JPH09125114A - Operation of blast furnace at the time of blowing a large quantity of pulverized fine coals - Google Patents

Operation of blast furnace at the time of blowing a large quantity of pulverized fine coals

Info

Publication number
JPH09125114A
JPH09125114A JP30855295A JP30855295A JPH09125114A JP H09125114 A JPH09125114 A JP H09125114A JP 30855295 A JP30855295 A JP 30855295A JP 30855295 A JP30855295 A JP 30855295A JP H09125114 A JPH09125114 A JP H09125114A
Authority
JP
Japan
Prior art keywords
blast furnace
pulverized coal
mass
amount
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30855295A
Other languages
Japanese (ja)
Other versions
JP3283739B2 (en
Inventor
Yozo Hosoya
陽三 細谷
Takashi Orimoto
隆 折本
Masaaki Naito
誠章 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17982413&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09125114(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30855295A priority Critical patent/JP3283739B2/en
Publication of JPH09125114A publication Critical patent/JPH09125114A/en
Application granted granted Critical
Publication of JP3283739B2 publication Critical patent/JP3283739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a blast furnace operation at the time of blowing a large quantity of pulverized fine coal which promotes high temp. reduction by charging low slag sintered ore having much fine pores into the blast furnace and can control so that the thickness of a softening and cohesive zone forms to thinner than the conventional method. SOLUTION: In the blast surface blowing >=150kg/t-p pulverized fine coal, the sintered ore having much fine pores and 8.0-10.0mass% Fe, 4.2-4.9mass% SiO2 and 0.18-0.29 Al2 O3 /FeO ratio, is charged into the blast furnace to improve the high temp. reducibility and thus, the pulverized fine coal is stably blown in a large quantity by controlling so that the thickness of the softening and cohesive zone becomes thin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、高炉に高温還元
性を向上させた焼結鉱を装入して軟化融着帯の幅が薄く
なるように制御し、これによって微粉炭多量吹き込み時
の高炉操業安定化を狙った高炉操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention introduces sinter having improved high-temperature reducibility into a blast furnace and controls it so that the width of the softening cohesive zone becomes thin, whereby a large amount of pulverized coal is injected. The present invention relates to a blast furnace operation method aiming at stabilization of blast furnace operation.

【0002】[0002]

【従来の技術】コークスとの代替により溶銑原価低減効
果が大きく、コークス炉の老朽化対策としても重要な微
粉炭吹き込みが最近注目され、日本国内ではほぼ全高炉
に採用されている。例えば「材料とプロセス」7(19
94),p124には微粉炭比180kg/t−p以上
の吹き込み操業を装入物分布の改善(シャープな逆V型
の融着帯を維持)と羽口前条件の改善により安定に維持
している結果が報告されている。また、同じく「材料と
プロセス」7(1994),p126には1週間にわた
る微粉炭比200kg/t−pの操業試験結果が報告さ
れ、コークスDIの向上と高酸素富化操業、低Al2
3 ・高被還元性焼結鉱の使用、局所的な高O/C部を形
成させない装入物分布制御により達成した内容が記載さ
れている。
2. Description of the Related Art The replacement of coke has a great effect of reducing the cost of hot metal, and blowing pulverized coal, which is important as a countermeasure against the deterioration of coke ovens, has recently attracted attention and has been adopted in almost all blast furnaces in Japan. For example, “Materials and Processes” 7 (19
94), p124, the blowing operation with a pulverized coal ratio of 180 kg / tp or more was maintained stably by improving the charge distribution (maintaining a sharp inverted V-shaped cohesive zone) and pre-tuyere conditions. The results have been reported. Also, in “Materials and Processes” 7 (1994), p126, an operation test result of a pulverized coal ratio of 200 kg / tp for one week is reported, which shows improvement in coke DI, high oxygen enrichment operation, and low Al 2 O.
3. The contents achieved by using highly reducible sinter ore and controlling the distribution of the charge without forming a local high O / C part are described.

【0003】ここでは、融着帯の厚み増加による炉下部
通気性悪化を抑制するために、低Al23 ・高被還元
性焼結鉱を使用したと報告していることから、装入物の
低Al23 化で融着帯の厚み増加を抑制したと考えら
れる。さらに「材料とプロセス」8(1995),p3
19には月間の微粉炭比218kg/t−pの操業結果
として、炉下部通気通液性の改善のためにスラグ比の低
減(320→280kg/t−p)と塊成鉱の高RI
(被還元性)化(HPSの全面使用)、コークス強度の
向上を実施したことなどが報告されている。HPS鉱が
低SiO2 ・低Al23 鉱であるのはよく知られたこ
とで、融着帯の厚み増加を装入物の低SiO2 化と低A
23 化で抑制したと考えられる。
Here, since it is reported that low Al 2 O 3 / highly reducible sinter is used in order to suppress deterioration of the air permeability of the lower part of the furnace due to an increase in the thickness of the cohesive zone, It is considered that the increase in the thickness of the cohesive zone was suppressed by reducing the Al 2 O 3 content of the material. Furthermore, "Materials and Processes" 8 (1995), p3
In Fig. 19, as a result of monthly pulverized coal ratio of 218 kg / tp, the slag ratio was reduced (320 → 280 kg / tp) and the high RI of agglomerated ore was improved to improve the permeability of the lower part of the furnace.
It has been reported that (reducible) (using the entire surface of HPS) and improving coke strength were carried out. It is well known that HPS ore is a low SiO 2 and low Al 2 O 3 ore, and it is possible to increase the thickness of the cohesive zone by reducing the SiO 2 content and the A content of the charge.
It is considered that this was suppressed by conversion into l 2 O 3 .

【0004】[0004]

【発明が解決しようとする課題】微粉炭吹き込み操業に
おいて、微粉炭を多量に吹き込むためには次の技術課題
を解決していく必要があると考える。すなわち、微粉
炭比増加によりコークス量が減少(コークススリットの
縮小)するので、鉱石/コークス比(O/C)が高くな
り、これによって融着帯の厚みが増加するとともに、そ
の下に位置する炉下部の通気性が悪化すること、羽口
における微粉炭燃焼量が増加するため、ガス流れが周辺
流下し、炉体からの放散熱が増加して熱効率が低下する
こと、熱流比(固体熱容量/ガス体熱容量)の低下に
より炉内ガス温度が上昇するので、炉頂からのガス顕熱
が増加し、これによって熱効率が低下すること、などで
ある。微粉炭比が150kg/t−p以上になると、装
入物の荷下がり悪化や圧力損失増、炉体熱負荷増などに
より操業が不安定になることが他に報告されており、こ
れらの技術課題の解決は重要と考えられる。
It is considered necessary to solve the following technical problems in order to blow a large amount of pulverized coal in the pulverized coal blowing operation. That is, since the coke amount decreases (coke slit size reduction) due to the increase in the pulverized coal ratio, the ore / coke ratio (O / C) increases, which increases the thickness of the cohesive zone and is located below it. Since the air permeability in the lower part of the furnace deteriorates and the amount of pulverized coal combustion in the tuyere increases, the gas flow flows down to the periphery, the heat dissipated from the furnace body increases and the thermal efficiency decreases, and the heat flow ratio (solid heat capacity (/ Heat capacity of gas body) lowers the temperature of gas in the furnace, so that the sensible heat of gas from the top of the furnace increases, which lowers the thermal efficiency. It has been reported that when the pulverized coal ratio is 150 kg / tp or more, the operation becomes unstable due to deterioration of the load unloading, increased pressure loss, and increased heat load on the furnace body. Solving problems is considered important.

【0005】その中でも特に、微粉炭比増加で鉱石/コ
ークス比(O/C)が高くなり、これによって融着帯の
厚みが増加することは問題が大きいと考える。炉下部の
圧力損失が増加すると同時にガスの中心流れが抑制され
て周辺流が助長されるので、荷下がりが不安定になり炉
体熱負荷が増大する。ところが、O/Cが高くなること
による融着帯の厚み増加とその下に位置する炉下部の通
気性悪化とに対する装入物の改善策については、すでに
説明したように、装入物の低Al23 化(1.7ma
ss%未満)を実施した例が見られる程度である。しか
し、1994年の日本鉄鋼業全体における焼結鉱中のA
23 の平均値は1.75〜1.85mass%の範
囲にあり、今後も焼結鉱中のAl23 は徐々に増加し
ていくことが予想される。従って、多くの高炉が長期的
に低Al23 焼結鉱を製造し、これを使用していこう
とするのは困難であると考えられる。
Among them, it is considered that there is a big problem that the ore / coke ratio (O / C) is increased due to the increase of the pulverized coal ratio, which increases the thickness of the cohesive zone. At the same time as the pressure loss in the lower part of the furnace increases, the central flow of gas is suppressed and the peripheral flow is promoted, so that the unloading becomes unstable and the heat load on the furnace body increases. However, as described above, regarding the measures for improving the charge against the increase in the thickness of the cohesive zone due to the higher O / C and the deterioration of the air permeability of the lower part of the furnace located therebelow, as described above, Al 2 O 3 conversion (1.7 ma
Only less than ss%) can be seen. However, A in the sinter in the entire 1994 Japanese steel industry
The average value of l 2 O 3 is in the range of 1.75 to 1.85 mass%, and it is expected that Al 2 O 3 in the sinter will gradually increase in the future. Therefore, it is considered difficult for many blast furnaces to produce and use low Al 2 O 3 sinter for a long time.

【0006】一方、特開平6−100911号公報に
は、微粉炭吹き込み高炉操業において、微粉炭吹き込み
量を150kg/t−p以上、投入水素量を15〜20
kg/t−pとし、さらに酸素を3〜5%富化すること
を特徴とする微粉炭多量吹き込み時の高炉操業方法が記
載されている。水蒸気吹込み量の増加と酸素富化により
融着帯を逆V字形に変化させて通気性を改善する方法で
あるが、水蒸気と酸素を別々に製造して高炉に吹き込む
ため、高炉操業コストが大幅に上昇する欠点がある。
On the other hand, Japanese Patent Laid-Open No. 6-100911 discloses that in a blast furnace operation in which pulverized coal is blown, the amount of pulverized coal blown is 150 kg / tp or more and the amount of hydrogen fed is 15 to 20.
It describes a blast furnace operating method at the time of blowing a large amount of pulverized coal, which is characterized in that it is set to kg / tp and that oxygen is enriched by 3 to 5%. This is a method to improve the air permeability by changing the cohesive zone into an inverted V shape by increasing the amount of steam injected and enriching oxygen, but since steam and oxygen are manufactured separately and blown into the blast furnace, the blast furnace operating cost is reduced. It has the drawback of rising significantly.

【0007】また、特開昭61−56211号公報に
は、高炉操業において装入する焼結鉱の塩基度を2以上
とし、高炉スラグの目標塩基度よりも高くなった分は高
炉にてSiO2 源副原料を装入することにより調整する
とともに、軟化融着帯のレベルを下降させることにより
溶銑中Si濃度を低下させることを特徴とする高炉操業
方法が記載されている。この方法は、高温性状に優れた
塩基度の高い焼結鉱を用いることにより、軟化融着帯の
収縮率や通気抵抗を改善しているが、高炉スラグ量を増
加させる欠点があるので、炉下部の通気性改善を必要と
する微粉炭多量吹き込み操業への適用は困難である。
Further, in Japanese Patent Laid-Open No. 61-56211, the basicity of the sintered ore charged in the blast furnace operation is set to 2 or more, and the amount that is higher than the target basicity of the blast furnace slag is SiO 2 in the blast furnace. A blast furnace operating method is described which is characterized in that it is adjusted by charging a two- source auxiliary material and that the Si concentration in the hot metal is lowered by lowering the level of the softening cohesive zone. This method improves the shrinkage rate and the ventilation resistance of the softening cohesive zone by using a sinter having a high basicity and excellent in high-temperature properties, but it has the drawback of increasing the amount of blast furnace slag. It is difficult to apply to the operation in which a large amount of pulverized coal is injected, which requires improvement of the air permeability of the lower part.

【0008】本発明は、上記のような問題点を解決する
ためになされたもので、装入物のみに着目して高炉内に
形成される融着帯の通気性を大幅に改善することを狙っ
ている。すなわち、微細気孔の多い低スラグ焼結鉱を高
炉に装入して高温還元を促進し、軟化融着帯の幅が従来
よりも薄くなるように制御可能な微粉炭多量吹き込み時
の高炉操業方法を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and it is intended to significantly improve the air permeability of the cohesive zone formed in the blast furnace by focusing only on the charged material. I'm aiming. That is, a low-slag sinter having many fine pores is charged into a blast furnace to promote high-temperature reduction, and the width of the softening cohesive zone can be controlled so as to be thinner than in the conventional method. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】本発明では、具体的に以
下の3通りのいずれかの手段によって上記目的を達成す
る。すなわち、微粉炭吹き込み量が150kg/t−p
以上の多量吹き込み時でも安定して高炉操業できるよう
にするために、 (1)高炉に、FeO成分が8.0〜10.0mass
%、SiO2 成分が4.2〜4.9mass%、Al2
3 /FeO比が0.18〜0.29の焼結鉱を装入し
て高温還元性の向上を図ることにより、軟化融着帯の幅
が薄くなるように制御する。 (2)上記(1)に加えて、さらに、高炉スラグ量を3
00kg/t−p未満に調整しながら操業する。 (3)結晶水を5mass%以上含む鉄鉱石を新原料中
25mass%以上配合して製造し、かつ上記(1)の
成分条件を満足する焼結鉱を装入して高温還元性の向上
を図ることにより、軟化融着帯の幅が薄くなるように制
御する。
In the present invention, the above object is specifically achieved by any of the following three means. That is, the amount of pulverized coal blown is 150 kg / tp
In order to enable stable operation of the blast furnace even when a large amount of the above is blown, (1) FeO component in the blast furnace is 8.0 to 10.0 mass.
%, SiO 2 component is 4.2 to 4.9 mass%, Al 2
The width of the softening cohesive zone is controlled to be thin by charging a sinter having an O 3 / FeO ratio of 0.18 to 0.29 to improve the high-temperature reducibility. (2) In addition to the above (1), the amount of blast furnace slag is further set to 3
Operate while adjusting to less than 00 kg / tp. (3) An iron ore containing 5 mass% or more of water of crystallization is mixed in a new raw material in an amount of 25 mass% or more and manufactured, and a sinter that satisfies the above component condition (1) is charged to improve the high temperature reducibility. As a result, the width of the softening cohesive zone is controlled to be thin.

【0010】燃料比が500kg/t−pの前提で、微
粉炭比が150kg/t−p(従ってコークス比は35
0kg/t−p)まで増加すると、鉱石/コークス比
(O/C)は4.5レベルに上昇する。さらに、微粉炭
比が200kg/t−p(従ってコークス比は300k
g/t−p)になると、O/Cは5.5まで上昇する。
通常操業のO/Cは4.0未満であるので、微粉炭比1
50kg/t−p以上では鉱石層厚が大幅に増加するこ
とになり、融着帯形状が肥大化することになる。
Assuming that the fuel ratio is 500 kg / tp, the pulverized coal ratio is 150 kg / tp (hence the coke ratio is 35).
0 kg / tp), the ore / coke ratio (O / C) rises to the 4.5 level. Furthermore, the pulverized coal ratio is 200 kg / tp (so the coke ratio is 300 k
g / tp), O / C rises to 5.5.
O / C in normal operation is less than 4.0, so pulverized coal ratio is 1
If it is 50 kg / tp or more, the ore layer thickness will be significantly increased, and the shape of the cohesive zone will be enlarged.

【0011】図1に微粉炭比60kg/t−pおよび2
00kg/t−p吹き込み操業でのシミュレーション結
果に基づく炉内融着帯形状の変化を示す。微粉炭比が増
加すると融着帯が肥大化しているのが分かる。この融着
帯の肥大化を抑制できれば炉内通気性は改善される。本
発明は焼結鉱の微細気孔の増加と低スラグ化により、高
炉内の融着帯の幅を薄く制御して微粉炭多量吹き込み操
業を可能にする操業を行うものである。一方、SiO2
成分が4.2〜4.9mass%、FeO成分が8〜1
0mass%、Al23 /FeO比が0.18〜0.
29の範囲にある焼結鉱は、融液量が減少するとともに
融液の粘性が増加し、焼結鉱内に形成される微細気孔は
集合することなく均一に分散することを見出した。ま
た、結晶水を5mass%以上含む鉄鉱石は結晶水が抜
けたあとに微細気孔を生成するが、新原料中25mas
s%以上この鉄鉱石を配合すると微細気孔の生成が顕著
になることも見出した。本発明は、このような知見に基
づき成したものである。
FIG. 1 shows a pulverized coal ratio of 60 kg / tp and 2
The change of the cohesive zone shape in a furnace based on the simulation result in 00 kg / tp blowing operation is shown. It can be seen that the cohesive zone is enlarged as the pulverized coal ratio increases. If the enlargement of the cohesive zone can be suppressed, the air permeability in the furnace will be improved. According to the present invention, by increasing the fine pores of the sinter and reducing the slag, the width of the cohesive zone in the blast furnace is controlled to be thin so that a large amount of pulverized coal can be injected. On the other hand, SiO 2
Component is 4.2 to 4.9 mass%, FeO component is 8 to 1
0 mass%, Al 2 O 3 / FeO ratio is 0.18 to 0.
It has been found that in the sintered ore in the range of 29, the melt amount decreases and the viscosity of the melt increases, and the fine pores formed in the sintered ore are uniformly dispersed without gathering. Also, iron ore containing 5 mass% or more of water of crystallization produces fine pores after the water of crystallization disappears.
It was also found that when s% or more of this iron ore is blended, the formation of fine pores becomes remarkable. The present invention is based on such findings.

【0012】[0012]

【発明の実施の形態】まず、微細気孔の多い低スラグ焼
結鉱製造試験結果について述べる。焼結鉱は500m2
の焼結機で製造した。従来用いられている焼結鉱と本発
明で用いる焼結鉱を比較するために、水銀圧入法により
測定した微細気孔分布の測定結果、還元粉化指数(RD
I)の測定結果を表1に、高温性状測定結果を図2に示
す。本発明で用いる焼結鉱は微細気孔が多く、低スラグ
化の効果も加味されて高温還元性と軟化溶融性状が大幅
に改善されているのが分かる。すなわち、本発明で用い
る焼結鉱は、高FeO、高Al23 で、低SiO2
特徴であり、SiO2 成分が4.2〜4.9mass%
の範囲で、Al23 /FeO比が0.18〜0.29
になるようにFeO成分を8.0〜10.0mass%
に維持すれば、焼結鉱の強度、およびその製造時の歩留
りを低下させることなく焼結鉱の微細気孔を増加できる
ことを見出した。
BEST MODE FOR CARRYING OUT THE INVENTION First, the results of a test for producing a low slag sinter having many fine pores will be described. 500m 2 of sinter
It was manufactured with a sintering machine of. In order to compare the conventionally used sinter with the sinter used in the present invention, the measurement result of the fine pore distribution measured by the mercury intrusion method, the reduction pulverization index (RD)
The measurement results of I) are shown in Table 1, and the high temperature property measurement results are shown in FIG. It can be seen that the sintered ore used in the present invention has many fine pores, and the effect of lowering the slag is also added, and the high temperature reducing property and the softening and melting property are significantly improved. That is, the sinter used in the present invention is characterized by high FeO, high Al 2 O 3 and low SiO 2 , and has a SiO 2 component of 4.2 to 4.9 mass%.
In the range of, the Al 2 O 3 / FeO ratio is 0.18 to 0.29.
FeO component is 8.0 to 10.0 mass% so that
It has been found that the fine pores of the sintered ore can be increased without lowering the strength of the sintered ore and the yield at the time of production by maintaining the above.

【0013】一方、SiO2 成分が4.2mass%未
満になると、融液量の減少により焼結鉱製造時の歩留り
低下が顕著になり、4.9mass%超になると、融液
量の増加で微細気孔が少なくなる傾向が見られた。ま
た、Al23 レベルが高いので、強度維持のためには
FeO成分を8.0mass%以上とする必要がある。
しかし、FeO成分が10.0mass%超になると、
融液量の増加により微細気孔が減少し、還元性低下とい
う悪影響が顕在化した。さらに、Al23 /FeO比
を0.18〜0.29に維持することが重要で、この値
が0.18未満の場合には微細気孔の生成量が不十分と
なり、0.29超になると逆に強度、歩留りの低下が顕
著になった。本発明で用いる焼結鉱は、高FeO焼結鉱
のため、還元粉化指数(RDI)の値は従来用いられて
いる焼結鉱に比べて低く、FeOmass%の増大に伴
いRDI値はさらに向上する。この低RDI化は、高炉
シャフト上部の通気性改善に寄与する。
On the other hand, when the SiO 2 component is less than 4.2 mass%, the yield of the sintered ore is significantly decreased due to the decrease of the melt amount, and when it exceeds 4.9 mass%, the melt amount is increased. There was a tendency that the number of fine pores decreased. Further, since the Al 2 O 3 level is high, it is necessary to set the FeO component to be 8.0 mass% or more in order to maintain the strength.
However, when the FeO component exceeds 10.0 mass%,
As the melt volume increased, the number of fine pores decreased and the adverse effect of reduced reducibility became apparent. Furthermore, it is important to maintain the Al 2 O 3 / FeO ratio at 0.18 to 0.29, and when this value is less than 0.18, the amount of fine pores generated becomes insufficient and exceeds 0.29. On the contrary, the decrease in strength and yield became conspicuous. Since the sintered ore used in the present invention is a high FeO sintered ore, the value of the reduction powdering index (RDI) is lower than that of the conventionally used sintered ore, and the RDI value is further increased with the increase of FeOmass%. improves. This low RDI contributes to the improvement of the air permeability of the upper part of the blast furnace shaft.

【0014】[0014]

【表1】 [Table 1]

【0015】次に、高炉(内容積3200m3 )で微細
気孔の多い焼結鉱を装入し、微粉炭吹き込み量を170
kg/t−pに増加させた場合の実施例を説明する。本
発明の実施例を従来法と比較して表2にまとめた。従来
法では、微粉炭比130kg/t−pの操業レベル(比
較例1)から微粉炭比170kg/t−pの操業レベル
(比較例2、期間A)へと微粉炭多量使用レベルへ変更
する過程で通気抵抗が増大するとともに、スリップが発
生するようになり、炉体放散熱量も増えて、高炉操業は
不調に陥った。これは、微粉炭比の増加によりO/Cが
上昇し、焼結鉱層の高温性状が悪化して炉内全圧損が大
きくなったためで、特に微粉炭比160kg/t−p以
上でその傾向が顕著であった。一方、微細気孔を増加さ
せた低スラグ焼結鉱を従来焼結鉱と置換した本発明の場
合(期間B)には、微粉炭吹き込み量が170kg/t
−pであるにもかかわらず、通気抵抗値と炉体放散熱量
は低下し、スリップも発生しなくなった。これはRDI
値の低下により炉上部の通気性が改善されたのに加え
て、特に通気抵抗を悪化させる要因となる融着帯根部の
肥大化も防止できたからと考えられ、炉下部の異常も全
く見られなかった。
Next, a blast furnace (internal volume: 3200 m 3 ) was charged with sinter having many fine pores, and the amount of pulverized coal injected was 170.
An example in the case of increasing to kg / tp will be described. Examples of the present invention are summarized in Table 2 in comparison with the conventional method. In the conventional method, the operation level of the pulverized coal ratio of 130 kg / tp (Comparative example 1) is changed to the operation level of the pulverized coal ratio of 170 kg / tp (Comparative example 2, period A) to the pulverized coal large usage level. During the process, ventilation resistance increased, slippage began to occur, the amount of heat dissipated in the furnace body also increased, and blast furnace operation fell into distress. This is because the O / C increased due to the increase in the pulverized coal ratio, the high temperature properties of the sintered ore layer deteriorated, and the total pressure loss in the furnace became large, and this tendency was especially observed at a pulverized coal ratio of 160 kg / tp or more. It was remarkable. On the other hand, in the case of the present invention in which the low slag sinter having increased fine pores is replaced with the conventional sinter (period B), the pulverized coal blowing rate is 170 kg / t.
Even though it was -p, the ventilation resistance value and the amount of heat dissipated in the furnace body decreased, and the slip did not occur. This is RDI
It is thought that this is because in addition to improving the air permeability of the upper part of the furnace due to the decrease in the value, it was also possible to prevent the enlargement of the root of the cohesive zone, which is a factor that particularly deteriorates the ventilation resistance, and there was no abnormality in the lower part of the furnace. There wasn't.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【発明の効果】以上のように、微粉炭吹き込み量を15
0kg/t−p以上に増加させても、本発明により融着
帯の通気抵抗を悪化させることなく、高炉安定操業を継
続することができる。本発明は、微粉炭多量吹き込み操
業において、微細気孔が多く、かつ低スラグの焼結鉱を
装入することにより、軟化融着帯の幅が従来よりも薄く
なるように制御し、炉下部の通気抵抗の悪化を抑制し
て、150kg/t−p以上の微粉炭多量吹き込みにお
いても高炉操業の安定化を可能にするものである。
As described above, the amount of pulverized coal blown is 15
Even if it is increased to 0 kg / tp or more, the present invention allows the blast furnace stable operation to be continued without deteriorating the ventilation resistance of the cohesive zone. The present invention, in the operation of blowing a large amount of pulverized coal, there are many fine pores, and by charging a low-slag sinter, the width of the softening cohesive zone is controlled to be thinner than before, and the furnace bottom By suppressing deterioration of ventilation resistance, it becomes possible to stabilize blast furnace operation even when a large amount of pulverized coal of 150 kg / tp or more is blown.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高炉内融着帯をシミュレーションした図FIG. 1 is a diagram simulating a cohesive zone in a blast furnace.

【図2】従来用いられてきた焼結鉱と本発明に用いる焼
結鉱の高温性状測定結果を示す図
FIG. 2 is a diagram showing measurement results of high temperature properties of a conventionally used sintered ore and a sintered ore used in the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高炉に、FeO成分が8.0〜10.0
mass%、SiO2 成分が4.2〜4.9mass
%、Al23 /FeO比が0.18〜0.29の焼結
鉱を装入し、微粉炭吹き込み量を150kg/t−p以
上にして操業することを特徴とする微粉炭多量吹き込み
時の高炉操業方法。
1. A FeO component in a blast furnace is 8.0 to 10.0.
mass%, SiO 2 component is 4.2 to 4.9 mass
%, Al 2 O 3 / FeO ratio of 0.18 to 0.29 is charged, and pulverized coal is blown in at a rate of 150 kg / t-p or more for operation. Time blast furnace operation method.
【請求項2】 高炉に、FeO成分が8.0〜10.0
mass%、SiO2 成分が4.2〜4.9mass
%、Al23 /FeO比が0.18〜0.29の焼結
鉱を装入し、微粉炭吹き込み量を150kg/t−p以
上にするとともに、高炉スラグ量を300kg/t−p
未満に調整しながら操業することを特徴とする微粉炭多
量吹き込み時の高炉操業方法。
2. The FeO component in the blast furnace is 8.0 to 10.0.
mass%, SiO 2 component is 4.2 to 4.9 mass
%, Al 2 O 3 / FeO ratio of 0.18 to 0.29 was charged, and the pulverized coal blowing amount was set to 150 kg / t-p or more, and the blast furnace slag amount was 300 kg / t-p.
A method for operating a blast furnace when a large amount of pulverized coal is injected, which is characterized in that the operation is performed while adjusting the amount to less than 1.
【請求項3】 高炉に、結晶水を5mass%以上含む
鉄鉱石を新原料中25mass%以上配合して製造し
た、FeO成分が8.0〜10.0mass%、SiO
2 成分が4.2〜4.9mass%、Al23 /Fe
O比が0.18〜0.29の焼結鉱を装入し、微粉炭吹
き込み量を150kg/t−p以上にして操業すること
を特徴とする微粉炭多量吹き込み時の高炉操業方法。
3. A FeO component produced by blending iron ore containing crystal water of 5 mass% or more in a new raw material in an amount of 25 mass% or more in a blast furnace, wherein FeO component is 8.0 to 10.0 mass% and SiO.
2 components are 4.2 to 4.9 mass%, Al 2 O 3 / Fe
A method for operating a blast furnace at the time of blowing a large amount of pulverized coal, which comprises charging a sinter having an O ratio of 0.18 to 0.29 and operating a pulverized coal blowing amount of 150 kg / tp or more.
JP30855295A 1995-11-02 1995-11-02 Blast furnace operation method when a large amount of pulverized coal is injected Expired - Lifetime JP3283739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30855295A JP3283739B2 (en) 1995-11-02 1995-11-02 Blast furnace operation method when a large amount of pulverized coal is injected

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30855295A JP3283739B2 (en) 1995-11-02 1995-11-02 Blast furnace operation method when a large amount of pulverized coal is injected

Publications (2)

Publication Number Publication Date
JPH09125114A true JPH09125114A (en) 1997-05-13
JP3283739B2 JP3283739B2 (en) 2002-05-20

Family

ID=17982413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30855295A Expired - Lifetime JP3283739B2 (en) 1995-11-02 1995-11-02 Blast furnace operation method when a large amount of pulverized coal is injected

Country Status (1)

Country Link
JP (1) JP3283739B2 (en)

Also Published As

Publication number Publication date
JP3283739B2 (en) 2002-05-20

Similar Documents

Publication Publication Date Title
JP5546675B1 (en) Blast furnace operating method and hot metal manufacturing method
EP2210959B1 (en) Process for producing molten iron
JP4326581B2 (en) How to operate a vertical furnace
JP4792797B2 (en) Method of charging ores containing high crystal water into a bell-less blast furnace
JP4598204B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
JP4765723B2 (en) Method of charging ore into blast furnace
JPH09125114A (en) Operation of blast furnace at the time of blowing a large quantity of pulverized fine coals
JP3746842B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
JP3874313B2 (en) Blast furnace operation method
JP3068967B2 (en) Blast furnace operation method
JP4598256B2 (en) Blast furnace operation method
JP3014549B2 (en) Blast furnace operation method
JPH11131151A (en) Production of sintered ore and operation of blast furnace in injecting a large quantity of pulverized fine coal.
JP2002020810A (en) Blast furnace operating method
JPH06108126A (en) Operation of blast furnace
JPH08269506A (en) Blast furnace operation method
JP3017009B2 (en) Blast furnace operation method
JPH06145728A (en) Blast furnace operation method
JP2969249B2 (en) Blast furnace operation method
JP5693768B2 (en) Blast furnace operating method and hot metal manufacturing method
JPH0913109A (en) Operation of blowing large quantity of pulverized fine coal into blast furnace
JP2002060809A (en) Low furnace heat blast furnace operation method using sintered ore having controlled chemical composition
JPH05255719A (en) Method for operating blast furnace
JPH1161211A (en) Operation of blast furnace
JP2001107115A (en) Operation of blast funace using highly reducible sintered ore

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120301

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140301

Year of fee payment: 12

EXPY Cancellation because of completion of term