wavelength of 2 μm or less. Moreover, the cooling light utilization system of this invention aims at providing the system which combines the function of the radiation cooling device using radiation cooling, and the function of the sunlight utilization device which functions by the solar radiation of a wavelength of 2 micrometers or less.

本発明の放射冷却装置および冷却光利用システムは、上述の主目的を達成するために以下の手段を採った。   The radiant cooling device and the cooling light utilization system of the present invention employ the following means in order to achieve the main object described above.

本発明の放射冷却装置は、
放射冷却を用いた放射冷却装置であって、
0.3μm〜2μmの波長域の光の透過率が高く且つ8μm〜13μmの波長域の光の透過率が高い第1窓部材と、
0.3μm〜2μmの波長域の光の透過率が高く且つ2μm〜13μmの波長域の光の反射率が高い第2窓部材と、
前記第1窓部材と前記第2窓部材との間に配置され、内部に冷媒の流路が形成され、0.3μm〜2μmの波長域の光の透過率が高く且つ8μm〜13μmの波長域の光の放射率が高い冷媒流路部材と、
を備えることを要旨とする。
The radiant cooling device of the present invention comprises:
A radiant cooling device using radiant cooling,
A first window member having a high light transmittance in a wavelength region of 0.3 μm to 2 μm and a high light transmittance in a wavelength region of 8 μm to 13 μm;
A second window member having a high light transmittance in a wavelength region of 0.3 μm to 2 μm and a high reflectance of light in a wavelength region of 2 μm to 13 μm;
It arrange | positions between the said 1st window member and the said 2nd window member, the flow path of a refrigerant | coolant is formed in the inside, the light transmittance of the wavelength range of 0.3 micrometer-2 micrometers is high, and the wavelength range of 8 micrometers-13 micrometers A refrigerant flow path member having a high emissivity of light,
It is a summary to provide.

この本発明の放射冷却装置では、第1窓部材、冷媒流路部材、第2窓部材の順に並んでいる。8μm〜13μmの波長域の光に対しては、第1窓部材は透過率が高く、冷媒流路部材は放射率が高い。第2窓部材では、2μm〜13μmの波長域の光の反射率が高い。このため、第2窓部材側からの2μm〜13μmの波長域の光の多くは反射され、冷媒流路部材から放射される8μm〜13μmの波長域の光の多くは第1窓部材側から透過する。この結果、冷却流路部材は冷却され、冷熱を冷媒に付与することができる。一方、0.3μm〜2μmの波長域の光については、第1窓部材も第2窓部材も冷媒流路部材も、いずれも透過率が高いため、この波長域の光は、その大部分が放射冷却装置を透過する。したがって、放射冷却装置を介して0.3μm〜2μmの波長域の光を用いることができる。この結果、本発明の放射冷却装置は、2μm以下の波長の日射の利用が容易なものとなる。ここで、「透過率が高」や「反射率が高」、「放射率が高」とは、本明細書では、平均して、少なくとも50%以上であり、できれば70%以上であり、好ましくは80%以上であり、更に好ましくは90%以上であることを意味している。以下同様である。「冷媒」は、冷却用の熱交換媒体を意味している。以下でも同様である。   In this radiant cooling device of the present invention, the first window member, the refrigerant flow path member, and the second window member are arranged in this order. For light in the wavelength range of 8 μm to 13 μm, the first window member has a high transmittance, and the refrigerant channel member has a high emissivity. In the second window member, the reflectance of light in the wavelength region of 2 μm to 13 μm is high. Therefore, most of the light in the wavelength range of 2 μm to 13 μm from the second window member side is reflected, and most of the light in the wavelength range of 8 μm to 13 μm radiated from the coolant channel member is transmitted from the first window member side. To do. As a result, the cooling flow path member is cooled, and cold heat can be imparted to the refrigerant. On the other hand, for the light in the wavelength range of 0.3 μm to 2 μm, the first window member, the second window member, and the refrigerant flow path member all have high transmittance. Permeates the radiant cooling device. Therefore, light having a wavelength range of 0.3 μm to 2 μm can be used via the radiation cooling device. As a result, the radiation cooling device of the present invention can easily use solar radiation with a wavelength of 2 μm or less. Here, “high transmittance”, “high reflectance”, and “high emissivity” are at least 50% or more on average in this specification, preferably 70% or more, preferably Means 80% or more, more preferably 90% or more. The same applies hereinafter. “Refrigerant” means a heat exchange medium for cooling. The same applies to the following.

こうした本発明の放射冷却装置において、前記第1窓部材はフッ化バリウムの基材を用いて構成されているものとしてもよい。この場合、前記第1窓部材は前記基材にポリエチレンフィルムを圧着させて構成されているものとしてもよい。こうすれば、0.3μm〜13μmの波長域の光の透過率が高い第1窓部材とすることができる。   In such a radiant cooling device of the present invention, the first window member may be configured using a barium fluoride base material. In this case, the first window member may be configured by pressure-bonding a polyethylene film to the base material. If it carries out like this, it can be set as the 1st window member with the high transmittance | permeability of the light of the wavelength range of 0.3 micrometer-13 micrometers.

また、本発明の放射冷却装置において、前記第2窓部材は、0.3μm〜2μmの波長域の光の透過率が高いガラスの基材に酸化第二スズの薄膜を形成することにより構成されているものとしてもよい。こうすれば、0.3μm〜2μmの波長域の光の透過率が高く且つ2μm〜13μmの波長域の光の反射率が高い第2窓部材とすることができる。   In the radiant cooling device of the present invention, the second window member is formed by forming a thin film of stannic oxide on a glass substrate having a high light transmittance in a wavelength region of 0.3 μm to 2 μm. It is good as it is. If it carries out like this, it can be set as the 2nd window member with the high transmittance | permeability of the light of the wavelength range of 0.3 micrometer-2 micrometers, and the high reflectance of the light of the wavelength range of 2 micrometers-13 micrometers.

さらに、本発明の放射冷却装置において、前記冷媒流路部材は、0.3μm〜2μmの波長域の光の透過率が高く且つ8μm〜13μmの波長域の光の放射率が高い高透過ガラスを用いて構成されているものとしてもよい。   Further, in the radiant cooling device of the present invention, the refrigerant flow path member is made of a high transmission glass having a high light transmittance in a wavelength region of 0.3 μm to 2 μm and a high light transmittance in a wavelength region of 8 μm to 13 μm. It is good also as what is comprised using.

本発明の冷却光利用システムは、
放射冷却を用いた冷却と日射の利用を行なう冷却光利用システムであって、
上述のいずれかの態様の本発明の放射冷却装置と、
前記放射冷却装置を透過した前記0.3μm〜2μmの波長域の光により機能する太陽光利用装置と、
を備えることを要旨とする。
The cooling light utilization system of the present invention is
A cooling light utilization system that uses radiation cooling and solar radiation,
The radiant cooling device of the present invention according to any one of the above-described aspects;
A solar light utilization device that functions by light in the wavelength range of 0.3 μm to 2 μm that has passed through the radiation cooling device;
It is a summary to provide.

この本発明の冷却光利用システムでは、放射冷却装置は、上述したように第1窓部材と第2窓部材と冷媒流路部材とを備えるから、放射冷却により冷媒流路部材の冷媒に冷熱を付与することができる。放射冷却装置は0.3μm〜2μmの波長域の光については透過し、太陽光利用装置は0.3μm〜2μmの波長域の光により機能する。これらの結果、放射冷却を用いる放射冷却装置の機能と2μm以下の波長の日射により機能する太陽光利用装置の機能とを兼ね備えることができる。ここで、太陽光利用装置としては、ソーラーパネルなどを用いた太陽光発電装置や、日射により集熱する集熱装置、採光を利用する採光装置などを挙げることができる。   In the cooling light utilization system according to the present invention, the radiant cooling device includes the first window member, the second window member, and the refrigerant flow path member as described above, and therefore cools the refrigerant of the refrigerant flow path member by radiant cooling. Can be granted. The radiant cooling device transmits light in the wavelength range of 0.3 μm to 2 μm, and the solar light utilization device functions with light in the wavelength range of 0.3 μm to 2 μm. As a result, it is possible to combine the function of a radiant cooling device using radiant cooling and the function of a solar light utilization device that functions by solar radiation with a wavelength of 2 μm or less. Here, examples of the solar light utilization device include a solar power generation device using a solar panel, a heat collection device that collects heat by solar radiation, a daylighting device that uses daylighting, and the like.

こうした本発明の冷却光利用システムであって、前記太陽光利用装置は、内部に熱媒の流路が形成され、前記放射冷却装置を透過した前記0.3μm〜2μmの波長域の光の吸収率が高い集熱部を備える集熱装置であるものとすることもできる。こうすれば、放射冷却装置を透過した0.3μm〜2μmの波長域の光を用いて熱媒に温熱を付与することができる。ここで、「熱媒」は、加熱用の熱交換媒体を意味している。以下でも同様である。   In the cooling light utilization system of the present invention, the solar light utilization device has a heat medium flow path formed therein, and absorbs light in the wavelength range of 0.3 μm to 2 μm that has passed through the radiation cooling device. It can also be set as the heat collecting apparatus provided with the heat collecting part with a high rate. If it carries out like this, warm heat can be provided to a heat carrier using the light of the wavelength range of 0.3 micrometer-2 micrometers which permeate | transmitted the radiation cooling device. Here, the “heat medium” means a heat exchange medium for heating. The same applies to the following.

この態様の本発明の冷却光利用システムにおいて、前記放射冷却装置の前記第2窓部材と前記集熱部との間に真空断熱層を形成する断熱部を備えるものとすることもできる。こうすれば、放射冷却装置と集熱部の間には断熱部が配置されるから、放射冷却装置の冷媒の冷熱が集熱部に熱伝導したり、集熱部の熱媒の温熱が放射冷却装置に熱伝導するのを抑制することができる。また、前記集熱部は円筒状に形成されており、前記放射冷却装置は前記集熱部の外周側に円環状に形成されているものとしてもよい。こうすれば、内径側から集熱部、断熱部、放射冷却装置の順に配置して円筒形状に形成することができる。   The cooling light utilization system of this aspect of the present invention may further include a heat insulating part that forms a vacuum heat insulating layer between the second window member of the radiant cooling device and the heat collecting part. In this way, since the heat insulating part is arranged between the radiant cooling device and the heat collecting part, the cold heat of the refrigerant of the radiant cooling device is conducted to the heat collecting part, or the heat of the heat medium in the heat collecting part is radiated. Heat conduction to the cooling device can be suppressed. Moreover, the said heat collection part is formed in the cylindrical shape, and the said radiation cooling device is good also as what is formed in the annular | circular shape at the outer peripheral side of the said heat collection part. If it carries out like this, it can arrange | position in order of a heat collecting part, a heat insulation part, and a radiation cooling device from an inner diameter side, and can form in a cylindrical shape.

実施形態の冷却光利用システム10の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the cooling light utilization system 10 of embodiment. 実施例の第1窓部材22の分光透過率を示すグラフである。It is a graph which shows the spectral transmittance of the 1st window member 22 of an example. 実施例の第2窓部材24の分光透過率と分光反射率を示すグラフである。It is a graph which shows the spectral transmittance and the spectral reflectance of the 2nd window member 24 of an Example. 実施例の冷媒流路部材26の分光透過率と分光放射率を示すグラフである。It is a graph which shows the spectral transmission factor and the spectral emissivity of the refrigerant flow path member 26 of an Example. 実施例の冷却光利用システム100の構成の概要を示す構成図である。It is a block diagram which shows the outline | summary of a structure of the cooling light utilization system 100 of an Example. 冷却集熱器110の断面構造を説明する説明図である。It is explanatory drawing explaining the cross-section of the cooling heat collector.

次に、本発明を実施するための形態を実施例を用いて説明する。図1は、本発明の実施形態の冷却光利用システム10の構成の概略を示す構成図である。実施形態の冷却光利用システム10は、放射冷却により冷媒に冷熱を付与する放射冷却装置20と日射により機能する太陽光利用装置30とにより構成されている。ここで、「冷媒」は冷却用の熱交換媒体を意味しており、後出する「熱媒」は加熱用の熱交換媒体を意味している。なお、図1には、放射冷却装置20については断面構造の概略を示した。太陽光利用装置30としては、周知の太陽光集熱装置や周知の太陽光発電装置あるいは周知の採光装置などを挙げることができる。   Next, the form for implementing this invention is demonstrated using an Example. FIG. 1 is a configuration diagram showing an outline of a configuration of a cooling light utilization system 10 according to an embodiment of the present invention. The cooling light utilization system 10 of the embodiment includes a radiation cooling device 20 that imparts cold heat to a refrigerant by radiation cooling and a solar light utilization device 30 that functions by solar radiation. Here, “refrigerant” means a heat exchange medium for cooling, and “heat medium” to be described later means a heat exchange medium for heating. FIG. 1 schematically shows a cross-sectional structure of the radiant cooling device 20. Examples of the solar light utilization device 30 include a well-known solar heat collecting device, a well-known solar power generation device, and a well-known daylighting device.

放射冷却装置20は、図示するように、枠部材としての断熱容器29の一方の開口部(図中上部)に取り付けられた第1窓部材22と、断熱容器29の他方の開口部(図中下部)に取り付けられた第2窓部材24と、第1窓部材22と第2窓部材24との間に配置された冷媒流路部材26とを備える。   As shown in the figure, the radiant cooling device 20 includes a first window member 22 attached to one opening (upper part in the figure) of a heat insulating container 29 as a frame member, and the other opening (in the figure, the heat insulating container 29). A second window member 24 attached to the lower part, and a refrigerant flow path member 26 disposed between the first window member 22 and the second window member 24.

第1窓部材22は、0.3μm〜2μmの波長域の光の透過率が高く、且つ、8μm〜13μmの波長域の光の透過率が高い部材として構成されている。例えば、0.3μm〜13μmの波長域の光の透過率が高い部材としてもよいが、0.3μm〜2μmの波長域および8μm〜13μmの波長域以外の波長域の光については透過せずに反射するものが好ましい。第1窓部材22としては、フッ化バリウム(BaF2)やダイヤモンドなどの基材をポリエチレンフィルムなどの被覆材により被覆したものを用いることができる。ここで、「透過率が高い」とは、平均して、少なくとも50%以上であること、できれば70%以上であること、好ましくは80%以上であること、更に好ましくは90%以上であることを意図している。以下の「透過率が高い」についても同様である。 The 1st window member 22 is comprised as a member with the high transmittance | permeability of the light of the wavelength range of 0.3 micrometer-2 micrometers, and the high transmittance | permeability of the light of the wavelength range of 8 micrometers-13 micrometers. For example, although it is good also as a member with the high transmittance | permeability of the light of the wavelength range of 0.3 micrometer-13 micrometers, it does not permeate | transmit the light of wavelength ranges other than the wavelength range of 0.3 micrometer-2 micrometers and 8 micrometer-13 micrometers. What reflects is preferable. The first window member 22, it is possible to use those coated with a coating material such as polyethylene film substrate such as barium fluoride (BaF 2) or a diamond. Here, “high transmittance” means, on average, at least 50% or more, preferably 70% or more, preferably 80% or more, more preferably 90% or more. Is intended. The same applies to the following “high transmittance”.

第2窓部材24は、0.3μm〜2μmの波長域の光の透過率が高く、且つ、2μm〜13μmの波長域の光の反射率が高い部材として構成されている。第2窓部材24としては、例えば、0.3μm〜2μmの波長域の光の透過率が高いガラスの基材に酸化第二スズなどの金属酸化物または金属による薄膜(2μm〜13μmの波長域の光の反射率が高い膜)を形成したものを用いることができる。ここで、「反射率が高い」とは、平均して、少なくとも50%以上であること、できれば70%以上であること、好ましくは80%以上であること、更に好ましくは90%以上であることを意図している。以下の「反射率が高い」についても同様である。   The second window member 24 is configured as a member having a high light transmittance in a wavelength range of 0.3 μm to 2 μm and a high reflectivity of light in a wavelength range of 2 μm to 13 μm. As the second window member 24, for example, a thin film of metal oxide such as stannic oxide or metal (wavelength range of 2 μm to 13 μm) on a glass substrate having a high light transmittance in the wavelength range of 0.3 μm to 2 μm. A film having a high light reflectivity) can be used. Here, “high reflectivity” means, on average, at least 50% or more, preferably 70% or more, preferably 80% or more, more preferably 90% or more. Is intended. The same applies to the following “high reflectance”.

冷媒流路部材26は、内部に冷媒の流路28が形成され、0.3μm〜2μmの波長域の光の透過率が高く、且つ、8μm〜13μmの波長域の光の放射率が高い部材として構成されている。例えば、0.3μm〜2μmの波長域の光の透過率が高く、且つ、2μm〜13μmの波長域の光の放射率が高い部材としてもよい。冷媒流路部材26としては、例えば、0.3μm〜2μmの波長域の光の透過率が高く且つ2μm〜13μmの波長域の光の放射率が高い高透過ガラスなどを用いて形成することができる。ここで、「放射率が高い」とは、平均して、少なくとも50%以上であること、できれば70%以上であること、好ましくは80%以上であること、更に好ましくは90%以上であることを意図している。以下の「放射率が高い」についても同様である。   The refrigerant channel member 26 has a refrigerant channel 28 formed therein, and has a high light transmittance in a wavelength range of 0.3 μm to 2 μm and a high emissivity of light in a wavelength range of 8 μm to 13 μm. It is configured as. For example, it is good also as a member with the high transmittance | permeability of the light of the wavelength range of 0.3 micrometer-2 micrometers, and the high emissivity of the light of the wavelength range of 2 micrometers-13 micrometers. The coolant channel member 26 may be formed using, for example, a highly transmissive glass having a high light transmittance in a wavelength range of 0.3 μm to 2 μm and a high light emissivity in a wavelength range of 2 μm to 13 μm. it can. Here, “high emissivity” means, on average, at least 50% or more, preferably 70% or more, preferably 80% or more, more preferably 90% or more. Is intended. The same applies to the following “high emissivity”.

放射冷却装置20では、8μm〜13μmの波長域の光に対しては、第1窓部材22は透過率が高く、冷媒流路部材26は放射率が高い。第2窓部材24では、2μm〜13μmの波長域の光の反射率が高い。このため、第2窓部材24側からの2μm〜13μmの波長域の光の多くは反射され、冷媒流路部材26から放射される8μm〜13μmの波長域の光の多くは第1窓部材22側から透過する。この結果、冷却流路部材26は冷却され、冷媒に冷熱を付与することができる。一方、0.3μm〜2μmの波長域の光については、第1窓部材22も第2窓部材24も冷媒流路部材26も、いずれも透過率が高いため、この波長域の光は、その大部分が放射冷却装置20を透過する。このため、放射冷却装置20を透過した0.3μm〜2μmの波長域の光は、放射冷却装置20の後方(図中下側)に配置された太陽光利用装置30により利用することができる。   In the radiant cooling device 20, the first window member 22 has a high transmittance and the refrigerant channel member 26 has a high emissivity with respect to light in the wavelength range of 8 μm to 13 μm. In the 2nd window member 24, the reflectance of the light of a wavelength range of 2 micrometers-13 micrometers is high. For this reason, most of the light in the wavelength range of 2 μm to 13 μm from the second window member 24 side is reflected, and most of the light in the wavelength range of 8 μm to 13 μm emitted from the coolant channel member 26 is reflected in the first window member 22. Permeate from the side. As a result, the cooling flow path member 26 is cooled, and cold heat can be imparted to the refrigerant. On the other hand, for the light in the wavelength range of 0.3 μm to 2 μm, the first window member 22, the second window member 24, and the refrigerant flow path member 26 all have high transmittance. Most of the light passes through the radiant cooling device 20. For this reason, the light in the wavelength range of 0.3 μm to 2 μm that has passed through the radiation cooling device 20 can be used by the solar light utilization device 30 disposed behind the radiation cooling device 20 (lower side in the figure).

次に、放射冷却装置20の実施例について説明する。実施例では、第1窓部材22については、フッ化バリウム(BaF2)の基材22aをポリエチレンフィルムの被覆材22bを圧着させて被覆した。第2窓部材24としては、0.3μm〜2μmの波長域の光の透過率が高いガラスの基材24aに酸化第二スズをスパッタリングにより薄膜24b(2μm〜20μmの波長域の光の反射率が高い膜)を形成した。冷媒流路部材26としては、0.3μm〜2μmの波長域の光の透過率が高く且つ2μm〜13μmの波長域の光の放射率が高い高透過ガラスに冷媒流路28を形成する凹部を形成し、基材26a,26bを凹部が整合するように貼りあわせた。図2に実施例の第1窓部材22の分光透過率を示し、図3に実施例の第2窓部材24の分光透過率と分光反射率とを示し、図4に実施例の冷媒流路部材26の分光透過率と分光放射率とを示す。図2に示すように、実施例の第1窓部材22は、0.3μm〜13μmの波長域の光の透過率が高い。図3に示すように、実施例の第2窓部材24は、0.3μm〜2μmの波長域の光の透過率が高く、且つ、2μm〜20μmの波長域の光の反射率が高い。図4に示すように、実施例の冷媒流路部材26は、0.3μm〜2μmの波長域の光の透過率が高く、2μm〜13μmの波長域の光の放射率が高い。従って、実施例では、第1窓部材22側からの光に対しては0.3μm〜2μmの波長域の光を透過し、第2窓部材24側からの2μm〜20μmの波長域の光(熱放射を含む)については反射し、冷媒流路部材26からの8μm〜13μmの波長域の光(熱放射)については第1窓部材22から外部に放射する。この結果、冷媒流路部材26が冷却され、冷媒流路28の冷媒に冷熱を付与することができる。もとより、第1窓部材22側からの0.3μm〜2μmの波長域の光(日射)を後方の太陽光利用装置30によって利用することができる。 Next, an embodiment of the radiant cooling device 20 will be described. In the embodiment, for the first window member 22, a base material 22a of barium fluoride (BaF 2 ) is covered with a polyethylene film coating material 22b. As the second window member 24, a thin film 24b (light reflectance in a wavelength range of 2 μm to 20 μm) is formed by sputtering stannic oxide on a glass substrate 24a having a high light transmittance in a wavelength range of 0.3 μm to 2 μm. High film). As the refrigerant flow path member 26, a recess that forms the refrigerant flow path 28 in a highly transmissive glass having a high light transmittance in a wavelength range of 0.3 μm to 2 μm and a high emissivity of light in a wavelength range of 2 μm to 13 μm. Then, the base materials 26a and 26b were bonded so that the concave portions were aligned. FIG. 2 shows the spectral transmittance of the first window member 22 of the embodiment, FIG. 3 shows the spectral transmittance and spectral reflectance of the second window member 24 of the embodiment, and FIG. 4 shows the refrigerant flow path of the embodiment. The spectral transmittance and spectral emissivity of the member 26 are shown. As shown in FIG. 2, the 1st window member 22 of an Example has the high transmittance | permeability of the light of the wavelength range of 0.3 micrometer-13 micrometers. As shown in FIG. 3, the 2nd window member 24 of an Example has the high transmittance | permeability of the light of the wavelength range of 0.3 micrometer-2 micrometers, and the reflectance of the light of the wavelength range of 2 micrometers-20 micrometers. As shown in FIG. 4, the refrigerant flow path member 26 of the embodiment has a high light transmittance in a wavelength range of 0.3 μm to 2 μm and a high emissivity of light in a wavelength range of 2 μm to 13 μm. Therefore, in the embodiment, the light from the wavelength range of 0.3 μm to 2 μm is transmitted for the light from the first window member 22 side, and the light from the wavelength range of 2 μm to 20 μm from the second window member 24 side ( (Including thermal radiation) is reflected, and light (thermal radiation) in the wavelength region of 8 μm to 13 μm from the refrigerant flow path member 26 is radiated to the outside from the first window member 22. As a result, the refrigerant flow path member 26 is cooled, and cold heat can be imparted to the refrigerant in the refrigerant flow path 28. Of course, light (sunlight) in the wavelength range of 0.3 μm to 2 μm from the first window member 22 side can be used by the solar light utilization device 30 behind.

次に、太陽光利用装置30として太陽光集熱装置を用いた場合の実施例について説明する。図5は、実施例の冷却光利用システム100の構成の概略を示す構成図である。実施例の冷却光利用システム100は、放射冷却装置として機能すると共に集熱装置として機能する細長い円筒状の複数の冷却集熱器110と、冷却集熱器110からの冷媒と熱交換して冷熱を蓄熱する冷熱蓄熱部120と、冷却集熱器110からの熱媒と熱交換して温熱を蓄熱する温熱蓄熱部130と、を備える。冷熱蓄熱部120は、各冷却集熱器110へ冷媒を供給したり回収する冷媒供給回収器122と、冷媒供給回収器122により回収された冷媒との熱交換により冷熱を蓄熱する冷熱蓄熱器124と、冷媒供給回収器122と冷熱蓄熱器124とに冷媒を循環させる冷媒用循環パイプ126と、を備える。温熱蓄熱部130は、各冷却集熱器110へ熱媒を供給したり回収する熱媒供給回収器132と、熱媒供給回収器132により回収された熱媒との熱交換により温熱を蓄熱する温熱蓄熱器134と、熱媒供給回収器132と温熱蓄熱器134とに熱媒を循環させる熱媒用循環パイプ136と、を備える。   Next, the Example at the time of using a solar heat collecting device as the sunlight utilization apparatus 30 is described. FIG. 5 is a configuration diagram illustrating an outline of a configuration of the cooling light utilization system 100 according to the embodiment. The cooling light utilization system 100 of the embodiment functions as a radiant cooling device and also functions as a heat collecting device, a plurality of elongated cooling collectors 110 having a cylindrical shape, and heat exchange with the refrigerant from the cooling heat collector 110 to cool the heat. A heat storage unit 120 that stores heat and a heat storage unit 130 that stores heat by exchanging heat with the heat medium from the cooling heat collector 110. The cold heat storage unit 120 supplies and collects the refrigerant to each cooling collector 110 and the refrigerant supply / recovery unit 122, and the cold heat storage unit 124 that stores the cold heat by heat exchange with the refrigerant collected by the refrigerant supply / recovery unit 122. And a refrigerant circulation pipe 126 for circulating the refrigerant through the refrigerant supply / recovery unit 122 and the cold heat storage unit 124. The heat storage unit 130 stores heat by heat exchange between the heat medium supply / recovery unit 132 that supplies or recovers the heat medium to each cooling heat collector 110 and the heat medium recovered by the heat medium supply / recovery unit 132. A heat medium recirculation pipe 136 that circulates the heat medium in the heat medium regenerator 134, the heat medium supply / recovery unit 132, and the heat medium heat regenerator 134 is provided.

図6は、冷却集熱器110の断面構造を説明する説明図である。冷却集熱器110は、外周側から、第1窓部材222、冷媒流路部材226、第2窓部材224、集熱部材232により構成されている。第1窓部材222は、実施例の放射冷却装置の第1窓部材22と同様に、パイプ状に形成したフッ化バリウム(BaF2)の基材の外周面にポリエチレンフィルムの被覆材を圧着させて被覆して構成されている。冷媒流路部材226は、実施例の冷媒流路部材26と同様に、0.3μm〜2μmの波長域の光の透過率が高く且つ2μm〜13μmの波長域の光の放射率が高い高透過ガラスを径の異なるパイプ状に形成した2つの基材226a,226bにより構成されており、基材226a,226bの間に冷媒流路228が形成されている。第2窓部材224は、実施例の第2窓部材24と同様に、0.3μm〜2μmの波長域の光の透過率が高いガラスをパイプ状に形成した基材の外周面に酸化第二スズをスパッタリングにより薄膜を形成することにより構成されている。集熱部材232は、パイプ状に形成したガラス基材の外周面に日射を吸収し熱放射をしない周知の選択吸収材、例えば熱伝導コーティングと赤外線吸収コーティングと反射防止コーティングとを施して構成されており、その内側に熱媒流路234が形成されている。なお、第2窓部材224と集熱部材232との間は真空断熱層240となっている。 FIG. 6 is an explanatory diagram for explaining a cross-sectional structure of the cooling heat collector 110. The cooling heat collector 110 includes a first window member 222, a refrigerant flow path member 226, a second window member 224, and a heat collection member 232 from the outer peripheral side. The first window member 222 is formed by pressure-bonding a polyethylene film covering material to the outer peripheral surface of a barium fluoride (BaF 2 ) base material formed in a pipe shape, similarly to the first window member 22 of the radiation cooling device of the embodiment. It is configured to cover. The refrigerant channel member 226 has a high transmittance of light in the wavelength region of 0.3 μm to 2 μm and a high emissivity of light in the wavelength region of 2 μm to 13 μm, similarly to the refrigerant channel member 26 of the embodiment. It is comprised by the two base materials 226a and 226b which formed the glass in the pipe shape from which a diameter differs, and the refrigerant | coolant flow path 228 is formed between the base materials 226a and 226b. Similar to the second window member 24 of the embodiment, the second window member 224 is second oxidized on the outer peripheral surface of a base material in which glass having a high light transmittance in the wavelength region of 0.3 μm to 2 μm is formed in a pipe shape. It is configured by forming a thin film by sputtering tin. The heat collecting member 232 is configured by applying a well-known selective absorbing material that absorbs solar radiation and does not emit heat to the outer peripheral surface of a glass substrate formed in a pipe shape, for example, a heat conductive coating, an infrared absorbing coating, and an antireflection coating. The heat medium flow path 234 is formed inside. A vacuum heat insulating layer 240 is provided between the second window member 224 and the heat collecting member 232.

冷却集熱器110では、0.3μm〜2μmの波長域の光(日射)は、第1窓部材222、冷媒流路部材226、第2窓部材224を透過し、集熱部材232で吸収され、熱媒流路234の熱媒に温熱を付与する。熱媒流路234の熱媒からの熱放射は集熱部材232により阻害される。一方、冷媒流路部材226からの8μm〜13μmの波長域の光(熱放射)については第1窓部材222から外部に放射するから、冷媒流路228の冷媒に冷熱を付与する。第2窓部材224と集熱部材232との間には真空断熱層240が形成されているから、集熱部材232の温熱が第2窓部材224側に熱伝導したり、第2窓部材224側の冷熱が集熱部材232側に熱伝導したりするのを抑制することができる。   In the cooling heat collector 110, light (irradiation) in the wavelength region of 0.3 μm to 2 μm passes through the first window member 222, the refrigerant flow path member 226, and the second window member 224 and is absorbed by the heat collection member 232. Then, warm heat is applied to the heat medium in the heat medium flow path 234. Heat radiation from the heat medium in the heat medium flow path 234 is inhibited by the heat collecting member 232. On the other hand, since light (heat radiation) in the wavelength region of 8 μm to 13 μm from the refrigerant flow path member 226 is radiated to the outside from the first window member 222, cold heat is applied to the refrigerant in the refrigerant flow path 228. Since the vacuum heat insulating layer 240 is formed between the second window member 224 and the heat collecting member 232, the heat of the heat collecting member 232 conducts heat to the second window member 224 side, or the second window member 224. It is possible to suppress the cold heat on the side from conducting heat to the heat collecting member 232 side.

以上説明した実施形態の放射冷却装置20によれば、第1窓部材22を0.3μm〜2μmの波長域の光の透過率が高く且つ8μm〜13μmの波長域の光の透過率が高い部材として構成し、第2窓部材24を0.3μm〜2μmの波長域の光の透過率が高く且つ2μm〜20μmの波長域の光の反射率が高い部材として構成し、第1窓部材22と第2窓部材24との間に配置する冷媒流路部材26を0.3μm〜2μmの波長域の光の透過率が高く且つ8μm〜13μmの波長域の光の放射率が高い部材として構成することにより、冷媒流路28の冷媒に冷熱を付与することができると共に、第1窓部材22側からの太陽光を後方の太陽光利用装置30によって利用することができる。太陽光利用装置30は実施形態の放射冷却装置20の後方に配置するだけでよいから、実施形態の放射冷却装置20は2μm以下の波長域の光(日射)の利用が容易なものとなる。   According to the radiation cooling device 20 of the embodiment described above, the first window member 22 has a high light transmittance in the wavelength region of 0.3 μm to 2 μm and a high light transmittance in the wavelength region of 8 μm to 13 μm. The second window member 24 is configured as a member having a high light transmittance in the wavelength region of 0.3 μm to 2 μm and a high reflectance of the light in the wavelength region of 2 μm to 20 μm, and the first window member 22 The refrigerant flow path member 26 disposed between the second window member 24 and the second window member 24 is configured as a member having a high light transmittance in a wavelength range of 0.3 μm to 2 μm and a high emissivity of light in a wavelength range of 8 μm to 13 μm. Thereby, while being able to provide cold heat to the refrigerant | coolant of the refrigerant | coolant flow path 28, the sunlight from the 1st window member 22 side can be utilized with the sunlight utilization apparatus 30 of back. Since the solar light utilization device 30 only needs to be disposed behind the radiation cooling device 20 of the embodiment, the radiation cooling device 20 of the embodiment can easily use light (sunlight) in a wavelength region of 2 μm or less.

実施形態の冷却光利用システム10では、放射冷却装置20と太陽光利用装置30とを備えることにより、放射冷却を用いる放射冷却装置20の機能と2μm以下の波長の日射により機能する太陽光利用装置30の機能とを兼ね備えることができる。   In the cooling light utilization system 10 of the embodiment, the solar light utilization device that functions by the function of the radiation cooling device 20 using the radiation cooling and the solar radiation with a wavelength of 2 μm or less by including the radiation cooling device 20 and the solar light utilization device 30. It can have 30 functions.

以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.

本発明は、放射冷却装置や冷却光利用システムの製造産業などに利用可能である。   The present invention can be used in the manufacturing industry of radiant cooling devices and cooling light utilization systems.

10,100 冷却光利用システム、20 放射冷却装置、22,222 第1窓部材、22a 基材、22b 被覆材、24,224 第2窓部材、24a 基材、24b 薄膜、26,226 冷媒流路部材、26a,26b,226a,226b 基材、28,228 冷媒流路、29 断熱容器、30 太陽光利用装置、110 冷却集熱器、120 冷熱蓄熱部、122 冷媒供給回収器、124 冷熱蓄熱器、126 冷媒用循環パイプ、130 温熱蓄熱部、132 熱媒供給回収器、134 温熱蓄熱器、136 熱媒用循環パイプ、232 集熱部材、234 熱媒流路、240 真空断熱層。   10,100 Cooling light utilization system, 20 Radiation cooling device, 22,222 First window member, 22a base material, 22b Cover material, 24,224 Second window member, 24a base material, 24b Thin film, 26,226 Refrigerant flow path Member, 26a, 26b, 226a, 226b Base material, 28, 228 Refrigerant flow path, 29 Heat insulation container, 30 Solar-powered device, 110 Cooling heat collector, 120 Cold heat storage unit, 122 Refrigerant supply and recovery unit, 124 Cold heat storage device 126 Refrigerant circulation pipe, 130 Heat storage part, 132 Heat medium supply and recovery unit, 134 Heat storage unit, 136 Heat medium circulation pipe, 232 Heat collecting member, 234 Heat medium flow path, 240 Vacuum heat insulation layer.

Claims (9)

放射冷却を用いた放射冷却装置であって、
0.3μm〜2μmの波長域の光の透過率が高く且つ8μm〜13μmの波長域の光の透過率が高い第1窓部材と、
0.3μm〜2μmの波長域の光の透過率が高く且つ2μm〜13μmの波長域の光の反射率が高い第2窓部材と、
前記第1窓部材と前記第2窓部材との間に配置され、内部に冷媒の流路が形成され、0.3μm〜2μmの波長域の光の透過率が高く且つ8μm〜13μmの波長域の光の放射率が高い冷媒流路部材と、
を備える放射冷却装置。
A radiant cooling device using radiant cooling,
A first window member having a high light transmittance in a wavelength region of 0.3 μm to 2 μm and a high light transmittance in a wavelength region of 8 μm to 13 μm;
A second window member having a high light transmittance in a wavelength region of 0.3 μm to 2 μm and a high reflectance of light in a wavelength region of 2 μm to 13 μm;
It arrange | positions between the said 1st window member and the said 2nd window member, the flow path of a refrigerant | coolant is formed in the inside, the light transmittance of the wavelength range of 0.3 micrometer-2 micrometers is high, and the wavelength range of 8 micrometers-13 micrometers A refrigerant flow path member having a high emissivity of light,
A radiant cooling device comprising:
請求項1記載の放射冷却装置であって、
前記第1窓部材は、フッ化バリウムの基材を用いて構成されている、
放射冷却装置。
The radiant cooling device according to claim 1,
The first window member is configured using a base material of barium fluoride,
Radiant cooling device.
請求項2記載の放射冷却装置であって、
前記第1窓部材は、前記基材にポリエチレンフィルムを圧着させて構成されている、
放射冷却装置。
A radiant cooling device according to claim 2,
The first window member is configured by pressure-bonding a polyethylene film to the base material,
Radiant cooling device.
請求項1ないし3のうちのいずれか1つの請求項に記載の放射冷却装置であって、
前記第2窓部材は、0.3μm〜2μmの波長域の光の透過率が高いガラスの基材に酸化第二スズの薄膜を形成することにより構成されている、
放射冷却装置。
A radiant cooling device according to any one of claims 1 to 3,
The second window member is configured by forming a thin film of stannic oxide on a glass substrate having a high light transmittance in a wavelength range of 0.3 μm to 2 μm.
Radiant cooling device.
請求項1ないし4のうちのいずれか1つの請求項に記載の放射冷却装置であって、
前記冷媒流路部材は、0.3μm〜2μmの波長域の光の透過率が高く且つ8μm〜13μmの波長域の光の放射率が高い高透過ガラスを用いて構成されている、
放射冷却装置。
A radiant cooling device according to any one of claims 1 to 4,
The refrigerant flow path member is configured by using a high transmission glass having a high light transmittance in a wavelength range of 0.3 μm to 2 μm and a high emissivity of light in a wavelength range of 8 μm to 13 μm.
Radiant cooling device.
放射冷却を用いた冷却と日射の利用を行なう冷却光利用システムであって、
請求項1ないし5のうちのいずれか1つの請求項に記載の放射冷却装置と、
前記放射冷却装置を透過した前記0.3μm〜2μmの波長域の光により機能する太陽光利用装置と、
を備える冷却光利用システム。
A cooling light utilization system that uses radiation cooling and solar radiation,
A radiant cooling device according to any one of claims 1 to 5,
A solar light utilization device that functions by light in the wavelength range of 0.3 μm to 2 μm that has passed through the radiation cooling device;
Cooling light utilization system.
請求項6記載の冷却光利用システムであって、
前記太陽光利用装置は、内部に熱媒の流路が形成され、前記放射冷却装置を透過した前記0.3μm〜2μmの波長域の光の吸収率が高い集熱部を備える集熱装置である、
冷却光利用システム。
It is a cooling light utilization system of Claim 6, Comprising:
The solar light utilization device is a heat collecting device having a heat collecting portion in which a flow path of a heat medium is formed and a high light absorption rate of light in the wavelength range of 0.3 μm to 2 μm that is transmitted through the radiation cooling device. is there,
Cooling light utilization system.
請求項7記載の冷却光利用システムであって、
前記放射冷却装置の前記第2窓部材と前記集熱部との間に真空断熱層を形成する断熱部、
を備える冷却光利用システム。
It is a cooling light utilization system of Claim 7, Comprising:
A heat insulating part forming a vacuum heat insulating layer between the second window member of the radiant cooling device and the heat collecting part;
Cooling light utilization system.
請求項7または8記載の冷却光利用システムであって、
前記集熱部は、円筒状に形成されており、
前記放射冷却装置は、前記集熱部の外周側に円環状に形成されている、
冷却光利用システム。
The cooling light utilization system according to claim 7 or 8,
The heat collecting part is formed in a cylindrical shape,
The radiant cooling device is formed in an annular shape on the outer peripheral side of the heat collecting part,
Cooling light utilization system.
JP2015068181A 2015-03-30 2015-03-30 Radiation cooling device and cooling light utilization system Pending JP2016188715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015068181A JP2016188715A (en) 2015-03-30 2015-03-30 Radiation cooling device and cooling light utilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015068181A JP2016188715A (en) 2015-03-30 2015-03-30 Radiation cooling device and cooling light utilization system

Publications (1)

Publication Number Publication Date
JP2016188715A true JP2016188715A (en) 2016-11-04

Family

ID=57239567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015068181A Pending JP2016188715A (en) 2015-03-30 2015-03-30 Radiation cooling device and cooling light utilization system

Country Status (1)

Country Link
JP (1) JP2016188715A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062012A1 (en) * 2016-09-30 2018-04-05 富士フイルム株式会社 Radiant cooling device
WO2018062011A1 (en) * 2016-09-30 2018-04-05 富士フイルム株式会社 Radiant cooling device
JP2020201031A (en) * 2020-03-19 2020-12-17 株式会社Lixil Cooling device
JP2020201014A (en) * 2019-06-12 2020-12-17 株式会社Lixil Cooling device
WO2020262940A1 (en) * 2019-06-24 2020-12-30 한국과학기술원 Colored radiative cooling device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062012A1 (en) * 2016-09-30 2018-04-05 富士フイルム株式会社 Radiant cooling device
WO2018062011A1 (en) * 2016-09-30 2018-04-05 富士フイルム株式会社 Radiant cooling device
US10591190B2 (en) 2016-09-30 2020-03-17 Fujifilm Corporation Radiative cooling device
JP2020201014A (en) * 2019-06-12 2020-12-17 株式会社Lixil Cooling device
WO2020262940A1 (en) * 2019-06-24 2020-12-30 한국과학기술원 Colored radiative cooling device
JP2020201031A (en) * 2020-03-19 2020-12-17 株式会社Lixil Cooling device

Similar Documents

Publication Publication Date Title
JP2016188715A (en) Radiation cooling device and cooling light utilization system
Li et al. Fundamentals, materials, and applications for daytime radiative cooling
US20120222722A1 (en) Window
US9219183B2 (en) Photovoltaic thermal hybrid solar receivers
US20130255753A1 (en) Photovoltaic thermal hybrid systems and method of operation thereof
JP6821063B2 (en) Radiative cooling device
US20140332055A1 (en) Solar cell module
CN104718417A (en) Transparent solar energy collector
US11274859B2 (en) Active daytime radiative cooling for air conditioning and refrigeration systems
RU2720126C1 (en) Solar energy recycling system
US9153722B2 (en) Photovoltaic module cooling devices
US11162712B2 (en) Solar light utilization apparatus and solar light utilization system
US20150285540A1 (en) Device For Heating And/or Cooling A Chamber
CN103574921A (en) Solar heat collector
CN109564949A (en) Solar concentrator with the mobile mirror in the solar thermal collector or photovoltaic module for constant tilt
KR101464869B1 (en) Solar energy collecting vacuum panel and solar energy collecting module using the same
US20170323992A1 (en) Solar power generator
JP2017096504A (en) Window system, hot water supply system and air conditioning system
JPH0262794B2 (en)
CN106766275B (en) A kind of groove type solar high-temperature vacuum heat-collecting tube
JP2019168174A (en) Radiation cooling device
US20200025468A1 (en) Passive radiative cooling during the day
Cho et al. Anti-greenhouse effect via regulation of surface emissivity
JP2002089972A (en) Minute compound parabolic concentrator (cpc) type solar collector
JPH03267655A (en) Solar energy collector