JP6730684B2 - Sintered ore manufacturing method - Google Patents

Sintered ore manufacturing method Download PDF

Info

Publication number
JP6730684B2
JP6730684B2 JP2017184488A JP2017184488A JP6730684B2 JP 6730684 B2 JP6730684 B2 JP 6730684B2 JP 2017184488 A JP2017184488 A JP 2017184488A JP 2017184488 A JP2017184488 A JP 2017184488A JP 6730684 B2 JP6730684 B2 JP 6730684B2
Authority
JP
Japan
Prior art keywords
sintering
gas
oxygen
concentration
sinter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017184488A
Other languages
Japanese (ja)
Other versions
JP2019059976A (en
Inventor
健太 竹原
健太 竹原
山本 哲也
哲也 山本
隆英 樋口
隆英 樋口
友司 岩見
友司 岩見
松野 英寿
英寿 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017184488A priority Critical patent/JP6730684B2/en
Publication of JP2019059976A publication Critical patent/JP2019059976A/en
Application granted granted Critical
Publication of JP6730684B2 publication Critical patent/JP6730684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高炉の原料として用いられる高強度で還元粉化性の良好な焼結鉱を製造する方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing a high-strength sinter that is used as a raw material for a blast furnace and has a good reduction powdering property.

高炉は、鉄源原料として、主として塊鉄鉱石や焼結鉱などの鉄源原料を副原料と共に該高炉の頂部から炉内に装入する一方、炉下部からは還元ガス等を吹き込むことで、該鉄源原料を溶融、還元して溶銑を製造する精錬炉である。この場合、高炉内において、還元ガスと鉄源原料、例えば焼結鉱との反応を促進させるためには、高炉内で炉内ガスが十分に流れるようにすること、即ち、炉内の通気性を向上させることが溶銑の生産性向上、コスト低下のために有効となる。また、高炉内の通気性を高めるには、装入原料の粉率を抑制することが有効であり、そのためには強度の高い焼結鉱を用いることが求められる。このような背景の下で、これまでは高炉の主原料である焼結鉱については、主としてその強度を向上させる様々な方法が検討されてきた。 The blast furnace, as an iron source raw material, while mainly charging the iron source raw material such as lump iron ore and sinter ore together with the auxiliary raw material into the furnace from the top of the blast furnace, by blowing a reducing gas from the bottom of the furnace, It is a refining furnace for producing hot metal by melting and reducing the iron source material. In this case, in order to promote the reaction between the reducing gas and the iron source material, for example, sinter, in the blast furnace, make sure that the gas in the furnace sufficiently flows in the blast furnace, that is, the gas permeability in the furnace. It is effective to improve the hot metal productivity and the cost reduction. Further, in order to improve the air permeability in the blast furnace, it is effective to suppress the powder ratio of the charging raw material, and for that purpose, it is required to use a sintered ore having high strength. Against this background, various methods for improving the strength of the sinter, which is the main raw material of the blast furnace, have been mainly studied so far.

例えば、ドワイトロイド(DL)焼結機を用い、焼結機上(パレット上)の焼結原料装入層中に気体燃料を供給し、これを燃焼させることで高強度の焼結鉱を製造する方法が提案されている(特許文献1、2)。これらの提案に係る方法によれば、焼結中は焼結原料装入層の燃焼領域が広がるため、本来は強度が低下する部分にも熱が補填されることで、焼結鉱の強度を向上させることが可能になると考えられている。また、焼結中に酸素と気体燃料を同時に吹き込むことにより、焼結機(装入層)内で焼結に適した温度条件を作り出し、強度の高い焼結鉱を製造する方法も検討されている。 For example, using a Dwightroid (DL) sintering machine, a gaseous fuel is supplied into a sintering raw material charging layer on the sintering machine (on a pallet), and this is burned to produce a high-strength sintered ore. A method of doing so has been proposed (Patent Documents 1 and 2). According to the methods according to these proposals, since the combustion region of the sintering raw material charging layer is widened during sintering, the heat is supplemented to the portion where the strength is originally reduced, so that the strength of the sintered ore is improved. It is believed that it will be possible to improve. In addition, a method of producing high-strength sinter by creating a temperature condition suitable for sintering in the sintering machine (charge layer) by simultaneously blowing oxygen and gaseous fuel during sintering has also been studied. There is.

特開2008―95170号公報JP, 2008-95170, A 特開2014―31580号公報JP, 2014-31580, A

上掲の特許文献1、2に開示されている焼結鉱の製造方法については、強度向上のために燃料ガス(気体燃料)の使用が必須であり、コスト高になるという問題がある。しかも、これらの方法については、還元粉化性については考慮していないし、この値が向上することの保障がない。また、これらの既知の方法では、燃料ガスの使用によって、燃焼中の燃焼領域や融液発生領域が拡がるため、通気性が悪くなるという課題もあった。 In the method for producing a sintered ore disclosed in the above-mentioned Patent Documents 1 and 2, it is essential to use a fuel gas (gaseous fuel) in order to improve the strength, and there is a problem that the cost becomes high. Moreover, these methods do not take into consideration the reduction powdering property, and there is no guarantee that this value will improve. Further, in these known methods, there is a problem that the gas permeability is deteriorated because the combustion region during combustion and the melt generation region are expanded by using the fuel gas.

そこで、本発明の目的は、風量の増加や気体燃料の使用に頼ることなく、窒素ガスや酸素富化ガスを利用することにより、焼結鉱の強度および還元粉化性をともに向上させるための有効な技術を提案することにある。 Therefore, an object of the present invention is to improve both the strength and the reduction powderability of the sinter by utilizing nitrogen gas or oxygen-enriched gas without relying on the increase in air volume or the use of gaseous fuel. To propose effective technology.

前記目的の実現を目指して鋭意検討を重ねた結果、発明者らは、焼結中の焼結原料装入層内での温度分布を適正化することが有効であり、そのためには該焼結原料装入層中に導入する燃焼制御用ガス、例えば窒素ガスや吹き込み酸素の量やその濃度を適正化することが有効であり、このことによって焼結鉱の強度のみならず還元粉化性も改善できることを突き止め、本発明を開発した。 As a result of extensive studies aimed at achieving the above-mentioned object, the inventors have found that it is effective to optimize the temperature distribution in the sintering raw material charging layer during sintering. It is effective to optimize the amount and concentration of combustion control gas, such as nitrogen gas and blown oxygen, to be introduced into the raw material charging layer, and this reduces not only the strength of the sinter but also the reduction powderability. The present invention has been developed to identify improvements that can be made.

即ち、焼結中の焼結原料装入層内に導入する吹き込み酸素の濃度を、従来よりも濃くする(増加させる)と、焼結鉱の強度を大きく改善できること、また、焼成後のものである焼結鉱に対して窒素ガスを供給することで、焼結鉱の還元粉化性を改善できることを新たに見出したのである。 That is, if the concentration of the blown oxygen introduced into the sintering raw material charging layer during sintering is made higher (increased) than before, the strength of the sintered ore can be greatly improved, and after sintering, By newly supplying nitrogen gas to a certain sinter, it has been newly found that the reduction powdering property of the sinter can be improved.

本発明は正に、前記知見に基づき開発した方法であって、焼結機パレット上の焼結原料装入層および/または焼結冷却装置の移動台車上の焼結鉱堆積層に燃料を除く気体を吹き込む焼結鉱の製造方法において、前記気体として窒素ガスを、焼結機ウィンドボックスでの排ガス温度が最大になった位置以降、焼結冷却装置の入側から全長の2/3までの間で吹き込みを行なうものとし、使用する窒素ガス濃度は大気中濃度よりも高い濃度のものを使用すると共に、その窒素ガスの吹き込みを行なう箇所以外の場所においては、21vol.%超の酸素富化ガスを吹き込むことを特徴とする焼結鉱の製造方法である。 The present invention is exactly a method developed on the basis of the above findings, in which the fuel is removed from the sintering raw material charging layer on the sintering machine pallet and/or the sintered ore deposit layer on the moving carriage of the sintering cooling device. In the method for producing a sintered ore in which a gas is blown, nitrogen gas is used as the gas from the position where the exhaust gas temperature in the sintering machine wind box becomes maximum to 2/3 of the total length from the inlet side of the sintering cooling device. The nitrogen gas concentration used is higher than that in the atmosphere, and the volume of nitrogen gas used is 21 vol. % Of oxygen-rich gas is blown into the sintered ore.

なお、前述の構成に係る本発明については、
(1)前記窒素ガスの吹き込みは、焼結機ウィンドボックスでの排ガス温度が最大になった位置以降、焼結冷却装置の入側から全長の1/3までの間で行なうものとし、使用する窒素ガス濃度は大気中濃度よりも高い濃度のものを使用すること
(2)前記酸素富化ガスは、その濃度が30〜50vol.%であること、
)前記酸素富化ガスは、焼結機の全長を1とするとき、原料装入側から、0超〜0.5に当たる範囲内の位置において、焼結原料装入層の上方から吹き込むこと、
が、より好ましい実施形態になると考えられる。
In addition, regarding the present invention according to the above-mentioned configuration,
(1) blowing the pre Symbol nitrogen gas, since the position where the exhaust gas temperature in the sintering machine wind box is maximized, and those performed between the entrance side of the sintered cooling device to 1/3 of the total length, use Use a nitrogen gas concentration higher than that in the atmosphere .
(2 ) The oxygen-enriched gas has a concentration of 30 to 50 vol. %,
( 3 ) When the total length of the sintering machine is 1, the oxygen-enriched gas is blown from above the sintering raw material charging layer at a position within a range of more than 0 to 0.5 from the raw material charging side. thing,
Is considered to be the more preferred embodiment.

前述の構成に係る本発明によれば、本発明に特有の燃焼制御用ガス、即ち適所(適時)において、所要の窒素ガスを吹き込むこと、及び所要の富化酸素を適所(適時)に吹き込むことにより、高強度の焼結鉱が得られるだけでなく、良好な還元粉化特性を示す還元粉化性に優れた焼結鉱をコスト増を招くことなく製造することができるようになる。 According to the present invention having the above-mentioned configuration, the required nitrogen gas is blown into the combustion control gas peculiar to the present invention, that is, the required nitrogen gas is blown into the proper place (timely). As a result, not only a high-strength sinter can be obtained, but also a sinter having a good reduction pulverization property and an excellent reduction pulverization property can be produced without increasing the cost.

二次へマタイト生成の根拠を示すFeの濃度−温度の状態図である。FIG. 3 is a state diagram of Fe 2 O 3 concentration-temperature showing the grounds for secondary matite formation. 焼結原料装入層内における温度分布の様子を示す略線図である。It is a schematic diagram which shows the mode of temperature distribution in a sintering raw material charging layer. 焼結機の機長方向における各風箱位置における排ガス温度の分布を示す説明図(a)、および焼結冷却装置への窒素ガス吹き込み位置の説明図(b)である。It is explanatory drawing (a) which shows distribution of the exhaust gas temperature in each wind box position in the machine length direction of a sintering machine, and explanatory drawing (b) of the nitrogen gas blowing position to a sintering cooling device. 酸素濃度と生産率との関係を示す説明図である。It is explanatory drawing which shows the relationship between oxygen concentration and a production rate. 酸素濃度・風圧が生産率と強度に与える影響を示す図である。It is a figure which shows the influence which oxygen concentration and wind pressure give to a production rate and intensity. 窒素吹き込みの有無が酸素濃度とRDIに及ぼす影響を示す図である。It is a figure which shows the influence which the presence or absence of nitrogen blowing has on oxygen concentration and RDI.

一般に、焼結機の操業では、パレット上の焼結原料装入層(以下、単に「装入層」とも言う)中に酸素(気体としての酸素ガス)を吹き込むことで、凝結剤であるコークスが燃焼しやすくなることが知られている。しかも、ドワイトロイド型焼結機では、上記吹き込み酸素の濃度を高く(富化)すると、パレットの移動速度が早くなることも既知である。ところで、焼結鉱の強度を高めるには高温域(1200℃)保持時間が長く保つことが有利である。この点、高温の燃焼帯のパレットの移動に伴う移動速度が速くなることは、高温域の保持時間、つまり燃焼帯の通過時間が短くなるため、却って強度の低下につながることになる。そのため、従来は風量を多くして酸素の供給を増やし燃焼速度を上げる方法が採用されてきた。ただし、この場合、焼結鉱の強度はむしろ低下することが知られている。一方で、風量を増やす代わりに酸素の濃度を上げる(酸素富化ガスを用いる)ようにすれば、燃焼帯上部の冷却スピードを抑えることができる。つまり、この場合(酸素富化ガスを用いること)は、燃焼帯の移動速度は上がるが、冷やされる速度は一定のままになるので高温部の範囲が拡がり、焼結鉱強度の増大を図ることができることを意味している。 Generally, in the operation of a sintering machine, coke, which is a coagulant, is blown by blowing oxygen (oxygen gas as a gas) into a sintering raw material charging layer (hereinafter also simply referred to as “charging layer”) on a pallet. Is known to burn easily. Moreover, in the Dwightroid type sintering machine, it is also known that the moving speed of the pallet becomes faster when the concentration of the blown oxygen is increased (enriched). By the way, in order to increase the strength of the sinter, it is advantageous to keep the holding time in the high temperature range (1200° C.) for a long time. In this respect, an increase in the moving speed associated with the movement of the pallet in the high-temperature combustion zone shortens the holding time in the high-temperature region, that is, the transit time in the combustion zone, which in turn leads to a decrease in strength. Therefore, conventionally, a method of increasing the air flow rate to increase the supply of oxygen and increase the burning rate has been adopted. However, in this case, it is known that the strength of the sintered ore rather decreases. On the other hand, if the oxygen concentration is increased (oxygen-enriched gas is used) instead of increasing the air volume, the cooling speed of the upper part of the combustion zone can be suppressed. In other words, in this case (using oxygen-enriched gas), the moving speed of the combustion zone increases, but the cooling speed remains constant, so the range of the high temperature part expands and the strength of the sinter is increased. It means that you can.

一般的に、焼結機パレット上の前記装入層の上層部は、該装入層の下層部分に比べて強度が低いことが知られている。このような装入層上層部の強度を上げることこそが、酸素富化ガスを導入する意義であり、焼結鉱の強度を高める上で望ましいことである。なお、この酸素富化ガスの吹き込みは、後述する気体としての少なくとも窒素ガスの吹き込みを行なう箇所以外の場所において吹き込むものである。 It is generally known that the upper layer portion of the charging layer on the sinter machine pallet has lower strength than the lower layer portion of the charging layer. It is the significance of introducing the oxygen-enriched gas to increase the strength of the upper portion of the charging layer, and it is desirable to increase the strength of the sinter. The oxygen-enriched gas is blown in at a place other than a place where at least nitrogen gas, which will be described later, is blown in.

ところで、焼結鉱中に二次ヘマタイトが生成すると、焼結鉱の還元粉化性を悪化させることが知られている。そこで、本発明では、高温から生成するマグネタイトの安定化を志向する研究を行なった。図1のFe濃度と温度の関係を示す状態図に明らかなように、1350℃以上の高温では、ヘマタイトからマグネタイトへの相転移が生じる。そして、このマグネタイトの一部は液相となり、温度が下がったときに再び、ヘマタイトに戻る。これが二次ヘマタイト生成の原因であり、本発明を開発するに至った背景である。 By the way, it is known that when secondary hematite is generated in the sinter, the reduction powderability of the sinter is deteriorated. Therefore, in the present invention, a study aimed at stabilizing magnetite generated from high temperatures was conducted. As is clear from the state diagram showing the relationship between the Fe 2 O 3 concentration and temperature in FIG. 1, a phase transition from hematite to magnetite occurs at a high temperature of 1350° C. or higher. Then, a part of this magnetite becomes a liquid phase, and returns to hematite again when the temperature drops. This is the cause of the formation of secondary hematite and is the background to the development of the present invention.

発明者らの研究によると、前記装入層中に富化された酸素を導入すると、一旦は前記二次ヘマタイトの生成が促進される。しかしながら、もし焼成の途中で酸素の吹き込み、特に酸素富化ガスの吹き込みを止めることができれば、二次ヘマタイトの生成を抑制することができ、その後は、通常の焼成と同じ焼成―冷却速度になるため、それまでに拡がった高温部は拡大されたままで焼成が続くことになる。その結果、この場合において、たとえ、酸素富化(酸素富化ガスの導入)を止めたとしても、その高温部が一挙に狭まるようなことはないから、高温部が拡がったままとなり、マグネタイトが生成しやすい環境になる。 According to the studies by the inventors, the introduction of enriched oxygen into the charging layer once promotes the formation of the secondary hematite. However, if the blowing of oxygen, especially the blowing of oxygen-enriched gas, can be stopped during firing, the production of secondary hematite can be suppressed, and after that, the same firing-cooling rate as normal firing will be achieved. Therefore, the high temperature portion that has been expanded up to that point will continue to be fired while being expanded. As a result, in this case, even if the oxygen enrichment (introduction of the oxygen-enriched gas) is stopped, the high temperature part does not narrow at once, so the high temperature part remains expanded and magnetite The environment is easy to generate.

上述したように、本発明は、前述した高温部の維持によって二次ヘマタイトの生成を抑制すると共にマグネタイトの増加が期待できるだけでなく、窒素ガスの供給によって赤熱焼結鉱の再酸化を防ぐことにより二次ヘマタイトの生成を抑えるようにした方法であり、それ故に、還元粉化性の改善も可能となる。 As described above, according to the present invention, not only can the production of secondary hematite be suppressed by maintaining the above-mentioned high temperature portion and the increase of magnetite can be expected, but also the reoxidation of the red hot sinter can be prevented by supplying nitrogen gas. This is a method that suppresses the formation of secondary hematite, and therefore, it is possible to improve the reduction powdering property.

次に、本発明においては、焼結配合原料の焼成中に焼結機の上方から酸素を吹き込む際に、上述したように、吹き込み酸素濃度を増加させた酸素富化ガスを導入する場合、焼結過程中の未だ焼結鉱の強度が低い時期、即ち、焼成初期に吹き込むことが好ましい。その好ましい吹き込み位置は、焼結時間の半分以下の位置、具体的には焼結機の全長を1とするとき、0超(点火炉直後)〜0.5(パレット移動距離の半分)にあたる位置の原料装入層の上方から高い濃度の酸素を吹き込むことが好ましい。 Next, in the present invention, when oxygen is blown from above the sintering machine during firing of the sintering compound material, as described above, when introducing an oxygen-enriched gas with an increased blown oxygen concentration, It is preferable to blow the sintered ore during the setting process when the strength of the sintered ore is still low, that is, at the initial stage of firing. The preferable blowing position is a position that is less than half the sintering time, specifically, a position that exceeds 0 (immediately after the ignition furnace) to 0.5 (half the pallet moving distance) when the total length of the sintering machine is 1. It is preferable to blow a high concentration of oxygen from above the raw material charging layer.

本発明において、強度の改善のために従来の風量増加に代えて使用する、酸素濃度の高い酸素富化ガスとして、21vol.%超の濃度のもの、好ましくは30〜50vol.%の濃度の酸素富化ガスを吹き込むことが好ましい。その濃度が30vol.%未満の酸素では、酸素によるヘマタイトの生成が30vol.%以上のときにくらべ比較的少ないから窒素吹き込みの効果が小さく、一方、50vol.%超では焼成速度が速くなりすぎて、溶融時間が短くなり、酸素が有効に使われにくく、また、焼結鉱強度の向上効果が得られなくなるからである。 In the present invention, as an oxygen-enriched gas having a high oxygen concentration, which is used in place of the conventional increase in air volume for improving strength, 21 vol. % Concentration, preferably 30 to 50 vol. It is preferred to blow in an oxygen-enriched gas with a concentration of %. The concentration is 30 vol. % Oxygen, the formation of hematite by oxygen is 30 vol. %, the effect of nitrogen blowing is small compared with the case of 50% by volume. If it exceeds %, the firing rate becomes too fast, the melting time becomes short, oxygen is not effectively used, and the effect of improving the strength of the sinter cannot be obtained.

なお、その酸素富化ガスの吹き込み位置に関し、焼結機の全長を1とするとき、0超から0.5までの位置からとした理由は、0.5以上の部分で焼成される焼結鉱は焼成時間が長く、もともと強度が高いため、強度向上の効果が比較的小さいからである。 Regarding the position where the oxygen-enriched gas is blown in, when the total length of the sintering machine is set to 1, the reason for setting the position from more than 0 to 0.5 is that sintering at a portion of 0.5 or more is performed. This is because ore has a long firing time and is originally high in strength, so that the effect of improving strength is relatively small.

次に、本発明方法においてとりわけ特徴的なことは、前述したように過剰な焼成となるのを抑制するために、適所において適時に窒素ガスの吹き込みを行なうことにある。この窒素ガスの吹き込みは、少なくとも焼成が終わったとき以降の位置、すなわち、焼成が原料装入層の最下層に達した位置以降において行なう。例えば、焼結機パレット上の装入焼結原料の全ての焼成が終わり、ウィンドボックスでの排ガス温度が最高になった位置以降、さらには焼結冷却装置の前半までの位置(全長をTとするとき1/3〜2/3)において吹き込むことが好ましい。 Next, what is particularly characteristic of the method of the present invention is that the nitrogen gas is blown into a proper place and at a proper time in order to suppress the excessive firing as described above. The blowing of the nitrogen gas is performed at least at the position after the firing is completed, that is, at the position after the firing reaches the lowermost layer of the raw material charging layer. For example, after the firing of all the charged sintering raw materials on the sinter machine pallet is completed and the exhaust gas temperature in the wind box reaches the maximum, and further to the first half of the sintering cooling device (total length is T). It is preferable to blow at 1/3 to 2/3).

具体的には、図3(b)に示すように、前記窒素ガスの吹き込みは、焼結機ウィンドボックスでの排ガス温度が最大になった位置以降から焼結冷却装置の入側から全長Tの2/3までの間で行なうものとし、使用する窒素ガス濃度は大気中濃度よりも高い濃度のものを使用することが好ましい。 Specifically, as shown in FIG. 3( b ), the nitrogen gas is blown into the sintering cooler from the inlet side of the sintering cooling device to the entire length T from the position where the exhaust gas temperature in the sintering machine windbox becomes maximum. The nitrogen gas concentration used is up to 2/3, and the nitrogen gas concentration used is preferably higher than the atmospheric concentration.

前記窒素ガスの吹き込みはまた、焼結冷却装置の、その全長Tの1/3までの位置、即ち、該焼結冷却装置の移動台車上の被冷却焼結鉱堆積層中に、赤熱状態の被冷却焼結鉱の受入れから移動台車の移動距離が全長(T)の1/3に達するまでの間に窒素ガスの吹き込みを行なうことが好ましい。その理由は、冷却装置の移動台車の移動距離が、2/3(T)好ましくは1/3(T)以内とすることにより、二次ヘマタイトの生成を確実に阻止することができるようになるからである。 The blowing of the nitrogen gas also causes a red-hot state at a position up to 1/3 of the entire length T of the sinter cooling device, that is, in the cooled sinter deposit layer on the moving carriage of the sinter cooling device. It is preferable that the nitrogen gas is blown in from the time when the cooled sinter is received until the moving distance of the moving carriage reaches 1/3 of the total length (T). The reason is that by setting the moving distance of the moving carriage of the cooling device to be within 2/3 (T), preferably within 1/3 (T), it becomes possible to reliably prevent the production of secondary hematite. Because.

なお、図2は焼結原料装入層の高さ方向における温度分布の一例を示したものであり、全装入層厚が600mmのとき、焼結帯・溶融帯が約300〜400mmの位置にある時の例である。通常、焼結原料装入層において、燃焼帯は上層から下層に向って移動していくが、この燃焼帯が最下層に達したとき、即ち、コークスの燃焼が終わったときは、窒素ガスを吹き込んでも燃焼が阻害されるようなことがないからである。また、この燃焼帯が最下層にあるとき、排ガス温度は最高になるため、排ガス温度が最高になった後で窒素ガスを吹き込むことが好ましい。 FIG. 2 shows an example of the temperature distribution in the height direction of the sintering raw material charging layer. When the total charging layer thickness is 600 mm, the sintering zone/melting zone is at a position of about 300 to 400 mm. It is an example when it is in. Usually, in the sintering raw material charging layer, the combustion zone moves from the upper layer to the lower layer, but when this combustion zone reaches the lowermost layer, that is, when the coke combustion ends, nitrogen gas is discharged. This is because the combustion will not be hindered even if it is blown in. Further, when the combustion zone is in the lowermost layer, the exhaust gas temperature becomes the highest, so it is preferable to blow nitrogen gas after the exhaust gas temperature becomes the highest.

図3は、焼結機1の風箱2で測定される排ガス濃度のプロファイルの一例である。一般に、焼結機1では空気の吸引が風箱(ウィンドボックス)2を通じて行なわれており、本発明ではその風箱2に温度計が設置されている。この図においては、原料装入側から順番に風箱に番号(No.1〜No.23)をつけ、その地点での排ガス温度を示している。そして、前述した窒素の吹き込みは、かかる排ガス温度が最大になった風箱2を含む地点、即ち、図示例では、No.21風箱に相当する位置の焼結機パレットの原料装入層(焼結層)3の上方から窒素ガスの吹き込みを始めることが好ましい実施の形態である。 FIG. 3 is an example of a profile of exhaust gas concentration measured in the wind box 2 of the sintering machine 1. Generally, in the sintering machine 1, air is sucked through a wind box 2, and a thermometer is installed in the wind box 2 in the present invention. In this figure, the wind boxes are numbered (No. 1 to No. 23) in order from the raw material charging side, and the exhaust gas temperature at that point is shown. Then, the blowing of nitrogen described above is performed at a point including the wind box 2 in which the exhaust gas temperature is maximum, that is, in the illustrated example, No. It is a preferred embodiment to start blowing nitrogen gas from above the raw material charging layer (sintering layer) 3 of the sinter machine pallet at a position corresponding to the 21 air box.

以上説明したように、本発明では、前記窒素ガスの吹き込みは、焼結後のものをクラッシャー4によって破砕した後に、冷却装置(クーラー)5の移動台車(図示例は環状型冷却機)上に装入され冷却される際に、上述したように、冷却装置5の入側から全長(T)のうちの2/3(T)までの範囲、好ましくは1/3(T)、までの範囲内において窒素ガスの吹き込みを行なうことが好ましい。 As described above, in the present invention, the blowing of the nitrogen gas is performed on the moving carriage (cooling machine in the illustrated example) of the cooling device (cooler) 5 after the sintered product is crushed by the crusher 4. When charged and cooled, as described above, the range from the inlet side of the cooling device 5 to 2/3 (T) of the total length (T), preferably 1/3 (T). It is preferable to blow nitrogen gas inside.

(試験1)
図4は、焼成初期から燃焼帯が原料装入層の厚み方向の半分の位置にくるまで酸素富化を行なった鍋試験の結果を示している。なお、酸素濃度は装入層直上の酸素濃度である。この例では、焼結配合原料をドラムミキサーで造粒したものを用い、燃焼帯の位置がわかるようにした透明な石英製焼成鍋にて試験を行なった。このときの試験の結果によると、酸素濃度が50vol.%を超えると、生産率の増加は小さくなることが分かった。
(Test 1)
FIG. 4 shows the results of a pot test in which oxygen was enriched from the initial stage of firing until the combustion zone was located at a half position in the thickness direction of the raw material charging layer. The oxygen concentration is the oxygen concentration just above the charging layer. In this example, the sintering compound material was granulated with a drum mixer, and the test was conducted in a transparent quartz baking pot in which the position of the combustion zone was known. According to the result of the test at this time, the oxygen concentration was 50 vol. It has been found that the production rate increase is small when the percentage exceeds %.

(試験2)
次に、図5は、焼成中に酸素濃度を増加させた場合と、風量を増加させるために風圧を増加させた場合との生産率および強度に与える影響を調べるために行なった試験の結果を示したものである。ここで、強度はJIS M 8712−2009に従った回転強度(タンブラー強度)で評価した。この試験では、焼結原料をドラムミキサーで造粒し、前記例1と同様に、原料装入層の半分の位置にくるまで酸素富化を行った。風圧を上げて生産率を向上させた通常の場合は、生産率の増加に伴って焼結鉱のタンブラー強度(TI)も低下した。しかなしながら、所定の位置において酸素富化を行った場合は、強度が大きく改善することが明らかとなった。なお、この強度は、表1に示すように酸素濃度が50vol.%で改善しなくなっていくため、強度の改善には、酸素濃度は50vol.%が上限であると考えられる。
(Test 2)
Next, FIG. 5 shows the results of a test conducted to examine the effects on the production rate and strength when the oxygen concentration was increased during firing and when the air pressure was increased to increase the air volume. It is shown. Here, the strength was evaluated by rotational strength (tumbler strength) according to JIS M 8712-2009. In this test, the sintering raw material was granulated with a drum mixer, and oxygen enrichment was carried out until it reached the half position of the raw material charging layer, as in Example 1. In the usual case where the wind pressure was increased to improve the production rate, the tumbler strength (TI) of the sinter decreased as the production rate increased. However, it has been clarified that the strength is greatly improved when oxygen is enriched at a predetermined position. As shown in Table 1, this strength has an oxygen concentration of 50 vol. %, the oxygen concentration is 50 vol. % Is considered to be the upper limit.

Figure 0006730684
Figure 0006730684

(例1)
次に、図6は、焼成初期から燃焼帯が原料装入層の半分の位置になるまで酸素富化した後、排ガス温度が最高となった後に窒素を吹き込み、装入層直上の酸素濃度10vol.%の条件で通風・冷却をしたときの試験の結果を示す。酸素濃度は入側ガス中の装入層直上での酸素濃度である。
(Example 1)
Next, FIG. 6 shows that after the initial firing, the combustion zone was enriched with oxygen until the combustion zone reached half the position of the raw material charging layer, then nitrogen was blown in after the exhaust gas temperature reached the maximum, and the oxygen concentration 10 vol. . The results of the test when ventilation and cooling are performed under the condition of% are shown. The oxygen concentration is the oxygen concentration just above the charging layer in the inlet gas.

この実施例では、塩基度が2.0になるように調整した焼結配合原料をドラムミキサーで造粒し、その後、得られた焼結配合原料を燃焼帯の位置がわかるようにした石英製の透明な焼成鍋を使って焼結試験を行った。このときの焼成は風圧一定(7kPa)で行った。表2に示すとおり、比較例1―4(窒素ガス吹き込みなし)の試験結果から、各酸素濃度で排ガス温度が最高になる時間を測定し、本発明に適合する実施例1―4(窒素ガス吹き込みあり)では、各酸素濃度での排ガス最高温度になる時間から窒素富化を行った。 In this example, a sintering compound material adjusted to have a basicity of 2.0 was granulated with a drum mixer, and then the obtained sintering compound material was made of quartz so that the position of the combustion zone was known. Sintering test was performed using the transparent baking pot of. Firing at this time was performed at a constant wind pressure (7 kPa). As shown in Table 2, from the test results of Comparative Example 1-4 (without blowing nitrogen gas), the time at which the exhaust gas temperature reached the maximum at each oxygen concentration was measured, and Example 1-4 (nitrogen gas) conforming to the present invention was measured. (With blowing), nitrogen was enriched from the time when the maximum temperature of exhaust gas was reached at each oxygen concentration.

その結果、焼結鉱が冷却過程に入ったときに窒素ガスを吹き込むこと、また、酸素富化の増大とともに還元粉化性(RDI)の改善が可能であることが明らかとなった。これは、窒素の吹き込みによる酸素濃度の低下によって、高温で生成したマグネタイトが二次ヘマタイトへの再酸化が抑制されたためであると考えられる。 As a result, it became clear that nitrogen gas was blown into the sinter when it entered the cooling process, and that it was possible to improve the reduction dustability (RDI) with an increase in oxygen enrichment. It is considered that this is because the re-oxidation of magnetite generated at high temperature into secondary hematite was suppressed by the decrease in oxygen concentration due to the blowing of nitrogen.

Figure 0006730684
Figure 0006730684

(例2)
この例は、焼成の初期から燃焼帯が焼結原料装入層の半分の位置にくるまで、酸素富化(酸素濃度30vol.%)した後、ウィンドボックスでの排ガス温度が最高になったとき、窒素ガスを各開始時間で一定時間吹き込んだ試験を行なった。
この試験では、塩基度を2.0になるように調整した焼結配合原料をドラムミキサーで造粒し、その後、燃焼帯の位置がわかるようにした石英製の透明な焼成鍋で試験を行った。焼成は、風圧一定(7kPa)で行なった。窒素ガスの冷却開始時間は、排ガスの最高温度と冷却が終わったと考えられる50℃の温度の差分を3区間に分け、各温度区間で窒素を吹き込んだ。なお、この試験においては、温度が下がって初めて、排ガス最高温度が分るため、排ガス温度が上昇し3℃下がった時を最高温度として考えた。具体的には実施例5では430℃、実施例6では300℃、実施例7では179℃、実施例8では、420℃であったため、下記排ガス温度範囲で窒素を吹き込んだ。窒素ガスの吹き込みは入側の酸素濃度が10vol.%になるようにした。
・実施例5:(430―303℃)
・実施例6:(300―175℃)
・実施例7:(179―50℃)
・実施例8:(420―173℃)
(Example 2)
In this example, when the exhaust gas temperature in the windbox reaches the maximum after oxygen enrichment (oxygen concentration 30 vol.%) from the initial stage of firing until the combustion zone reaches half the position of the sintering raw material charging layer. Then, a test was conducted in which nitrogen gas was blown into each starting time for a certain period of time.
In this test, a sintering compound material adjusted to have a basicity of 2.0 was granulated with a drum mixer, and then the test was performed with a transparent baking pot made of quartz that made the position of the combustion zone visible. It was The firing was performed at a constant wind pressure (7 kPa). Regarding the cooling start time of the nitrogen gas, the difference between the maximum temperature of the exhaust gas and the temperature of 50° C., which is considered to be the end of cooling, was divided into 3 sections, and nitrogen was blown into each temperature section. In this test, the maximum temperature of the exhaust gas is known only after the temperature has dropped, so the maximum temperature is considered to be the time when the exhaust gas temperature rises and drops by 3°C. Specifically, since it was 430° C. in Example 5, 300° C. in Example 6, 179° C. in Example 7, and 420° C. in Example 8, nitrogen was blown in the following exhaust gas temperature range. When the nitrogen gas was blown in, the oxygen concentration on the inlet side was 10 vol. It was set to be %.
-Example 5: (430-303°C)
-Example 6: (300-175°C)
-Example 7: (179-50°C)
-Example 8: (420-173°C)

その結果を表3に示す。この表に示すとおり、最高温度と50℃の間の温度幅をTとしたときの吹き込み温度域として、各試験後のRDIを示した。この結果より、吹き込みは排ガス温度が高いとき、つまり焼結鉱の温度が高い場合にこそ窒素ガス吹き込みの効果が大きく発現することが分かった。これは、焼結鉱温度が高いほど、マグネタイトが残存しており、二次ヘマタイトへの変化を抑制できるためであると考えられる。
なお、表中のT‐2/3Tは、焼結鉱を冷却するための焼結クーラーでの吹き込み位置に対応しており、円形焼結クーラーの場合、焼結クーラーの全長の1/3の部分まで窒素ガスを吹き込むことが望ましいと考えられる。
The results are shown in Table 3. As shown in this table, the RDI after each test is shown as the blowing temperature range when the temperature range between the maximum temperature and 50° C. is T. From this result, it was found that the effect of the nitrogen gas injection is significantly exhibited when the exhaust gas temperature is high, that is, when the temperature of the sinter is high. It is considered that this is because the higher the sinter temperature is, the more the magnetite remains, and the change to the secondary hematite can be suppressed.
In addition, T-2/3T in the table corresponds to the blowing position in the sinter cooler for cooling the sinter, and in the case of the circular sinter cooler, it is 1/3 of the total length of the sinter cooler. It is considered desirable to blow nitrogen gas to a part.

Figure 0006730684
Figure 0006730684

本発明の技術は、焼結鉱強度の改善と共に還元粉化性の改善を目指す焼結鉱の製造方法だけでなく、他の諸性質の改善や望ましい焼結機の操業技術の開発にも適用が可能である。 INDUSTRIAL APPLICABILITY The technique of the present invention is applied not only to a method for producing a sintered ore aiming at improvement of the strength of the sintered ore and improvement of reduction powderability, but also improvement of other various properties and development of a desired operating technology of a sintering machine Is possible.

1.焼結機
2.風箱
3.焼結原料装入層
4.クラッシャー
5.冷却装置
1. Sintering machine 2. Wind box 3. Sintering raw material charging layer 4. Crusher 5. Cooling system

Claims (4)

焼結機パレット上の焼結原料装入層および/または焼結冷却装置の移動台車上の焼結鉱堆積層に燃料を除く気体を吹き込む焼結鉱の製造方法において、前記気体として窒素ガスを、焼結機ウィンドボックスでの排ガス温度が最大になった位置以降、焼結冷却装置の入側から全長の2/3までの間で吹き込みを行なうものとし、使用する窒素ガス濃度は大気中濃度よりも高い濃度のものを使用すると共に、その窒素ガスの吹き込みを行なう箇所以外の場所においては、21vol.%超の酸素富化ガスを吹き込むことを特徴とする焼結鉱の製造方法。 In a method for producing a sintered ore in which a gas other than a fuel is blown into a sintering raw material charging layer on a sintering machine pallet and/or a sintered ore deposition layer on a moving carriage of a sintering cooling device, nitrogen gas is used as the gas. After the position where the exhaust gas temperature in the sintering machine windbox reaches the maximum, blowing shall be performed from the inlet side of the sintering cooling device to 2/3 of the total length, and the nitrogen gas concentration used shall be the atmospheric concentration. In addition to using a higher concentration than the above, 21 vol. % Of oxygen-rich gas is blown into the sintered ore. 前記窒素ガスの吹き込みは、焼結機ウィンドボックスでの排ガス温度が最大になった位置以降、焼結冷却装置の入側から全長の1/3までの間で行なうものとし、使用する窒素ガス濃度は大気中濃度よりも高い濃度のものを使用することを特徴とする請求項1に記載の焼結鉱の製造方法。 The nitrogen gas should be blown in from the position where the exhaust gas temperature in the sintering machine wind box is maximum to a third of the total length from the inlet side of the sintering cooling device. The method for producing a sinter according to claim 1, wherein the sinter has a concentration higher than the atmospheric concentration. 前記酸素富化ガスは、その濃度が30〜50vol.%であることを特徴とする、請求1または2に記載の焼結鉱の製造方法。 The oxygen-enriched gas has a concentration of 30 to 50 vol. %, The method for producing a sintered ore according to claim 1 or 2 , wherein 前記酸素富化ガスは、焼結機の全長を1とするとき、原料装入側から、0超〜0.5に当たる範囲内の位置において、焼結原料装入層の上方から吹き込むことを特徴とする、請求項1〜3のいずれか1項に記載の焼結鉱の製造方法。 When the total length of the sintering machine is 1, the oxygen-enriched gas is blown from above the sintering raw material charging layer at a position within a range of more than 0 to 0.5 from the raw material charging side. The method for producing a sinter according to any one of claims 1 to 3 .
JP2017184488A 2017-09-26 2017-09-26 Sintered ore manufacturing method Active JP6730684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017184488A JP6730684B2 (en) 2017-09-26 2017-09-26 Sintered ore manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017184488A JP6730684B2 (en) 2017-09-26 2017-09-26 Sintered ore manufacturing method

Publications (2)

Publication Number Publication Date
JP2019059976A JP2019059976A (en) 2019-04-18
JP6730684B2 true JP6730684B2 (en) 2020-07-29

Family

ID=66176293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017184488A Active JP6730684B2 (en) 2017-09-26 2017-09-26 Sintered ore manufacturing method

Country Status (1)

Country Link
JP (1) JP6730684B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112022015475A2 (en) * 2020-02-27 2022-09-27 Jfe Steel Corp METHOD TO PRODUCE SINTERIZED ORE

Also Published As

Publication number Publication date
JP2019059976A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP5546675B1 (en) Blast furnace operating method and hot metal manufacturing method
JP2010126773A (en) Method for producing sintered ore
JP6730684B2 (en) Sintered ore manufacturing method
JP5574064B2 (en) Raw material charging method to blast furnace
JP5815196B2 (en) Method for producing sintered ore
JP2020002457A (en) Dl sintering machine and manufacturing method of sintered ore using dl sintering machine
JP6213734B2 (en) Method for producing sintered ore
JP6137087B2 (en) Method for producing sintered ore
JPWO2013172036A1 (en) Raw material charging method to blast furnace
KR101511720B1 (en) Manufacturing apparatus for molten metal and method thereof
JP7384268B2 (en) Method for producing sintered ore
JP5256982B2 (en) Operation method of vertical melting furnace
JP5907431B2 (en) Melting furnace operation method
JP6269549B2 (en) Blast furnace operation method
JP4893290B2 (en) Hot metal production method using vertical scrap melting furnace
JPH09227958A (en) Operation of endless shifting type sintering machine and high-quality sintered ore
JP5693768B2 (en) Blast furnace operating method and hot metal manufacturing method
JP5966608B2 (en) Raw material charging method to blast furnace
JP4992407B2 (en) Hot metal production method using vertical scrap melting furnace
JPH04268006A (en) Method for controlling furnace heat in blast furnace
PH12014502649B1 (en) Method for producing sintered ore
KR20150131431A (en) Manufacturing apparatus for molten metal and method thereof
Vegman Heat treatment of sinter
JPH09125114A (en) Operation of blast furnace at the time of blowing a large quantity of pulverized fine coals
JP2012162789A (en) Operating method of vertical type melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200616

R150 Certificate of patent or registration of utility model

Ref document number: 6730684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250