JP6731464B2 - アシストガス流量の計算装置及び計算方法 - Google Patents

アシストガス流量の計算装置及び計算方法 Download PDF

Info

Publication number
JP6731464B2
JP6731464B2 JP2018211174A JP2018211174A JP6731464B2 JP 6731464 B2 JP6731464 B2 JP 6731464B2 JP 2018211174 A JP2018211174 A JP 2018211174A JP 2018211174 A JP2018211174 A JP 2018211174A JP 6731464 B2 JP6731464 B2 JP 6731464B2
Authority
JP
Japan
Prior art keywords
nozzle
flow rate
assist gas
unknown
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018211174A
Other languages
English (en)
Other versions
JP2020075278A (ja
Inventor
かおり 五十嵐
かおり 五十嵐
茂章 北岡
茂章 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd filed Critical Amada Co Ltd
Priority to JP2018211174A priority Critical patent/JP6731464B2/ja
Priority to PCT/JP2019/041611 priority patent/WO2020095690A1/ja
Priority to US17/290,928 priority patent/US20210404847A1/en
Priority to EP19883040.8A priority patent/EP3878594B1/en
Publication of JP2020075278A publication Critical patent/JP2020075278A/ja
Application granted granted Critical
Publication of JP6731464B2 publication Critical patent/JP6731464B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/42Orifices or nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1435Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means
    • B23K26/1437Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means for flow rate control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication

Description

本発明は、レーザ加工におけるアシストガスの流量を計算する装置及び計算方法に関する。
レーザ発振器から加工ヘッドに導かれたレーザ光を被加工物に照射して所望の加工を行うレーザ加工において、加工ヘッドの先端に取り付けたノズルからレーザ光と共にアシストガスを噴出している。レーザ加工の加工品質は、アシストガスの種類のみならず、アシストガスの流量にも大きく影響される。このため、従来から、アシストガスの流量を制御している(例えば、特許文献1参照)。
特許文献1には、アシストガスの流量がノズルの開口面積及びアシストガスの圧力に依存すること、及び、より厳密に流量を制御する場合、ノズルと被加工物の距離(ギャップ値)を考慮にいれる必要があること、が記載されている(特許文献1(第11頁、段落0052)参照)。
特開平9−168885号公報
特許文献1は、各ギャップ値について、P(圧力)−S(開口面積)平面において良好なレーザ加工が可能な領域(加工良好領域)を予め求め、この加工良好領域に基づいてアシストガスの流量を制御している。しかし、ギャップ値を考慮にいれて、アシストガスの流量を計算する具体的な方法及び具体的な計算式は、なんら開示も示唆もされていない。
本発明は、レーザ加工におけるアシストガスの流量を正確に計算することを目的とする。
本発明の一態様は、レーザ発振器から加工ヘッドに導かれたレーザビームを被加工物に照射して所望の加工を行うレーザ加工において、加工ヘッドに取り付けられたノズルの先端から噴出されるアシストガスの流量を計算する装置である。装置は制御部と記憶部とを備える。記憶部には、加工ヘッド内におけるアシストガスの圧力を変数とする一次関数を用いて、流量を計算する第1コンピュータプログラムと、ノズルの先端から被加工物の表面までのギャップを変数とする関数を用いて、一次関数の傾きを計算する第2コンピュータプログラムと、が記憶されている。一方、制御部は、ギャップの値を示すデータを取得し、ギャップの値を関数に代入して第2コンピュータプログラムを実行することにより、一次関数の傾きを計算し、アシストガスの圧力の値を示すデータを取得し、一次関数の傾き及びアシストガスの圧力の値を一次関数に代入して第1コンピュータプログラムを実行することにより、アシストガスの流量を計算する。
本発明のレーザ加工におけるアシストガス流量の計算装置及び計算方法によれば、レーザ加工におけるアシストガスの流量を正確に計算することができる。
図1は、一実施形態に係わるレーザ加工機の全体的な構成例を示す図である。 図2は、加工ヘッド35に取り付けられた圧力計37及びギャップ計測器38を示す模式図である。 図3Aは、ギャップの値(A、B)が異なっても、アシストガスの圧力(P)とアシストガスの流量(H)との関係に変化が無いことを示すグラフである。 図3Bは、アシストガスの圧力(P)とアシストガスの流量(H)との関係が、ギャップの値(C、D、E、F)に応じて変化することを示すグラフである。 図4は、閾値(GTH)未満のギャップの値(C、D、E、F)の各々についての一次関数(F1)の傾き(α)の変化を示すグラフである。 図5は、第1実施形態に係わるアシストガス流量の計算方法を示すフローチャートである。 図6は、二重ノズル26の構造及びアシストガスの流路を示す断面図である。 図7Aは、シングルノズルの開口の径と一次関数(F1)の傾き(α)との関係を示すグラフであり、複数の測定点及びこれらを近似する線分を示す。 図7Bは、シングルノズルの開口の断面積と一次関数(F1)の傾き(α)との関係を示すグラフであり、複数の測定点及びこれらを近似する線分を示す。 図8Aは、ダブルノズルの開口の径と一次関数(F1)の傾き(α)との関係を示すグラフであり、複数の測定点及びこれらを近似する線分を示す。 図8Bは、ダブルノズルの開口の断面積と一次関数(F1)の傾き(α)との関係を示すグラフであり、複数の測定点及びこれらを近似する線分を示す。
(第1実施形態)
<レーザ加工機>
以下、アシストガス流量の計算装置及び計算方法の一実施形態を、添付図面を参照して説明する。アシストガス流量の計算装置及び計算方法を説明する前に、アシストガスを用いてレーザ加工を行うレーザ加工機の一例を説明する。もちろん、ここで説明するレーザ加工機は、アシストガス流量の計算装置及び計算方法を適用することができる装置の一例であって、レーザ加工機を限定するものではない。
図1において、レーザ加工機100は、レーザビームを生成して射出するレーザ発振器10と、レーザ加工ユニット20と、プロセスファイバ12とを備える。更に、レーザ加工機100は、操作部40と、NC装置50と、流量計算記憶装置60と、傾き計算記憶装置70と、アシストガス供給装置80と、表示部90とを備える。
レーザ発振器10としては、レーザダイオードより発せられる励起光を増幅して所定の波長のレーザビームを射出するレーザ発振器、またはレーザダイオードより発せられるレーザビームを直接利用するレーザ発振器が好適である。レーザ発振器10は、例えば、固体レーザ発振器、ファイバレーザ発振器、ディスクレーザ発振器、ダイレクトダイオードレーザ発振器(DDL発振器)である。
レーザ発振器10は、波長900nm〜1100nmの1μm帯のレーザビームを射出する。ファイバレーザ発振器及びDDL発振器を例とすると、ファイバレーザ発振器は、波長1060nm〜1080nmのレーザビームを射出し、DDL発振器は、波長910nm〜950nmのレーザビームを射出する。
プロセスファイバ12は、レーザ発振器10より射出されたレーザビームをレーザ加工ユニット20へと伝送する。
レーザ加工ユニット20は、加工対象の板金W(被加工物の一例)を載せる加工テーブル21と、門型のX軸キャリッジ22と、Y軸キャリッジ23と、Y軸キャリッジ23に固定されたコリメータユニット30と、加工ヘッド35とを有する。
コリメータユニット30は、複数のレンズ及びミラーからなる光学系を備え、プロセスファイバ12より射出された発散光のレーザビームを平行光(コリメート光)に変換し、板金W上で収束させる。
コリメータユニット30により収束されたレーザビームは、加工ヘッド35へ導かれる。加工ヘッド35の先端にはノズル36に取り付けられている。ノズル36の先端には、円形の開口36aが形成され、開口36aよりレーザビームが射出される。ノズル36の開口36aより射出されたレーザビームは板金Wに照射される。
アシストガス供給装置80は、アシストガスとして窒素、酸素、窒素と酸素との混合気体、または空気を加工ヘッド35に供給する。板金Wの加工時に、アシストガスは開口36aより板金Wへ吹き付けられる。アシストガスは、板金Wが溶融したカーフ幅内の溶融金属を排出する。アシストガスの流量が不足すると、溶融金属を排出することができない。一方、アシストガスの流量が過剰になると、レーザ加工のランニングコストが高くなる。よって、レーザ加工において、アシストガスの流量は正しく管理されるべきである。
X軸キャリッジ22は、加工テーブル21上でX軸方向に移動自在に構成されている。Y軸キャリッジ23は、X軸キャリッジ22上でX軸に垂直なY軸方向に移動自在に構成されている。X軸キャリッジ22及びY軸キャリッジ23は、加工ヘッド35を板金Wの面に沿って、X軸方向、Y軸方向、または、X軸とY軸との任意の合成方向に移動させる移動機構として機能する。
加工ヘッド35を板金Wの面に沿って移動させる代わりに、加工ヘッド35は位置が固定されていて、板金Wが移動するように構成されていてもよい。レーザ加工機100は、板金Wの面に対して加工ヘッド35を相対的に移動させる移動機構を備えていればよい。
NC装置50は、レーザ加工機100の各部を制御する制御装置の一例であり、例えば、CPU、メモリ、及び入出力部を有するマイクロコントローラを備える。NC装置50は、予め定めた加工プログラム及び加工条件に従い、レーザ加工機100の各部を制御することにより、板金Wに対して切断、穴あけ等の所望の加工を行うことができる。
図2は、加工ヘッド35に取り付けられた圧力計37及びギャップ計測器38を示す。加工ヘッド35及びその先端に取り付けられたノズル36の内部には、アシストガス供給装置80が供給されたアシストガスが導入され、開口36aより板金Wへ吹き付けられる。コリメータユニット30により収束されたレーザビームは、加工ヘッド35及びノズル36の内部を通過して、板金Wに照射される。
加工ヘッド35には、圧力計37とギャップ計測器38とが取り付けられている。圧力計37は、加工ヘッド35及びノズル36の内部のアシストガスの圧力を計測する。例えば、ブルドン管圧力計、ダイヤフラム圧力計、ベロー圧力計、チャンバ圧力計等の弾性圧力計を用いることができる。
ギャップ計測器38は、ノズル36の先端から板金Wの表面までのZ軸方向の距離(以後、「ギャップ(G)」という)を測定する。具体的に、ギャップ計測器38として、レーザ光SLを用いた倣いセンサを用いることができる。レーザ光SLは、レーザビームLB及びアシストガスが照射される部位とは異なる板金Wの部位に照射し、その反射光をフォトディテクタにより検出する。三角測量の原理により板金Wの表面までの距離を計測する。ギャップ計測器38に対するノズル36の先端のZ軸方向の座標は予め定まっているため、ノズル36の先端から板金Wの表面までのギャップを測定することができる。
ここでは、レーザ加工機の一例として、レーザ単体機を示した。しかし、レーザ加工機には、レーザ加工機にレーザ加工以外の板金加工を行う加工機を組み合わせたレーザ複合機、例えば、レーザ加工機にパンチングマシンを組み合わせた「パンチ・レーザ複合マシン」も含まれる。つまり、レーザ単体機のみならずレーザ複合機に対しても、一実施形態に係わるアシストガス流量の計算装置を適用することは可能である。
<アシストガス流量の計算装置及び計算方法>
次に、図1及び図2に示すレーザ加工機において使用されるアシストガスの流量を計算する装置及び計算方法を説明する。
一実施形態において、NC装置50は、レーザ加工機100の各部を制御する制御装置のみならず、アシストガス流量の計算装置の一部(制御部)としても機能する。NC装置50(制御部)は、予めインストールされたコンピュータプログラム(アシストガス流量計算プログラム)を実行することにより、アシストガス流量の計算装置が備える複数の情報処理回路を構成し、アシストガス流量の計算方法を実行する。ここでは、レーザ加工機100の各部を制御する制御装置とアシストガス流量の計算装置の一部とを、同じハードウェア(NC装置50)で実現する例を示す。しかし、これに限らず、NC装置50とは異なるハードウェア(他のマイクロコントローラ)を用いて、アシストガス流量の計算装置の一部(制御部)を実現することも可能である。
アシストガス流量の計算装置(以後、「計算装置」と略する場合がある。)は、複数の情報処理回路(制御部)の他に、電子データを記憶する二次記憶装置(記憶部)を更に備える。例えば、計算装置は、流量計算記憶装置60と、傾き計算記憶装置70とを備える例を説明する。勿論、二次記憶装置の数及び種類(ハードディスク、CD−ROM、フラッシュメモリ、リムーバブル記憶媒体)は問わない。他の例として、記憶部は、NC装置50内の一次記憶装置(キャッシュメモリ、レジスタ、RAM)であってもよい。
流量計算記憶装置60には、加工ヘッド35内におけるアシストガスの圧力(P)を変数とする一次関数(F1)を用いて、アシストガスの流量(H)を計算する第1コンピュータプログラム(第1アルゴリズム)が記憶されている。(1)式は、アシストガスの圧力(P)を変数とする一次関数(F1)の一例である。(1)式中の「α」は、アシストガスの圧力Pの比例係数、即ち、一次関数(F1)の傾きである。(1)式中の「β」は、比例切片である。(1)式に表すように、一実施形態において、アシストガスの流量(H)とアシストガスの圧力(P)とは比例関係にある。計算装置は、アシストガスの流量(H)を、アシストガスの圧力(P)の一次の多項式を用いて計算する。
H=α×P+β ・・・(1)式
傾き計算記憶装置70には、ノズル36の先端から板金Wの表面までのギャップ(G)を変数とする関数(F2)を用いて、前記した一次関数(F1)の傾き(α)を計算する第2コンピュータプログラム(第2アルゴリズム)が記憶されている。(2)式は、ギャップ(G)を変数とする関数(F2)の一般式を示す。(2)式に表すように、一実施形態において、計算装置は、一次関数(F1)の傾き(α)を、ギャップ(G)のn次の多項式を用いて計算する。ここで、「a」は、ギャップ(G)のk次の項の係数である。「n」は、ゼロ又は正の正数である。ギャップ(G)が一定の値(閾値GTH)未満である場合、(2)式の「n」は正の正数となる。一方、ギャップ(G)が所定の値(閾値GTH)以上である場合、(2)式の「n」はゼロとなる。すなわち、(3)式に示すように、一次関数(F1)の傾き(α)は定数(a)となる。
Figure 0006731464
Figure 0006731464
(1)式及び(2)式に示すように、第1実施形態において、アシストガスの流量(H)は、アシストガスの圧力(P)及びギャップ(G)に応じて変化する。計算装置は、アシストガスの圧力(P)を変数とする一次関数(F1)及びギャップ(G)を変数とする関数(F2)を用いて、アシストガスの流量(H)を計算する。
閾値(GTH)は、ギャップ(G)が変化すればアシストガスの流量も変化するギャップ(G)の範囲のうち最も大きなギャップの値である。言い換えると、閾値(GTH)は、ギャップ(G)が変化してもアシストガスの流量が変化しないギャップ(G)の範囲のうち最も小さいギャップの値である。
アシストガスの圧力(P)を変数とする一次関数(F1)、ギャップ(G)を変数とする関数(F2)及び閾値(GTH)は、ノズル36のタイプ、ノズル36の形状、特に、開口36aの形状、径(図2の符号「Rd」)、又は断面積により、変化する。よって、予め、レーザ加工機100で使用するノズル36毎に、一次関数(F1)、関数(F2)及び閾値(GTH)を求めておくことが望ましい。つまり、一次関数(F1)の比例切片β、関数(F2)のa(k=0〜n)、及び閾値(GTH)を、ノズル36毎に、予め、実験又はシミュレーションにより、求めておく。そして、これらのパラメータを、ノズル36の識別番号に関連付けて、記憶部に記憶しておく。
例えば、ダイヤフラム式の流量計をアシストガス供給装置80と加工ヘッド35との間に配置して、アシストガスの流量(H)を計測する。アシストガスの圧力(P)を変化させながらアシストガスの流量(H)を計測する。図3A及び図3Bに示すように、ギャップの値(A〜F)毎に、測定値(測定点)を近似する一次関数(近似線)を求める。ギャップの値(A〜F)は互いに異なる値である。いずれのギャップの値(A〜F)においても、アシストガスの圧力(P)とアシストガスの流量(H)とは比例関係にある。
ギャップの値(A、B)が閾値(GTH)以上である場合、図3Aに示すように、ギャップの値(A、B)が異なっても、アシストガスの圧力(P)とアシストガスの流量(H)との関係に変化はない。つまり、(3)式に示したように、一次関数(F1)の傾き(α)は一定値(a)になる。
一方、ギャップ(G)が閾値(GTH)未満である場合、図3Bに示すように、一次関数(F1)の傾き(α)が、ギャップの値(C、D、E、F)に応じて変化する。計算装置は、一次関数(F1)の傾き(α)が変化するギャップ(G)の範囲のうち、最も大きなギャップの値を、閾値(GTH)に設定する。或いは、計算装置は、一次関数(F1)の傾き(α)が変化しないギャップ(G)の範囲(開放ギャップ)のうち、最も小さいギャップの値を、閾値(GTH)に設定する。計算装置は、ノズル36毎に、閾値(GTH)を設定する。設定した閾値(境界ギャップ)は、ノズル36に関連付けて、傾き計算記憶装置70に記憶される。
なお、計算装置は、図3A及び図3Bに示した、ギャップの値(A〜F)毎の一次関数(F1)の比例切片から、(1)式の比例切片(β)を求めることができる。例えば、比例切片(β)を、ギャップの値(A〜F)毎の比例切片(β〜β)の平均値又は中央値とすることができる。比例切片(β)を一定値とすることにより、ギャップ(G)を変数とする計算式を用いて比例切片(β)を算出する演算負荷を削減することができる。計算装置は、ノズル36毎に、比例切片(β)を設定する。設定した比例切片(β)は、ノズル36に関連付けて、流量計算記憶装置60に記憶される。
図4は、閾値(GTH)未満のギャップの値(C、D、E、F)の各々についての一次関数(F1)の傾き(α)の変化を示すグラフである。ギャップの値は、C、D、E、Fの順番に大きくなる。ギャップ(G)が大きいほど、傾き(α)も大きくなり、ギャップ(G)が大きいほど、傾き(α)の増加率は減少する。そして、図4には図示しないが、ギャップ(G)が閾値(GTH)以上になると、傾き(α)は一定値(a)となる。計算装置は、ノズル36毎に、予め、実験又はシミュレーションにより、ギャップ(G)に応じた傾き(α)の変化を近似する関数(F2)を求める。図4に示す例では、ギャップ(G)が閾値(GTH)未満である範囲において、ギャップ(G)対する傾き(α)の変化を、二次関数(F2)により近似している。関数(F2)は、ノズル36に関連付けて、傾き計算記憶装置70に記憶される。
なお、アシストガスの流量(H)は、単位時間あたりにノズル36の開口36aから噴出されたアシストガスの容積を示す。計算装置は、アシストガスの流量(H)に対して、アシストガスを噴出した時間を乗ずることによりアシストガスの消費量を求めることができる。計算装置は、ガスの種類に応じて、ガスの流れやすさが異なる為、ガスの種類毎に予め定めた係数を、更に乗じるにより、ガスの種類に対応したアシストガスの消費量を、正確に算出することができる。
次に、図5を参照して、アシストガス流量の計算方法の一実施形態を説明する。先ず、ステップS01において、計算装置の制御部は、ギャップ計測器38を制御して、ノズル36の先端から板金Wの表面までのZ軸方向の距離であるギャップ(G)を測定する。そして、制御部は、ギャップ(G)の値を示すデータを取得する。なお、図示は省略するが、制御部は、加工ヘッド35に取り付けられているノズル36の識別番号を示すデータを取得する。
ステップS02に進み、制御部は、ノズル36の識別番号で、傾き計算記憶装置70を検索することにより、ノズル36に関連付けられた閾値(GTH)を読み出す。ギャップ(G)の値が、閾値(GTH)未満であるか否かを判断する。ギャップ(G)の値が、閾値(GTH)未満である場合(S02でYES)、ステップS03へ進む。ギャップ(G)の値が、閾値(GTH)以上である場合(S02でNO)、ステップS04へ進む。
ステップS03で、制御部は、ノズル36の識別番号で、傾き計算記憶装置70を検索することにより、ノズル36に関連付けられた(2)式に示す関数(F2)を読み出す。制御部は、ギャップ(G)の値を関数(F2)に代入して第2コンピュータプログラムを実行することにより、一次関数(F1)の傾き(α)を計算する。その後、ステップS05へ進む。
一方、ステップS04では、ノズル36に関連付けられた(3)式に示す関数(F2)、即ち定数(a)を読み出し、定数(a)を傾き(α)に設定する。その後、ステップS05へ進む。
ステップS05で、制御部は、圧力計37を制御して、加工ヘッド35及びノズル36の内部のアシストガスの圧力(P)を計測する。そして、制御部は、圧力(P)の値を示すデータを取得する。ステップS06に進み、制御部は、ステップS03又はS04で求めた傾き(α)及びステップS05で取得した圧力(P)の値を、(1)式に示す一次関数(F1)に代入して第1コンピュータプログラムを実行することにより、アシストガスの流量(H)を計算する。
以上説明したように、第1実施形態によれば、以下の作用効果が得られる。
計算機の記憶部(60、70)には、加工ヘッド35内におけるアシストガスの圧力(P)を変数とする一次関数(F1)を用いて、アシストガスの流量(H)を計算する第1コンピュータプログラムと、ノズル36の先端から板金W(被加工物)の表面までのギャップ(G)を変数とする関数(F2)を用いて、一次関数(F1)の傾き(α)を計算する第2コンピュータプログラムと、が記憶されている。計算機の制御部は、ギャップ(G)の値を関数(F2)に代入して第2コンピュータプログラムを実行することにより、傾き(α)を計算し、傾き(α)及び圧力(P)の値を一次関数(F1)に代入して第1コンピュータプログラムを実行することにより、流量(H)を計算する。ギャップ(G)の値に応じて、一次関数(F1)の傾き(α)を決定するため、レーザ加工におけるアシストガスの流量を正確に計算することができる。
なお、制御部は、ギャップ計測器38により測定されたギャップ(G)の値を取得する代わりに、予め定められた板金Wを加工する加工条件で指定されているギャップ(G)の値を取得してもよいし、或いは、計算装置のユーザにより操作部40から入力されたギャップ(G)の値を取得してもよい。制御部は、圧力計37により測定された圧力(P)の値を取得する代わりに、板金Wを加工する加工条件で指定されている圧力(P)の値を取得してもよいし、或いは、計算装置のユーザにより操作部40から入力された圧力(P)の値を取得してもよい。
制御部は、ギャップ(G)の値が閾値(GTH)未満である場合、ギャップ(G)の値を関数(F2)に代入して第2コンピュータプログラムを実行することにより、傾き(α)を計算する。制御部は、ギャップ(G)の値が閾値(GTH)以上である場合、傾き(α)を一定値(a)とする。ギャップ(G)の値が開放ギャップであるか否かに応じて、傾き(α)の計算方法を変更することにより、アシストガスの流量をより正確に計算することができる。「開放ギャップ」とは、(1)式の比例係数(α)が一定の値となるギャップである。閾値(GTH)は、開放ギャップの最小値(境界ギャップ)に相当する。
閾値(GTH)は、ギャップ(G)が変化すれば流量(H)も変化するギャップの範囲のうち最も大きなギャップの値である。閾値(GTH)は、圧力(P)を一定に保ちながらギャップ(G)を変化させた時に流量(H)が変化するギャップ(G)の範囲のうちで、最も大きなギャップの値である。これにより、閾値(GTH)を正しく設定することができる。
閾値(GTH)は、ノズル36のタイプ毎に異なる。ノズル36のタイプによって、ノズル36内を流れるアシストガスの流れやすさが変化する。アシストガスの流れやすさに応じて、閾値(GTH)も変化するため、閾値(GTH)を正しく設定することができる。ノズルのタイプには、シングルノズルと多重ノズルとが含まれる。シングルノズルとは、図2に示したように、ノズルの先端部が単一の筒からなるノズルである。多重ノズルとは、ノズルの先端部に径が異なる複数の筒が配置されたノズルである。図6に、多重ノズルの一例として、2つの筒(3、5)が配置された二重ノズル26(ダブルノズル)を示す。
図6に示すように、レーザ発振器10から発振されたレーザビームLBは板金Wへ照射される。アシストガスは、アシストガス供給装置80から内側ノズル3内へ供給され、アシストガスの一部は内側ノズル3のノズル口15から噴出される。また、アシストガスの残りは連通孔11からアシストガス通路7へ噴出され、外側ノズル5のノズル口17から板金Wのレーザ加工位置へ噴出される。このように、ノズル(26、36)内を流れるアシストガスの流れやすさは、ノズルのタイプにより異なる。なお、多重ノズルにおける「ノズルの開口」は、最も外側の筒の開口である。図6の二重ノズルでは、外側ノズル5のノズル口17が、最も外側の筒の開口、つまり、「ノズルの開口」に相当する。
閾値(GTH)は、アシストガスが噴出されるノズル36の開口36aの大きさ毎に異なる。ノズル36の開口36aの大きさによって、ノズル36の開口36aから噴出されるガスの流れやすさが変化する。ガスの流れやすさに応じて、閾値(GTH)も変化するため、閾値(GTH)を正しく設定することができる。
(第2実施形態)
第1実施形態で示した計算装置及び計算方法は、一次関数(F1)及び関数(F2)のパラメータ、即ち、一次関数(F1)の比例切片β、関数(F2)のa(k=0〜n)、及び閾値(GTH)が、予め二次記憶装置に記憶されているノズル36(これを、「既知ノズル」という)に適用することができる。
第2実施形態では、アシストガス流量を計算するために必要なパラメータが未だ定められていないノズル36(これを、「未知ノズル」という)に対して、一実施形態に係わる計算装置及び計算方法を適用する具体的な方法を説明する。
なお、第2実施形態は、未知ノズルに関するアシストガス流量を計算する方法を限定する趣旨ではない。第2実施形態の代替手段として、例えば、ノズルのタイプ又は開口の大きさ等が未知ノズルに類似する既知ノズルについて定められたパラメータをそのまま代用して、未知ノズルに関するアシストガス流量を計算してもよい。なお、第1実施形態で説明したレーザ加工機に対して、第2実施形態に係わるアシストガス流量の計算装置及び計算方法を適用可能である。
第1実施形態と同様に、第2実施形態に係わるアシストガス流量の計算装置は、NC装置50により構成される複数の情報処理回路(制御部)と、電子データを記憶する二次記憶装置(記憶部)とを備える。ハードウェアの具体的な構成は、ここで示すものに限定されない。
計算装置は、まず、ノズル(26、36)が、既知ノズルであるか、未知ノズルであるかを判断する。具体的には、ノズル(26、36)の識別番号で、二次記憶装置を検索して、アシストガス流量を計算するために必要なパラメータが記憶されているか否かを判断する。計算装置は、パラメータが記憶されていなければ、ノズル(26、36)は未知ノズルであると判断する。
次に、計算装置は、未知ノズルと同じタイプの既知ノズルの開口36aの断面積(C)を示すデータ、及び未知ノズルの開口36aの断面積(C)を示すデータを取得する。例えば、計算装置は、二次記憶装置を検索して、未知ノズルと同じタイプの既知ノズルの開口36aの断面積(C)を示すデータを読み出すことができる。他に、計算装置のユーザにより操作部40から入力された未知ノズルの開口36aの断面積(C)を取得してもよい。あるいは、レーザ加工機にノズル(26、36)の開口36aを撮像できるカメラが設置されている場合、このカメラにより取得された画像から開口36aの断面積(C)を計算してもよい。
計算装置は、未知ノズルと同じタイプの既知ノズルを用いた時のアシストガスの流量(H)を計算する。具体的に、計算装置は、第1実施形態で述べた方法によりアシストガスの流量(H)を計算する。なお、断面積を示すデータの取得と既知ノズルの流量計算とを実施する順番は問わない。
計算装置は、(a−1)〜(c)に基づいて、未知ノズルを用いた時のアシストガスの流量(H)を計算する。
(a−1)未知ノズルと同じタイプの既知ノズルの開口36aの断面積(C
(b)未知ノズルの開口36aの断面積(C
(c)未知ノズルと同じタイプの既知ノズルを用いた時のアシストガスの流量(H
に基づいて計算する。
例えば、計算装置は、既知ノズルを用いた時のアシストガスの流量(H)に対して、既知ノズルの開口36aの断面積(C)に対する未知ノズルの開口36aの断面積(C)の割合を乗算することにより、未知ノズルを用いた時のアシストガスの流量(H)を計算する。この算出式を(4)式に示す。
=H×(C/C) ・・・(4)式
二次記憶装置に、未知ノズルと同じタイプの既知ノズルが複数記憶されている場合、計算装置は、複数の既知ノズルの中から、開口36aの断面積の大きさが最も近いものを選択すればよい。
よって、この場合、計算装置は、(a−2)〜(c)に基づいて、未知ノズルを用いた時のアシストガスの流量を計算する。
(a−2)二次記憶装置に記憶されている既知ノズルのうち、未知ノズルと同じタイプであり、且つ、開口36aの断面積の大きさが未知ノズルのそれに最も近い既知ノズルの開口36aの断面積
(b)未知ノズルの開口36aの断面積
(c)未知ノズルと同じタイプの既知ノズルを用いた時のアシストガスの流量
図7Bは、シングルノズルの開口36aの断面積と一次関数(F1)の傾き(α)との関係を示すグラフであり、複数の測定点及びこれらを近似する線分を示す。図8Bは、ダブルノズルの開口36aの断面積と一次関数(F1)の傾き(α)との関係を示すグラフであり、複数の測定点及びこれらを近似する線分を示す。図7B、図8Bに示すように、本願の発明者等は、ノズルのタイプに係わらず、ノズルの開口36aの断面積と一次関数(F1)の傾き(α)との間に、比例関係が有ることを見いだした。発明者等は、この知見に基づき、既知ノズルの開口36aの断面積(C)に対する未知ノズルの開口36aの断面積(C)の比率から、未知ノズルを用いた時のアシストガスの流量(H)を計算する計算方法を創作した。
<変形例>
第2実施形態では、未知ノズルについて、その開口36aの断面積を基準としてアシストガスの流量を計算する例を示した。しかし、開口36aの断面積の代わりに、開口36aの径を用いても構わない。
計算装置は、開口36aの断面積と同様な方法により、既知ノズル及び未知ノズルの開口36aの径(R、R)を取得し、既知ノズルを用いたときのアシストガスの流量(H)を求める。
計算装置は、(d−1)〜(f)に基づいて、未知ノズルを用いた時のアシストガスの流量(H)を計算する。
(d−1)未知ノズルと同じタイプの既知ノズルの開口36aの径
(e)未知ノズルの開口36aの径
(f)未知ノズルと同じタイプの既知ノズルを用いた時のアシストガスの流量
に基づいて計算する。
例えば、計算装置は、既知ノズルを用いた時のアシストガスの流量(H)に対して、既知ノズルの開口36aの径(R)に対する未知ノズルの開口36aの径(R)の割合を乗算することにより、未知ノズルを用いた時のアシストガスの流量(H)を計算する。この算出式を(5)式に示す。
=H×(R/R) ・・・(5)式
二次記憶装置に、未知ノズルと同じタイプの既知ノズルが複数記憶されている場合、計算装置は、複数の既知ノズルの中から、開口36aの径の大きさが最も近いものを選択すればよい。
よって、この場合、計算装置は、(d−2)〜(f)に基づいて、未知ノズルを用いた時のアシストガスの流量を計算する。
(d−2)二次記憶装置に記憶されている既知ノズルのうち、未知ノズルと同じタイプであり、且つ、開口36aの径の大きさが未知ノズルのそれに最も近い既知ノズルの開口36aの径
(e)未知ノズルの開口36aの径
(f)未知ノズルと同じタイプの既知ノズルを用いた時のアシストガスの流量
図7Aは、シングルノズルの開口36aの径と一次関数(F1)の傾き(α)との関係を示すグラフであり、複数の測定点及びこれらを近似する線分を示す。図8Aは、ダブルノズルの開口36aの径と一次関数(F1)の傾き(α)との関係を示すグラフであり、複数の測定点及びこれらを近似する線分を示す。図7A、図8Aに示すように、本願の発明者等は、ノズルのタイプに係わらず、ノズルの開口36aの径と一次関数(F1)の傾き(α)との間に、比例関係が有ることを見いだした。発明者等は、この知見に基づき、既知ノズルの開口36aの径(R)に対する未知ノズルの開口36aの径(R)の比率から、未知ノズルを用いた時のアシストガスの流量(H)を計算する計算方法を創作した。
<未知ノズルのタイプに応じた計算方法の選択>
第2実施形態及びその変形例で説明した未知ノズルの流量計算方法は、シングルノズル及び多重ノズルのいずれにも適用可能である。つまり、未知ノズルがシングルノズルであるか多重ノズルであるかを問わず、第2実施形態及びその変形例の双方の計算方法を適用することができる。
ただし、以下に示すように、未知ノズルのタイプに応じて、第2実施形態(断面積)と変形例(径)の計算方法を使い分けることも可能である。
未知ノズルのタイプがシングルノズルである場合、ノズルの開口36aの断面積を基準とする計算方法、即ち、第2実施形態で説明した計算方法を適用した方が望ましい。一方、未知ノズルのタイプが多重ノズルである場合、ノズルの開口36aの径を基準とする計算方法、即ち、変形例で説明した計算方法を適用した方が望ましい。
図7Aと図7Bとを対比すると、近似線から測定点までの距離は、図7Bの方が短い。即ち、近似線に対する測定点の標準偏差は、図7Aよりも図7Bの方が小さい。よって、未知ノズルのタイプがシングルノズルである場合、開口36aの断面積を基準とした計算方法(第2実施形態)を選択することで、アシストガスの流量をより精度良く計算することができる。
図8Aと図8Bとを対比すると、近似線から測定点までの距離は、図8Aの方が短い。即ち、近似線に対する測定点の標準偏差は、図8Bよりも図8Aの方が小さい。よって、未知ノズルのタイプがダブルノズルを含む多重ノズルである場合、開口36aの径を基準とした計算方法(変形例)を選択することで、アシストガスの流量をより精度良く計算することができる。
以上説明したように、第2実施形態及びその変形例によれば、以下の作用効果を得られる。
未知ノズルについて、一次関数(F1)及び関数(F2)のパラメータ、即ち、一次関数(F1)の比例切片β、関数(F2)のa(k=0〜n)、及び閾値(GTH)を求めるために行う、実験或いはシミュレーションが不要となる。計算装置によれば、日々進化・改良される新規なノズル36に対して、迅速に対応することができる。
二次記憶装置には、ノズル36毎に、一次関数(F1)及び関数(F2)が記憶されている。制御部は、一次関数(F1)及び関数(F2)が記憶されていない未知ノズルを用いた時のアシストガスの流量を、上記した(a−1)〜(c)又は(d−1)〜(f)に基づいて計算する。これにより、未知ノズルを用いた時のアシストガスの流量を正確に計算することができる。
未知ノズルのタイプがシングルノズルである場合に、開口36aの断面積を基準とする流量の計算方法を適用する。図7A及び図7Bに示したように、より正確な流量計算が可能になる。
未知ノズルのタイプが多重ノズルである場合に、開口36aの径を基準とする流量の計算方法を適用する。図8A及び図8Bに示したように、より正確な流量計算が可能になる。
制御部は、未知ノズルと同じタイプの既知ノズルが複数有る場合、開口36aの断面積の大きさが未知ノズルのそれに最も近い既知ノズルの開口36aの断面積に基づいて、アシストガスの流量を計算する。又は、制御部は、未知ノズルと同じタイプの既知ノズルが複数有る場合、開口36aの径の大きさが未知ノズルのそれに最も近い既知ノズルの開口36aの径に基づいて、アシストガスの流量を計算する。これにより、未知ノズルと同じタイプの既知ノズルが複数有る場合でも、未知ノズルを用いた時のアシストガスの流量を正確に計算することができる。
制御部は、既知ノズルを用いた時の流量(H)に対して、既知ノズルの開口36aの断面積(C)に対する未知ノズルの開口36aの断面積(C)の割合を乗算することにより、未知ノズルを用いた時のアシストガスの流量を計算する。又は、制御部は、既知ノズルを用いた時の流量(H)に対して、既知ノズルの開口36aの径(R)に対する未知ノズルの開口36aの径(R)の割合を乗算することにより、未知ノズルを用いた時のアシストガスの流量を計算する。(4)式又は(5)式に従って、未知ノズルを用いた時のアシストガスの流量を正確に計算することができる。
本発明は以上説明した本実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。
3、5 複数の筒
10 レーザ発振器
17 ノズル口(ノズルの開口)
26 ダブルノズル(ノズル)
35 加工ヘッド
36 シングルノズル(ノズル)
36a ノズルの開口
50 NC装置(制御部)
60 流量計算記憶装置(記憶部)
70 傾き計算記憶装置(記憶部)
F1 一次関数
F2 関数
G ギャップ
H アシストガスの流量
LB レーザビーム
P アシストガスの圧力
Rd 開口の径
W 板金(被加工物)
α 傾き

Claims (14)

  1. 制御部と記憶部とを備え、レーザ発振器から加工ヘッドに導かれたレーザビームを被加工物に照射して所望の加工を行うレーザ加工において、前記加工ヘッドに取り付けられたノズルの先端から噴出されるアシストガスの流量を計算する装置であって、
    前記記憶部には、
    前記加工ヘッド内における前記アシストガスの圧力を変数とする、前記ノズル毎に記憶された一次関数を用いて、前記流量を計算する第1コンピュータプログラムと、
    前記ノズルの先端から被加工物の表面までのギャップを変数とする、前記ノズル毎に記憶された関数を用いて、前記一次関数の傾きを計算する第2コンピュータプログラムと、が記憶され、
    前記制御部は、
    前記一次関数及び前記関数が前記記憶部に記憶されている前記ノズルである既知ノズルを用いた時の前記流量を
    前記ギャップの値を示すデータを取得し、
    前記ギャップの値を前記関数に代入して前記第2コンピュータプログラムを実行することにより、前記傾きを計算し、
    前記圧力の値を示すデータを取得し、
    前記傾き及び前記圧力の値を前記一次関数に代入して前記第1コンピュータプログラムを実行することにより計算し、
    前記一次関数及び前記関数が前記記憶部に記憶されていない前記ノズルである未知ノズルを用いた時の前記流量を、
    (a−1)前記既知ノズルのうち、前記未知ノズルと同じタイプの前記既知ノズルの開口の断面積と、
    (b)前記未知ノズルの開口の断面積と、
    (c)前記未知ノズルと同じタイプの前記既知ノズルを用いた時の前記流量と
    に基づいて計算する
    ことを特徴とするアシストガス流量の計算装置。
  2. 前記ギャップの値が閾値未満である場合、前記ギャップの値を前記関数に代入して前記第2コンピュータプログラムを実行することにより、前記傾きを計算し、
    前記ギャップの値が閾値以上である場合、前記傾きを一定値とする
    ことを特徴とする請求項1に記載のアシストガス流量の計算装置。
  3. 前記閾値は、前記ギャップが変化すれば前記流量も変化する前記ギャップの範囲のうち最も大きな前記ギャップの値であることを特徴とする請求項2に記載のアシストガス流量の計算装置。
  4. 前記閾値は、前記ノズルのタイプ毎に異なることを特徴とする請求項3に記載のアシストガス流量の計算装置。
  5. 前記閾値は、前記アシストガスが噴出される前記ノズルの開口の大きさ毎に異なることを特徴とする請求項3又は4に記載のアシストガス流量の計算装置。
  6. 前記ノズルの前記タイプは、前記ノズルの先端部が単一の筒からなるシングルノズルであることを特徴とする請求項1〜5のいずれか一項に記載のアシストガス流量の計算装置。
  7. 前記制御部は、前記一次関数及び前記関数が前記記憶部に記憶されている前記ノズルである既知ノズルのうち、前記未知ノズルと同じタイプであり、且つ、前記開口の断面積の大きさが前記未知ノズルのそれに最も近い前記既知ノズルの開口の断面積に基づいて、前記未知ノズルを用いた時の前記流量を計算することを特徴とする請求項1〜6のいずれか一項に記載のアシストガス流量の計算装置。
  8. 前記制御部は、前記既知ノズルを用いた時の前記流量に対して、前記既知ノズルの開口の断面積に対する前記未知ノズルの開口の断面積の割合を乗算することにより、前記未知ノズルを用いた時の前記流量を計算することを特徴とする請求項のいずれか一項に記載のアシストガス流量の計算装置。
  9. 制御部と記憶部とを備え、レーザ発振器から加工ヘッドに導かれたレーザビームを被加工物に照射して所望の加工を行うレーザ加工において、前記加工ヘッドに取り付けられたノズルの先端から噴出されるアシストガスの流量を計算する装置であって、
    前記記憶部には、
    前記加工ヘッド内における前記アシストガスの圧力を変数とする、前記ノズル毎に記憶された一次関数を用いて、前記流量を計算する第1コンピュータプログラムと、
    前記ノズルの先端から被加工物の表面までのギャップを変数とする、前記ノズル毎に記憶された関数を用いて、前記一次関数の傾きを計算する第2コンピュータプログラムと、が記憶され、
    前記制御部は、
    前記一次関数及び前記関数が前記記憶部に記憶されている前記ノズルである既知ノズルを用いた時の前記流量を
    前記ギャップの値を示すデータを取得し、
    前記ギャップの値を前記関数に代入して前記第2コンピュータプログラムを実行することにより、前記傾きを計算し、
    前記圧力の値を示すデータを取得し、
    前記傾き及び前記圧力の値を前記一次関数に代入して前記第1コンピュータプログラムを実行することにより計算し、
    前記一次関数及び前記関数が前記記憶部に記憶されていない前記ノズルである未知ノズルを用いた時の前記流量を、
    (d−1)前記既知ノズルのうち、前記未知ノズルと同じタイプの前記既知ノズルの開口の径と、
    (e)前記未知ノズルの開口の径と、
    (f)前記未知ノズルと同じタイプの前記既知ノズルを用いた時の前記流量と
    に基づいて計算する
    ことを特徴とするアシストガス流量の計算装置。
  10. 前記ノズルの前記タイプは、前記ノズルの先端部に径が異なる複数の筒が配置された多重ノズルであることを特徴とする請求項に記載のアシストガス流量の計算装置。
  11. 前記制御部は、前記一次関数及び前記関数が前記記憶部に記憶されている前記ノズルである既知ノズルのうち、前記未知ノズルと同じタイプであり、且つ、前記開口の径の大きさが前記未知ノズルのそれに最も近い前記既知ノズルの開口の径に基づいて、前記未知ノズルを用いた時の前記流量を計算することを特徴とする請求項又は10に記載のアシストガス流量の計算装置。
  12. 前記制御部は、前記既知ノズルを用いた時の前記流量に対して、前記既知ノズルの開口の径に対する前記未知ノズルの開口の径の割合を乗算することにより、前記未知ノズルを用いた時の前記流量を計算することを特徴とする請求項11のいずれか一項に記載のアシストガス流量の計算装置。
  13. 制御部と記憶部とを用いて、レーザ発振器から加工ヘッドに導かれたレーザビームを被加工物に照射して所望の加工を行うレーザ加工において、前記加工ヘッドに取り付けられたノズルの先端から噴出されるアシストガスの流量を計算する方法であって、
    前記記憶部には、
    前記加工ヘッド内における前記アシストガスの圧力を変数とする、前記ノズル毎に記憶された一次関数を用いて、前記流量を計算する第1コンピュータプログラムと、
    前記ノズルの先端から被加工物の表面までのギャップを変数とする、前記ノズル毎に記憶された関数を用いて、前記一次関数の傾きを計算する第2コンピュータプログラムと、が記憶され、
    前記制御部が、
    前記一次関数及び前記関数が前記記憶部に記憶されている前記ノズルである既知ノズルを用いた時の前記流量を、
    前記ギャップの値を示すデータを取得し、
    前記ギャップの値を前記関数に代入して前記第2コンピュータプログラムを実行することにより、前記傾きを計算し、
    前記圧力の値を示すデータを取得し、
    前記傾き及び前記圧力の値を前記一次関数に代入して前記第1コンピュータプログラムを実行することにより計算し、
    前記一次関数及び前記関数が前記記憶部に記憶されていない前記ノズルである未知ノズルを用いた時の前記流量を、
    (a−1)前記既知ノズルのうち、前記未知ノズルと同じタイプの前記既知ノズルの開口の断面積と、
    (b)前記未知ノズルの開口の断面積と、
    (c)前記未知ノズルと同じタイプの前記既知ノズルを用いた時の前記流量と
    に基づいて計算する
    ことを特徴とするアシストガス流量の計算方法。
  14. 制御部と記憶部とを用いて、レーザ発振器から加工ヘッドに導かれたレーザビームを被加工物に照射して所望の加工を行うレーザ加工において、前記加工ヘッドに取り付けられたノズルの先端から噴出されるアシストガスの流量を計算する方法であって、
    前記記憶部には、
    前記加工ヘッド内における前記アシストガスの圧力を変数とする、前記ノズル毎に記憶された一次関数を用いて、前記流量を計算する第1コンピュータプログラムと、
    前記ノズルの先端から被加工物の表面までのギャップを変数とする、前記ノズル毎に記憶された関数を用いて、前記一次関数の傾きを計算する第2コンピュータプログラムと、が記憶され、
    前記制御部が、
    前記一次関数及び前記関数が前記記憶部に記憶されている前記ノズルである既知ノズルを用いた時の前記流量を、
    前記ギャップの値を示すデータを取得し、
    前記ギャップの値を前記関数に代入して前記第2コンピュータプログラムを実行することにより、前記傾きを計算し、
    前記圧力の値を示すデータを取得し、
    前記傾き及び前記圧力の値を前記一次関数に代入して前記第1コンピュータプログラムを実行することにより計算し、
    前記一次関数及び前記関数が前記記憶部に記憶されていない前記ノズルである未知ノズルを用いた時の前記流量を、
    (d−1)前記既知ノズルのうち、前記未知ノズルと同じタイプの前記既知ノズルの開口の径と、
    (e)前記未知ノズルの開口の径と、
    (f)前記未知ノズルと同じタイプの前記既知ノズルを用いた時の前記流量と
    に基づいて計算する
    ことを特徴とするアシストガス流量の計算方法。
JP2018211174A 2018-11-09 2018-11-09 アシストガス流量の計算装置及び計算方法 Active JP6731464B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018211174A JP6731464B2 (ja) 2018-11-09 2018-11-09 アシストガス流量の計算装置及び計算方法
PCT/JP2019/041611 WO2020095690A1 (ja) 2018-11-09 2019-10-24 アシストガス流量の計算装置及び計算方法
US17/290,928 US20210404847A1 (en) 2018-11-09 2019-10-24 Assist gas flow rate calculation device and calculation method
EP19883040.8A EP3878594B1 (en) 2018-11-09 2019-10-24 Assist gas flow rate calculation device and calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018211174A JP6731464B2 (ja) 2018-11-09 2018-11-09 アシストガス流量の計算装置及び計算方法

Publications (2)

Publication Number Publication Date
JP2020075278A JP2020075278A (ja) 2020-05-21
JP6731464B2 true JP6731464B2 (ja) 2020-07-29

Family

ID=70612008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018211174A Active JP6731464B2 (ja) 2018-11-09 2018-11-09 アシストガス流量の計算装置及び計算方法

Country Status (4)

Country Link
US (1) US20210404847A1 (ja)
EP (1) EP3878594B1 (ja)
JP (1) JP6731464B2 (ja)
WO (1) WO2020095690A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020207232B4 (de) 2020-06-09 2022-05-25 Fronius International Gmbh Laser-Hybrid-Schweißvorrichtung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848610B2 (ja) * 1976-03-02 1983-10-29 川崎重工業株式会社 高速噴流式工業用予熱装置におけるノズル製御装置
JP3175568B2 (ja) * 1995-12-20 2001-06-11 三菱電機株式会社 レーザ加工装置およびレーザ加工方法
JP6576157B2 (ja) * 2015-08-18 2019-09-18 鹿島建設株式会社 溶接装置

Also Published As

Publication number Publication date
EP3878594A4 (en) 2022-01-19
EP3878594B1 (en) 2023-03-29
US20210404847A1 (en) 2021-12-30
JP2020075278A (ja) 2020-05-21
WO2020095690A1 (ja) 2020-05-14
EP3878594A1 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
US9685355B2 (en) Laser dicing device and dicing method
CN108076633B (zh) 用于利用激光绘图仪对工件进行雕刻、标记和/或题刻的方法以及用于该方法的激光绘图仪
US20110147347A1 (en) Method for cutting a material layer by means of a cutting beam
KR20160060112A (ko) 워크피스 내의 레이저 빔의 침투 깊이를 측정하기 위한 방법 및 레이저 머시닝 장치
JP6731464B2 (ja) アシストガス流量の計算装置及び計算方法
KR102321951B1 (ko) 레이저 빔의 기준 초점 위치를 결정하는 방법
JP4966846B2 (ja) レーザ加工用ノズルの切断性能評価方法およびその装置並びにレーザ加工用ノズルの切断性能評価装置を備えたレーザ切断加工機
US11478876B2 (en) Laser processing system, jet observation apparatus, laser processing method, and jet observation method
JP6816071B2 (ja) レーザ加工システム、噴流観測装置、レーザ加工方法、及び噴流観測方法
US11602803B2 (en) Laser processing system, and laser processing method
JP6167307B2 (ja) レーザ加工装置
US8396245B2 (en) Device and method for visualizing positions on a surface
JP2016180751A (ja) 形状計測装置及び加工装置
EP3450097A1 (en) Non-contact optical tool setting apparatus and method
JP6791918B2 (ja) レーザ加工システム、噴流観測装置、レーザ加工方法、及び噴流観測方法
US11000917B2 (en) Laser marking system and method for laser marking a workpiece
JP6725605B2 (ja) レーザ加工システム、及びレーザ加工方法
US11014198B2 (en) Laser processing system, jet adjustment device, and laser processing method
JP2012159498A (ja) 変位測定装置、変位測定方法、光学用部材成形用金型の製造方法及び光学用部材
KR101043293B1 (ko) 절단 장비 품질 데이터베이스 갱신 장치 및 방법
US20230150054A1 (en) Laser machining device, wafer processing system, and method for controlling laser machining device
JP2009128166A (ja) 光源装置
JP2008227164A (ja) レーザ加工装置およびレーザ加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200706

R150 Certificate of patent or registration of utility model

Ref document number: 6731464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150