JP6727384B1 - Dispersion method of hydrogen in liquid solvent - Google Patents

Dispersion method of hydrogen in liquid solvent Download PDF

Info

Publication number
JP6727384B1
JP6727384B1 JP2019141492A JP2019141492A JP6727384B1 JP 6727384 B1 JP6727384 B1 JP 6727384B1 JP 2019141492 A JP2019141492 A JP 2019141492A JP 2019141492 A JP2019141492 A JP 2019141492A JP 6727384 B1 JP6727384 B1 JP 6727384B1
Authority
JP
Japan
Prior art keywords
hydrogen
liquid solvent
pressure
hollow fiber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019141492A
Other languages
Japanese (ja)
Other versions
JP2021023155A (en
Inventor
光 杉浦
光 杉浦
福島 武
武 福島
泰史 田中
泰史 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ito En Ltd
Original Assignee
Ito En Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ito En Ltd filed Critical Ito En Ltd
Priority to JP2019141492A priority Critical patent/JP6727384B1/en
Application granted granted Critical
Publication of JP6727384B1 publication Critical patent/JP6727384B1/en
Publication of JP2021023155A publication Critical patent/JP2021023155A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Alcoholic Beverages (AREA)
  • Accessories For Mixers (AREA)

Abstract

【課題】水素を、標準大気圧下における飽和溶解量を超過した状態で、長時間に亘り液体溶媒中に持続的に分散させる方法であって、特に、水素を分散させる液体溶媒が飲料液若しくはその原料となり得る液体溶媒であり、その液体溶媒中に良好に多量の極微細気泡の水素を長い時間に亘って分散することができる方法の提供。【解決手段】水素15を、標準大気圧下における飽和溶解量を超過して飲料用の液体溶媒中に分散させる方法であって、水素15で満たされた密閉空間11の圧力Pが0.28MPa≦Pとなるように加圧する加圧調整手段と、ポリプロピレン製の多孔質膜からなる気体透過膜から形成され、液体溶媒と水素とを仕切る気体透過手段14とを備え、気体透過膜を介して、水素15を、液体溶媒中に粒径1000nm以下の極微細気泡の形態で液相と独立した状態で分散させる、飲料用液体溶媒中への水素分散方法。【選択図】図1PROBLEM TO BE SOLVED: To provide a method of continuously dispersing hydrogen in a liquid solvent for a long period of time in a state of exceeding a saturated dissolution amount under standard atmospheric pressure, in which a liquid solvent in which hydrogen is dispersed is a beverage or a liquid. Provided is a liquid solvent that can be a raw material thereof, and a method capable of satisfactorily dispersing a large amount of hydrogen in ultrafine bubbles in the liquid solvent for a long time. A method of dispersing hydrogen 15 in a liquid solvent for a beverage in excess of a saturated dissolution amount under standard atmospheric pressure, wherein a pressure P of a closed space 11 filled with hydrogen 15 is 0.28 MPa. A pressure adjusting means for pressurizing so that ≦P and a gas permeable means 14 formed of a polypropylene porous film for separating a liquid solvent and hydrogen from each other are provided. A method for dispersing hydrogen in a liquid solvent for beverage, wherein hydrogen 15 is dispersed in the liquid solvent in the form of ultrafine bubbles having a particle size of 1000 nm or less independently of the liquid phase. [Selection diagram] Figure 1

Description

本発明は、標準大気圧下における飽和溶解量を超過した量の水素を、長時間に亘り液体溶媒中に持続的に分散させることができる方法に関し、特に、水素を分散させる液体溶媒が飲料液若しくはその原料となり得る液体溶媒であって、その液体溶媒中に水素が極微細気泡の形態で長時間にわたって分散することができる水素分散方法に関する。 The present invention relates to a method capable of continuously dispersing, in a liquid solvent, an amount of hydrogen in excess of a saturated dissolution amount under standard atmospheric pressure for a long time, in particular, a liquid solvent in which hydrogen is dispersed is a beverage liquid. Alternatively, the present invention relates to a liquid solvent that can be a raw material thereof, and hydrogen can be dispersed in the liquid solvent in the form of ultrafine bubbles for a long time.

我国における飲料製品は、生活スタイルの変化や飲食に対する嗜好の多様化に応えるため、その種類が年々増加し続けている。
また、昨今においては、食と健康に対する意識の高まりもあって、身体に対する生理活性機能を備えた、所謂機能性飲食品に特に注目が集まっている。飲料製品もこの例外ではなく、既にトクホ飲料と称される製品が多種上市されている。
さらに、健康増進法等に定められた上記の特定保健用食品(トクホ)や、栄養機能食品の対象とは別に、一定の要件を備えることで食品への機能性表示が認められる新たな制度の検討が消費者庁において進められている。
以上のように、生理活性機能を備えた飲料は今後も需要が高まってくると予想される。
The types of beverage products in Japan continue to increase year by year in order to respond to changes in lifestyle and diversification of taste for food and drink.
Further, in recent years, so-called functional foods and drinks having a physiologically active function for the body have been particularly attracted due to the increased awareness of food and health. Beverage products are no exception to this rule, and many types of products called “Tokuho beverages” are already on the market.
Furthermore, in addition to the above specified health foods (Tokuho) specified by the Health Promotion Act, etc., and the nutritionally functional foods, a new system that allows the labeling of functionality to foods by providing certain requirements Consideration is underway at the Consumer Affairs Agency.
As described above, it is expected that demand for beverages having a physiologically active function will continue to increase.

飲料中に一定濃度で含まれることによって、生理活性機能を発揮する可能性がある成分としては、カテキン、クロロゲン酸、アントシアニン等のポリフェノール類、難消化性デキストリン等の食物繊維といったものが挙げられるが、単離した場合に固体若しくは液体の状態をとる成分以外にも、水素、窒素、二酸化炭素、酸素等、気体状態の溶質も想定され得る。 By being contained in the beverage at a constant concentration, examples of components that may exert a physiologically active function include catechin, chlorogenic acid, polyphenols such as anthocyanins, and dietary fiber such as indigestible dextrin. In addition to the components that are in a solid or liquid state when isolated, solutes in a gaseous state such as hydrogen, nitrogen, carbon dioxide, oxygen, etc. can be envisioned.

これらの気体溶質を溶解させた飲料の中にあって、溶質が水素である所謂水素水と称される飲料が近年注目されている。
上記水素水に含有されている水素の具体的な挙動や、身体への作用メカニズムの詳細は不明であるものの、分子状の水素が体内の活性酸素(酸素ラジカル)を除去することにより、さまざまな健康増進作用があるものと期待されている。
Among the beverages in which these gas solutes are dissolved, a so-called hydrogen water beverage in which the solute is hydrogen has attracted attention in recent years.
Although the specific behavior of hydrogen contained in the hydrogen water and the mechanism of action on the body are unknown, various molecular hydrogen removes active oxygen (oxygen radical) in the body, It is expected to have a health promoting effect.

しかしながら、一般に、溶質が気体である場合、一部の気体を除いては水に対して難溶解性であるものが多く、水などの液体溶媒中に溶解可能な量は非常に少ない。水素の場合、水に対する飽和溶解量は、20℃で0.806mol/L(約1.6mg/L(1.6ppm))、0℃で0.974mol(1.9mg/L(1.9ppm))となっている。従って、水素が溶質である場合、可能な限り多くの量を液体溶媒中に含有させることが、生理活性機能を発揮しうる飲料を提供する為には重要となる。 However, in general, when the solute is a gas, most of them are hardly soluble in water except some gases, and the amount that can be dissolved in a liquid solvent such as water is very small. In the case of hydrogen, the saturated dissolution amount in water is 0.806 mol/L (about 1.6 mg/L (1.6 ppm)) at 20° C. and 0.974 mol (1.9 mg/L (1.9 ppm) at 0° C. ). Therefore, when hydrogen is a solute, it is important to include as much amount as possible in the liquid solvent in order to provide a beverage capable of exerting a physiologically active function.

液体溶媒に対する気体の溶解量は、ヘンリーの法則に従って液体溶媒に接する気体の圧力に比例することから、より高い圧力で気体と液体溶媒とを接触させることによって、上記気体の溶解量を増大させることが可能である。ヘンリーの法則を利用して、標準大気圧下における飽和溶解量を超えて気体を溶解させる方法として、既に数種の方法が開示されている。
例えば、特許文献1には、水素を水に溶解させる方法として、圧力容器内に水素を高圧状態で充填し、上記圧力容器内にシャワー状に水を散水することよって水素と水を接触させる方法が開示されている。
また、特許文献2及び特許文献3には、気体透過膜で水と1.2〜2.0気圧(約0.12MPa〜0.20MPa)程度に加圧された水素の相とを仕切り、上記気体透過膜を介して水素を水中に溶解させる方法が開示されている。
上記特許文献1〜3に開示された手法により、水素を、飽和溶解量を超過して水に溶解させることが可能である。
Since the amount of gas dissolved in the liquid solvent is proportional to the pressure of the gas in contact with the liquid solvent according to Henry's law, it is possible to increase the amount of the gas dissolved by contacting the gas with the liquid solvent at a higher pressure. Is possible. Several methods have already been disclosed as a method of dissolving a gas in excess of the saturated dissolution amount under standard atmospheric pressure by utilizing Henry's law.
For example, in Patent Document 1, as a method of dissolving hydrogen in water, a method of filling hydrogen in a pressure vessel in a high pressure state and spraying water into the pressure vessel in a shower shape to bring hydrogen into contact with water Is disclosed.
Further, in Patent Document 2 and Patent Document 3, water and a hydrogen phase pressurized to about 1.2 to 2.0 atm (about 0.12 MPa to 0.20 MPa) are partitioned by a gas permeable membrane, and A method of dissolving hydrogen in water through a gas permeable membrane is disclosed.
It is possible to dissolve hydrogen in water in excess of the saturated dissolution amount by the method disclosed in Patent Documents 1 to 3 above.

しかしながら、液体溶媒中の溶存気体(即ち水素)はヘンリーの法則に従い、加圧により、過飽和状態まで所定気体を溶解させたとしても、容器封入後に加圧状態が解除されるか、開封によって大気圧下に置かれた場合には、封入圧若しくは大気圧に従い、当該圧の飽和溶解量にまで溶解量が急激に減少してしまうという課題を有していた。 However, the dissolved gas (ie, hydrogen) in the liquid solvent follows Henry's law, and even if the predetermined gas is dissolved to the supersaturated state by pressurization, the pressurized state is released after the container is filled, or the atmospheric pressure is released by opening. When placed below, there was a problem that the amount of dissolution drastically decreased to the saturated amount of dissolution at that pressure depending on the filling pressure or atmospheric pressure.

また、気体を溶解させる方法の他に、液体溶媒中に気体を含有させる方法として、所謂マイクロバブルと称される細かい気泡として溶媒中に気体を存在させる方法がある。
具体的な方法としては、高圧下で所定の気体を大量に溶解させた後、急激に減圧することにより、過飽和状態の気体を液体溶媒中において再気泡化させる方法(加圧減圧法)、若しくは渦流(毎秒400〜600回転)を生成し、この中に気体を巻き込むと共に、ファン等により気体を切断・粉砕することで気泡を発生させる手法(気液せん断法)等が挙げられる。
In addition to the method of dissolving the gas, there is a method of allowing the gas to exist in the solvent as fine bubbles, so-called micro bubbles, as a method of containing the gas in the liquid solvent.
As a specific method, a method of dissolving a large amount of a predetermined gas under high pressure and then rapidly depressurizing the gas in a supersaturated state to re-bubble in a liquid solvent (pressurization/depressurization method), or A method (gas-liquid shearing method) of generating bubbles by generating a vortex (400 to 600 rotations per second), entraining the gas in the vortex, and cutting/crushing the gas with a fan or the like can be mentioned.

このような方法によって液体溶媒中に発生させた細かな気泡(マイクロバブル)は、通常の気泡とは異なり、液面に向かう上昇速度が極めて遅くなる為、少なくとも数分間は液体溶媒中に浮遊した状態で存在することができ、その間、液体溶媒は当該微細な気泡によって白濁したように視認される。 Unlike ordinary bubbles, fine bubbles (microbubbles) generated in the liquid solvent by such a method have an extremely slow rising speed toward the liquid surface, and thus float in the liquid solvent for at least several minutes. Can exist in the state, during which the liquid solvent is visually perceived as clouded by the fine bubbles.

しかしながら、上述の方法によって生成されたマイクロバブルの大きさは数十μm程度と比較的大きく、例えば液体溶媒が飲料液である場合には、飲用前に容器中や、口の中で分散されていた気体が溶媒から放出されてしまうことから、気体成分を体内に取り込むことが困難であった。従って、過飽和状態に気体が溶解した液体溶媒を飲用する場合と比較して、多量の気体成分を摂取できるわけではない。ちなみに、国際標準化ISO/TC281によれば、気泡径が1〜100μmの気泡を「マイクロバブル」と呼ぶ。 However, the size of the microbubbles generated by the above method is relatively large, about several tens of μm, and when the liquid solvent is a beverage, for example, it is dispersed in the container or in the mouth before drinking. Since the gas is released from the solvent, it is difficult to take the gas component into the body. Therefore, compared with the case of drinking a liquid solvent in which gas is dissolved in a supersaturated state, a large amount of gas component cannot be ingested. Incidentally, according to the international standardization ISO/TC281, bubbles having a bubble diameter of 1 to 100 μm are called “micro bubbles”.

以上を鑑み、本出願人は、気体を液体溶媒に溶解させるだけではなく、マイクロバブルよりも更に微小な極微細気泡を分散によって気体を液体溶媒中に保持させる方法として、所定の気体透過性能要件を備えた非多孔質のシリコーンゴムからなる気体透過膜を介し、所定の圧力で気体を液体溶媒中に送入してやることによって、当該気体を液体溶媒中に溶解するだけでなく、マイクロバブルよりも更に微小な極微細気泡を、気相状態を保持したまま液体溶媒中に気体を分散状態で存在させることが可能であることを見出し、特許出願をした(特許文献4)。なお、この特許文献4においては、極微細気泡とは直径が500nm以下の気泡を指す。
ちなみに、このような極微細気泡の粒子は、コロイド粒子様の性質を具備することから、液体溶媒中で帯電して互いに反発し合うことで、凝集して浮き上がることも少なく、また、小さいために浮力の効果も小さいので、極微細気泡の状態を保ったまま、安定的に液体溶媒中で分散状態を保持しうる。
In view of the above, the applicant has determined that not only the gas is dissolved in the liquid solvent, but also a method of holding the gas in the liquid solvent by dispersing ultrafine bubbles that are much smaller than the microbubbles is a predetermined gas permeability performance requirement. Through a gas permeable membrane made of non-porous silicone rubber having a certain pressure, by feeding the gas into the liquid solvent at a predetermined pressure, the gas is not only dissolved in the liquid solvent, but rather than microbubbles. Further, it was found that it is possible to allow the gas to exist in a dispersed state in a liquid solvent while maintaining the gas phase state of minute ultrafine bubbles, and filed a patent application (Patent Document 4). In addition, in Patent Document 4, the ultrafine bubbles refer to bubbles having a diameter of 500 nm or less.
By the way, since such ultrafine bubble particles have properties similar to colloidal particles, they are less likely to agglomerate and float up when charged in a liquid solvent and repel each other. Since the effect of buoyancy is also small, it is possible to stably maintain the dispersed state in the liquid solvent while maintaining the state of the ultrafine bubbles.

上述した本出願人による発明(特許文献4)によれば、これまでの他の手法で得られた水素含有液体よりもさらに多くの量の水素を水(又は液体溶媒)に導入することが可能にはなったが、前述したように、水に難溶性の水素が溶質である場合、可能な限り多くの量を液体溶媒中に含有させることが、生理活性機能を発揮しうる飲料を提供する為には重要であり、さらなる改善が求められている。 According to the above-mentioned invention by the present applicant (Patent Document 4), it is possible to introduce a larger amount of hydrogen into water (or a liquid solvent) than the hydrogen-containing liquid obtained by other methods up to now. However, as described above, when hydrogen, which is poorly soluble in water, is a solute, it is possible to provide a beverage capable of exerting a physiologically active function by containing as much amount as possible in the liquid solvent. Therefore, further improvement is required.

特許第3606466号公報Japanese Patent No. 3606466 特許第4551964号公報Japanese Patent No. 4551964 特開2013−169153号公報JP, 2013-169153, A 特開2016−87523号公報JP, 2016-87523, A

本発明は、水素を、標準大気圧下における飽和溶解量を超過した状態で、長時間に亘り液体溶媒中に持続的に分散させる方法であって、特に、水素を分散させる液体溶媒が飲料液若しくはその原料となり得る液体溶媒であり、その液体溶媒中に良好に多量の極微細気泡の水素を長い時間に亘って分散することができる方法を提供することを目的とする。 The present invention is a method in which hydrogen is continuously dispersed in a liquid solvent for a long period of time in a state in which the saturated dissolution amount under standard atmospheric pressure is exceeded, and in particular, the liquid solvent in which hydrogen is dispersed is a beverage liquid. Alternatively, it is a liquid solvent that can be a raw material thereof, and an object thereof is to provide a method capable of favorably dispersing a large amount of hydrogen in ultrafine bubbles in the liquid solvent for a long time.

即ち本発明は、
〔1〕水素を、標準大気圧下における飽和溶解量を超過して飲料用の液体溶媒中に分散させる方法であって、
前記水素で満たされた密閉空間の圧力Pが0.28MPa≦Pとなるように加圧する加圧調整手段と、
ポリプロピレン製の多孔質膜からなる気体透過膜から形成され、前記液体溶媒と前記水素とを仕切る気体透過手段とを備え、
前記気体透過膜を介して、前記水素を、前記液体溶媒中に粒径1000nm以下の極微細気泡の形態で液相と独立した状態で分散させることを特徴とする飲料用液体溶媒中への水素分散方法。
〔2〕前記液体溶媒が水であることを特徴とする〔1〕に記載の飲料用液体溶媒中への水素分散方法。
〔3〕前記気体透過膜の厚みが10〜100μmであることを特徴とする〔1〕又は〔2〕に記載の飲料用液体溶媒中への水素分散方法。
〔4〕前記気体透過膜に形成された細孔の平均孔径が0.01〜0.06μmであることを特徴とする〔1〕〜〔3〕のいずれか1項に記載の飲料用液体溶媒中への水素分散方法。
〔5〕前記気体透過膜の空孔率が10〜40%であることを特徴とする〔1〕〜〔4〕のいずれか1項に記載の飲料用液体溶媒中への水素分散方法。
〔6〕密閉ハウジング内に、前記気体透過手段として、複数の中空糸膜を束ねた中空糸膜束からなる1つ又は2以上の中空糸膜モジュールを配置し、それぞれの中空糸膜の内側面に前記飲料用液体溶媒を通液する通液工程と、前記密閉ハウジング内で、前記中空糸膜の外側面に灌流させる水素の圧力Pを調整する圧力調整工程とを備えることを特徴とする〔1〕〜〔5〕のいずれか1項に記載の飲料用液体溶媒中への水素分散方法。
〔7〕密閉ハウジング内に、前記気体透過手段として、複数の中空糸膜を束ねた中空糸膜束からなる1つ又は2以上の中空糸膜モジュールを配置し、それぞれの中空糸膜の内側面に前記圧力Pで圧送する送気工程と、前記密閉ハウジング内で、前記中空糸膜の外側に前記飲料用液体溶媒を灌流送液する送液工程とを備えることを特徴とする〔1〕〜〔5〕のいずれか1項に記載の飲料用液体溶媒中への水素分散方法。
〔8〕前記水素で満たされた密閉空間に対して、前記気体透過膜を介して接する前記液体溶媒の圧力を、前記圧力Pより大きくすることを特徴とする〔1〕〜〔7〕のいずれか1項に記載の飲料用液体溶媒中への水素分散方法。
〔9〕前記〔1〕〜〔8〕のいずれか1項に記載の方法により液体溶媒中に水素を分散させることを特徴とする飲料用水素分散液の製造方法。
That is, the present invention is
[1] A method of dispersing hydrogen in a liquid solvent for beverage in excess of the saturated dissolution amount under standard atmospheric pressure,
Pressure adjusting means for pressurizing so that the pressure P of the closed space filled with hydrogen is 0.28 MPa≦P;
Formed from a gas permeable film made of a polypropylene porous film, comprising a gas permeable means for partitioning the liquid solvent and the hydrogen,
Dispersing the hydrogen in the liquid solvent through the gas permeable film in the form of ultrafine bubbles having a particle size of 1000 nm or less in a state independent of the liquid phase. Dispersion method.
[2] The method for dispersing hydrogen in a liquid solvent for beverage according to [1], wherein the liquid solvent is water.
[3] The method for dispersing hydrogen in a liquid solvent for beverage according to [1] or [2], wherein the gas permeable membrane has a thickness of 10 to 100 µm.
[4] The liquid solvent for beverage according to any one of [1] to [3], wherein the pores formed in the gas permeable membrane have an average pore diameter of 0.01 to 0.06 μm. Dispersion method of hydrogen inside.
[5] The method for dispersing hydrogen in a liquid solvent for beverage according to any one of [1] to [4], wherein the gas permeable membrane has a porosity of 10 to 40%.
[6] One or more hollow fiber membrane modules composed of a bundle of hollow fiber membranes in which a plurality of hollow fiber membranes are bundled are arranged in the closed housing as the gas permeable means, and the inner surface of each hollow fiber membrane is arranged. And a pressure adjusting step of adjusting the pressure P of hydrogen perfused on the outer surface of the hollow fiber membrane in the closed housing. 1] to a method for dispersing hydrogen in the liquid solvent for beverage according to any one of [5].
[7] One or more hollow fiber membrane modules composed of a bundle of hollow fiber membranes, which are a bundle of a plurality of hollow fiber membranes, are arranged in the closed housing as the gas permeation means, and the inner surface of each hollow fiber membrane is arranged. And a liquid feeding step of irrigating and feeding the liquid solvent for a beverage to the outside of the hollow fiber membrane in the closed housing [1]. A method for dispersing hydrogen in the liquid solvent for beverage according to any one of [5].
[8] Any one of [1] to [7], characterized in that the pressure of the liquid solvent that is in contact with the sealed space filled with hydrogen through the gas permeable membrane is higher than the pressure P. Item 1. A method for dispersing hydrogen in a liquid solvent for beverage according to item 1.
[9] A method for producing a hydrogen dispersion for beverages, which comprises dispersing hydrogen in a liquid solvent by the method according to any one of [1] to [8].

本発明によれば、水素を、標準大気圧下における飽和溶解量を超過した状態で、長時間に亘って、飲料液若しくはその原料となり得る液体溶媒中に持続的に分散させることができる。 According to the present invention, hydrogen can be continuously dispersed in a beverage liquid or a liquid solvent which can be a raw material thereof for a long period of time in a state where the saturated dissolution amount under standard atmospheric pressure is exceeded.

本発明に係る液体溶媒中への水素分散方法の一実施の形態であって、気体透過膜モジュールが中空糸膜モジュールの形態で形成される場合において、1つの中空糸膜モジュールの構成を示す概略断面図である。1 is an embodiment of a method for dispersing hydrogen in a liquid solvent according to the present invention, and is a schematic diagram showing the configuration of one hollow fiber membrane module when the gas permeable membrane module is formed in the form of a hollow fiber membrane module. FIG. 実施例、及び比較例において、水素ガス流量と水の流量の比と、生成時の水素水中における水素濃度との関係を示すグラフであり、使用するモジュールの違いにより水素ガス利用効率が異なることを示している。It is a graph showing the relationship between the ratio of the flow rate of hydrogen gas to the flow rate of water and the hydrogen concentration in hydrogen water at the time of production in Examples and Comparative Examples, and shows that the hydrogen gas utilization efficiency differs depending on the module used. Showing.

以下、本発明の一実施の形態につき、主として液体溶媒が水である場合を例として説明するが、他の液体溶媒であっても上述した本発明の要件を満たす限りにおいて、他の液体溶媒を適宜選択することが可能である。 Hereinafter, one embodiment of the present invention will be described mainly by taking the case where the liquid solvent is water as an example, but as long as the requirements of the present invention described above are satisfied, other liquid solvents may be used. It can be appropriately selected.

本明細書において「溶解」とは、液体溶媒に気体、液体、若しくは固体が混合して、「均一な液相を形成」と定義される状態をいう(化学辞典第7刷P1468;株式会社東京化学同人発行)。また、本明細書において「分散」とは、ある物質系が他の媒質中に細粒として浮遊することと定義される(化学辞典第7刷P1278;株式会社東京化学同人発行)。 In the present specification, "dissolution" refers to a state defined as "forming a uniform liquid phase" by mixing a gas, a liquid, or a solid with a liquid solvent (Chemical Dictionary No. 7, P1468; Tokyo, Inc.). Issuing chemistry coterie). In addition, in the present specification, “dispersion” is defined as that a certain substance system is suspended as fine particles in another medium (Chemical Dictionary, 7th edition, P1278; published by Tokyo Kagaku Dojin).

本発明において、極微細気泡とは、大きさ(直径)が1000nm以下、特に50〜500nmのものを指す。極微細気泡は、このような大きさ(小ささ)に形成されていることから、液体溶媒中にあっても直接的に視認することはできない。これは、可視光線の回折限界波長(約380nm)よりも小さな気泡が存在するため光を散乱せず水は濁った状態には見えないからである。即ち、極微細気泡を含む水は透明に見える。従って、見かけ上は、極微細気泡が溶液中に存在していても、単に水素が液体溶媒中に溶解している状態とは区別できない。
溶媒中に溶解している水素に加えて、極微細気泡として水素が分散している場合、それぞれの極微細気泡は、液体溶媒の液相とは独立して、「気相」として存在しているので、それは上述したヘンリーの法則には従わず、長時間に亘って液体溶媒中に存在することができる。これは、極微細気泡の体積が極めて小さいため浮力もほぼ無視できる程度となり、むしろ、その微小さゆえにブラウン運動によって溶媒中をランダムに動くことになるからと考えられる。また、上述したように、極微細気泡の粒子は、コロイド粒子様の性質を具備することから、液体溶媒中で帯電して互いに反発し合うことで、凝集して浮き上がりにくく、極微細気泡の状態を保ったまま、安定的に液体溶媒中で分散状態を保持しうる。
液体溶媒が飲料原料である場合、飲用時においても上記極微細気泡は口中で放出され難く、また飲用後に食道や胃などで気泡が凝集せず、対外に放出され難いという特徴を有する。
従って、気体成分(水素)を液体溶媒に溶解させるだけの場合よりも、多量に体内に取り込むことが可能となり、その結果、水素が有する生理活性機能を発揮させ易い飲料を提供することが可能となる。
In the present invention, the ultrafine bubbles are those having a size (diameter) of 1000 nm or less, particularly 50 to 500 nm. Since the ultrafine bubbles are formed in such a size (smallness), they cannot be directly visually recognized even in the liquid solvent. This is because the presence of bubbles smaller than the diffraction limit wavelength of visible light (about 380 nm) does not scatter light and the water does not appear turbid. That is, water containing ultrafine bubbles looks transparent. Therefore, even if superfine bubbles are present in the solution, it cannot be distinguished from the state in which hydrogen is simply dissolved in the liquid solvent.
In addition to hydrogen dissolved in a solvent, when hydrogen is dispersed as microscopic bubbles, each microscopic bubble exists as a “gas phase” independently of the liquid phase of the liquid solvent. Therefore, it does not follow Henry's law as described above and can exist in the liquid solvent for a long time. It is considered that this is because the buoyancy becomes almost negligible because the volume of the ultrafine bubbles is extremely small, and rather, because of the minuteness, the Brownian motion causes random movement in the solvent. Further, as described above, since the particles of the ultrafine bubbles have a property similar to that of colloidal particles, the particles are charged in a liquid solvent and repel each other, which makes it difficult for the particles to aggregate and float up. The dispersion state can be stably maintained in the liquid solvent while maintaining the above.
When the liquid solvent is a beverage material, the above-mentioned ultrafine bubbles are less likely to be released in the mouth even during drinking, and the bubbles are not aggregated in the esophagus or stomach after drinking and are not easily released to the outside.
Therefore, it becomes possible to take in a large amount of the gas component (hydrogen) in the body, as compared with the case of only dissolving it in a liquid solvent, and as a result, it is possible to provide a beverage in which hydrogen easily exerts its physiologically active function. Become.

(液体溶媒)
本発明の実施形態において、液体溶媒の種類は特に限定されないが、水素分散液が、飲料、若しくはその原料として用いられる場合、上記液体溶媒は水、果汁、野菜汁、コーヒー抽出液、茶抽出液、乳等の飲用に適した液体であることが望ましく、中でも水が最も望ましい。
また、液体溶媒が水である場合、飲用に適していれば、硬水、軟水の種類を問わないが、飲用に好適であるという点、及びコーヒー抽出液や果汁等に添加することを考慮すると、硬度(カルシウム濃度(mg/L)×2.5+マグネシウム濃度(mg/L)×4.5の算出値)が120未満であることが好ましい。
(Liquid solvent)
In the embodiment of the present invention, the type of liquid solvent is not particularly limited, but when the hydrogen dispersion is used as a beverage or a raw material thereof, the liquid solvent is water, fruit juice, vegetable juice, coffee extract, tea extract. , Liquids suitable for drinking such as milk are preferable, and water is most preferable.
Further, when the liquid solvent is water, if it is suitable for drinking, hard water, regardless of the type of soft water, considering that it is suitable for drinking, and considering addition to coffee extract or fruit juice, The hardness (calculated value of calcium concentration (mg/L)×2.5+magnesium concentration (mg/L)×4.5) is preferably less than 120.

(脱気処理)
本実施形態にあっては、水素を液体溶媒に溶解させるだけではなく極微細気泡の状態で存在させることから、液体溶媒の事前の脱気処理は必ずしも必須ではない。しかしながら、水素以外の気体成分を含有させないとの観点からは、液体溶媒には前もって脱気処理水を用いることが好ましい。脱気処理としては従来公知の各手法を選択することができる。例えば、真空もしくは減圧下で加熱蒸留を行う方法などである。
(Deaeration process)
In the present embodiment, since hydrogen is not only dissolved in the liquid solvent but also exists in the state of extremely fine bubbles, the degassing treatment of the liquid solvent in advance is not always essential. However, from the viewpoint of not containing a gas component other than hydrogen, it is preferable to use degassed water in advance as the liquid solvent. As the degassing treatment, conventionally known methods can be selected. For example, there is a method of performing heat distillation under vacuum or reduced pressure.

(脱イオン処理)
水に対する脱イオン処理とは、水に含まれる水素イオンと水酸化物イオン以外の陽イオン、陰イオンを除去することを意味する。脱イオン処理により得られた水は一般的に純水と称され、特に理論上の水のイオン積(水素イオン濃度×水酸化物イオン濃度=1.0×10−14)、導電率5.5×10−8S/cmに近いものは超純水とも称する。
本実施形態にあっては、液体溶媒中に分散した極微細気泡を安定的に保持する為に液体溶媒中には、所定量の陽イオンが存在していること好ましいことから、特に脱イオン処理は必要としないが、脱イオン水を用いることを制限するものではない。
(Deionization treatment)
The deionization treatment of water means removing cations and anions other than hydrogen ions and hydroxide ions contained in water. The water obtained by the deionization treatment is generally called pure water, and in particular, the theoretical ionic product of water (hydrogen ion concentration×hydroxide ion concentration=1.0×10 −14 ), conductivity 5. A substance having a value close to 5×10 −8 S/cm is also called ultrapure water.
In the present embodiment, in order to stably hold the ultrafine bubbles dispersed in the liquid solvent, it is preferable that a predetermined amount of cations be present in the liquid solvent. No treatment is required, but the use of deionized water is not restricted.

(水素)
本発明では、水素を、上述した液体溶媒に溶解、且つ極微細気泡として分散させるが、用いる水素の等級(JIS規格の等級)、又は品質規格には特に制限はない。
(hydrogen)
In the present invention, hydrogen is dissolved in the above-mentioned liquid solvent and dispersed as ultrafine bubbles, but the grade of hydrogen used (JIS standard grade) or quality standard is not particularly limited.

(気体透過膜)
本実施形態において用いられる気体透過膜は、多孔質のポリプロピレンからなるものを用いる。加圧に対する強度を保持する為、その膜厚は10μm〜100μm程度に形成されるのが好ましいが、より高い濃度で水素を分散させる為、また加えられる水素圧力、液体溶媒の圧力にも耐えうるため、本実施形態にあっては、20〜60μmとすることが好ましい。より好ましくは、中空糸膜の膜厚は20〜50μmであり、さらに好ましくは30〜50μmである。
また、気体透過膜における空孔率は10〜40%であることが好ましい。さらに好ましい空孔率は15〜30%である。ここで、空孔率とは、多孔質のポリプロピレンからなる気体透過膜の体積とその測定質量、及び気体透過膜の材料である多孔質ポリプロピレンの密度から計算されるものであり、(気体透過膜の体積×ポリプロピレン密度−気体透過膜の質量)/(気体透過膜の体積×ポリプロピレン密度)で求めることができる。
一方、空孔の平均孔径は0.01〜0.06μmの範囲内にあることが好ましい。ここで、平均孔径とは、本願では孔径のメジアン値を採る。さらに好ましい空孔の平均孔径は0.02〜0.04μmの範囲にある。なお、空孔の径の全体的な分布は0.005〜0.08μmの範囲であることが好ましい。ちなみに、空孔径の測定は、500〜2000倍の倍率での走査型電子顕微鏡像に基づく画像分析法を用いて行うことができる。
このような空孔率及び孔径を有する多孔質膜を用い、後述する水素圧を調整することで、良好に極微細気泡を形成することができるようになる。
(Gas permeable membrane)
The gas permeable membrane used in this embodiment is made of porous polypropylene. In order to maintain the strength against pressure, it is preferable that the film thickness is formed to about 10 μm to 100 μm, but since hydrogen is dispersed at a higher concentration, it is possible to withstand the applied hydrogen pressure and liquid solvent pressure. Therefore, in this embodiment, the thickness is preferably 20 to 60 μm. More preferably, the thickness of the hollow fiber membrane is 20 to 50 μm, and further preferably 30 to 50 μm.
The porosity of the gas permeable membrane is preferably 10-40%. A more preferable porosity is 15 to 30%. Here, the porosity is calculated from the volume of the gas permeable membrane made of porous polypropylene and its measured mass, and the density of the porous polypropylene that is the material of the gas permeable membrane. Volume x polypropylene density-mass of gas permeable membrane)/(volume of gas permeable membrane x polypropylene density).
On the other hand, the average pore diameter of the pores is preferably within the range of 0.01 to 0.06 μm. Here, the average pore diameter means the median value of the pore diameter in the present application. A more preferable average pore diameter is in the range of 0.02 to 0.04 μm. The overall distribution of pore diameters is preferably in the range of 0.005 to 0.08 μm. Incidentally, the pore diameter can be measured using an image analysis method based on a scanning electron microscope image at a magnification of 500 to 2000 times.
By using a porous membrane having such a porosity and a pore diameter and adjusting the hydrogen pressure described later, it becomes possible to form extremely fine bubbles satisfactorily.

本実施形態において、気体透過膜とは、水素、酸素、窒素、二酸化炭素等の常温常圧下で気体として存在するものは透過させるが、液体は透過させないものをいう。また、気体透過膜の気体透過度は、以下の式で求めることができる。
気体透過度=気体透過量(体積)/(圧力差×透過面積×時間)
ちなみに、気体透過性の試験は、JIS K7126−1の差圧法により測定することができる。
In the present embodiment, the gas permeable membrane refers to a material such as hydrogen, oxygen, nitrogen, carbon dioxide, etc. that is present as a gas under normal temperature and normal pressure but is permeable to liquid. The gas permeability of the gas permeable membrane can be calculated by the following formula.
Gas permeability = Gas permeation amount (volume) / (pressure difference x permeation area x time)
Incidentally, the gas permeability test can be measured by the differential pressure method of JIS K7126-1.

(中空糸膜)
本実施形態に係る液体溶媒中への水素分散方法は、液体溶媒と水素とを仕切る気体透過膜を配置して、水素側から所定圧力をかけつつ、気体透過膜を介して液体溶媒側に水素の極微細気泡を送出するものである。従って、上述した構成及び水素の圧力要件を満たす限りにおいて気体透過膜の形態等を特に制約するものではないが、透過対象である水素の接触面積を増大させるともに、装置構成が簡易であって且つ透過効率を向上させ、効率の良い水素導入方法を得るという観点から、気体透過膜としては、中空糸膜状の形態を有するものを用いることが好ましい。
中空糸膜とは気体透過膜の一利用形態であって、細いストロー状の細管に形成された膜体をいう。一般的に個々の中空糸膜1本当たりの直径(内径)は、数mm〜100μm程度であるが、本実施形態にあっては、液体溶媒を効率良く流通させる為に500〜100μmに形成されることが好ましく、300〜100μmであることが更に好ましい。
(Hollow fiber membrane)
The method for dispersing hydrogen in a liquid solvent according to the present embodiment, a gas permeable membrane for partitioning the liquid solvent and hydrogen is arranged, while applying a predetermined pressure from the hydrogen side, hydrogen on the liquid solvent side through the gas permeable membrane. it is intended to deliver the very fine bubbles. Therefore, as long as the above-mentioned configuration and hydrogen pressure requirements are satisfied, the form of the gas permeable membrane is not particularly limited, but the contact area of hydrogen to be permeated is increased, and the device configuration is simple and From the viewpoint of improving the permeation efficiency and obtaining an efficient hydrogen introduction method, it is preferable to use a gas permeable membrane having a hollow fiber membrane shape.
The hollow fiber membrane is a form of utilization of a gas permeable membrane, and refers to a membrane body formed in a thin straw-shaped thin tube. Generally, the diameter (inner diameter) per individual hollow fiber membrane is about several mm to 100 μm, but in the present embodiment, it is formed to be 500 to 100 μm in order to efficiently flow the liquid solvent. Is preferably 300 to 100 μm, and more preferably 300 to 100 μm.

(中空糸膜モジュール)
上述の中空糸膜を多数本束ねたものは中空糸膜モジュールと呼ばれる。中空糸膜モジュールは、塩化ビニル等の合成樹脂、ステンレス、その他アルミ等の金属で形成されたハウジング容器に密閉状態で格納される。ハウジング容器内には1つ又は複数の中空糸膜モジュールを収容することができる。1つの中空糸膜モジュールとしては、上述した中空糸膜を4000〜250000本束ねたものを用いることが好ましいが、液体又は水素の流量に合わせて適宜調節することができる。なお、中空糸膜モジュール(中空糸膜束)は1つのハウジングに1つのモジュール(束)を入れたものであっても良いし、複数のモジュール(束)を入れたものであっても良い。
また、それぞれのモジュールにおける中空糸膜の長さは用途に応じて調整することができるが、長すぎると液体溶媒を流す為の圧力が高くなることから、中空糸膜束の形態で両端の固定部を除いた長さ、いわゆる有効長を100〜1000mmに形成することが好ましい。さらに好ましくは120〜900mmである。更により好ましくは200〜800mmである。
一方、中空糸膜の気相及び液相との接触面積の合計(有効膜面積)は、モジュールの大きさ(気相と液相における流量の大きさ)によって適宜変化させることができる。大型の装置であれば有効膜面積は大きくすることができ、また、小さな装置とすれば有効膜面積は装置の大きさに応じて小さなものとなる。但し、効率よく水素を液相に導入するには、この有効膜面積と、液相の流量との比を考慮することが好ましい。具体的には、液相の流量を有効膜面積で割った値(液相の流量/有効膜面積:単位はL/min・m)は、0.5〜5とすることが好ましい。このような範囲にすることで、液相中に水素を良好に、且つ効率よく導入することができる。より好ましくは、液相の流量/有効膜面積の値は0.6〜3である。大型の装置、小型の装置にこだわらず、液相の流量/有効膜面積の値を上記した範囲に入るように流量を設定すると、より効率の良い水素ガス導入ができることになる。
以上に示した構成の中空糸膜モジュールとすると、液体溶媒に対して、効率良く極微細気泡状の水素を導入することができる。なお、本実施形態にあって接触面積の算出は、中空糸膜内外の径差を考慮し、厚みの中間部分における換算値、即ち外面部面積と内面部面積の平均値を示すものとする。
(Hollow fiber membrane module)
A bundle of a large number of the above hollow fiber membranes is called a hollow fiber membrane module. The hollow fiber membrane module is hermetically stored in a housing container made of a synthetic resin such as vinyl chloride, stainless steel, or a metal such as aluminum. One or more hollow fiber membrane modules can be housed in the housing container. As one hollow fiber membrane module, it is preferable to use a bundle of 4000 to 250,000 hollow fiber membranes described above, but it can be appropriately adjusted according to the flow rate of liquid or hydrogen. The hollow fiber membrane module (hollow fiber membrane bundle) may have one housing (bundle) in one housing, or may have a plurality of modules (bundle) in one housing.
Also, the length of the hollow fiber membrane in each module can be adjusted according to the application, but if it is too long, the pressure for flowing the liquid solvent will be high, so fixing the both ends in the form of a hollow fiber membrane bundle. It is preferable to form the so-called effective length excluding the part to 100 to 1000 mm. More preferably, it is 120 to 900 mm. Even more preferably, it is 200 to 800 mm.
On the other hand, the total contact area of the hollow fiber membrane with the gas phase and the liquid phase (effective membrane area) can be appropriately changed according to the size of the module (the amount of flow in the gas phase and the liquid phase). A large device can have a large effective film area, and a small device can have a small effective film area depending on the size of the device. However, in order to efficiently introduce hydrogen into the liquid phase, it is preferable to consider the ratio between the effective film area and the liquid phase flow rate. Specifically, the value obtained by dividing the liquid phase flow rate by the effective film area (liquid phase flow rate/effective film area: unit is L/min·m 2 ) is preferably 0.5 to 5. With such a range, hydrogen can be satisfactorily and efficiently introduced into the liquid phase. More preferably, the value of flow rate of liquid phase/effective membrane area is 0.6 to 3. Regardless of a large-sized apparatus or a small-sized apparatus, if the flow rate is set so that the value of the flow rate of the liquid phase/the value of the effective membrane area falls within the above range, the hydrogen gas can be introduced more efficiently.
With the hollow fiber membrane module having the above-described configuration, it is possible to efficiently introduce ultrafine bubble-like hydrogen into the liquid solvent. In the present embodiment, the contact area is calculated by taking into consideration the difference between the inside and outside of the hollow fiber membrane and showing the converted value in the middle portion of the thickness, that is, the average value of the outer surface area and the inner surface area.

(水素及び液体溶媒の通し方)
中空糸膜を介して液体溶媒中に水素を極微細気泡の形態で含有させる場合、
(1)中空糸膜の内側面に液体溶媒を流通させ、中空糸膜の外側で、密閉されたハウジング容器の内部に水素を所定圧力で灌流させることもできるし、また、上述とは逆に、
(2)中空糸膜内側面に水素を所定の圧力で灌流させ、中空糸膜の外側で、密閉されたハウジング容器の内部に液体溶媒を灌流させる形態を選択することもできる。
ちなみに、水素の圧力調整を容易にするためには、中空糸膜の内側に液体溶媒を灌流させる形態が好ましい。一方、液体溶媒の流量を大きく設定する場合には、その逆に、中空糸膜の外側に液体溶媒を灌流させる形態が好ましい。
(How to pass hydrogen and liquid solvent)
When hydrogen is contained in the liquid solvent through the hollow fiber membrane in the form of ultrafine bubbles,
(1) It is also possible to circulate a liquid solvent on the inner surface of the hollow fiber membrane, and to perfuse hydrogen inside the sealed housing container at a predetermined pressure outside the hollow fiber membrane, or conversely to the above. ,
(2) It is also possible to select a mode in which hydrogen is perfused on the inner surface of the hollow fiber membrane at a predetermined pressure, and the liquid solvent is perfused inside the sealed housing container outside the hollow fiber membrane.
Incidentally, in order to facilitate the pressure adjustment of hydrogen, it is preferable that the liquid solvent is perfused inside the hollow fiber membrane. On the other hand, in the case where the flow rate of the liquid solvent is set to be large, on the contrary, it is preferable that the liquid solvent is perfused outside the hollow fiber membrane.

(水素ガスの流量)
水素をモジュール内に圧送する際の水素の流量は、中空糸膜の単位面積(m)あたり、0.01L/min・m〜0.5L/min・mとなるように調整することが好ましい。さらに好ましくは、0.03L/min・m〜0.1L/min・mとする。
(Flow rate of hydrogen gas)
Flow rate of hydrogen at the time of pumping hydrogen into the module unit area of hollow fiber membrane (m 2) per be adjusted to be 0.01L / min · m 2 ~0.5L / min · m 2 Is preferred. More preferably, the 0.03L / min · m 2 ~0.1L / min · m 2.

(水素ガスの加圧)
中空糸膜等の気体透過膜を介して、液体溶媒中に極微細気泡の状態で水素を効率よく、且つなるべく多量に送入するためには、水素側の圧力を所定以上の圧力に調整することが必要である。この水素側の圧力は0.28MPa以上とする。好ましくは、0.30MPa以上、さらに好ましくは0.35MPa以上、最も好ましくは0.40MPa以上とする。また、この水素圧力の上限は、中空糸膜モジュール等の機材の強度や、コストパフォーマンス等の観点から、0.9MPaとすることが好ましい。さらに好ましい水素の圧力の上限は0.75MPaである。このような範囲に水素圧力を調整することによって、液体溶媒中において水素が気相状態を保持しうるように、即ち極微細気泡の状態で送入されることが可能となる。
(Pressurization of hydrogen gas)
In order to efficiently and as much hydrogen as possible be fed into the liquid solvent in the form of ultrafine bubbles through a gas permeable membrane such as a hollow fiber membrane, the pressure on the hydrogen side is adjusted to a predetermined pressure or higher. It is necessary. The pressure on the hydrogen side is 0.28 MPa or more. The pressure is preferably 0.30 MPa or more, more preferably 0.35 MPa or more, and most preferably 0.40 MPa or more. The upper limit of the hydrogen pressure is preferably 0.9 MPa from the viewpoint of the strength of equipment such as the hollow fiber membrane module and cost performance. A more preferable upper limit of hydrogen pressure is 0.75 MPa. By adjusting the hydrogen pressure within such a range, it becomes possible for hydrogen to be maintained in a gas phase state in the liquid solvent, that is, to be fed in the form of extremely fine bubbles.

(液体溶媒の加圧)
本発明者らは、鋭意研究の結果、気体側、即ち水素側のみを加圧して水素を液体溶媒中に導入するだけではなく、水素側の加圧に加えて、溶媒液体側にも圧力を加え、気体透過膜を介して密封容器内に水素と溶媒液体とを入れると、さらに多くの極微細気泡状の水素が液体溶媒中に取り込まれることを見出した。特に、液体溶媒側の圧力を、水素側の圧力よりも高くしてやることで、その効果が一層顕著になることを見出した。即ち、水素分散の方法においては、水素側の圧力P<液体溶媒側の圧力Qとすることが好ましい。ちなみに、圧力Qと圧力Pの差(圧力Q−圧力P)は0.03〜0.12MPaとすることが好ましい。さらに好ましくは、圧力Qと圧力Pの差は0.04〜0.1MPaである。このような圧力条件とすれば、極微細気泡状の水素がさらに良好に液体溶媒中に導入されることになる。本発明者等の研究によると、上記範囲の圧力差とすると、より良好な水素ガスの液相への導入ができるようになる。
(Pressurization of liquid solvent)
As a result of earnest research, the present inventors not only pressurize only the gas side, that is, the hydrogen side to introduce hydrogen into the liquid solvent, but also apply pressure to the solvent liquid side in addition to pressurizing the hydrogen side. In addition, it has been found that when hydrogen and a solvent liquid are put into a sealed container via a gas permeable membrane, a larger amount of hydrogen in the form of ultrafine bubbles is taken into the liquid solvent. In particular, it has been found that the effect becomes more remarkable by making the pressure on the liquid solvent side higher than the pressure on the hydrogen side. That is, in the hydrogen dispersion method, it is preferable that the pressure P on the hydrogen side is smaller than the pressure Q on the liquid solvent side. Incidentally, the difference between the pressure Q and the pressure P (pressure Q-pressure P) is preferably 0.03 to 0.12 MPa. More preferably, the difference between the pressure Q and the pressure P is 0.04 to 0.1 MPa. Under such a pressure condition, ultrafine bubble-like hydrogen can be introduced into the liquid solvent even better. According to the study by the present inventors, when the pressure difference is within the above range, hydrogen gas can be introduced into the liquid phase better.

以下、本発明の実施形態を、液体溶媒が水で、それに水素を分散させて飲料とした場合を例として更に詳述する。 Hereinafter, the embodiment of the present invention will be described in more detail by taking as an example the case where the liquid solvent is water and hydrogen is dispersed in the liquid solvent to give a drink.

(水素水)
広くは、水素を含有する水を指すが、明確な定義は無い。なお、学術研究会である日本分子状水素医学生物学会では、水素水について以下のように記載している。
「人に対しての水素水の飲用効果についての学術論文では、0.5mg/L(0.5ppm)の水素水を一日1L飲用した場合の効果が報告されており、それ以下の濃度の水素水の飲用効果は見当たらない。現段階では、人への水素水の飲用効果を発揮するためには、最小量として、0.5mg/L(0.5ppm)以上の濃度で、総量が0.5mg以上の飲用が必要であると示唆される。なお、この示唆は学術論文に基づく結果であって、水素水の効果・効能を保証するものではない。また、水素医学の研究は日進月歩なので、研究の発展に伴い、この記載が変更される可能性がありうる。」
(Hydrogen water)
Broadly, it refers to water containing hydrogen, but there is no clear definition. In addition, the Japan Molecular Hydrogen Medical Biology Society, which is an academic research group, describes hydrogen water as follows.
“In an academic paper on the drinking effect of hydrogen water on humans, the effect of drinking 1 L of 0.5 mg/L (0.5 ppm) hydrogen water per day was reported, and At present, in order to exert the drinking effect of hydrogen water on humans, the minimum amount is 0.5 mg/L (0.5 ppm) or more and the total amount is 0. It is suggested that it is necessary to drink more than .5 mg.It should be noted that this suggestion is based on academic papers and does not guarantee the effect/efficacy of hydrogen water. , This statement may change as research progresses."

水素水は飲用により体内に取り込まれた場合、含有される水素分子の還元力によって、活性酸素が除去されて体内の酸化ストレスを防止するといった効果が期待されている。 When hydrogen water is taken into the body by drinking, it is expected that the reducing power of contained hydrogen molecules removes active oxygen and prevents oxidative stress in the body.

(容器)
水素水が飲料用である場合、製造した水素水は、例えばウォーターサーバーのような形態で提供する他、所定の容器に封入した形態で提供することもできる。容器は、水素が外部に抜け難く、密封可能なガラス瓶、金属缶、金属積層フィルムを用いた所謂パウチ形態の容器が好適である。金属はアルミ缶が特に好適であり、金属積層フィルムは、アルミニウム/アルミナ蒸着フィルムが特にバリア性に優れており好適である。
(container)
When the hydrogen water is for drinking, the produced hydrogen water may be provided in the form of, for example, a water server, or may be provided in the form of being enclosed in a predetermined container. As the container, a so-called pouch-shaped container using a glass bottle, a metal can, and a metal laminated film, in which hydrogen is hard to escape to the outside and which can be sealed, is suitable. An aluminum can is particularly suitable as the metal, and an aluminum/alumina vapor-deposited film is particularly suitable as the metal laminated film because of excellent barrier properties.

水素水はそのまま飲用することもできるが、本発明に係る方法で製造した水素水を、茶抽出液、コーヒー抽出液、果汁、野菜汁、乳、発酵乳等の飲料原料に添加する添加剤としても用いることができる。
これらの飲料原料に水素水を添加することによって、酸化に起因する各飲料の品質劣化を抑制する効果が期待できる。
Although hydrogen water can be drunk as it is, hydrogen water produced by the method according to the present invention is used as an additive to be added to beverage raw materials such as tea extract, coffee extract, fruit juice, vegetable juice, milk and fermented milk. Can also be used.
By adding hydrogen water to these beverage ingredients, the effect of suppressing the quality deterioration of each beverage due to oxidation can be expected.

以下、本発明の実施例について、液体溶媒が水である場合を一例として説明する。 Hereinafter, examples of the present invention will be described by taking the case where the liquid solvent is water as an example.

(実施例1〜7及び比較例1〜12)
1.水素水の原料
本実施例においては以下の条件並びに装置によって水素水の製造を行った。
(1)液体溶媒
本実施例の液体溶媒としては、イオン交換水(脱イオン水)を用いた。
(2)水素
岩谷産業株式会社より入手の水素を用いた。
(Examples 1 to 7 and Comparative Examples 1 to 12)
1. Hydrogen Water Raw Material In this example, hydrogen water was produced under the following conditions and apparatus.
(1) Liquid solvent Ion-exchanged water (deionized water) was used as the liquid solvent in this example.
(2) Hydrogen Hydrogen obtained from Iwatani Corporation was used.

2.水素水の製造方法
(中空糸膜モジュール)
本実施例にあっては、気体透過膜としてハウジング内に収納された多孔質ポリプロピレン製の中空糸膜モジュール(3M社製「Liqui−Cel」型式:MMシリーズG800−0)を用いた。詳細は後述する。
図1は本実施例において用いた中空糸膜モジュールを含む気体透過装置の構造を示す概略断面図である。中空糸膜モジュールは、製造規模等に応じて、上記ハウジング内に1又は複数配設することができるが、本実施例においては、図1に示すように、1つの中空糸膜モジュール(中空糸膜束)をハウジング内に配置したものを用いている。なお、気体透過装置の構造は、必ずしも図1に示す構造と同一とする必要はなく、基本構成が同じであれば、ハウジングの大きさ、長さ、気体(水素ガス)及び液相溶媒(水)の出入り口の設置位置、その大きさ等は適宜変更することができる。
2. Method for producing hydrogen water (hollow fiber membrane module)
In this example, a hollow polypropylene membrane module made of porous polypropylene (“Liqui-Cel” model: MM series G800-0 manufactured by 3M) was used as a gas permeable membrane. Details will be described later.
FIG. 1 is a schematic cross-sectional view showing the structure of a gas permeation device including the hollow fiber membrane module used in this example. One or a plurality of hollow fiber membrane modules can be arranged in the housing depending on the manufacturing scale and the like. In the present embodiment, as shown in FIG. 1, one hollow fiber membrane module (hollow fiber membrane module) is used. The membrane bundle is arranged inside the housing. The structure of the gas permeation device does not necessarily have to be the same as the structure shown in FIG. 1, and if the basic configuration is the same, the size and length of the housing, the gas (hydrogen gas) and the liquid phase solvent (water). The installation position of the entrance and exit, the size, etc. can be changed appropriately.

図1において、上記多孔質ポリプロピレン製の中空糸を有する中空糸膜モジュール10は(以下モジュールと記載する)、ステンレス若しくは塩化ビニル等の素材からなるハウジング11と、そのハウジング11内の中央部に配置される多孔質ポリプロピレン製の中空糸膜束14とを有する。また、ハウジング11には、一方に水素送入口12、他方に水素送出口13が設けられ、ハウジング11内部に水素15が所定の圧力をもって充満、そして灌流できるように設計されている。また、中空糸膜束14の一端には液体溶媒入口16、他端には液体溶媒出口17が形成されている。
次に、液体溶媒である水の中に水素を分散させる手順を以下に示す。
本モジュール10は水素水の製造ライン(図示せず)中に配設されている。
液体溶媒である脱気済みの天然水(脱気工程の装置は図示せず)からなる水は、液体溶媒入口16から送入され、中空糸膜束14の各中空糸膜の細管内部に流入される。
一方、ハウジング11内部に満たされた水素15は、中空糸膜束14の各中空糸膜の外側面部から膜素材である多孔質ポリプロピレンの細孔内を通過した後、中空糸膜の管内部を通過する液体溶媒(水)中に極微細気泡の形態で送入される。このようにして調製された水素が分散する液体溶媒(水)は、液体溶媒出口17からモジュール10外に送出される。
なお、ハウジング11に満たされた水素15は試料毎に所定の圧力を保持しつつハウジング11内部に灌流される。また、多孔質ポリプロピレン製の中空糸膜の管内部を通過する水も、所定の圧力に維持されながらモジュール10内を通過するように設定されている。
In FIG. 1, a hollow fiber membrane module 10 having a hollow fiber made of the above-mentioned porous polypropylene (hereinafter referred to as a module) is provided with a housing 11 made of a material such as stainless steel or vinyl chloride, and a central portion in the housing 11. And a hollow fiber membrane bundle 14 made of porous polypropylene. The housing 11 is provided with a hydrogen inlet 12 on one side and a hydrogen outlet 13 on the other side, and is designed so that the inside of the housing 11 can be filled with hydrogen 15 at a predetermined pressure and then perfused. A liquid solvent inlet 16 is formed at one end of the hollow fiber membrane bundle 14, and a liquid solvent outlet 17 is formed at the other end.
Next, the procedure for dispersing hydrogen in water, which is a liquid solvent, is shown below.
The module 10 is arranged in a hydrogen water production line (not shown).
Water consisting of degassed natural water (a device for the degassing process is not shown) which is a liquid solvent is fed from the liquid solvent inlet 16 and flows into the thin tubes of each hollow fiber membrane of the hollow fiber membrane bundle 14. To be done.
On the other hand, the hydrogen 15 filled in the housing 11 passes through the pores of the porous polypropylene, which is the membrane material, from the outer side surface of each hollow fiber membrane of the hollow fiber membrane bundle 14 and then inside the tube of the hollow fiber membrane. It is introduced into the passing liquid solvent (water) in the form of ultrafine bubbles. The liquid solvent (water) in which hydrogen is dispersed thus prepared is sent out of the module 10 through the liquid solvent outlet 17.
The hydrogen 15 filled in the housing 11 is perfused into the housing 11 while maintaining a predetermined pressure for each sample. Further, water that passes through the inside of the hollow polypropylene membrane hollow fiber membrane is set so as to pass through the inside of the module 10 while being maintained at a predetermined pressure.

上述した図1の説明(水素と液体溶媒の流れに関する説明)では、液体溶媒(水)を中空糸膜束14の一端に設けた液体溶媒入口16から中空糸膜束内に入れて中空糸膜束内を通過させ、他端に設けた液体溶媒出口17から排出する機構としている。この場合、水素はハウジング11に設けた水素送入口12から入り、水素送出口13から送出される。
しかしながら、本発明においては、この方式に限らず、水素を中空糸膜束の管内に通し、液体溶媒(水)をハウジング11内で中空糸膜束14外側の空間を通す機構とすることも可能である。
In the above description of FIG. 1 (the description of the flow of hydrogen and the liquid solvent), the liquid solvent (water) is put into the hollow fiber membrane bundle from the liquid solvent inlet 16 provided at one end of the hollow fiber membrane bundle 14, and the hollow fiber membrane is inserted. The mechanism is such that it passes through the bundle and is discharged from the liquid solvent outlet 17 provided at the other end. In this case, hydrogen enters through the hydrogen inlet 12 provided in the housing 11 and is delivered through the hydrogen outlet 13 .
However, the present invention is not limited to this method, and a mechanism may be used in which hydrogen is passed through the tube of the hollow fiber membrane bundle and liquid solvent (water) is passed through the space outside the hollow fiber membrane bundle 14 inside the housing 11. Is.

(実施例1〜7及び比較例1〜12の試料の調製)
本実施例及び比較例にあっては、上記構成の中空糸膜モジュールの種類、ハウジング内に灌流させる水素ガスの圧力、及び平衡時のその流量、中空糸膜中に流通する水の温度、及びその流量、水圧をそれぞれ表1に示すように変化させ、実施例試料(水素水)1〜7、及び比較例試料(水素水)1〜12を調製した。
なお、水素ガスについては、実施例1〜6、及び比較例1〜11においては、まずガス室側を水素ガスで充満させ、表1に示すガス圧、及び水圧でシステムが定常状態に達した際の水素ガスの流量を計測し、それを記録した。また、実施例7及び比較例12においては、まず、水素ガスの流量を7.0L/minとしてハウジング内のガス室側を水素ガスで充満させ、その後、表1に示すガス圧、及び水圧でシステムが定常状態に達したら、水素ガス供給量(流量)を0.1L/minに制限した。
(Preparation of Samples of Examples 1 to 7 and Comparative Examples 1 to 12)
In the present example and comparative example, the type of the hollow fiber membrane module having the above configuration, the pressure of hydrogen gas perfused in the housing, and the flow rate at equilibrium, the temperature of water flowing in the hollow fiber membrane, and The flow rate and the water pressure were changed as shown in Table 1, and Example samples (hydrogen water) 1 to 7 and Comparative example samples (hydrogen water) 1 to 12 were prepared.
Regarding hydrogen gas, in Examples 1 to 6 and Comparative Examples 1 to 11, first, the gas chamber side was filled with hydrogen gas, and the system reached a steady state at the gas pressure and water pressure shown in Table 1. The flow rate of hydrogen gas at that time was measured and recorded. In addition, in Example 7 and Comparative Example 12, first, the flow rate of hydrogen gas was set to 7.0 L/min to fill the gas chamber side in the housing with hydrogen gas, and then the gas pressure and water pressure shown in Table 1 were used. When the system reached a steady state, the hydrogen gas supply rate (flow rate) was limited to 0.1 L/min.

(中空糸膜モジュール)
実施例1〜7、及び比較例1〜12で用いた中空糸膜モジュールは以下の2種である。
A:多孔質ポリプロピレン製の気体透過膜を有する中空糸膜モジュール(3M社製「Liqui−Cel」型式:MMシリーズG800−0):ここで、ハウジング内の気相側(水素ガス側)の容量は、0.16リットルであった。また、この中空糸膜モジュールの有効膜面積は0.8mであり、中空糸膜厚は約50μmである。中空糸膜の長さ(有効長)は、250mmのものを使用した。
B:非多孔質のシリコーンゴム製の気体透過膜を有する中空糸膜モジュール(永柳工業製のM60−4400):ここで、ハウジング内の気相側(水素ガス側)の容量は、約0.16リットルであった。また、モジュールは4400本の中空糸膜を有する。また、このモジュールにおける中空糸膜厚は60μmであり、モジュールにおける中空糸膜の長さ(有効長)は、140mmであった。
(Hollow fiber membrane module)
The hollow fiber membrane modules used in Examples 1 to 7 and Comparative Examples 1 to 12 are the following two types.
A: Hollow fiber membrane module having a gas permeable membrane made of porous polypropylene (“Liqui-Cel” manufactured by 3M, model: MM series G800-0): Here, the volume on the gas phase side (hydrogen gas side) in the housing Was 0.16 liters. The effective membrane area of this hollow fiber membrane module is 0.8 m 2 , and the hollow fiber membrane thickness is about 50 μm. The length (effective length) of the hollow fiber membrane was 250 mm.
B: Hollow fiber membrane module having a gas permeable membrane made of non-porous silicone rubber (M60-4400 manufactured by Nagayanagi Industry Co., Ltd.): Here, the capacity on the gas phase side (hydrogen gas side) in the housing is about 0. It was 16 liters. The module also has 4400 hollow fiber membranes. The hollow fiber membrane thickness in this module was 60 μm, and the length (effective length) of the hollow fiber membrane in the module was 140 mm.

(実験結果)
調製した実施例試料1〜7、及び比較例試料1〜12について、25℃の環境下において、その生成時の水素含有量を測定した。結果を表1に示す。なお、この水素の含有量測定は、溶存水素濃度判定試薬(Miz株式会社製)を用いて行った。
(Experimental result)
Regarding the prepared example samples 1 to 7 and comparative example samples 1 to 12, the hydrogen content at the time of production was measured under an environment of 25°C. The results are shown in Table 1. In addition, this hydrogen content measurement was performed using the dissolved hydrogen concentration determination reagent (made by Miz Co., Ltd.).


Figure 0006727384
Figure 0006727384

(水素濃度経時変化の測定)
実施例4、比較例4、及び比較例9で調製された試料のそれぞれを、生成直後にステンレスビーカーに2リットル回収し、溶存水素濃度判定試薬(Miz株式会社製)を用いて経時的に水素濃度を測定した。なお、この実験は室温20〜22℃の条件下で行った。
また。実施例8及び9として、実施例4と同様にして(但し水素ガス及び水の流量、圧力、温度等を表2に示すように設定して)試料を調製した。得られた試料につき、上記と同様に、生成直後〜4時間後の水素濃度を求めた。結果を表2に示す。
(Measurement of change over time in hydrogen concentration)
Immediately after the production, 2 liters of each of the samples prepared in Example 4, Comparative Example 4, and Comparative Example 9 was collected in a stainless beaker, and dissolved hydrogen concentration determination reagent (manufactured by Miz Co., Ltd.) was used. The concentration was measured. In addition, this experiment was conducted under the conditions of room temperature of 20 to 22°C.
Also. As Examples 8 and 9, samples were prepared in the same manner as in Example 4 (however, the flow rates of hydrogen gas and water, pressure, temperature, etc. were set as shown in Table 2). For the obtained sample, the hydrogen concentration immediately after the production and after 4 hours was determined in the same manner as above. The results are shown in Table 2.

Figure 0006727384
Figure 0006727384

表2から分かるように、実施例4、8、及び9における水素水生成時の水素濃度は、比較例4及び9におけるそれよりも大きな値を示していることが分かる。これは、実施例における水素ガスの給気圧が、比較例におけるそれよりも高いことに起因していると考えられる。なお、水素ガスの給気圧と、水圧との両方を高くした例(実施例4)は、表2に示す他の例よりも水素残留性が良好であることがわかった。
ちなみに、給気圧を固定して水圧を高くしても、水素残留性に大きな変化は見られなかった(比較例4と比較例9との比較、及び実施例8と実施例9との比較)。
As can be seen from Table 2, the hydrogen concentration during hydrogen water generation in Examples 4, 8 and 9 is larger than that in Comparative Examples 4 and 9. It is considered that this is because the supply pressure of hydrogen gas in the example is higher than that in the comparative example. It was found that the example in which both the supply pressure of hydrogen gas and the water pressure were increased (Example 4) had better hydrogen retention than the other examples shown in Table 2.
By the way, even if the supply pressure was fixed and the water pressure was increased, no significant change was observed in the hydrogen residual property (comparison between Comparative Example 4 and Comparative Example 9, and comparison between Example 8 and Example 9). ..

(実施例10〜15)
上述した実施例1〜9及び比較例1〜12で用いたものと同一の脱イオン水及び水素を原料とし、装置としては、以下に示す中空糸膜モジュールを、容量が約4リットルのハウジング内に1ユニット配置した構成の大型の装置を用い、水素ガス圧、水素給気圧、水の温度、流量、及び水圧を表3に示すように設定し、水素水を製造した。
なお、この実施例10〜15においては、先の実施例1〜9の方式とは逆に、中空糸膜モジュールの細管の内部に水素を通し、脱気水はハウジング内で、中空糸膜モジュール束の外側を灌流させる方式とした。
ちなみに、実施例10〜15で用いた大型の装置においては、水素ガスの流量及び水の流量は共に、先に示した実施例1〜9及び比較例1〜12で用いた装置での実験の際の流量よりも大きくすることができた。
(Examples 10 to 15)
The same deionized water and hydrogen as those used in Examples 1 to 9 and Comparative Examples 1 to 12 described above were used as raw materials, and the hollow fiber membrane module shown below was used as an apparatus in a housing having a capacity of about 4 liters. Hydrogen gas was produced by using a large-sized apparatus having a configuration in which 1 unit was installed in the above, and setting the hydrogen gas pressure, hydrogen supply pressure, water temperature, flow rate, and water pressure as shown in Table 3.
In addition, in Examples 10 to 15, contrary to the method of Examples 1 to 9 described above, hydrogen is passed through the narrow tube of the hollow fiber membrane module, and degassed water is stored in the housing. The outside of the bundle was perfused.
By the way, in the large-sized apparatus used in Examples 10 to 15, both the flow rate of hydrogen gas and the flow rate of water were the same as those of the apparatus used in Examples 1 to 9 and Comparative Examples 1 to 12 described above. It was possible to make it larger than the actual flow rate.

中空糸膜モジュールC:多孔質ポリプロピレン製の気体透過膜を有する中空糸膜モジュール(3M社製「Liqui−Cel」型式:G333):ハウジング内の容量は、約0.16リットル。中空糸膜モジュールの有効膜面積は20mであり、中空糸膜厚は約50μmである。中空糸膜の長さ(有効長)は、730mmであった。
実施例10〜15で得られた生成直後の水中の水素濃度を、実施例1〜9及び比較例1〜12で行った方法と同一の方法にて計測した。結果を表3に示す。
Hollow fiber membrane module C: Hollow fiber membrane module having a gas permeable membrane made of porous polypropylene ("Liqui-Cel" model: G333 manufactured by 3M): The capacity of the housing is about 0.16 liters. The effective membrane area of the hollow fiber membrane module is 20 m 2 , and the hollow fiber membrane thickness is about 50 μm. The length (effective length) of the hollow fiber membrane was 730 mm.
The hydrogen concentration in the water immediately after generation obtained in Examples 10 to 15 was measured by the same method as that performed in Examples 1 to 9 and Comparative Examples 1 to 12. The results are shown in Table 3.

Figure 0006727384
Figure 0006727384

上記実施例及び比較例において、モジュールA及びCを用いた例における水素流量と水流量の比(水素流量/水流量)と生成時の水素濃度(ppm)との関係をグラフにプロットした。同様に、モジュールBを用いた例についても同様に、水素流量/水流量と生成時の水素濃度との関係を同じグラフにプロットした。結果を図2に示す。
図2から分かるように、モジュールA及びCを用いた実験では、ガス流量の少ない条件下でも良好に水素を水中に導入することができることがわかる。即ち、本実施形態によれば、水素ガスの利用効率がアップすることが期待できる。
In the above Examples and Comparative Examples, the relationship between the ratio of the hydrogen flow rate to the water flow rate (hydrogen flow rate/water flow rate) and the hydrogen concentration (ppm) at the time of production in the examples using the modules A and C was plotted in a graph. Similarly, for the example using the module B, the relationship between the hydrogen flow rate/water flow rate and the hydrogen concentration at the time of production was also plotted in the same graph. The results are shown in Figure 2.
As can be seen from FIG. 2, in the experiment using the modules A and C, it can be seen that hydrogen can be satisfactorily introduced into water even under the condition where the gas flow rate is small. That is, according to the present embodiment, it can be expected that the utilization efficiency of hydrogen gas is improved.

(考察)
上述したように、本実施形態で開示された多孔質のポリプロピレン製の中空糸膜を用い、適切な水素圧の条件を選択すると、水素含有量が高い水素水を得ることができる。特に、液体溶媒の圧力を水素の圧力より高くした条件での製造によると、さらに水素含有量が高い水素水を得ることが確認された。また、ガスの給気圧と液相圧(水圧)との両方を大きくしてやると、水素の残存率が比較的高い水素水が得られることがわかった。
(Discussion)
As described above, when the porous polypropylene hollow fiber membrane disclosed in the present embodiment is used and an appropriate hydrogen pressure condition is selected, hydrogen water having a high hydrogen content can be obtained. In particular, it was confirmed that hydrogen water having a higher hydrogen content can be obtained by the production under the condition that the pressure of the liquid solvent is higher than the pressure of hydrogen. It was also found that hydrogen water having a relatively high residual hydrogen ratio can be obtained by increasing both the gas supply pressure and the liquid phase pressure (water pressure).

本発明によれば、水素を、標準大気圧下における飽和溶解量を超過した状態で、且つ長時間に亘り液体溶媒中に持続的に分散させることが可能となる。特に飲料液若しくはその原料となり得る液体溶媒中に高濃度の水素を閉じ込めることができ、良好な水素水等の飲料水の製造に利用可能である。 According to the present invention, it becomes possible to continuously disperse hydrogen in a liquid solvent over a long period of time in a state where the saturated dissolution amount under standard atmospheric pressure is exceeded. In particular, it is possible to confine high-concentration hydrogen in a beverage liquid or a liquid solvent that can be a raw material thereof, and it can be used for producing good drinking water such as hydrogen water.

10 中空糸膜モジュール
11 ハウジング
12 気体(水素)送入口
13 気体(水素)送出口
14 中空糸膜束
15 気体(水素)
16 液体溶媒入口
17 液体溶媒出口
10 Hollow Fiber Membrane Module 11 Housing 12 Gas (Hydrogen) Inlet 13 Gas (Hydrogen) Outlet 14 Hollow Fiber Membrane Bundle 15 Gas (Hydrogen)
16 Liquid Solvent Inlet 17 Liquid Solvent Outlet

Claims (8)

水素を、標準大気圧下における飽和溶解量を超過して飲料用の液体溶媒中に分散させる方法であって、
前記水素で満たされた密閉空間の圧力Pが0.28MPa≦Pとなるように加圧する加圧調整手段と、
ポリプロピレン製の多孔質膜からなる気体透過膜から形成され、前記液体溶媒と前記水素とを仕切る気体透過手段とを備え、
前記水素で満たされた密閉空間に対して、前記気体透過膜を介して接する前記液体溶媒の圧力Qを、前記圧力Pより大きくし、
前記気体透過膜を介して、前記水素を、前記液体溶媒中に粒径1000nm以下の極微細気泡の形態で液相と独立した状態で分散させることを特徴とする飲料用液体溶媒中への水素分散方法。
A method of dispersing hydrogen in a liquid solvent for beverage in excess of a saturated dissolution amount under standard atmospheric pressure,
Pressure adjusting means for pressurizing so that the pressure P of the closed space filled with hydrogen is 0.28 MPa≦P;
Formed from a gas permeable film made of a polypropylene porous film, comprising a gas permeable means for partitioning the liquid solvent and the hydrogen,
The pressure Q of the liquid solvent in contact with the closed space filled with hydrogen through the gas permeable membrane is made larger than the pressure P,
Dispersing the hydrogen in the liquid solvent through the gas permeable film in the form of ultrafine bubbles having a particle size of 1000 nm or less in a state independent of the liquid phase. Dispersion method.
前記液体溶媒が水であることを特徴とする請求項1に記載の飲料用液体溶媒中への水素分散方法。 The method for dispersing hydrogen in a liquid solvent for beverage according to claim 1, wherein the liquid solvent is water. 前記気体透過膜の厚みが10〜100μmであることを特徴とする請求項1又は2に記載の飲料用液体溶媒中への水素分散方法。 The method for dispersing hydrogen in a liquid solvent for beverage according to claim 1 or 2, wherein the gas permeable membrane has a thickness of 10 to 100 µm. 前記気体透過膜に形成された細孔の平均孔径が0.01〜0.06μmであることを特徴とする請求項1〜3のいずれか1項に記載の飲料用液体溶媒中への水素分散方法。 The average pore size of the pores formed in the gas permeable membrane is 0.01 to 0.06 μm, and hydrogen is dispersed in the beverage liquid solvent according to any one of claims 1 to 3. Method. 前記気体透過膜の空孔率が10〜40%であることを特徴とする請求項1〜4のいずれか1項に記載の飲料用液体溶媒中への水素分散方法。 The method for dispersing hydrogen in a liquid solvent for beverage according to claim 1, wherein the gas permeable membrane has a porosity of 10 to 40%. 密閉ハウジング内に、前記気体透過手段として、複数の中空糸膜を束ねた中空糸膜束からなる1つ又は2以上の中空糸膜モジュールを配置し、それぞれの中空糸膜の内側面に前記飲料用液体溶媒を通液する通液工程と、前記密閉ハウジング内で、前記中空糸膜の外側面に灌流させる水素の圧力Pを調整する圧力調整工程とを備えることを特徴とする請求項1〜5のいずれか1項に記載の飲料用液体溶媒中への水素分散方法。 As the gas permeation means, one or more hollow fiber membrane modules each consisting of a bundle of hollow fiber membranes in which a plurality of hollow fiber membranes are bundled are arranged in a closed housing, and the beverage is provided on the inner surface of each hollow fiber membrane. A liquid-passing step of passing a liquid solvent for use, and a pressure adjusting step of adjusting a pressure P of hydrogen perfused on the outer surface of the hollow fiber membrane in the closed housing are provided. 5. A method for dispersing hydrogen in the liquid solvent for beverage according to any one of 5 above. 前記圧力Qと前記圧力Pとの差(圧力Q−圧力P)が0.03〜0.12MPaとなるように、前記圧力Pおよび前記圧力Qを調整することを特徴とする請求項1〜のいずれか1項に記載の飲料用液体溶媒中への水素分散方法。 As the difference between the pressure Q and the pressure P (pressure Q- pressure P) is 0.03~0.12MPa, claim 1-6, characterized by adjusting the pressure P and the pressure Q The method for dispersing hydrogen in the liquid solvent for beverage according to any one of 1. 請求項1〜のいずれか1項に記載の方法により液体溶媒中に水素を分散させることを特徴とする飲料用水素分散液の製造方法。 Method for producing a beverage hydrogen dispersions, characterized in that dispersing hydrogen in a liquid solvent by a method according to any one of claims 1-7.
JP2019141492A 2019-07-31 2019-07-31 Dispersion method of hydrogen in liquid solvent Active JP6727384B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019141492A JP6727384B1 (en) 2019-07-31 2019-07-31 Dispersion method of hydrogen in liquid solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019141492A JP6727384B1 (en) 2019-07-31 2019-07-31 Dispersion method of hydrogen in liquid solvent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020113213A Division JP2021023281A (en) 2020-06-30 2020-06-30 Method for dispersing hydrogen into liquid solvent

Publications (2)

Publication Number Publication Date
JP6727384B1 true JP6727384B1 (en) 2020-07-22
JP2021023155A JP2021023155A (en) 2021-02-22

Family

ID=71663974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019141492A Active JP6727384B1 (en) 2019-07-31 2019-07-31 Dispersion method of hydrogen in liquid solvent

Country Status (1)

Country Link
JP (1) JP6727384B1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573904B1 (en) * 2009-05-27 2010-11-04 株式会社バイオリサーチ Method for producing hydrogen-containing water for beverages
JP3161567U (en) * 2010-04-27 2010-08-05 株式会社バイオリサーチ Equipment for producing hydrogen-containing water for beverages
JP2012076076A (en) * 2010-09-09 2012-04-19 Shefco Co Ltd Method for producing hydrogen-containing drinking water
JP2015037765A (en) * 2011-12-16 2015-02-26 パナソニック株式会社 Nanobubble-containing liquid
MY180336A (en) * 2014-04-28 2020-11-28 Shefco Co Ltd Method and apparatus for manufacturing hydrogen-containing drinking water
JP6185445B2 (en) * 2014-10-20 2017-08-23 株式会社ドクターズ・マン Hydrogen water supply device
JP6395659B2 (en) * 2015-04-24 2018-09-26 株式会社シェフコ Method for producing hydrogen-containing water for beverages and apparatus for producing the same
JP6476150B2 (en) * 2016-03-18 2019-02-27 株式会社ノリタケカンパニーリミテド Microbubble generator
JP7075176B2 (en) * 2016-04-27 2022-05-25 株式会社 伊藤園 A method for suppressing a decrease in the hydrogen content of a hydrogen-containing liquid, a method for suppressing a decrease in the hydrogen content of the hydrogen-containing liquid, and a method for producing a hydrogen-containing liquid.

Also Published As

Publication number Publication date
JP2021023155A (en) 2021-02-22

Similar Documents

Publication Publication Date Title
JP5746411B1 (en) Method for producing gas dispersion
JP4573904B1 (en) Method for producing hydrogen-containing water for beverages
EP2213180A1 (en) Method of producing carbonated drink
TW200528392A (en) Method of forming monodisperse bubble
JPWO2006120761A1 (en) Method and apparatus for producing oxygen-containing reducing aqueous beverage
JP5627877B2 (en) Method for producing carbonated beverages
JP7464390B2 (en) Fine bubble generator and method for generating fine bubbles
JP6917342B2 (en) Filters, filtration equipment and water purification systems
JP2010269246A (en) Method for making hydrogen-containing drinking water
JP2009125654A (en) Method of producing hydrogen-containing drinking water
JP2011062669A (en) Drinking water, using method of drinking water, refining method of drinking water and drinking water generating device
JP2008149245A (en) Functional water and its manufacturing method
WO2008029525A1 (en) Process and equipment for mass production of liquid containing gas dissolved therein by continuous pressure flowing method
JP2021531951A (en) Hydrogen production sterilization system by ultrasonic-electrode-nanoporous membrane coupling
Babu et al. Generation methods, stability, detection techniques, and applications of bulk nanobubbles in agro-food industries: A review and future perspective
JP2009044988A (en) Method for modifying liquors, modifying apparatus, and liquors obtained thereby
JP7075176B2 (en) A method for suppressing a decrease in the hydrogen content of a hydrogen-containing liquid, a method for suppressing a decrease in the hydrogen content of the hydrogen-containing liquid, and a method for producing a hydrogen-containing liquid.
WO2012056514A1 (en) Production method and production apparatus for hydrogen-containing water for beverages
JP6727384B1 (en) Dispersion method of hydrogen in liquid solvent
JP2018102137A (en) Concentrated liquid with high concentration of magnesium ions, drinking water manufacturing system and drinking water manufacturing method
JP3161567U (en) Equipment for producing hydrogen-containing water for beverages
JP2006314972A (en) Bubbles generating apparatus
JP7539370B2 (en) Aqueous solution containing ultra-fine bubbles and beverage containing said aqueous solution
JP2012076076A (en) Method for producing hydrogen-containing drinking water
JP2021023281A (en) Method for dispersing hydrogen into liquid solvent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190731

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190731

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200630

R150 Certificate of patent or registration of utility model

Ref document number: 6727384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250