JP6731633B2 - Method for manufacturing Mn-Al permanent magnet - Google Patents

Method for manufacturing Mn-Al permanent magnet Download PDF

Info

Publication number
JP6731633B2
JP6731633B2 JP2016041157A JP2016041157A JP6731633B2 JP 6731633 B2 JP6731633 B2 JP 6731633B2 JP 2016041157 A JP2016041157 A JP 2016041157A JP 2016041157 A JP2016041157 A JP 2016041157A JP 6731633 B2 JP6731633 B2 JP 6731633B2
Authority
JP
Japan
Prior art keywords
phase
heat treatment
temperature
permanent magnet
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016041157A
Other languages
Japanese (ja)
Other versions
JP2017157738A (en
Inventor
好古 三井
好古 三井
領太 小林
領太 小林
佳一 小山
佳一 小山
理恵 梅津
理恵 梅津
将輝 水口
将輝 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Kagoshima University NUC
Original Assignee
Tohoku University NUC
Kagoshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Kagoshima University NUC filed Critical Tohoku University NUC
Priority to JP2016041157A priority Critical patent/JP6731633B2/en
Publication of JP2017157738A publication Critical patent/JP2017157738A/en
Application granted granted Critical
Publication of JP6731633B2 publication Critical patent/JP6731633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、Mn−Al永久磁石の製造方法に関する。 The present invention relates to the production how the Mn-Al permanent magnets.

近年、ハイブリッドカーのモータ等の用途に、ネオジム磁石(Nd−Fe−B磁石)と呼ばれる永久磁石が等に広く使用されている。ネオジム磁石は、保磁力が高いものの、モータ等の使用に伴う温度上昇とともに保磁力が低下する問題点を有する。この問題点に対し、高温高保磁力の要求を満たすために希少元素であるDy元素をNd元素に添加することが行われている。 In recent years, permanent magnets called neodymium magnets (Nd-Fe-B magnets) have been widely used for applications such as motors of hybrid cars. Although the neodymium magnet has a high coercive force, it has a problem that the coercive force decreases as the temperature rises when a motor or the like is used. With respect to this problem, in order to satisfy the requirement of high temperature and high coercive force, the rare element Dy element is added to the Nd element.

このようなネオジム磁石の代替として、希少元素を添加することなく、特に高温で高い磁石特性を有する材料が求められている。この点について、Mn基の永久磁石材料は、元素的に優位性が高いために各種材料について実用化に向けた研究が進められている。 As a substitute for such a neodymium magnet, there is a demand for a material having high magnet characteristics, especially at high temperatures, without adding a rare element. In this regard, since Mn-based permanent magnet materials are highly elementally superior, various materials have been studied for practical use.

Mn基の永久磁石材料は、例えば特許文献1のようなMnBiが挙げられる。 Examples of Mn-based permanent magnet materials include MnBi as disclosed in Patent Document 1.

この他、Mn−Alは、合金系磁石として知られており、加工性に優れることが長所として挙げられる。磁力としての特徴は、フェライト磁石とネオジム磁石との中間に位置する。 In addition, Mn-Al is known as an alloy-based magnet and has an advantage that it is excellent in workability. The characteristic of the magnetic force lies between the ferrite magnet and the neodymium magnet.

しかしながら、Mn−Alは、永久磁石となるτ相が非平衡相であるため安定化させることが困難である。従って、Mn−Al永久磁石として実際に得られる磁力は微量であった。 However, it is difficult to stabilize Mn-Al because the τ phase which is a permanent magnet is a non-equilibrium phase. Therefore, the magnetic force actually obtained as the Mn-Al permanent magnet was very small.

これに対し、τ相を安定化させるために、特許文献2のように数重量%程度のC元素を加えてMn−Al−C永久磁石とすることが行われている。 On the other hand, in order to stabilize the τ phase, it has been practiced to add a C element in an amount of several wt% to obtain a Mn-Al-C permanent magnet as in Patent Document 2.

特開2015−63725号公報JP, 2005-63725, A 特開平10−270224号公報JP, 10-270224, A

Mn基の永久磁石材料については種々の研究がなされているが、上述のように高温高保磁力を満たす材料の要求がますます強くなっている。また、需要の増大に伴いより容易に製造可能なことも求められている。 Although various studies have been made on Mn-based permanent magnet materials, the demand for materials satisfying high temperature and high coercive force has been increasing as described above. Further, as demand increases, it is also required to be able to easily manufacture.

従って、Mn−Al系の永久磁石についても従来のようなMn−Al−Cの製造方法に代わる新たな製造方法及び永久磁石を提供することが期待されている。 Therefore, it is expected to provide a new manufacturing method and a permanent magnet that replaces the conventional manufacturing method of Mn-Al-C for Mn-Al-based permanent magnets.

本発明は、上記課題に鑑みてなされたものであって、C元素の添加を不要とするMn−Al永久磁石の製造方法を提供することを目的とする The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a Mn-Al permanent magnet that does not require addition of a C element .

上記目的を達成するため、本発明の第1の観点に係るMn−Al永久磁石の製造方法は、
Mn、Al及び不可避的不純物からなる材料にMn−Al系のε相が生成される温度で第1の熱処理を施す工程と、
前記ε相が生成された前記材料に磁束密度が10T以上の磁場を印加しながら第2の熱処理を施し、τ相を生成する工程と、を備える、ことを特徴とする。
In order to achieve the above object, the method for producing an Mn-Al permanent magnet according to the first aspect of the present invention is
A step of performing a first heat treatment on a material composed of Mn, Al, and unavoidable impurities at a temperature at which a Mn-Al-based ε-phase is formed;
A step of performing a second heat treatment while applying a magnetic field having a magnetic flux density of 10 T or more to the material in which the ε phase is generated, and generating the τ phase.

前記第2の熱処理の温度は、前記材料のキュリー温度以下の温度である、
こととしてもよい。
The temperature of the second heat treatment is a temperature equal to or lower than the Curie temperature of the material,
It may be that.

前記第2の熱処理の温度は、300〜350℃である、
こととしてもよい。
The temperature of the second heat treatment is 300 to 350°C.
It may be that.

前記第2の熱処理の時間は、24h以上である、
こととしてもよい
The time of the second heat treatment is 24 hours or more,
It may be that .

本発明によれば、C元素の添加を不要とするMn−Al永久磁石の製造方法が得られる According to the present invention, a method for producing a Mn-Al permanent magnet that does not require addition of C element can be obtained .

本発明の実施形態に係るMn−Al永久磁石の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the Mn-Al permanent magnet which concerns on embodiment of this invention. Mn−Alの二元系平衡状態図である。It is a binary system equilibrium phase diagram of Mn-Al. 本発明の実施形態に係るMn−Al永久磁石の製造過程の相変態を模式的に示す図である。It is a figure which shows typically the phase transformation in the manufacturing process of the Mn-Al permanent magnet which concerns on embodiment of this invention. 熱処理時に磁場を印加しない場合のMn−Al永久磁石の製造過程の相変態を模式的に示す参考図である。It is a reference drawing which shows typically a phase transformation in the manufacturing process of a Mn-Al permanent magnet when a magnetic field is not applied at the time of heat treatment. (a)及び(b)は、MnBi焼結体の永久磁石の製造過程の相変態を模式的に示す参考図である。(A) And (b) is a reference drawing which shows typically phase transformation in the manufacturing process of the permanent magnet of a MnBi sintered compact. 互いに熱処理時の温度及び磁場を異ならせた場合の磁化曲線を示すグラフ図である。It is a graph which shows the magnetization curve when the temperature and magnetic field at the time of heat processing differ from each other. (a)〜(c)は、互いに熱処理時の温度を異ならせた場合の磁化曲線を示すグラフ図である。(A)-(c) is a graph which shows the magnetization curve when the temperature at the time of heat processing is changed mutually.

以下、本発明の実施形態に係る永久磁石の製造方法を図1のフローチャートに従って説明する。 Hereinafter, a method for manufacturing a permanent magnet according to an embodiment of the present invention will be described with reference to the flowchart of FIG.

まず、永久磁石の原料を合成する(ステップS10)。本実施形態における永久磁石の原料は、MnとAlとの2種類である。なお、製造過程で混入し得る微量の不可避的不純物を含むことは許容される。 First, the raw material of the permanent magnet is synthesized (step S10). There are two types of raw materials for the permanent magnet in the present embodiment, Mn and Al. In addition, it is permissible to include a trace amount of unavoidable impurities that may be mixed in during the manufacturing process.

本実施形態に係る永久磁石は、Mn−Alの二元系材料であり、永久磁石となるCuAu構造のτ相が形成されたものである。従って、原料におけるMnの割合は、Mn−Al系のτ相となり得る範囲である。 The permanent magnet according to the present embodiment is a binary material of Mn-Al and has a τ phase of a CuAu structure which is a permanent magnet. Therefore, the ratio of Mn in the raw material is in a range that can be the τ phase of the Mn-Al system.

Mn−Alの二元系平衡状態図を図2に示す(出典:無機材料データベース(AtomWork、http://crystdb.nims.go.jp/)及びBinary Alloy Phase Diagrams, II ed. (1990))。なお、本明細書の説明のために、引用した二元系平衡状態図に追記を行った。 Figure 2 shows the binary phase diagram of Mn-Al (Source: Inorganic Material Database (AtomWork, http://crystdb.nims.go.jp/) and Binary Alloy Phase Diagrams, II ed. (1990)) .. For the purpose of explanation in this specification, an additional description is added to the cited binary system equilibrium diagram.

図2において、Mnの割合が概ね48.5〜59.5at%の範囲内で、840℃以下の略矩形の領域が磁石になるτ相となり得る領域(τ相生成領域)である。しかしながら、τ相は非平衡相であるため通常の熱処理によっては生成できない。τ相生成領域では、Mn11Al15(γ相)とMn(β相)とが平衡相となる。 In FIG. 2, when the ratio of Mn is approximately 48.5 to 59.5 at %, a substantially rectangular region at 840° C. or lower is a region that can be a τ phase that becomes a magnet (τ phase generation region). However, since the τ phase is a non-equilibrium phase, it cannot be generated by ordinary heat treatment. In the τ phase generation region, Mn 11 Al 15 (γ phase) and Mn (β phase) become equilibrium phases.

従って、原料の配合はτ相生成領域の範囲内で行われる。但し、後述のように製造過程において熱処理によってhcp(hexagonal close-packed)構造のε相(Mn0.55Al0.45)を生成させるため、概ね55at%前後である。 Therefore, the mixing of the raw materials is performed within the range of the τ phase generation region. However, as will be described later, in the manufacturing process, ε phase (Mn 0.55 Al 0.45 ) having an hcp (hexagonal close-packed) structure is generated by heat treatment, so that it is about 55 at%.

続いて、上記原料を炉中で溶解する(ステップS20)。溶解時の温度は、図2の二元系平衡状態図で液相(L)となる温度であり、例えば1400℃である。溶解の時間は、原料が十分に溶解されるよう、原料の量及び炉の設備等の条件に基づき決定される。 Then, the said raw material is melt|dissolved in a furnace (step S20). The temperature at the time of melting is the temperature at which the liquid phase (L) is reached in the binary system equilibrium diagram of FIG. 2, and is 1400° C., for example. The melting time is determined based on the amount of the raw material and the conditions such as the equipment of the furnace so that the raw material is sufficiently dissolved.

続いて、溶解後の原料を所定の鋳型内で鋳造し、鋳塊を製造する(ステップS30)。鋳塊の製造方法は、公知のMn−Al−C永久磁石に用いる方法でよいが、その他にも後述の熱処理に供するために適するものであればよい。 Then, the melted raw material is cast in a predetermined mold to manufacture an ingot (step S30). The method for producing the ingot may be a method used for a known Mn-Al-C permanent magnet, but may be any other method suitable for being subjected to the heat treatment described later.

続いて、鋳塊に溶体化熱処理(第1の熱処理)を行い、ε相が生成された材料とする(ステップS40)。熱処理の温度は、ε相が生成され得る温度であり、例えば1000〜1100℃である。熱処理の時間は、ε相が十分に生成されるよう、鋳塊の量及び炉の設備等の条件に基づき決定される。所定の熱処理が終了したら、ε相が生成された材料を焼入れ等により急冷する。 Subsequently, the ingot is subjected to solution heat treatment (first heat treatment) to obtain a material in which the ε phase is generated (step S40). The temperature of the heat treatment is a temperature at which the ε phase can be generated, and is, for example, 1000 to 1100°C. The heat treatment time is determined based on the conditions such as the amount of ingot and the equipment of the furnace so that the ε phase is sufficiently generated. When the predetermined heat treatment is completed, the material in which the ε phase is generated is quenched by quenching or the like.

続いて、ε相が生成された材料に対し磁場を印加しながら熱処理(第2の熱処理)を行う(ステップS50)。 Subsequently, heat treatment (second heat treatment) is performed while applying a magnetic field to the material in which the ε phase is generated (step S50).

熱処理の温度は、ε相から相変態したτ相が生成される温度であればよく、例えば350℃である。但し、熱処理の温度が高すぎると、一旦はτ相が生成されるものの、経時的な熱処理に伴い、ε相及び非平衡相であるτ相から平衡相のβ相及びγ相が生成されてしまう。また、ε相からβ相及びγ相が生成される割合も増加する。従って、これらの相変態のため、十分な磁力、即ち十分な分率のτ相を有する永久磁石を製造することが困難となるおそれがある。また、熱処理の温度が低すぎると、τ相の生成のために時間がかかり過ぎてしまうため好ましくない。有限の熱処理時間で十分に相変態が進行するためには、300℃以上であることが望ましい。 The temperature of the heat treatment may be a temperature at which a τ phase that is phase-transformed from the ε phase is generated, and is, for example, 350°C. However, if the temperature of the heat treatment is too high, the τ phase is generated once, but with the heat treatment over time, the β phase and γ phase of the equilibrium phase are generated from the ε phase and the nonequilibrium τ phase. I will end up. Further, the proportion of β phase and γ phase generated from ε phase also increases. Therefore, due to these phase transformations, it may be difficult to manufacture a permanent magnet having a sufficient magnetic force, that is, a sufficient fraction of the τ phase. If the temperature of the heat treatment is too low, it takes too much time to generate the τ phase, which is not preferable. In order for the phase transformation to proceed sufficiently within a finite heat treatment time, the temperature is preferably 300° C. or higher.

従って、永久磁石の製造のために好ましい熱処理温度は、磁場による磁石相の安定化を有効とするため、キュリー温度(380℃)以下であり、熱処理においてτ相の十分な生成に必要な時間を考慮し、例えば350℃とすることができる。熱処理の時間は、当該熱処理の温度との兼ね合いで決定されるが、例えば48hである。 Therefore, the preferable heat treatment temperature for manufacturing the permanent magnet is the Curie temperature (380° C.) or less in order to effectively stabilize the magnet phase by the magnetic field, and the time required for sufficient formation of the τ phase in the heat treatment is set. Considering this, the temperature may be 350° C., for example. The heat treatment time is determined in consideration of the temperature of the heat treatment and is, for example, 48 hours.

印加する磁場の強さは、τ相の生成に対して好ましい値とすればよく、例えば15Tとすることができる。 The strength of the magnetic field to be applied may be a value that is preferable for the generation of the τ phase, and may be 15T, for example.

所定の熱処理が終了したら、τ相が生成された材料を炉冷又は液冷等によって冷却する。この場合、τ相からβ相及びγ相への相変態が抑制される方法であることが好ましい。 When the predetermined heat treatment is completed, the material in which the τ phase is generated is cooled by furnace cooling or liquid cooling. In this case, it is preferable to use a method in which the phase transformation from the τ phase to the β phase and the γ phase is suppressed.

その後、τ相が生成された材料を仕上げ加工する(ステップS60)ことによって、所望の永久磁石の製品が完成する。 After that, the material in which the τ phase is generated is subjected to finish processing (step S60) to complete a desired permanent magnet product.

次に、本実施形態において第2の熱処理中に磁場を印加する理由について説明する。 Next, the reason why the magnetic field is applied during the second heat treatment in the present embodiment will be described.

Mn−Al系の材料において、生成されたε相に対して第2の熱処理に相当する温度で磁場を印加しないで熱処理すると、図3に示すように、非平衡相であるτ相に相変態する。また、ε相から平衡相であるβ相及びγ相にも相変態する。この場合、生成されるτ相の割合がβ相及びγ相の割合よりも多かったとしても、τ相は時間の経過とともにさらにβ相及びγ相に相変態することで減少してしまう。そのため、Mn−Al永久磁石は、通常の熱処理によっては高磁力の実用的な永久磁石として利用することが困難であった。 In the Mn-Al-based material, when the generated ε phase is heat-treated at a temperature corresponding to the second heat treatment without applying a magnetic field, as shown in FIG. 3, a phase transformation to a τ phase which is a non-equilibrium phase is performed. To do. Further, the ε phase also undergoes phase transformation into the β phase and γ phase which are equilibrium phases. In this case, even if the ratio of the τ phase generated is higher than the ratios of the β phase and the γ phase, the τ phase is reduced by further phase transformation into the β phase and the γ phase with the passage of time. Therefore, it has been difficult to use the Mn-Al permanent magnet as a practical permanent magnet having a high magnetic force by an ordinary heat treatment.

これに対し、本実施形態のように第2の熱処理中に磁場を印加するのは、強磁性を有する非平衡相のτ相を選択的に生成させ、且つ安定化させることが可能になるためである。この第2の熱処理での挙動を図4に模式的に示す。 On the other hand, applying the magnetic field during the second heat treatment as in this embodiment makes it possible to selectively generate and stabilize the τ phase of the nonequilibrium phase having ferromagnetism. Is. The behavior in this second heat treatment is schematically shown in FIG.

磁場を印加する第2の熱処理では、ε相から生成されるτ相の割合は、β相及びγ相に比べて著しく大きくなる。また、τ相からβ相及びγ相への相変態が図3の場合に比べて抑制されるため、材料中にτ相として残存する量を従来の製造方法に比べて多量に確保することができる。 In the second heat treatment in which a magnetic field is applied, the ratio of the τ phase generated from the ε phase becomes significantly larger than that of the β phase and the γ phase. Further, since the phase transformation from the τ phase to the β phase and the γ phase is suppressed as compared with the case of FIG. 3, it is possible to secure a large amount of the τ phase remaining in the material as compared with the conventional manufacturing method. it can.

但し、図4に示すような低い割合であってもτ相からβ相及びγ相への変化が起こることから、過大な長時間の熱処理を行うとτ相は次第に減少していくものと考えられる。 However, even if the ratio is low as shown in FIG. 4, the τ phase is changed to the β phase and the γ phase. Therefore, it is considered that the τ phase gradually decreases when the heat treatment is performed for an excessively long time. To be

ここで、先行技術であるMnBi永久磁石(特許文献1)との違いについて説明する。 Here, the difference from the prior art MnBi permanent magnet (Patent Document 1) will be described.

図5(a)に示すように、Mn粉末とBi粉末との混合物を例えば280℃で焼結することで、化合物としてのMnBiが生成される。また、図5(b)に示すように、焼結の温度をより低くし例えば250℃とした場合、通常MnBiは生成されない。特許文献1では、図5(b)の温度の条件でさらに磁場を印加しながら混合物を焼結することで、図5(a)のようにMnBiへの化学反応を促進するものである。また、焼結時の磁場の方向に従ってMnBiに磁気異方性が得られる。 As shown in FIG. 5A, the mixture of Mn powder and Bi powder is sintered at 280° C., for example, to produce MnBi as a compound. Further, as shown in FIG. 5(b), when the sintering temperature is lowered to, for example, 250° C., MnBi is usually not produced. In Patent Document 1, by sintering the mixture while further applying a magnetic field under the temperature condition of FIG. 5B, the chemical reaction to MnBi is promoted as shown in FIG. 5A. Further, magnetic anisotropy is obtained in MnBi according to the direction of the magnetic field during sintering.

これに対し、本実施形態のMn−Alは合金であるため、化合物の反応に対する磁場の印加とは意味が大きく異なる。hcp構造のε相から磁場を印加せずに熱処理を行うと、非強磁性のβ相及びγ相が生成されるため、磁石とはならない。本実施形態は、磁場を印加することで、上述のように非平衡相の強磁性τ相を選択的に生成させ且つ安定化させるものである。 On the other hand, since Mn-Al of the present embodiment is an alloy, its meaning is significantly different from the application of a magnetic field to the reaction of the compound. When the heat treatment is performed from the ε phase of the hcp structure without applying a magnetic field, the non-ferromagnetic β phase and γ phase are generated, so that the magnet does not serve as a magnet. In this embodiment, by applying a magnetic field, the non-equilibrium ferromagnetic τ phase is selectively generated and stabilized as described above.

また、広く用いられているMn−Al−C永久磁石の製造方法との違いについて説明する。 Further, the difference from the widely used manufacturing method of the Mn-Al-C permanent magnet will be described.

Mn−Al−C永久磁石の場合、ε相を生成させる第1の熱処理(図1のステップS40に相当)の後に、約700℃での押出加工を行う。永久磁石に一軸の磁気異方性を与える場合にはさらに押出軸方向に約700℃で据込加工を行う。その後、仕上げ加工(図1のステップS60に相当)を行い、永久磁石を製造する。 In the case of a Mn-Al-C permanent magnet, extrusion processing at about 700° C. is performed after the first heat treatment (corresponding to step S40 in FIG. 1) that produces the ε phase. When imparting uniaxial magnetic anisotropy to the permanent magnet, upsetting is further performed at about 700° C. in the extrusion axis direction. After that, finish processing (corresponding to step S60 in FIG. 1) is performed to manufacture a permanent magnet.

このように、Mn−Al−C永久磁石では本実施形態の場合よりも高い700℃程度の温度で機械的な加工を施す必要がある。これに対し、本実施形態では、炭素の添加を省略し、且つ、熱間の機械的な加工に代えてキュリー温度以下の比較的低い温度の炉で処理することが可能となるため、製造方法として大きく簡易化することができる。 As described above, the Mn-Al-C permanent magnet needs to be mechanically processed at a temperature of about 700° C., which is higher than that of the present embodiment. On the other hand, in the present embodiment, the addition of carbon can be omitted, and instead of hot mechanical processing, it is possible to perform processing in a furnace at a relatively low temperature of the Curie temperature or lower, so the manufacturing method Can be greatly simplified.

以上説明したように、本実施形態によれば、原料にC元素を用いることなく、Mn及びAlの2種類で高磁力の永久磁石を製造できる。また、τ相を生成するために高温での押出加工等をすることなく、キュリー温度以下の比較的低温であり、押出加工等の設備を要しない熱処理装置で対応することが可能である。 As described above, according to this embodiment, it is possible to manufacture a high-magnetism permanent magnet with two types of Mn and Al without using C element as a raw material. Further, it is possible to cope with a heat treatment apparatus which does not require extrusion processing at a high temperature to generate the τ phase and is at a relatively low temperature below the Curie temperature and does not require equipment such as extrusion processing.

以下に、本発明の代表的な実施例を示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には、以下の実施例の他、上記した具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等を加え得るものであることが、理解されるべきである。 Hereinafter, representative examples of the present invention will be shown to clarify the present invention more specifically, but the present invention is not limited by the description of such examples. It goes without saying that. In addition to the embodiments described below, the present invention includes various changes, modifications, improvements, etc. based on the knowledge of those skilled in the art, in addition to the specific description above, without departing from the spirit of the present invention. It should be understood that it can be added.

(実施例1)
Mn元素及びAl元素の原料をMnが全体の55at%として用意した。これらの原料を配合し高周波溶解した後、直径10mmのロッド状の鋳型で急冷した。これにより得られたロッド状試料を厚さ2mmのディスク状に切断し、ディスク状試料とした。ディスク状試料に対し1100℃で1日の溶体化処理後、氷水中で急冷した(第1の熱処理)。
(Example 1)
The raw materials for the Mn element and the Al element were prepared so that Mn was 55 at% of the whole. These raw materials were blended, melted by high frequency, and then rapidly cooled with a rod-shaped mold having a diameter of 10 mm. The rod-shaped sample thus obtained was cut into a disk having a thickness of 2 mm to obtain a disk-shaped sample. The disc-shaped sample was subjected to solution treatment at 1100° C. for 1 day and then rapidly cooled in ice water (first heat treatment).

その後、ディスク状試料に対し、磁石相(τ相)を生成させる熱処理を300℃及び350℃の熱処理温度において、それぞれ15T、10T及び0Tの磁場中で行った(第2の熱処理)。熱処理時間は12h、24h、48h、及び96hとした。 Then, the disk-shaped sample was subjected to heat treatment for generating a magnet phase (τ phase) at heat treatment temperatures of 300° C. and 350° C. in a magnetic field of 15 T, 10 T and 0 T, respectively (second heat treatment). The heat treatment time was set to 12 h, 24 h, 48 h, and 96 h.

第2の熱処理の後、各試料について、磁化測定を最大1.5Tの外部磁場に対して、それぞれ27℃にて行った。その結果を図6に示す。 After the second heat treatment, the magnetization of each sample was measured at 27° C. in the maximum external magnetic field of 1.5 T. The result is shown in FIG.

図6において、横軸は熱処理時間(Annealing time(hour))を表し、縦軸は1.5Tにおける磁化(Magnetization (emu/g))を表す。図6から、10T中、15T中のいずれの磁場中熱処理した試料においても、τ相の選択生成の効果が明確に現れ、磁力が向上した。また、熱処理温度が低く、生成に時間がかかることから磁場によるτ相の選択生成の効果が低いと考えられる300℃の熱処理においても、48hを超える長時間の熱処理により、磁場(15T)を印加した場合は磁場を印加しない(0T)場合に比べて明確に永久磁石としての性能(磁力)が向上していることが分かる。 In FIG. 6, the horizontal axis represents the heat treatment time (Annealing time (hour)), and the vertical axis represents the magnetization at 1.5 T (Magnetization (emu/g)). From FIG. 6, the effect of selective formation of the τ phase clearly appeared and the magnetic force was improved in any of the samples heat-treated in the magnetic field of 10T and 15T. In addition, even in the heat treatment at 300° C., where the heat treatment temperature is low and the generation takes time, the effect of selective formation of the τ phase by the magnetic field is considered to be low. It can be seen that the performance (magnetic force) as a permanent magnet is clearly improved in the case of doing so as compared with the case of not applying the magnetic field (0T).

(実施例2)
実施例1と同様の、第1の熱処理によってε相が生成されたディスク状試料を用意した。これらのディスク状試料に対し、ε相からτ相への相変態初期である4hの第2の熱処理を行った。熱処理の温度は、300℃、350℃及び400℃である。また、各温度について、熱処理中に印加する磁場強度を0Tと15Tとの2ケースとした。
(Example 2)
A disk-shaped sample in which the ε phase was generated by the first heat treatment was prepared in the same manner as in Example 1. These disk-shaped samples were subjected to the second heat treatment for 4 hours at the initial phase transformation from the ε phase to the τ phase. The temperature of the heat treatment is 300°C, 350°C and 400°C. Further, at each temperature, the magnetic field strength applied during the heat treatment was set to two cases of 0T and 15T.

第2の熱処理の後、各試料について、磁化曲線を取得した。外部磁場は最大1.2Tとし、室温で測定した。その結果を図7(a)〜(c)に示す。 After the second heat treatment, the magnetization curve was acquired for each sample. The maximum external magnetic field was 1.2 T, and the measurement was performed at room temperature. The results are shown in FIGS. 7(a) to 7(c).

図7(a)〜(c)の各グラフの横軸は外部磁場(Magnetic field(T))を表し、縦軸は磁化(Magnetization(emu/g))を表す。また、図7(a)は300℃、図7(b)は350℃、及び、図7(c)は400℃の測定結果を示し、各図において、熱処理時に印加される磁場を0Tと15Tとの2ケースとして記載している。 7A to 7C, the horizontal axis represents the external magnetic field (Magnetic field (T)) and the vertical axis represents the magnetization (Magnetization (emu/g)). 7(a) shows the measurement results at 300° C., FIG. 7(b) at 350° C., and FIG. 7(c) at 400° C. In each figure, the magnetic fields applied during the heat treatment are 0T and 15T. And 2 cases are described.

図7(a)の300℃の場合、0Tと15Tとではいずれも直線状となり、相変態初期(4h)の段階では明確な磁場効果が現れないことが分かる。即ち、いずれの場合もτ相はほとんど生成されていないと言える。 In the case of 300° C. in FIG. 7A, it is understood that both 0T and 15T have a linear shape, and no clear magnetic field effect appears at the initial stage of phase transformation (4 h). That is, it can be said that the τ phase is hardly generated in any case.

図7(b)の350℃の場合、0Tの磁化曲線は直線状に近いのに対し、15Tでは明確な強磁性の磁化曲線が現れている。つまり、15Tの磁場を印加することで、τ相が選択的に生成されたと言える。また、350℃がMn−Alのキュリー温度(380℃)付近の温度であるため、0Tとの違いがより顕著に現れたものと考えられる。 In the case of 350° C. in FIG. 7B, the magnetization curve of 0T is almost linear, whereas a clear magnetization curve of 15T appears. That is, it can be said that the τ phase is selectively generated by applying the magnetic field of 15T. Moreover, since 350° C. is a temperature near the Curie temperature (380° C.) of Mn—Al, it is considered that the difference from 0T was more prominent.

図7(c)の400℃の場合、大きな磁化が観測されたが、0Tと15Tとではいずれもほぼ重なった磁化曲線となっている。これは、τ相の生成が磁場の印加に起因するものよりも、温度によって生成されるものが支配的であることを示している。但し、温度の要因が支配的であることから、キュリー温度よりも高い温度では、磁場を印加したとしてもτ相からβ相及びγ相に相変態する割合が高くなるため、長時間の熱処理を経ると残存するτ相が減少してしまい、磁力が減少すると考えられる。 In the case of 400° C. in FIG. 7C, a large magnetization was observed, but at 0T and 15T, the magnetization curves were almost overlapped. This indicates that the generation of the τ phase is dominated by that generated by temperature rather than that caused by the application of the magnetic field. However, since the temperature factor is dominant, at a temperature higher than the Curie temperature, the rate of phase transformation from the τ phase to the β phase and the γ phase becomes high even if a magnetic field is applied, so long-time heat treatment is required. It is considered that the remaining τ phase decreases with time and the magnetic force decreases.

図7(a)〜(c)の比較から、磁場中の熱処理によって、明確に磁化が向上していることが分かる。また、熱処理の温度として、本実施例の3種類の中ではキュリー温度よりやや低く、磁気エネルギーによるτ相の安定化が見込まれる温度の350℃の例が好ましいと言える。 From the comparison of FIGS. 7A to 7C, it can be seen that the magnetization is clearly improved by the heat treatment in the magnetic field. It can be said that the heat treatment temperature is preferably 350° C., which is slightly lower than the Curie temperature among the three types of the present embodiment and is expected to stabilize the τ phase by magnetic energy.

Claims (4)

Mn、Al及び不可避的不純物からなる材料にMn−Al系のε相が生成される温度で第1の熱処理を施す工程と、
前記ε相が生成された前記材料に磁束密度が10T以上の磁場を印加しながら第2の熱処理を施し、τ相を生成する工程と、を備える、
ことを特徴とするMn−Al永久磁石の製造方法。
A step of performing a first heat treatment on a material composed of Mn, Al, and unavoidable impurities at a temperature at which a Mn-Al-based ε-phase is formed;
Subjecting the material in which the ε phase is generated to a second heat treatment while applying a magnetic field having a magnetic flux density of 10 T or more, and generating the τ phase.
A method for producing a Mn-Al permanent magnet, comprising:
前記第2の熱処理の温度は、前記材料のキュリー温度以下の温度である、
ことを特徴とする請求項1に記載のMn−Al永久磁石の製造方法。
The temperature of the second heat treatment is a temperature equal to or lower than the Curie temperature of the material,
The method for producing a Mn-Al permanent magnet according to claim 1, wherein.
前記第2の熱処理の温度は、300〜350℃である、
ことを特徴とする請求項2に記載のMn−Al永久磁石の製造方法。
The temperature of the second heat treatment is 300 to 350°C.
The method for producing a Mn-Al permanent magnet according to claim 2, wherein.
前記第2の熱処理の時間は、24h以上である、
ことを特徴とする請求項2又は3に記載のMn−Al永久磁石の製造方法
The time of the second heat treatment is 24 hours or more,
The method for producing a Mn-Al permanent magnet according to claim 2 or 3, characterized in that .
JP2016041157A 2016-03-03 2016-03-03 Method for manufacturing Mn-Al permanent magnet Active JP6731633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016041157A JP6731633B2 (en) 2016-03-03 2016-03-03 Method for manufacturing Mn-Al permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016041157A JP6731633B2 (en) 2016-03-03 2016-03-03 Method for manufacturing Mn-Al permanent magnet

Publications (2)

Publication Number Publication Date
JP2017157738A JP2017157738A (en) 2017-09-07
JP6731633B2 true JP6731633B2 (en) 2020-07-29

Family

ID=59810707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016041157A Active JP6731633B2 (en) 2016-03-03 2016-03-03 Method for manufacturing Mn-Al permanent magnet

Country Status (1)

Country Link
JP (1) JP6731633B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7021774B2 (en) * 2018-02-28 2022-02-17 国立大学法人 鹿児島大学 Method for manufacturing Mn-Al-C magnet
JP7234518B2 (en) * 2018-06-30 2023-03-08 Tdk株式会社 MnAl alloy and its manufacturing method
CN109087766B (en) * 2018-07-10 2020-06-30 北京航空航天大学 Permanent magnet alloy and preparation method thereof
JP7446600B2 (en) * 2019-12-23 2024-03-11 国立大学法人 鹿児島大学 Manufacturing method of Cu-Mn-Al magnet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533100A (en) * 1979-09-03 1980-03-08 Matsushita Electric Ind Co Ltd Method of manufacturing manganese-aluminum-carbon alloy magnet
JPS58167760A (en) * 1982-03-30 1983-10-04 Fujitsu Ltd Preparation of manganese-aluminum alloy magnet
JP2001217108A (en) * 2000-02-03 2001-08-10 Tdk Corp Magnet composition and bonded magnet using the same
US20100218858A1 (en) * 2005-10-27 2010-09-02 Ian Baker Nanostructured mn-al permanent magnets and methods of producing same

Also Published As

Publication number Publication date
JP2017157738A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6731633B2 (en) Method for manufacturing Mn-Al permanent magnet
KR101548274B1 (en) Method of manufacturing rare-earth magnets
KR101585483B1 (en) Sintered Magnet Based on MnBi Having Improved Heat Stability and Method of Preparing the Same
CN105355354A (en) Samarium iron nitrogen-based anisotropy rare-earth permanent magnet powder and preparation method thereof
JP6549720B2 (en) Rare earth cobalt based permanent magnet, method of manufacturing the same, motor and device
JP7428791B2 (en) High-entropy alloys of rare earths and transition metals as building blocks to synthesize novel magnetic phases for permanent magnets
JPS60238463A (en) Manufacture of sm2c017 alloy
KR101243347B1 (en) R-Fe-B Sintered magnet with enhancing mechanical property and fabrication method thereof
JP2011187624A (en) Rare-earth system permanent magnet and method of manufacturing the same
US20150279529A1 (en) Rare earth magnet and method for producing same
CN104823249A (en) Rare-earth permanent magnetic powders, bonded magnet comprising same, and device using bonded magnet
JP2013157505A (en) Method of manufacturing bond magnet
CN111986910B (en) Sintered R 2 M 17 Magnet and manufacture of R 2 M 17 Method of making a magnet
KR20170045184A (en) Method for manufacturing rare earth sintered magnet using low melting point elements
US4854979A (en) Method for the manufacture of an anisotropic magnet material on the basis of Fe, B and a rare-earth metal
JP2008078614A (en) Manufacturing method for isotropic iron-base rare-earth alloy magnet
JPH1070023A (en) Permanent magnet and manufacture thereof
US11798715B2 (en) Mn—Bi—Sb-based magnetic substance and method of manufacturing the same
JP6213726B2 (en) Method for manufacturing permanent magnet
JPS60194502A (en) Preparation of permanent magnet blank
JP4703987B2 (en) Alloy ribbon for rare earth magnet, method for producing the same, and alloy for rare earth magnet
JP6438713B2 (en) Rare earth iron-based magnet powder and bonded magnet using the same
JP2020035781A (en) Manufacturing method of permanent magnet
JPH0521216A (en) Permanent magnet alloy and its production
Zhou et al. Magnetic hardening of CeFe 11 Ti and the effect of TiC addition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200619

R150 Certificate of patent or registration of utility model

Ref document number: 6731633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250